WO2014002736A1 - 熱式空気流量センサ - Google Patents

熱式空気流量センサ Download PDF

Info

Publication number
WO2014002736A1
WO2014002736A1 PCT/JP2013/065912 JP2013065912W WO2014002736A1 WO 2014002736 A1 WO2014002736 A1 WO 2014002736A1 JP 2013065912 W JP2013065912 W JP 2013065912W WO 2014002736 A1 WO2014002736 A1 WO 2014002736A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
flow sensor
air flow
thermal air
sensor according
Prior art date
Application number
PCT/JP2013/065912
Other languages
English (en)
French (fr)
Inventor
良介 土井
中野 洋
半沢 恵二
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201380034250.0A priority Critical patent/CN104395709B/zh
Priority to US14/410,713 priority patent/US9664546B2/en
Priority to DE112013003175.2T priority patent/DE112013003175B4/de
Publication of WO2014002736A1 publication Critical patent/WO2014002736A1/ja
Priority to US15/495,268 priority patent/US10001394B2/en
Priority to US15/979,301 priority patent/US10240957B2/en
Priority to US16/281,796 priority patent/US11391611B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0016Protection against shocks or vibrations, e.g. vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00777Preserve existing structures from alteration, e.g. temporary protection during manufacturing
    • B81C1/00825Protect against mechanical threats, e.g. against shocks, or residues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to a sensor for detecting a physical quantity, and particularly to a thermal air flow sensor.
  • thermal sensor that is provided in an intake air passage of an internal combustion engine such as an automobile and measures the amount of intake air has become mainstream because it can directly detect the amount of mass air.
  • an air flow sensor that forms a thin part by removing a part of the silicon substrate with a solution such as KOH is used. It has been attracting attention because of its high-speed response and the ability to detect backflow using the speed of response. Also, in recent years, for the purpose of reducing the parts of the board part (printed board, ceramic board, etc.), the air flow sensor is mounted on a lead frame, and a structure in which the outer peripheral part is molded with resin has been studied. Yes.
  • the thickness of the detection element and the thickness of the adhesive there are variations in the thickness of the detection element and the thickness of the adhesive, and as a result, the mounting height of the semiconductor element mounted on the lead frame varies. As a result, the force applied from the insert piece or the contact distance with the insert piece changes depending on each product, and the allowable range of the pressing force of the insert piece is further reduced, leading to a decrease in product yield.
  • An object of the present invention is to improve the reliability of a product in the case of resin sealing that partially exposes a part of a semiconductor element.
  • a thermal air flow sensor of the present invention includes a thin portion, a heating resistor provided in the thin portion, and a temperature measuring resistor provided upstream and downstream of the heating resistor.
  • Thermal air having a substrate, a protective film provided on the semiconductor substrate, and a resin that seals the semiconductor substrate, the resin having an exposed portion that partially exposes the region including the thin portion
  • the protective film is provided so as to surround the heating resistor, and an outer peripheral end portion of the organic protective film is outside the thin portion and in the exposed portion.
  • the present invention can improve the reliability of a product in the case of resin sealing that partially exposes a part of a semiconductor element.
  • Configuration diagram of the sensor element before molding according to the first embodiment (a) Cross-sectional view when viewed from the side, (b) Surface view when viewed from directly above Configuration diagram of the sensor element after molding according to the first embodiment (a) Cross-sectional view when viewed from the side, (b) Surface view when viewed from directly above Schematic explanatory diagram of mold forming in the first embodiment Schematic explanatory diagram of mold resin flow-out in the first embodiment Configuration diagram of the sensor element before molding according to the second and third embodiments (a) Cross-sectional view when viewed from the side, (b) Surface view when viewed from right above Configuration diagram of the sensor element after molding according to the second embodiment (a) Cross-sectional view when viewed from the side of the heel, (b) Surface view when viewed from directly above Schematic explanatory diagram of mold forming in the second embodiment Schematic explanatory diagram of mold resin flow-out in the second embodiment Illustration of slit Configuration diagram of the sensor element after molding according to the third embodiment (a) Cross-sectional view when
  • the thermal air flow sensor of the present invention will be described with reference to FIG.
  • the thermal air flow sensor is provided with a housing 3 and a semiconductor package 2 in an intake pipe 5 for supplying intake air 1 to an internal combustion engine (not shown) of an automobile.
  • the housing 3 includes a connector terminal 8 that is electrically connected to the semiconductor package 2 at one end, a flange portion 4 that fixes the housing 3 to the intake pipe 5, and a sub-passage 6 that takes in part of the intake air 1.
  • the semiconductor package 2 is created by integrally molding the lead frame 10, the semiconductor substrate 20, the circuit element, and the temperature sensor with the mold resin 60. Further, the semiconductor package 2 has a region that is partially exposed without being covered with the mold resin 60 so that the flow rate detection unit 7 is exposed to the intake air.
  • the flow rate detector 7 is provided in the sub-passage 6 and calculates the flow rate of the intake air 1 from the flow rate of the fluid flowing in the sub-passage 6.
  • FIG. 1 is a configuration diagram of the sensor element before molding according to the first embodiment
  • FIG. 2 is a configuration diagram of the sensor element after molding according to the first embodiment.
  • the thermal air flow sensor has an insulating film and a resistor layer laminated on a semiconductor substrate 20 such as silicon, and potassium hydroxide (KOH) or the like is applied from the back side of the semiconductor substrate 20.
  • the thin-walled portion 25 is formed by partially removing the heat-generating resistor 21, and the heating resistor 21, the upstream-side resistance temperature detector 22, and the downstream-side resistance temperature detector 23 are formed on the thin-walled portion 25.
  • the temperature of the heating resistor 21 is feedback-controlled so that the temperature of the heating resistor 21 is higher than the temperature of the intake air amount 1, and the temperature measured by the upstream temperature measuring resistor 22 and the downstream temperature measuring resistor
  • the flow rate of the intake air 1 is measured based on the information on the temperature difference from the temperature measured by the body 23.
  • An organic protective film 30 typified by polyimide or the like is formed on the surface of the thermal air flow sensor.
  • the organic protective film 30 is applied uniformly on the entire surface of the sensor once using a coating machine such as a spinner.
  • a step is formed between the semiconductor substrate 20 and the organic protective film 30 by partially etching away by a patterning technique.
  • the organic protective film 30 has a shape that surrounds the heating resistor 21 without a break.
  • An Al wiring 40 is formed on the surface of the thermal air flow sensor, and is electrically connected to the lead frame 10 via a bonding wire 50 such as a gold wire.
  • the semiconductor substrate 20 is fixed to the lead frame 10 with an adhesive or the like.
  • the semiconductor substrate 20 and the lead frame 10 are sealed with a mold resin 60.
  • the heating resistor 21, the upstream resistance temperature detector 22, and the downstream resistance temperature detector 23 need not be exposed to the medium to be measured in order to detect the flow rate, and thus are not covered with the mold resin 60.
  • the region including the flow rate detection unit 7 is partially exposed from the mold resin 60.
  • the outer peripheral end portion of the organic protective film 30 formed so as to surround the heating resistor 21 is provided to be located outside the thin portion 25, and the organic protective film 30 is disposed in a partially exposed region. Has been.
  • the organic protective film 30 can be used to prevent the resin from reaching the thin portion 20. Can do.
  • FIG. 3 is a schematic explanatory view of molding in the first embodiment
  • FIG. 4 is a schematic explanatory view of flow of mold resin in the first embodiment.
  • a partially exposed semiconductor package is created using a lower mold 80, an upper mold 81, and a slot 83 provided to be inserted into the upper mold 81.
  • the semiconductor package having a partially exposed structure can be manufactured by pouring the resin through the insertion port 82.
  • the insertion port 82 can be provided regardless of the lower mold 80 and the upper mold 81.
  • the insert piece 83 is configured to have a concave portion on the pressing surface, the thin portion 25 is accommodated in the concave portion, and the substrate surface is pressed by the pressing portion provided on the outer peripheral edge of the concave portion, thereby sealing the resin.
  • the insertion piece 83 is not directly applied to the thin portion 25.
  • the organic protective film 30 surrounds the heating resistor 21, and the organic protective film 30 is provided in a region that is partially exposed from the mold resin 60. The resin 60 leaking from the resin can be blocked by the organic protective film 30, and the resin can be prevented from reaching the thin portion 25.
  • the reliability of the thermal air flow sensor can be ensured even when the load of the insert piece 83 is small and resin leakage occurs.
  • the insert piece 83 is pressed by movement amount control. Since the height of the surface of the semiconductor substrate 20 varies from product to product, when the surface height is high, a load larger than usual is applied to the semiconductor substrate 20, and if the load is too large, the sensor element will be deformed. It will occur. On the other hand, since the gap 61 is formed between the insert piece 83 and the surface of the thermal air flow sensor for the finished product having a low surface height, the resin may leak. According to the first embodiment of the present invention, the reliability of the thermal air flow sensor can be ensured even when the load of the insert piece 83 is small. Can be wide. Therefore, the product yield can be improved.
  • the thin portion 25 is made of an inorganic material and is thin to improve thermal insulation, so it is fragile and needs to secure strength against dust collision.
  • the peripheral portion of the thin portion 25 has a lower strength against dust collision than other portions. Therefore, as shown in FIG. 1, the organic protective film 30 is provided so that the inner peripheral end portion is positioned in the thin portion 25, so that the peripheral portion of the thin portion 25 is covered with the organic protective film 30, and the impact caused by the collision of dust is organic.
  • the protective film 30 absorbs. According to the above configuration, since the strength of the thin portion 25 due to the collision of dust contained in the intake air can be increased, the fouling resistance of the thermal air flow sensor is improved, and a highly reliable thermal air flow sensor is provided. Realize.
  • a second embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the first embodiment is omitted.
  • FIG. 5 is a configuration diagram of the sensor element before molding according to the second embodiment
  • FIG. 6 is a configuration diagram of the sensor element after molding according to the second embodiment.
  • the heating resistor heating resistor 21, the upstream temperature measuring resistor 22, and the downstream temperature measuring resistor 23 are exposed to the measured medium on the organic protective film 30 provided on the semiconductor substrate 20.
  • an exposed portion that exposes a part of the thin portion 25 and a slit 35 that is provided so as to surround the thin portion 25 are formed. Since the slit 35 surrounds the thin portion 25 seamlessly, even if a resin leak occurs during resin molding, the mold resin 60 is trapped in the slit 35 and prevents the mold resin 60 from flowing into the thin portion 25.
  • the organic protective film 30 is provided so as to protect the periphery of the thin portion 25, the strength of the thin portion 25 against the collision of dust contained in the intake air can be increased.
  • a part of the semiconductor substrate 20 is exposed from the organic protective film 30 by the slit 35, and a step is formed by the exposed surface of the semiconductor substrate 20 and the organic protective film 30. Furthermore, it is desirable to cover the Al wiring 40 with the organic protective film 30 to protect it from corrosive components such as water.
  • the semiconductor substrate 20 and the lead frame 10 are molded resin 60 so that the entire inner peripheral end portion of the slit 35 and the outer peripheral end portion of the slit 35 are partially exposed from the mold resin 60. Seal with. Since the entire inner peripheral edge of the slit 35 is located in a region that is partially exposed from the mold resin 60, even if the mold resin 60 leaks from the gap 61 as shown in FIG. The resin can be prevented from reaching the thin portion 25.
  • FIG. 7 is a schematic explanatory view of molding in the second embodiment
  • FIG. 8 is a schematic explanatory view of flow of mold resin in the second embodiment.
  • the pressing portion of the insert piece 83 is pressed against the organic protective film 30.
  • the organic protective film 30 functions as a buffer material, and the stress transmitted to the thin portion 25 can be reduced. Therefore, deformation of the thin portion 25 when molding is performed can be suppressed. Therefore, according to the second embodiment of the present invention, the detection error due to the deformation of the thin portion 25 can be suppressed, so that the reliability of the thermal air flow sensor can be improved.
  • the mold resin 60 and the thermal air flow sensor have a structure in which the organic protective film 30 is mediated, stress is applied to the organic protective film 30 due to resin shrinkage after molding.
  • the shape of the organic protective film 30 is formed so as to communicate with the end of the thin portion, the stress due to the thermal contraction of the mold resin 60 works to the end of the thin portion 25 and may affect the flow rate characteristics. is there.
  • the organic protective film 31 located at the contact portion of the mold resin 60 and the thermal air flow sensor is isolated from the organic protective film 32 formed at the end of the thin portion. Since the slit part 35 is formed, stress is not transmitted to the organic protective film 32 formed at the end of the thin part through the organic protective film 30. Therefore, there is an effect of reducing the influence of stress on the flow characteristics.
  • a third embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the second embodiment is omitted.
  • the slit inner peripheral side organic protective film 33 is located so as to be partially exposed from the mold resin 60, and the slit outer peripheral side organic protective film 34 is covered with the mold resin 60. Resin molding. Since the slit inner peripheral side organic protective film 33 is located in a region partially exposed from the mold resin 60, even if the mold resin 60 leaks from the gap 61 as shown in FIG. Since the mold resin 60 can be blocked by the film 33, it is possible to suppress the mold resin 60 from reaching the thin portion 25.
  • the organic protective film 30 protects the Al wiring 40, but the organic protective film 30 itself absorbs moisture, and the Al wiring 40 receives moisture through the organic protective film 30.
  • the protective film sandwiched between the mold resin and the semiconductor substrate and the protective film formed on the thin part are independent of each other, so that the influence of stress on the thin part is reduced. Yes.
  • the slit shape of the first embodiment is a shape in which the entire circumference is isolated, but even if the slit is formed only on one side or one side as shown in FIG. 6, the effect of preventing the mold resin from flowing out Is obtained.
  • the effect of stress is the same, and if it can be clarified by using actual machine evaluation and analysis that the stress of the resin is greatly applied from a certain direction, it is possible to effectively trust the thin wall portion by forming a slit in that direction. Can be improved.
  • the slit shape of the second embodiment is a shape in which the entire circumference is separated by one step, but the effect of preventing the mold resin from flowing out is obtained even when the slit is formed in a multi-stage shape as shown in FIG. It is done.
  • One of the purposes of multi-stage is to protect the resistor 37 formed on the semiconductor substrate from the collision of dust, or to reduce the temperature sensor 37 formed on the semiconductor substrate in order to improve the thermal response, the thin portion 25.
  • the protective film 31 may be formed in the slit formed in the second embodiment.
  • the slit for preventing the mold resin 60 from flowing in has a multi-stage shape. Even in such a case, the shape is effective for preventing the flow of the mold resin 60.
  • the organic protective film 30 is formed of polyimide.
  • the heating resistor 21 In order to measure the intake air flow rate, the heating resistor 21 generates heat and the thin portion 25 becomes high temperature.
  • polyimide is excellent in heat resistance, deterioration of the material due to heat generation can be suppressed. Therefore, the strength of the measuring element 1 can be improved against the collision of the solid particles over a long period of time.
  • the organic protective film 30 is formed of polyimide, the dust resistance of the thin insulating film can be improved and the cost can be reduced even in the case of resin sealing so that a part of the semiconductor element is partially exposed. It is possible to provide a thermal air flow sensor that suppresses a decrease in the product yield without increasing.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明は、半導体素子の一部を部分的に露出する樹脂封止をする場合において、製品の信頼性を向上することを目的とする。上記目的を達成するために、本発明の熱式空気流量センサは、薄肉部と、前記薄肉部上に設けられる発熱抵抗体と、前記発熱抵抗体の上下流に設けられる測温抵抗体を有する半導体基板と、前記半導体基板上に設けられた保護膜と、前記半導体基板を封止する樹脂と、を備え、前記樹脂は前記薄肉部を含む領域を部分的に露出する露出部を有する熱式空気流量センサであって、前記保護膜は、前記発熱抵抗体を囲うように設けられていて、前記有機保護膜の外周端部が前記薄肉部より外側で、かつ前記露出部にあることを特徴とする。

Description

熱式空気流量センサ
 本発明は、物理量を検出するセンサに関するものであり、特に、熱式空気流量センサに関するものである。
 従来、自動車などの内燃機関の吸入空気通路に設けられ、吸入空気量を測定する空気流量センサとして、熱式のものが質量空気量を直接検知できることから主流となってきている。
 最近では、半導体マイクロマシニング技術によりシリコン基板上に抵抗体や絶縁層膜を堆積した後で、KOHなどを代表とする溶材でシリコン基板の一部を除去し、薄肉部を形成する空気流量センサが高速応答性を有することや、その応答性の速さを利用して逆流検出も可能であることから注目されている。また近年では、基板部(プリント基板や、セラミック基板など)の部品低減を目的として、上記空気流量センサはリードフレーム上に実装され、その外周部を樹脂でモールドした構造体の検討が進められている。
特許第3610484
 特許文献1に記載されている従来の熱式空気流量センサでは、シリコン基板の一部を裏面から除去加工することによって形成される薄肉部の信頼性向上を目的として、流量センサエレメントの表面に有機材料からなる保護膜を形成する発明が明記されている。特許文献1によれば、薄肉部の絶縁膜の耐ダスト強度が向上することができる。しかしながら、この発明は流量センサエレメントがリードフレームなどの部材に接着実装され、かつ流量センサエレメントの周辺部を樹脂により封止される構成において、薄肉部を含む領域を部分的に露出する構成における検討の余地が残されている。
 部分的に露出する樹脂成形をする際に、露出部にモールド樹脂材が成形されないように金型あるいは入れ駒などを用いて、半導体検出素子の薄肉部周辺に押し当てて成形するのが一般的である。さらに、上記入れ駒を押し当てる主な方法としては、入れ駒の移動量を制御する方法が挙げられる。量産工程を考えた場合、上記設定される移動量は常に一定であり、各製品毎に移動量を調節しない。この時に前記入れ駒の押し当て量が弱いとモールド樹脂が露出部に流れ出してしまう可能性がある。これを回避するためには、ある程度入れ駒を半導体素子に強く押し当てる必要があるが、その押し当て力が強すぎると半導体素子が変形してしまう。したがって、薄肉部を含む領域を部分的に露出するよう樹脂封止する場合は、入れ駒を押し当てる力にはある範囲(マージン)が存在する。
 また製品としても、検出素子の膜厚ばらつきや接着剤の厚さばらつきが存在し、その結果、リードフレーム上に実装された半導体素子の実装高さがばらついてしまう。それによって、各製品毎によって入れ駒から加わる力、あるいは、入れ駒との接触距離が変化し、前記入れ駒の押し当て力の許容範囲がさらに低下することになり、製品歩留まりの低下に繋がる。
  本発明は、半導体素子の一部を部分的に露出する樹脂封止をする場合において、製品の信頼性を向上することを目的とする。
  上記目的を達成するために、本発明の熱式空気流量センサは、薄肉部と、前記薄肉部に設けられる発熱抵抗体と、前記発熱抵抗体の上下流に設けられる測温抵抗体を有する半導体基板と、前記半導体基板上に設けられた保護膜と、前記半導体基板を封止する樹脂と、を備え、前記樹脂は前記薄肉部を含む領域を部分的に露出する露出部を有する熱式空気流量センサであって、前記保護膜は、前記発熱抵抗体を囲うように設けられていて、前記有機保護膜の外周端部が前記薄肉部より外側で、かつ前記露出部にあることを特徴とする。
 本発明は、半導体素子の一部を部分的に露出する樹脂封止をする場合において、製品の信頼性を向上することができる。
第一実施例をなすモールド前のセンサ素子の構成図(a)横から見た場合の断面図、(b)真上から見た場合の表面図 第一実施例をなすモールド後のセンサ素子の構成図(a)横から見た場合の断面図、(b)真上から見た場合の表面図 第一実施例におけるモールド成形の概略説明図 第一実施例におけるモールド樹脂の流れ出しの概略説明図 第二・第三実施例をなすモールド前のセンサ素子の構成図(a)横から見た場合の断面図、(b) 真上から見た場合の表面図 第二実施例をなすモールド後のセンサ素子の構成図(a) 横から見た場合の断面図、(b)真上から見た場合の表面図 第二実施例におけるモールド成形の概略説明図 第二実施例におけるモールド樹脂の流れ出しの概略説明図 スリットの説明図 第三実施例をなすモールド後のセンサ素子の構成図(a)横から見た場合の断面図、(b)真上から見た場合の表面図 第三実施例におけるモールド成形の概略説明図 第三実施例におけるモールド樹脂の流れ出しの概略説明図 第四実施例をなすモールド前のセンサ素子の構成図 第五実施例をなすモールド前のセンサ素子の構成図 本発明の熱式空気流量センサの構成図
  本発明の熱式空気流量センサについて、図15を用いて説明する。
  熱式空気流量センサは、吸入空気1を自動車の内燃機関(図示せず)に供給するための吸気管路5内に、ハウジング3と、半導体パッケージ2とを設ける。
  ハウジング3は、一端で半導体パッケージ2と電気的に接続されるコネクタ端子8と、ハウジング3を吸気管路5に固定するフランジ部4と、吸入空気1の一部を取り込む副通路6を備える。
  半導体パッケージ2は、リードフレーム10と半導体基板20と回路素子と温度センサとをモールド樹脂60により一体成形することにより作成される。また、半導体パッケージ2は、流量検出部7を吸入空気にさらすように、モールド樹脂60で覆わずに部分的に露出する領域を有している。流量検出部7は、副通路6内に設けられ、副通路6内を流れる流体の流量から、吸入空気1の流量を算出する。
  本発明の第一実施例について図1から図4を用いて説明する。
  第一実施例をなすセンサ素子の構成図を、図1と図2を用いて説明する。ここで、図1は第一実施例をなすモールド前のセンサ素子の構成図であり、図2は第一実施例をなすモールド後のセンサ素子の構成図である。
  図1に示されるように、熱式空気流量センサはシリコンなどの半導体基板20上に絶縁膜や抵抗体層が積層されており、半導体基板20の裏面側から、水酸化カリウム(KOH)などを用いて部分的に除去され薄肉部25が形成され、薄肉部25上に、発熱抵抗体21と、上流側測温抵抗体22と、下流側測温抵抗体23と、が形成される。発熱抵抗体21の温度が吸入空気量1の温度よりも一定温度高くなるように発熱抵抗体21の温度をフィードバック制御しており、上流側測温抵抗体22で測る温度と下流側測温抵抗体23で測る温度との温度差の情報により吸入空気1の流量を測定する。熱式空気流量センサの表面には、ポリイミドなどを代表とした有機保護膜30が形成されている。有機保護膜30は一度スピナーなどの塗布機を用いて、センサ表面上全面に均一に塗布される。その後、パターニング技術により、部分的にエッチング除去することで、半導体基板20と有機保護膜30とで段差を形成する。有機保護膜30は、発熱抵抗体21を切れ目なく囲っている形状とする。発熱抵抗体21と上流側測温抵抗体22と下流側測温抵抗体23とによって吸入空気の流量を測定するので、発熱抵抗体21と上流側測温抵抗体22と下流側測温抵抗体23は吸入空気にさらされる必要があり、有機保護膜30で覆わないようにする。また熱式空気流量センサの表面にはAl配線40が形成されており、金線などのボンディングワイヤ50を介してリードフレーム10と電気的に接続される。半導体基板20はリードフレーム10に接着剤などで固定されている。
  図2に示されるように、半導体基板20やリードフレーム10がモールド樹脂60により封止されている。ここで、発熱抵抗体21と上流側測温抵抗体22と下流側測温抵抗体23とは、流量を検出するために被測定媒体にさらされる必要があるので、モールド樹脂60に覆われずに、流量検出部7を含む領域がモールド樹脂60から部分的に露出される構成となっている。さらに、発熱抵抗体21を囲うように形成される有機保護膜30の外周端部は薄肉部25よりも外側に位置するように設けられ、有機保護膜30は部分的に露出される領域に配置されている。これにより、モールド成形時に熱式空気流量センサの表面と入れ駒83との間から樹脂が洩れたとしても、有機保護膜30でせき止めることができるので、薄肉部20へ樹脂が到達しないようすることができる。
  第一実施例におけるモールド成形について、図3と図4を用いて説明する。ここで、図3は第一実施例におけるモールド成形の概略説明図であり、図4は第一実施例におけるモールド樹脂の流れ出しの概略説明図である。
  図3に示されるように、下金型80と、上金型81と、上金型81に挿入するよう設けられた入れ駒83を用いて部分露出構造の半導体パッケージを作成する。リードフレーム10上に半導体基板20を実装した熱式空気流量センサを下金型80と上金型81とで挟み込み、薄肉部25など部分的に露出させる箇所は、モールド樹脂60で覆われないように入れ駒83で押えられていて、挿入口82から樹脂を流し込むことで部分露出構造の半導体パッケージを製造することができる。なお、挿入口82は下金型80、上金型81問わずに設けることができる。入れ駒83の押し当て部を基板表面に押さえつけることで、入れ駒83で抑えられている領域が樹脂封止されずに部分的に露出する構成とすることができる。しかし、薄肉部25は他の部分よりも薄いので、入れ駒83を薄肉部25に直接押し当ててしまうと薄肉部25に変形が生じてしまい、流量の検出誤差が生じてしまう。そこで、入れ駒83は押し当て面に凹部を有する構成とし、薄肉部25は凹部内に収まるようにし、この凹部外周縁に設けられる押し当て部で基板表面を押し当てることで、樹脂封止をする際に薄肉部25に直接入れ駒83があたらないようにしている。これにより、薄肉部25に入れ駒83を押し当てる荷重が加わることないので、薄肉部25を含む領域を部分的に露出する樹脂封止をする場合に、薄肉部の変形を抑制することができる。
  図4に示されるように、入れ駒83を押し込む荷重が不足すると、熱式空気流量センサの表面と入れ駒との間に隙間が生じてしまう。この状態で樹脂を流し込んだ場合、入れ駒83と熱式空気流量センサの表面との隙間61から樹脂が流れ出る虞がある。しかし、本発明の第一実施例においては、有機保護膜30は発熱抵抗体21を囲う構成であり、モールド樹脂60から部分的に露出させる領域に有機保護膜30を設けているので、隙間61から漏れる樹脂60を有機保護膜30でせき止めることができ、薄肉部25に樹脂が到達することを抑制することができる。入れ駒83を押し当てる力が不足して、モールド樹脂60が半導体素子部に漏れてしまうような製品が発生しても、その漏れ部がセンシングエリアである薄肉部25に到達しなければ、性能として仕様を満足することができる。したがって、本発明の第一実施例によれば、入れ駒83の荷重が小さく樹脂漏れが発生するような場合でも、熱式空気流量センサの信頼性を確保することができる。
  ここで、入れ駒83を移動量制御で押し当てる場合を考える。製品毎に半導体基板20表面の高さにはばらつきが生じるので、表面高さが高く出来上がったものについては、通常よりも大きな荷重が半導体基板20に加わり、荷重が大きすぎるとセンサ素子に変形が生じてしまう。一方で、表面高さが低く出来上がったものについては、入れ駒83と熱式空気流量センサの表面とのあいだに隙間61ができるので、樹脂が漏れる虞がある。本発明の第一実施例によれば、入れ駒83の荷重が小さい場合でも熱式空気流量センサの信頼性を確保することができるので、量産時の製造マージンを入れ駒83の荷重が小さいほうに広くすることができる。それゆえ、製品歩留まりを向上することができる。
  また、薄肉部25は無機材料から構成され、熱絶縁性を向上するために薄くしているので脆く、ダストの衝突に対する強度を確保する必要がある。特に薄肉部25の周縁部は他の箇所と比べてダストの衝突に対する強度が弱くなっている。そこで、図1のように有機保護膜30の内周端部が薄肉部25に位置するように設けることで、薄肉部25の周縁部を有機保護膜30で覆い、ダストの衝突による衝撃を有機保護膜30で吸収する構成とする。上記構成によれば、吸入空気に含まれるダストの衝突による薄肉部25の強度を上げることができるので、熱式空気流量センサの対汚損性が向上し、信頼性の高い熱式空気流量センサを実現する。
 本発明の第二実施例について、図5から図9を用いて説明する。なお、第一実施例と同じ構成に関しては説明を省略する。
  第二実施例をなすセンサ素子の構成図を、図5と図6を用いて説明する。ここで、図5は第二実施例をなすモールド前のセンサ素子の構成図であり、図6は第二実施例をなすモールド後のセンサ素子の構成図である。
  図5に示されるように、半導体基板20上に設けられる有機保護膜30に、発熱抵抗体発熱抵抗体21と上流側測温抵抗体22と下流側測温抵抗体23を被測定媒体にさらすように薄肉部25の一部を露出する露出部と、薄肉部25を囲うように設けられたスリット35を形成している。スリット35は薄肉部25を切れ目なく囲っているので、樹脂成形時に樹脂漏れが起こったとしても、スリット35にモールド樹脂60がトラップされ、薄肉部25へモールド樹脂60が流れ込むことを防止する。薄肉部25の周縁を保護するように有機保護膜30が設けられているので、吸入空気中に含まれるダストの衝突に対する薄肉部25の強度を上げることができる。スリット35により、半導体基板20の一部を有機保護膜30から露出させていて、半導体基板20の露出面と有機保護膜30により段差を形成している。さらに、Al配線40を有機保護膜30で覆うことで、水等の腐食成分から保護する構成にするのが望ましい。
  また、図6に示されるように、スリット35の内周端部全体とスリット35の外周端部とがモールド樹脂60から部分的に露出させるように、半導体基板20やリードフレーム10をモールド樹脂60で封止する。スリット35の内周端部全体がモールド樹脂60から部分的に露出させる領域に位置しているので、図8に示すように隙間61からモールド樹脂60が漏れたとしても、スリット35でモールド樹脂60をトラップし、薄肉部25への樹脂の到達を抑制することができる。
  第二実施例におけるモールド成形について、図7と図8を用いて説明する。ここで、図7は第二実施例におけるモールド成形の概略説明図であり、図8は第二実施例におけるモールド樹脂の流れ出しの概略説明図である。
  図7に示すように、第二実施例の部分露出構造の半導体パッケージを作成する際には、入れ駒83の押し当て部を有機保護膜30に押し付けている。そのため、有機保護膜30が緩衝材として働き、薄肉部25へ伝わる応力を低減することができるので、モールド成形をする場合の薄肉部25の変形を抑えることができる。それゆえ、本発明の第二実施例によれば、薄肉部25の変形による検出誤差を抑制することができるので、熱式空気流量センサの信頼性を向上することが可能となる。
  ここで、有機保護膜30にスリット35を設けることによる更なる効果について図9を用いて説明する。
  モールド樹脂60と熱式空気流量センサが、有機保護膜30を仲介した構造とした場合、モールド成形後の樹脂収縮によって有機保護膜30に応力が加わる。有機保護膜30の形状が薄肉部端部まで連通して形成されている場合では、モールド樹脂60の熱収縮による応力が薄肉部25の端部まで働き、流量特性に影響を与えてしまう虞がある。しかし、本発明の第二実施例では、モールド樹脂60と熱式空気流量センサの接触部に位置する有機保護膜31と、薄肉部端部に形成された有機保護膜32が隔離されるようにスリット部35を形成しているため、薄肉部端部に形成された有機保護膜32には応力が有機保護膜30を介して伝達しない。したがって流量特性への応力影響を低減する効果がある。
  本発明の第三実施例について、図10から図12を用いて説明する。なお、第二実施例と同じ構成に関しては説明を省略する。
  図10、図11に示されるように、スリット内周側有機保護膜33は、モールド樹脂60から部分的に露出させるように位置し、スリット外周側有機保護膜34はモールド樹脂60に覆われるように樹脂成形する。スリット内周側有機保護膜33がモールド樹脂60から部分的に露出させる領域に位置しているので、図12に示すように隙間61からモールド樹脂60が漏れたとしても、スリット内周側有機保護膜33によりモールド樹脂60をせき止めることができるので、薄肉部25へのモールド樹脂60の到達を抑制することができる。
 Al配線40を水等の腐食成分から保護するために有機保護膜30で保護しているが、有機保護膜30自体が水分を吸収してしまい、有機保護膜30を介してAl配線40に水分が伝達してしまう虞があるところ、本発明の第三実施例ではモールド樹脂60中にAl配線40を覆っている有機保護膜34があり、有機保護膜34は空気に直接触れない構成となっているのでよりAl配線40の腐食を防ぐことができる。さらに、半導体基板20とモールド樹脂60の界面から水などの腐食成分が浸入したとしても、有機保護膜34によりせき止めることが可能であるので、Al配線40への水などの腐食成分の浸入をより低減することができる。それゆえ、本発明の第三実施例の構成によれば、Al配線40の腐食をより低減することができるので、信頼性を向上している。
  また、第二実施例と同様に、モールド樹脂と半導体基板に挟まれる保護膜と薄肉部に形成される保護膜は互いに独立しているため、薄肉部への応力影響を低減する構成となっている。
  第四実施例について図13を用いて説明する。
 第一実施例のスリット形状は、全周が隔離した形状となっているが、図6に示すような片側、あるいは一辺方向のみにスリットが形成されている場合でも、モールド樹脂の流れ出し防止の効果は得られる。
 予め、入れ駒と半導体基板20がかた当りする傾向がある場合は、隙間が発生する可能性が高い方向を特定できる。したがってその方向にスリットを形成しておけば、樹脂漏れが発生する場合でも、薄肉部25へのモールド樹脂60の到達を抑制できるので、製品歩留まりを大きく向上できる。
 同様に、前記応力影響も同様であり、ある方向から樹脂の応力が大きく加わることが実機評価や解析などを用いて解明できれば、その方向にスリットを形成することによって、効果的に薄肉部の信頼性を向上できる。
  第五実施例について図14を用いて説明する。
 第二実施例のスリット形状は、全周が一段隔離した形状となっているが、図14に示すような多段形状にスリットが形成されている場合でも、上記モールド樹脂の流れ出し防止の効果は得られる。
 多段にする目的の一つに半導体基板上に形成された抵抗体37をダストの衝突から保護する場合や、熱応答性を向上させるために半導体基板上に形成された温度センサ37を薄肉部25と同様に露出したい場合は、第二実施例で構成されるスリット内に保護膜31を形成する場合がある。この場合、モールド樹脂60の流れ込みを防止するためのスリットが多段形状になる。このような場合でも、モールド樹脂60の流れ防止に対して有効な形状となる。
 第一実施例から第五実施例において、有機保護膜30がポリイミドで形成されることが望ましい。吸入空気流量を測定するために発熱抵抗体21が発熱し、薄肉部25は高温となるが、ポリイミドは耐熱性に優れているために、発熱による材質の劣化を抑えることができる。そのため、長期にわたり固体粒子の衝突に対して測定素子1 の強度を向上することができる。
  モールド樹脂60が半導体素子部に漏れてしまうような製品が発生しても、その漏れ部がセンシングエリアである薄肉部25に到達しなければ、性能として仕様を満足できる。したがってある製品において、樹脂が漏れてしまうような場合でも、薄肉部25に到達しにくい構造を構成することによって、製品歩留まりの低下を抑制することができる。
  有機保護膜30をポリイミドで形成すると、半導体素子の一部を部分的に露出するように樹脂封止するような場合においても、上記薄肉部の絶縁膜の耐ダスト強度を向上させてなおかつ、コストアップせずに上記製品歩留まりの低下を抑制する熱式空気流量センサを提供することができる。
1・・・・吸入空気
2・・・・半導体パッケージ
3・・・・ハウジング
4・・・・フランジ
5・・・・吸気管路
6・・・・副通路
7・・・・流量検出部
8・・・・コネクタ端子
10・・・リードフレーム(基板支持部材)
20・・・半導体基板
21・・・発熱抵抗体
22・・・上流側温抵抗体
23・・・下流側温抵抗体
25・・・薄肉部
30・・・有機保護膜
31・・・有機保護膜
33・・・スリット内周側有機保護膜
34・・・スリット外周側有機保護膜
35・・・スリット
36・・・スリット
37・・・半導体基板上に形成される抵抗体
38・・・半導体基板上に形成される温度センサ
40・・・Al配線
50・・・ボンディングワイヤ       
60・・・モールド樹脂
61・・・モールド樹脂と熱式流量センサの境界部
80・・・モールド下金型
81・・・モールド上金型
82・・・樹脂流し口
83・・・入れ駒

Claims (19)

  1.  薄肉部と、前記薄肉部に設けられる発熱抵抗体と、前記発熱抵抗体の上下流に設けられる測温抵抗体を有する半導体基板と、
     前記半導体基板上に設けられた保護膜と、
     前記半導体基板を封止する樹脂と、を備え、前記樹脂は前記薄肉部を含む領域を部分的に露出する露出部を有する熱式空気流量センサであって、
     前記保護膜は、前記発熱抵抗体を切れ目なく囲うように設けられていて、前記保護膜の外周端部が前記薄肉部より外側で、かつ前記露出部にあることを特徴とする熱式空気流量センサ。
  2.  請求項1に記載の熱式空気流量センサにおいて、
     前記保護膜は有機材料からなり、前記保護膜の内周端部は薄肉部上にあることを特徴とする熱式空気流量センサ。
  3.  請求項2に記載の熱式空気流量センサにおいて、
     前記半導体基板上であって、前記保護膜よりも外側に第2の保護膜を設けることを特徴とする熱式空気流量センサ。
  4.  請求項3に記載の熱式空気流量センサにおいて、
     前記第2の保護膜は、前記保護膜を囲うように設けられていることを特徴とする熱式空気流量センサ。
  5.  請求項4に記載の熱式空気流量センサにおいて、
     前記第2の保護膜のすべてが、前記樹脂に覆われている領域に設けられていることを特徴とする熱式空気流量センサ。
  6.  請求項4に記載の熱式空気流量センサにおいて、
     前記第2の保護膜の内周端部が前記露出部に設けられていて、前記第2の保護膜の外周端部が前記樹脂に覆われている領域に設けられていることを特徴とする熱式空気流量センサ。
  7.  請求項4に記載の熱式流量センサにおいて、
     前記第2の保護膜は前記保護膜と同一の材料からなることを特徴とする熱式空気流量センサ。
  8.  請求項7に記載の熱式流量センサにおいて、
     前記有機材料は、ポリイミドであることを特徴とする熱式空気流量センサ。
  9.  請求項4に記載の熱式空気流量センサにおいて、
     前記保護膜を囲うように設けられた第3の保護膜を備え、前記第2の保護膜は前記第3の保護膜を囲うように設けられていることを特徴とする熱式空気流量センサ。
  10.  請求項9に記載の熱式空気流量センサにおいて、
     前記第3の保護膜は、前記露出部に設けられていることを特徴とする熱式空気流量センサ。
  11.  請求項9に記載の熱式空気流量センサにおいて、
     前記第3の保護膜の内周端部が前記露出部に設けられていて、前記第3の保護膜の外周端部が前記樹脂に覆われている領域に設けられていることを特徴とする熱式空気流量センサ。 
  12.  請求項9に記載の熱式流量センサにおいて、
     前記保護膜と前記第2の保護膜と前記第3の保護膜とは同一の材料からなることを特徴とする熱式空気流量センサ。
  13.  薄肉部と、前記薄肉部に設けられる発熱抵抗体と、前記発熱抵抗体の上下流に設けられる測温抵抗体を有する半導体基板と、
     前記薄肉部の一部を露出するよう前記半導体基板上に設けられた保護膜と、 
     前記半導体基板を封止する樹脂と、を備え、前記樹脂は前記薄肉部を含む領域を部分的に露出する露出部を有する熱式空気流量センサであって、
     前記保護膜は、スリットを有していて、前記スリットが前記露出部に配置されていることを特徴とする熱式空気流量センサ。 
  14.  請求項13に記載の熱式空気流量センサにおいて、 
     前記保護膜は有機材料からなることを特徴とする熱式空気流量センサ。 
  15.  請求項14に記載の熱式空気流量センサにおいて、 
     前記スリットは、前記薄肉部を切れ目なく囲うように設けられていることを特徴とする熱式空気流量センサ。
  16.  請求項15に記載の熱式空気流量センサにおいて、 
     前記スリットの外周端部は樹脂に覆われている領域にあり、前記スリットの内周端部は前記露出部にあることを特徴とする熱式空気流量センサ。
  17.  請求項15に記載の熱式空気流量センサにおいて、
     前記スリットはすべて前記露出部に配置されていることを特徴とする熱式空気流量センサ。
  18.  金型と、押し当て面に押し当て部と凹部を有する入れ駒とを用いるチップパッケージの製造方法であって、
     発熱抵抗体が形成される薄肉部と前記発熱抵抗体を囲うように設けられた保護膜とを有する半導体基板と、駆動回路と、前記半導体基板と駆動回路とを支持する支持体と、を前記金型に入れる第1ステップと、
     前記保護膜の外側を、前記入れ駒の押し当て部で押し当てる第2ステップと、 
     前記金型に樹脂を注入する第3ステップと、 
    を備えることを特徴とするチップパッケージの製造方法。 
  19.  金型と、押し当て面に押し当て部と凹部を有する入れ駒とを用いるチップパッケージの製造方法であって、 
     薄肉部と前記薄肉部を囲うようにスリットを設けた保護膜とを有する半導体基板と、駆動回路と、前記半導体基板と駆動回路とを支持する支持体と、を前記金型に入れる第1ステップと、 
     前記スリット領域に、前記入れ駒の押し当て部で押し当てる第2ステップと、 
     前記金型に樹脂を注入する第3ステップと、 
    を備えることを特徴とするチップパッケージの製造方法。 
PCT/JP2013/065912 2012-06-29 2013-06-10 熱式空気流量センサ WO2014002736A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380034250.0A CN104395709B (zh) 2012-06-29 2013-06-10 热式空气流量传感器
US14/410,713 US9664546B2 (en) 2012-06-29 2013-06-10 Thermal airflow sensor
DE112013003175.2T DE112013003175B4 (de) 2012-06-29 2013-06-10 Thermische Luftstromsensoren und zugehörige Herstellverfahren
US15/495,268 US10001394B2 (en) 2012-06-29 2017-04-24 Thermal airflow sensor
US15/979,301 US10240957B2 (en) 2012-06-29 2018-05-14 Thermal airflow sensor
US16/281,796 US11391611B2 (en) 2012-06-29 2019-02-21 Thermal airflow sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012146286A JP5675716B2 (ja) 2012-06-29 2012-06-29 熱式空気流量センサ
JP2012-146286 2012-06-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/410,713 A-371-Of-International US9664546B2 (en) 2012-06-29 2013-06-10 Thermal airflow sensor
US15/495,268 Continuation US10001394B2 (en) 2012-06-29 2017-04-24 Thermal airflow sensor

Publications (1)

Publication Number Publication Date
WO2014002736A1 true WO2014002736A1 (ja) 2014-01-03

Family

ID=49782901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065912 WO2014002736A1 (ja) 2012-06-29 2013-06-10 熱式空気流量センサ

Country Status (5)

Country Link
US (4) US9664546B2 (ja)
JP (1) JP5675716B2 (ja)
CN (2) CN104395709B (ja)
DE (2) DE112013007791B4 (ja)
WO (1) WO2014002736A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176543A4 (en) * 2014-07-30 2018-03-21 Hitachi Automotive Systems, Ltd. Circuit board mounting structure and sensor using same
US12016794B2 (en) 2018-10-09 2024-06-25 Avedro, Inc. Photoactivation systems and methods for corneal cross-linking treatments

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675716B2 (ja) * 2012-06-29 2015-02-25 日立オートモティブシステムズ株式会社 熱式空気流量センサ
US10165954B2 (en) * 2014-07-31 2019-01-01 Salutron Inc. Integrated sensor modules
JP5768179B2 (ja) * 2014-12-24 2015-08-26 日立オートモティブシステムズ株式会社 熱式空気流量センサ
JP6578238B2 (ja) 2016-04-11 2019-09-18 日立オートモティブシステムズ株式会社 物理量検出装置
JP6825821B2 (ja) * 2016-04-26 2021-02-03 Koa株式会社 流量センサ
JP6528732B2 (ja) * 2016-06-20 2019-06-12 株式会社デンソー 流量センサ
JP6944648B2 (ja) * 2018-02-05 2021-10-06 東芝ライテック株式会社 車両用照明装置、車両用灯具、およびソケットの製造方法
DE112020001492T5 (de) 2019-03-26 2022-01-13 Mitsubishi Power, Ltd. Verdichtersystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270930A (ja) * 2008-05-07 2009-11-19 Denso Corp 熱式流量センサ
JP2011119500A (ja) * 2009-12-04 2011-06-16 Denso Corp センサ装置およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601525B2 (ja) 1977-11-13 1985-01-16 金子農機株式会社 液体燃料燃焼装置
JP2784286B2 (ja) 1991-12-09 1998-08-06 三菱電機株式会社 半導体センサー装置の製造方法
CN1657882A (zh) * 1997-11-21 2005-08-24 三井金属矿业株式会社 流量传感器及流量检测装置
JP3545637B2 (ja) * 1999-03-24 2004-07-21 三菱電機株式会社 感熱式流量センサ
JP3610484B2 (ja) 1999-08-10 2005-01-12 株式会社日立製作所 熱式空気流量計
EP1365216B1 (en) * 2002-05-10 2018-01-17 Azbil Corporation Flow sensor and method of manufacturing the same
JP2005241279A (ja) * 2004-02-24 2005-09-08 Fujikin Inc 耐食金属製流体用センサ及びこれを用いた流体供給機器
JP2006058078A (ja) 2004-08-18 2006-03-02 Hitachi Ltd 熱式空気流量計
JP4882732B2 (ja) 2006-12-22 2012-02-22 株式会社デンソー 半導体装置
JP4450031B2 (ja) 2007-08-22 2010-04-14 株式会社デンソー 半導体部品
JP5202007B2 (ja) * 2008-01-29 2013-06-05 日立オートモティブシステムズ株式会社 熱式流体流量センサ
KR20090110242A (ko) * 2008-04-17 2009-10-21 삼성전자주식회사 오디오 신호를 처리하는 방법 및 장치
JP5346489B2 (ja) * 2008-05-12 2013-11-20 美和ロック株式会社 扉のハンドル座
JP2010085137A (ja) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd 空気流量計
JP5276964B2 (ja) * 2008-12-08 2013-08-28 日立オートモティブシステムズ株式会社 熱式流体流量センサおよびその製造方法
JP4902679B2 (ja) * 2009-02-27 2012-03-21 日立オートモティブシステムズ株式会社 計測素子
JP5178598B2 (ja) * 2009-03-24 2013-04-10 日立オートモティブシステムズ株式会社 熱式流量計
JP4839395B2 (ja) * 2009-07-30 2011-12-21 日立オートモティブシステムズ株式会社 熱式流量計
JP5406674B2 (ja) * 2009-11-06 2014-02-05 日立オートモティブシステムズ株式会社 熱式流体流量センサおよびその製造方法
JP5208099B2 (ja) * 2009-12-11 2013-06-12 日立オートモティブシステムズ株式会社 流量センサとその製造方法、及び流量センサモジュール
JP5496027B2 (ja) * 2010-09-09 2014-05-21 日立オートモティブシステムズ株式会社 熱式空気流量計
JP4921583B2 (ja) * 2010-12-17 2012-04-25 株式会社サンセイアールアンドディ 遊技機
JP5526065B2 (ja) * 2011-03-25 2014-06-18 日立オートモティブシステムズ株式会社 熱式センサおよびその製造方法
US9134153B2 (en) * 2011-07-13 2015-09-15 Hitachi Automotive Systems, Ltd. Flowmeter
JP5710538B2 (ja) * 2012-04-06 2015-04-30 日立オートモティブシステムズ株式会社 流量センサ
JP5675716B2 (ja) * 2012-06-29 2015-02-25 日立オートモティブシステムズ株式会社 熱式空気流量センサ
JP6018903B2 (ja) * 2012-12-17 2016-11-02 日立オートモティブシステムズ株式会社 物理量センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270930A (ja) * 2008-05-07 2009-11-19 Denso Corp 熱式流量センサ
JP2011119500A (ja) * 2009-12-04 2011-06-16 Denso Corp センサ装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176543A4 (en) * 2014-07-30 2018-03-21 Hitachi Automotive Systems, Ltd. Circuit board mounting structure and sensor using same
US12016794B2 (en) 2018-10-09 2024-06-25 Avedro, Inc. Photoactivation systems and methods for corneal cross-linking treatments

Also Published As

Publication number Publication date
US10001394B2 (en) 2018-06-19
JP2014010024A (ja) 2014-01-20
CN106840291A (zh) 2017-06-13
CN106840291B (zh) 2019-08-09
US20170227389A1 (en) 2017-08-10
CN104395709A (zh) 2015-03-04
US20150323360A1 (en) 2015-11-12
US10240957B2 (en) 2019-03-26
CN104395709B (zh) 2017-04-12
JP5675716B2 (ja) 2015-02-25
US20190178694A1 (en) 2019-06-13
DE112013003175B4 (de) 2022-03-17
US9664546B2 (en) 2017-05-30
US20180266862A1 (en) 2018-09-20
DE112013007791B4 (de) 2024-02-22
US11391611B2 (en) 2022-07-19
DE112013003175T5 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5675716B2 (ja) 熱式空気流量センサ
JP5648021B2 (ja) 熱式空気流量センサ
JP5763590B2 (ja) 熱式流量計
KR20120053022A (ko) 유량 센서 및 그 제조 방법 그리고 유량 센서 모듈 및 그 제조 방법
JP5758851B2 (ja) 熱式流量計
JP5768011B2 (ja) 熱式空気流量センサ
WO2013187225A1 (ja) 熱式流量計
JP2010286393A (ja) 流量検出装置
JP2009031067A (ja) センサ装置
JP5744299B2 (ja) 熱式空気流量センサ
JP5814192B2 (ja) 流量測定装置
JP5768179B2 (ja) 熱式空気流量センサ
JP5841211B2 (ja) 物理量計測装置及びその製造方法
JP2009264741A (ja) 熱式流量センサの製造方法
JP6200962B2 (ja) 空気流量測定装置
JP5998251B2 (ja) 物理量検出計
JP6336833B2 (ja) 熱式空気流量計
JP5533590B2 (ja) 感熱式流量センサ
JP5976167B2 (ja) 熱式流量計
JP6602744B2 (ja) センサ装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14410713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130031752

Country of ref document: DE

Ref document number: 112013003175

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808578

Country of ref document: EP

Kind code of ref document: A1