WO2013183590A1 - ポリブチレンテレフタレートの製造方法 - Google Patents

ポリブチレンテレフタレートの製造方法 Download PDF

Info

Publication number
WO2013183590A1
WO2013183590A1 PCT/JP2013/065365 JP2013065365W WO2013183590A1 WO 2013183590 A1 WO2013183590 A1 WO 2013183590A1 JP 2013065365 W JP2013065365 W JP 2013065365W WO 2013183590 A1 WO2013183590 A1 WO 2013183590A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
pbt
acid
ppm
butanediol
Prior art date
Application number
PCT/JP2013/065365
Other languages
English (en)
French (fr)
Inventor
宇都宮 賢
雄輔 井澤
範和 小西
真一郎 松園
鈴木 隆行
ミカエル ジャプス
マーク バーク
ウォーレン クラーク
Original Assignee
三菱化学株式会社
ジェノマティカ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IN11259DEN2014 priority Critical patent/IN2014DN11259A/en
Priority to SG11201408099VA priority patent/SG11201408099VA/en
Priority to CN201380041733.3A priority patent/CN104540873B/zh
Priority to MYPI2014703634A priority patent/MY184525A/en
Priority to CA2875771A priority patent/CA2875771C/en
Priority to EA201492263A priority patent/EA039158B1/ru
Application filed by 三菱化学株式会社, ジェノマティカ・インコーポレイテッド filed Critical 三菱化学株式会社
Priority to BR112014030475-0A priority patent/BR112014030475B1/pt
Priority to EP13800602.8A priority patent/EP2857435B1/en
Priority to AU2013272713A priority patent/AU2013272713B2/en
Priority to KR1020147036487A priority patent/KR102086324B1/ko
Publication of WO2013183590A1 publication Critical patent/WO2013183590A1/ja
Priority to US14/560,800 priority patent/US9556307B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010614-Hydroxybutyrate dehydrogenase (1.1.1.61)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01024Succinate-semialdehyde dehydrogenase (NAD+) (1.2.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/04Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
    • C12Y102/04002Oxoglutarate dehydrogenase (succinyl-transferring) (1.2.4.2), i.e. alpha-ketoglutarat dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01004Succinate-CoA ligase (GDP-forming) (6.2.1.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing polybutylene terephthalate having good color tone from 1,4-butanediol derived from biomass resources.
  • PBT Polybutylene terephthalate
  • PBT can be obtained by reacting terephthalic acid or an alkyl ester thereof with 1,4-butanediol (hereinafter sometimes abbreviated as “1,4-BG”). Since BG is easily converted to tetrahydrofuran (hereinafter sometimes abbreviated as “THF”) during the reaction, there is a method for producing PBT with a high yield that suppresses the conversion of 1,4-BG to THF. Desired.
  • 1,4-BG 1,4-butanediol
  • the PBT is expected to move away from raw materials derived from fossil fuels as well as energy.
  • raw materials derived from biomass resources that use plants and the like as raw materials are one of the promising raw material candidates, and 1,4-BG, which is a raw material for PBT, is also a 1,4-BG derived from biomass resources.
  • a method for producing PBT using BG as a raw material has been studied.
  • the color tone of the obtained PBT is worse than when the raw material 1,4-BG obtained from fossil fuel such as petroleum is used.
  • the main cause of this color deterioration is the presence of a nitrogen atom-containing component in the PBT. Further, it is considered that there is an influence on the PBT color tone by other components than this component.
  • Patent Document 1 discloses a technique for obtaining PBT using a raw material derived from biomass resources by controlling the nitrogen atom content of the raw material 1,4-BG derived from biomass resources to 0.01 to 50 ppm by mass. It describes about obtaining PBT with an atomic content of 50 mass ppm or less. Furthermore, 1-acetoxy-4-hydroxybutane (hereinafter sometimes abbreviated as “1,4-HAB”) contained in the raw material 1,4-BG delays the polycondensation reaction of PBT, and PBT However, it is described that the use of 1,4-BG having a controlled nitrogen atom concentration in the raw material 1,4-BG as a raw material can reduce PBT coloring due to polymerization delay.
  • 1,4-HAB 1-acetoxy-4-hydroxybutane
  • gamma-butyrolactone (hereinafter sometimes abbreviated as “GBL”) is generated as a by-product in the conventional method for producing 1,4-BG.
  • GBL gamma-butyrolactone
  • Patent Document 2 discloses that in a process for producing 1,4-BG from a fossil fuel-derived raw material, 1,4-BG is hydrogenated from maleic acid, succinic acid, maleic anhydride and / or fumaric acid, and the like. It is described that gamma-butyrolactone is produced as a by-product in obtaining a crude hydrogenation product containing BG.
  • Patent Document 3 produces 1,4-BG by performing chemical reduction or biotechnological hydrogenation of succinic acid derived from biomass resources.
  • Patent Document 4 describes a method for obtaining 1,4-BG by direct fermentation from bacterial cells.
  • Patent Document 3 involves hydrogenation similar to that of Patent Document 2, there is a high possibility that GBL by-product will proceed.
  • Patent Document 4 there is a high possibility that GBL is generated as a by-product from a metabolic pathway or the like. Further, Patent Documents 1 to 4 do not describe the relationship between gamma-butyrolactone contained in the raw material 1,4-BG and the nitrogen atom-containing compound.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for efficiently producing PBT with good color tone using 1,4-BG derived from biomass resources as a raw material.
  • the present inventors have found that gamma-butyrolactone contained in the raw material 1,4-BG reacts with the nitrogen atom-containing compound in the raw material 1,4-BG during the production of PBT. It was found that the compound produced in this way causes a new coloration of PBT.
  • the color tone is good by controlling the content of gamma-butyrolactone in 1,4-BG to a specific amount.
  • the present inventors have found that it is possible to obtain a reliable PBT and have completed the present invention. That is, the gist of the present invention resides in the following [1] to [6].
  • a method for producing polybutylene terephthalate which comprises a step (a) of reacting or transesterifying, and a polycondensation reaction step (b) for obtaining a polybutylene terephthalate by polycondensation reaction of the reaction product obtained in the step (a).
  • a method for producing polybutylene terephthalate wherein the content of gamma-butyrolactone in the raw material 1,4-butanediol is 1 to 100 ppm by mass.
  • the method for producing polybutylene terephthalate according to [2] wherein the content of gamma-butyrolactone in the crude 1,4-butanediol is 101 mass ppm to 2 mass%.
  • Non-naturally occurring microbial biocatalyst at least one exogenous encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthase, CoA-dependent succinic semialdehyde dehydrogenase, or ⁇ -ketoglutarate decarboxylase
  • a microbial biocatalyst comprising a microorganism having a 4-hydroxybutanoic acid biosynthetic pathway comprising a nucleic acid, wherein said microorganism comprises a sufficient amount of said exogenous nucleic acid to secrete said 4-hydroxybutanoic acid monomer
  • PBT having a good color tone can be efficiently produced using 1,4-BG derived from biomass resources as a raw material.
  • FIG. 1 shows the relationship between the color tone of PBT obtained by the PBT production method (nitrogen atom-containing biomethod) and the conventional PBT production method (the petrification method) of the present invention and the GBL content of raw material 1,4-BG.
  • FIG. 1 shows the relationship between the color tone of PBT obtained by the PBT production method (nitrogen atom-containing biomethod) and the conventional PBT production method (the petrification method) of the present invention and the GBL content of raw material 1,4-BG.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the lower limit value or the upper limit value in the present specification means a range including the value of the lower limit value or the upper limit value.
  • “weight%”, “weight ppm”, “part by weight”, and “weight ratio” are synonymous with “mass%”, “mass ppm”, “part by weight”, and “mass ratio”, respectively. .
  • ppm when “ppm” is simply described, it means “ppm by weight”.
  • PBT is obtained by subjecting a dicarboxylic acid component containing terephthalic acid or an alkyl ester of terephthalic acid to a diol component containing raw material 1,4-butanediol derived from biomass resources, It can be obtained by subjecting the reaction product to a polycondensation reaction.
  • the alkyl group of the terephthalic acid alkyl ester is preferably an alkyl group having 1 to 3 carbon atoms.
  • the terephthalic acid or terephthalic acid alkyl ester used as a raw material is preferably 80 mol% or more, more preferably 90 mol% or more, and most preferably 100 mol% of the total dicarboxylic acid component.
  • the biomass resource-derived raw material 1,4-BG is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 99 mol% or more of the total diol component.
  • the mechanical strength, heat resistance, fragrance retaining property and the like as a molded product are preferable.
  • the dicarboxylic acid component used as a raw material may contain a dicarboxylic acid component other than terephthalic acid or terephthalic acid alkyl ester as a main component, and other dicarboxylic acid components together with terephthalic acid or terephthalic acid alkyl ester in a reactor. May be supplied.
  • dicarboxylic acid components include phthalic acid, isophthalic acid, dibromoisophthalic acid, sodium sulfoisophthalate, phenylenedioxydicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4 , 4′-diphenylketone dicarboxylic acid, 4,4′-diphenoxyethanedicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, 2,6-naphthalenedicarboxylic acid and the like, and ester-forming derivatives thereof Alicyclic dicarboxylic acids such as hexahydroterephthalic acid and hexahydroisophthalic acid and their ester-forming derivatives; succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic
  • the diol component as a raw material may contain a diol component other than the biomass resource-derived raw material 1,4-BG, and other diol components may be reacted with the biomass resource raw material 1,4-BG. May be supplied to the vessel.
  • Examples of other diol components include ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, 1,2- Butanediol, 1,3-butanediol, 2,3-butanediol, 1,3-pentanediol, 2,3-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, polyethylene glycol, poly Aliphatic chain diols such as tetramethylene glycol; 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, 1,4-cyclohexanedimethylol, 2,5-norbornane dimethylol, etc.
  • Alicyclic Diols xylylene glycol, 4,4′-dihydroxybiphenyl, 2,2-bis (4′-hydroxyphenyl) propane, 2,2-bis (4′- ⁇ -hydroxyethoxyphenyl) propane, bis (4-hydroxy Aromatic diols such as phenyl) sulfone and bis (4′- ⁇ -hydroxyethoxyphenyl) sulfonic acid; ethylene oxide adduct or propylene oxide adduct of 2,2-bis (4′-hydroxyphenyl) propane; derived from biomass resources 1,4-BG etc. which are not. These may be used alone or in combination of two or more.
  • the following components may be further used as a copolymerization component in addition to the dicarboxylic acid component and the diol component.
  • the copolymer component include glycolic acid, p-hydroxybenzoic acid, hydroxycarboxylic acid such as p- ⁇ -hydroxyethoxybenzoic acid, alkoxycarboxylic acid, stearyl alcohol, heneicosanol, octacosanol, benzyl alcohol, stearic acid, behen.
  • Monofunctional components such as acid, benzoic acid, t-butylbenzoic acid, benzoylbenzoic acid, tricarballylic acid, trimellitic acid, trimesic acid, pyromellitic acid, naphthalenetetracarboxylic acid, gallic acid, trimethylolethane, trimethylolpropane , Trifunctional or higher polyfunctional components such as glycerol, pentaerythritol and sugar ester. Regarding these copolymer components, one kind may be used alone, or two or more kinds may be mixed and used.
  • the raw material 1,4-BG used in the production of the PBT of the present invention is derived from biomass resources and is preferable from the viewpoint of environmental protection.
  • Biomass resources are those that are stored by converting the light energy of the sun into forms such as starch and cellulose by the photosynthetic action of plants, animals that grow by eating plants, and plants and animals that are processed. Products that can be produced. Specifically, wood, rice straw, rice bran, old rice, corn, sugar cane, cassava, sago palm, okara, corn cob, tapioca cass, bagasse, vegetable oil residue, buckwheat, buckwheat, soybean, oil and fat, waste paper, paper residue, marine product residue, Examples include livestock excrement, sewage sludge, and food waste.
  • plant resources such as wood, rice straw, old rice, corn, sugar cane, cassava, sago palm, okara, corn cob, tapioca cass, bagasse, vegetable oil residue, potato, buckwheat, soybeans, fats and oils, waste paper, papermaking residue, etc. are more preferable.
  • Preferred examples include wood, rice straw, old rice, corn, sugar cane, cassava, sago palm, straw, oil and fat, waste paper, papermaking residue, and the like, and most preferred are corn, sugar cane, cassava, and sago palm.
  • Biomass resources generally contain many alkali metals and alkaline earth metals such as nitrogen atoms, Na, K, Mg, and Ca.
  • the method of these biomass resources is not particularly limited.
  • the biomass resources are subjected to known pretreatment and saccharification processes such as chemical treatment with acids and alkalis, biological treatment using microorganisms, physical treatment, and the like. Induced to carbon source.
  • the process often includes a refinement process by pretreatment such as chipping, scraping, or crushing biomass resources, and further includes a grinding process by a grinder or a mill as necessary.
  • the refined biomass resources are usually guided to a carbon source through further pretreatment and saccharification steps.
  • Specific methods include chemical methods such as acid treatment with strong acids such as sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid, alkali treatment, ammonia freeze steaming explosion method, solvent extraction, supercritical fluid treatment, oxidizing agent treatment; Examples thereof include physical methods such as pulverization, steam explosion, microwave treatment, and electron beam irradiation; biological treatments such as hydrolysis by microorganisms and enzyme treatment.
  • Carbon sources derived from the above biomass resources usually include hexoses such as glucose, mannose, galactose, fructose, sorbose, tagatose; pentoses such as arabinose, xylose, ribose, xylulose, ribulose; pentose, saccharose, starch, cellulose Disaccharides and polysaccharides such as butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, rirenonic acid, monoctinic acid, arachidic acid, eicosene Fats and oils such as acid, arachidonic acid, behenic acid, erucic acid, docosapentaenoic acid, docosahexaenoic acid, lignoceric acid and ceracolonic acid; poly
  • hexose such as glucose, fructose, xylose, saccharose, pentose or disaccharide is preferable, and glucose is particularly preferable.
  • cellulose which is a main component of paper is also preferable.
  • these carbon sources are used as a raw material by fermentation methods by microbial conversion, chemical conversion methods including reaction steps such as hydrolysis, dehydration reaction, hydration reaction, oxidation reaction, etc., and combinations of these fermentation methods and chemical conversion methods.
  • 1,4-BG is synthesized.
  • the fermentation method by microbial conversion is preferable.
  • the microorganism used in the fermentation method by microbial conversion is not particularly limited, and examples thereof include coryneform bacteria, Escherichia coli, Anaerobiospirillum genus, Actinobacillus genus, filamentous fungi and yeast. Can be mentioned. Among the microorganisms, coryneform bacteria, Escherichia coli, Anaerobiospirillum genus and yeast are preferable, coryneform bacteria, Escherichia coli and yeast are more preferable, and Escherichia coli is particularly preferable.
  • the raw material 1,4-BG derived from biomass resources used in the present invention may be produced directly from a carbon source such as glucose, fructose, xylose and saccharose described above by a fermentation method, or obtained by a fermentation method. It may be obtained by converting succinic acid, succinic anhydride, succinic acid ester, gamma butyrolactone and its derivatives into 1,4-BG by chemical reaction. Further, 1,4-BG may be produced from propylene, butadiene, butane, acetylene, synthesis gas and the like obtained by fermentation. Among these, the method of directly obtaining the raw material 1,4-BG by fermentation is efficient and preferable.
  • Examples of the reduction catalyst for hydrogenating succinic acid include Pd, Ru, Re, Rh, Ni, Cu, Co and compounds thereof. Specifically, Pd / Ag / Re, Ru / Ni / Co / ZnO, Cu / Zn oxide, Cu / Zn / Cr oxide, Ru / Re, Re / C, Ru / Sn, Ru / Pt / Sn , Pt / Re / alkali, Pt / Re, Pd / Co / Re, Cu / Si, Cu / Cr / Mn, ReO / CuO / ZnO, CuO / CrO, Pd / Re, Ni / Co, Pd / CuO / CrO 3 , phosphoric acid Ru, Ni / Co, Co / Ru / Mn, Cu / Pd / KOH, Cu / Cr / Zn, and the like. Among these, Ru / Sn or Ru / Pt / Sn is preferable in terms of catalytic
  • raw material 1,4-BG from biomass resources by a combination with a known organic chemical catalytic reaction
  • a method of producing raw material 1,4-BG from biomass resources by a combination with a known organic chemical catalytic reaction is also used.
  • raw material 1,4-BG can be easily produced by a combination of a known dehydration reaction and catalytic reaction.
  • the raw material 1,4-BG derived from biomass resources contains nitrogen atom-containing compounds as impurities due to the fermentation process and the purification process including the acid neutralization step. Specifically, nitrogen atom-containing compounds such as amino acids, proteins, ammonia, urea, and fermenting bacteria are included.
  • the nitrogen atom content of the raw material 1,4-BG obtained from biomass resources, which is a raw material for PBT is a mass ratio with respect to the raw material 1,4-BG, and the upper limit is usually 50 ppm, preferably 20 ppm, more preferably 10 ppm, more preferably 5 ppm. Further, the lower limit is usually 0.01 ppm, preferably 0.1 ppm, and particularly preferably 0.2 ppm from the viewpoint of economy of the purification process. As the nitrogen atom content in the raw material 1,4-BG decreases, the color tone of the produced PBT tends to be more favorable.
  • the larger the number the easier the purification process becomes and it is economically advantageous, and the conversion rate of 1,4-BG to THF during the PBT production reaction is also easily suppressed.
  • the nitrogen atom content in 1,4-BG can be measured by the method described in the Examples section below, but the measuring method is not limited to this.
  • the reason why the nitrogen atom content of the raw material 1,4-BG used in the production of PBT in the present invention is 0.01 to 50 ppm by mass is not certain in terms of the polycondensation reaction rate and color tone.
  • a coloring attractant that deteriorates the color tone of PBT by inhibiting the polycondensation reaction in the purification process including distillation and treatment for controlling the nitrogen atom content of the raw material 1,4-BG It is presumed that the generation of can be suppressed.
  • the raw material 1,4-BG used in the present invention contains GBL, which is considered to generate a nitrogen atom-containing compound and various amides, amines, amino acids and other derivatives. Therefore, it is considered that a component that strongly deteriorates the color tone of PBT exists in these derivatives.
  • the nitrogen atom content in the raw material 1,4-BG derived from the biomass resource is, for example, when hydrogenated succinic acid obtained by fermentation of the biomass resource to obtain the raw material 1,4-BG, its fermentation conditions, ammonia It is possible to adjust the amount of the nitrogen atom-containing compound in succinic acid according to the neutralization conditions by succinic acid and the crystallization conditions of succinic acid. Further, 1,4-BG obtained by hydrogenating succinic acid can adjust its nitrogen atom content according to purification conditions including distillation. Also, when the raw material 1,4-BG is obtained directly by fermentation of biomass resources, it should be adjusted according to the fermentation conditions, neutralization conditions with ammonia, purification conditions including distillation of the obtained 1,4-BG, etc. Can do.
  • the raw material 1,4-BG derived from biomass resources usually contains GBL as an impurity.
  • GBL an impurity
  • the raw material 1,4-BG is produced by hydrogenation via maleic acid, succinic acid, succinic anhydride, succinic acid ester, etc. as an intermediate, or when 2-hydroxytetrahydrofuran is contained as an impurity and dehydrogenated
  • the raw material 1,4-BG contains GBL as an impurity.
  • the raw material 1,4-BG used for the production of PBT is crude 1,4-BG containing a large amount of by-product GBL as described above
  • the crude 1,4-BG is purified.
  • Raw material 1,4-BG can be obtained.
  • the GBL content in the crude 1,4-BG is a mass ratio to the crude 1,4-BG
  • the upper limit is usually 2% by mass, preferably 1% by mass, more preferably 1000 ppm, particularly preferably 200 ppm. Most preferably, it is 180 ppm.
  • the lower limit is usually 101 ppm, preferably 120 ppm, and the lower limit is particularly preferably 150 ppm from the viewpoint of economy of the fermentation process and the hydrogenation process.
  • the GBL content of the raw material 1,4-BG used for the production of PBT in the present invention is a mass ratio with respect to the raw material 1,4-BG, and the upper limit is usually 100 ppm, preferably 50 ppm, more preferably Is 40 ppm, particularly preferably 30 ppm, most preferably 20 ppm. Further, the lower limit is usually 1 ppm, preferably 2 ppm, and in particular, the lower limit is preferably 5 ppm from the viewpoint of economy of the purification process. As the GBL content in the raw material 1,4-BG containing a nitrogen atom-containing compound decreases, the polycondensation reaction rate in the production of PBT, the color tone of the produced PBT, and the like tend to be preferable.
  • the color tone of the obtained PBT can be adjusted by adjusting the GBL content of the raw material 1,4-BG within the above range.
  • the content of GBL in the raw material 1,4-BG or crude 1,4-BG is measured by the method described in the Examples section below.
  • the content of GBL in the raw material 1,4-BG derived from biomass resources is determined by, for example, the fermentation conditions and ammonia when the raw material 1,4-BG is obtained by hydrogenating succinic acid obtained by fermentation of biomass resources.
  • the amount of GBL in succinic acid can be adjusted by neutralizing conditions, succinic acid crystallization conditions, and the like.
  • GBL is an intermediate in the synthesis of 1,4-BG, and it is difficult to accurately control the amount of GBL. Therefore, it is preferable to adjust the GBL content in the raw material 1,4-BG by purifying it in advance before supplying the raw material 1,4-BG derived from biomass resources to the reactor for the production of PBT.
  • GBL is a component having a lighter boiling point than 1,4-BG
  • the GBL content in the raw material 1,4-BG is obtained by performing separation distillation of the light-boiling component in the purification process of 1,4-BG.
  • 1,4-BG is obtained directly by fermentation of biomass resources
  • the GBL content is adjusted by the fermentation conditions, neutralization conditions with ammonia, purification conditions including distillation of the resulting crude 1,4-BG, etc.
  • the separation distillation of GBL and crude 1,4-BG can be performed by multistage distillation using a packing and / or tray. At this time, GBL can be distilled off from the top of the separation distillation column. However, under high temperature conditions, GBL reacts with 1,4-BG and becomes highly boiling. Since this high boiling point component is decomposed into GBL in the next step, it is preferable to reduce the generation of the high boiling point component in the light distillation component separation distillation column. From such a point of view, the temperature at the top of the separation distillation column is usually preferably 40 to 180 ° C, more preferably 50 to 160 ° C, and particularly preferably 60 to 150 ° C.
  • the content of 1-acetoxy-4-hydroxybutane (1,4-HAB) in the biomass resource-derived raw material 1,4-BG used for the production of PBT in the present invention is based on the raw material 1,4-BG.
  • the upper limit is preferably 99 ppm, more preferably 90 ppm, particularly preferably 80 ppm, and most preferably 70 ppm.
  • the lower limit is preferably 1 ppm, more preferably 2 ppm, and particularly preferably 5 ppm from the viewpoint of economic efficiency of the purification process.
  • 1,4-HAB content in 1,4-BG containing a nitrogen atom-containing compound decreases, the polycondensation reaction rate in the production of PBT, the color tone of the produced PBT, and the like tend to be more favorable.
  • the larger the number the easier the purification process becomes and the more economical it becomes.
  • the content of 1,4-HAB in the raw material 1,4-BG is measured by the method described in the Examples section below.
  • the 1,4-HAB content in the biomass resource-derived raw material 1,4-BG is, for example, when hydrogenated succinic acid obtained by fermentation of biomass resources to obtain the raw material 1,4-BG. It can also be adjusted by adjusting the amount of 1,4-HAB in succinic acid according to the conditions, neutralization conditions with ammonia, crystallization conditions of succinic acid, and the like. However, before supplying crude 1,4-BG derived from biomass resources to the reactor for the production of PBT, the 1,4-HAB content in the raw material 1,4-BG is adjusted by pre-purification. It is preferable.
  • 1,4-HAB is a component having a lighter boiling point than 1,4-BG
  • the raw material 1,4-BG is obtained by separating and distilling the light-boiling component in the purification step of crude 1,4-BG.
  • the 1,4-HAB content in it can be adjusted.
  • 1,4-BG is obtained directly by fermentation of biomass resources, it contains 1,4-HAB depending on the fermentation conditions, neutralization conditions with ammonia, purification conditions including distillation of the obtained 1,4-BG, etc. The amount can be adjusted, but in this case as well, it is preferable to purify crude 1,4-BG to remove light-boiling components containing 1,4-HAB.
  • the separation distillation of 1,4-HAB and crude 1,4-BG can be performed simultaneously with the above-described separation distillation of GBL and crude 1,4-BG.
  • the method for producing the PBT of the present invention is not particularly limited as long as the PBT can be produced.
  • Known production methods of PBT are roughly classified into a so-called direct polymerization method using terephthalic acid as a main raw material and a transesterification method using terephthalic acid alkyl ester as a main raw material.
  • water is produced in the initial esterification reaction
  • alcohol is produced in the initial transesterification reaction.
  • the direct polymerization method is preferred from the viewpoint of the height of the polymer and the improvement effect of the present invention.
  • a dicarboxylic acid component containing terephthalic acid and a diol component containing raw material 1,4-BG are carried out in the presence or absence of an esterification reaction catalyst in a single or multi-stage esterification reaction tank.
  • the temperature is usually 180 ° C. or higher, preferably 200 ° C. or higher, particularly preferably 210 ° C. or higher, usually 260 ° C. or lower, preferably 250 ° C. or lower, particularly preferably 245 ° C. or lower.
  • the pressure is usually 10 kPa or more, preferably 13 kPa or more, particularly preferably 50 kPa or more, usually 133 kPa or less, preferably 120 kPa or less, particularly preferably 110 kPa or less.
  • the reaction time is usually 0.5 hours or longer, preferably 1 hour or longer, usually 5 hours or shorter, preferably 3 hours or shorter.
  • the esterification reaction is carried out continuously under the above conditions, and the resulting oligomer as an esterification reaction product is transferred to a polycondensation reaction tank, and in the presence of a polycondensation reaction catalyst in a multistage polycondensation reaction tank. A polycondensation reaction is continuously performed.
  • the reaction temperature is usually 210 ° C.
  • the pressure is usually not more than 27 kPa, preferably not more than 20 kPa, more preferably not more than 13 kPa, and particularly preferably not more than 2 kPa in at least one polycondensation reaction tank, and usually 2 to 12 with stirring under reduced pressure of the above conditions. Examples thereof include a method of performing a polycondensation reaction in a time, preferably 2 to 10 hours.
  • a dicarboxylic acid component containing a terephthalic acid ester such as dimethyl terephthalate and a diol component containing a raw material 1,4-BG are transesterified in a single or multi-stage esterification reaction tank. Performed in the presence of a catalyst.
  • the temperature is usually 110 ° C. or higher, preferably 140 ° C. or higher, particularly preferably 180 ° C. or higher, usually 260 ° C. or lower, preferably 245 ° C. or lower, particularly preferably 220 ° C. or lower.
  • the pressure is usually 10 kPa or more, preferably 13 kPa or more, particularly preferably 60 kPa or more, usually 133 kPa or less, preferably 120 kPa or less, particularly preferably 110 kPa or less.
  • the reaction time is usually 0.5 hours or longer, preferably 1 hour or longer, usually 5 hours or shorter, preferably 3 hours or shorter.
  • the transesterification is carried out continuously under the above conditions, and the resulting oligomer as the transesterification product is transferred to a polycondensation reaction tank, and in the presence of a polycondensation reaction catalyst in a multistage polycondensation reaction tank. A polycondensation reaction is continuously performed.
  • the reaction temperature is usually 210 ° C.
  • the pressure is usually not more than 27 kPa, preferably not more than 20 kPa, more preferably not more than 13 kPa, and particularly preferably not more than 2 kPa in at least one polycondensation reaction tank, and usually 2 to 12 with stirring under reduced pressure of the above conditions. Examples include a method of polycondensation reaction for a time, preferably 2 to 10 hours.
  • esterification reaction or transesterification reaction catalyst examples include antimony compounds such as diantimony trioxide; germanium compounds such as germanium dioxide and germanium tetroxide; titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate; Titanium compounds such as phenyl titanate such as phenyl titanate; dibutyltin oxide, methylphenyltin oxide, tetraethyltin, hexaethylditin oxide, cyclohexahexyl distinoxide, didodecyltin oxide, triethyltin hydroxide, triphenyltin hydro Oxide, triisobutyltin acetate, dibutyltin diacetate, diphenyltin dilaurate, monobutyltin trickle Ride, tributyltin chloride, dibutyltin sulfide, buty
  • the amount of the esterification reaction or transesterification catalyst used is not particularly limited, but the metal concentration (mass) in the PBT is usually 1 ppm or more, preferably 5 ppm or more, more preferably 10 ppm or more, particularly preferably 20 ppm or more, and most preferably. Is 30 ppm or more, usually 300 ppm or less, preferably 200 ppm or less, more preferably 150 ppm or less, still more preferably 100 ppm or less, particularly preferably 90 ppm or less, and most preferably 60 ppm or less.
  • the metal concentration (mass) in the PBT is less than or equal to the above upper limit, it is less likely to cause foreign matters, and there is a tendency that deterioration reaction and gas generation during the thermal residence of the PBT do not easily occur.
  • the reaction rate is fast and side reactions are unlikely to occur.
  • a catalyst for esterification reaction or transesterification reaction may be used as it is as a polycondensation reaction catalyst, or the catalyst may be further added.
  • metal concentration (mass) in PBT it is 0.5 ppm or more normally, Preferably it is 1 ppm.
  • the titanium metal concentration (mass) in the PBT is preferably 250 ppm or less, and more preferably 100 ppm or less, from the viewpoint of suppressing foreign matter. 60 ppm or less is particularly preferable, and 50 ppm or less is most preferable.
  • the metal concentration (mass) in PBT can be measured by using atomic emission, inductively coupled plasma (ICP) method, etc. after recovering the metal in PBT by a method such as wet ashing.
  • ICP inductively coupled plasma
  • esterification reaction transesterification reaction and polycondensation reaction
  • phosphorus compounds such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid and esters and metal salts thereof
  • sodium hydroxide Reaction aids such as sodium compounds such as sodium benzoate, lithium compounds such as lithium acetate, alkali metal compounds such as potassium compounds such as potassium hydroxide and potassium acetate; alkaline earth metal compounds such as magnesium acetate and calcium acetate, etc.
  • Reaction phenols such as 2,6-di-t-butyl-4-octylphenol and pentaerythrityl-tetrakis [3- (3 ′, 5′-t-butyl-4′-hydroxyphenyl) propionate] Dilauryl-3,3′-thiodipropionate, pentaerythrityl-tetrakis (3-La Thioether compounds such as rylthiodipropionate); antioxidants such as phosphorus compounds such as triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite; paraffin Wax, microcrystalline wax, polyethylene wax, long-chain fatty acids such as montanic acid and montanic acid esters and esters thereof; release agents such as silicone oils may be used.
  • antioxidants such as phosphorus compounds such as triphenyl phosphite, tris
  • Examples of the polycondensation reaction tank include known ones such as a vertical stirring polymerization tank, a horizontal stirring polymerization tank, and a thin film evaporation polymerization tank.
  • mass transfer tends to be the controlling factor of molecular weight increase rather than reaction rate, so in order to proceed with the main reaction while suppressing side reactions, as much as possible Lowering the temperature and increasing the surface renewability is advantageous for achieving the object of the present invention. Therefore, it is preferable to select one or a plurality of horizontal stirring polymerization machines having a thin film evaporation function excellent in surface renewability, plug flow property, and self-cleaning property.
  • the PBT obtained by the production method of the present invention can be subsequently subjected to solid phase polycondensation by a known method to increase the molecular weight.
  • the PBT obtained by the polycondensation reaction is usually transferred from the bottom of the polycondensation reaction tank to a polymer extraction die and extracted into a strand shape, and is cooled with water or cooled with water and then cut with a cutter to form pellets or chips. It is made into a granular material.
  • the granular material can be subsequently subjected to solid phase polycondensation by a known method or the like to increase its intrinsic viscosity.
  • the PBT produced by the present invention includes a structural unit derived from terephthalic acid and a structural unit derived from 1,4-butanediol, and comprises 1,4-butane.
  • the diol has a nitrogen atom content of 0.01 to 50 ppm by mass and a gamma butyrolactone content of 1 to 100 ppm by mass.
  • the upper limit of the nitrogen atom content (mass ratio) in the PBT of the present invention is preferably 10 ppm, more preferably 2 ppm, and the lower limit is preferably 0.05 ppm, more preferably 0.1 ppm.
  • gamma butyrolactone is converted into other components such as amide, amine, amino acid and the like that cause PBT color deterioration, and is contained in PBT. It is considered a thing.
  • the PBT having a nitrogen atom content within the above range is made from the above-mentioned preferred biomass resource-derived raw material 1,4-butanediol and terephthalic acid or terephthalic acid alkyl ester in accordance with the production method according to the present invention described above. Can be obtained.
  • the intrinsic viscosity of PBT of this invention is 0.50 dL / g or more, More preferably, it is 0.70 dL / g or more, Preferably it is 1.50 dL / g or less, More preferably, it is 1.35 dL / g or less.
  • the intrinsic viscosity of PBT is not less than the above lower limit, it is preferable from the viewpoint of mechanical properties of the molded product, and when it is not more than the above upper limit, it tends to be preferable from the viewpoint of moldability.
  • the intrinsic viscosity of PBT is measured by the method described in the Examples section below.
  • the terminal carboxyl group concentration of the PBT of the present invention is not particularly limited, but the lower limit is preferably 1 equivalent / ton, more preferably 2 equivalent / ton, and particularly preferably 3 equivalent / ton. Most preferably, it is 5 equivalents / ton, and the upper limit is preferably 50 equivalents / ton, more preferably 40 equivalents / ton, particularly preferably 30 equivalents / ton, and 25 equivalents / ton. Most preferably.
  • the terminal carboxyl group concentration of PBT can be determined by dissolving the resin in an organic solvent and titrating with an alkali solution such as sodium hydroxide. More specifically, it can be determined by the method described in the Examples section below.
  • PBT color tone> Usually, PBT produced using the raw material 1,4-BG derived from biomass resources tends to deteriorate in color tone, but the PBT of the present invention has good color tone. Further, as described above, it is possible to adjust the color tone of PBT obtained by adjusting the content of GBL in raw material 1,4-BG in the purification process of crude 1,4-BG. .
  • the PBT of the present invention can be made into a PBT composition containing components other than PBT as long as the effects of the present invention are not significantly impaired.
  • components other than the PBT include various resins such as thermoplasticity and thermosetting, fillers such as mold release agents and reinforcing fillers, flame retardants, and other various additives.
  • thermoplastic resin examples include polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethacrylic acid ester, polyacrylic acid ester, ABS resin, polycarbonate, polyamide, polyphenylene sulfide, polyethylene terephthalate, liquid crystal polyester, polyacetal, polyphenylene oxide, and the like.
  • thermosetting resin a thermosetting resin, a phenol resin, a melamine resin, a silicone resin, an epoxy resin etc. are mentioned. These resins may be used alone or in combination of two or more. Of these, a thermoplastic resin is often used.
  • the blending amount (mass) is not particularly limited as long as the excellent effect of the present invention is expressed, but the ratio of PBT to the total amount of the resin is usually 0.1% by mass. Above, preferably 1% by mass or more, more preferably 10% by mass or more, usually 99.9% by mass or less, preferably 99% by mass or less, more preferably 90% by mass or less.
  • the release agent is not particularly limited, and examples thereof include 2,6-di-t-butyl-4-octylphenol, pentaerythrityl-tetrakis [3- (3 ′, 5′-t-butyl-4′-hydroxy Phenolic compounds such as phenyl) propionate]; Thioether compounds such as dilauryl-3,3′-thiodipropionate, pentaerythrityl-tetrakis (3-laurylthiodipropionate); paraffin wax, microcrystalline wax, polyethylene wax, Examples include long-chain fatty acids represented by montanic acid and montanic acid esters and esters thereof; silicone oils and the like. These may be used alone or in combination of two or more.
  • the reinforcing filler is not particularly limited.
  • inorganic fibers such as glass fiber, carbon fiber, silica / alumina fiber, zirconia fiber, boron fiber, boron nitride fiber, silicon nitride potassium titanate fiber, and metal fiber; aromatic Organic fibers such as polyamide fibers and fluororesin fibers can be mentioned.
  • inorganic fibers, particularly glass fibers are preferably used. Only one type of reinforcing filler may be used, or two or more types may be used in combination.
  • the average fiber diameter is not particularly limited, but is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average fiber length is not particularly limited, but is usually 0.1 to 20 mm, preferably 1 to 10 mm.
  • a reinforcing filler that has been surface-treated with a sizing agent or a surface treating agent in order to improve the interfacial adhesion with the PBT.
  • the sizing agent or surface treatment agent include functional compounds such as epoxy compounds, acrylic compounds, isocyanate compounds, silane compounds, and titanate compounds.
  • the treatment with the sizing agent or the surface treatment agent may be performed by previously treating the reinforcing filler, or may be brought into contact with the sizing agent or the surface treatment agent when preparing the PBT composition.
  • a reinforcing filler When a reinforcing filler is used, its blending amount is usually 150 parts by mass or less, preferably 5 to 100 parts by mass with respect to 100 parts by mass of the resin component containing PBT.
  • fillers include plate-like inorganic fillers, ceramic beads, asbestos, wollastonite, talc, clay, mica, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, silicon oxide, aluminum oxide, and hydroxide.
  • fillers include plate-like inorganic fillers, ceramic beads, asbestos, wollastonite, talc, clay, mica, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, silicon oxide, aluminum oxide, and hydroxide.
  • magnesium magnesium.
  • the plate-like inorganic filler include glass flakes, mica, and metal foil. Among these, glass flakes are preferably used.
  • the flame retardant is not particularly limited, and examples thereof include organic halogen compounds, antimony compounds, phosphorus compounds, other organic flame retardants, and inorganic flame retardants.
  • organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, polypentabromobenzyl acrylate and the like.
  • the antimony compound include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
  • phosphorus compound phosphate ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus etc. are mentioned, for example.
  • organic flame retardants include nitrogen compounds such as melamine and cyanuric acid.
  • inorganic flame retardants include aluminum hydroxide, magnesium hydroxide, silicon compound, and boron compound. These flame retardants may be used alone or in combination of two or more.
  • additives examples include, but are not limited to, stabilizers such as antioxidants and heat stabilizers, lubricants, catalyst deactivators, crystal nucleating agents, and crystallization accelerators. These additives may be added during or after polycondensation.
  • stabilizers such as ultraviolet absorbers and weathering stabilizers, colorants such as dyes and pigments, antistatic agents, foaming agents, plasticizers, and impact resistance improvers.
  • the method of blending the above-mentioned other components is not particularly limited, but for example, a method of using a uniaxial or biaxial extruder having equipment that can be devolatilized from a vent port as a kneader is preferable.
  • Each component including an additional component may be supplied to the kneader in a lump or sequentially.
  • two or more components selected from each component including the additional components can be mixed in advance.
  • the method of molding the PBT of the present invention and the PBT composition containing the PBT is not particularly limited, and is a molding method generally used for thermoplastic resins, specifically, injection molding, hollow molding, extrusion molding, Press molding can be applied.
  • the PBT of the present invention and the PBT composition containing the PBT are excellent in color tone, thermal stability, transparency and quality stability, and are injection molded products such as electric, electronic parts and automotive parts, films, monofilaments, fibers and the like. It can be suitably used in extrusion molded article applications.
  • Terminal carboxyl group concentration (AB) ⁇ 0.1 ⁇ f / W (equivalent / ton)
  • A is the amount ( ⁇ L) of 0.01N sodium benzyl alcohol solution required for titration
  • B is 0.01 mol / L sodium benzyl alcohol solution required for titration with a blank.
  • W is the amount of PBT sample (g)
  • f is the titer of 0.01 mol / L sodium hydroxide.
  • ⁇ PBT color tone (b value)> Pellet-shaped PBT was filled into a cylindrical powder measurement cell having an inner diameter of 30 mm and a depth of 12 mm, and measured by a reflection method using a colorimetric color difference meter Color Meter ZE2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The cell was rotated by 90 degrees and obtained as a simple average value of values measured at four points. The color tone was evaluated by the b value in the L, a, b color system. A lower b value indicates less yellowing and a better color tone.
  • the raw material 1,4-BG for the petrochemical process an industrially available product was used.
  • the raw material 1,4-BG (C) obtained by the butane method includes maleic acid, succinic acid, maleic anhydride formed by oxidation of butane and / Or obtained by hydrogenating them using fumaric acid as a raw material.
  • the raw material 1,4-BG (D) obtained by the butadiene method (hereinafter sometimes abbreviated as “butadiene method (D)”) is obtained by carrying out an acetoxylation reaction using butadiene, acetic acid and oxygen, It can be obtained by obtaining diacetoxybutene as a body, hydrogenating and hydrolyzing the diacetoxybutene.
  • the raw material 1,4-BG (E) obtained by the propylene method (hereinafter sometimes abbreviated as “propylene method (E)”) is obtained by an oxo reaction of allyl alcohol obtained by oxidation of propylene.
  • the raw material 1,4-BG of the biomethod (B) is obtained by the method described in US Patent Application Publication No. 2011/0003355, that is, the total amount of bacterial cells and salt or each of them by filtration, centrifugation and ion exchange resin. After removing at least a part, water was removed by distillation to obtain crude 1,4-BG before purification shown in Table-1. This crude 1,4-BG before purification was dehydrated and concentrated using a glass rotary evaporator. The pressure was 10.7 kPa, and the internal temperature was 175 ° C. The distillation rate was 10% by mass, and 90% by mass of the crude 1,4-BG solution was recovered with respect to the charged amount remaining in the flask.
  • the dehydrated crude 1,4-BG solution is used as a raw material, and batch distillation is performed using a glass instrument, and the fraction is separated into a plurality of fractions to obtain a high-boiling fraction and a light fraction from the crude 1,4-BG. Boiling separation was performed.
  • a multistage distillation column corresponding to three stages was used as a theoretical stage.
  • the column top pressure was 13.3 kPa and the column bottom temperature was controlled at 182 ° C.
  • the distillation temperature rose with removal of light boiling and then stabilized at 175 ° C.
  • the fraction having a stable top temperature was collected as 1,4-BG. 80% by mass of 1,4-BG fraction was recovered with respect to the raw material charge.
  • the composition of this purified 1,4-BG fraction is also shown in Table 1.
  • 1,4-BG having the composition after purification shown in Table 1 was further separated into a plurality of fractions using the same batch distillation apparatus, and 5 lots of GBL and purified biomethod (B) having different nitrogen atom contents were obtained. Obtained. The lots are designated as Lot 1, Lot 2, Lot 3, Lot 4, and Lot 5 in order from the first stop.
  • Table 2 shows the GBL content, nitrogen atom content, 1,4-HAB content, and BGTF content in each lot. Note that GBL may be regenerated from high-boiling components, and GBL is increased in lots 1 to 5 shown in Table 2 as compared to 1,4-BG after purification in Table-1.
  • the temperature was raised to 245 ° C. over 0.75 hour and held.
  • the pressure was reduced to 0.07 kPa over 1.5 hours from the start of polymerization, and the polycondensation reaction was performed for 0.8 hours under the same reduced pressure, and the reaction system was returned to normal pressure to complete the polycondensation.
  • the obtained PBT was extracted as a strand from the bottom of the reaction vessel, submerged in water at 10 ° C., and then the strand was cut with a cutter to obtain a pellet-like PBT.
  • the polycondensation time was defined as the polycondensation time from the start of decompression to the end of polycondensation after the addition of magnesium acetate, and the polycondensation rate was defined as intrinsic viscosity / polycondensation time.
  • the polycondensation rate was 0.37 dL / g / hour.
  • the amount of THF was analyzed for the distillate during the esterification reaction, and the THF conversion rate expressed as mol% per terephthalic acid charged was 70.6 mol%.
  • Example 2 PBT was produced in the same manner except that the raw material 1,4-BG was changed to lot 2 obtained by bio-method purification.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 3 In Example 1, PBT was produced in the same manner except that the raw material 1,4-BG was changed to lot 3 obtained by bio-method purification. Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 4 In Example 1, PBT was produced in the same manner except that the raw material 1,4-BG was changed to lot 4 obtained by bio-method purification.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 1 PBT was produced in the same manner except that the raw material 1,4-BG was changed to lot 5 obtained by bio-method purification.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 2 PBT was produced in the same manner except that the raw material 1,4-BG was changed to 1,4-BG of the butane method (C) having the composition shown in Table 3.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 3 PBT was produced in the same manner except that the raw material 1,4-BG was changed to 1,4-BG of the butadiene method (D) having the composition shown in Table 3.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • Example 4 PBT was produced in the same manner except that the raw material 1,4-BG was changed to 1,4-BG of the propylene method (E) having the composition shown in Table 3.
  • Table 3 shows the conversion rate to THF [%] during the production of PBT, the polycondensation time [hour], the polycondensation rate [dL / g / hour], and the analysis result of the above PBT measurement method.
  • FIG. 1 shows the PBT color b value relative to the GBL content in the raw materials 1,4-BG of Examples 2 to 4 and Comparative Example 1, and the GBL content in the raw materials 1,4-BG of Comparative Examples 2 to 4 It is a graph which shows the color tone b value of PBT. From FIG. 1, it is not possible to confirm the correlation between the GBL concentration and the b value in 1,4-BG (Comparative Examples 2 to 4) in which no nitrogen atom exists, but in 1,4-BG derived from biomass resources in which nitrogen atom exists.
  • the coloration of PBT by GBL induces the coloration of the newly generated compound from the reaction of the nitrogen atom compound in 1,4-BG derived from biomass with GBL. Can be estimated.
  • a component derived from GBL and a nitrogen atom-containing compound deteriorates the color tone, but the color tone deterioration of PBT by 2-pyrrolidone derived from ammonia and GBL supports this estimation. It is. Since the component derived from GBL and the nitrogen atom-containing compound is the cause of the color tone deterioration, in the raw material not containing the nitrogen atom-containing compound but containing only GBL, the color tone deterioration of PBT accompanying the increase in the GBL content is not confirmed. I can understand. This mechanism is not limited to 2-pyrrolidone, and the nitrogen component is not limited to ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は生物資源由来の1,4-ブタンジオール(BG)を用いた、色調が良好なポリブチレンテレフタレート(PBT)の製造方法を提供することを目的とする。本発明は窒素原子含有量が0.01~50質量ppmの原料1,4-BGを含むジオール成分とジカルボン酸成分とをエステル化またはエステル交換反応させる工程と、その反応物からPBTを得る重縮合反応工程とを有するPBTの製造方法であって、前記原料1,4-BG中のガンマブチロラクトン含有量が1~100質量ppmであるPBTの製造方法に関する。

Description

ポリブチレンテレフタレートの製造方法
 本発明は、バイオマス資源由来の1,4-ブタンジオールを原料として、色調が良好なポリブチレンテレフタレートを製造する方法に関する。
 熱可塑性ポリエステル樹脂の中で代表的なエンジニアリングプラスチックであるポリブチレンテレフタレート(以下、“PBT”と略記することがある。)は、成形加工の容易性、機械的物性、耐熱性、耐薬品性、保香性、その他の物理的・化学的特性に優れていることから、自動車部品、電気・電子部品、精密機器部品などの射出成形品の成形材料として広く使用されている。また、近年は、その優れた性質を活かし、フィルム、シート、モノフィラメント、繊維などの一般消費材分野でも広く使用されており、これに伴って、色調が良好なPBTが求められるようになってきている。
 通常、PBTはテレフタル酸またはそのアルキルエステルと1,4-ブタンジオール(以下、“1,4-BG”と略記することがある。)とを反応させて得ることができるが、1,4-BGは、その反応中にテトラヒドロフラン(以下、“THF”と略記することがある。)に転化しやすいため、1,4-BGからTHFへの転化を抑えた収率のよいPBTの製造方法が求められる。
 また、循環型(サステイナブル)社会の構築を求める声の高まりと共に、PBTにおいてもエネルギーと同様に化石燃料由来の原料からの脱却が望まれている。化石燃料を原料としない場合、植物などを原料とするバイオマス資源由来の原料が有力な原料候補の一つであり、PBTの原料である1,4-BGにおいてもバイオマス資源由来の1,4-BGを原料としたPBTを製造する方法が検討されている。
 しかし、バイオマス資源由来の原料1,4-BGを用いた場合、石油などの化石燃料から得られた原料1,4-BGを用いた場合に比べ、得られるPBTの色調が悪くなる。この色調悪化の主たる要因としては、PBT中の窒素原子含有成分の存在が考えられる。また、この成分以外の他成分によるPBT色調への影響も存在すると考えられる。
 特許文献1には、バイオマス資源由来の原料を用いてPBTを得る技術について、バイオマス資源由来の原料1,4-BGの窒素原子含有量を0.01~50質量ppmに制御することにより、窒素原子含有量50質量ppm以下のPBTを得ることについて記載されている。更に、原料1,4-BG中に含まれる1-アセトキシ-4-ヒドロキシブタン(以下、“1,4-HAB”と略記することがある。)は、PBTの重縮合反応を遅延させ、PBTへの着色も生じるが、原料1,4-BGにおける窒素原子濃度を制御した1,4-BGを原料として用いることにより、重合遅延によるPBTの着色を低減できる旨が記載されている。
 また、従来の1,4-BGの製造方法において、副生物としてガンマブチロラクトン(以下、“GBL”と略記することがある。)が発生することが知られている。例えば特許文献2には、化石燃料由来の原料からの1,4-BGの製造法において、マレイン酸、コハク酸、無水マレイン酸および/またはフマル酸などから、それらを水素化して1,4-BGを含む粗水素化生成物を得る際に、ガンマブチロラクトンが副生することが記載されている。
 バイオマス資源由来の原料から1,4-BGを製造する方法では、特許文献3にバイオマス資源由来のコハク酸に対して化学的還元あるいは生物工学的な水素化を行い、1,4-BGを製造することが記載され、特許文献4には、菌体から直接発酵することで1,4-BGを得る方法が記載されている。
日本国特開2008-101143号公報 日本国特開平11-240846号公報 日本国特開2009-077719号公報 日本国特表2010-521182号公報
 しかしながら、特許文献3に記載の方法では、特許文献2と類似の水素化を伴うことからGBLの副生が進行する可能性が高い。また、特許文献4の方法では、代謝経路などから副生物としてGBLが発生する可能性が高い。
 さらに上記特許文献1~4には、原料1,4-BG中に含まれるガンマブチロラクトンと窒素原子含有化合物との関係については記載されていない。
 また、原料1,4-BG中の1,4-HABの存在による重合遅延が原因で起こるPBTの着色を抑制するべく原料1,4-BG中の窒素原子含有化合物含有量を制御しても、重合遅延は抑制できるものの、PBTの不要な着色が抑制できない場合があることが判明した。
 本発明は、上記の課題に鑑みてなされたものであり、原料として、バイオマス資源由来の1,4-BGを用いて、色調の良好なPBTを効率的に生産する方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、原料1,4-BG中に含まれるガンマブチロラクトンが、PBTの製造時に原料1,4-BG中の窒素原子含有化合物と反応して生成する化合物が、新たなPBTの着色を引き起こす原因となっていることを見出した。そして、前記窒素原子含有化合物を含有する1,4-BGを用いてPBTを製造する際には、1,4-BG中のガンマブチロラクトンの含有量を特定量に制御することで、色調が良好なPBTを得ることができることを見出し、本発明を完成するに到った。
 即ち、本発明の要旨は以下の[1]~[6]に存する。
[1] 窒素原子含有量が0.01~50質量ppmのバイオマス資源由来である原料1,4-ブタンジオールを含むジオール成分と、テレフタル酸またはテレフタル酸アルキルエステルを含むジカルボン酸成分とをエステル化反応またはエステル交換反応させる工程(a)と、前記工程(a)で得られた反応物を重縮合反応させてポリブチレンテレフタレートを得る重縮合反応工程(b)とを有するポリブチレンテレフタレートの製造方法であって、
 前記原料1,4-ブタンジオールにおけるガンマブチロラクトンの含有量が1~100質量ppmである、ポリブチレンテレフタレートの製造方法。
[2] 前記工程(a)に先立ち、バイオマス資源由来の粗1,4-ブタンジオールを精製して前記原料1,4-ブタンジオールを得る工程を更に有する、前記[1]に記載のポリブチレンテレフタレートの製造方法。
[3] 前記粗1,4-ブタンジオールにおけるガンマブチロラクトンの含有量が、101質量ppm~2質量%である、前記[2]に記載のポリブチレンテレフタレートの製造方法。
[4] 前記原料1,4-ブタンジオールにおける1-アセトキシ-4-ヒドロキシブタンの含有量が1~99質量ppmである、前記[1]~[3]のいずれか1に記載のポリブチレンテレフタレートの製造方法。
[5] 前記原料1,4-ブタンジオール又は前記粗1,4-ブタンジオールを、グルコース、フルクトース、キシロース及びサッカロースからなる群より選ばれる少なくとも1の炭素源から発酵法により直接製造する工程をさらに有する、前記[1]~[4]のいずれか1に記載のポリブチレンテレフタレートの製造方法。
[6] バイオマス資源から、下記に示す天然に存在しない微生物生体触媒を用いて、前記原料1,4-ブタンジオール又は前記粗1,4-ブタンジオールを製造する工程を更に有する、前記[1]~[5]のいずれか1に記載のポリブチレンテレフタレートの製造方法。
 天然に存在しない微生物生体触媒:4-ヒドロキシブタン酸脱水素酵素、スクシニル-CoA合成酵素、CoA依存性コハク酸セミアルデヒド脱水素酵素、またはα-ケトグルタル酸脱炭酸酵素をコードする少なくとも1つの外因性核酸を含む4-ヒドロキシブタン酸生合成経路を有する微生物を含み、前記微生物が前記4-ヒドロキシブタン酸の単量体を分泌するために十分な量の前記外因性核酸を含む、微生物生体触媒
 本発明によれば、バイオマス資源由来の1,4-BGを原料として、色調が良好なPBTを効率的に製造することができる。
図1は、本発明のPBTの製造方法(窒素原子含有バイオ法)および従来のPBTの製造方法(石化法)で得られたPBTの色調と原料1,4-BGのGBL含有量との関係を示す相関図である。
 以下、本発明をより詳細に説明するが、以下に記載する各構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらに限定されるものではない。
 尚、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書における、下限値または上限値は、その下限値または上限値の値を含む範囲を意味する。
 ここで、“重量%”、“重量ppm”、“重量部”及び“重量比”と、“質量%”、“質量ppm”、“質量部”及び“質量比”とは、それぞれ同義である。また単に“ppm”と記載した場合は、“重量ppm”のことを示す。
<PBT製造原料>
 本発明において、PBTは、テレフタル酸またはテレフタル酸アルキルエステルを含むジカルボン酸成分と、バイオマス資源由来の原料1,4-ブタンジオールを含むジオール成分とをエステル化反応またはエステル交換反応させた後、該反応物を重縮合反応させることにより得られる。なお、テレフタル酸アルキルエステルのアルキル基としては、炭素数1~3のアルキル基が好ましい。
 原料として使用されるテレフタル酸またはテレフタル酸アルキルエステルは、全ジカルボン酸成分の80モル%以上であることが好ましく、90モル%以上であることが更に好ましく、100モル%であることが最も好ましい。
 また、バイオマス資源由来の原料1,4-BGは、全ジオール成分の80モル%以上であることが好ましく、90モル%以上であることが更に好ましく、99モル%以上であることが特に好ましい。
 テレフタル酸またはテレフタル酸アルキルエステルの全ジカルボン酸成分に占める割合およびバイオマス資源由来の1,4-BGの全ジオール成分に占める割合が前記下限以上であると、電気部品等に成形する際の結晶化の点やフィルム、繊維などに成形する際の延伸による分子鎖の配向結晶化の点から、成形品としての機械的強度、耐熱性、保香性等が良好になりやすいことから好ましい。
 原料となるジカルボン酸成分には、主成分のテレフタル酸またはテレフタル酸アルキルエステル以外のジカルボン酸成分が含まれていても良く、また、他のジカルボン酸成分をテレフタル酸またはテレフタル酸アルキルエステルと共に反応器に供給してもよい。
 他のジカルボン酸成分としては、例えば、フタル酸、イソフタル酸、ジブロモイソフタル酸、スルホイソフタル酸ナトリウム、フェニレンジオキシジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸およびこれらのエステル形成性誘導体;ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸およびこれらのエステル形成性誘導体;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸等の脂肪族鎖式ジカルボン酸およびこれらのエステル形成性誘導体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 一方、原料となるジオール成分には、バイオマス資源由来の原料1,4-BG以外のジオール成分が含まれていても良く、また、他のジオール成分をバイオマス資源の原料1,4-BGと共に反応器に供給してもよい。
 他のジオール成分としては、例えばエチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,3-ペンタンジオール、2,3-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ポリエチレングリコール、ポリテトラメチレングリコール等の脂肪族鎖式ジオール;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,1-シクロヘキサンジメチロール、1,4-シクロヘキサンジメチロール、2,5-ノルボルナンジメチロール等の脂環式ジオール;キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4’-β-ヒドロキシエトキシフェニル)スルホン酸等の芳香族ジオール;2,2-ビス(4’-ヒドロキシフェニル)プロパンのエチレンオキサイド付加物またはプロピレンオキサイド付加物;バイオマス資源由来でない1,4-BG等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 また、PBT原料としては、上記ジカルボン酸成分、ジオール成分以外にも、共重合成分として、更に、以下の成分が用いられてもよい。
 その共重合成分としては、例えば、グリコール酸、p-ヒドロキシ安息香酸、p-β-ヒドロキシエトキシ安息香酸等のヒドロキシカルボン酸やアルコキシカルボン酸、ステアリルアルコール、ヘネイコサノール、オクタコサノール、ベンジルアルコール、ステアリン酸、ベヘン酸、安息香酸、t-ブチル安息香酸、ベンゾイル安息香酸等の単官能成分、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、ナフタレンテトラカルボン酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、シュガーエステル等の三官能以上の多官能成分等が挙げられる。これらの共重合成分についても、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<バイオマス資源由来の原料1,4-BG>
 本発明のPBTの製造に用いる原料1,4-BGは、バイオマス資源由来のものであり、環境保護の点から好ましい。
 バイオマス資源とは、植物の光合成作用で太陽の光エネルギーがデンプンやセルロースなどの形に変換されて蓄えられたもの、植物体を食べて成育する動物の体や、植物体や動物体を加工してできる製品等が含まれる。
 具体的には、木材、稲わら、米ぬか、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣、水産物残渣、家畜排泄物、下水汚泥、食品廃棄物等が挙げられる。この中でも、木材、稲わら、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣等の植物資源が好ましく、より好ましくは木材、稲わら、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、芋、油脂、古紙、製紙残渣等が挙げられ、最も好ましくはとうもろこし、サトウキビ、キャッサバ、サゴヤシが挙げられる。
 バイオマス資源は、一般に、窒素原子やNa、K、Mg、Ca等の多くのアルカリ金属およびアルカリ土類金属を含有する。
 これらのバイオマス資源は、その方法は特に限定はされないが、例えば、酸やアルカリ等の化学処理、微生物を用いた生物学的処理、物理的処理等の公知の前処理・糖化の工程などを経て炭素源へと誘導される。その工程には、バイオマス資源をチップ化する、削る、磨り潰すなどの前処理による微細化工程が含まれることが多く、必要に応じて、更にグラインダーやミルによる粉砕工程も含まれる。
 こうして微細化されたバイオマス資源は、通常、更に前処理・糖化の工程を経て炭素源へと誘導される。その具体的な方法としては、硫酸、硝酸、塩酸、リン酸などの強酸による酸処理、アルカリ処理、アンモニア凍結蒸煮爆砕法、溶媒抽出、超臨界流体処理、酸化剤処理などの化学的方法;微粉砕、蒸煮爆砕法、マイクロ波処理、電子線照射等の物理的方法;微生物や酵素処理による加水分解等の生物学的処理などが挙げられる。
 上記のバイオマス資源から誘導される炭素源としては、通常、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、タガトースなどのヘキソース;アラビノース、キシロース、リボース、キシルロース、リブロース等のペントース;ペントサン、サッカロース、澱粉、セルロース等の2糖・多糖類;酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノール酸、リレノン酸、モノクチン酸、アラキジン酸、エイコセン酸、アラキドン酸、ベヘニン酸、エルカ酸、ドコサペンタエン酸、ドコサヘキサエン酸、リグノセリン酸、セラコレン酸等の油脂;グリセリン、マンニトール、キシリトール、リビトール等のポリアルコール類等の発酵性糖質等が用いられる。このうち、グルコース、フルクトース、キシロース、サッカロース等のヘキソース、ペントースまたは2糖類が好ましく、特にグルコースが好ましい。より広義の植物資源由来の炭素源としては、紙の主成分であるセルロースも好ましい。
 通常、これらの炭素源を用いて、微生物変換による発酵法や加水分解・脱水反応・水和反応・酸化反応等の反応工程を含む化学変換法並びにこれらの発酵法と化学変換法の組み合わせにより原料1,4-BGが合成される。これらの中でも、微生物変換による発酵法が好ましい。
 微生物変換による発酵法において使用する微生物としては、特段の制限はないが、例えば、コリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属、アクチノバチルス(Actinobacillus)属、糸状菌および酵母菌等が挙げられる。前記微生物の中でも、コリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属および酵母菌が好ましく、コリネ型細菌、大腸菌および酵母菌がより好ましく、大腸菌が特に好ましい。
 微生物変換による発酵法の場合、特に、天然に存在しない微生物生体触媒を用いる微生物変換であって、4-ヒドロキシブタン酸脱水素酵素、スクシニル-CoA合成酵素、CoA依存性コハク酸セミアルデヒド脱水素酵素、またはα-ケトグルタル酸脱炭酸酵素をコードする少なくとも1つの外因性核酸を含む4-ヒドロキシブタン酸生合成経路を有する微生物を含み、前記微生物が前記4-ヒドロキシブタン酸の単量体を分泌するために十分な量の前記外因性核酸を含む、天然に存在しない微生物生体触媒を用いることが、効率的に原料1,4-BGを製造できるので、好ましい。
 本発明で用いるバイオマス資源由来の原料1,4-BGは、先述したグルコース、フルクトース、キシロース及びサッカロース等の炭素源から発酵法により直接製造したものであってもよいし、発酵法により得られたコハク酸、コハク酸無水物、コハク酸エステル、ガンマブチロラクトンおよびその誘導体等を化学反応により1,4-BGに変換して得られたものであってもよい。また、発酵法により得られたプロピレン、ブタジエン、ブタン、アセチレン、合成ガスなどより1,4-BGを製造しても良い。この中でも、発酵法により直接原料1,4-BGを得る方法が効率的で好ましい。
 コハク酸を水添する還元触媒の例としては、例えば、Pd、Ru、Re、Rh、Ni、Cu、Coおよびその化合物等が挙げられる。具体的には、Pd/Ag/Re、Ru/Ni/Co/ZnO、Cu/Zn酸化物、Cu/Zn/Cr酸化物、Ru/Re、Re/C、Ru/Sn、Ru/Pt/Sn、Pt/Re/アルカリ、Pt/Re、Pd/Co/Re、Cu/Si、Cu/Cr/Mn、ReO/CuO/ZnO、CuO/CrO、Pd/Re、Ni/Co、Pd/CuO/CrO、リン酸Ru、Ni/Co、Co/Ru/Mn、Cu/Pd/KOH、Cu/Cr/Zn等が挙げられる。この中でもRu/SnまたはRu/Pt/Snが触媒活性の点で好ましい。
 また、更に、バイオマス資源から公知の有機化学触媒反応との組み合わせにより原料1,4-BGを製造する方法も用いられる。例えば、バイオマス資源としてペントースを利用する場合には公知の脱水反応、触媒反応の組み合わせで容易に原料1,4-BGを製造することができる。
 バイオマス資源から誘導された原料1,4-BGには、発酵処理ならびに酸の中和工程を含む精製処理に起因して不純物として窒素原子含有化合物が含まれてくる。具体的には、アミノ酸、蛋白質、アンモニア、尿素、発酵菌由来等の窒素原子含有化合物が含まれてくる。
 本発明においてPBTの原料となる、バイオマス資源から得られた原料1,4-BGの窒素原子含有量は、該原料1,4-BGに対して質量比で、上限は、通常50ppm、好ましくは20ppm、更に好ましくは10ppm、より好ましくは5ppmである。また、下限は、通常0.01ppm、好ましくは0.1ppmがよく、特に精製工程の経済性の観点からは0.2ppmであることが好ましい。
 原料1,4-BG中の窒素原子含有量が少なくなるほど、生成するPBTの色調などが好ましくなる傾向が強い。一方、多くなるほど、精製工程を簡便とし易く経済的に有利な上、PBT製造反応中での1,4-BGのTHFへの転化率も低く抑えやすい。
 なお、本発明において、1,4-BG中の窒素原子含有量は、後掲の実施例の項に記載される方法で測定することができるが、測定法はこれに限定されない。
 本発明におけるPBTの製造に用いる原料1,4-BGの窒素原子含有量が0.01~50質量ppmであると、重縮合反応速度や色調の点で好ましくなりやすい理由は定かではないが、原料1,4-BGの窒素原子含有量を制御するための発酵液の処理および蒸留を含む精製工程において、窒素原子含有化合物以外に重縮合反応を阻害し、PBTの色調を悪化させる着色誘引物質の生成を抑制できることによると推定される。
 例えば、本発明で用いる原料1,4-BG中にはGBLが含まれるが、GBLは窒素原子含有化合物と種々のアミド、アミン、アミノ酸などの誘導体を生成すると考えられ、その誘導体は二官能以上を有する反応性に富む成分であることから、これら誘導体中に強くPBTの色調を悪化させる成分が存在するものと考えられる。
 バイオマス資源由来の原料1,4-BG中の窒素原子含有量は、例えば、バイオマス資源の発酵により得られるコハク酸を水添して原料1,4-BGを得る場合は、その発酵条件、アンモニアによる中和条件、コハク酸の晶析条件などによりコハク酸中の窒素原子含有化合物の量を調節することが可能である。また、コハク酸を水添して得られる1,4-BGは、蒸留を含む精製条件により、その窒素原子含有量を調節することができる。また、原料1,4-BGがバイオマス資源の発酵により直接得られる場合にも、その発酵条件、アンモニアによる中和条件、得られた1,4-BGの蒸留を含む精製条件などにより調節することができる。
 また、バイオマス資源由来の原料1,4-BGは、通常、GBLを不純物として含有する。例えば、マレイン酸、コハク酸、無水コハク酸、コハク酸エステルなどを中間体として経由し、水素化により原料1,4-BGを製造する場合や、2-ヒドロキシテトラヒドロフランを不純物として含み、その脱水素が進行する環境にある場合に、原料1,4-BGは不純物としてGBLを含有する。バイオマス資源から発酵法により直接原料1,4-BGを得る場合も、発酵槽内でマレイン酸、コハク酸、無水コハク酸、コハク酸エステルなどの水素化が進行しているものと考えられ、GBLが副生する。
 本発明において、PBTの製造に用いる原料1,4-BGが、上記のように副生したGBLを多く含む粗1,4-BGである場合には、粗1,4-BGを精製して原料1,4-BGを得ることができる。粗1,4-BG中のGBL含有量は、該粗1,4-BGに対して質量比で、上限は、通常2質量%、好ましくは1質量%、更に好ましくは1000ppm、特に好ましくは200ppm、最も好ましくは180ppmである。また、下限は、通常101ppm、好ましくは120ppmであり、特に発酵工程や水添工程の経済性の観点からは下限が150ppmであることが望ましい。
 本発明においてPBTの製造に用いるバイオマス資源由来の原料1,4-BGのGBL含有量は、該原料1,4-BGに対して質量比で、上限は、通常100ppm、好ましくは50ppm、更に好ましくは40ppm、特に好ましくは30ppm、最も好ましくは20ppmである。また、下限は、通常1ppm、好ましくは2ppmであり、特に精製工程の経済性の観点からは下限が5ppmであることが好ましい。
 窒素原子含有化合物を含有する原料1,4-BG中のGBL含有量が少なくなるほど、PBT製造における重縮合反応速度、生成するPBTの色調などが好ましくなる傾向が強い。一方、多くなるほど、精製工程を簡便とし易く経済的に有利となる。本発明においては、原料1,4-BGのGBL含有量を上記の範囲で調節することにより、得られるPBTの色調を調整することができる。
 なお、原料1,4-BG又は粗1,4-BG中のGBLの含有量は、後掲の実施例の項に記載される方法で測定される。
 本発明におけるPBTの製造に用いるバイオマス資源由来の原料1,4-BGのGBL含有量が1~100質量ppmであると重縮合反応速度や色調の点で好ましくなりやすい理由は定かではないが、前述したように、GBLと窒素原子含有成分との反応により生成し、PBTの色調を悪化させる原因と考えられる、二官能以上を有し反応性に富む種々のアミド、アミン、アミノ酸などの誘導体を低減することができることによると考えられる。
 バイオマス資源由来の原料1,4-BG中のGBL含有量は、例えば、バイオマス資源の発酵により得られるコハク酸を水添して原料1,4-BGを得る場合は、その発酵条件、アンモニアによる中和条件、コハク酸の晶析条件などによりコハク酸中のGBL量を調節することができる。しかし、コハク酸の水添において、GBLは1,4-BGを合成する際の中間体であり、GBL量を正確に制御するのは困難である。そのため、バイオマス資源由来の原料1,4-BGをPBTの製造のための反応器に供給する前に、予め精製することにより原料1,4-BG中のGBL含有量を調節することが好ましい。
 この場合、GBLは1,4-BGよりも軽沸点の成分であり、1,4-BGの精製工程で軽沸点成分の分離蒸留を行うことで、原料1,4-BG中のGBL含有量を調節することができる。
 1,4-BGがバイオマス資源の発酵により直接得られる場合にも、その発酵条件、アンモニアによる中和条件、得られた粗1,4-BGの蒸留を含む精製条件などによりGBL含有量を調節することができるが、この場合も粗1,4-BGの精製を行って、GBLを含む軽沸点成分を除去することが好適な手段である。
 一般的にGBLと粗1,4-BGとの分離蒸留は、充填物および/またはトレイを用いた多段蒸留で行うことができる。この際、GBLは分離蒸留塔の塔頂部より留去させることができるが、高温度条件ではGBLは1,4-BGと反応して高沸化してしまう。この高沸成分は次工程でGBLに分解するため、軽沸点成分の分離蒸留塔での該高沸成分の生成を低減することが好ましい。
 このような観点から、分離蒸留塔の塔頂部温度は、通常40~180℃が好ましく、更に好ましくは50~160℃であり、特に好ましくは60~150℃の範囲である。塔頂部温度がこの下限以上の温度であることにより、水による冷却が容易となり、経済性の点から好ましい。一方、上記上限以下の温度であることにより、該高沸成分の生成が大幅に加速されることを防ぐことから好ましい。
 また、本発明においてPBTの製造に用いるバイオマス資源由来の原料1,4-BGにおける1-アセトキシ-4-ヒドロキシブタン(1,4-HAB)含有量は、該原料1,4-BGに対して質量比で、上限は、好ましくは99ppm、更に好ましくは90ppm、特に好ましくは80ppm、最も好ましくは70ppmである。また、下限は、好ましくは1ppmであり、更に好ましくは2ppm、特に精製工程の経済性の観点からは下限が5ppmであることが好ましい。窒素原子含有化合物を含有する1,4-BG中の1,4-HAB含有量が少なくなるほど、PBT製造における重縮合反応速度、生成するPBTの色調などが好ましくなる傾向が強い。一方、多くなるほど、精製工程を簡便とし易く経済的に有利となる。
 なお、原料1,4-BG中の1,4-HABの含有量は、後掲の実施例の項に記載される方法で測定される。
 バイオマス資源由来の原料1,4-BG中の1,4-HAB含有量は、例えば、バイオマス資源の発酵により得られるコハク酸を水添して原料1,4-BGを得る場合は、その発酵条件、アンモニアによる中和条件、コハク酸の晶析条件などによりコハク酸中の1,4-HAB量を調節することでも調節することができる。しかし、バイオマス資源由来の粗1,4-BGをPBTの製造のための反応器に供給する前に、予め精製することにより原料1,4-BG中の1,4-HAB含有量を調節することが好ましい。
 この場合、1,4-HABは1,4-BGよりも軽沸点の成分であり、粗1,4-BGの精製工程で軽沸点成分の分離蒸留を行うことで、原料1,4-BG中の1,4-HAB含有量を調節することができる。
 1,4-BGがバイオマス資源の発酵により直接得られる場合にも、その発酵条件、アンモニアによる中和条件、得られた1,4-BGの蒸留を含む精製条件などにより1,4-HAB含有量を調節することができるが、この場合も粗1,4-BGの精製を行って、1,4-HABを含む軽沸点成分を除去することが好適な手段である。
 1,4-HABと粗1,4-BGとの分離蒸留は、前述のGBLと粗1,4-BGとの分離蒸留時に同時に行うことができる。
<PBTの製造>
 本発明のPBTの製造方法は、PBTを製造することができればよく、特に制限されない。
 PBTの公知の製造方法は、主原料としてテレフタル酸を用いるいわゆる直接重合法と、主原料としてテレフタル酸アルキルエステルを用いるエステル交換法とに大別される。前者は、初期のエステル化反応で水が生成し、後者は初期のエステル交換反応でアルコールが生成するという違いがあるが、原料の入手安定性、留出物の処理の容易さ、原料原単位の高さ、また本発明による改良効果という観点からは直接重合法が好ましい。
 直接重合法の一例としては、テレフタル酸を含むジカルボン酸成分と原料1,4-BGを含むジオール成分とを、単数若しくは複数段のエステル化反応槽内で、エステル化反応触媒の存在下で行う。温度は、通常180℃以上、好ましくは200℃以上、特に好ましくは210℃以上、通常260℃以下、好ましくは250℃以下、特に好ましくは245℃以下である。圧力は、通常10kPa以上、好ましくは13kPa以上、特に好ましくは50kPa以上、通常133kPa以下、好ましくは120kPa以下、特に好ましくは110kPa以下である。反応時間は、通常0.5時間以上、好ましくは1時間以上、通常5時間以下、好ましくは3時間以下の条件である。
 上記条件下で連続的にエステル化反応させ、得られたエステル化反応生成物としてのオリゴマーを重縮合反応槽に移送し、複数段の重縮合反応槽内で、重縮合反応触媒の存在下で連続的に重縮合反応を行う。反応温度は通常210℃以上、好ましくは220℃以上、通常260℃以下、好ましくは250℃以下、特に好ましくは245℃以下である。圧力は、通常27kPa以下、好ましくは20kPa以下、より好ましくは13kPa以下、中でも少なくとも1つの重縮合反応槽においては好ましくは2kPa以下であり、上記条件の減圧下で、攪拌しながら、通常2~12時間、好ましくは2~10時間で重縮合反応させる方法等が挙げられる。
 エステル交換法の一例としては、テレフタル酸ジメチル等のテレフタル酸エステルを含むジカルボン酸成分と原料1,4-BGを含むジオール成分とを、単数若しくは複数段のエステル化反応槽内で、エステル交換反応触媒の存在下で行う。温度は、通常110℃以上、好ましくは140℃以上、特に好ましくは180℃以上、通常260℃以下、好ましくは245℃以下、特に好ましくは220℃以下である。圧力は、通常10kPa以上、好ましくは13kPa以上、特に好ましくは60kPa以上、通常133kPa以下、好ましくは120kPa以下、特に好ましくは110kPa以下である。反応時間は、通常0.5時間以上、好ましくは1時間以上、通常5時間以下、好ましくは3時間以下の条件である。
 上記条件下で連続的にエステル交換反応させ、得られたエステル交換反応生成物としてのオリゴマーを重縮合反応槽に移送し、複数段の重縮合反応槽内で、重縮合反応触媒の存在下で連続的に重縮合反応を行う。反応温度は通常210℃以上、好ましくは220℃以上、通常260℃以下、好ましくは250℃以下、特に好ましくは245℃以下である。圧力は、通常27kPa以下、好ましくは20kPa以下、より好ましくは13kPa以下、中でも少なくとも1つの重縮合反応槽においては好ましくは2kPa以下であり、上記条件の減圧下で、攪拌しながら、通常2~12時間、好ましくは2~10時間、重縮合反応させる方法等が挙げられる。
 エステル化反応またはエステル交換反応触媒としては、例えば、三酸化二アンチモン等のアンチモン化合物;二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム化合物;テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等のチタン化合物;ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、シクロヘキサヘキシルジスズオキサイド、ジドデシルスズオキサイド、トリエチルスズハイドロオキサイド、トリフェニルスズハイドロオキサイド、トリイソブチルスズアセテート、ジブチルスズジアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸、ブチルスタンノン酸等のスズ化合物;酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水素マグネシウム等のマグネシウム化合物;酢酸カルシウム、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、カルシウムアルコキサイド、燐酸水素カルシウム等のカルシウム化合物等のアルカリ土類金属化合物の他、マンガン化合物、亜鉛化合物等を挙げることができる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。中でも、チタン化合物、スズ化合物が好ましく、テトラブチルチタネートが特に好ましい。
 エステル化反応またはエステル交換反応触媒の使用量は特に限定されないが、PBT中の金属濃度(質量)として、通常1ppm以上、好ましくは5ppm以上、更に好ましくは10ppm以上、特に好ましくは20ppm以上、最も好ましくは30ppm以上、通常300ppm以下、好ましくは200ppm以下、より好ましくは150ppm以下、更に好ましくは100ppm以下、特に好ましくは90ppm以下、最も好ましくは60ppm以下がよい。PBT中の金属濃度(質量)が上記上限以下であると、異物の原因になりにくい上、PBTの熱滞留時の劣化反応やガス発生が起こりにくい傾向があり、上記下限以上であると、主反応速度が速く副反応が起こりにくい。
 また、重縮合反応触媒としては、エステル化反応またはエステル交換反応の触媒をそのまま重縮合反応触媒として用いても良いし、更に前記触媒を添加しても良い。重縮合反応触媒の使用量に特に制限はないが、上記のエステル化反応またはエステル交換反応の触媒と同様の理由から、PBT中の金属濃度(質量)として、通常0.5ppm以上、好ましくは1ppm以上、更に好ましくは3ppm以上、特に好ましくは5ppm以上、最も好ましくは10ppm以上、通常300ppm以下、好ましくは200ppm以下、更に好ましくは100ppm以下、特に好ましくは50ppm以下、最も好ましくは30ppm以下がよい。
 また、触媒として有機チタン化合物を用いる場合には、異物抑制の観点から、最終的にはPBT中のチタン金属濃度(質量)は、250ppm以下であることが好ましく、100ppm以下であることが更に好ましく、60ppm以下であることが特に好ましく、50ppm以下であることが最も好ましい。
 PBT中の金属濃度(質量)は、湿式灰化等の方法でPBT中の金属を回収した後、原子発光、誘導結合プラズマ(Induced Coupled Plasma:ICP)法等を用いて測定することができる。
 また、前記のエステル化反応、エステル交換反応および重縮合反応において、前記触媒の他に、正燐酸、亜燐酸、次亜燐酸、ポリ燐酸およびそれらのエステルや金属塩等の燐化合物;水酸化ナトリウム、安息香酸ナトリウム等のナトリウム化合物、酢酸リチウム等のリチウム化合物、水酸化カリウム、酢酸カリウム等のカリウム化合物等のアルカリ金属化合物等の反応助剤;酢酸マグネシウム、酢酸カルシウム等のアルカリ土類金属化合物等の反応助剤;2,6-ジ-t-ブチル-4-オクチルフェノール、ペンタエリスリチル-テトラキス[3-(3’,5’-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]等のフェノール化合物;ジラウリル-3,3’-チオジプロピオネート、ペンタエリスリチル-テトラキス(3-ラウリルチオジプロピオネート)等のチオエーテル化合物;トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等の燐化合物等の抗酸化剤;パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステルに代表される長鎖脂肪酸およびそのエステル;シリコーンオイル等の離型剤等を使用しても良い。
 重縮合反応槽としては、縦型攪拌重合槽、横型攪拌重合槽、薄膜蒸発式重合槽等の公知のものを挙げることができる。反応液の粘度が上昇する重縮合の後期は、反応速度よりも物質移動が分子量増大の支配因子になる傾向があるため、副反応を抑制しつつ主反応をおし進めるために、可能な限り温度を下げ、表面更新性を上げたほうが本発明の目的を達成するには有利である。そのため、表面更新性とプラグフロー性、セルフクリーニング性に優れた薄膜蒸発機能を有した単数または複数の横型攪拌重合機を選定することが好ましい。
 また、本発明の製造法で得られたPBTは、引き続き公知の方法で固相重縮合させて分子量を上げることもできる。
 重縮合反応により得られたPBTは、通常、重縮合反応槽の底部からポリマー抜出ダイに移送されてストランド状に抜き出され、水冷されながら若しくは水冷後、カッターで切断されてペレット状またはチップ状の粒状体とされる。粒状体は、引き続き公知の方法等で固相重縮合させて、その固有粘度を上げることもできる。
<PBT>
 本発明により製造されるPBT(以下、“本発明のPBT”と称することがある。)は、テレフタル酸由来の構成単位と1,4-ブタンジオール由来の構成単位を含み、1,4-ブタンジオール中の窒素原子含有量は0.01~50質量ppm、ガンマブチロラクトン含有量は1~100質量ppmである。
 本発明のPBTにおける窒素原子含有量(質量比)の上限は、好ましくは10ppm、より好ましくは2ppmで、下限は、好ましくは0.05ppm、より好ましくは0.1ppmである。本発明のPBT中のガンマブチロラクトンの含有量による影響は不明であるが、ガンマブチロラクトンはPBT色調悪化の原因となるアミド、アミン、アミノ酸などの他成分に変換されて、PBT中に含有されているものと考えられる。
 窒素原子含有量が上記範囲内のPBTは、先述した本発明に係る製造方法に従い、上記の好ましいバイオマス資源由来の原料1,4-ブタンジオールとテレフタル酸またはテレフタル酸アルキルエステルとを原料とすることにより得ることができる。
 本発明のPBTの固有粘度に特に制限はないが、機械的物性、ペレット化の安定性、成形性の観点からは、好ましくは0.50dL/g以上、更に好ましくは0.70dL/g以上、好ましくは1.50dL/g以下、更に好ましくは1.35dL/g以下である。PBTの固有粘度が上記下限以上であると成形品の機械物性の点で好ましく、上記上限以下であると成形性の点で好ましい傾向がある。
 PBTの固有粘度は、後掲の実施例の項に記載される方法で測定される。
 本発明のPBTの末端カルボキシル基濃度に特に制限はないが、下限が、1当量/トンであることが好ましく、2当量/トンであることが更に好ましく、3当量/トンであることが特に好ましく、5当量/トンであることが最も好ましく、上限が、50当量/トンであることが好ましく、40当量/トンであることが更に好ましく、30当量/トンであることが特に好ましく、25当量/トンであることが最も好ましい。PBTの末端カルボキシル基濃度が上記上限以下であるとPBTの耐加水分解性が良好な傾向にあり、上記下限以上であると重縮合性が良好な傾向にある。
 PBTの末端カルボキシル基濃度は、樹脂を有機溶媒に溶解し、水酸化ナトリウム等のアルカリ溶液を用いて滴定することにより求めることができる。より具体的には、後掲の実施例の項に記載される方法で求められる。
<PBTの色調>
 通常、バイオマス資源由来の原料1,4-BGを用いて製造されたPBTは色調が悪化する傾向にあるが、本発明のPBTは色調が良好である。また、前述の如く、原料1,4-BG中のGBLを、粗1,4-BGの精製工程などでその含有量を調節することで、得られるPBTの色調を調節することが可能である。
<PBT組成物>
 本発明のPBTは、本発明の効果を大幅に損なわない範囲で、PBT以外の成分を含むPBT組成物とすることができる。そのPBT以外の成分の具体例を挙げると、熱可塑性、熱硬化性などの各種樹脂、離型剤、強化充填材等の充填材、難燃剤、その他各種添加剤などが挙げられる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリメタクリル酸エステル、ポリアクリル酸エステル、ABS樹脂、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、液晶ポリエステル、ポリアセタール、ポリフェニレンオキサイド等が挙げられる。また、熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂などが挙げられる。これらの樹脂は1種のみを用いてもよいし、2種以上を組み合わせて使用することもできる。このうち、熱可塑性樹脂が用いられる場合が多い。
 これらの樹脂を配合する場合、その配合量(質量)は、本発明の優れた効果が発現されていればよく、特に制限はないが、樹脂全量に対するPBTの割合が、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは10質量%以上、通常99.9質量%以下、好ましくは99質量%以下、更に好ましくは90質量%以下となるような量である。
 離型剤としては、特に制限されないが、例えば、2,6-ジ-t-ブチル-4-オクチルフェノール、ペンタエリスリチル-テトラキス[3-(3’,5’-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]等のフェノール化合物;ジラウリル-3,3’-チオジプロピオネート、ペンタエリスリチル-テトラキス(3-ラウリルチオジプロピオネート)等のチオエーテル化合物;パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステルに代表される長鎖脂肪酸およびそのエステル;シリコーンオイル等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 強化充填材としては、特に制限されないが、例えば、ガラス繊維、カーボン繊維、シリカ・アルミナ繊維、ジルコニア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケイ素チタン酸カリウム繊維、金属繊維等の無機繊維;芳香族ポリアミド繊維、フッ素樹脂繊維などの有機繊維が挙げられる。このうち、無機繊維、特にガラス繊維が好適に使用される。強化充填材は、1種のみ用いても良いし、2種以上を組み合わせて使用しても良い。
 強化充填材が無機繊維または有機繊維である場合、その平均繊維径は、特に制限されないが、通常1~100μm、好ましくは2~50μm、更に好ましくは3~30μm、特に好ましくは5~20μmである。また平均繊維長は、特に制限されないが、通常0.1~20mm、好ましくは1~10mmである。
 強化充填材は、PBTとの界面密着性を向上させるため、収束剤または表面処理剤で表面処理されたものを用いることが好ましい。収束剤または表面処理剤としては、例えば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物が挙げられる。収束剤または表面処理剤による処理は、強化充填材を予め表面処理することにより行ってもよいし、PBT組成物を調製する際に収束剤または表面処理剤と接触させてもよい。
 強化充填材を用いる場合、その配合量は、PBTを含む樹脂成分100質量部に対し、通常150質量部以下、好ましくは5~100質量部である。
 本発明のPBTには、強化充填材以外の充填材を配合しても良い。充填材としては、例えば、板状無機充填材、セラミックビーズ、アスベスト、ワラストナイト、タルク、クレー、マイカ、ゼオライト、カオリン、チタン酸カリウム、硫酸バリウム、酸化チタン、酸化ケイ素、酸化アルミニウム、水酸化マグネシウム等が挙げられる。
 板状無機充填材を配合することにより、成形品の異方性およびソリを低減することができる。板状無機充填材としては、例えば、ガラスフレーク、雲母、金属箔などを挙げることができる。これらの中ではガラスフレークが好適に使用される。
 また、本発明のPBTには、難燃性を付与するために難燃剤を配合してもよい。その難燃剤としては、特に制限されず、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、その他の有機難燃剤、無機難燃剤などが挙げられる。
 有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ポリペンタブロモベンジルアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等が挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、シアヌール酸などの窒素化合物等が挙げられる。その他の無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物などが挙げられる。これらの難燃剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 その他の各種添加剤としては、特に制限されないが、例えば、酸化防止剤、耐熱安定剤などの安定剤の他、滑剤、触媒失活剤、結晶核剤、結晶化促進剤などが挙げられる。これらの添加剤は、重縮合途中または重縮合後に添加しても良い。
 また、その他の各種添加剤としては、紫外線吸収剤、耐候安定剤などの安定剤、染顔料などの着色剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤なども挙げられる。
 上記のその他成分の配合方法は、特に制限されないが、例えば、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。各成分は、付加的成分を含めて、混練機に一括して供給してもよく、順次供給してもよい。また、付加的成分も含めて、各成分から選ばれた2種以上の成分をあらかじめ混合しておくこともできる。
<PBTの成形加工>
 本発明のPBTおよびこれを含んだPBT組成物の成形加工方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形法等、具体的には、射出成形、中空成形、押し出し成形、プレス成形などを適用できる。
 本発明のPBTおよびこれを含んだPBT組成物は、色調、熱安定性、透明性、品質安定性に優れ、電気、電子部品、自動車用部品などの射出成形品、フィルム、モノフィラメント、繊維などの押出し成形品用途において好適に使用できる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。
[分析方法]
<原料1,4-BGの窒素原子含有量(質量ppm)>
 原料1,4-BG15mgを石英ボートに採取して、微量全窒素分析装置((株)ダイヤインスツルメンツ製 型式:「TN-10型」)を用いて試料を燃焼し、燃焼・化学発光法により定量した。また、その際に使用した標準試料には、トルエン中にアニリンを溶解し、窒素原子換算で0、0.5、1.0、2.0μg/mLのものをそれぞれ作製して使用した。
<原料1,4-BGのGBL、その他の成分の含有量(質量ppm)>
 ガスクロマトグラフィー分析装置((株)島津製作所製 型式:「島津GC-2014型」)にて、DB-1カラム(無極性)を用い、修正面積百分率法により、原料1,4-BG、GBL、その他、1,4-HAB等の各ピークの成分の含有量を求め、1,4-BG中の含有量を算出した。
<PBT製造時の水・THF生成量>
 エステル化反応における留出液について、カールフィッシャー法(三菱化学(株)製「CA-03」で測定)にて水分量を求め、水分以外は有機成分とした。有機成分中のTHF量を上記ガスクロマトグラフ法により求め、THF生成量とした。THF生成量をテレフタル酸に対するモル%で表し、転化率とした。
<PBTの固有粘度(IV)>
 ウベローデ型粘度計を使用して以下の手順で求めた。すなわち、フェノール/テトラクロロエタン(質量比1/1)の混合溶媒を使用し、30℃において、濃度1.0g/dLのPBT溶液および溶媒のみの落下秒数をそれぞれ測定し、下記式で算出した。
  IV=((1+4Kηsp0.5-1)/(2KC)
 但し、ηsp=(η/η)-1であり、ηはPBT溶液落下秒数、ηは溶媒の落下秒数、CはPBT溶液のPBT濃度(g/dL)、Kはハギンズの定数である。Kは0.33を採用した。
<PBTの末端カルボキシル基濃度(当量/トン)>
 ベンジルアルコール25mLにPBT0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定し、下記式で算出した。
  末端カルボキシル基濃度=(A-B)×0.1×f/W(当量/トン)
 但し、Aは、滴定に要した0.01Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、Bはブランクでの滴定に要した0.01モル/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、WはPBT試料の量(g)、fは、0.01モル/Lの水酸化ナトリウムの力価である。
<PBTの色調(b値)>
 ペレット状のPBTを内径30mm、深さ12mmの円柱状の粉体測定用セルに充填し、測色色差計Color Meter ZE2000(日本電色工業(株)製)を使用して、反射法により測定セルを90度ずつ回転させて4箇所測定した値の単純平均値として求めた。色調は、L、a、b表色系におけるb値で評価した。b値が低いほど黄ばみが少なく色調が良好であることを示す。
[原料1,4-BG]
 発酵法から直接原料1,4-BGを製造する方法として、日本国特表2010-521182号公報および米国特許出願公開第2011/0003355号明細書の実施例1~4に記載の方法で得た粗1,4-ブタンジオールを精製してバイオ法1,4-ブタンジオール(B)(以下、“バイオ法(B)”と略記することがある。)を得た。
 石化法の原料1,4-BGは実際に工業的に入手可能な製品を使用した。
 ブタン法によって得られる原料1,4-BG(C)(以下、“ブタン法(C)”と略記することがある。)は、ブタンの酸化により生成するマレイン酸、コハク酸、無水マレイン酸および/またはフマル酸を原料として、それらを水素化して得られる。
 ブタジエン法によって得られる原料1,4-BG(D)(以下、“ブタジエン法(D)”と略記することがある。)は、ブタジエン、酢酸および酸素を用いてアセトキシ化反応を行って、中間体であるジアセトキシブテンを得、そのジアセトキシブテンを水添、加水分解することで得られる。
 プロピレン法によって得られる原料1,4-BG(E)(以下、“プロピレン法(E)”と略記することがある。)は、プロピレンの酸化により得られるアリルアルコールのオキソ反応により得られる。
[参考例1:バイオ法(B)の精製]
 日本国特表2010-521182号公報の記載を元に有機体の発酵培地から生物学的に1,4BG含有組成物を生産したバイオ法(B)の原料1,4-BGを以下の方法で精製した。以下、「GBL」は「ガンマブチロラクトン」、「1,4-HAB」は「1-アセトキシ-4-ヒドロキシブタン」、「BGTF」は「2-(4-ヒドロキシブチルオキシ)テトラヒドロフラン」である。また、「ppm」、「%」はいずれも質量基準の値である。以下の表-2、表-3においても同様である。
 バイオ法(B)の原料1,4-BGは米国特許出願公開第2011/0003355号明細書に記載の方法で、即ち、濾過、遠心分離及びイオン交換樹脂により菌体と塩分の全量又は各々の少なくとも一部を除去した後、蒸留により水を除去して行い、表-1に示す精製前の粗1,4-BGを得た。
 この精製前粗1,4-BGに対して、ガラス製のロータリーエバポレーターを使用して脱水濃縮を行った。圧力を10.7kPaとし、内温度は175℃で実施した。留出率は10質量%であり、フラスコ内に残った仕込み量に対して90質量%の粗1,4-BG溶液を回収した。
 次に、脱水後の粗1,4-BG溶液を原料に用いてガラス製の器具を用いて回分蒸留を行い、複数のフラクションに分離して粗1,4-BGからの高沸分および軽沸分の分離を行った。この際、理論段として3段相当の多段蒸留塔を用いた。塔頂圧力を13.3kPaとし、塔底温度を182℃に制御した。留出温度は軽沸分を除去するとともに上昇し、その後175℃で安定した。この塔頂温度が安定した留分を1,4-BGとして採取した。原料仕込み量に対して1,4-BGのフラクションを80質量%回収した。この精製1,4-BGのフラクションの組成も表-1に示す。
Figure JPOXMLDOC01-appb-T000001
 表-1の精製後の組成を持つ1,4-BGを更に同じ回分蒸留装置を使用して、複数のフラクションに分離し、GBL、窒素原子含有量の異なる精製バイオ法(B)を5ロット得た。このロットを初留から順にロット1、ロット2、ロット3、ロット4、ロット5とする。各ロット中のGBL含有量、窒素原子含有量、1,4-HAB含有量、BGTF含有量を、表-2に示した。なお、GBLは、高沸点成分から再生される場合があり、表-1の精製後の1,4-BGに対して、表-2に示すロット1~5ではGBLが増加している。
Figure JPOXMLDOC01-appb-T000002
[PBTの製造]
<実施例1>
 攪拌装置、窒素導入口、加熱装置、温度計、留出管、および減圧用排気口を備えた反応容器に、テレフタル酸113g、バイオ法の原料1,4-BG(ロット1)を183gおよび触媒としてテトラブチルチタネートを予め6質量%溶解させたバイオ法の原料1,4-BG(ロット1)溶液0.7gを仕込み、窒素-減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら150℃まで加温後、大気圧下、220℃に1時間で昇温させて、さらに2時間生成する水を留出させつつエステル化反応を行った。
 次に、酢酸マグネシウム4水塩を水に溶解し、さらにバイオ法の原料1,4-BG(ロット1)に溶解させた酢酸マグネシウム4水塩1質量%の1,4-BG溶液(酢酸マグネシウム4水塩、水、1,4-BGの質量比1:2:97)1.3gを添加した。
 次に、220℃で0.25時間保持後、0.75時間かけて245℃まで昇温し、保持した。一方、圧力は重合開始から、1.5時間かけて0.07kPaになるように減圧し、同減圧下で0.8時間重縮合反応を行い、反応系を常圧に戻し重縮合を終了した。得られたPBTを反応槽の底部からストランドとして抜き出し、10℃の水中を潜らせた後、カッターでストランドをカットすることによりペレット状のPBTを得た。
 酢酸マグネシウム添加後の減圧開始から重縮合終了までを重縮合時間として、固有粘度/重縮合時間を重縮合速度とした。重縮合速度は0.37dL/g/時間であった。エステル化反応中の留出液についてTHF量を分析し、仕込みテレフタル酸あたりのモル%で表したTHF転化率は、70.6モル%であった。
 得られたPBTの上記測定法による分析結果と原料1,4-BGとして用いたバイオ法(ロット1)のGBL含有量、窒素原子含有量、1,4-HAB含有量、BGTF含有量を表-3に示す。
<実施例2>
 実施例1において、原料1,4-BGをバイオ法の精製で得られたロット2に変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<実施例3>
 実施例1において、原料1,4-BGをバイオ法の精製で得られたロット3に変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<実施例4>
 実施例1において、原料1,4-BGをバイオ法の精製で得られたロット4に変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<比較例1>
 実施例1において、原料1,4-BGをバイオ法の精製で得られたロット5に変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<比較例2>
 実施例1において、原料1,4-BGを表-3に示す組成のブタン法(C)の1,4-BGに変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<比較例3>
 実施例1において、原料1,4-BGを表-3に示す組成のブタジエン法(D)の1,4-BGに変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
<比較例4>
 実施例1において、原料1,4-BGを表-3に示す組成のプロピレン法(E)の1,4-BGに変更した以外は全て同様にPBTを製造した。PBT製造時のTHFへの転化率[%]、重縮合時間[時間]、重縮合速度[dL/g/時間]、PBTの上記測定法による分析結果を併せて表-3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~4と比較例2~4を対比すると、実施例1~4の原料1,4-BG中の1,4-HABの濃度が異なるが、重縮合時間が2.3時間と全て同じであるのに対して、比較例2~4の重縮合時間は2.7時間や2.4時間となっていることから、バイオマス資源由来の1,4-BGを使ってPBTを製造すると、石油原料由来の1,4-BGを原料としてPBTを製造する場合に対して、窒素原子含有化合物の存在によって1,4-HABの影響による重合遅延を抑制できていることがわかる。
 実施例1~4と比較例1を比べると、バイオマス資源由来の1,4-BG(窒素原子が存在)でも、1,4-BG中のGBLの含有量が1~100質量ppmであれば、PBTの着色は少ないことから、窒素原子含有化合物とGBLとの反応生成物による着色が抑えられていることがわかる。
 図1は実施例2~4、比較例1の原料1,4-BG中のGBL含有量に対するPBTの色調b値、および比較例2~4の原料1,4-BG中のGBL含有量に対するPBTの色調b値を示すグラフである。図1から、窒素原子が存在しない1,4-BG(比較例2~4)ではGBLの濃度とb値の相関が確認できないが、窒素原子が存在するバイオマス資源由来の1,4-BGではGBL含有量と色調b値の相関があることから、GBLによるPBTの着色はバイオマス資源由来の1,4-BG中の窒素原子化合物とGBLとの反応で新たに発生する化合物が着色を誘発していると推定できる。
<参考例2>
 比較例3で使用した原料1,4-BG(ブタジエン法(D))に2-ピロリドンを123質量ppm(窒素原子含有量20.2質量ppm)添加し、それ以外は全て比較例3の条件と同様にPBT合成を行った。その結果、得られたPBTの色調b値は2.7であり、123質量ppmの2-ピロリドン添加により色調b値が1.5増加した。尚、GBLの分子量と2-ピロリドンの分子量から、123ppmの2-ピロリドンをGBL量に換算すると、124質量ppmとなる。
 本発明では、GBLと窒素原子含有化合物から誘導される成分が色調を悪化させると推定しているが、アンモニアとGBLから誘導される2-ピロリドンによるPBTの色調悪化は、この推定を支持するものである。GBLと窒素原子含有化合物から誘導される成分が色調悪化の原因であるために、窒素原子含有化合物を含有せずGBLのみを含有する原料では、GBL含有量増加に伴うPBTの色調悪化が確認されないものと理解できる。
 尚、本機構は2-ピロリドンに限定されるものではなく、また、窒素成分をアンモニアに限定するものではない。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年6月5日出願の日本特許出願(特願2012-128064)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (6)

  1.  窒素原子含有量が0.01~50質量ppmのバイオマス資源由来である原料1,4-ブタンジオールを含むジオール成分と、テレフタル酸またはテレフタル酸アルキルエステルを含むジカルボン酸成分とをエステル化反応またはエステル交換反応させる工程(a)と、前記工程(a)で得られた反応物を重縮合反応させてポリブチレンテレフタレートを得る重縮合反応工程(b)とを有するポリブチレンテレフタレートの製造方法であって、
     前記原料1,4-ブタンジオールにおけるガンマブチロラクトンの含有量が1~100質量ppmである、ポリブチレンテレフタレートの製造方法。
  2.  前記工程(a)に先立ち、バイオマス資源由来の粗1,4-ブタンジオールを精製して前記原料1,4-ブタンジオールを得る工程を更に有する、請求項1に記載のポリブチレンテレフタレートの製造方法。
  3.  前記粗1,4-ブタンジオールにおけるガンマブチロラクトンの含有量が、101質量ppm~2質量%である、請求項2に記載のポリブチレンテレフタレートの製造方法。
  4.  前記原料1,4-ブタンジオールにおける1-アセトキシ-4-ヒドロキシブタンの含有量が1~99質量ppmである、請求項1~3のいずれか1項に記載のポリブチレンテレフタレートの製造方法。
  5.  前記原料1,4-ブタンジオール又は前記粗1,4-ブタンジオールを、グルコース、フルクトース、キシロース及びサッカロースからなる群より選ばれる少なくとも1の炭素源から発酵法により直接製造する工程をさらに有する、請求項1~4のいずれか1項に記載のポリブチレンテレフタレートの製造方法。
  6.  バイオマス資源から、下記に示す天然に存在しない微生物生体触媒を用いて、前記原料1,4-ブタンジオール又は前記粗1,4-ブタンジオールを製造する工程を更に有する、請求項1~5のいずれか1項に記載のポリブチレンテレフタレートの製造方法。
     天然に存在しない微生物生体触媒:4-ヒドロキシブタン酸脱水素酵素、スクシニル-CoA合成酵素、CoA依存性コハク酸セミアルデヒド脱水素酵素、またはα-ケトグルタル酸脱炭酸酵素をコードする少なくとも1つの外因性核酸を含む4-ヒドロキシブタン酸生合成経路を有する微生物を含み、前記微生物が前記4-ヒドロキシブタン酸の単量体を分泌するために十分な量の前記外因性核酸を含む、微生物生体触媒。
PCT/JP2013/065365 2012-06-05 2013-06-03 ポリブチレンテレフタレートの製造方法 WO2013183590A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SG11201408099VA SG11201408099VA (en) 2012-06-05 2013-06-03 Method for producing polybutylene terephthalate
CN201380041733.3A CN104540873B (zh) 2012-06-05 2013-06-03 聚对苯二甲酸丁二酯的制造方法
MYPI2014703634A MY184525A (en) 2012-06-05 2013-06-03 Method for producing polybutylene terephthalate
CA2875771A CA2875771C (en) 2012-06-05 2013-06-03 Method for producing polybutylene terephthalate
EA201492263A EA039158B1 (ru) 2012-06-05 2013-06-03 Способ получения полибутилентерефталата
IN11259DEN2014 IN2014DN11259A (ja) 2012-06-05 2013-06-03
BR112014030475-0A BR112014030475B1 (pt) 2012-06-05 2013-06-03 método para produção de tereftalato de polibutileno
EP13800602.8A EP2857435B1 (en) 2012-06-05 2013-06-03 Production method for polybutylene terephthalate
AU2013272713A AU2013272713B2 (en) 2012-06-05 2013-06-03 Production method for polybutylene terephthalate
KR1020147036487A KR102086324B1 (ko) 2012-06-05 2013-06-03 폴리부틸렌테레프탈레이트의 제조 방법
US14/560,800 US9556307B2 (en) 2012-06-05 2014-12-04 Method for producing polybutylene terephthalate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012128064 2012-06-05
JP2012-128064 2012-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/560,800 Continuation US9556307B2 (en) 2012-06-05 2014-12-04 Method for producing polybutylene terephthalate

Publications (1)

Publication Number Publication Date
WO2013183590A1 true WO2013183590A1 (ja) 2013-12-12

Family

ID=49711982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065365 WO2013183590A1 (ja) 2012-06-05 2013-06-03 ポリブチレンテレフタレートの製造方法

Country Status (14)

Country Link
US (1) US9556307B2 (ja)
EP (1) EP2857435B1 (ja)
JP (1) JP6175912B2 (ja)
KR (1) KR102086324B1 (ja)
CN (1) CN104540873B (ja)
AU (1) AU2013272713B2 (ja)
BR (1) BR112014030475B1 (ja)
CA (1) CA2875771C (ja)
EA (1) EA039158B1 (ja)
IN (1) IN2014DN11259A (ja)
MY (1) MY184525A (ja)
SG (1) SG11201408099VA (ja)
TW (1) TWI664202B (ja)
WO (1) WO2013183590A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186122A1 (ja) * 2015-05-20 2016-11-24 東洋紡株式会社 ポリエステル樹脂
WO2019167323A1 (ja) * 2018-03-02 2019-09-06 国立大学法人千葉大学 1,3-ブタジエン製造用触媒、前記触媒の製造方法、及び1,3-ブタジエンの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862886A4 (en) 2012-06-05 2016-03-30 Mitsubishi Chem Corp METHOD FOR MANUFACTURING POLYESTER AND POLYURETHANE
TWI751100B (zh) * 2014-05-05 2022-01-01 盧森堡商英威達技術有限公司 生物衍生之聚胺基甲酸酯纖維
JP6576132B2 (ja) * 2015-07-10 2019-09-18 ポリプラスチックス株式会社 管状流路形成用ポリアリーレンサルファイド樹脂組成物及びそれを用いた成形体
JP6197975B1 (ja) 2015-12-25 2017-09-20 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体、ならびにポリエステル樹脂組成物の製造方法
KR101774431B1 (ko) * 2016-01-28 2017-09-05 한국과학기술원 자일로즈로부터 폴리(락테이트-co-글라이콜레이트) 또는 그 공중합체 생산능을 가지는 재조합 미생물 및 이를 이용한 폴리(락테이트-co-글라이콜레이트) 또는 그 공중합체의 제조방법
ES2950395T3 (es) * 2016-05-30 2023-10-09 Sa Minera Catalano Aragonesa Método de obtención de polímeros biodegradables
US20200071286A1 (en) * 2016-12-20 2020-03-05 Sabic Global Technologies B.V. Utilization of normal carbon 4 (nc4) recycle stream for secondary and tertiary products
US11001706B2 (en) 2017-02-02 2021-05-11 Toyobo Co., Ltd. Polyester resin composition, and light reflector component and light reflector including polyester resin composition
WO2018143099A1 (ja) 2017-02-02 2018-08-09 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体
WO2019188921A1 (ja) 2018-03-26 2019-10-03 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体
JPWO2020158903A1 (ja) * 2019-01-30 2021-12-02 三菱エンジニアリングプラスチックス株式会社 粉末積層造形法用の樹脂組成物、ペレット、粉末、造形物の製造方法および造形物
WO2023280172A1 (zh) * 2021-07-05 2023-01-12 东丽先端材料研究开发(中国)有限公司 末端改性聚酯树脂、其组合物、成型品和制备方法
CN118108931A (zh) * 2024-04-28 2024-05-31 康辉新材料科技有限公司 一种低端羧基聚对苯二甲酸丁二醇酯及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240846A (ja) 1997-12-01 1999-09-07 Standard Oil Co:The 1,4−ブタンジオールへのマレイン酸の水素化のための改良されたプロセス
JP2006328380A (ja) * 2005-04-26 2006-12-07 Mitsubishi Chemicals Corp ポリエステルの製造方法
WO2007089653A2 (en) * 2006-01-27 2007-08-09 General Electric Company Molding compositions containing polyalkylene terephthalates and modified polybutylene terephthalate (pbt) random copolymers derived from pet
JP2008101143A (ja) 2006-10-19 2008-05-01 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びポリブチレンテレフタレートの製造方法
JP2009077719A (ja) 2005-04-22 2009-04-16 Mitsubishi Chemicals Corp ポリエステル及びその製造方法
JP2010521182A (ja) 2007-03-16 2010-06-24 ジェノマティカ・インコーポレイテッド 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法
US20110003355A1 (en) 2009-06-04 2011-01-06 Genomatica, Inc Process of separating components of a fermentation broth
US20120046427A1 (en) * 2010-08-19 2012-02-23 Fina Technology, Inc. "green" plastic materials and methods of manufacturing the same
WO2013005749A1 (ja) * 2011-07-04 2013-01-10 三菱化学株式会社 テトラヒドロフランの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU619840B2 (en) * 1988-05-26 1992-02-06 Kabushiki Kaisha Sanko Kaihatsu Kagaku Kenkyusho A polyester and an article made of the same
US20050209374A1 (en) * 2004-03-19 2005-09-22 Matosky Andrew J Anaerobically biodegradable polyesters
JP2009079057A (ja) * 2005-04-22 2009-04-16 Mitsubishi Chemicals Corp ポリエステル及びその製造方法
JP2006328370A (ja) * 2005-04-26 2006-12-07 Mitsubishi Chemicals Corp ポリエステルの製造方法
EP1979403B1 (en) 2006-01-27 2009-12-30 General Electric Company Articles derived from compositions containing modified polybutylene terephthalate (pbt) random copolymers derived from polyethylene terephthalate (pet)
JP2008163167A (ja) * 2006-12-28 2008-07-17 Toray Ind Inc レーザー溶着用変性ポリエステル樹脂組成物およびそれを用いた複合成形体
US7799892B2 (en) * 2008-05-02 2010-09-21 Sabic Innovative Plastics Ip B.V. Method of making polybutylene terephthalate and compositions and articles comprising the same
CN109574803A (zh) * 2012-06-05 2019-04-05 基因组股份公司 1,4-丁二醇的制造方法
EP2862886A4 (en) 2012-06-05 2016-03-30 Mitsubishi Chem Corp METHOD FOR MANUFACTURING POLYESTER AND POLYURETHANE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240846A (ja) 1997-12-01 1999-09-07 Standard Oil Co:The 1,4−ブタンジオールへのマレイン酸の水素化のための改良されたプロセス
JP2009077719A (ja) 2005-04-22 2009-04-16 Mitsubishi Chemicals Corp ポリエステル及びその製造方法
JP2006328380A (ja) * 2005-04-26 2006-12-07 Mitsubishi Chemicals Corp ポリエステルの製造方法
WO2007089653A2 (en) * 2006-01-27 2007-08-09 General Electric Company Molding compositions containing polyalkylene terephthalates and modified polybutylene terephthalate (pbt) random copolymers derived from pet
JP2008101143A (ja) 2006-10-19 2008-05-01 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びポリブチレンテレフタレートの製造方法
JP2010521182A (ja) 2007-03-16 2010-06-24 ジェノマティカ・インコーポレイテッド 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法
US20110003355A1 (en) 2009-06-04 2011-01-06 Genomatica, Inc Process of separating components of a fermentation broth
US20120046427A1 (en) * 2010-08-19 2012-02-23 Fina Technology, Inc. "green" plastic materials and methods of manufacturing the same
WO2013005749A1 (ja) * 2011-07-04 2013-01-10 三菱化学株式会社 テトラヒドロフランの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857435A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186122A1 (ja) * 2015-05-20 2016-11-24 東洋紡株式会社 ポリエステル樹脂
JPWO2016186122A1 (ja) * 2015-05-20 2018-03-01 東洋紡株式会社 ポリエステル樹脂
WO2019167323A1 (ja) * 2018-03-02 2019-09-06 国立大学法人千葉大学 1,3-ブタジエン製造用触媒、前記触媒の製造方法、及び1,3-ブタジエンの製造方法
JP2019150766A (ja) * 2018-03-02 2019-09-12 国立大学法人千葉大学 1,3−ブタジエン製造用触媒、前記触媒の製造方法、及び1,3−ブタジエンの製造方法
US11491467B2 (en) 2018-03-02 2022-11-08 Nipro Corporation Catalyst for manufacturing 1,3-butadiene, manufacturing method of catalyst, and manufacturing method of 1,3-butadiene
JP7427355B2 (ja) 2018-03-02 2024-02-05 国立大学法人千葉大学 1,3-ブタジエン製造用触媒、前記触媒の製造方法、及び1,3-ブタジエンの製造方法

Also Published As

Publication number Publication date
AU2013272713B2 (en) 2017-02-02
MY184525A (en) 2021-04-01
SG11201408099VA (en) 2015-01-29
BR112014030475A8 (pt) 2018-04-03
CA2875771C (en) 2020-05-12
CN104540873A (zh) 2015-04-22
CN104540873B (zh) 2017-09-01
AU2013272713A1 (en) 2015-01-15
EA201492263A1 (ru) 2015-04-30
EP2857435A1 (en) 2015-04-08
US20150087034A1 (en) 2015-03-26
EP2857435A4 (en) 2015-05-27
TWI664202B (zh) 2019-07-01
KR20150035770A (ko) 2015-04-07
JP6175912B2 (ja) 2017-08-09
BR112014030475A2 (pt) 2017-06-27
TW201402644A (zh) 2014-01-16
EA039158B1 (ru) 2021-12-13
BR112014030475B1 (pt) 2020-12-22
IN2014DN11259A (ja) 2015-10-09
JP2014012822A (ja) 2014-01-23
US9556307B2 (en) 2017-01-31
CA2875771A1 (en) 2013-12-12
KR102086324B1 (ko) 2020-03-09
EP2857435B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6175912B2 (ja) ポリブチレンテレフタレートの製造方法
JP6286877B2 (ja) ポリエステル及びポリウレタンの製造方法
JP5383972B2 (ja) ポリブチレンテレフタレート及びポリブチレンテレフタレートの製造方法
Manker et al. Sustainable polyesters via direct functionalization of lignocellulosic sugars
JP5799636B2 (ja) ポリエステルの製造方法
JP5790246B2 (ja) ポリエステルの製造方法
JP2006321994A (ja) ポリエステルの製造方法
JP2006328379A (ja) ポリエステルの製造方法
JP6274017B2 (ja) ポリブチレンテレフタレートの製造方法
JP2006328377A (ja) ポリエステルペレットの貯蔵方法
WO2015002157A1 (ja) 1,4-ブタンジオール、該1,4-ブタンジオールを用いたポリエステルの製造方法及び該1,4-ブタンジオールの貯蔵方法
JP6241380B2 (ja) 1,4−ブタンジオール、該1,4−ブタンジオールを用いたポリエステルの製造方法及び該1,4−ブタンジオールの貯蔵方法
JP2006321995A (ja) ポリエステルの製造方法
JP2006328371A (ja) ポリエステルの製造方法
JP2006328376A (ja) ポリエステルペレットの貯蔵方法
JP2006328373A (ja) ポリエステルの製造方法
JP2006328370A (ja) ポリエステルの製造方法
JP2006327188A (ja) ポリエステルペレットの貯蔵方法
JP2006321997A (ja) ポリエステルの製造方法
JP2006321996A (ja) ポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2875771

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013800602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800602

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147036487

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201492263

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2013272713

Country of ref document: AU

Date of ref document: 20130603

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030475

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141205