WO2014002858A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2014002858A1
WO2014002858A1 PCT/JP2013/066908 JP2013066908W WO2014002858A1 WO 2014002858 A1 WO2014002858 A1 WO 2014002858A1 JP 2013066908 W JP2013066908 W JP 2013066908W WO 2014002858 A1 WO2014002858 A1 WO 2014002858A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
negative electrode
solid
solid electrolyte
resistivity
Prior art date
Application number
PCT/JP2013/066908
Other languages
English (en)
French (fr)
Inventor
忠朗 松村
三花 福島
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2014522571A priority Critical patent/JP5846307B2/ja
Publication of WO2014002858A1 publication Critical patent/WO2014002858A1/ja
Priority to US14/580,687 priority patent/US9979047B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid battery.
  • a metal oxide such as lithium cobaltate as a positive electrode active material, a carbon material such as graphite as a negative electrode active material, and a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes are generally used.
  • a metal oxide such as lithium cobaltate as a positive electrode active material
  • a carbon material such as graphite as a negative electrode active material
  • a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes
  • the organic solvent used for the electrolyte is a flammable substance, there is a risk that the battery may ignite. For this reason, it is required to further increase the safety of the battery.
  • one measure for improving the safety of the lithium ion secondary battery is to use a solid electrolyte instead of the organic solvent electrolyte.
  • the solid electrolyte it has been studied to apply organic materials such as polymers and gels, and inorganic materials such as glass and ceramics. Among them, an all-solid secondary battery using an inorganic material mainly composed of nonflammable glass or ceramics as a solid electrolyte has been proposed and attracted attention.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-68361 (hereinafter referred to as Patent Document 1) describes the configuration of an all-solid lithium secondary battery provided with a nonflammable solid electrolyte.
  • the solid electrolyte has a sulfide as a basic composition, a substance composed of lithium sulfide and phosphorus sulfide, or mainly composed of lithium sulfide and phosphorus sulfide, does not contain a transition metal element, and It is a substance that does not contain silicon and germanium, and the negative electrode active material is a carbon material or a substance in which lithium ions are inserted between carbon materials.
  • Patent Document 1 discloses that when graphite is used as a negative electrode active material, battery characteristics vary greatly depending on the type of solid electrolyte, and a lithium ion conductive solid electrolyte is used to produce an all-solid lithium secondary battery with excellent performance. It is stated that the selection of is important. Based on this study, it is described that when a sulfide containing no silicon and germanium is used as a solid electrolyte, the energy density of an all-solid lithium secondary battery can be increased.
  • Patent Document 2 a powder having an average particle size of 0.01 to 10 ⁇ m is used as a sulfide-based solid electrolyte having high ionic conductivity. Is described.
  • the local reaction means a reaction in which an insertion / extraction reaction of lithium ions that progresses uniformly in the entire electrode layer (active material layer) proceeds only in a part of the electrode layer.
  • the occlusion of lithium ions concentrates on a specific part of the active material, and the utilization factor of the active material decreases. Furthermore, in the negative electrode containing carbon as an active material, when the charge rate is increased, local overcharge occurs and lithium metal is deposited. When the deposited lithium metal grows along a direction perpendicular to the stacking direction and reaches the positive electrode layer, the battery is short-circuited and a voltage drop occurs.
  • Patent Document 1 depending on the type of the carbon material used as the negative electrode active material, or depending on the mixed state of the negative electrode active material and the solid electrolyte in the negative electrode layer, a sufficient conductive path is not formed, and local reaction occurs. As a result, the output characteristics may be inferior.
  • the particle size of the powder constituting the active material is not considered, the optimum particle size of the solid electrolyte powder with respect to the active material powder, and the optimum particle size of the solid electrolyte powder and the active material powder Since the mixing ratio is not obtained, when the charge rate is increased, local overcharge may occur due to a local reaction.
  • an object of the present invention is to provide an all-solid-state battery capable of increasing the charge / discharge efficiency by suppressing local reactions in the electrode layer.
  • the present inventors have found that a local reaction occurs when the difference between the mobility of lithium ions and the mobility of electrons is extremely large. That is, the inventors control the mobility of lithium ions inserted into the electrode layer from the solid electrolyte layer side and the mobility of electrons entering the electrode layer from the current collector layer side, thereby It was found that local reaction in the layer can be suppressed. Based on this finding, the all solid state battery according to the present invention has the following characteristics.
  • An all solid state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer. At least one of the positive electrode layer and the negative electrode layer includes an electrode active material and a solid electrolyte.
  • the difference between the resistivity accompanying ion movement and the resistivity accompanying electron movement is 0 k ⁇ ⁇ cm or more and 100 k ⁇ ⁇ cm or less.
  • the resistivity associated with ion migration in the electrode layer is preferably 70 k ⁇ ⁇ cm or less.
  • the resistivity accompanying the electron transfer in the electrode layer is preferably 100 ⁇ ⁇ cm or less.
  • the electrode layer is preferably a negative electrode layer.
  • the negative electrode layer preferably contains carbon as an electrode active material.
  • the electrode layer by limiting the difference between the resistivity associated with ion movement and the resistivity associated with electron movement within a predetermined range, an all-solid battery with high charge / discharge efficiency can be obtained. .
  • the all solid state battery 10 of the present invention includes a positive electrode layer 11, a negative electrode layer 12, and a solid electrolyte layer 13 interposed between the positive electrode layer 11 and the negative electrode layer 12.
  • the all solid state battery 10 is formed in a rectangular parallelepiped shape, and is composed of a laminate including a plurality of flat layers having a rectangular plane.
  • the all solid state battery 10 is formed in a columnar shape and is formed of a laminated body including a plurality of disk-like layers.
  • Each of the positive electrode layer 11 and the negative electrode layer 12 includes a solid electrolyte and an electrode active material
  • the solid electrolyte layer 13 includes a solid electrolyte.
  • the resistivity associated with ion migration in at least one of the positive electrode layer 11 and the negative electrode layer 12, there is a difference between the resistivity associated with ion migration and the resistivity associated with electron migration. 0 k ⁇ ⁇ cm to 100 k ⁇ ⁇ cm, preferably greater than 0 k ⁇ ⁇ cm and 100 k ⁇ ⁇ cm or less.
  • the mobility of lithium ions inserted into the electrode layer from the side of the solid electrolyte layer and the concentration are reduced by making the difference between the resistivity associated with ion movement in the electrode layer and the resistivity associated with electron movement within the above range.
  • the mobility of electrons entering the electrode layer from the electric layer side can be controlled. Thereby, the local reaction in an electrode layer can be suppressed. As a result, even if charging / discharging is repeated at a high rate, the deposition of lithium metal at the interface between the solid electrolyte and the electrode active material can be suppressed. Thereby, an all-solid-state battery with high charge / discharge efficiency can be obtained.
  • the insertion / extraction reaction of lithium ions with respect to the electrode active material proceeds at the interface between the solid electrolyte and the electrode active material. That is, electrons are supplied through an electron conductive electrode active material and a conductive agent as an additive that is added as necessary, and lithium ions are supplied through the solid electrolyte to the interface with the electrode active material. .
  • supply of either lithium ions or electrons is delayed, lithium ion insertion / extraction reaction is not performed. Accordingly, the battery characteristics are deteriorated.
  • the electrode layer of an all-solid battery contains a solid electrolyte in addition to the electrode active material, but unlike the case of a non-aqueous electrolyte battery using an organic electrolyte, the lithium ion moves slowly, so the electrode layer There may be a bias in the supply of lithium ions to the entire layer. Furthermore, since the solid electrolyte is an insulator, the supply of electrons into the electrode layer may also be biased depending on the state of dispersion of the solid electrolyte in the electrode layer.
  • lithium ions and electrons in the electrode layer of an all-solid-state battery it is difficult to uniformly supply lithium ions and electrons in the electrode layer of an all-solid-state battery.
  • the insertion / extraction reaction of lithium ions does not proceed at a location where supply of either lithium ions or electrons is delayed.
  • lithium ions may be excessively inserted at locations where lithium ions are always supplied.
  • insertion of excess lithium ions into the electrode active material causes an irreversible reaction, generating a compound that does not function as the active material, and the cycle characteristics deteriorate.
  • insertion of excessive lithium ions induces lithium metal precipitation, and the deposited lithium metal grows along the direction perpendicular to the stacking direction. It can also occur.
  • the inventors of the present invention are important in improving the battery characteristics in order to improve the battery characteristics in the electrode design of the all-solid-state battery by adjusting the supply balance between lithium ions and electrons and suppressing the local reaction in the electrode layer. I found out. Based on this finding, in the all-solid-state battery 10 of the present invention, in at least one of the positive electrode layer 11 and the negative electrode layer 12, the difference between the resistivity associated with the ion migration and the resistivity associated with the electron migration is It is 0 k ⁇ ⁇ cm or more and 100 k ⁇ ⁇ cm or less, preferably larger than 0 k ⁇ ⁇ cm and limited to 100 k ⁇ ⁇ cm or less.
  • the negative electrode layer 12 containing carbon having a high electron conductivity as an electrode active material has a very low electronic resistance, and therefore it is necessary to suppress the resistance accompanying the movement of lithium ions as low as possible.
  • the present inventors can obtain a negative electrode layer 12 capable of suppressing local reaction and capable of high-speed charging by reducing the resistance accompanying movement of lithium ions. Therefore, in the all-solid-state battery 10 of the present invention, the target electrode layer in which the difference between the resistivity associated with ion migration and the resistivity associated with electron migration is limited to the above range is preferably a negative electrode layer.
  • the negative electrode layer preferably contains carbon as an electrode active material.
  • the resistivity accompanying ion migration in the electrode layer is preferably 70 k ⁇ ⁇ cm or less. Moreover, it is preferable that the resistivity accompanying the electron transfer in an electrode layer is 100 ohm * cm or less.
  • the positive electrode layer 11 includes, for example, Li 2 FeS 2 as a positive electrode active material and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte.
  • the negative electrode layer 12 includes, for example, a carbon material such as spherical graphite as a negative electrode active material, and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte.
  • the solid electrolyte layer 13 sandwiched between the positive electrode layer 11 and the negative electrode layer 12 includes, for example, a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as the solid electrolyte.
  • the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 are each produced by compression-molding raw material powder.
  • the solid electrolyte only needs to contain at least lithium and sulfur as constituent elements.
  • Li 2 S and P 2 S 5 for example, Li 2 S and B 2 S 3 can be used. A mixture etc. can be mention
  • the solid electrolyte preferably further contains phosphorus.
  • Li 7 P Examples include 3 S 11 , Li 3 PS 4, and those in which some of these anions are oxygen-substituted.
  • the composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio.
  • the positive electrode active material only needs to contain lithium, iron, and sulfur as constituent elements. Examples of such a compound include compounds such as Li 2.33 Fe 0.67 S 2 in addition to Li 2 FeS 2. it can. Further, other positive electrode active materials include compounds such as lithium titanium sulfide and lithium vanadium sulfide.
  • the composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio.
  • the resistance accompanying the movement of the lithium ion is reduced. The following measures can be taken.
  • an oxide or the like may be used as the solid electrolyte.
  • a thicker ion conduction path is formed by increasing the ratio of the solid electrolyte in the electrode mixture.
  • such a mixing ratio that the electron conduction path is completely lost by the solid electrolyte is not desirable.
  • the method of mixing the electrode mixture is also involved in the formation of the ion conduction path and the electron conduction path, as in (2) above.
  • a mixing method that increases the dispersibility of the solid electrolyte.
  • the optimum mixing method varies depending on the type of solid electrolyte. It is necessary to select a mixing method according to the shape and hardness of the solid electrolyte.
  • the material used for the negative electrode active material does not affect the resistance associated with ion migration in the negative electrode mixture. Therefore, various materials can be used as the negative electrode active material. For example, carbon materials such as graphite and hard carbon, alloy materials, sulfur, metal sulfides, and the like can be used.
  • the all-solid-state battery 10 of the present invention may be used in a form in which the battery element shown in FIGS. 1 to 3 is charged in a ceramic container, for example, as shown in FIGS. It may be used in a self-supporting form as it is.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Example 1 Preparation of solid electrolyte> A solid electrolyte was prepared by mechanically milling Li 2 S powder and P 2 S 5 powder, which are sulfides.
  • Li 2 S powder and P 2 S 5 powder were weighed so as to have a molar ratio of 70:30 in an argon gas atmosphere, and placed in an alumina container.
  • An alumina ball having a diameter of 10 mm was put and the container was sealed.
  • the container was set in a mechanical milling device (Planet Ball Mill, model No. P-7, manufactured by Fritsch) and subjected to mechanical milling at a rotation speed of 370 rpm for 20 hours. Thereafter, the container was opened in an argon gas atmosphere, and 2 ml of toluene was placed in the container to seal the container. Furthermore, the mechanical milling process was performed at 200 rpm for 2 hours.
  • the slurry-like material thus obtained was filtered in an argon gas atmosphere and then vacuum-dried.
  • the obtained powder was heated at a temperature of 200 ° C. to 300 ° C. in a vacuum atmosphere to obtain a glass ceramic powder.
  • This glass ceramic powder was used as a solid electrolyte.
  • the solid electrolyte obtained above and the negative electrode active material were mixed at a weight ratio of 60:40 using a rocking mill to produce a negative electrode mixture.
  • a solid electrolyte and a negative electrode mixture were placed in the order of solid electrolyte / negative electrode mixture / solid electrolyte in a mold having a diameter of 7.5 mm and pressed at a pressure of 329 MPa. Thereafter, a lithium foil having a diameter of 5 mm and a stainless steel foil are overlapped on the surface of the solid electrolyte and pressed at a pressure of 36 MPa, and stainless steel foil / lithium foil / solid electrolyte / negative electrode composite / solid electrolyte / lithium foil / stainless steel.
  • a molded body was prepared by laminating steel foils in this order. The molded body was sandwiched between stainless steel electrode plates to produce an ion resistance measurement cell A.
  • the migration resistance of lithium ions was determined by measuring the AC impedance of the obtained cell A.
  • a voltage of 10 mV was applied to an open circuit potential (0 V) in a frequency range of 1 MHz-10 Hz-1 Hz.
  • the total resistance was obtained from the end point of the semicircle of the obtained Cole-Cole plot.
  • the AC resistance value of the cell A was 2.02 k ⁇ .
  • an ion resistance measurement cell B having a structure in which stainless steel foil / lithium foil / solid electrolyte / lithium foil / stainless steel foil was laminated in this order was produced.
  • the AC resistance value of the cell B obtained in the same manner as described above was 700 ⁇ . This resistance value corresponds to the resistance value of the solid electrolyte simple substance portion in the cell A described above.
  • the ion resistance value of the negative electrode mixture portion was 1.32 k ⁇ , which is a value obtained by subtracting the resistance value 700 ⁇ of the cell B from the resistance value 2.02 k ⁇ of the cell A.
  • the ion resistivity was calculated from the ionic resistance value of 1.32 k ⁇ of the obtained negative electrode mixture portion, the area of the negative electrode mixture layer of 0.441 cm 2 , and the thickness of 0.05 cm.
  • the ionic resistivity of the negative electrode mixture part, that is, the resistivity accompanying ion migration in the negative electrode layer was 12 k ⁇ ⁇ cm.
  • Electrode resistivity measurement of negative electrode composite The negative electrode mixture was placed in a mold having a diameter of 10 mm and pressed at a pressure of 329 MPa to produce a molded body. Gold (Au) was formed on both surfaces of the obtained molded body by sputtering. An electronic resistance measurement cell was produced by sandwiching a molded body having a structure in which gold / negative electrode composite / gold was laminated in this order between stainless steel electrode plates.
  • a constant current of 100 ⁇ A was passed through the obtained cell, and the electronic resistance value was calculated when the voltage was stabilized.
  • the electronic resistivity was calculated from the electronic resistance value of the obtained negative electrode mixture portion of 1.9 ⁇ , the area of the negative electrode mixture layer of 0.785 cm 2 , and the thickness of 0.05 cm.
  • the electron resistivity of the negative electrode mixture portion, that is, the resistivity accompanying electron transfer in the negative electrode layer was 30 ⁇ ⁇ cm.
  • Li 2 FeS 2 manufactured by Nippon Chemical Industry Co., Ltd.
  • a positive electrode mixture was prepared by mixing the solid electrolyte obtained above and the positive electrode active material in a weight ratio of 50:50.
  • the positive electrode mixture, solid electrolyte, and negative electrode mixture obtained above were placed in this order in a mold and press-molded to produce a laminate.
  • the obtained laminate was a rectangular parallelepiped having a width of 2.6 mm, a length of 2.6 mm, and a height of 0.5 mm.
  • the thickness of each layer was negative electrode layer: 0.2 mm, solid electrolyte layer: 0.2 mm, and positive electrode layer. : 0.1 mm.
  • the above laminate was sealed in a ceramic package with electrodes drawn out to produce an all-solid battery.
  • Charge / discharge efficiency (%) (discharge capacity / charge capacity) x 100
  • the charge / discharge efficiency is close to 100% if there is no excess charge capacity due to a short circuit during charging, and decreases as the influence of the short circuit increases. That is, the closer the charge / discharge efficiency is to 100%, the smaller the deterioration of the battery performance.
  • Example 2 In the production of the negative electrode mixture, the electronic resistivity and the ionic resistivity of the negative electrode mixture were measured in the same manner as in Example 1 except that the mixing ratio of the solid electrolyte and the negative electrode active material was set to 50:50. All solid-state batteries were fabricated and battery characteristics were evaluated.
  • the ionic resistivity of the negative electrode mixture is 53 k ⁇ ⁇ cm, and the electronic resistivity is 0.025 k ⁇ ⁇ cm.
  • the difference obtained by subtracting the electronic resistivity from the ionic resistivity of the negative electrode mixture is (53 k ⁇ ⁇ cm ⁇ 0.025 k ⁇ ⁇ cm). ⁇ ) 53 k ⁇ ⁇ cm.
  • Example 3 The solid electrolyte and the negative electrode active were prepared by making the molar ratio of Li 2 S powder and P 2 S 5 powder 80:20 in the production of the solid electrolyte and in the ball mill using a cobble having a diameter of 1 mm in the production of the negative electrode mixture. Except that the substances were mixed, the electronic resistivity and the ionic resistivity of the negative electrode mixture were measured in the same manner as in Example 2 to obtain the difference between them, and an all-solid battery was prepared to evaluate the battery characteristics.
  • the ionic resistivity of the negative electrode mixture is 63 k ⁇ ⁇ cm, and the electronic resistivity is 0.015 k ⁇ ⁇ cm.
  • the difference obtained by subtracting the electronic resistivity from the ionic resistivity of the negative electrode mixture is (63 k ⁇ ⁇ cm ⁇ 0.015 k ⁇ ⁇ cm). ⁇ ) 63 k ⁇ ⁇ cm.
  • Example 1 In the production of the negative electrode mixture, the electronic resistivity and the ionic resistivity of the negative electrode mixture were measured in the same manner as in Example 1 except that the mixing ratio of the solid electrolyte and the negative electrode active material was 40:60, and the difference between them was measured. All solid-state batteries were fabricated and battery characteristics were evaluated.
  • the ionic resistivity of the negative electrode mixture is 120 k ⁇ ⁇ cm, and the electronic resistivity is 0.019 k ⁇ ⁇ cm.
  • the difference obtained by subtracting the electronic resistivity from the ionic resistivity of the negative electrode mixture is (120 k ⁇ ⁇ cm ⁇ 0.019 k ⁇ ⁇ cm). ⁇ ) 120 k ⁇ ⁇ cm.
  • Comparative Example 2 While measuring the electronic resistivity and the ionic resistivity of the negative electrode mixture in the same manner as in Example 3 except that the solid electrolyte and the negative electrode active material were mixed with a rocking mill in the preparation of the negative electrode mixture, the difference was obtained. All-solid-state batteries were manufactured and battery characteristics were evaluated.
  • the ionic resistivity of the negative electrode mixture is 300 k ⁇ ⁇ cm, and the electronic resistivity is 0.014 k ⁇ ⁇ cm.
  • the difference obtained by subtracting the electronic resistivity from the ionic resistivity of the negative electrode mixture is (300 k ⁇ ⁇ cm ⁇ 0.014 k ⁇ ⁇ cm). ⁇ ) 300 k ⁇ ⁇ cm.
  • an all-solid battery with high charge / discharge efficiency can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極層内における局所反応を抑制することによって充放電効率を高めることが可能な全固体電池を提供する。正極層(11)と、負極層(12)と、正極層(11)と負極層(12)との間に介在する固体電解質層(13)とを備え、正極層(11)または負極層(12)の少なくともいずれか一方の電極層が電極活物質と固体電解質とを含む全固体電池(10)であって、電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が、0kΩ・cm以上100kΩ・cm以下である。

Description

全固体電池
 本発明は、全固体電池に関する。
 近年、携帯電話、ノートパソコン等の携帯用電子機器の開発に伴い、これらの電子機器の内蔵電源として二次電池の需要が大きくなっている。その中でも、エネルギー密度が高く、充放電可能なリチウムイオン二次電池の開発が盛んに行われている。
 また、携帯用電子機器の機能が多くなるに伴って、その消費電力が著しく増加している。この消費電力の増大に対応するために大容量のリチウムイオン二次電池が必要になってきている。
 リチウムイオン二次電池では、正極活物質としてコバルト酸リチウム等の金属酸化物、負極活物質として黒鉛等の炭素材料、電解質として、六フッ化リン酸リチウムを有機溶媒に溶解させたもの、すなわち、有機溶媒系電解液が一般に使用されている。このような構成の電池において、活物質量を増加させることにより内部エネルギーを増加させ、さらにエネルギー密度を高くし、出力電流を向上させる試みがなされている。また、電池を大型化すること、電池を車両に搭載することも期待されている。
 しかし、上記の構成のリチウムイオン二次電池では、電解質に用いられる有機溶媒は可燃性物質であるため、電池が発火する等の危険性がある。このため、電池の安全性をさらに高めることが求められている。
 そこで、リチウムイオン二次電池の安全性を高めるための一つの対策は、有機溶媒系電解液に代えて、固体電解質を用いることである。固体電解質としては、高分子、ゲル等の有機材料、ガラス、セラミックス等の無機材料を適用することが検討されている。その中でも、不燃性のガラスまたはセラミックスを主成分とする無機材料を固体電解質として用いる全固体二次電池が提案され、注目されている。
 たとえば、特開2003‐68361号公報(以下、特許文献1という)には、不燃性の固体電解質を備えた全固体リチウム二次電池の構成が記載されている。この全固体リチウム二次電池では、固体電解質が基本的な組成として硫化物を有し、硫化リチウムと硫化リンよりなる物質、あるいは硫化リチウムと硫化リンを主体とし、遷移金属元素を含まず、かつケイ素とゲルマニウムを含有しない物質であり、負極活物質が炭素材料あるいは炭素材料の層間にリチウムイオンが挿入された物質であり、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が用いられている。また、特許文献1には、黒鉛を負極活物質として用いた場合、電池特性は固体電解質の種類により大きく異なり、優れた性能の全固体リチウム二次電池を作製するにはリチウムイオン伝導性固体電解質の選択が重要であることが記載されている。この検討に基づいて、ケイ素とゲルマニウムを含有しない硫化物を固体電解質として使用すると、全固体リチウム二次電池のエネルギー密度を高めることが可能になることが記載されている。
 また、たとえば、特開2008‐288098号公報(以下、特許文献2という)には、高いイオン伝導度を有する硫化物系固体電解質として平均粒径が0.01~10μmである粉体を用いることが記載されている。
特開2003‐68361号公報 特開2008‐288098号公報
 全固体電池の構成では、局所反応が起こることにより、充放電効率が低下する。局所反応とは、本来、電極層(活物質層)全体で均一に進行するリチウムイオンの挿入脱離反応が電極層の一部分だけで進行する反応をいう。
 電極層内で局所反応が起こることによって、リチウムイオンの吸蔵が特定部分の活物質に集中し、活物質の利用率が低下する。さらに、活物質として炭素を含む負極では、充電レートを大きくすると、局所的な過充電が起こり、リチウム金属が析出してしまう。析出したリチウム金属が積層方向に対して垂直の方向に沿って成長し、正極層に達すると電池は短絡状態となり、電圧低下が発生する。
 特許文献1では、負極活物質として用いられる炭素材料の種類によっては、または、負極層内での負極活物質と固体電解質との混合状態によっては、十分な導電パスが形成されず、局所反応が起こることにより、出力特性が劣る場合がある。
 特許文献2では、活物質を構成する粉体の粒径が考慮されておらず、活物質粉体に対する固体電解質粉体の最適な粒径、固体電解質粉体と活物質粉体との最適な混合比率が得られていないので、充電レートを大きくすると、局所反応が起こることにより、局所的な過充電が起こる場合がある。
 そこで、本発明の目的は、電極層内における局所反応を抑制することによって充放電効率を高めることが可能な全固体電池を提供することである。
 本発明者らは、全固体電池の構成を種々検討した結果、リチウムイオンの移動度と電子の移動度との差が極端に大きいと、局所反応が起こってしまうことを見出した。すなわち、本発明者らは、固体電解質層側から電極層中に挿入されるリチウムイオンの移動度と、集電体層側から電極層中に入り込む電子の移動度とを制御することによって、電極層内での局所反応を抑制できることを見出した。この知見に基づいて、本発明に従った全固体電池は、次のような特徴を備えている。
 本発明に従った全固体電池は、正極層と、負極層と、正極層と負極層との間に介在する固体電解質層とを備える。正極層または負極層の少なくともいずれか一方の電極層が電極活物質と固体電解質とを含む。電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が、0kΩ・cm以上100kΩ・cm以下である。
 電極層におけるイオン移動に伴う抵抗率は70kΩ・cm以下であることが好ましい。
 また、電極層における電子移動に伴う抵抗率は100Ω・cm以下であることが好ましい。
 さらに、電極層は負極層であることが好ましい。
 この場合、負極層は、電極活物質として炭素を含むことが好ましい。
 本発明によれば、電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差を所定の範囲内に限定することにより、充放電効率が高い全固体電池を得ることができる。
本発明の実施形態として全固体電池の電池要素の断面構造を模式的に示す断面図である。 本発明の一つの実施形態として全固体電池の電池要素を模式的に示す斜視図である。 本発明のもう一つの実施形態として全固体電池の電池要素を模式的に示す斜視図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に示すように、本発明の全固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に介在する固体電解質層13とを備える。図2に示すように本発明の一つの実施形態として全固体電池10は直方体形状に形成され、矩形の平面を有する複数の平板状層からなる積層体で構成される。また、図3に示すように本発明のもう一つの実施形態として全固体電池10は円柱形状に形成され、複数の円板状層からなる積層体で構成される。なお、正極層11と負極層12のそれぞれは、固体電解質と電極活物質とを含み、固体電解質層13は固体電解質を含む。
 上記のように構成された本発明の全固体電池10では、正極層11または負極層12の少なくともいずれか一方の電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が、0kΩ・cm以上100kΩ・cm以下であり、好ましくは0kΩ・cmよりも大きく、100kΩ・cm以下である。
 電極層中のイオン移動に伴う抵抗率と電子移動に伴う抵抗率との差を上記の範囲内にすることにより、固体電解質層側から電極層中へ挿入されるリチウムイオンの移動度と、集電体層側から電極層中に入り込む電子の移動度とを制御することができる。これにより、電極層内での局所反応を抑制することができる。その結果、ハイレートで充放電を繰り返しても、固体電解質と電極活物質の界面でのリチウム金属の析出を抑制することができる。これにより、充放電効率が高い全固体電池を得ることができる。
 上記の本発明の構成と作用効果は、以下に説明する本発明者らの知見に基づくものである。
 一般に、電極活物質に対するリチウムイオンの挿入脱離反応は、固体電解質と電極活物質の界面で進行する。すなわち、電子は、電子伝導性の電極活物質と、必要に応じて添加される添加剤としての導電剤とを通じて供給され、リチウムイオンは、固体電解質を通じて、電極活物質との界面に供給される。リチウムイオンおよび電子のいずれか一方でも供給が滞った場合、リチウムイオンの挿入脱離反応は行われない。したがって、電池特性が悪くなる。
 有機電解液を用いた非水電解質電池では、リチウムイオンの移動が速く、かつ、電解液が電極活物質の界面に染み込み、電解液と電極活物質が接しているため、電極全体へのリチウムイオンの供給に偏りが生じ難い。
 これに対して、全固体電池の電極層は電極活物質に加えて固体電解質を含んでいるが、有機電解液を用いた非水電解質電池の場合と異なり、リチウムイオンの移動が遅いため、電極層全体へのリチウムイオンの供給に偏りが生じる可能性がある。さらには、固体電解質は絶縁体であるため、電極層中での固体電解質の分散状態によっては、電極層中への電子の供給にも偏りが生じる可能性がある。
 このような理由から、全固体電池の電極層においてはリチウムイオンと電子を均一に供給することは難しい。リチウムイオンまたは電子のいずれか一方の供給が滞る箇所では、リチウムイオンの挿入脱離反応が進行しない。逆に、リチウムイオンが常に供給される箇所では、リチウムイオンが過剰に挿入される可能性がある。また、電極活物質への過剰なリチウムイオンの挿入により、不可逆な反応が起こり、活物質として機能しない化合物が生成され、サイクル特性が劣化する。さらに、過剰なリチウムイオンの挿入がリチウム金属の析出を誘発し、析出したリチウム金属が積層方向に対して垂直の方向に沿って成長し、正極層に達すると電池は短絡状態となり、電圧低下が発生することも考えられる。
 そこで、本発明者らは、全固体電池の電極設計においては、リチウムイオンと電子の供給バランスを整え、電極層内での局所反応を抑制することが電池特性を向上させるためには重要であることを見出した。この知見に基づいて、本発明の全固体電池10では、正極層11または負極層12の少なくともいずれか一方の電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が、0kΩ・cm以上100kΩ・cm以下であり、好ましくは0kΩ・cmよりも大きく、100kΩ・cm以下に限定される。
 特に、電子伝導性に富む炭素を電極活物質として含む負極層12では、電子抵抗が非常に小さいため、リチウムイオンの移動に伴う抵抗を極力低く抑える必要がある。本発明者らは、炭素を含む負極層12において、リチウムイオンの移動に伴う抵抗を小さくすることによって、局所反応を抑制し、高速充電が可能な負極層12を得ることができる。したがって、本発明の全固体電池10において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が上記の範囲に限定される対象の電極層は、負極層であることが好ましく、さらに、負極層は、電極活物質として炭素を含むことが好ましい。
 なお、電極層におけるイオン移動に伴う抵抗率は70kΩ・cm以下であることが好ましい。また、電極層における電子移動に伴う抵抗率は100Ω・cm以下であることが好ましい。
 正極層11は、たとえば、正極活物質としてのLi2FeS2等と、固体電解質としてイオン伝導性化合物であるLi2SとP25の混合物等とを含む。負極層12は、たとえば、負極活物質としての球状黒鉛等の炭素材料と、固体電解質としてイオン伝導性化合物であるLi2SとP25の混合物等とを含む。正極層11と負極層12との間に挟まれた固体電解質層13は、たとえば、固体電解質としてイオン伝導性化合物であるLi2SとP25の混合物等を含む。正極層11と負極層12と固体電解質層13は、それぞれ、原材料粉末を圧縮成形することにより作製されたものである。なお、固体電解質は、構成元素としてリチウムと硫黄とを少なくとも含有すればよく、このような化合物として、Li2SとP25の混合物以外に、たとえば、Li2SとB23の混合物等をあげることができる。また、固体電解質は、構成元素としてリチウムと硫黄に加えて、好ましくはリンをさらに含有すればよく、このような化合物として、Li2SとP25の混合物以外に、たとえば、Li7311、Li3PS4やこれらのアニオンの一部が酸素置換されたもの等をあげることができる。固体電解質を構成する元素の組成比率は上述した比率に限定されるものではない。また、正極活物質は、構成元素としてリチウムと鉄と硫黄とを含有すればよく、このような化合物として、Li2FeS2以外に、たとえば、Li2.33Fe0.672等の化合物をあげることができる。さらに、その他の正極活物質として硫化リチウムチタン、硫化リチウムバナジウム等の化合物をあげることができる。正極活物質を構成する元素の組成比率は上述した比率に限定されるものではない。
 なお、本発明の全固体電池10の電極層におけるイオン移動に伴う抵抗率と電子移動に伴う抵抗率との差を上記の範囲内に限定するために、リチウムイオンの移動に伴う抵抗を小さくする次のような方策をとることができる。
 (1)イオン伝導度の高い固体電解質を使用する。
 固体電解質として、Li2SとP25の混合物以外に、酸化物等を用いてもよい。
 (2)電極活物質と固体電解質の混合比率を調整する。
 電極合材中の固体電解質の比率を増やすことによって、より太いイオン伝導パスが形成される。しかし、固体電解質によって電子伝導パスが完全に失われるような混合比率は望ましくない。
 (3)電極合材の混合方法を調整する。
 電極合材の混合方法も、上記(2)と同様に、イオン伝導パスと電子伝導パスの形成に関与する。少量の固体電解質でイオン伝導パスを形成するためには、固体電解質の分散性を高める混合方法を採用する必要がある。また、固体電解質の種類によっても最適な混合方法が異なる。固体電解質の形状、硬さに応じた混合方法を選択する必要がある。
 対象の電極層が負極層である場合には、負極活物質に用いる材料は、負極合材中のイオン移動に伴う抵抗に影響を与えない。したがって、負極活物質としては、多種の材料を用いることができ、たとえば、黒鉛、ハードカーボン等の炭素材料、合金系材料、硫黄、金属硫化物等を使用することができる。
 なお、本発明の全固体電池10は、図1~図3に示される電池要素を、たとえば、セラミックス製の容器に装入された形態で用いられてもよく、図1~図3に示される形態のままで自立した形態で用いられてもよい。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 以下、負極層においてイオン移動に伴う抵抗率と電子移動に伴う抵抗率との差を変化させて、全固体電池を作製した実施例1~3と比較例1~2について説明する。
 (実施例1)
 <固体電解質の作製>
 硫化物であるLi2S粉末とP25粉末とをメカニカルミリング処理することにより、固体電解質を作製した。
 具体的には、アルゴンガス雰囲気中で、Li2S粉末とP25粉末とを70:30のモル比になるように秤量し、アルミナ製の容器に入れた。直径が10mmのアルミナボールを入れて、容器を密閉した。容器をメカニカルミリング装置(フリッチュ製 遊星ボールミル、型番P-7)にセットして、370rpmの回転数で20時間、メカニカルミリング処理した。その後、容器をアルゴンガス雰囲気中に開放し、容器にトルエンを2ml入れて、容器を密閉した。さらに、メカニカルミリング処理を200rpmの回転数で2時間行った。このようにして得られたスラリー状の材料をアルゴンガス雰囲気中でろ過した後、真空乾燥した。得られた粉末を真空雰囲気中にて200℃~300℃の温度で加熱することにより、ガラスセラミック粉末を得た。このガラスセラミック粉末を固体電解質として用いた。
 <負極合材の作製>
 負極活物質として球状黒鉛(日本パワーグラファイト株式会社製、製品名GDS‐15‐1)を用いた。この負極活物質をアルゴンガス雰囲気中にて800℃の温度で2時間加熱して、表面の不純物を除去した後に使用した。
 上記で得られた固体電解質と負極活物質を、ロッキングミルを用いて、60:40の重量比で混合することにより、負極合材を作製した。
 <負極合材のイオン抵抗率測定>
 直径が7.5mmの金型に、固体電解質と負極合材を固体電解質/負極合材/固体電解質の順に入れて、329MPaの圧力でプレスした。その後、固体電解質の表面に、直径が5mmのリチウム箔とステンレス鋼箔を重ねて、36MPaの圧力でプレスし、ステンレス鋼箔/リチウム箔/固体電解質/負極合材/固体電解質/リチウム箔/ステンレス鋼箔の順に積層して、成形体を作製した。この成形体を、ステンレス鋼の電極板で挟んで、イオン抵抗測定用セルAを作製した。
 得られたセルAについて交流インピーダンスを測定することにより、リチウムイオンの移動抵抗を求めた。交流インピーダンス測定では、開回路電位(0V)に対し、10mVの電圧を、1MHz‐10Hz‐1Hzの周波数範囲で印加した。得られたCole‐Coleプロットの半円の終点から全抵抗を求めた。その結果、セルAの交流抵抗値は2.02kΩであった。
 上記のセルAとは別に、ステンレス鋼箔/リチウム箔/固体電解質/リチウム箔/ステンレス鋼箔の順に積層された構成のイオン抵抗測定用セルBを作製した。上記と同様にして求めたセルBの交流抵抗値は700Ωであった。この抵抗値は上記のセルAにおける固体電解質単体部分の抵抗値に相当する。
 上記のセルAの抵抗値2.02kΩから、上記のセルBの抵抗値700Ωを差し引いた値である1.32kΩを負極合材部分のイオン抵抗値とした。
 得られた負極合材部分のイオン抵抗値1.32kΩと負極合材層の面積0.441cm2、厚み0.05cmとからイオン抵抗率を算出した。負極合材部分のイオン抵抗率、すなわち、負極層においてイオン移動に伴う抵抗率は、12kΩ・cmであった。
 <負極合材の電子抵抗率測定>
 負極合材を直径が10mmの金型に入れて、329MPaの圧力でプレスして、成形体を作製した。得られた成形体の両面にスパッタで金(Au)を形成した。金/負極合材/金の順に積層された構成の成形体をステンレス鋼の電極板で挟んで、電子抵抗測定用セルを作製した。
 得られたセルに100μAの定電流を流し、電圧が安定した時点で電子抵抗値を算出した。得られた負極合材部分の電子抵抗値1.9Ωと負極合材層の面積0.785cm2、厚み0.05cmとから電子抵抗率を算出した。負極合材部分の電子抵抗率、すなわち、負極層において電子移動に伴う抵抗率は30Ω・cmであった。
 <負極合材の電子抵抗率とイオン抵抗率の差>
 負極合材のイオン抵抗率から電子抵抗率を差し引いた差は(12kΩ・cm-0.030kΩ・cm≒)12kΩ・cmであった。
 <正極合材の作製>
 正極活物質としてLi2FeS2(日本化学工業株式会社製)を用いた。上記で得られた固体電解質と正極活物質を50:50の重量比で混合することにより、正極合材を作製した。
 <電池の作製>
 上記で得られた正極合材、固体電解質、負極合材をこの順に金型に入れてプレス成形して、積層体を作製した。得られた積層体は、幅2.6mm×長さ2.6mm×高さ0.5mmの直方体で、各層の厚みはそれぞれ、負極層:0.2mm、固体電解質層:0.2mm、正極層:0.1mmであった。上記の積層体を、電極が外に引き出されてあるセラミックパッケージに封入して、全固体電池を作製した。
 <電池特性の評価>
 上記の全固体電池に対し、0.7mA/cm2、1.5mA/cm2、3.0mA/cm2の電流密度で充電を行い、電池特性の劣化を評価した。電池性能の劣化は、以下のようにして求めた。
 0.7mA/cm2、1.5mA/cm2、3.0mA/cm2の各電流密度で充電を行った後、0.3mA/cm2の電流密度で放電を行った。その際の充電容量に対する放電容量との比率(充放電効率)を次の式で求めた。
 充放電効率(%)=(放電容量/充電容量)×100
 なお、充放電効率は、充電時の短絡による充電過剰容量がなければ、100%に近い値になり、短絡の影響が大きいほど、小さくなる。すなわち、充放電効率が100%に近いほど、電池性能の劣化は小さいことになる。
 その結果、電流密度が0.7mA/cm2、1.5mA/cm2、3.0mA/cm2での充放電効率は、それぞれ、92.9%、90.1%、79.6%であった。3.0mA/cm2という高い電流密度でも充電が可能であり、ハイレートの充電が可能であることがわかる。
 (実施例2)
 負極合材の作製において、固体電解質と負極活物質の混合比率を50:50にしたこと以外は、実施例1と同様にして負極合材の電子抵抗率とイオン抵抗率を測定し、その差を求めるとともに、全固体電池を作製し、電池特性を評価した。
 負極合材のイオン抵抗率は53kΩ・cm、電子抵抗率は0.025kΩ・cmであり、負極合材のイオン抵抗率から電子抵抗率を差し引いた差は(53kΩ・cm-0.025kΩ・cm≒)53kΩ・cmであった。
 電流密度が0.7mA/cm2、1.5mA/cm2、3.0mA/cm2での充放電効率は、それぞれ、89%、65%、42%であった。3.0mA/cm2という高い電流密度では充放電効率が大幅に低下し、短絡の影響が見られたが、1.5mA/cm2の電流密度では充電が可能であり、ハイレートの充電が可能であることがわかる。
 (実施例3)
 固体電解質の作製にてLi2S粉末とP25粉末とのモル比を80:20にしたこと、負極合材の作製にて直径が1mmの玉石を用いたボールミルで固体電解質と負極活物質を混合したこと、以外は、実施例2と同様にして負極合材の電子抵抗率とイオン抵抗率を測定し、その差を求めるとともに、全固体電池を作製し、電池特性を評価した。
 負極合材のイオン抵抗率は63kΩ・cm、電子抵抗率は0.015kΩ・cmであり、負極合材のイオン抵抗率から電子抵抗率を差し引いた差は(63kΩ・cm-0.015kΩ・cm≒)63kΩ・cmであった。
 電流密度が0.7mA/cm2、1.5mA/cm2での充放電効率は、それぞれ、91.1%、69.6%であった。1.5mA/cm2の電流密度では充電が可能であり、ハイレートの充電が可能であることがわかる。
 (比較例1)
 負極合材の作製において、固体電解質と負極活物質の混合比率を40:60にしたこと以外は、実施例1と同様にして負極合材の電子抵抗率とイオン抵抗率を測定し、その差を求めるとともに、全固体電池を作製し、電池特性を評価した。
 負極合材のイオン抵抗率は120kΩ・cm、電子抵抗率は0.019kΩ・cmであり、負極合材のイオン抵抗率から電子抵抗率を差し引いた差は(120kΩ・cm-0.019kΩ・cm≒)120kΩ・cmであった。
 電流密度が0.7mA/cm2、1.5mA/cm2、3.0mA/cm2での充放電効率は、それぞれ、83%、55%、31%であった。3.0mA/cm2という高い電流密度では充放電効率が大幅に低下し、短絡の影響が見られ、1.5mA/cm2の電流密度での充電でも大幅な特性劣化が見られ、出力特性に劣ることがわかる。
 (比較例2)
 負極合材の作製にてロッキングミルで固体電解質と負極活物質を混合したこと以外は、実施例3と同様にして負極合材の電子抵抗率とイオン抵抗率を測定し、その差を求めるとともに、全固体電池を作製し、電池特性を評価した。
 負極合材のイオン抵抗率は300kΩ・cm、電子抵抗率は0.014kΩ・cmであり、負極合材のイオン抵抗率から電子抵抗率を差し引いた差は(300kΩ・cm-0.014kΩ・cm≒)300kΩ・cmであった。
 電流密度が0.7mA/cm2、1.5mA/cm2での充放電効率は、それぞれ、57.4%、45.8%であった。1.5mA/cm2という高い電流密度では充放電効率が大幅に低下し、短絡の影響が見られ、0.7mA/cm2の電流密度での充電でも大幅な特性劣化が見られ、出力特性に劣ることがわかる。
 以上の結果を表1に示す。表1の「高速充電特性評価」では、1.5mA/cm2以上という高い電流密度でも、充電が可能であり、かつ、充放電効率が高い値を示したものを○、そうでないものを×で示した。
Figure JPOXMLDOC01-appb-T000001
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 本発明により、充放電効率が高い全固体電池を得ることができる。
 10:全固体電池、11:正極層、12:負極層、13:固体電解質層。

                                                                                

Claims (5)

  1.  正極層と、負極層と、前記正極層と前記負極層との間に介在する固体電解質層とを備え、前記正極層または前記負極層の少なくともいずれか一方の電極層が電極活物質と固体電解質とを含む全固体電池であって、
     前記電極層において、イオン移動に伴う抵抗率と電子移動に伴う抵抗率との差が、0kΩ・cm以上100kΩ・cm以下である、全固体電池。
  2.  前記電極層におけるイオン移動に伴う抵抗率が70kΩ・cm以下である、請求項1に記載の全固体電池。
  3.  前記電極層における電子移動に伴う抵抗率が100Ω・cm以下である、請求項1または請求項2に記載の全固体電池。
  4.  前記電極層が負極層である、請求項1から請求項3までのいずれか1項に記載の全固体電池。
  5.  前記負極層が、電極活物質として炭素を含む、請求項4に記載の全固体電池。
                                                                                    
PCT/JP2013/066908 2012-06-28 2013-06-20 全固体電池 WO2014002858A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014522571A JP5846307B2 (ja) 2012-06-28 2013-06-20 全固体電池
US14/580,687 US9979047B2 (en) 2012-06-28 2014-12-23 All-solid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-145557 2012-06-28
JP2012145557 2012-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/580,687 Continuation US9979047B2 (en) 2012-06-28 2014-12-23 All-solid battery

Publications (1)

Publication Number Publication Date
WO2014002858A1 true WO2014002858A1 (ja) 2014-01-03

Family

ID=49783016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066908 WO2014002858A1 (ja) 2012-06-28 2013-06-20 全固体電池

Country Status (3)

Country Link
US (1) US9979047B2 (ja)
JP (1) JP5846307B2 (ja)
WO (1) WO2014002858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020006603T5 (de) 2020-01-24 2022-12-01 Tdk Corporation Lithium-ionen-sekundärbatterie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2008226728A (ja) * 2007-03-14 2008-09-25 Geomatec Co Ltd 薄膜固体二次電池及びこれを備えた複合型機器
JP2010272494A (ja) * 2008-08-18 2010-12-02 Sumitomo Electric Ind Ltd 非水電解質二次電池及びその製造方法
JP2011040281A (ja) * 2009-08-11 2011-02-24 Samsung Electronics Co Ltd 全固体二次電池
JP2011204389A (ja) * 2010-03-24 2011-10-13 Toyota Motor Corp リチウムイオン伝導体、及び固体リチウム電池
JP2012028231A (ja) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd 固体リチウムイオン二次電池
JP2012094446A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953406B2 (ja) 2001-08-23 2012-06-13 株式会社Gsユアサ 全固体リチウム二次電池
JP5348853B2 (ja) 2007-05-18 2013-11-20 出光興産株式会社 硫化物系電解質成形体及びそれを備える全固体電池
US20110039162A1 (en) 2009-08-11 2011-02-17 Samsung Electronics Co., Ltd. All-solid secondary battery and positive electrode used therefor
JP5534000B2 (ja) * 2010-02-18 2014-06-25 株式会社村田製作所 全固体二次電池用電極活物質および全固体二次電池
KR20120010552A (ko) 2010-07-26 2012-02-03 삼성전자주식회사 고체 리튬 이온 이차 전지 및 이에 사용될 수 있는 전극
WO2012092210A1 (en) * 2010-12-28 2012-07-05 Energ2 Technologies, Inc. Carbon materials comprising enhanced electrochemical properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2008226728A (ja) * 2007-03-14 2008-09-25 Geomatec Co Ltd 薄膜固体二次電池及びこれを備えた複合型機器
JP2010272494A (ja) * 2008-08-18 2010-12-02 Sumitomo Electric Ind Ltd 非水電解質二次電池及びその製造方法
JP2011040281A (ja) * 2009-08-11 2011-02-24 Samsung Electronics Co Ltd 全固体二次電池
JP2011204389A (ja) * 2010-03-24 2011-10-13 Toyota Motor Corp リチウムイオン伝導体、及び固体リチウム電池
JP2012028231A (ja) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd 固体リチウムイオン二次電池
JP2012094446A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020006603T5 (de) 2020-01-24 2022-12-01 Tdk Corporation Lithium-ionen-sekundärbatterie

Also Published As

Publication number Publication date
JP5846307B2 (ja) 2016-01-20
US9979047B2 (en) 2018-05-22
US20150111111A1 (en) 2015-04-23
JPWO2014002858A1 (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6941808B2 (ja) 全固体電池
JP5902287B2 (ja) リチウムイオン伝導性硫化物、固体電解質二次電池および電池パック
JP5348607B2 (ja) 全固体リチウム二次電池
JP2017517842A (ja) ガルバニ素子およびその製造方法
JP6432113B2 (ja) リチウム二次電池
Din et al. Garnet structured solid fast Li+ conductor as polysulfide shuttle inhibitor in Li-S battery
KR102568787B1 (ko) 3차원 리튬 이차전지용 양극 및 그 제조방법
JP5796798B2 (ja) 正極材料、全固体電池およびそれらの製造方法
JP5796687B2 (ja) 正極材料、二次電池およびそれらの製造方法
US20150249265A1 (en) All solid-state battery and method for producing same
JP2012243644A (ja) 電極、および全固体型非水電解質電池
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
JP2009094029A (ja) 全固体型リチウム二次電池および全固体型リチウム二次電池用の電極
JP2013051171A (ja) 全固体電池用電極体及び全固体電池
JP5812198B2 (ja) 全固体電池
JP5930063B2 (ja) 正極材料、全固体電池およびそれらの製造方法
JP5850163B2 (ja) 全固体電池
JP2015018670A (ja) バイポーラ電池
WO2017217079A1 (ja) 全固体電池
JP5846307B2 (ja) 全固体電池
JP2022108550A (ja) 全固体電池
JP2014041723A (ja) 固体電解質とそれを用いた全固体電池
JP2014116127A (ja) 全固体電池
WO2024070051A1 (ja) 固体電池およびその製造方法
JP7433004B2 (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809560

Country of ref document: EP

Kind code of ref document: A1