WO2014002852A1 - 半導体装置、半導体装置の製造方法、及び、電子機器 - Google Patents

半導体装置、半導体装置の製造方法、及び、電子機器 Download PDF

Info

Publication number
WO2014002852A1
WO2014002852A1 PCT/JP2013/066876 JP2013066876W WO2014002852A1 WO 2014002852 A1 WO2014002852 A1 WO 2014002852A1 JP 2013066876 W JP2013066876 W JP 2013066876W WO 2014002852 A1 WO2014002852 A1 WO 2014002852A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor substrate
opening
layer
semiconductor device
Prior art date
Application number
PCT/JP2013/066876
Other languages
English (en)
French (fr)
Inventor
悟 脇山
正喜 岡本
大岡 豊
庄子 礼二郎
義史 財前
和典 長畑
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/409,634 priority Critical patent/US9343392B2/en
Priority to JP2014522569A priority patent/JP6094583B2/ja
Priority to CN201380033466.5A priority patent/CN104412372B/zh
Publication of WO2014002852A1 publication Critical patent/WO2014002852A1/ja
Priority to US15/097,093 priority patent/US9524925B2/en
Priority to US15/354,871 priority patent/US9922961B2/en
Priority to US15/887,242 priority patent/US10373934B2/en
Priority to US16/521,215 priority patent/US11063020B2/en
Priority to US17/324,932 priority patent/US11557573B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • H01L2225/06544Design considerations for via connections, e.g. geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present technology relates to a semiconductor device having a through electrode on a semiconductor substrate, a method for manufacturing the semiconductor device, and an electronic apparatus including the semiconductor device.
  • a semiconductor device in which different types of devices are bonded to each other has been proposed to include a through electrode that passes through the base of the upper chip and is connected to the electrode of the lower base (for example, see Patent Document 1).
  • a first through electrode that penetrates the upper chip-side base and is connected to the upper chip-side electrode pad is formed.
  • a second through electrode that penetrates the base body on the upper chip side and is connected to the electrode pad on the lower chip side is formed. Then, wirings are connected between different types of chips by damascene that connects the first through electrode and the second through electrode.
  • the reliability of the semiconductor device and the electronic device is required to be improved by improving the reliability of the through electrode, the insulating property, the barrier property, and the like.
  • This technology provides highly reliable semiconductor devices and electronic devices.
  • the semiconductor device of the present technology includes a first semiconductor substrate and a second semiconductor substrate bonded to the first surface side of the first semiconductor substrate. And the penetration electrode formed penetrating from the second surface side of the first semiconductor substrate to the wiring layer on the second semiconductor substrate, and the insulating layer surrounding the periphery of the penetration electrode formed in the first semiconductor substrate Is provided.
  • An electronic apparatus according to the present technology includes the semiconductor device and a signal processing circuit that processes an output signal of the semiconductor device.
  • a method for manufacturing a semiconductor device includes a step of forming an insulating layer surrounding a position where a through electrode is formed on a first surface of a first semiconductor substrate, and a first surface side of the first semiconductor substrate. And bonding the second semiconductor substrate. Further, within the range surrounded by the insulating layer, a step of forming an opening that penetrates from the second surface side of the first semiconductor substrate to the wiring layer on the second semiconductor substrate, and a through electrode is formed in the opening The process of carrying out.
  • the insulating layer surrounding the through electrode is formed in the first semiconductor substrate. For this reason, it is possible to ensure insulation between the through electrode and the first semiconductor substrate without forming an insulating layer on the inner surface of the opening where the through electrode is formed. Furthermore, since the side surface of the through electrode is not covered with the insulating layer, connection reliability in the wiring layer can be ensured. Therefore, the reliability of the semiconductor device provided with the through electrode is improved. Further, the reliability of the electronic device having this semiconductor device is improved.
  • a highly reliable semiconductor device and electronic device can be provided.
  • FIG. 3 is a plan layout view around the through electrode of the semiconductor device of the first embodiment. It is sectional drawing which shows the structure of the semiconductor device of 1st Embodiment.
  • a and B are manufacturing process diagrams of the semiconductor device of the first embodiment.
  • C and D are manufacturing process diagrams of the semiconductor device of the first embodiment.
  • E and F are manufacturing process diagrams of the semiconductor device of the first embodiment.
  • G and H are manufacturing process diagrams of the semiconductor device of the first embodiment.
  • a and B are manufacturing process diagrams of the semiconductor device of the first embodiment. It is sectional drawing which shows the structure of the semiconductor device of 2nd Embodiment.
  • FIG. 4 is a graph showing a relationship between an inclination angle of an opening of a first electrode pad 16 and a contact area. It is a figure which shows the structure of the 1st electrode pad for calculating
  • F and G are manufacturing process diagrams of the semiconductor device of the second embodiment.
  • H and I are manufacturing process diagrams of the semiconductor device of the second embodiment.
  • E and F are manufacturing process diagrams of the semiconductor device of the third embodiment.
  • G and H are manufacturing process diagrams of the semiconductor device of the third embodiment.
  • I and J are manufacturing process diagrams of the semiconductor device of the third embodiment. It is sectional drawing which shows the structure of the semiconductor device of 4th Embodiment. It is sectional drawing which shows the structure of the modification of the semiconductor device of 4th Embodiment. It is sectional drawing which shows the structure of the other modification of the semiconductor device of 4th Embodiment.
  • a and B are manufacturing process diagrams of the semiconductor device of the fourth embodiment.
  • C is a manufacturing process diagram of the semiconductor device of the fourth embodiment.
  • FIG. D and E are manufacturing process diagrams of the semiconductor device of the fourth embodiment.
  • F is a manufacturing process diagram of the semiconductor device of the fourth embodiment.
  • FIG. 1 shows a schematic configuration of a semiconductor device including the through electrode according to the present embodiment.
  • FIG. 1 is a cross-sectional view of a semiconductor device in the vicinity of a region where a through electrode is formed. In FIG. 1, only a schematic configuration near the formation region of the through electrode is shown, and illustration of each configuration of the semiconductor substrate and each configuration provided around the through electrode is omitted.
  • the semiconductor device has a configuration in which a first chip 10 and a second chip 20 are bonded together.
  • the first chip 10 includes a first semiconductor substrate 11 and a wiring layer 12 formed on one surface (first surface) of the first semiconductor substrate 11.
  • the second chip 20 includes a second semiconductor substrate 21 and a wiring layer 22 formed on the second semiconductor substrate 21.
  • the first chip 10 and the second chip 20 are bonded together with the wiring layers 12 and 22 facing each other.
  • a bonding surface 25 is formed on the surfaces of the wiring layers 12 and 22.
  • the wiring layer 12 of the first semiconductor substrate 11 constitutes a multilayer wiring layer composed of a plurality of conductive layers constituting wirings, electrodes and the like, and an interlayer insulating layer that insulates the conductor layers.
  • the first electrode pad 16 made of one conductor layer among the plurality of conductor layers is shown in the interlayer insulating layer 18.
  • protective layers 13 and 14 made of an insulating layer are provided on the other surface (second surface) of the first semiconductor substrate 11.
  • the protective layer 13 is provided so as to cover the entire surface on the second surface of the first semiconductor substrate 11 except for a position where a through electrode 17 described later is provided.
  • the protective layer 14 is provided on the entire surface covering the exposed surface of the through electrode 17 and the protective layer 13.
  • the wiring layer 22 of the second semiconductor substrate 21 constitutes a multilayer wiring layer composed of a plurality of conductor layers constituting wirings, electrodes and the like, and an interlayer insulating layer that insulates between the conductor layers.
  • the second electrode pad 23 made of one conductor layer among the plurality of conductor layers is shown in the interlayer insulating layer 24.
  • the first electrode pad 16 and the second electrode pad 23 are connected to wirings (not shown), and are connected to various circuit elements in the semiconductor device.
  • the semiconductor device shown in FIG. 1 includes a through electrode 17 that penetrates from the second surface of the first semiconductor substrate 11 to the wiring layer 12, the bonding surface 25, and the second electrode pad 23 of the wiring layer 22.
  • the through electrode 17 is formed in an opening that penetrates the protective layer 13, the first semiconductor substrate 11, and the wiring layers 12 and 22.
  • the side surface of the through electrode 17 is connected to the inner side surface of the opening of the first electrode pad 16.
  • the bottom surface of the through electrode 17 is connected to the surface of the second electrode pad 23.
  • the through electrode 17 electrically connects the first electrode pad 16 and the second electrode pad 23 of the wiring layer 12.
  • an insulating layer 15 is provided at the interface of the first semiconductor substrate 11 that is in contact with the through electrode 17.
  • the through electrode 17 penetrates the protective layer 13 on the second surface of the first semiconductor substrate 11, and the end surface is exposed on the surface of the protective layer 13.
  • a protective layer 14 is provided so as to cover the upper surface of the through electrode 17 and the protective layer 13.
  • the insulating layer 15 is formed in the first semiconductor substrate 11. That is, no insulating layer is formed on the inner surface of the opening provided in the first semiconductor substrate 11 in order to form the through electrode 17.
  • the insulation between the through electrode 17 and the first semiconductor substrate 11 is ensured without forming an insulating layer in the opening. can do.
  • an insulating layer is not formed on the inner surface of the opening provided in the wiring layers 12 and 22 in order to form the through electrode 17. Even if no insulating layer is formed in the opening, insulation between the through electrode 17 and the wiring provided in the wiring layers 12 and 22 is ensured by the interlayer insulating layers 18 and 24 constituting the wiring layers 12 and 22. can do. Furthermore, in the wiring layers 12 and 22, since an insulating layer is not provided in the opening for the through electrode 17, any wiring in the wiring layers 12 and 22, a conductor layer such as an electrode pad, the side surface of the through electrode 17, The bottom surface can be connected.
  • FIG. 2 shows a planar arrangement of the through electrode 17, the insulating layer 15, and the first electrode pad 16 as viewed from the second surface side of the first semiconductor substrate 11.
  • An insulating layer 15 is formed so as to surround the through electrode 17.
  • the through electrode 17 and the first semiconductor substrate 11 are disconnected from each other by surrounding the entire through electrode 17 with the insulating layer 15.
  • the first electrode pad 16 is formed in a wider area than the through electrode 17 in the wiring layer 12. And as shown in FIG. 1, the opening is formed in the center part in which the penetration electrode 17 is provided.
  • the insulating layer 15 is disposed between the through electrode 17 and the first electrode pad 16, but the first electrode pad 16 extends below the insulating layer 15 and is connected to the through electrode 17. Has been.
  • the first semiconductor substrate 11 and the second semiconductor substrate 21 for example, a semiconductor substrate such as a silicon substrate, a compound semiconductor, and a semiconductor substrate applied to other general semiconductor devices can be used.
  • the through electrode 17, the first electrode pad 16, and the second electrode pad 23 are also composed of a conductor layer applied to a general semiconductor device.
  • the through electrode 17 and the first electrode pad 16 are made of Cu
  • the second electrode pad 23 is made of Al.
  • the interlayer insulating layers 18 and 24 and the protective layers 13 and 14 are made of an insulating material such as an oxide film (SiO) or a nitride film (SiN), for example.
  • the width of the insulating layer 15 formed in the first semiconductor substrate 11 is preferably in the range of 50 nm to 1000 nm. If the thickness is 50 nm or less, it is difficult to ensure insulation between the through electrode 17 and the first semiconductor substrate 11. On the other hand, when the thickness is 1000 nm or more, the time required for embedding the insulating layer 15 becomes long and the productivity is lowered. Furthermore, there is a risk that slits are generated in the insulating layer 15 and that the insulating layer 15 is entirely etched by a chemical solution such as hydrofluoric acid used in the thinning process of the first semiconductor substrate 11.
  • the insulating layer 15 may be any material that can be embedded in a groove having a width of 50 nm to 1000 nm formed by dry etching, such as a nitride film (SiN), an oxide film (SiO), or a combination of SiN and polysilicon. .
  • FIG. 3 shows the relationship between the width of the through electrode 17 and the opening width of the insulating layer 15 and the first electrode pad 16.
  • the inner length of the insulating layer 15 formed on the first semiconductor substrate 11 is A.
  • the width of the opening of the through electrode 17 is B.
  • the opening width of the first electrode pad 16 is C.
  • the opening width C of the first electrode pad 16 is preferably equal to or smaller than the opening B of the through electrode 17.
  • the opening width C of the first electrode pad 16 is larger than the opening B of the through electrode 17, it becomes difficult to contact the first electrode pad 16 on the side surface of the through electrode 17, and it becomes difficult to ensure conductivity.
  • the second chip 20 has a second width when the opening is formed by dry etching in the formation process of the through electrode 17.
  • the electrode pad 23 cannot be etched.
  • the difference between the opening width C and the opening B is 1 ⁇ m or less. That is, the relationship between the opening width C of the first electrode pad 16 and the opening B of the through electrode 17 is preferably (B-1 ⁇ m) ⁇ C ⁇ B.
  • the length A inside the insulating layer 15 is larger than the opening B of the through electrode 17. If the inner length A of the insulating layer 15 is smaller than the opening width B of the through electrode 17, the second electrode pad 23 of the second chip 20 is formed when the opening is formed by dry etching in the formation process of the through electrode 17. There is a possibility that etching cannot be performed. Further, the difference between the length A inside the insulating layer 15 and the opening B of the through electrode 17 is preferably smaller than 0.5 ⁇ m. By making the difference smaller than 0.5 ⁇ m, the seed layer can be prevented from being disconnected when electrolytic plating is performed in the opening in the process of forming the through electrode 17, and the plating property of the through electrode 17 is improved. . That is, the relationship between the opening B of the through electrode 17 and the inner length A of the insulating layer 15 is preferably (B ⁇ 0.5 ⁇ m) ⁇ A.
  • the through electrode 17 is formed in a region surrounded by the insulating layer 15 in the first semiconductor substrate 11.
  • the insulating layer 15 surrounding the through electrode 17 in the first semiconductor substrate 11 is not provided. That is, in the wiring layers 12 and 22, the through electrode 17 is in direct contact with the interlayer insulating layers 18 and 24 that form the wiring layers 12 and 22.
  • the side surface of the through electrode 17 is not covered with an insulating layer other than the interlayer insulating layers 18 and 24 in the wiring layers 12 and 22, wirings and electrodes provided on the wiring layers 12 and 22 on the side surface of the through electrode 17. It is possible to make an electrical connection directly to a conductor layer such as.
  • the through electrode 17 having the above-described configuration is not in contact with the semiconductor substrate by sandwiching the insulating layer, and can be in direct contact with the interlayer insulating layer and the conductor layer in the wiring layer.
  • the conventional through electrode since the insulating layer is continuously formed around the through electrode from the surface of the semiconductor substrate to the wiring layer, the side surface of the through electrode and the conductor layer cannot be directly connected in the wiring layer. .
  • the connection between the first electrode pad 16 of the first chip 10 and the second electrode pad 23 of the second chip 20 is made by one through electrode 17. It can be carried out. For this reason, the process for forming a penetration electrode can be shortened. Further, since the number of through electrodes can be reduced, the degree of freedom in design can be improved by reducing the area occupied by the through electrodes. Furthermore, an increase in wiring capacity can be prevented by reducing the number of through electrodes.
  • a reaction between the through electrode and the semiconductor substrate occurs in a portion where the barrier metal is thin in the annealing or sintering process after embedding the through electrode.
  • a thermal history of 400 ° C. or higher is applied in an annealing or sintering process, a silicidation reaction occurs between Si constituting the semiconductor substrate and Cu constituting the through electrode.
  • the insulating layer 15 is formed on the side surface of the through electrode 17. For this reason, reaction such as silicidation reaction between the through electrode 17 and the first semiconductor substrate 11 can be suppressed. Further, in the wiring layers 12 and 22, since the through electrode 17 and the interlayer insulating layer are in contact with each other, no silicidation reaction occurs. For this reason, even when a thermal history of 400 ° C. or higher is applied in the annealing or sintering process, reactions such as silicidation reactions of the through electrodes 17 that reduce the reliability of the wiring can be suppressed. For this reason, it is possible to improve both the reliability of the through electrode 17 with respect to the heat treatment and the improvement of the transistor characteristics by the sintering process.
  • a barrier metal layer (not shown) is formed on the side and bottom surfaces of the through electrode 17 in order to prevent diffusion into the insulating layer 15 and the interlayer insulating layers 18 and 24. The Even when the barrier metal layer is formed, the first electrode pad 16 and the second electrode pad 23 are electrically connected through the barrier metal layer as described above.
  • the shape of the through electrode and the insulating layer in a planar arrangement is circular.
  • the shape is not limited to this shape, and may be any shape such as a rectangular shape or other polygonal shapes.
  • the shape of the first electrode pad is a shape provided with an opening having the same shape as the through electrode, the shape of the first electrode pad is not particularly limited as long as it can be connected to the through electrode. .
  • it is good also as a wiring shape extended only to one direction from the connection part with the side surface of a penetration electrode.
  • the shape in which the opening having the same shape as the through electrode is provided can be configured to contact the first electrode pad on all side surfaces of the through electrode, and the connection reliability between the through electrode and the first electrode pad is improved.
  • the hard mask layer 31 is formed on the first surface of the first semiconductor substrate 11, and the insulating layer 15 is formed on the first surface side surface of the first semiconductor substrate 11.
  • a hard mask layer 31 made of SiO 2 , SiN, or the like is formed on the first surface of the first semiconductor substrate 11.
  • the resist is patterned by photolithography.
  • the resist is formed in a pattern that opens the shape of the insulating layer 15 formed on the first semiconductor substrate 11.
  • the hard mask layer 31 is dry-etched using the patterned resist as a mask. After dry etching, the resist is removed and washed.
  • the surface of the first semiconductor substrate 11 is opened by dry etching to form an opening (groove). Thereafter, a nitride film (SiN), an oxide film (SiO), a combination of SiN and polysilicon, or the like is embedded in the formed opening to form the insulating layer 15.
  • a nitride film (SiN), an oxide film (SiO), a combination of SiN and polysilicon, or the like is embedded in the formed opening to form the insulating layer 15.
  • the opening of the first semiconductor substrate 11 for forming the insulating layer 15 is formed with a width in the range of 50 nm to 1000 nm, for example. If the thickness is 50 nm or less, it is difficult to ensure insulation between the through electrode 17 and the first semiconductor substrate 11. If it is 1000 nm or more, it takes a long time to fill the insulating layer 15. Furthermore, there is a risk that a slit is generated in the insulating layer 15 and that the insulating layer 15 is entirely etched by a chemical solution used in the thinning process of the first semiconductor substrate 11, for example, hydrofluoric acid.
  • the depth at which the insulating layer 15 is formed is equal to or greater than the thickness after the first semiconductor substrate 11 is thinned.
  • the insulating layer 15 is formed in the entire area of the first semiconductor substrate 11 in the depth direction.
  • the insulating layer 15 may be any material that can be embedded in the opening having a width of 50 nm to 1000 nm formed by dry etching.
  • a method capable of embedding in a processed opening such as P-CVD or spin coating may be used as a method for embedding the insulating layer 15.
  • the wiring layer 12 is formed on the first semiconductor substrate 11.
  • a circuit such as a transistor (not shown) is formed on the first surface of the first semiconductor substrate 11.
  • the wiring layer 12 is formed with a multilayer wiring layer composed of a plurality of conductor layers and an interlayer insulating layer.
  • the first electrode pad 16 made of at least one conductor layer and the interlayer insulating layer 18 made of at least two layers are formed.
  • the first electrode pad 16 is formed with an opening having the same shape as the through electrode 17.
  • the opening width of the first electrode pad 16 is formed so as to satisfy, for example, the relationship between the opening width C of the first electrode pad 16 and the opening portion B of the through electrode 17, that is, (B-1 ⁇ m) ⁇ C ⁇ B. To do.
  • the surface of the wiring layer 12 is planarized using a CMP method or the like to form a bonding surface 25.
  • CMP is generally performed under conditions used for manufacturing semiconductor devices. For example, a CMP pad in which a soft material and a hard material are laminated, a slurry (chemical solution), or the like, which is generally used for manufacturing a semiconductor device, is used.
  • a second semiconductor substrate 21 on which a predetermined circuit to be the second chip 20 is formed in advance is prepared.
  • the second semiconductor substrate 21 includes a second electrode pad 23 in the wiring layer 22 corresponding to the formation position of the through electrode 17. Further, a flattened bonding surface 25 is formed on the surface of the wiring layer 22 in the same manner as the wiring layer 12 of the first semiconductor substrate 11. Then, as shown in FIG. 5C, the first semiconductor substrate 11 is inverted so that the surface of the wiring layer 12 of the first semiconductor substrate 11 faces the surface of the wiring layer 22 of the second semiconductor substrate 21. Then, the wiring layers 12 and 22 of the first semiconductor substrate 11 and the second semiconductor substrate 21 are brought into contact with each other by pressing with a pin, and bonding is performed.
  • the bonding is performed by pressing the centers of the first semiconductor substrate 11 and the second semiconductor substrate 21 so that the first semiconductor substrate 11 and the second semiconductor substrate 21 face each other without performing pretreatment immediately after CMP.
  • a pin whose contact surface to the first semiconductor substrate 11 and the second semiconductor substrate 21 is a circle is used.
  • the load to be pressed is, for example, 12N.
  • the second surface side of the first semiconductor substrate 11 is polished to thin the first semiconductor substrate 11.
  • the first semiconductor substrate 11 is polished to a predetermined thickness at which the insulating layer 15 is exposed from the second surface side.
  • a protective layer 13 is formed by forming a film such as SiN or SiO 2 on the second surface of the first semiconductor substrate 11 after the thinning.
  • an opening 32 is formed in a portion surrounded by the insulating layer 15 of the first semiconductor substrate 11.
  • the opening 32 can be formed in the same manner as the step of forming the opening (groove) for embedding the insulating layer 15 described above.
  • FIG. 8A after forming a resist pattern by photolithography on the protective layer 13, a hard mask pattern of the protective layer 13 is formed using this resist pattern, and dry etching of the first semiconductor substrate 11 is performed. Do.
  • the relationship between the opening B of the through electrode 17 and the length A inside the insulating layer 15 formed in the first semiconductor substrate 11 is (B ⁇ 0.5 ⁇ m). ⁇ A is preferable. For this reason, the width of the opening formed in the protective layer 13 is smaller than the width inside the insulating layer 15. As a result, as shown in FIG. 8A, in the highly isotropic dry etching, the first semiconductor substrate 11A remains on the inner surface in the region surrounded by the insulating layer 15. If the first semiconductor substrate 11 ⁇ / b> A remains inside the insulating layer 15, a silicidation reaction occurs with the through electrode 17, and the reliability of the through electrode 17 decreases. For this reason, it is preferable to remove all of the first semiconductor substrate 11 inside the insulating layer 15.
  • the first semiconductor substrate 11A is removed inside the insulating layer 15 by isotropic etching as shown in FIG. 8B, and dry etching is performed so that all the inner walls of the insulating layer 15 are exposed. Do. Thus, the opening 32 is formed so that the first semiconductor substrate 11 does not remain between the inside of the insulating layer 15 and the through electrode 17.
  • openings from the wiring layer 12 of the first chip 10 below the opening 32 to the second electrode pads 23 provided on the wiring layer 22 of the second chip 20 are opened by dry etching. To do.
  • the opening 33 is formed.
  • An opening 33 is formed in the opening of the first electrode pad 16.
  • the opening width of the first electrode pad 16 and the width of the opening portion 33 are the same shape.
  • the width of the opening 33 may be formed larger than the opening width of the first electrode pad 16.
  • the opening 33 below the first electrode pad 16 is formed with the opening width of the first electrode pad 16 because the first electrode pad 16 serves as a mask.
  • a conductor layer to be the through electrode 17 is embedded in the openings 32 and 33.
  • a seed metal layer made of tantalum (Ta) and copper laminated film, Ti / Cu, TiW / Cu, or the like is formed in the openings 32 and 33 with a thickness of about 10 nm to 35 nm.
  • the openings 32 and 33 are filled by electrolytic Cu plating to form the through electrode 17.
  • the opening 33 is formed such that the width of the opening 33 on the first electrode pad 16 is larger than the opening width of the first electrode pad 16 from the above-mentioned relationship (B-1 ⁇ m) ⁇ C ⁇ B. It is preferable.
  • the through electrode 17 is preferably formed in a shape in which the width on the first electrode pad 16 is larger than the width on the first electrode pad 16 or less. By adopting this shape, the connection reliability between the through electrode 17 and the first electrode pad 16 and the connection reliability between the first electrode pad 16 and the second electrode pad 23 through the through electrode 17 are ensured. Can do.
  • the semiconductor device of this embodiment can be manufactured through the above steps.
  • the semiconductor device may be separated into pieces by dicing the substrate in the wafer state after the above-described steps.
  • the first semiconductor substrate 11 and the second semiconductor substrate 21 are bonded together in a state before separation (wafer state), but the first semiconductor substrate 11 is separated into pieces.
  • the first chip 10 may be bonded onto the second semiconductor substrate 21 in a wafer state, or may be bonded after being singulated.
  • the semiconductor device of the above-described embodiment can be applied to any electronic device that bonds two semiconductor members together to perform wiring bonding, such as a solid-state imaging device, a semiconductor memory, and a semiconductor logic device (IC or the like).
  • FIG. 9 shows a schematic configuration of a semiconductor device including the through electrode according to the present embodiment.
  • FIG. 9 is a cross-sectional view of the semiconductor device in the vicinity of the region where the through electrode is formed.
  • FIG. 9 only a schematic configuration in the vicinity of the through electrode formation region is shown, and illustration of each configuration of the semiconductor substrate and each configuration provided around the through electrode is omitted.
  • the same reference numerals are given to the same components as those of the semiconductor device of the first embodiment described above, and detailed description thereof is omitted.
  • the semiconductor device has a configuration in which a first chip 10 and a second chip 20 are bonded together.
  • a through electrode 17 that penetrates from the second surface of the first semiconductor substrate 11 to the second electrode pad 23 is provided.
  • the through electrode 17 is formed in an opening that penetrates the protective layer 13, the first semiconductor substrate 11, and the wiring layers 12 and 22.
  • the first chip 10 has the same configuration as that of the first embodiment except for the configuration of the first electrode pad 16.
  • the second chip 20 has the same configuration as that of the first embodiment described above.
  • the inner surface of the opening of the first electrode pad 16 is formed with a large opening on the second surface side of the first chip and a small opening on the first surface side.
  • the first electrode pad 16 is provided in a tapered shape so that the opening on the first surface side is reduced on the surface where the first electrode pad 16 and the through electrode 17 are in contact with each other.
  • the shape of the opening of the first electrode pad 16 may be a continuously decreasing shape as shown in FIG. 9, and from the second surface side of the first chip to the middle of the opening as shown in FIG. May have the same size, and a taper may be provided from the middle of the opening to the first surface side.
  • FIG. 10 only the configuration around the first electrode pad 16 is enlarged from the configuration of the semiconductor device shown in FIG.
  • the contact area between the through electrode 17 and the first electrode pad 16 is increased. Since the opening becomes small on the first surface side of the first chip 10, contact failure due to the opening position deviation hardly occurs. Thus, the increase in the contact area can reduce the contact resistance between the electrodes and improve the reliability of the semiconductor device.
  • the through electrode 17 preferably has a larger cross-sectional area on the second surface side of the first electrode pad 16 than an opening on the first surface side of the first electrode pad 16.
  • FIG. 11 shows the relationship between the inclination angle ⁇ of the inner surface of the opening of the first electrode pad 16 and the contact area, and the contact angle ⁇ and the increase in the contact area.
  • the amount of increase in the contact area is a comparison with the configuration in which the inner surface of the first electrode pad 16 is vertical (first embodiment), and the amount of increase is indicated in multiples from the contact area when the inner surface is vertical. Yes.
  • the relationship shown in FIG. 11 is a numerical value in the configuration shown in FIG. In the configuration shown in FIG. 12, the through electrode 17 has a circular shape with an opening diameter (diameter) of 3 ⁇ m, and the thickness of the first electrode pad 16 is 0.2 ⁇ m.
  • the contact area between the through electrode 17 and the first electrode pad 16 increases as the inclination angle of the opening of the first electrode pad 16 decreases.
  • the contact area is 1.5 times or more that of the configuration of the first embodiment.
  • the contact area becomes twice or more that of the configuration of the first embodiment.
  • the coverage of the barrier metal layer is improved as compared with the configuration in which the inner surface of the first electrode pad 16 is vertical (first embodiment). For this reason, the thickness of the barrier metal layer to be formed can be reduced, and the contact resistance between the through electrode 17 and the first electrode pad 16 can be reduced.
  • Second Embodiment of Semiconductor Device Manufacturing Method> Next, an example of a method for manufacturing the semiconductor device of the second embodiment will be described. In the following description of the manufacturing method, only the manufacturing method of the through electrode of the semiconductor device shown in FIG. 9 and its peripheral configuration is shown, and the description of the manufacturing method of the configuration of other elements and wirings is omitted. About a semiconductor substrate, a wiring layer, other various transistors, various elements, etc., it can produce by a conventionally well-known method. The detailed description of the configuration, operation, and the like described in the configuration and manufacturing method of the semiconductor device of the first embodiment is omitted.
  • the portion surrounded by the insulating layer 15 of the first semiconductor substrate 11 shown in FIG. 6E is removed by the same method as in the first embodiment, and the region surrounded by the insulating layer 15 of the first semiconductor substrate 11 is removed.
  • the process up to the step of forming the opening 32 in the portion is performed.
  • the opening 33A is formed.
  • the opening width at this time is preferably larger than the opening of the first electrode pad 16.
  • the first electrode pad 16 needs to be exposed from the peripheral edge of the bottom of the opening 33A. In particular, it is preferable that the inside of the first electrode pad 16 is exposed to the entire periphery of the bottom of the opening 33A.
  • the first electrode pad 16 exposed from the opening 33A and the interlayer insulating layer 18 inside the first electrode pad 16 are removed by dry etching.
  • the opening 33 ⁇ / b> B is formed at a depth up to the upper end (bonding surface side) of the first electrode pad 16.
  • the first electrode pad 16 and the interlayer insulating layer 18 are simultaneously removed, and the inner surface of the first electrode pad 16 is processed into an inclined surface.
  • the first electrode pad 16 is also etched in the same manner as the interlayer insulating layer 18 under the dry etching conditions of an insulating layer such as a general oxide film that forms the interlayer insulating layer 18. For this reason, as in the first embodiment described above, the inner surface of the opening of the first electrode pad 16 has a vertical shape.
  • Ar is used in the step of removing the first electrode pad 16 and the interlayer insulating layer 18 shown in FIG. 13G. Apply unused machining conditions.
  • Ar is used in the dry etching, the sputtering effect on the metal such as Cu constituting the first electrode pad 16 is weakened, and the selection ratio between the first electrode pad 16 and the interlayer insulating layer 18 is increased.
  • dry etching proceeds so that the inner surface of the opening of the first electrode pad 16 is inclined.
  • the shape of the inclined surface such as the inclination angle can be generally controlled by a specific amount of oxygen used for dry etching.
  • an opening from the upper end (bonding surface side) of the first electrode pad 16 to the second electrode pad 23 provided on the wiring layer 22 of the second chip 20 is opened by dry etching.
  • This dry etching is performed under conditions that do not affect the inclined shape of the opening of the first electrode pad 16.
  • the opening 33 can be formed from the first electrode pad 16 to the second electrode pad 23 with the opening width of the upper end (bonding surface side) of the first electrode pad 16.
  • the protective layer 14 is formed. This step can be performed by the same method as the steps shown in FIGS. 7G and 7H in the semiconductor device manufacturing method of the first embodiment described above.
  • the above manufacturing method includes a step of processing the inner surface of the opening of the first electrode pad 16 into an inclined surface.
  • the area of the inner surface of the opening of the first electrode pad 16 can be increased.
  • a barrier metal layer that becomes an interface between the first electrode pad 16 and the through electrode 17 as compared with the configuration in which the inner surface of the first electrode pad 16 is vertical (first embodiment) due to the increase in the connection area.
  • the adhesiveness between the first electrode pad 16 and the through electrode 17 is improved, and the connection reliability is improved.
  • the coverage of a barrier metal layer improves because the area of a barrier metal layer becomes large. For this reason, the thickness of the barrier metal layer to be formed can be reduced, and the contact resistance between the through electrode 17 and the first electrode pad 16 can be reduced.
  • the contact resistance between the electrodes can be reduced and the reliability of the semiconductor device can be improved. It becomes possible. Therefore, a semiconductor device having high performance, high function, and high reliability can be provided.
  • FIG. 15 shows a schematic configuration of a semiconductor device including the through electrode according to the present embodiment.
  • FIG. 15 is a cross-sectional view of the semiconductor device in the vicinity of the region where the through electrode is formed.
  • FIG. 15 only a schematic configuration near the formation region of the through electrode is shown, and illustration of each configuration of the semiconductor substrate and each configuration provided around the through electrode is omitted.
  • the same reference numerals are given to the same components as those of the semiconductor device of the first embodiment described above, and detailed description thereof is omitted.
  • the semiconductor device has a configuration in which the first chip 10 and the second chip 20 are bonded together.
  • a through electrode 17 that penetrates from the second surface of the first semiconductor substrate 11 to the second electrode pad 23 is provided.
  • the through electrode 17 is formed in an opening that penetrates the protective layer 13, the first semiconductor substrate 11, and the wiring layers 12 and 22.
  • the first chip 10 has the same configuration as that of the first embodiment except for the configuration of the insulating layer 15.
  • the second chip 20 has the same configuration as that of the first embodiment described above.
  • the material of the insulating layer 15 is made of the same material as that of the interlayer insulating layer 18 constituting the wiring layer 12.
  • it is composed of a single layer or a stacked layer of a silicon oxide film and a silicon nitride film.
  • the opening diameter on the first surface side of the first semiconductor substrate 11 and the opening diameter of the first electrode pad 16 are substantially the same.
  • the opening diameter of the first electrode pad 16 is larger than the diameter of the through electrode 17 in contact with the second electrode pad 23.
  • the contact area between the through electrode 17 and the first electrode pad 16 can be increased. For this reason, even when the element is miniaturized, the connection reliability between the through electrode 17 and the first electrode pad 16 can be improved.
  • the process up to thinning the first semiconductor substrate 11 is performed by polishing the second surface side of the first semiconductor substrate 11 shown in FIG. 5D by the same method as in the first embodiment.
  • the insulating layer 15 is formed so that the inner diameter of the insulating layer 15 is smaller than the opening diameter in which the through electrode 17 is finally formed.
  • a resist 34 is formed on the second surface of the first semiconductor substrate 11, and a hole for forming the through electrode 17 is patterned by photolithography. At this time, an opening having a diameter larger than the inner diameter of the insulating layer 15 is formed in the resist 34.
  • the protective layer 13 is opened from the opening of the resist 34 by dry etching. Thereby, the first semiconductor substrate 11 and a part of the insulating layer 15 are exposed on the same surface.
  • the insulating layer 15 exposed from the opening of the resist 34 and the interlayer insulating layer 18 are simultaneously etched to form the opening 33A. Accordingly, in FIG. 17G, the shape of the opening 32 having a step difference between the inner diameter of the insulating layer 15 and the inner diameter of the resist 34 and the protective layer 13 is transferred to the opening 33A between the insulating layer 15 and the interlayer insulating layer 18. . Further, by continuing the etching, an opening 33 that opens to the second electrode pad 23 is formed as shown in FIG. 18I.
  • the protective layer 14 is formed. This step can be performed by the same method as the steps shown in FIGS. 7G and 7H in the semiconductor device manufacturing method of the first embodiment described above.
  • the opening 33 that opens to the second electrode pad 23 can be formed with good controllability by patterning the resist 34 by one lithography. That is, by forming the opening of the resist 34 larger than the inner diameter of the insulating layer 15, the entire surface of the first semiconductor substrate 11 in the insulating layer 15 can be exposed from the opening of the resist 34. For this reason, the remaining of the first semiconductor substrate 11 in the insulating layer 15 can be suppressed. Therefore, silicidation of the through electrode 17 in the insulating layer 15 can be prevented, and the reliability of the through electrode 17 is improved.
  • the insulating layer 15 exposed from the opening of the resist 34 and the interlayer insulating layer 18 are simultaneously etched, so that the position of the first electrode pad 16 is almost the same as the opening of the resist 34 and the first semiconductor substrate 11. Are formed. Therefore, the inner diameter of the opening of the first electrode pad 16 can be increased, the contact area between the first electrode pad 16 and the through electrode 17 is increased, and the connection reliability between the first electrode pad 16 and the through electrode 17 is increased. Improves.
  • the shape of the opening 32 having a step between the inner diameter of the insulating layer 15 and the inner diameter of the resist 34 and the protective layer 13 is transferred to the shape of the opening 33 immediately above the second electrode pad 23 by the above-described etching. .
  • the bottom area of the through electrode 17 can be reduced as compared with the cross sectional area of the through electrode 17 in the first semiconductor substrate 11 and the cross sectional area of the through electrode 17 at the position of the first electrode pad 16. For this reason, even when the area of the second electrode pad 23 is reduced by miniaturization of the element, the connection between the through electrode 17 and the second electrode pad 23 is facilitated.
  • FIG. 19 shows a schematic configuration of a semiconductor device including the through electrode according to the present embodiment.
  • FIG. 19 is a cross-sectional view of the semiconductor device in the vicinity of the region where the through electrode is formed.
  • FIG. 19 only a schematic configuration near the formation region of the through electrode is shown, and illustration of each configuration of the semiconductor substrate and each configuration provided around the through electrode is omitted.
  • the same reference numerals are given to the same components as those of the semiconductor device of the first embodiment described above, and detailed description thereof is omitted.
  • the semiconductor device has a configuration in which the first chip 10 and the second chip 20 are bonded together.
  • a through electrode 17 that penetrates from the second surface of the first semiconductor substrate 11 to the second electrode pad 23 is provided.
  • the through electrode 17 is formed in an opening that penetrates the protective layer 13, the first semiconductor substrate 11, and the wiring layers 12 and 22.
  • the first chip 10 has the same configuration as that of the above-described first embodiment except for the configuration of the first electrode pad 16A and the electrode protection layer 35
  • the second chip 20 has the same configuration as that of the above-described first embodiment. It is the same composition as.
  • the first electrode pad 16A is formed of tungsten (W) or polysilicon.
  • An electrode protective layer 35 is provided between the insulating layer 15 and the first electrode pad 16A.
  • the electrode protection layer 35 is a layer that protects the first electrode pad 16A formed of, for example, tungsten or polysilicon from etching in an etching process during manufacturing.
  • the electrode protective layer 35 is, for example, an oxide film is formed by SiO 2.
  • the first electrode pad 16 is formed of Cu
  • Cu release contamination
  • processing in the etching is performed. It was slowing down.
  • the step of forming the opening 33 includes a step of performing lithography and etching so as not to expose the first electrode pad 16 and a step of performing lithography and etching so as to expose the first electrode pad 16. It is conceivable to do it separately. However, when such a method is used, productivity decreases due to an increase in the number of steps.
  • the electrode protection layer 35 is provided between the insulating layer 15 and the first electrode pad 16A, so that the first electrode pad 16A is combined with the wiring layer 12 in the etching for forming the opening 33. Etching can be prevented.
  • the electrode protective layer 35 may be provided between the insulating layer 15 and the first electrode pad 16A, and the electrode protective layer 35 may not be in contact with the insulating layer 15 and the first electrode pad 16A.
  • another layer may be provided between the electrode protective layer 35 and the insulating layer 15, and another layer may be provided between the electrode protective layer 35 and the first electrode pad 16A. Good.
  • the shape of the first electrode pad 16A may be, for example, a shape in which an opening having the same shape as the through electrode 17 is provided, as in the first embodiment described above. Further, the shape of the first electrode pad 16A is not limited to the above-described shape as long as it can be connected to the through electrode 17. For example, a wiring shape that extends only in one direction from the connection portion with the side surface of the through electrode 17 may be used.
  • the electrode protection layer 35 has a shape corresponding to the first electrode pad 16A, and may have any shape as long as it can protect the first electrode pad 16A.
  • the first electrode pad 16A is made of a conductor such as tungsten or polysilicon, for example.
  • the first electrode pad 16A can also be made of a metal gate material.
  • the first electrode pad 16A may be composed of a titanium (Ti) -based or tantalum (Ta) -based conductor, and more specifically, may be composed of TiN or TaN.
  • the electrode protective layer 35 is made of, for example, SiO 2 .
  • the electrode protection layer 35 can also be made of a High-k material used for the gate oxide film.
  • the electrode protection layer 35 may be composed of a hafnium (Hf) -based material or the like, and more specifically, may be composed of HfO 2 , HfSiO 2 , or HfSiON.
  • the electrode protective layer 35 and the first electrode pad 16A are formed together with other oxide films and wirings in the step of forming the wiring layer 12. It is preferable. With this configuration, in this embodiment, the electrode protective layer 35 and the first electrode pad 16A can be formed without increasing the number of steps. Therefore, the electrode protection layer 35 is preferably formed of the same material as any oxide included in the wiring layer 12, and the first electrode pad 16 ⁇ / b> A includes any wiring or electrode included in the wiring layer 12. It is preferable to form with the same material.
  • the present embodiment is not limited to the above example.
  • the present embodiment may be configured as a semiconductor device as shown in FIGS. 20 and 21 are cross-sectional views of a semiconductor device in the vicinity of a region where a through electrode according to a modification of the present embodiment is formed.
  • a wiring electrode 36 for electrically connecting the first electrode pad 16A and the wiring in the wiring layer 12 is further provided.
  • the rest of the configuration excluding the wiring electrode 36 is the same as the configuration described with reference to FIG.
  • the wiring electrode 36 is made of Cu, for example.
  • the first electrode pad 16A can be electrically connected to a wiring (not shown) in the wiring layer 12 via the wiring electrode 36 formed of Cu having a smaller electrical resistance. Therefore, in the modification shown in FIG. 20, the connection reliability between the through electrode 17 and the wiring layer 12 can be further improved.
  • the wiring electrode 36 formed of Cu is formed on the outer side of the opening side end of the first electrode pad 16A with respect to the center direction of the opening. Needless to say, the opening 33 is not exposed in the forming step.
  • the opening width of the first electrode pad 16B made of tungsten or polysilicon is formed to be smaller than the opening width of the insulating layer 15, and penetrates into the opening.
  • An electrode 17A is provided.
  • the other configuration except for the first electrode pad 16B and the through electrode 17A is the same as the configuration described with reference to FIG.
  • the first semiconductor substrate 11 up to the electrode protection layer 35 that protects the first electrode pad 16B is etched.
  • the etching conditions are set appropriately, whereby the electrode protective layer 35 wiring layer 12 is formed using the first electrode pad 16B as a mask. , 22 are etched.
  • the first electrode pad 16B can increase the contact area with the through electrode 17A, and thus can be reliably electrically connected to the through electrode 17A. Therefore, in the modification shown in FIG. 21, the connection reliability between the through electrode 17A and the first electrode pad 16B can be improved.
  • the process up to the step of forming the insulating layer 15 in the first semiconductor substrate 11 shown in FIG. 4A is performed by the same method as in the first embodiment.
  • the electrode protection layer 35 is formed on the insulating layer 15 on the first surface side of the first semiconductor substrate 11.
  • the electrode protective layer 35 is preferably formed so that the opening-side end of the electrode protective layer 35 protrudes toward the center of the opening from the opening-side end of the insulating layer 15.
  • the electrode protective layer 35 is formed in a ring shape, for example.
  • the inner diameter of the electrode protective layer 35 is preferably smaller than the inner diameter of the opening on the electrode protective layer 35 side of the insulating layer 15. According to such a configuration, the electrode protection layer 35 according to the present embodiment more reliably protects the first electrode pad 16A from being etched during the etching in the step of forming the opening 33 described later. be able to.
  • the electrode protection layer 35 may be formed, for example, in an element isolation process for isolating a transistor or the like formed on the first surface of the first semiconductor substrate 11.
  • an element isolation method for example, various methods such as an STI (Shallow Trench Isolation) method, a LOCOS (Local Oxidation of Silicon) method, or an EDI (Expanding pheotide Design for Isolation) method can be used.
  • the electrode protective layer 35 may be formed in the step of forming the interlayer insulating layer 18 in the wiring layer 12, and the electrode protective layer 35 may be formed in the step of forming the gate oxide film.
  • the wiring layer 12 is formed on the first surface side of the first semiconductor substrate 11, and the bonding surface 25 is formed on the planarized wiring layer 12.
  • the wiring layer 12 is a multilayer wiring layer composed of a plurality of conductor layers and an interlayer insulating layer, and includes a first electrode pad 16A.
  • the first electrode pad 16A is formed on the electrode protection layer 35, for example.
  • the width of the opening of the formed first electrode pad 16 ⁇ / b> A is preferably smaller than the width of the opening of the insulating layer 15 for connection with the through electrode 17.
  • the first electrode pad 16A may be formed in a step of forming a wiring in the wiring layer 12, or may be formed in a step of forming a gate electrode that is a metal gate material.
  • the first semiconductor substrate 11 and the second semiconductor substrate 12 are bonded and bonded, and the first semiconductor substrate 11 is further polished and thinned.
  • This step can be performed by a method similar to that shown in FIGS. 5C and 5D in the semiconductor device manufacturing method of the first embodiment described above.
  • the portion surrounded by the insulating layer 15 of the first semiconductor substrate 11 is removed by dry etching or the like to expose the inside of the insulating layer 15.
  • an opening 32 is formed in a portion surrounded by the insulating layer 15 of the first semiconductor substrate 11.
  • the electrode protection layer 35 made of SiO 2 has a high processing selectivity with respect to the first semiconductor substrate 11, the electrode protection layer 35 is not removed in the step of forming the opening 32 described above, and is positioned below the electrode protection layer 35.
  • the first electrode pad 16A can be protected.
  • the opening 33 is formed.
  • the first electrode pad 16A existing in the center direction of the opening from the end of the insulating layer 15 on the opening side is also removed.
  • the form is not limited to such illustration.
  • the first electrode pad 16A is used as a mask without being removed, and the electrode protective layer 35, the wiring layers 12, 22 and the like are removed. It is also possible to do.
  • the protective layer 14 is formed. This step can be performed by the same method as in FIGS. 7G and 7H in the method for manufacturing the semiconductor device of the first embodiment described above.
  • the above manufacturing method includes the step of forming the electrode protection layer 35 between the insulating layer 15 and the first electrode pad 16A.
  • the electrode protective layer 35 is formed such that the end of the electrode protective layer 35 on the opening side protrudes toward the center of the opening from the end of the insulating layer 15 on the opening side. .
  • the first electrode pad 16A is etched in the step of forming the opening 33 by providing the electrode protective layer 35 between the insulating layer 15 and the first electrode pad 16A. Can be protected from. Therefore, tungsten, polysilicon, or the like, which is a conductor having a low processing selectivity with respect to the first semiconductor substrate 11, can be used as the first electrode pad 16A. Therefore, the semiconductor device according to the present embodiment can improve the productivity by eliminating the decrease in etching process speed due to Cu contamination and the decrease in productivity due to the increase in the number of processes.
  • Solid-state imaging device an example in which the configuration of electrode bonding in the above-described embodiment is applied to a solid-state imaging device will be described.
  • This solid-state imaging device can be applied to electronic devices such as a camera system such as a digital camera or a video camera, a mobile phone having an imaging function, or another device having an imaging function.
  • a camera will be described as an example of a configuration of the electronic device.
  • FIG. 19 shows a configuration example of a video camera that can capture still images or moving images.
  • the camera 40 of this example includes a solid-state imaging device 41, an optical system 42 that guides incident light to the light receiving sensor unit of the solid-state imaging device 41, a shutter device 43 provided between the solid-state imaging device 41 and the optical system 42, And a drive circuit 44 for driving the imaging device 41. Furthermore, the camera 40 includes a signal processing circuit 45 that processes the output signal of the solid-state imaging device 41.
  • the solid-state imaging device 41 includes the through electrode of the embodiment according to the present disclosure described above. Configurations and functions of other parts are as follows.
  • the optical system (optical lens) 42 forms image light (incident light) from the subject on an imaging surface (not shown) of the solid-state imaging device 41. Thereby, signal charges are accumulated in the solid-state imaging device 41 for a certain period.
  • the optical system 42 may be composed of an optical lens group including a plurality of optical lenses.
  • the shutter device 43 controls the light irradiation period and the light shielding period of the incident light to the solid-state imaging device 41.
  • the drive circuit 44 supplies drive signals to the solid-state imaging device 41 and the shutter device 43.
  • the drive circuit 44 controls the signal output operation to the signal processing circuit 45 of the solid-state imaging device 41 and the shutter operation of the shutter device 43 by the supplied drive signal. That is, in this example, a signal transfer operation from the solid-state imaging device 41 to the signal processing circuit 45 is performed by a drive signal (timing signal) supplied from the drive circuit 44.
  • the signal processing circuit 45 performs various signal processing on the signal transferred from the solid-state imaging device 41.
  • the signal (video signal) that has been subjected to various signal processing is stored in a storage medium (not shown) such as a memory, or is output to a monitor (not shown).
  • this indication can also take the following structures.
  • (1) The first semiconductor substrate, the second semiconductor substrate bonded to the first surface side of the first semiconductor substrate, and the wiring layer on the second semiconductor substrate from the second surface side of the first semiconductor substrate.
  • a semiconductor device comprising: a through electrode formed so as to penetrate; and an insulating layer surrounding the through electrode formed in the first semiconductor substrate.
  • (2) The semiconductor device according to (1), wherein the wiring layer on the first surface of the first semiconductor substrate has a first conductor layer, and a side surface of the through electrode is connected to the first conductor layer.
  • (3) The bottom of the through electrode is connected to a second conductor layer provided in a wiring layer on the second semiconductor substrate, and the first conductor layer and the second conductor layer are connected via the through electrode.
  • the opening of the first conductor layer is formed such that the opening on the second surface side of the first semiconductor substrate is large and the opening on the first surface side of the first semiconductor substrate is small (4) or ( The semiconductor device according to 5).
  • the semiconductor device according to (8) wherein an inclination angle of an inner surface of the opening of the first conductor layer is 40 ° or less.
  • the electrode protective layer is formed of the same material as the oxide contained in the wiring layer on the first surface of the first semiconductor substrate, and the first conductor layer is a first layer of the first semiconductor substrate.
  • the semiconductor device according to (10) which is formed of the same material as any of the wiring and the electrode included in the wiring layer on the surface.
  • a method of manufacturing a semiconductor device including a through electrode penetrating a first semiconductor substrate, wherein an insulating layer is formed on a first surface of the first semiconductor substrate to surround a position where the through electrode is formed.
  • a method for manufacturing a semiconductor device comprising: a step of forming an opening penetrating up to a wiring layer on a semiconductor substrate; and a step of forming a through electrode in the opening.
  • the step of forming the opening after etching the first semiconductor substrate within a range surrounded by the insulating layer, the first semiconductor substrate remaining on the inner wall surface of the insulating layer is further etched.
  • the manufacturing method of the semiconductor device as described in (12) which has a process to carry out.
  • (14) forming a first conductor layer on the wiring layer on the first surface of the first semiconductor substrate; and forming the opening in the step of forming the opening.
  • the method includes selectively etching the first semiconductor substrate within a range surrounded by the insulating layer and etching a part of the inner surface side of the insulating layer.
  • a method for manufacturing a semiconductor device according to any one of the above. (16) forming a first conductor layer on the wiring layer on the first surface of the first semiconductor substrate, and forming an electrode protective layer between the insulating layer and the first conductor layer; The step of forming the opening includes a step of etching the first semiconductor substrate within a range surrounded by the insulating layer, and a step of etching from the electrode protective layer to the wiring layer on the second semiconductor substrate. (12) The manufacturing method of the semiconductor device as described in (12).
  • the electrode protective layer is configured such that an end portion on the opening side of the electrode protective layer protrudes toward an opening center direction from an end portion on the opening side of the insulating layer.
  • (16) The manufacturing method of the semiconductor device described in (16).
  • (18) The method for manufacturing a semiconductor device according to (16) or (17), wherein the electrode protective layer and the first conductor layer are formed together with a wiring layer on the first surface of the first semiconductor substrate.
  • An electronic apparatus comprising: the semiconductor device according to any one of (1) to (11); and a signal processing circuit that processes an output signal of the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】信頼性の高い半導体装置を提供する。 【解決手段】第1半導体基体と、第1半導体基体の第1面側に貼り合わされた第2半導体基体と、第1半導体基体の第2面側から第2半導体基体上の配線層まで貫通して形成されている貫通電極と、第1半導体基体内に形成されている貫通電極の周囲を囲む絶縁層を備える半導体装置を構成する。

Description

半導体装置、半導体装置の製造方法、及び、電子機器
 本技術は、半導体基体の貫通電極を有する半導体装置及び半導体装置の製造方法、並びに、この半導体装置を備える電子機器に係わる。
 これまで、異種デバイスを貼り合わせた半導体装置において、上部チップの基体を貫通して、下部基体の電極に接続される、貫通電極を備える構成が提案されている(例えば、特許文献1参照)。この構成では、上部チップ側の基体と下部チップ側の基体とを張り合わせた後、上部チップ側の基体を貫通して上部チップ側の電極パッドと接続する第1貫通電極が形成される。同様に、上部チップ側の基体を貫通し、さらに下部チップ側の電極パッドと接続する第2貫通電極が形成される。そして、第1貫通電極と第2貫通電極とを連結するダマシンによって異種チップ間で配線が接続される。
 また、半導体基体と貫通電極とを電気的に分離(絶縁)する方法として、半導体基体中にあらかじめ絶縁膜を形成しておき、その絶縁膜に囲われた領域内において、半導体基体に貫通電極を形成する技術が提案されている(例えば、特許文献2、特許文献3参照)。
特開2010-245506号公報 特開2008-251964号公報 特開2011-171567号公報
 上述の貫通電極による接続が行われる半導体装置では、貫通電極の接続性や絶縁性及びバリア性等の信頼性の向上による、半導体装置及び電子機器の信頼性の向上が求められている。
 本技術においては、信頼性の高い半導体装置及び電子機器を提供するものである。
 本技術の半導体装置は、第1半導体基体と、第1半導体基体の第1面側に貼り合わされた第2半導体基体とを備える。そして、第1半導体基体の第2面側から第2半導体基体上の配線層まで貫通して形成されている貫通電極と、第1半導体基体内に形成されている貫通電極の周囲を囲む絶縁層を備える。
 また、本技術の電子機器は、上記半導体装置と、この半導体装置の出力信号を処理する信号処理回路とを備える。
 また、本技術の半導体装置の製造方法は、第1半導体基体の第1面に、貫通電極を形成する位置の周囲を囲む絶縁層を形成する工程と、第1半導体基体の第1面側に、第2半導体基体を貼り合わせる工程とを有する。さらに、絶縁層に囲まれた範囲内において、第1半導体基体の第2面側から、第2半導体基体上の配線層までを貫通する開口部を形成する工程と、開口部内に貫通電極を形成する工程とを有する。
 上述の半導体装置及び半導体装置の製造方法によれば、第1半導体基体内に貫通電極の周囲を囲む絶縁層が形成されている。このため、貫通電極が形成される開口部の内面に絶縁層を形成することなく、貫通電極と第1半導体基体との絶縁性を確保することができる。さらに、貫通電極の側面を絶縁層で覆わないため、配線層での接続信頼性を確保することができる。従って、貫通電極を備える半導体装置の信頼性が向上する。また、この半導体装置を有する電子機器の信頼性が向上する。
 本技術によれば、信頼性の高い半導体装置及び電子機器を提供することができる。
第1実施形態の半導体装置の構成を示す断面図である。 第1実施形態の半導体装置の貫通電極周辺の平面配置図である。 第1実施形態の半導体装置の構成を示す断面図である。 A,Bは第1実施形態の半導体装置の製造工程図である。 C,Dは第1実施形態の半導体装置の製造工程図である。 E,Fは第1実施形態の半導体装置の製造工程図である。 G,Hは第1実施形態の半導体装置の製造工程図である。 A,Bは第1実施形態の半導体装置の製造工程図である。 第2実施形態の半導体装置の構成を示す断面図である。 第2実施形態の半導体装置の第1電極パッドの構成を示す断面図である。 第1電極パッド16の開口部の傾斜角と接触面積との関係を示すグラフである。 図11に示す結果を求めるための第1電極パッドの構成を示す図である。 F,Gは第2実施形態の半導体装置の製造工程図である。 H,Iは第2実施形態の半導体装置の製造工程図である。 第3実施形態の半導体装置の構成を示す断面図である。 E,Fは第3実施形態の半導体装置の製造工程図である。 G,Hは第3実施形態の半導体装置の製造工程図である。 I,Jは第3実施形態の半導体装置の製造工程図である。 第4実施形態の半導体装置の構成を示す断面図である。 第4実施形態の半導体装置の変形例の構成を示す断面図である。 第4実施形態の半導体装置の他の変形例の構成を示す断面図である。 A,Bは第4実施形態の半導体装置の製造工程図である。 Cは第4実施形態の半導体装置の製造工程図である。 D,Eは第4実施形態の半導体装置の製造工程図である。 Fは第4実施形態の半導体装置の製造工程図である。 電子機器の構成を示す図である。
 以下、本技術を実施するための最良の形態の例を説明するが、本技術は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.半導体装置の第1実施形態
2.半導体装置の製造方法の第1実施形態
4.半導体装置の第2実施形態
5.半導体装置の製造方法の第2実施形態
6.半導体装置の第3実施形態
7.半導体装置の製造方法の第3実施形態
8.半導体装置の第4実施形態
9.半導体装置の製造方法の第4実施形態
10.電子機器
〈1.半導体装置の第1実施形態〉
 貫通電極を有する半導体装置の第1実施形態について説明する。
 図1に、本実施形態の貫通電極を備える半導体装置の概略構成を示す。図1は、貫通電極が形成されている領域付近の半導体装置の断面図である。なお、図1では、貫通電極の形成領域付近の概略構成のみを示し、半導体基体の各構成や貫通電極周囲に設けられる各構成の図示を省略している。
 図1に示すように、半導体装置は、第1チップ10と第2チップ20とが貼り合わされた構成である。
 第1チップ10は、第1半導体基体11と、第1半導体基体11の一方の面(第1面)上に形成された配線層12とを備える。また、第2チップ20は、第2半導体基体21と、第2半導体基体21上に形成された配線層22とを備える。そして、第1チップ10と第2チップ20とが、互いの配線層12,22を対向させて貼り合わされている。配線層12,22の表面には、接合面25が形成される。
 第1半導体基体11の配線層12は、配線や電極等を構成する複数層の導体層と、導体層間を絶縁する層間絶縁層とからなる多層配線層を構成している。図1では、この複数の導体層のうち、1つの導体層からなる第1電極パッド16を、層間絶縁層18中に示している。
 また、第1半導体基体11の他方の面(第2面)上に、絶縁層からなる保護層13,14を備える。保護層13は、後述する貫通電極17が設けられる位置を除き、第1半導体基体11の第2面上の全面を覆って設けられている。保護層14は、貫通電極17の露出面及び保護層13上を覆って全面に設けられている。
 第2半導体基体21の配線層22は、配線や電極等を構成する複数層の導体層と、導体層間を絶縁する層間絶縁層とからなる多層配線層を構成している。図1では、この複数の導体層のうち、1つの導体層からなる第2電極パッド23を、層間絶縁層24中に示している。第1電極パッド16及び第2電極パッド23には、それぞれ図示しない配線等が接続され、半導体装置内の各種回路素子等に接続されている。
 図1に示す半導体装置は、第1半導体基体11の第2面から、配線層12、接合面25、及び、配線層22の第2電極パッド23までを貫通する、貫通電極17を備える。貫通電極17は、保護層13、第1半導体基体11、及び、配線層12,22を貫通する開口部内に形成されている。
 そして、貫通電極17の側面が、第1電極パッド16の開口部の内側面に接続されている。そして、貫通電極17の底面が、第2電極パッド23の表面に接続されている。このように、貫通電極17は、配線層12の第1電極パッド16と、第2電極パッド23とを電気的に接続する。
 また、貫通電極17と接触する第1半導体基体11の界面には、絶縁層15が設けられている。貫通電極17は、第1半導体基体11の第2面上の保護層13を貫通して、端面が保護層13の表面に露出されている。そして、この貫通電極17の上面と保護層13とを覆って保護層14が設けられている。
 ここで、絶縁層15は、第1半導体基体11内に形成されている。つまり、貫通電極17を形成するために、第1半導体基体11に設けられる開口部の内面には絶縁層が形成されていない。あらかじめ絶縁層15が形成された範囲内に、貫通電極17用の開口部を設けることにより、開口部内に絶縁層を形成することなく、貫通電極17と第1半導体基体11との絶縁性を確保することができる。
 同様に、貫通電極17を形成するために、配線層12,22に設けられる開口部の内面に絶縁層が形成されていない。開口部内に絶縁層を形成しなくても、配線層12,22を構成する層間絶縁層18,24により、貫通電極17と、配線層12,22に設けられた配線等との絶縁性を確保することができる。さらに、配線層12,22では、貫通電極17用の開口部内に絶縁層を備えないことにより、配線層12,22中の任意の配線及び電極パッド等の導体層と、貫通電極17の側面及び底面とが接続可能な構成となる。
 図2に、第1半導体基体11の第2面側から見た、貫通電極17、絶縁層15及び第1電極パッド16の平面配置を示す。
 貫通電極17の周囲を囲んで、絶縁層15が形成されている。図1及び図2に示すように、第1半導体基体11内では、絶縁層15で貫通電極17の全体を囲むことにより、貫通電極17と第1半導体基体11との導通が遮断される。
 また、図2に示すように、第1電極パッド16は、配線層12において貫通電極17よりも広い領域に形成されている。そして、図1に示すように、貫通電極17が設けられる中心部に開口が形成されている。なお、図2では、貫通電極17と第1電極パッド16との間に絶縁層15が配置されているが、第1電極パッド16は絶縁層15の下方まで延在して貫通電極17と接続されている。
 第1半導体基体11及び第2半導体基体21としては、例えば、シリコン基板等の半導体基体、化合物半導体及びその他の一般的な半導体装置に適用される半導体基体を用いることができる。また、貫通電極17、第1電極パッド16、及び、第2電極パッド23も一般的な半導体装置に適用される導体層から構成される。例えば、貫通電極17及び第1電極パッド16はCuからなり、第2電極パッド23はAlからなる。層間絶縁層18,24及び保護層13,14は、例えば、酸化膜(SiO)や窒化膜(SiN)等の絶縁材料から構成される。
 第1半導体基体11中に形成される絶縁層15の幅は、50nm~1000nmの範囲が好ましい。50nm以下であると、貫通電極17と第1半導体基体11との間の絶縁性の確保が難しい。また、1000nm以上であると絶縁層15の埋め込みにかかる時間が長くなり、生産性が低下する。さらに、絶縁層15内にスリットが発生し、特に第1半導体基体11の薄膜化工程で使用されるフッ硝酸等の薬液により、絶縁層15が全てエッチングされる危険性がある。
 また、絶縁層15は、窒化膜(SiN)や酸化膜(SiO)、SiNとポリシリコンとの組み合わせ等、ドライエッチングで形成された幅50nm~1000nmの溝に埋め込みが可能な材料であればよい。
 また、貫通電極17の幅と、絶縁層15及び第1電極パッド16の開口幅との関係を図3に示す。図3に示すように、第1半導体基体11に形成される絶縁層15の内側の長さをAとする。また、貫通電極17の開口部の幅をBとする。
 さらに、第1電極パッド16の開口幅をCとする。
 第1電極パッド16の開口幅Cは、貫通電極17の開口部Bと同等以下とすることが好ましい。第1電極パッド16の開口幅Cが貫通電極17の開口部Bよりも大きいと、貫通電極17の側面において第1電極パッド16との接触が困難になり、導通性の確保が難しくなる。
 また、第1電極パッド16の開口幅Cが貫通電極17の開口部Bよりも小さすぎると、貫通電極17の形成工程において、ドライエッチングにより開口部を形成する際に第2チップ20の第2電極パッド23までエッチングできなくなる可能性がある。このため、開口幅Cと開口部Bとの差は1μm以下とすることが好ましい。
 つまり、第1電極パッド16の開口幅Cと、貫通電極17の開口部Bとの関係は、(B-1μm)<C≦Bとなることが好ましい。
 さらに、絶縁層15の内側の長さAを、貫通電極17の開口部Bよりも大きくすることが好ましい。絶縁層15の内側の長さAが貫通電極17の開口幅Bよりも小さいと、貫通電極17の形成工程において、ドライエッチングにより開口部を形成する際に第2チップ20の第2電極パッド23までエッチングできなくなる可能性がある。
 また、絶縁層15の内側の長さAと貫通電極17の開口部Bとの差は0.5μmよりも小さくすることが好ましい。差を0.5μmよりも小さくすることにより、貫通電極17を形成工程において、開口部内に電解めっきを行う際に、シード層の段切れを防ぐことができ、貫通電極17のめっき性が向上する。
 つまり、貫通電極17の開口部Bと、絶縁層15の内側の長さAとの関係は、(B-0.5μm)<Aとなることが好ましい。
 上述の実施形態の半導体装置では、第1半導体基体11内の絶縁層15で囲まれた領域内に、貫通電極17が形成されている。そして、配線層12,22では、第1半導体基体11内で貫通電極17を囲む絶縁層15が設けられていない。つまり、配線層12,22では、貫通電極17は、配線層12,22を構成する層間絶縁層18,24と直接接する構成となる。また、貫通電極17は、配線層12,22において側面を層間絶縁層18,24以外の絶縁層に覆われていないため、貫通電極17の側面において配線層12,22に設けられた配線や電極等の導体層と直接に電気的な接続が可能となる。
 このように、上述の構成の貫通電極17は、半導体基体とは絶縁層を挟むことにより接触せず、配線層において層間絶縁層及び導体層と直接に接することができる。
 従来の貫通電極では、半導体基体の表面から配線層まで連続して貫通電極の周囲に絶縁層が形成される構成のため、配線層において貫通電極の側面と導体層とを直接接続することができない。このため、第1チップの電極を半導体基体の表面に引き出す貫通電極と、第2チップの電極を半導体基体の表面に引き出す貫通電極が設けられ、これら2本の貫通電極を半導体基体の表面で配線により接続する構成とする必要があった(上述の特許文献1参照)。
 これに対して、本例の貫通電極を有する半導体装置では、第1チップ10の第1電極パッド16と、第2チップ20の第2電極パッド23との接続を、1本の貫通電極17により行うことができる。このため、貫通電極を形成するための工程を短縮することができる。また、貫通電極の本数を削減できるため、貫通電極の占有面積の低減による設計自由度の向上が可能となる。さらに、貫通電極の本数の削減により、配線容量の増加を防ぐことができる。
 また、あらかじめ形成された絶縁膜の領域内において、半導体基体に貫通電極を形成する構成の従来の半導体装置では、貫通電極と半導体基体との界面にバリアメタルのみが形成された構成となる(上述の特許文献2及び特許文献3参照)。この構成の半導体装置では、貫通電極と半導体基体との界面に絶縁層が形成されていないため、貫通電極がバリアメタルを介して半導体基体と接触する構成となる。この構成では、径と深さのアスペクト比が高い貫通電極を形成した場合に、バリアメタルの厚みにばらつきが発生する。そして、この均一性の低いバリアメタルでは、貫通電極を埋め込み後のアニールやシンター工程で、バリアメタルが薄い部分において、貫通電極と半導体基体との反応が起こる。例えば、アニールやシンター工程において、400℃以上の熱履歴を加えると、半導体基体を構成するSiと、貫通電極を構成するCuとがシリサイド化反応を発生する。
 これに対して、本例の貫通電極を有する半導体装置では、貫通電極17が形成される第1半導体基体11では、貫通電極17の側面に絶縁層15が形成されている。このため、貫通電極17と第1半導体基体11とのシリサイド化反応等の反応を抑制することができる。また、配線層12,22では、貫通電極17と層間絶縁層とが接するため、シリサイド化反応は発生しない。このため、アニールやシンター工程において、400℃以上の熱履歴を加えた場合にも、貫通電極17のシリサイド化反応等の配線の信頼性を低下させる反応を抑制することができる。このため、熱処理に対する貫通電極17の信頼性の向上と、シンター工程によるトランジスタの特性向上とを両立することが可能となる。
 なお、貫通電極17をCu等の材料で構成する場合には、絶縁層15及び層間絶縁層18,24への拡散を防ぐために、貫通電極17の側面及び底面に図示しないバリアメタル層が形成される。バリアメタル層が形成されている場合にも、上述のように、バリアメタル層を介して第1電極パッド16及び第2電極パッド23と電気的に接続される構成となる。
 また、上述の実施形態では、貫通電極や絶縁層の平面配置での形状を円形としているが、この形状に限らず矩形状やその他の多角形状等の任意の形状としてよい。さらに、第1電極パッドの形状を、貫通電極と同形状の開口が設けられた形状としているが、この第1電極パッドの形状は、貫通電極との接続が可能な形状であれば特に問わない。例えば、貫通電極の側面との接続部から1方向のみに延びる配線形状としてもよい。貫通電極と同形状の開口が設けられた形状では、貫通電極の全側面で第1電極パッドと接触する構成とすることができ、貫通電極と第1電極パッドとの接続信頼性が向上する。
〈2.半導体装置の製造方法の第1実施形態〉
 次に、第1実施形態の半導体装置の製造方法の一例を説明する。なお、以下の製造方法の説明では、上述の図1に示す半導体装置の貫通電極とその周辺の構成の製造方法のみを示し、その他の素子や配線等の構成の製造方法は説明を省略する。半導体基体、配線層、他の各種トランジスタ、各種素子等については、従来公知の方法により作製することができる。また、上述の図1に示す本実施形態の半導体装置の構成と同様の構成には、同じ符号を付して各構成の詳細な説明は省略する。
 まず、図4Aに示すように、第1半導体基体11の第1面上にハードマスク層31を形成し、第1半導体基体11の第1面側の表面に絶縁層15を形成する。
 第1半導体基体11の第1面上に、SiOやSiN等によるハードマスク層31を形成する。そして、ハードマスク層31上に図示しないレジストを形成した後、フォトリソグラフィによりレジストをパターニングする。レジストは、第1半導体基体11に形成する絶縁層15の形状を開口するパターンに形成する。さらに、パターニングしたレジストをマスクに用いてハードマスク層31のドライエッチングを行う。ドライエッチング後に、レジストの除去及び洗浄を行う。そして、ハードマスク層31をマスクとして、第1半導体基体11の表面をドライエッチングにより開口し、開口部(溝)を形成する。その後、形成した開口部に、窒化膜(SiN)や酸化膜(SiO)、SiNとポリシリコンとの組み合わせ等を埋め込み、絶縁層15を形成する。
 絶縁層15を形成するための第1半導体基体11の開口部は、例えば、幅を50nm~1000nmの範囲で形成する。50nm以下であると貫通電極17と第1半導体基体11との絶縁性の確保が難しい。また、1000nm以上であると絶縁層15の埋め込みに長時間必要となる。さらに、絶縁層15内にスリットが発生し、特に第1半導体基体11の薄膜化工程で使用される薬液、例えばフッ硝酸などで絶縁層15が全てエッチングされる危険性がある。
 また、絶縁層15を形成する深さ(開口部の深さ)は、第1半導体基体11の薄膜化後の厚さ以上とする。薄膜化後の厚さ以上に絶縁層15を形成することにより、第1半導体基体11の深さ方向の全域に絶縁層15が形成される。
 絶縁層15は、ドライエッチングで形成された幅50nm~1000nmの開口部に埋め込みが可能な材料であればよい。また、絶縁層15の埋め込み方法としてはP-CVDやスピンコーティング等の加工済みの開口に埋め込み可能な方法を用いればよい。
 次に、図4Bに示すように、第1半導体基体11上に配線層12を形成する。また、配線層12を形成する前に、第1半導体基体11の第1面に、図示しないトランジスタ等の回路を形成する。
 配線層12には、複数層の導体層と層間絶縁層とからなる多層配線層を形成する。ここでは、少なくとも1層の導体層からなる第1電極パッド16と、少なくとも2層以上からなる層間絶縁層18を形成する。
 第1電極パッド16は、貫通電極17と同形状の開口を有して形成されている。この第1電極パッド16の開口幅は、例えば、上述の第1電極パッド16の開口幅Cと貫通電極17の開口部Bとの関係、(B-1μm)<C≦Bを満たすように形成する。
 さらに、図4Bに示すように、配線層12の表面をCMP法等を用いて平坦化して接合面25を形成する。CMPは、一般的に半導体装置製造に使用される条件で行う。例えば、一般的に半導体装置製造に使用される、柔らかい材料と硬い材料とが積層されているCMPパッドや、スラリー(薬液)等を用いる。
 次に、あらかじめ第2チップ20となる所定の回路が形成された第2半導体基体21を準備する。第2半導体基体21は、貫通電極17の形成位置に対応する第2電極パッド23を配線層22に備えている。また、配線層22の表面には、第1半導体基体11の配線層12と同様に平坦化された接合面25が形成されている。
 そして、図5Cに示すように、第1半導体基体11を反転させて、第1半導体基体11の配線層12の表面を、第2半導体基体21の配線層22の表面と対向させる。そして、ピンで押下して第1半導体基体11と第2半導体基体21の配線層12,22を接触させ、貼り合わせを行う。
 貼り合わせは、CMP直後に前処理なしで第1半導体基体11と第2半導体基体21とを向かい合わせて、第1半導体基体11と第2半導体基体21の中心を押下することにより実施する。
 この貼り合わせ工程では、例えば、第1半導体基体11及び第2半導体基体21への接触面が円となる形状をしているピンを用いる。また、押下する荷重は、例えば12Nとする。
 次に、図5Dに示すように、第1半導体基体11の第2面側を研磨して、第1半導体基体11を薄膜化する。第1半導体基体11は、第2面側から絶縁層15が露出する、所定の厚さまで研磨する。
 さらに、薄膜化後の第1半導体基体11の第2面上に、SiNやSiO等の成膜を行い保護層13を形成する。
 次に、図6Eに示すように、第1半導体基体11の絶縁層15に囲まれた部分を除去し、あらかじめ形成した絶縁層15の内面を完全に露出する。この工程により、第1半導体基体11の絶縁層15に囲まれた部分に、開口部32を形成する。
 開口部32の形成は、上述の絶縁層15を埋め込むための開口部(溝)を形成する工程と同様に行うことができる。例えば、図8Aに示すように、保護層13上にフォトリソグラフィによるレジストパターンを形成した後、このレジストパターンを用いて保護層13のハードマスクパターンを形成し、第1半導体基体11のドライエッチングを行う。
 ただし、上述の図3に示すように、貫通電極17の開口部Bと、第1半導体基体11に形成される絶縁層15の内側の長さAとの関係は、(B-0.5μm)<Aとなることが好ましい。このため、絶縁層15の内側の幅よりも、保護層13に形成される開口部の幅が小さくなる。この結果、図8Aに示すように、等方性の高いドライエッチングでは、絶縁層15で囲まれた領域内の内面に、第1半導体基体11Aが残存する。絶縁層15の内側に第1半導体基体11Aが残存すると、貫通電極17とシリサイド化反応を起こし、貫通電極17の信頼性が低下する。このため、絶縁層15の内側に第1半導体基体11は全て除去することが好ましい。
 例えば、図8Aに示すエッチング後に、図8Bに示すように等方性エッチングで絶縁層15の内側に第1半導体基体11Aを除去し、絶縁層15の内側壁が全て露出するようにドライエッチングを行う。このように、絶縁層15の内側と貫通電極17との間に第1半導体基体11が残存しないように開口部32を形成する。
 次に、図6Fに示すように、開口部32の下方の第1チップ10の配線層12から、第2チップ20の配線層22に設けられた第2電極パッド23までを、ドライエッチングにより開口する。この工程により、開口部33を形成する。第1電極パッド16の開口内に、開口部33を形成する。図6Fでは、第1電極パッド16の開口幅と開口部33の幅とが同じ形状となっているが、上述の(B-1μm)<C≦Bの関係から、第1電極パッド16上の開口部33の幅が、第1電極パッド16の開口幅よりも大きく形成されていてもよい。この場合にも、第1電極パッド16以下の開口部33は、第1電極パッド16がマスクとなるため、第1電極パッド16の開口幅で形成される。
 次に、図7Gに示すように、開口部32,33内に貫通電極17となる導体層を埋め込む。例えば、開口部32,33内にタンタル(Ta)及び銅の積層膜、Ti/Cu、TiW/Cu等から構成されるシードメタル層を、10nm~35nm程度の厚さで形成する。そして、電解Cuめっきにより開口部32,33を埋め込み、貫通電極17を形成する。貫通電極17の形成により、第1チップ10側の第1電極パッド16と、第2チップ20側の第2電極パッド23とを電気的に接続する。
 なお、開口部33は、上述の(B-1μm)<C≦Bの関係から、第1電極パッド16上の開口部33の幅が、第1電極パッド16の開口幅よりも大きく形成されることが好ましい。このため、貫通電極17は、第1電極パッド16上における幅が、第1電極パッド16以下における幅よりも大きい形状に形成されることが好ましい。この形状とすることにより、貫通電極17と第1電極パッド16との接続信頼性、及び、貫通電極17を介した第1電極パッド16と第2電極パッド23との接続信頼性を確保することができる。
 その後、図7Hに示すように、第1半導体基体11の第2面側上に形成されたバリアメタル層や導体層を除去した後、貫通電極17の上面と保護層13とを覆って、保護層14を形成する。
 以上の工程により、本実施形態の半導体装置を製造することができる。
 なお、上述の工程の後、ウエハ状態の基体をダイシングすることにより、半導体装置を個片化してもよい。また、上述の製造方法の説明では、第1半導体基体11及び第2半導体基体21は、共に個片化前の状態(ウエハ状態)として貼り合わせているが、第1半導体基体11を個片化した第1チップ10をウエハ状態の第2半導体基体21上に貼り合わせてもよいし、それぞれ個片化後に貼り合わせてもよい。
 上述の実施形態の半導体装置は、2つの半導体部材を貼り合わせて配線接合を行う任意の電子機器、例えば、固体撮像装置、半導体メモリ、半導体ロジックデバイス(IC等)に適用可能である。
〈4.半導体装置の第2実施形態〉
 貫通電極を有する半導体装置の第2実施形態について説明する。
 図9に、本実施形態の貫通電極を備える半導体装置の概略構成を示す。図9は、貫通電極が形成されている領域付近の半導体装置の断面図である。なお、図9では、貫通電極の形成領域付近の概略構成のみを示し、半導体基体の各構成や貫通電極周囲に設けられる各構成の図示を省略している。また、本実施形態において、上述の第1実施形態の半導体装置と同様の構成には、同じ符号を付して詳細な説明を省略する。
 図9に示すように、半導体装置は、第1チップ10と第2チップ20とが貼り合わされた構成である。そして、第1半導体基体11の第2面から、第2電極パッド23までを貫通する、貫通電極17を備える。貫通電極17は、保護層13、第1半導体基体11、及び、配線層12,22を貫通する開口部内に形成されている。
 なお、第1チップ10は、第1電極パッド16の構成を除き、上述の第1実施形態と同様の構成である。また、第2チップ20は、上述の第1実施形態と同様の構成である。
 図9に示す半導体装置では、第1電極パッド16の開口部の内側面は、第1チップの第2面側の開口が大きく、第1面側の開口が小さく形成されている。具体的には、第1電極パッド16と貫通電極17とが接する面において、第1面側の開口が小さくなるように、第1電極パッド16がテーパ状に設けられている。
 また、第1電極パッド16の開口部の形状は、図9に示すように、連続して小さくなる形状でもよく、図10に示すように、第1チップの第2面側から開口部途中までが同じ大きさで、開口部の途中から第1面側までにテーパが設けられている構成としてもよい。なお、図10では、図9に示す半導体装置の構成から、第1電極パッド16の周囲の構成のみを拡大して示している。
 第1電極パッド16の開口部の内側面に、傾斜を設けることにより、貫通電極17と第1電極パッド16との接触面積が大きくなる。第1チップ10の第1面側で、開口部が小さくなることにより、開口位置ずれによる接触不良等が起こりにくい。このように、接触面積の増加により、電極間の接触抵抗の低減、及び、半導体装置の信頼性の向上が可能となる。
 また、貫通電極17は、第1電極パッド16の第2面側における断面積の大きさが、第1電極パッド16の第1面側の開口部よりも、大きいことが好ましい。貫通電極17の断面積を第1電極パッド16の第1面側の開口部よりも大きくすることにより、開口位置がずれた場合にも、貫通電極17と第1電極パッド16との接触を確保しやすい。このため、貫通電極17と第1電極パッド16との接触不良等を抑制することができる。
 また、貫通電極17は、第1電極パッド16の第2面側における断面積の大きさが、第1電極パッド16の第2面側の開口部よりも、大きいことが好ましい。この場合には、貫通電極17と第1電極パッド16との接触を、さらに確保しやすくなる。このため、貫通電極17と第1電極パッド16との接触不良等を、さらに起こりにくくすることができる。
 図11に、第1電極パッド16の開口部の内側面の傾斜角θと接触面積、及び、接触角θと接触面積の増加量との関係を示す。接触面積の増加量は、第1電極パッド16の内側面を垂直にした構成(第1実施形態)との比較であり、内側面が垂直のときの接触面積から、増加量を倍数で示している。また、図11に示す関係は、図12に示す構成における数値である。図12に示す構成は、貫通電極17を開口径(直径)が3μmの円形とし、第1電極パッド16の厚さを0.2μmとしている。
 図11に示すように、第1電極パッド16の開口部の傾斜角度が小さくなるほど、貫通電極17と第1電極パッド16との接触面積が増加している。例えば、第1電極パッド16の開口部の内側面の傾斜角としては、39°以下とすることにより、第1実施形態の構成の1.5倍以上の接触面積となる。また、傾斜角を30°以下とすることにより、第1実施形態の構成の2倍以上の接触面積となる。
 また、第1電極パッド16の内側面に傾斜を設けることで、第1電極パッド16の内側面を垂直にした構成(第1実施形態)よりも、バリアメタル層の被覆性が向上する。このため、形成するバリアメタル層の厚さを低減することができ、貫通電極17と第1電極パッド16との接触抵抗を減少させることができる。
〈5.半導体装置の製造方法の第2実施形態〉
 次に、第2実施形態の半導体装置の製造方法の一例を説明する。なお、以下の製造方法の説明では、上述の図9に示す半導体装置の貫通電極とその周辺の構成の製造方法のみを示し、その他の素子や配線等の構成の製造方法は説明を省略する。半導体基体、配線層、他の各種トランジスタ、各種素子等については、従来公知の方法により作製することができる。また、上述の第1実施形態の半導体装置の構成及び製造方法において説明した構成、操作等は詳細な説明を省略する。
 まず、上述の第1実施形態と同様の方法により、図6Eに示す、第1半導体基体11の絶縁層15に囲まれた部分を除去し、第1半導体基体11の絶縁層15に囲まれた部分に、開口部32を形成する工程までを行う。
 次に、図13Fに示すように、層間絶縁層18のうち、第1電極パッド16の下層(第1半導体基体11側)に設けられた部分のみを、ドライエッチングにより開口し、開口部33Aを形成する。このときの開口幅は、第1電極パッド16の開口部よりも大きな幅とすることが好ましい。さらに、開口部33Aの底部の周縁から、第1電極パッド16が露出することが必要である。特に、開口部33Aの底部の周縁全体に、第1電極パッド16の内側が露出する構成とすることが好ましい。
 次に、図13Gに示すように、開口部33Aから露出する第1電極パッド16と、第1電極パッド16の内側の層間絶縁層18を、ドライエッチングにより除去する。これにより、第1電極パッド16の上端(接合面側)までの深さに開口部33Bを形成する。このとき、ドライエッチングの条件を調整することにより、第1電極パッド16と層間絶縁層18とを同時に除去するとともに、第1電極パッド16の内側面を傾斜面に加工する。
 層間絶縁層18を形成する一般的な酸化膜等の絶縁層のドライエッチング条件では、第1電極パッド16も層間絶縁層18と同様にエッチングされてしまう。このため、上述の第1実施形態のように、第1電極パッド16の開口部の内側面が垂直形状になる。
 従って、本実施形態では、第1電極パッド16の開口部の内側面を傾斜面に加工するために、図13Gに示す第1電極パッド16と層間絶縁層18とを除去する工程では、Arを用いない加工条件を適用する。
 ドライエッチングにおいてArを用いないことにより、第1電極パッド16を構成するCu等の金属に対するスパッタ効果が弱まり、第1電極パッド16と層間絶縁層18との選択比が増加する。このため、第1電極パッド16の開口部の内側面が傾斜するようドライエッチングが進行する。ここで、傾斜角度等の傾斜面の形状のコントロールは、一般的にはドライエッチングに用いる酸素の比分量で行うことができる。
 このように、条件の変更や、種々の条件を組み合わせてドライエッチングを行うことにより、上述の図10に示す構成のように、第1電極パッド16の一部分のみに傾斜面を設けるように加工することもできる。そして、ドライエッチングの条件を適宜変更することにより、第1電極パッド16の開口部の内側面を任意の傾斜面に加工することができる。
 次に、図14Hに示すように、第1電極パッド16の上端(接合面側)から、第2チップ20の配線層22に設けられた第2電極パッド23までを、ドライエッチングにより開口する。このドライエッチングは、第1電極パッド16の開口部の傾斜形状に影響を与えない条件で行う。これにより、第1電極パッド16の上端(接合面側)の開口幅で、第1電極パッド16から第2電極パッド23まで、開口部33を形成することができる。
 次に、図14Iに示すように、開口部内に貫通電極17を形成した後、保護層14を形成する。この工程は、上述の第1実施形態の半導体装置の製造方法における、図7G及び図7Hに示す工程と同様の方法により行うことができる。
 上述の製造方法では、第1電極パッド16の開口部の内側面を傾斜面に加工する工程を有している。この工程により、第1電極パッド16の開口部の内側面の面積を増加させることができる。このように、第1電極パッド16の開口部を傾斜面を有する形状とすることにより、図13Fに示す工程、図13Gに示す工程、及び、図14Hに示す工程図において、それぞれリソグラフィにおけるレジストパターンの位置ずれが発生した場合にも、接続信頼性が向上する。このため、第1電極パッド16と貫通電極17との位置ずれに対しても、接続面積の低減を抑制することができ、接触抵抗の低減が可能となる。
 さらに、接続面積が増加することで、第1電極パッド16の内側面を垂直にした構成(第1実施形態)よりも、第1電極パッド16と貫通電極17との界面となる、バリアメタル層の面積が大きくなる。このため、第1電極パッド16と貫通電極17と密着性が向上し、接続信頼性が向上する。
 また、バリアメタル層の面積が大きくなることで、バリアメタル層の被覆性が向上する。このため、形成するバリアメタル層の厚さを低減することができ、貫通電極17と第1電極パッド16との接触抵抗を低減することができる。
 上述の本実施形態の半導体装置によれば、第1電極パッド16の開口部の内側面に、傾斜面を設けることにより、電極間の接触抵抗の低減、及び、半導体装置の信頼性の向上が可能となる。従って、高性能、高機能、高信頼性を兼ね備えた半導体装置を提供することができる。
〈6.半導体装置の第3実施形態〉
 貫通電極を有する半導体装置の第3実施形態について説明する。
 図15に、本実施形態の貫通電極を備える半導体装置の概略構成を示す。図15は、貫通電極が形成されている領域付近の半導体装置の断面図である。なお、図15では、貫通電極の形成領域付近の概略構成のみを示し、半導体基体の各構成や貫通電極周囲に設けられる各構成の図示を省略している。また、本実施形態において、上述の第1実施形態の半導体装置と同様の構成には、同じ符号を付して詳細な説明を省略する。
 図15に示すように、半導体装置は、第1チップ10と第2チップ20とが貼り合わされた構成である。そして、第1半導体基体11の第2面から、第2電極パッド23までを貫通する、貫通電極17を備える。貫通電極17は、保護層13、第1半導体基体11、及び、配線層12,22を貫通する開口部内に形成されている。
 なお、第1チップ10は、絶縁層15の構成を除き、上述の第1実施形態と同様の構成である。また、第2チップ20は、上述の第1実施形態と同様の構成である。
 図15に示す半導体装置では、絶縁層15の材料が、配線層12を構成する層間絶縁層18と同じ材料から構成されている。例えば、シリコン酸化膜、シリコン窒化膜の単層又は積層膜から構成される。
 第1半導体基体11の第1面側の開口径と、第1電極パッド16の開口径はほぼ同じである。また、第1電極パッド16の開口径は、第2電極パッド23に接する貫通電極17の径よりも大きい。
 このように、第1電極パッド16の開口径を大きくすることにより、貫通電極17と第1電極パッド16との接触面積を増加させることができる。このため、素子を微細化した場合にも、貫通電極17と第1電極パッド16との接続信頼性を向上することができる。
〈7.半導体装置の製造方法の第3実施形態〉
 次に、第3実施形態の半導体装置の製造方法の一例を説明する。なお、以下の製造方法の説明では、上述の図9に示す半導体装置の貫通電極とその周辺の構成の製造方法のみを示し、その他の素子や配線等の構成の製造方法は説明を省略する。半導体基体、配線層、他の各種トランジスタ、各種素子等については、従来公知の方法により作製することができる。また、上述の第1実施形態の半導体装置の構成及び製造方法において説明した構成、操作等は詳細な説明を省略する。
 まず、上述の第1実施形態と同様の方法により、図5Dに示す、第1半導体基体11の第2面側を研磨して、第1半導体基体11を薄膜化する工程までを行う。このとき、絶縁層15の内径が、最終的に貫通電極17が形成される開口径よりも、小さくなる厚さで絶縁層15を形成する。
 次に、図16Eに示すように、第1半導体基体11の第2面上にレジスト34を形成し、貫通電極17を形成するための孔を、フォトリソグラフィによりパターニングする。このとき、レジスト34には、絶縁層15の内径よりも大きな径の開口部を形成する。
 次に、図16Fに示すように、レジスト34の開口部から保護層13をドライエッチングにより開口する。これにより、第1半導体基体11と絶縁層15の一部とを同一面上に露出する。
 次に、図17Gに示すように、例えば、CF系ガスを用いて第1半導体基体11の選択エッチングを行い、レジスト34の開口から露出する第1半導体基体11を完全に除去する。これにより、開口部32を形成する。
 次に、図17Hに示すように、レジスト34の開口から露出する絶縁層15と、層間絶縁層18とを同時にエッチングし、開口部33Aを形成する。これにより、図17Gにおいて、絶縁層15の内径と、レジスト34及び保護層13の内径とに段差を有する開口部32の形状を、絶縁層15と層間絶縁層18との開口部33Aに転写する。さらに、エッチングを続けることにより、図18Iに示すように、第2電極パッド23まで開口する開口部33を形成する。
 次に、図18Jに示すように、開口部内に貫通電極17を形成した後、保護層14を形成する。この工程は、上述の第1実施形態の半導体装置の製造方法における、図7G及び図7Hに示す工程と同様の方法により行うことができる。
 以上の工程では、レジスト34を1回のリソグラフィによりパターニングすることで、第2電極パッド23まで開口する開口部33を、制御性よく形成することができる。つまり、レジスト34の開口を絶縁層15の内径よりも大きく形成することにより、レジスト34の開口から、絶縁層15内の第1半導体基体11の全面を露出することができる。このため、絶縁層15内への第1半導体基体11の残存を抑制することができる。従って、絶縁層15内での貫通電極17のシリサイド化を防ぐことができ、貫通電極17の信頼性が向上する。
 また、レジスト34の開口部から露出する絶縁層15と、層間絶縁層18とを同時にエッチングすることにより、第1電極パッド16の位置では、レジスト34や第1半導体基体11の開口部と同程度の径の開口が形成される。このため、第1電極パッド16の開口部の内径を大きくすることができ、第1電極パッド16と貫通電極17との接触面積が大きくなり、第1電極パッド16と貫通電極17との接続信頼性が向上する。
 さらに、上述のエッチングにより、絶縁層15の内径とレジスト34及び保護層13の内径とに段差を有する開口部32の形状が、第2電極パッド23の直上の開口部33の形状に転写される。このため、貫通電極17の底面積を、第1半導体基体11における貫通電極17の断面積や、第1電極パッド16の位置における貫通電極17の断面積に比べて、縮小することができる。このため、素子の微細化により第2電極パッド23の面積が小さくなった場合にも、貫通電極17と第2電極パッド23との接続が容易となる。
〈8.半導体装置の第4実施形態〉
 貫通電極を有する半導体装置の第4実施形態について説明する。
 図19に、本実施形態の貫通電極を備える半導体装置の概略構成を示す。図19は、貫通電極が形成されている領域付近の半導体装置の断面図である。なお、図19では、貫通電極の形成領域付近の概略構成のみを示し、半導体基体の各構成や貫通電極周囲に設けられる各構成の図示を省略している。また、本実施形態において、上述の第1実施形態の半導体装置と同様の構成には、同じ符号を付して詳細な説明を省略する。
 図19に示すように、半導体装置は、第1チップ10と第2チップ20とが貼り合わされた構成である。そして、第1半導体基体11の第2面から、第2電極パッド23までを貫通する、貫通電極17を備える。貫通電極17は、保護層13、第1半導体基体11、及び、配線層12,22を貫通する開口部内に形成されている。
 なお、第1チップ10は、第1電極パッド16A及び電極保護層35の構成を除き、上述の第1実施形態と同様の構成であり、また、第2チップ20は、上述の第1実施形態と同様の構成である。
 図19に示す半導体装置では、第1電極パッド16Aがタングステン(W)又はポリシリコンなどで形成される。また、電極保護層35が絶縁層15と第1電極パッド16Aとの間に設けられている。
 具体的には、電極保護層35は、製造時のエッチング工程において、例えばタングステン又はポリシリコンなどで形成される第1電極パッド16Aをエッチングから保護する層である。また、電極保護層35は、例えば、酸化膜であり、SiOで形成される。
 ここで、第1電極パッド16がCuで形成される場合、開口部33形成時のエッチング工程において、露出した第1電極パッド16からエッチングによるCuの放出(コンタミネーション)が発生し、エッチングにおける加工速度を低下させていた。
 また、上述の加工速度の低下を改善するために、例えば、リソグラフィ及びエッチングを二回に分けて行い、Cuで形成された第1電極パッド16の露出時間を短くする方法が考えられる。具体的には、開口部33を形成する工程を、第1電極パッド16を露出させないようにリソグラフィ及びエッチングを行う工程と、第1電極パッド16を露出させるようにリソグラフィ及びエッチングを行う工程とに分けて行うことが考えられる。しかし、このような方法を用いた場合、工程数が増加することにより生産性が低下してしまう。
 本実施形態では、例えばタングステン又はポリシリコン等の導体で形成された第1電極パッド16Aを用いることにより、エッチング工程において、Cuコンタミネーションが発生しない。したがって、本実施形態によれば、Cuコンタミネーションによるエッチングの加工速度の低下を防止することができる。また、本実施形態では、絶縁層15と第1電極パッド16Aとの間に電極保護層35を設けることにより、開口部33形成時のエッチングにおいて、第1電極パッド16Aが配線層12と併せてエッチングされることを防止することができる。
 また、電極保護層35は、絶縁層15と第1電極パッド16Aとの間に設けられていればよく、電極保護層35は、絶縁層15及び第1電極パッド16Aと接していなくともよい。例えば、電極保護層35と絶縁層15との間に他の層が設けられていてもよく、また、電極保護層35と第1電極パッド16Aとの間に他の層が設けられていてもよい。
 なお、第1電極パッド16Aの形状は、上述した第1実施形態と同様に、例えば、貫通電極17と同形状の開口が設けられた形状であってもよい。また、第1電極パッド16Aの形状は、貫通電極17との接続が可能な形状であれば、上述の形状に限定されない。例えば、貫通電極17の側面との接続部から1方向のみに延びる配線形状としてもよい。
 また、電極保護層35は、第1電極パッド16Aに対応する形状を有し、第1電極パッド16Aを保護することができれば、いかなる形状であってもよい。
 第1電極パッド16Aは、例えば、タングステン又はポリシリコン等の導体で構成される。また、第1電極パッド16Aは、メタルゲート材料で構成することもできる。具体的には、第1電極パッド16Aは、チタン(Ti)系、又はタンタル(Ta)系の導体などで構成されてもよく、より具体的には、TiN又はTaNで構成されてもよい。
 電極保護層35は、例えば、SiOで構成される。また、電極保護層35は、ゲート酸化膜に用いられるHigh-k材料で構成することもできる。具体的には、電極保護層35は、ハフニウム(Hf)系材料などで構成されてもよく、より具体的には、HfO、HfSiO、又はHfSiONで構成されてもよい。
 なお、以下の〈9.半導体装置の製造方法の第4実施形態〉で詳述するが、電極保護層35及び第1電極パッド16Aは、配線層12を形成する工程において、他の酸化膜及び配線と併せて形成されることが好ましい。係る構成により、本実施形態では、工程数を増やすことなく、電極保護層35及び第1電極パッド16Aを形成することができる。
 そのため、電極保護層35は、配線層12に含まれるいずれかの酸化物と同一の材料で形成されることが好ましく、第1電極パッド16Aは、配線層12に含まれるいずれかの配線又は電極と同一の材料で形成されることが好ましい。
 さらに、本実施形態は上記例示に限定されない。例えば、本実施形態は、図20及び図21に示すような半導体装置の構成であってもよい。図20及び図21は、本実施形態の変形例に係る貫通電極が形成されている領域付近の半導体装置の断面図である。
 図20に示す半導体装置では、第1電極パッド16Aと、配線層12中の配線とを電気的に接続する配線電極36がさらに設けられる。なお、配線電極36を除いた他の構成は、図19を参照して説明した構成と同様の構成である。
 図20に示す変形例では、配線電極36は、例えば、Cuで形成される。このため、第1電極パッド16Aは、より電気抵抗の小さいCuで形成された配線電極36を介して配線層12中の配線(図示せず)と電気的に接続することができる。したがって、図20に示す変形例では、貫通電極17と、配線層12との接続信頼性をより向上させることができる。
 なお、図20に示す変形例において、Cuで形成された配線電極36は、第1電極パッド16Aの開口側の端部よりも、開口の中心方向に対して外側に形成され、開口部33を形成する工程において、開口部33に露出しないことは言うまでもない。
 また、図21に示す半導体装置では、タングステン又はポリシリコン等で形成された第1電極パッド16Bの開口幅は、絶縁層15の開口幅よりも小さくなるように形成され、該開口部中に貫通電極17Aが設けられる。なお、第1電極パッド16B及び貫通電極17Aを除いた他の構成は、図19を参照して説明した構成と同様の構成である。
 図21に示す変形例では、開口部33を形成する工程において、まず、第1電極パッド16Bを保護する電極保護層35上までの第1半導体基体11がエッチングされる。次に、電極保護層35から第2半導体基体21上の配線層22までをエッチングする際に、エッチング条件を適切に設定することにより、第1電極パッド16Bをマスクとして電極保護層35配線層12,22のエッチングが行われる。
 このような構成により、第1電極パッド16Bは、貫通電極17Aとの接触面積を増加させることができるため、貫通電極17Aと確実に電気的接続を行うことができる。したがって、図21に示す変形例では、貫通電極17Aと第1電極パッド16Bとの接続信頼性を向上させることができる。
〈9.半導体装置の製造方法の第4実施形態〉
 次に、第4実施形態の半導体装置の製造方法の一例を説明する。なお、以下の製造方法の説明では、上述の図19に示す半導体装置の貫通電極とその周辺の構成の製造方法のみを示し、その他の素子や配線等の構成の製造方法は説明を省略する。半導体基体、配線層、他の各種トランジスタ、各種素子等については、従来公知の方法により作製することができる。また、上述の第1実施形態の半導体装置の構成及び製造方法において説明した構成、操作等は詳細な説明を省略する。
 まず、上述の第1実施形態と同様の方法により、図4Aに示す、第1半導体基体11において、絶縁層15を形成する工程までを行う。
 次に、図22Aに示すように、第1半導体基体11の第1面側において、絶縁層15上に電極保護層35を形成する。電極保護層35は、電極保護層35の開口側の端部が絶縁層15の開口側の端部よりも開口の中心方向に向かって突出するように形成されることが好ましい。具体的には、電極保護層35は、例えば、リング形状で形成される。ここで、電極保護層35の内径は、絶縁層15の電極保護層35側の開口部の内径よりも小さいことが好ましい。
 このような構成によれば、本実施形態に係る電極保護層35は、後述する開口部33を形成する工程において、エッチングの際に、第1電極パッド16Aがエッチングされないよう、より確実に保護することができる。
 電極保護層35は、例えば、第1半導体基体11の第1面上に形成されるトランジスタ等を分離する素子分離工程において形成されてもよい。このような素子分離方法としては、例えば、STI(Shallow Trench Isolation)方式、LOCOS(Local Oxidation of Silicon)方式、又はEDI(Expanding phtodiode Design for Isolation)方式などの多様な方式が使用できる。また、電極保護層35は、配線層12中の層間絶縁層18を形成する工程において形成されてもよく、さらに、電極保護層35は、ゲート酸化膜を形成する工程において形成されてもよい。
 続いて、図22Bに示すように、第1半導体基体11の第1面側に配線層12を形成し、さらに平坦化した配線層12上に接合面25を形成する。配線層12は、複数層の導体層と層間絶縁層とからなる多層配線層であり、第1電極パッド16Aを含む。第1電極パッド16Aは、例えば、電極保護層35上に形成される。また、形成される第1電極パッド16Aの開口部の幅は、貫通電極17との接続のために、絶縁層15の開口部の幅よりも小さいことが好ましい。
 第1電極パッド16Aは、配線層12における配線を形成する工程において形成されてもよく、また、メタルゲート材料であるゲート電極を形成する工程において形成されてもよい。
 また、図23Cに示すように、第1半導体基体11及び第2半導体基体12を貼り合せて接合し、さらに第1半導体基体11を研磨し、薄膜化する。この工程は、上述の第1実施形態の半導体装置の製造方法における図5C及び図5Dと同様の方法により行うことができる。
 次に、図24Dに示すように、第1半導体基体11の絶縁層15に囲まれた部分をドライエッチングなどで除去し、絶縁層15の内部を露出させる。この工程により、第1半導体基体11の絶縁層15に囲まれた部分に、開口部32を形成する。ここで、SiOである電極保護層35は、第1半導体基体11との加工選択比が高いため、上述の開口部32を形成する工程では除去されず、電極保護層35の下層に位置する第1電極パッド16Aを保護することができる。
 続いて、図24Eに示すように、開口部32の下方の第1チップ10の配線層12から、第2チップ20の配線層22に設けられた第2電極パッド23までを、ドライエッチングなどにより開口し、開口部33を形成する。
 なお、図24Eでは、開口部33を形成する工程において、絶縁層15の開口側の端部よりも開口の中心方向に存在する第1電極パッド16Aについても併せて除去しているが、本実施形態は係る例示に限定されない。図21を参照して上述したように、ドライエッチング条件を適切に制御することにより、第1電極パッド16Aを除去せずにマスクとして用い、電極保護層35、及び配線層12,22等を除去することも可能である。
 さらに、図25Fに示すように、開口部32、33内に貫通電極17となる導体層を形成した後、保護層14を形成する。この工程は、上述の第1実施形態の半導体装置の製造方法における図7G及び図7Hと同様の方法により行うことができる。
 以上説明したように、上述の製造方法は、絶縁層15と第1電極パッド16Aとの間に電極保護層35を形成する工程を含む。この工程により、第1半導体基体11をエッチングする工程において、電極保護層35によって第1電極パッド16Aをエッチングから保護することができる。また、上述の製造方法では、電極保護層35の開口側の端部が絶縁層15の開口側の端部よりも開口の中心方向に向かって突出するように、電極保護層35が形成される。このような構成により、上述の製造方法は、確実に第1電極パッド16Aをエッチングから保護することができる。
 上述の本実施形態の半導体装置によれば、絶縁層15と第1電極パッド16Aとの間に電極保護層35を設けることにより、開口部33を形成する工程において、第1電極パッド16Aをエッチングから保護することができる。そのため、第1半導体基体11との加工選択比が低い導体であるタングステンやポリシリコンなどを、第1電極パッド16Aとして用いることができる。したがって、本実施形態の半導体装置は、Cuのコンタミネーションによるエッチング加工速度の低下、及び工程数の増加による生産性の低下を解消し、生産性を向上させることが可能である。
〈10.電子機器〉
[固体撮像装置]
 以下、上述の実施形態における電極接合の構成を固体撮像装置に適用した例を説明する。この固体撮像装置は、例えば、デジタルカメラやビデオカメラ等のカメラシステム、撮像機能を有する携帯電話、又は、撮像機能を備えた他の機器などの電子機器に適用することができる。以下、電子機器の一構成例として、カメラを例に挙げ説明する。
 図19に、静止画像又は動画を撮影することのできるビデオカメラの構成例を示す。
 この例のカメラ40は、固体撮像装置41と、固体撮像装置41の受光センサ部に入射光を導く光学系42と、固体撮像装置41及び光学系42間に設けられたシャッタ装置43と、固体撮像装置41を駆動する駆動回路44とを備える。さらに、カメラ40は、固体撮像装置41の出力信号を処理する信号処理回路45を備える。
 固体撮像装置41は、上述した本開示に係る実施形態の貫通電極を有する。その他の各部の構成及び機能は次の通りである。
 光学系(光学レンズ)42は、被写体からの像光(入射光)を固体撮像装置41の撮像面(不図示)上に結像させる。これにより、固体撮像装置41内に、一定期間、信号電荷が蓄積される。なお、光学系42は、複数の光学レンズを含む光学レンズ群で構成してもよい。また、シャッタ装置43は、入射光の固体撮像装置41への光照射期間及び遮光期間を制御する。
 駆動回路44は、固体撮像装置41及びシャッタ装置43に駆動信号を供給する。そして、駆動回路44は、供給した駆動信号により、固体撮像装置41の信号処理回路45への信号出力動作、及び、シャッタ装置43のシャッタ動作を制御する。すなわち、この例では、駆動回路44から供給される駆動信号(タイミング信号)により、固体撮像装置41から信号処理回路45への信号転送動作を行う。
 信号処理回路45は、固体撮像装置41から転送された信号に対して、各種の信号処理を施す。そして、各種信号処理が施された信号(映像信号)は、メモリなどの記憶媒体(不図示)に記憶される、又は、モニタ(不図示)に出力される。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本開示は以下のような構成も取ることができる。
(1)第1半導体基体と、前記第1半導体基体の第1面側に貼り合わされた第2半導体基体と、前記第1半導体基体の第2面側から前記第2半導体基体上の配線層まで貫通して形成されている貫通電極と、前記第1半導体基体内に形成されている前記貫通電極の周囲を囲む絶縁層と、を備える半導体装置。
(2)前記第1半導体基体の第1面上の配線層に第1導体層を有し、前記貫通電極の側面が前記第1導体層と接続されている(1)に記載の半導体装置。
(3)前記貫通電極の底部が前記第2半導体基体上の配線層に設けられた第2導体層に接続され、前記貫通電極を介して前記第1導体層と前記第2導体層とが接続されている(2)に記載の半導体装置。
(4)前記第1導体層は前記貫通電極の側面と接続する開口を有する(2)又は(3)に記載の半導体装置。
(5)前記貫通電極の開口部の幅よりも、前記第1導体層の開口幅が小さい(4)に記載の半導体装置。
(6)前記貫通電極の開口部の幅よりも、前記絶縁層の内側の長さが大きい(1)から(5)のいずれかに記載の半導体装置。
(7)前記第1導体層の開口は、前記第1半導体基体の第2面側の開口が大きく、前記第1半導体基体の第1面側の開口が小さく形成されている(4)又は(5)に記載の半導体装置。
(8)前記第1導体層の開口が傾斜面を有する形状に形成されている(7)に記載の半導体装置。
(9)前記第1導体層の開口部の内側面の傾斜角が40°以下である(8)に記載の半導体装置。
(10)前記絶縁層と前記第1導体層との間に、前記第1導体層を保護する電極保護層を有する(2)~(9)のいずれかに記載の半導体装置。
(11)前記電極保護層は、前記第1半導体基体の第1面上の配線層に含まれる酸化物と同一の材料で形成され、前記第1導体層は、前記第1半導体基体の第1面上の配線層に含まれる配線又は電極のいずれかと同一の材料で形成される(10)に記載の半導体装置。
(12)第1半導体基体を貫通する貫通電極を備える半導体装置の製造方法であって、前記第1半導体基体の第1面に、前記貫通電極を形成する位置の周囲を囲む絶縁層を形成する工程と、前記第1半導体基体の第1面側に、第2半導体基体を貼り合わせる工程と、前記絶縁層に囲まれた範囲内において、前記第1半導体基体の第2面側から、前記第2半導体基体上の配線層までを貫通する開口部を形成する工程と、前記開口部内に貫通電極を形成する工程と、を有する半導体装置の製造方法。
(13)前記開口部を形成する工程において、前記絶縁層に囲まれた範囲内で前記第1半導体基体をエッチングした後、さらに、前記絶縁層の内壁面に残存する記第1半導体基体をエッチングする工程を有する(12)に記載の半導体装置の製造方法。
(14)前記第1半導体基体の第1面上の配線層に第1導体層を形成する工程を有し、前記開口部を形成する工程において、前記第1導体層に前記第1半導体基体の第2面側の開口が大きく、前記第1半導体基体の第1面側の開口が小さ開口部を形成する(12)又は(13)に記載の半導体装置の製造方法。
(15)前記絶縁層に囲まれた範囲内において、前記第1半導体基体を選択的にエッチングする工程と、前記絶縁層の内面側の一部をエッチングする工程とを有する(12)から(14)のいずれかに記載の半導体装置の製造方法。
(16)前記第1半導体基体の第1面上の配線層に第1導体層を形成し、また前記絶縁層と前記第1導体層との間に電極保護層を形成する工程を有し、前記開口部を形成する工程は、前記絶縁層に囲まれた範囲内の前記第1半導体基体をエッチングする工程と、前記電極保護層から前記第2半導体基体上の配線層までをエッチングする工程と、を含む(12)に記載の半導体装置の製造方法。
(17)電極保護層を形成する工程において、前記電極保護層は、前記電極保護層の開口側の端部が前記絶縁層の開口側の端部よりも開口の中心方向に向かって突出するように形成される(16)に記載の半導体装置の製造方法。
(18)前記電極保護層及び前記第1導体層は、前記第1半導体基体の第1面上の配線層と併せて形成される(16)又は(17)に記載の半導体装置の製造方法。
(19)(1)から(11)のいずれかに記載の半導体装置と、前記半導体装置の出力信号を処理する信号処理回路と、を備える電子機器
 10 第1チップ、11 第1半導体基体、12,22 配線層、13,14 保護層、15 絶縁層、16,16A,16B 第1電極パッド、17,17A 貫通電極、18,24 層間絶縁層、20 第2チップ、21 第2半導体基体、23 第2電極パッド、25 接合面、31 ハードマスク層、32,33,33A,33B 開口部、34 レジスト、35 電極保護層、36 配線電極、40 カメラ、41 固体撮像装置、42 光学系、43 シャッタ装置、44 駆動回路、45 信号処理回路

Claims (19)

  1.  第1半導体基体と、
     前記第1半導体基体の第1面側に貼り合わされた第2半導体基体と、
     前記第1半導体基体の第2面側から前記第2半導体基体上の配線層まで貫通して形成されている貫通電極と、
     前記第1半導体基体内に形成されている前記貫通電極の周囲を囲む絶縁層と、を備える
     半導体装置。
  2.  前記第1半導体基体の第1面上の配線層に第1導体層を有し、前記貫通電極の側面が前記第1導体層と接続されている請求項1に記載の半導体装置。
  3.  前記貫通電極の底部が前記第2半導体基体上の配線層に設けられた第2導体層に接続され、前記貫通電極を介して前記第1導体層と前記第2導体層とが接続されている請求項2に記載の半導体装置。
  4.  前記第1導体層は前記貫通電極の側面と接続する開口を有する請求項2に記載の半導体装置。
  5.  前記貫通電極の開口部の幅よりも、前記第1導体層の開口幅が小さい請求項4に記載の
    半導体装置。
  6.  前記貫通電極の開口部の幅よりも、前記絶縁層の内側の長さが大きい請求項1に記載の
    半導体装置。
  7.  前記第1導体層の開口は、前記第1半導体基体の第2面側の開口が大きく、前記第1半導体基体の第1面側の開口が小さく形成されている請求項4に記載の半導体装置。
  8.  前記第1導体層の開口が傾斜面を有する形状に形成されている請求項7に記載の半導体装置。
  9.  前記第1導体層の開口部の内側面の傾斜角が40°以下である請求項8に記載の半導体装置。
  10.  前記絶縁層と前記第1導体層との間に、前記第1導体層を保護する電極保護層を有する請求項2に記載の半導体装置。
  11.  前記電極保護層は、前記第1半導体基体の第1面上の配線層に含まれる酸化物と同一の材料で形成され、前記第1導体層は、前記第1半導体基体の第1面上の配線層に含まれる配線又は電極のいずれかと同一の材料で形成される請求項10に記載の半導体装置。
  12.  第1半導体基体を貫通する貫通電極を備える半導体装置の製造方法であって、
     前記第1半導体基体の第1面に、前記貫通電極を形成する位置の周囲を囲む絶縁層を形成する工程と、
     前記第1半導体基体の第1面側に、第2半導体基体を貼り合わせる工程と、
     前記絶縁層に囲まれた範囲内において、前記第1半導体基体の第2面側から、前記第2半導体基体上の配線層までを貫通する開口部を形成する工程と、
     前記開口部内に貫通電極を形成する工程と、を有する
     半導体装置の製造方法。
  13.  前記開口部を形成する工程において、前記絶縁層に囲まれた範囲内で前記第1半導体基体をエッチングした後、さらに、前記絶縁層の内壁面に残存する記第1半導体基体をエッチングする工程を有する請求項12に記載の半導体装置の製造方法。
  14.  前記第1半導体基体の第1面上の配線層に第1導体層を形成する工程を有し、前記開口部を形成する工程において、前記第1導体層に前記第1半導体基体の第2面側の開口が大きく、前記第1半導体基体の第1面側の開口が小さ開口部を形成する請求項12に記載の半導体装置の製造方法。
  15.  前記絶縁層に囲まれた範囲内において、前記第1半導体基体を選択的にエッチングする工程と、前記絶縁層の内面側の一部をエッチングする工程とを有する請求項12に記載の半導体装置の製造方法。
  16.  前記第1半導体基体の第1面上の配線層に第1導体層を形成し、また前記絶縁層と前記第1導体層との間に電極保護層を形成する工程を有し、
     前記開口部を形成する工程は、前記絶縁層に囲まれた範囲内の前記第1半導体基体をエッチングする工程と、前記電極保護層から前記第2半導体基体上の配線層までをエッチングする工程と、を含む請求項12に記載の半導体装置の製造方法。
  17.  電極保護層を形成する工程において、前記電極保護層は、前記電極保護層の開口側の端部が前記絶縁層の開口側の端部よりも開口の中心方向に向かって突出するように形成される請求項16に記載の半導体装置の製造方法。
  18.  前記電極保護層及び前記第1導体層は、前記第1半導体基体の第1面上の配線層と併せて形成される請求項16に記載の半導体装置の製造方法。
  19.  第1半導体基体と、前記第1半導体基体の第1面側に貼り合わされた第2半導体基体と、前記第1半導体基体の第2面側から前記第2半導体基体上の配線層まで貫通して形成されている貫通電極と、前記第1半導体基体内に形成されている前記貫通電極の周囲を囲む絶縁層とからなる半導体装置と、
     前記半導体装置の出力信号を処理する信号処理回路と、を備える
     電子機器。
PCT/JP2013/066876 2012-06-29 2013-06-19 半導体装置、半導体装置の製造方法、及び、電子機器 WO2014002852A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/409,634 US9343392B2 (en) 2012-06-29 2013-06-19 Semiconductor device, manufacturing method for semiconductor device, and electronic device
JP2014522569A JP6094583B2 (ja) 2012-06-29 2013-06-19 半導体装置、半導体装置の製造方法、及び、電子機器
CN201380033466.5A CN104412372B (zh) 2012-06-29 2013-06-19 半导体装置、半导体装置的制造方法和电子设备
US15/097,093 US9524925B2 (en) 2012-06-29 2016-04-12 Method of manufacturing a semiconductor device
US15/354,871 US9922961B2 (en) 2012-06-29 2016-11-17 Semiconductor device, manufacturing method for semiconductor device, and electronic device
US15/887,242 US10373934B2 (en) 2012-06-29 2018-02-02 Semiconductor device, manufacturing method for semiconductor device, and electronic device
US16/521,215 US11063020B2 (en) 2012-06-29 2019-07-24 Semiconductor device, manufacturing method for semiconductor device, and electronic device
US17/324,932 US11557573B2 (en) 2012-06-29 2021-05-19 Semiconductor device, manufacturing method for semiconductor device, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012147316 2012-06-29
JP2012-147316 2012-06-29
JP2013-024505 2013-02-12
JP2013024505 2013-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/409,634 A-371-Of-International US9343392B2 (en) 2012-06-29 2013-06-19 Semiconductor device, manufacturing method for semiconductor device, and electronic device
US15/097,093 Division US9524925B2 (en) 2012-06-29 2016-04-12 Method of manufacturing a semiconductor device

Publications (1)

Publication Number Publication Date
WO2014002852A1 true WO2014002852A1 (ja) 2014-01-03

Family

ID=49783010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066876 WO2014002852A1 (ja) 2012-06-29 2013-06-19 半導体装置、半導体装置の製造方法、及び、電子機器

Country Status (4)

Country Link
US (6) US9343392B2 (ja)
JP (1) JP6094583B2 (ja)
CN (4) CN104412372B (ja)
WO (1) WO2014002852A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072297A (ja) * 2012-09-28 2014-04-21 Canon Inc 半導体装置およびその製造方法
JP2017073436A (ja) * 2015-10-06 2017-04-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および電子装置
WO2020121491A1 (ja) * 2018-12-13 2020-06-18 ウルトラメモリ株式会社 半導体モジュール及びその製造方法
JPWO2022014022A1 (ja) * 2020-07-16 2022-01-20
US11373958B2 (en) 2016-06-28 2022-06-28 Sony Corporation Semiconductor device and semiconductor device manufacturing method for prevention of metallic diffusion into a semiconductor substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094583B2 (ja) * 2012-06-29 2017-03-15 ソニー株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
KR102127828B1 (ko) * 2018-08-10 2020-06-29 삼성전자주식회사 반도체 패키지
US11973006B2 (en) * 2019-10-11 2024-04-30 Semiconductor Components Industries, Llc Self-aligned contact openings for backside through substrate vias
US11482474B2 (en) * 2020-09-27 2022-10-25 Nanya Technology Corporation Forming a self-aligned TSV with narrow opening in horizontal isolation layer interfacing substrate
KR20230009205A (ko) * 2021-07-08 2023-01-17 삼성전자주식회사 반도체 칩 및 이를 포함하는 반도체 패키지
EP4207262A4 (en) * 2021-07-09 2024-04-10 Changxin Memory Technologies, Inc. SEMICONDUCTOR STRUCTURE AND PREPARATION METHOD THEREFOR

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091423A (ja) * 1998-09-16 2000-03-31 Nec Corp 多層配線半導体装置及びその製造方法
JP2003142576A (ja) * 2001-10-31 2003-05-16 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2005285988A (ja) * 2004-03-29 2005-10-13 Sony Corp 固体撮像素子とその製造方法、及び半導体集積回路装置とその製造方法
JP2007129233A (ja) * 2005-11-03 2007-05-24 Internatl Business Mach Corp <Ibm> 電子デバイス、マルチチップ・スタック、半導体デバイスおよび方法(アクセス可能チップ・スタックおよびその製造方法)
JP2010245506A (ja) * 2009-03-19 2010-10-28 Sony Corp 半導体装置とその製造方法、及び電子機器
JP2011091400A (ja) * 2009-10-22 2011-05-06 Samsung Electronics Co Ltd イメージセンサ及びその製造方法
JP2011096851A (ja) * 2009-10-29 2011-05-12 Sony Corp 半導体装置とその製造方法、及び電子機器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538210B2 (en) * 1999-12-20 2003-03-25 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module, radio device having the same, and method for producing the same
JP4088120B2 (ja) * 2002-08-12 2008-05-21 株式会社ルネサステクノロジ 半導体装置
JP2004311948A (ja) * 2003-03-27 2004-11-04 Seiko Epson Corp 半導体装置、半導体デバイス、電子機器、および半導体装置の製造方法
TW200746940A (en) * 2005-10-14 2007-12-16 Ibiden Co Ltd Printed wiring board
KR100784498B1 (ko) * 2006-05-30 2007-12-11 삼성전자주식회사 적층 칩과, 그의 제조 방법 및 그를 갖는 반도체 패키지
US20080102278A1 (en) * 2006-10-27 2008-05-01 Franz Kreupl Carbon filament memory and method for fabrication
JP5563186B2 (ja) 2007-03-30 2014-07-30 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
KR101387701B1 (ko) * 2007-08-01 2014-04-23 삼성전자주식회사 반도체 패키지 및 이의 제조방법
JP2009181981A (ja) * 2008-01-29 2009-08-13 Renesas Technology Corp 半導体装置の製造方法および半導体装置
US7786600B2 (en) * 2008-06-30 2010-08-31 Hynix Semiconductor Inc. Circuit substrate having circuit wire formed of conductive polarization particles, method of manufacturing the circuit substrate and semiconductor package having the circuit wire
KR20100048610A (ko) * 2008-10-31 2010-05-11 삼성전자주식회사 반도체 패키지 및 그 형성 방법
US20110291687A1 (en) * 2008-12-12 2011-12-01 Hynix Semiconductor Inc. Probe card for testing semiconductor device and probe card built-in probe system
JP5330065B2 (ja) * 2009-04-13 2013-10-30 新光電気工業株式会社 電子装置及びその製造方法
JP2011171567A (ja) 2010-02-19 2011-09-01 Elpida Memory Inc 基板構造物の製造方法及び半導体装置の製造方法
US8455349B2 (en) * 2010-04-28 2013-06-04 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8928159B2 (en) * 2010-09-02 2015-01-06 Taiwan Semiconductor Manufacturing & Company, Ltd. Alignment marks in substrate having through-substrate via (TSV)
US8405135B2 (en) * 2010-10-05 2013-03-26 International Business Machines Corporation 3D via capacitor with a floating conductive plate for improved reliability
CN102024782B (zh) * 2010-10-12 2012-07-25 北京大学 三维垂直互联结构及其制作方法
JP5640630B2 (ja) * 2010-10-12 2014-12-17 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び電子機器
EP2492675B1 (en) * 2011-02-28 2019-01-30 Nxp B.V. A biosensor chip and a method of manufacturing the same
JP5970826B2 (ja) * 2012-01-18 2016-08-17 ソニー株式会社 半導体装置、半導体装置の製造方法、固体撮像装置および電子機器
US9058455B2 (en) * 2012-01-20 2015-06-16 International Business Machines Corporation Backside integration of RF filters for RF front end modules and design structure
JP2013168577A (ja) * 2012-02-16 2013-08-29 Elpida Memory Inc 半導体装置の製造方法
US8878338B2 (en) * 2012-05-31 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor for interposers and methods of manufacture thereof
JP6094583B2 (ja) * 2012-06-29 2017-03-15 ソニー株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
US9825209B2 (en) * 2012-12-21 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Electronic component package and method for manufacturing the same
KR102173083B1 (ko) * 2014-06-11 2020-11-02 삼성전자주식회사 높은 종횡비를 갖는 반도체 소자 형성 방법 및 관련된 소자
KR102200497B1 (ko) * 2014-07-07 2021-01-11 삼성전자주식회사 반도체 기억 소자 및 그 제조방법
JP2016040807A (ja) * 2014-08-13 2016-03-24 株式会社東芝 半導体装置
TW201637190A (zh) * 2015-03-25 2016-10-16 Sony Corp 固體攝像裝置及電子機器
WO2018186027A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 半導体装置、半導体装置の製造方法、及び電子機器
FR3073977B1 (fr) * 2017-11-22 2021-12-03 Commissariat Energie Atomique Transistors de circuit 3d a grille retournee
KR20210018669A (ko) * 2019-08-08 2021-02-18 삼성전자주식회사 비아 및 배선을 포함하는 반도체 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091423A (ja) * 1998-09-16 2000-03-31 Nec Corp 多層配線半導体装置及びその製造方法
JP2003142576A (ja) * 2001-10-31 2003-05-16 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2005285988A (ja) * 2004-03-29 2005-10-13 Sony Corp 固体撮像素子とその製造方法、及び半導体集積回路装置とその製造方法
JP2007129233A (ja) * 2005-11-03 2007-05-24 Internatl Business Mach Corp <Ibm> 電子デバイス、マルチチップ・スタック、半導体デバイスおよび方法(アクセス可能チップ・スタックおよびその製造方法)
JP2010245506A (ja) * 2009-03-19 2010-10-28 Sony Corp 半導体装置とその製造方法、及び電子機器
JP2011091400A (ja) * 2009-10-22 2011-05-06 Samsung Electronics Co Ltd イメージセンサ及びその製造方法
JP2011096851A (ja) * 2009-10-29 2011-05-12 Sony Corp 半導体装置とその製造方法、及び電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072297A (ja) * 2012-09-28 2014-04-21 Canon Inc 半導体装置およびその製造方法
JP2017073436A (ja) * 2015-10-06 2017-04-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および電子装置
US11373958B2 (en) 2016-06-28 2022-06-28 Sony Corporation Semiconductor device and semiconductor device manufacturing method for prevention of metallic diffusion into a semiconductor substrate
WO2020121491A1 (ja) * 2018-12-13 2020-06-18 ウルトラメモリ株式会社 半導体モジュール及びその製造方法
JPWO2020121491A1 (ja) * 2018-12-13 2021-02-15 ウルトラメモリ株式会社 半導体モジュール及びその製造方法
JPWO2022014022A1 (ja) * 2020-07-16 2022-01-20
WO2022014022A1 (ja) * 2020-07-16 2022-01-20 ウルトラメモリ株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US9343392B2 (en) 2016-05-17
CN108091563A (zh) 2018-05-29
US20170069604A1 (en) 2017-03-09
CN104412372A (zh) 2015-03-11
CN108091564A (zh) 2018-05-29
US9922961B2 (en) 2018-03-20
US20190348398A1 (en) 2019-11-14
CN104412372B (zh) 2018-01-26
CN108172562A (zh) 2018-06-15
US20210272933A1 (en) 2021-09-02
US11557573B2 (en) 2023-01-17
US20160247746A1 (en) 2016-08-25
US11063020B2 (en) 2021-07-13
US20150179546A1 (en) 2015-06-25
US10373934B2 (en) 2019-08-06
JPWO2014002852A1 (ja) 2016-05-30
US20180158803A1 (en) 2018-06-07
US9524925B2 (en) 2016-12-20
JP6094583B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6094583B2 (ja) 半導体装置、半導体装置の製造方法、及び、電子機器
US10804313B2 (en) Semiconductor device and solid-state imaging device
US9013022B2 (en) Pad structure including glue layer and non-low-k dielectric layer in BSI image sensor chips
TWI497696B (zh) 半導體器件,其製造方法及電子裝置
US7932602B2 (en) Metal sealed wafer level CSP
JP2011009645A (ja) 半導体装置及びその製造方法
US20100283130A1 (en) Semiconductor device and manufacturing method thereof
JP2011258687A (ja) 半導体装置およびその製造方法
JP4987928B2 (ja) 半導体装置の製造方法
CN112349736A (zh) 半导体器件结构及其制造方法
KR102490636B1 (ko) 반도체 장치, 및 반도체 장치의 제조 방법
JP2010186870A (ja) 半導体装置
US11276723B2 (en) Semiconductor device, apparatus, and method for producing semiconductor device
WO2009141952A1 (ja) 半導体装置及びその製造方法
JP2009099841A (ja) 半導体装置及びその製造方法
US20100314776A1 (en) Connection pad structure for an image sensor on a thinned substrate
JP5751131B2 (ja) 半導体装置及びその製造方法
JP2023004854A (ja) 半導体装置及びその製造方法
JP2006179663A (ja) 半導体装置、半導体装置の製造方法、及び半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522569

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409634

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809929

Country of ref document: EP

Kind code of ref document: A1