WO2023280172A1 - 末端改性聚酯树脂、其组合物、成型品和制备方法 - Google Patents

末端改性聚酯树脂、其组合物、成型品和制备方法 Download PDF

Info

Publication number
WO2023280172A1
WO2023280172A1 PCT/CN2022/103977 CN2022103977W WO2023280172A1 WO 2023280172 A1 WO2023280172 A1 WO 2023280172A1 CN 2022103977 W CN2022103977 W CN 2022103977W WO 2023280172 A1 WO2023280172 A1 WO 2023280172A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
terminal
modified polyester
acid
weight
Prior art date
Application number
PCT/CN2022/103977
Other languages
English (en)
French (fr)
Inventor
曹晓秀
横江牧人
梅津秀之
东城裕介
赵宸胄
加藤公哉
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to CN202280005903.1A priority Critical patent/CN116194510A/zh
Publication of WO2023280172A1 publication Critical patent/WO2023280172A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the invention relates to the field of polymer materials, in particular to a preparation method of a terminal-modified polyester resin with high melt retention stability and low dielectric loss, a terminal-modified polyester resin, its composition and molded articles.
  • polyester resin In recent years, the research and development of polyester resin has been widely carried out, and the dielectric loss of polyester resin can be reduced through the combination of various blending or copolymerization methods.
  • the blending method does not reduce the dielectric loss of the polyester resin itself, so it cannot meet the low dielectric requirement when a large amount of polyester resin is used or used alone.
  • the method of copolymerization often causes the problems of decreased crystallinity, mechanical strength and heat resistance of the polyester resin, which limits the application range of the resin.
  • the object of the present invention is to provide a method for preparing a terminal-modified polyester resin with high melt retention stability and low dielectric loss, a terminal-modified polyester resin, its composition and molded articles.
  • the inventors have found that a part of the terminal modifier added forms a stable coordination structure with polymerization catalysts such as titanium compounds, and the catalyst in this structure is difficult to deactivate. When the thermal decomposition reaction is triggered, the molecular weight of the polyester resin is reduced. After research, the inventors have found that a specific metal salt is added during the polymerization of the terminal modified polyester to form a composite structure with the catalyst to prevent the catalyst from forming a coordination structure with the terminal modifier, so that a highly active catalyst is difficult to obtain. If it remains, the thermal decomposition reaction at the time of melt processing is suppressed, and the melt retention stability of the polyester resin is improved.
  • the technical solution of the present invention includes the following constitutions.
  • a method for producing a terminal-modified polyester resin wherein the dibasic carboxylic acid and/or its ester-forming derivatives are mainly composed of terephthalic acid and/or its ester-forming derivatives , dihydric alcohols mainly composed of 1,4-butanediol, and monomers containing monohydric alcohols with 5 to 50 carbon atoms and/or monocarboxylic acids with 5 to 50 carbon atoms Esterification or transesterification, followed by polycondensation to obtain the terminal-modified polyester resin;
  • the production method is characterized in that at any stage before the termination of the polycondensation reaction, 0.040 parts by weight to 0.155 parts by weight of a titanium compound is added to 100 parts by weight of the obtained terminal-modified polyester resin, and 0.010 parts by weight or more and 0.110 parts by weight or less of at least one component selected from alkali metal salts, alkaline earth metal salts, and transition metal salts of organic carboxylic acids and/or carbonic acids.
  • tin compound is dibutyl tin oxide, methylphenyl tin oxide, tetraethyl tin, hexaethyl tin dioxide, Hexacyclohexyltin dioxide, didodecyltin oxide, monobutyltin oxide, triethyltin hydroxide, triphenyltin hydroxide, triisobutyltin acetate, dibutyltin diacetate, diphenyl dilaurate Base tin, butyl tin trichloride, dibutyl tin dichloride, tributyl tin chloride, dibutyl tin sulfide, butyl tin oxyhydroxide, methyl stannoic acid, ethyl stannic acid, butyl stannic acid at least one of .
  • the dihydric alcohol mainly composed of 1,4-butanediol and the dibasic carboxylic acid and/or it can form
  • the molar ratio of the ester derivative is 1.1 or more and 1.5 or less.
  • the titanium compound is tetramethyl titanate, tetra-n-propyl titanate, tetra-n-butyl titanate, tetraisopropyl titanate At least one of tetraisobutyl titanate, tetra-tert-butyl titanate, cyclohexyl titanate, tetraphenyl titanate, tetrabenzyl titanate, and tetramethylphenyl titanate.
  • the organic carboxylic acid in the alkali metal salt, alkaline earth metal salt and transition metal salt of described organic carboxylic acid and/or carbonic acid is carbon atom number It is at least one of 1 to 18 aliphatic monocarboxylic acids.
  • the organic carboxylic acid in the alkali metal salt of described organic carboxylic acid and/or carbonic acid, alkaline earth metal salt and transition metal salt is formic acid, acetic acid , propionic acid, stearic acid at least one.
  • the alkali metal, alkaline earth metal and transition metal salt in the alkali metal salt, alkaline earth metal salt and transition metal salt of described organic carboxylic acid and/or carbonic acid The metal is at least one of sodium, potassium, cesium, magnesium, calcium, and zinc.
  • a terminal-modified polyester resin wherein more than 45 mol% of its main chain structure is polybutylene terephthalate, and it contains monohydric alcohols and/or carbons derived from 5 to 50 carbon atoms
  • the terminal-modified polyester resin is characterized in that the polyester resin contains titanium atoms and at least one selected from alkali metal atoms, alkaline earth metal atoms and transition metal atoms, the content of the titanium atoms, and The total content of the alkali metal atoms, alkaline earth metal atoms and transition metal atoms satisfies:
  • the terminal-modified polyester resin according to the above 16 wherein the terminal derived from a monohydric alcohol having 5 to 50 carbon atoms and/or a monocarboxylic acid having 5 to 50 carbon atoms
  • the total content of groups is not less than 16 mmol/kg and not more than 136 mmol/kg.
  • terminal-modified polyester resin according to 16 above wherein the terminal group derived from a monohydric alcohol having 5 to 50 carbon atoms and the monohydric carboxyl group derived from 5 to 50 carbon atoms
  • the number of carbon atoms in the terminal group of the acid is 16 or more and 36 or less, respectively.
  • the terminal-modified polyester resin according to the above-mentioned 16 which has a dielectric loss tangent value at 5.8 GHz measured at 23° C. by a cylindrical resonant cavity perturbation method of 0.0060 or less.
  • a terminal-modified polyester resin composition comprising the terminal-modified polyester resin described in any one of 16-27 above.
  • a specific amount of catalyst titanium compound and The end-modified polyester resin obtained after the reaction of at least one of alkali metal salts, alkaline earth metal salts, and transition metal salts selected from organic carboxylic acids and/or carbonic acids has high melt retention stability and low dielectric strength. electrical loss.
  • the terminal-modified polyester resin of the present invention is composed of dicarboxylic acid and/or its ester-forming derivatives mainly composed of terephthalic acid and/or its ester-forming derivatives, and 1,4-butyl Diol as a main component and a monomer containing a monohydric alcohol having 5 to 50 carbon atoms and/or a monocarboxylic acid having 5 to 50 carbon atoms are prepared.
  • the "dibasic carboxylic acid and/or its ester-forming derivatives mainly composed of terephthalic acid and/or its ester-forming derivatives" refers to the terephthalic acid and/or The content of its ester-forming derivatives is 45 mol% or more, preferably 60 mol% or more, relative to all dicarboxylic acids and/or ester-forming derivatives thereof as raw materials for the polyester resin, More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more.
  • the "diol mainly composed of 1,4-butanediol” means that the content of 1,4-butanediol is 45 mol relative to all the diol components used as the raw material of the polyester resin. % or more, preferably 60 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more.
  • the terminal-modified polyester resin may be a homopolymer or a copolymer.
  • terephthalic acid and/or its ester-forming derivatives are relative to all the dicarboxylic acids and/or their ester-forming derivatives used as polyester resin raw materials.
  • the content of 1,4-butanediol is 45 mol% or more, and the content of 1,4-butanediol is 45 mol% or more relative to all diol components used as polyester resin raw materials, it is defined as a terminal-modified polyester obtained by polymerization.
  • 45 mol% or more of the main chain structure of the resin is polybutylene terephthalate.
  • the content of polybutylene terephthalate in the main chain structure of the terminal-modified polyester resin is preferably 45 mol % or more, more preferably 60 mol % % or more, more preferably 80 mol% or more.
  • the dibasic carboxylic acid and its ester-forming derivatives include isophthalic acid, phthalic acid, 2, 6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid Acid, diphenylmethane-4,4'-dicarboxylic acid, anthracene dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, 4,4'-diphenyl ether Aromatic dicarboxylic acids such as dicarboxylic acid, 5-sulfoisophthalic acid or sodium isophthalic acid-5-sulfonate, 1,3-
  • the diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,3- Pentylene glycol, 1,3-hexanediol, 1,3-heptanediol, 1,4-pentanediol, 1,5-hexanediol, 2,3-butanediol, 2,3-pentanediol alcohol, 2,3-hexanediol, 2,3-heptanediol, 2,3-octanediol, 3,4-hexanediol, 3,4-heptanediol, 3,4-octanediol, 4,5-octanediol, 2,4-pentanediol, 2,4-hexanediol, 2,4-hexanediol, 2,4-butaned
  • the terminal-modified polyester resin of the present invention is composed of the above-mentioned dicarboxylic acid and/or its ester-forming derivatives mainly composed of terephthalic acid and/or its ester-forming derivatives, and 1,4- The diol whose main component is butanediol is obtained through esterification reaction or transesterification reaction, followed by polycondensation reaction.
  • the above-mentioned terephthalic acid and/or its ester can be formed Esterification or transesterification of dicarboxylic acids based on derivatives and/or their ester-forming derivatives, diols based on 1,4-butanediol and subsequent polycondensation
  • monomers containing monohydric alcohols with 5 or more and 50 or less carbon atoms and/or monocarboxylic acids with 5 or more and 50 or less carbon atoms are added to modify the end of the polyester resin to reduce
  • the hydroxyl terminal content of the polyester improves the dielectric properties of the obtained terminal-modified polyester resin.
  • the above-mentioned monohydric alcohol and monocarboxylic acid are based on the main skeleton of hydrocarbons formed by hydrogen atoms and carbon atoms, and the structure formed by the carbon atoms being connected in a chain can be linear or branched, or can have a cyclic structure. structure.
  • the monohydric alcohols having more than 5 carbon atoms and less than 50 carbon atoms include 1-pentanol (C5), 1-hexanol (C6), 1-heptanol (C7), 1-octanol (C8), 1- Nonanol (C9), 1-Decanol (C10), 1-Undecanol (C11), Lauryl Alcohol (C12), 1-Tridecanol (C13), Myristyl Alcohol (C14), 1-Decayl Alcohol Pentacanol (C15), Cetyl Alcohol (C16), 1-Heptadecanol (C17), Stearyl Alcohol (C18), 1-Nadecanyl Alcohol (C19), 1-Eicosanol (C20) , 1-cocosanol (C21), 1-docosanol (C22), 1-cocosanol (C23), 1-tetracosanol (C24), 1-pentacosanol Alkanol (C25), 1-hex
  • the numbers described after the above C indicate the number of carbon atoms. From the viewpoint of chromaticity, linear or branched saturated aliphatic monohydric alcohols and aromatic monohydric alcohols are preferable. When the number of carbon atoms of the monohydric alcohol is not less than 5 and not more than 50, the hydroxyl terminal content of the terminal-modified polyester resin can be effectively reduced to reduce the dielectric loss of the resin. From the viewpoint of further reducing the dielectric loss of the resin, the lower limit of the number of carbon atoms is preferably 7 or more, more preferably 16 or more, and still more preferably 20 or more. The upper limit of the number of carbon atoms is preferably 36 or less, more preferably 32 or less.
  • the monocarboxylic acid having 5 or more and 50 or less carbon atoms includes valeric acid (C5), hexanoic acid (C6), heptanoic acid (C7), octanoic acid (C8), lauric acid (C12), stearic acid ( C18), oleic acid (C18), linoleic acid (C18), arachidic acid (C20), moringa oleic acid (C22), lignoceric acid (C24), cerotic acid (C26), octacosanoic acid (C28) , Melicic acid (C30), cyclohexanecarboxylic acid (C7) and other aliphatic or alicyclic monocarboxylic acids, benzoic acid (C7), 3-(4-toluene) propionic acid (C10), 2-naphthoic acid ( C11), 9-anthracenecarboxylic acid (C15), biphenyl
  • the lower limit of the number of carbon atoms is preferably 7 or more, more preferably 12 or more, still more preferably 16 or more, and still more preferably 20 or more.
  • the upper limit of the number of carbon atoms is preferably 36 or less, more preferably 32 or less.
  • the above-mentioned monohydric alcohols with 5 or more and 50 or less carbon atoms and the monohydric carboxylic acids with 5 or more and 50 or less carbon atoms are relatively Based on the total amount of 100 mol% of the dicarboxylic acid and/or its ester-forming derivatives, the total amount added is preferably 0.5 mol% or more, more preferably 0.8 mol% or more, and even more preferably 1.0 mol% or more .
  • the above-mentioned monohydric alcohols with 5 to 50 carbon atoms and monocarboxylic acids with 5 to 50 carbon atoms are 100 mol% of the total amount.
  • the total amount of the dicarboxylic acid and/or its ester-forming derivative is preferably 3.0 mol% or less, more preferably 2.0 mol% or less, and even more preferably 1.5 mol% or less.
  • the end-modified polyester resin obtained in the present invention contains a group derived from the monoalcohol having 5 to 50 carbon atoms and/or a monocarboxylic acid having 5 to 50 carbon atoms at the end. Due to the evaporation of a part of the above-mentioned monoalcohol and monocarboxylic acid added during the esterification reaction, transesterification reaction and polycondensation reaction, the monohydric alcohol derived from the above-mentioned monohydric alcohol introduced into the end of the terminal modified polyester resin obtained in the present invention after the reaction The content of terminal groups of alcohol and/or monocarboxylic acid is lower than the theoretical content calculated by the added amount.
  • the content of groups derived from the monohydric alcohol with 5 to 50 carbon atoms and/or the monocarboxylic acid with 5 to 50 carbon atoms introduced into the end of the terminal modified polyester It is 70% or more of the theoretical end content calculated on the basis of 100% introduction rate. Therefore, the preferred value of the terminal content of the group derived from the aforementioned monoalcohol and/or monocarboxylic acid is 70% or more and 100% or less of the value calculated from the preferred addition amount. That is, from the viewpoint of reducing the hydroxyl terminal content of the terminal-modified polyester resin to reduce the dielectric loss, the terminal-modified polyester resin terminal obtained in the present invention contains a unit derived from the above-mentioned carbon number of 5 or more and 50 or less.
  • the total content of alcohols and/or monocarboxylic acid groups having 5 to 50 carbon atoms is preferably 16 mmol/kg or more, more preferably 25 mmol/kg or more, and still more preferably 32 mmol/kg or more. From the viewpoint of maintaining the molecular weight required for the actual use of the resin, the total amount of groups derived from the above-mentioned monohydric alcohols with 5 to 50 carbon atoms and/or monocarboxylic acids with 5 to 50 carbon atoms The content is preferably 136 mmol/kg or less, more preferably 91 mmol/kg or less, even more preferably 68 mmol/kg or less.
  • the content of the group derived from monohydric alcohol and/or monocarboxylic acid introduced by the terminal reaction of the terminal modified polyester resin uses hexafluoroisopropanol as the solvent, and the content of the group derived from the terminal group measured by 1 H-NMR The value obtained by calculating the integral ratio of the peak.
  • the weight-average molecular weight (Mw) of the terminal-modified polyester resin is preferably 8,000 to 25,000 in order to further ensure mechanical properties and low dielectric loss required for actual use.
  • the lower limit of the weight average molecular weight is more preferably 10,000 or more, still more preferably 12,000 or more, while the upper limit of the weight average molecular weight is more preferably 20,000 or less, further preferably 17,000 or less.
  • the weight-average molecular weight of the terminal-modified polyester resin is hexafluoroisopropanol as a solvent, and polymethyl methacrylate (PMMA) is used as a standard sample after being measured by gel permeation chromatography (GPC). The converted value.
  • the carboxyl terminal content of the terminal-modified polyester resin obtained by the present invention is preferably 60 mmol/kg or less, more preferably 50 mmol/kg or less, and still more preferably 40 mmol or less, from the viewpoint of improving resin melt retention stability. /kg or less.
  • the lower limit of the carboxyl terminal content is 0 mmol/kg.
  • the carboxyl terminal content of the terminal-modified polyester resin is a value measured by titrating the terminal-modified polyester resin with an ethanol solution of potassium hydroxide after dissolving the terminal-modified polyester resin in a mixed solvent of o-cresol/chloroform.
  • the terminal-modified polyester resin of the present invention from the perspective of suppressing the molecular mobility of the terminal group of the polyester resin under the terminal-modified high-frequency alternating electric field and reducing its dielectric loss to a greater extent, the terminal-modified polyester resin of the present invention
  • the hydroxyl end group content is preferably 50 mmol/kg or less, more preferably 40 mmol/kg or less, even more preferably 30 mmol/kg or less.
  • the dielectric loss tangent value of the end-modified polyester resin obtained in the present invention is preferably less than 0.0060 when tested at 23° C. using a cylindrical resonant cavity perturbation method at a frequency of 5.8 GHz.
  • the dielectric loss tangent value is below 0.0060, the dielectric loss can be reduced, the loss of high-frequency signals can be suppressed, and higher antenna gain and higher radar accuracy can be obtained.
  • the above-mentioned dielectric loss tangent value is more preferably 0.0055 or less, still more preferably 0.0050 or less.
  • the ratio Mwb/Mwa of the weight-average molecular weight Mwb of the terminal-modified polyester resin obtained in the present invention after being treated in a molten state at 260° C. for 10 minutes in a nitrogen atmosphere to the weight-average molecular weight Mwa before treatment is preferably 0.60 or more.
  • the above-mentioned Mwb/Mwa being 0.60 or more means good melt retention stability, which can suppress the decline in mechanical properties of the terminal-modified polyester resin after melt processing.
  • the above-mentioned Mwb/Mwa is more preferably 0.63 or more, still more preferably 0.65 or more.
  • the terminal-modified polyester resin of the present invention can be prepared by the following method: dibasic carboxylic acid and/or its ester-forming derivatives of terephthalic acid and/or its ester-forming derivatives as main components,
  • the diol raw material with 1,4-butanediol as the main component is esterified or transesterified at a temperature range of 150-250°C under normal pressure or reduced pressure, and then at a temperature of 240-270°C
  • the polycondensation reaction is carried out under a pressure of 500 Pa or less.
  • the derivatives of diols with 1,4-butanediol as the main component and terephthalic acid and/or esters that can be formed The molar ratio of the dicarboxylic acid and/or its ester-forming derivative in which the compound is the main component is preferably 1.10 or more and 1.50 or less. From the viewpoint of increasing the molecular weight of the obtained terminal-modified polyester and improving its thermal retention stability in fusion, the molar ratio of the diol to the dicarboxylic acid and/or its ester-forming derivative is more preferably 1.15 or more , more preferably 1.20 or more. From the viewpoint of further reducing the hydroxyl terminal content of the resulting terminal-modified polyester, the molar ratio is more preferably 1.40 or less, and still more preferably 1.30 or less.
  • the reaction time for the polycondensation reaction at the above-mentioned temperature of 240-270° C. and a pressure of 500 Pa or less is preferably 100 minutes or more, more preferably 110 minutes or more, and even more preferably Preferably it is 120 minutes or more.
  • the reaction time of the polycondensation reaction is preferably 350 minutes or less, more preferably 330 minutes or less, still more preferably 310 minutes or less.
  • a titanium compound as a polymerization reaction catalyst is added in these reactions, and the titanium compound as a polymerization reaction catalyst can be specifically listed as: tetramethyl titanate, tetra-n-propyl titanate , tetra-n-butyl titanate, tetraisopropyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, cyclohexyl titanate, tetraphenyl titanate, tetrabenzyl titanate, tetrabutyl titanate organotitanium compounds such as methyl phenyl esters, or mixtures of these titanates.
  • it is tetra-n-propyl titanate, tetra-n-butyl titanate, or tetra-isopropyl titanate, and even more preferably, it is tetra-n-butyl titanate.
  • the addition amount of the above-mentioned titanium compound is preferably 0.075 parts by weight or more.
  • the added amount of the titanium compound is preferably 0.120 parts by weight or less.
  • the terminal-modified polyester resin obtained in the present invention contains titanium atoms derived from the above-mentioned added titanium compound, and the content of the above-mentioned titanium atoms in the terminal-modified polyester resin obtained in the present invention is 1.2 mmol/kg or more and Below 4.5mmol/kg. From the viewpoint of further increasing the reaction rate to obtain a terminal-modified polyester resin with higher molecular weight, lower hydroxyl terminal content, and lower dielectric loss, the content of the above-mentioned titanium atoms is preferably 2.2 mmol/kg or more. The content of the titanium atoms is preferably 3.5 mmol/kg or less from the viewpoint of suppressing the occurrence of thermal decomposition reactions caused by titanium atoms to further improve melt retention stability.
  • Tin compounds as polymerization catalysts can be specifically listed as: dibutyltin oxide, methylphenyltin oxide, tetraethyltin, hexaethyltin dioxide, hexacyclohexyltin dioxide, didodecyl tin oxide, Tin, monobutyltin oxide, triethyltin hydroxide, triphenyltin hydroxide, triisobutyltin acetate, dibutyltin diacetate, diphenyltin dilaurate, butyltin trichloride, dibutyltin Tin compounds of tin dichloride, tributyl tin chloride, dibutyl tin sulfide, butyl tin oxyhydroxide, methyl stannoic acid, ethyl stannic acid, butyl stannic acid, etc.
  • Organotin compounds such as mixtures, among which monobutylt
  • the above-mentioned tin is preferably added in an amount of more than 0 parts by weight and 0.065 parts by weight or less with respect to 100 parts by weight of the obtained terminal-modified polyester resin.
  • the added amount of the tin compound is more preferably 0.020 parts by weight or more, and even more preferably 0.030 parts by weight or more. From the viewpoint of suppressing the thermal cracking reaction caused by tin atoms to further improve melt retention stability, the added amount of the tin compound is more preferably 0.050 parts by weight or less.
  • the terminal-modified polyester resin obtained in the present invention preferably contains tin atoms from the above-mentioned added tin compound, and the content of the above-mentioned tin atoms in the terminal-modified polyester resin obtained in the present invention is preferably greater than 0 mmol/kg And it is 3.0 mmol/kg or less. From the viewpoint of further increasing the reaction rate and increasing the molecular weight to reduce the carboxyl group and hydroxyl terminal content of the obtained terminal-modified polyester resin, the content of the above-mentioned tin atoms is more preferably 1.0 mmol/kg or more, even more preferably 1.4 mmol/kg or more .
  • the content of the tin compound is more preferably 2.4 mmol/kg or less from the viewpoint of suppressing the thermal cracking reaction caused by tin atoms to further improve melt retention stability.
  • At any stage before the termination of the polycondensation reaction at least one of alkali metal salts, alkaline earth metal salts, and transition metal salts of organic carboxylic acids and/or carbonic acids is added from the viewpoint of improving melt retention stability. kind.
  • Described organic carboxylic acid can be fats such as formic acid (C1), acetic acid (C2), propionic acid (C3), n-butyric acid (C4), lauric acid (C12), stearic acid (C18), montanic acid (C28), etc.
  • Aromatic monocarboxylic acids such as benzoic acid (C7) and salicylic acid (C7), aliphatic dicarboxylic acids such as oxalic acid (C2) and succinic acid (C4), terephthalic acid (C8) , phthalic acid (C8) and other aromatic dicarboxylic acids and mixtures thereof.
  • aliphatic monocarboxylic acids are preferable from the viewpoint of further improving melt retention stability, more preferably aliphatic monocarboxylic acids having 1 to 18 carbon atoms, further preferably formic acid, acetic acid, propionic acid, and hard acid. Fatty acid.
  • the alkali metal, alkaline earth metal and transition metal are preferably at least one of sodium, potassium, cesium, magnesium, calcium and zinc, more preferably sodium and calcium, and even more preferably calcium.
  • the present invention from the viewpoint of improving melt retention stability, 0.010 parts by weight to 0.110 parts by weight of At least one component selected from the following organic carboxylic acids and/or alkali metal salts, alkaline earth metal salts, and transition metal salts of carbonic acid.
  • the total addition amount of the above-mentioned organic carboxylic acid and/or carbonic acid alkali metal salt, alkaline earth metal salt, and transition metal salt is preferably 0.020 parts by weight or more, more preferably 0.030 parts by weight or more.
  • the total amount of the organic carboxylic acid and/or carbonic acid alkali metal salt, alkaline earth metal salt, and transition metal salt added is preferably 0.080 parts by weight or less, more preferably 0.060 parts by weight or less .
  • the terminal-modified polyester resin obtained by the present invention contains the alkali metal salts, alkaline earth metal salts, and transition metal salts derived from the above-mentioned organic carboxylic acids and/or carbonic acids. At least one of alkali metal atoms, alkaline earth metal atoms and transition metal atoms.
  • the total content of the above-mentioned alkali metal atoms, alkaline earth metal atoms and transition metal atoms in the terminal-modified polyester resin obtained in the present invention is not less than 0.6 mmol/kg and not more than 6.0 mmol/kg.
  • the total content of the above-mentioned alkali metal atoms, alkaline earth metal atoms and transition metal atoms is preferably 1.1 mmol/kg or more, more preferably More than 1.7mmol/kg.
  • the total addition amount of the above-mentioned organic carboxylic acid and/or carbonic acid alkali metal salt, alkaline earth metal salt, and transition metal salt is preferably 4.5 mmol/kg or less, more preferably 3.4 mmol/kg Below kg.
  • the present invention also relates to a terminal-modified polyester resin composition
  • a terminal-modified polyester resin composition comprising the terminal-modified polyester resin.
  • the terminal-modified polyester resin composition may further contain a filler.
  • the filler material can be listed but not limited to the following examples: glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber or metal fibers and other fibrous inorganic or organic filler materials; wollastonite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, silicate, alumina, silica , Magnesium oxide, Zirconia, Titanium oxide, Iron oxide, Calcium carbonate, Magnesium carbonate, Dolomite, Calcium sulfate, Barium sulfate, Magnesium hydroxide, Calcium hydroxide
  • the above-mentioned filling material can be hollow.
  • the above-mentioned filling material can also be treated with a coupling agent such as isocyanate compound, organosilane compound, organotitanate compound, organoborane compound or epoxy compound.
  • the above-mentioned montmorillonite may also be an organic montmorillonite obtained by exchanging cations between layers of ions through an organic ammonium salt.
  • the filler is preferably a fibrous inorganic filler, more preferably glass fiber or carbon fiber.
  • the cross-sectional shape of the fibrous filler is not particularly limited, and may be circular or flat.
  • the above-mentioned filling materials may be added alone or in combination of two or more kinds.
  • the compounding amount of the filler is preferably 0.1 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the terminal-modified polyester resin.
  • the lower limit of the filler compounding amount is more preferably 10 parts by weight or more, and still more preferably 30 parts by weight or more.
  • the upper limit of the blending amount of the filler is preferably 100 parts by weight or less, more preferably 80 parts by weight or less.
  • the terminal modified polyester resin composition of the present invention may also contain additives such as stabilizer, nucleating agent, antioxidant, release agent, flame retardant and color masterbatch.
  • the stabilizer can be exemplified by phosphoric acid, trimethyl phosphate, triethyl phosphate, triethyl phosphonoacetate, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, tetrakis(2,4-di-tert-butyl-5-methylphenyl)[1,1 -biphenyl]-4,4'-diyl bisphosphonate, etc.
  • the nucleating agent one or more of inorganic crystal nucleating agents and organic crystal nucleating agents can be used.
  • the inorganic crystal nucleating agent may, for example, be silica, alumina, zirconia, titania, wollastonite, kaolin, talc, mica, or silicon carbide.
  • the organic crystal nucleating agent may, for example, be an aliphatic carboxylic acid amide, a metal carboxylic acid salt, or a sorbitol-based derivative.
  • aliphatic carboxylic acid amides examples include lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, or hydroxystearic acid amide
  • Aliphatic monocarboxylic acid amides such as N-oleyl palmitic acid amide, N-oleyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl oleic acid amide, N-hard N-substituted aliphatic monocarboxylic acid amides such as aliphatic stearic acid amide, N-stearyl erucic acid amide, N-methylol stearic acid
  • Substituted aliphatic carboxylic acid diamides N-butyl-N'-stearyl urea, N-propyl-N'-stearyl urea, N-stearyl-N'-stearyl urea, N - phenyl-N'-stearyl urea, xylylene bis-stearyl urea, tolyl bis-stearyl urea, hexamethylene bis-stearyl urea, diphenylmethane bis-stearyl urea, or N-substituted ureas such as diphenylmethane dilauryl urea.
  • carboxylic acid metal salt examples include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, terephthalate, Potassium formate, calcium oxalate, sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium behenate, calcium behenate, sodium stearate, Potassium stearate, lithium stearate, calcium stearate, magnesium stearate, barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicylic acid Zinc, Aluminum Dibenzoate, Potassium Dibenzoate, Lithium Dibenzoate, Sodium Naphthalate, Sodium Cyclohexanecarboxylate.
  • sorbitol-based derivatives examples include bis(p-methylbenzylidene)sorbitol, bis(p-ethylbenzylidene)sorbitol, bis(p-methylbenzylidene)sorbitol, bis(p-methylbenzylidene)sorbitol, Chlorobenzylidene) sorbitol, bis(p-bromobenzylidene) sorbitol, or sorbitol derivatives obtained by chemical modification of the above sorbitol derivatives, etc.
  • the nucleating agent is preferably silica, wollastonite, kaolin, talc, mica or aliphatic carboxylic acid amide.
  • the content of the nucleating agent is preferably not less than 0.05 parts by weight and not more than 5 parts by weight relative to 100 parts by weight of the terminal-modified polyester resin. Controlled within this range, the effect of promoting crystallization can be maintained, and a terminal-modified polyester resin composition with excellent toughness can be obtained.
  • the lower limit of the content of the nucleating agent is more preferably 0.1 parts by weight or more, and the upper limit is more preferably 3 parts by weight or less, further preferably 2 parts by weight or less.
  • the antioxidant is preferably at least one of phenolic antioxidants or sulfur antioxidants. In order to obtain better heat resistance and thermal stability, it is preferable to use a phenolic antioxidant and a sulfur antioxidant in combination.
  • the phenolic antioxidant can be enumerated as 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, 2,6 -Di-tert-butyl-4-ethylphenol, 4,4'-butylenebis(6-tert-butyl-3-methylphenol), 2,2'-methylenebis(4-methyl-6 -tert-butylphenol), 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), octadecyl-3-(3',5'-di-tert-butyl- 4'-Hydroxyphenyl) propionate, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)] propionate, 1,1,3-tris(2-methyl-4- Hydroxy-5-d
  • the sulfur antioxidants can be listed as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, di(tridecyl)sulfur Substituted dipropionate, pentaerythryl (3-lauryl thiopropionate), or 2-mercaptobenzimidazole, etc.
  • the antioxidants mentioned above may be used alone, or two or more antioxidants may be used in combination because a synergistic effect is produced by combining two or more antioxidants.
  • the content of the antioxidant is preferably not less than 0.01 parts by weight and not more than 3.00 parts by weight relative to 100 parts by weight of the terminal-modified polyester resin. Within this range, the anti-oxidation effect can be maintained while the generation of gas during melt processing can be suppressed.
  • the lower limit of the content of the antioxidant is more preferably 0.05 parts by weight or more, further preferably 0.10 parts by weight or more.
  • the upper limit thereof is more preferably 2.00 parts by weight or less, and still more preferably 1.00 parts by weight or less.
  • the release agent is not particularly limited, and any release agent used for common thermoplastic resins can be used. Specifically, fatty acids, fatty acid metal salts, hydroxy fatty acids, fatty acid esters, aliphatic partially saponified esters, paraffins, low molecular weight polyolefins, fatty acid amides, alkylenebis fatty acid amides, aliphatic ketones, fatty acid lower Alcohol ester, fatty acid polyol ester, fatty acid polyglycol ester, or modified polysiloxane, etc.
  • the fatty acid is preferably a fatty acid having 6 to 40 carbon atoms, specifically, oleic acid, lauric acid, stearic acid, hydroxystearic acid, behenic acid, arachidonic acid, linoleic acid, Oleic acid, linolenic acid, ricinoleic acid, palmitic acid, stearic acid, montanic acid, or their mixtures, etc.
  • the fatty acid metal salt is preferably an alkali metal salt or an alkaline earth metal salt of a fatty acid having 6 to 40 carbon atoms, specifically calcium stearate, sodium montanate, or calcium montanate.
  • the hydroxy fatty acid may, for example, be 1,2-hydroxy fatty acid or the like.
  • the fatty acid esters can be exemplified by stearate, oleate, linoleate, linolenate, adipate, behenate, arachidonic acid ester, montanic acid ester, Isostearic acid esters, esters of polymeric acids, etc.
  • the aliphatic partially saponified ester may, for example, be a partially saponified montanic acid ester or the like.
  • the paraffin is preferably a paraffin having 18 or more carbon atoms, and may, for example, be liquid paraffin, natural paraffin, microcrystalline wax, or petrolatum.
  • the low-molecular-weight polyolefin is preferably a polyolefin with a weight-average molecular weight of 5000 or less, specifically polyethylene wax, maleic acid-modified polyethylene wax, oxidized polyethylene wax, chlorinated polyethylene wax, Or polypropylene wax etc.
  • the fatty acid amide is preferably a fatty acid amide having 6 or more carbon atoms, specifically, oleic acid amide, erucic acid amide, or behenic acid amide.
  • the alkylene bis-fatty acid amide is preferably an alkylene bis-fatty acid amide having 6 or more carbon atoms, specifically, methylene bis-stearamide, ethylene bis-stearamide, or N,N - Bis(2-hydroxyethyl)stearamide and the like.
  • the aliphatic ketone may, for example, be a higher aliphatic ketone or the like.
  • the fatty acid lower alcohol ester is preferably a fatty acid lower alcohol ester with 6 or more carbon atoms, specifically ethyl stearate, butyl stearate, ethyl behenate, or rice wax, etc. .
  • the polyol ester of fatty acid can be exemplified as glycerol monostearate, pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol adipate stearate, dipentaerythritol adipate stearate , or sorbitan monostearate, etc.
  • the fatty acid polyglycol ester may, for example, be polyethylene glycol fatty acid ester or polypropylene glycol fatty acid ester.
  • the modified polysiloxane can be, for example, methyl styrene-based modified polysiloxane, polyether modified polysiloxane, higher fatty acid alkoxy-modified polysiloxane, higher fatty acid-containing Polysiloxane, higher fatty acid ester modified polysiloxane, methacrylic acid modified polysiloxane, or fluorine modified polysiloxane, etc.
  • the flame retardant can be exemplified by bromine-based flame retardants including decabromodiphenyl ether, octabromodiphenyl ether, tetrabromodiphenyl ether, tetrabromophthalic anhydride, hexabromocyclododecane alkanes, bis(2,4,6-tribromophenoxy)ethane, ethylenebistetrabromophthalimide, hexabromobenzene, 1,1-sulfonyl[3,5-dibromo -4-(2,3-dibromopropoxy)]benzene, polydibromophenylene oxide, tetrabromobisphenol-S, tris(2,3-dibromopropyl)isocyanurate, Tribromophenol, tribromophenyl allyl ether, tribromoneopentyl alcohol, brominated polystyrene, bromin
  • the above-mentioned flame retardant can also be exemplified as a chlorine-based flame retardant, including chlorinated paraffin, chlorinated polyethylene, perchlorocyclopentadecane, or tetrachlorophthalic anhydride.
  • the terminal-modified polyester resin of the present invention or a composition containing the terminal-modified polyester resin of the present invention can be molded by any method such as injection molding, extrusion molding, blow molding, vacuum molding, melt spinning, or film molding. Methods to mold molded products into desired shapes.
  • the molded article made of the terminal-modified polyester resin of the present invention or a composition containing the terminal-modified polyester resin of the present invention can be used as mechanical structural parts, electrical parts, Used in electronic parts and automotive parts, etc. Since the molded product of the present invention has high frequency and low dielectric properties, it can be used especially as a high frequency communication transmission part.
  • Circuit breakers electromagnetic switches, focus boxes, flyback transformers, copy and printing machines and other fuser components, general household electrical appliances, OA machines, etc.
  • Case protection parts variable capacitors, various terminal boards, converters, printed circuit boards, case protection parts, terminal blocks, bobbins, connectors, relays, disk drive brackets, transformers, switch parts, socket parts, motor parts , sockets, plugs, concentrators, various shells, resistors, electrical and electronic components combined with metal terminals and wires, computer-related components, audio components and other sound components, lighting components, telecommunication equipment-related components, telephone equipment-related components , air conditioner parts, VTR, TV and other home appliance parts, copier parts, fax parts, optical instrument parts, car ignition parts, car connectors, and various car electrical parts.
  • High-frequency communication transmission components can be listed: various resin components such as 5G communication industry, wireless communication industry, satellite communication, base station, navigation, medical treatment, transportation, warehouse, etc., in mobile communication terminals, communication base stations, millimeter wave sensors, vehicle-mounted Electrical and electronic components used in communication equipment, such as printed circuit boards, antenna substrates, connectors, housings, antenna cases, sensor cases, power amplifiers, power supply parts, and high-frequency filters.
  • various resin components such as 5G communication industry, wireless communication industry, satellite communication, base station, navigation, medical treatment, transportation, warehouse, etc., in mobile communication terminals, communication base stations, millimeter wave sensors, vehicle-mounted Electrical and electronic components used in communication equipment, such as printed circuit boards, antenna substrates, connectors, housings, antenna cases, sensor cases, power amplifiers, power supply parts, and high-frequency filters.
  • the end-modified polyester resin prepared in each embodiment or comparative example was dissolved in deuterated HFIP (hexafluoroisopropanol) at a concentration of 30 mg/ml, and the number of scans was 64 times and the relaxation time was 7s.
  • HFIP hexafluoroisopropanol
  • the peaks corresponding to the hydrogen on the methylene (-CH 2 -O-) adjacent to the oxygen in various structures, and the repeating unit of the main chain of the terminal modified polyester as the main component After the peaks corresponding to the hydrogens on the monomer units derived from terephthalic acid and/or its ester-forming derivatives are assigned, the peaks are integrated to obtain the peak area.
  • the integral value of dicarboxylic acid and/or its ester-forming derivative derived from terephthalic acid and/or its ester-forming derivative as the main component is Sa, and the number of hydrogen atoms is Ha, derived from the terminal group
  • the integral value of the group is Sb, and the number of hydrogen atoms is Hb, then the content of the terminal group can be obtained according to formula (1).
  • the average molecular weight of the above-mentioned structural units refers to the total value of the product of the molecular weight of the group derived from a dicarboxylic acid and/or its ester-forming derivative, the group derived from a diol, and the copolymerization ratio.
  • thermogravimetric analyzer TGA
  • the weight-average molecular weight retention after heat treatment is 60% or more, it is considered to have high melt retention stability, and if it is 65% or more, it has higher melt retention stability.
  • Test sample Using an injection molding machine (TR30EHA) manufactured by Sodick Co., Ltd., under the conditions of a molding temperature of 260°C and a mold temperature of 80°C, the sum of the injection time and dwell time during molding was set to 3s, cooled The time is set to 15s, and the automatic molding is carried out with the above-mentioned cycle time, and the end-modified polyester resin prepared in each embodiment or comparative example is injection-molded to obtain a 30mm ⁇ 30mm ⁇ 0.5mmt angle plate-shaped sample. The obtained gusseted sample was cut parallel to the flow direction of the resin during injection molding into a sample with a width of 1mm (30mm ⁇ 1mm ⁇ 0.5mmt) as a sample for dielectric property evaluation.
  • TR30EHA injection molding machine manufactured by Sodick Co., Ltd.
  • Dielectric loss tangent test The cavity resonator CP521 of Agilent Technologies.Co., Ltd./Kanto Electronics Co., Ltd. is used to measure the dielectric loss tangent at a frequency of 5.8GHz. A dielectric loss tangent value below 0.0060 is considered to have good high-frequency dielectric properties, and a value below 0.0055 has better high-frequency dielectric properties.
  • TPA Terephthalic acid
  • TBT Tetra-n-butyl titanate
  • MBO Monobutyltin Oxide
  • Antioxidant IR1010 manufactured by BASF AG
  • Phosphoric acid manufactured by TCI (Shanghai) Chemical Industry Development Co., Ltd.
  • n-butanol manufactured by Sigma-Aldrich, carbon number 4
  • Benzyl alcohol manufactured by Sigma-Aldrich, with 7 carbon atoms
  • Stearyl Alcohol Manufactured by TCI (Shanghai) Chemical Industry Development Co., Ltd., with 18 carbon atoms
  • 2-decyl-1-tetradecyl alcohol manufactured by TCI (Shanghai) Chemical Industry Development Co., Ltd., with 24 carbon atoms
  • Butyric acid manufactured by Sigma-Aldrich, carbon number 4
  • Zinc acetate manufactured by Shanghai Aladdin Biochemical Technology Co., Ltd., carbon number 2
  • terephthalic acid TPA, 106.2g
  • 1,4-butanediol 1,4-butanediol (1,4-BDO, 75.0g
  • tin compound catalyst MBO addition amount: relative to the final terminal modification 0.042wt% of the polyester resin quality
  • antioxidant IR1010 addition amount: 0.019wt% relative to the final end-modified polyester resin quality
  • monohydric alcohol end-capping agent 2-decyl-1-tetradecyl Alkanol numberber of carbon atoms: 24, amount added: 2.270 g, relative to 100 mol % of terephthalic acid added above, the amount added is 1.0 mol%) was added to a 250 ml four-necked flask reactor equipped with a rectification tower.
  • TBT catalyst solution of Preparation Example 1 Feed into nitrogen and start stirring, add the TBT catalyst solution of Preparation Example 1 (the amount of TBT added in the solution: 0.045wt% relative to the final end-modified polyester resin quality) after the temperature is raised to 100°C, and maintain the temperature within 5 minutes of reaction.
  • the esterification reaction was started at 100°C under reduced pressure to 60kPa, and the temperature was slowly raised after 5 minutes. After a further reaction of 105 minutes, when the temperature was raised to 205°C, the pressure of the system was slowly reduced and the reaction temperature was further increased. After a further reaction of 90 minutes, the final system pressure reached 33.3kPa and the final temperature reached 238°C. 30min, that is, the total reaction time is 230min when the reaction liquid becomes transparent, the reaction is terminated and the oligomer melt is poured out.
  • the prepolymer After waiting for the prepolymer to melt completely, use a syringe to add the titanium compound TBT catalyst solution (the addition amount of TBT in the solution: 0.050wt% relative to the final end-modified polyester resin quality) and the phosphoric acid solution of Preparation Example 2 (in the solution The amount of phosphoric acid added: 0.017wt% relative to the mass of the final end-modified polyester resin). Then slowly reduce the system pressure. After 45 minutes of reaction, the system pressure drops below 200Pa, and then the polycondensation reaction is carried out at a temperature of 255 ° C and a pressure of 200 Pa. The polycondensation reaction is stopped when the total reaction time is 210 minutes, and the end-modified polyester resin is spit out. .
  • Example 1 Repeat Example 1, except that the amount of organic carboxylic acid alkaline earth metal salt calcium acetate monohydrate added in the polycondensation reaction is 0.030 wt% relative to the mass of the final terminal-modified polyester resin.
  • Example 1 was repeated, except that the amount of organic carboxylic acid alkaline earth metal salt calcium acetate monohydrate added in the polycondensation reaction was 0.060 wt% relative to the mass of the final terminal-modified polyester resin.
  • Example 1 was repeated, except that the amount of organic carboxylic acid alkaline earth metal salt calcium acetate monohydrate added in the polycondensation reaction was 0.106 wt% relative to the mass of the final terminal-modified polyester resin.
  • Example 1 was repeated, except that the organic carboxylic acid alkaline earth metal salt calcium acetate monohydrate was not added in the polycondensation reaction.
  • Example 1 was repeated, except that the amounts of organic carboxylic acid alkaline earth metal salt calcium acetate monohydrate added in the polycondensation reaction were 0.006 wt% and 0.120 wt% relative to the mass of the final end-modified polyester resin.
  • Example 2 Repeat Example 1, the difference is that the organic carboxylic acid alkaline earth metal salt added in the polycondensation reaction is calcium formate, and its addition is 0.022wt% relative to the quality of the final end-modified polyester resin, and the calcium atom contained therein is The number of moles is the same as the number of moles of calcium atoms in Example 2.
  • Example 2 Repeat Example 1, the difference is that the organic carboxylic acid alkaline earth metal salt added in the polycondensation reaction is calcium propionate, and its addition is 0.032wt% relative to the quality of the final end-modified polyester resin, and the calcium atoms contained therein The number of moles is the same as the number of moles of calcium atoms in Example 2.
  • Example 2 Repeat Example 1, the difference is that the organic carboxylic acid alkaline earth metal salt added in the polycondensation reaction is calcium stearate, and its addition is 0.103wt% relative to the final end-modified polyester resin quality, and the calcium contained therein
  • the number of moles of atoms is the same as the number of moles of calcium atoms in Example 2.
  • Example 2 the difference is that what is added in the polycondensation reaction is the sodium acetate of organic carboxylic acid alkali metal salt, and its addition is 0.028wt% relative to the quality of final end-modified polyester resin, wherein the sodium atom contained
  • the number of moles is twice the number of moles of calcium atoms in Example 2, that is, the total number of charges carried by the sodium ions in this embodiment is the same as the total number of charges carried by the calcium ions in Example 2.
  • Example 2 Repeat Example 1, the difference is that what is added in the polycondensation reaction is potassium acetate of organic carboxylic acid alkali metal salt, and its addition is 0.034wt% relative to the quality of the final end-modified polyester resin, and the potassium atom contained therein
  • the number of moles is twice the number of moles of calcium atoms in Example 2, that is, the total number of charges carried by the potassium ions in this embodiment is the same as the total number of charges carried by the calcium ions in Example 2.
  • Example 2 the difference is that what is added in the polycondensation reaction is the zinc acetate of organic carboxylic acid transition metal salt, and its addition is 0.031wt% relative to the quality of final end-modified polyester resin, wherein the contained zinc atom
  • the number of moles is the same as the number of moles of calcium atoms in Example 2, that is, the total number of charges carried by the zinc ions in this embodiment is the same as that of the calcium ions in Example 2.
  • Example 2 the difference is that what is added in the polycondensation reaction is the inorganic salt calcium chloride, and its addition is 0.019wt% relative to the quality of the final end-modified polyester resin, and the molar number of the calcium atoms contained therein is the same as that of the implementation The number of moles of calcium atoms in Example 2 is the same.
  • Example 2 was repeated, except that the amount of titanium compound TBT added in the esterification reaction was 0.040 wt% relative to the mass of the final end-modified polyester resin, and no titanium compound TBT was added in the polycondensation reaction.
  • Example 2 was repeated, except that the addition amounts of the titanium compound TBT in the polycondensation reaction were 0.030 wt%, 0.075 wt%, and 0.108 wt% relative to the mass of the final terminal-modified polyester resin.
  • Example 2 was repeated, except that the amount of titanium compound TBT added in the esterification reaction was 0.030 wt% relative to the mass of the final end-modified polyester resin, and no titanium compound TBT was added in the polycondensation reaction.
  • Example 2 was repeated, except that the addition amount of the titanium compound TBT in the polycondensation reaction was 0.120 wt% relative to the mass of the final end-modified polyester resin.
  • Example 3 was repeated, except that the addition amounts of the titanium compound TBT in the polycondensation reaction were 0.030 wt% and 0.075 wt% relative to the mass of the final terminal-modified polyester resin.
  • Example 3 was repeated, except that the amount of titanium compound TBT added in the esterification reaction was 0.030 wt% relative to the mass of the final end-modified polyester resin, and no titanium compound TBT was added in the polycondensation reaction.
  • Example 3 was repeated, except that the addition amount of the titanium compound TBT in the polycondensation reaction was 0.130 wt% relative to the mass of the final end-modified polyester resin.
  • Example 2 the difference is relative to the added terephthalic acid 100mol% in the esterification reaction, the addition of monohydric alcohols end-capping agent 2-decyl-1-tetradecanol (24 carbon atoms) 0.3 mol%, 0.5 mol%, 0.8 mol%, 1.0 mol%, 2.0 mol%, respectively.
  • Example 2 except that the monohydric alcohol end-capping agent added in the esterification reaction is benzyl alcohol (7 carbon atoms), and its addition amount is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • Example 2 except that the monohydric alcohol end-capping agent added in the esterification reaction is stearyl alcohol (18 carbon atoms), and its addition amount is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • the monohydric alcohol end-capping agent added in the esterification reaction is stearyl alcohol (18 carbon atoms), and its addition amount is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • Example 2 the difference is that the monohydric alcohol end-capping agent added in the esterification reaction is 2-dodecyl-1-hexadecanol (28 carbon atoms), relative to the added terephthalic acid The amount added is 1.0 mol% per 100 mol%.
  • Example 2 the difference is that the monohydric alcohol end-capping agent added in the esterification reaction is 2-tetradecyl-1-octadecyl alcohol (32 carbon atoms), with respect to the added terephthalic acid The addition amount is 1.0 mol% per 100 mol%.
  • Example 2 the difference is that the addition of monocarboxylic acid end-capping agent benzoic acid (with 7 carbon atoms) in the esterification reaction is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • Example 2 the difference is that what is added in the esterification reaction is monobasic carboxylic acid class end-capping agent stearic acid (number of carbon atoms 18), its addition is 1.0mol% relative to the terephthalic acid 100mol% that adds .
  • Example 2 except that the monohydric alcohol end-capping agent added in the esterification reaction is n-butanol (4 carbon atoms), and its addition amount is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • the reaction time of polycondensation reaction is 150min.
  • Example 2 the difference is that the addition of a monocarboxylic acid end-capping agent butyric acid (with 4 carbon atoms) in the esterification reaction is 1.0 mol% relative to 100 mol% of terephthalic acid added.
  • the reaction time of polycondensation reaction is 150min.
  • Example 3 was repeated, except that the tin compound MBO was not added in the esterification reaction.
  • Example 3 the difference is that the added amount of the tin compound MBO added in the esterification reaction is respectively 0.021wt%, 0.030wt%, 0.042wt%, 0.050wt%, 0.063wt% relative to the quality of the final end-modified polyester resin wt%, 0.070 wt%.
  • Example 2 was repeated, except that the amount of 1,4-butanediol added in the esterification reaction was 0.0704 mol (the molar ratio of 1,4-butanediol to terephthalic acid was 1.1).
  • Example 2 the difference is that the amount of 1,4-butanediol added in the esterification reaction is 0.0960mol (the molar ratio of 1,4-butanediol and terephthalic acid is 1.5), and the polycondensation reaction time is 200min.
  • Examples 1-4 and Comparative Examples 1-3 show that the end-modified polyester resin obtained after adding a certain amount of alkaline earth metal salts of organic carboxylic acids during the synthesis of the terminal-modified polyester resin is compared to the end-modified polyester resin without adding
  • the end-modified polyester resin obtained from the above-mentioned specific amount of organic carboxylic acid alkaline earth metal salt has no significant decrease in carboxyl end content, but has more excellent melt retention stability and excellent dielectric properties .
  • the addition amount of the alkaline earth metal salt of the organic carboxylic acid is too small, the molecular weight retention rate of the end-modified polyester resin after heat treatment is low, that is, its melt retention stability is poor.
  • the addition amount of the alkaline earth metal salt of the organic carboxylic acid is too large, the molecular weight retention rate of the terminal-modified polyester resin is low, and its melt retention stability deteriorates.
  • Examples 5-10 and Comparative Example 4 shows that at least one of organic carboxylic acid and/or carbonic acid alkali metal salt, alkaline earth metal salt and transition metal salt is added during the synthesis of terminal modified polyester resin, so The obtained end-modified polyester resin has excellent melt retention stability and dielectric properties. If metal chloride salt is added, the effect of improving thermal retention stability cannot be obtained.
  • Example 2 The comparison of Example 2, Examples 11-14 and Comparative Examples 5-6 and the comparison of Example 3, Examples 15-16 and Comparative Examples 7-8 illustrate that when the end-modified polyester resin is synthesized, a specific amount of When a titanium compound is used, the resulting end-modified polyester resin has excellent melt retention stability and dielectric properties.
  • the addition amount of the titanium compound is too small, the hydroxyl terminal content of the obtained terminal-modified polyester resin increases, resulting in an excessively high dielectric loss tangent at high frequencies.
  • the addition amount of the titanium compound is too large, the thermal decomposition reaction will be promoted and the melt retention stability will decrease.
  • Example 2 The comparison of Example 2, Examples 17-27 and Comparative Examples 9-10 shows that when the polyester resin is synthesized, a monohydric alcohol with a carbon number of 5 or more and 50 or less and/or a carbon number with a carbon number of 5 or more and 50 or less is added.
  • the obtained polyester resin is terminal-modified using a monocarboxylic acid terminal-capping agent, the obtained terminal-modified polyester resin has a low hydroxyl terminal content and a low dielectric loss tangent.
  • Example 2 shows that when using a monohydric alcohol with a carbon number of 16 to 36 and/or a monocarboxylic acid with a carbon number of 16 to 36 to modify the end of the polyester resin , the resulting end-modified polyester resin has a lower dielectric loss tangent.
  • Example 2 shows that the end-modified polyester resin obtained by adding a specific amount of monohydric alcohol end-capping agent with carbon atoms of more than 5 and less than 50 when the polyester resin is synthesized has excellent Dielectric properties.
  • the addition amount of the monohydric alcohol end-capping agent with 5 or more and 50 or less carbon atoms is small, the hydroxyl terminal content of the obtained terminal-modified polyester resin increases, the reduction of the dielectric loss tangent value becomes less, and the improvement effect of the dielectric properties reduce.
  • Example 3 shows that the terminal-modified polyester resin obtained by adding a specific amount of tin compound during the synthesis of the terminal-modified polyester resin has excellent melt retention stability and dielectric properties.
  • the addition amount of the tin compound is small, the polycondensation rate decreases, resulting in a decrease in the molecular weight of the obtained terminal-modified polyester, an increase in the hydroxyl terminal content of the obtained terminal-modified polyester, and a decrease in the effect of improving the dielectric properties.
  • the amount of the tin compound added is large, the progress of the thermal decomposition reaction is accelerated, the molecular weight retention rate after heat treatment is reduced, and the effect of improving the melt retention stability is reduced.
  • Example 2 shows that the end-modified polyester resin prepared under a certain molar ratio of dihydric alcohol to dicarboxylic acid has excellent melt retention stability and dielectric properties .
  • the molar ratio of dihydric alcohol to dicarboxylic acid decreases, polycondensation becomes difficult, the molecular weight of the obtained terminal-modified polyester resin decreases, and the carboxyl terminal content increases, resulting in a decrease in the effect of improving its melt retention stability.
  • the molar ratio of dihydric alcohol to dicarboxylic acid increases, the hydroxyl terminal content of the obtained end-modified polyester resin increases, and the dielectric loss tangent value increases, resulting in a decrease in the effect of improving its dielectric properties.

Abstract

本发明涉及一种具有高熔融滞留稳定性和低介电损耗的末端改性聚酯树脂的制备方法、一种末端改性聚酯树脂及其组合物和成型品。本发明涉及一种由以对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇、以及包含碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的单体反应得到的末端改性聚酯树脂。在缩聚反应终止前的任意阶段,添加钛化合物及选自有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种成分。本发明所得的末端改性聚酯树脂具有高的熔融滞留稳定性和低介电损耗,因此适用于通过熔融加工过程制造的高频通信传输部件。

Description

末端改性聚酯树脂、其组合物、成型品和制备方法 技术领域
本发明涉及聚合物材料领域,具体涉及一种具有高熔融滞留稳定性和低介电损耗的末端改性聚酯树脂的制备方法、一种末端改性聚酯树脂及其组合物和成型品。
背景技术
随着微电子行业的飞速发展,电子器件尺寸趋于微型化,晶体管的布线密度急剧攀升,负面影响如线间信号窜扰、电阻电容(RC)延迟、电路板单位面积的发热量增加等问题发生,有了开发高效、高速、低能耗、多功能电子产品的需求。从技术角度而言,为了适应通信的高频化所带来的高速数据传输的需要,能够大幅降低传输信号损失的高性能基材至关重要。更小的介质损耗则有利于大限度地降低高频通信传播中的信号损失,因此,为了减少信号传输损失,必须选用介质损耗小的材料用于基材。
最近各种高分子材料作为低介电损耗材料被广泛开发研究。研究较多集中在聚酰亚胺、聚芳醚酮、聚苯并噁唑、液晶聚合物等,这类材料因为主链结构中含有大量的芳环而具有较高的机械强度,但是存在难以进行熔融加工的问题。所以对具有优异熔融加工性的低介电损耗聚酯树脂开发有了要求。
近年来广泛进行了聚酯树脂研究开发,通过各种共混或共聚方法的搭配从而降低聚酯树脂的介电损耗。但是共混的方法并未降低聚酯树脂本身的介电损耗,因此在需要大量或单独使用聚酯树脂的情况下无法达到低介电的要求。共聚的方法则往往造成聚酯树脂的结晶性下降、机械强度和耐热性下降的问题,限制了树脂的应用范围。
发明内容
发明要解决的课题与目的
针对上述问题,本发明的目的在于提供一种具有高熔融滞留稳定性和低介电损耗的末端改性聚酯树脂的制备方法、一种末端改性聚酯树脂及其组合物和成型品。
用于解决上述课题的手段
本发明人研究发现,所加入的一部分末端改性剂与钛化合物等聚合催化剂形成稳定的配位结构,此结构中的催化剂很难失活,聚合后仍具有高活性的催化剂残留物在熔融加工时引发了热分解反应,导致聚酯树脂分子量降低。本发明人通过研究后,发现了在末端改性聚酯聚合时添加特定的金属盐,使其与催化剂形成复合结构来阻止催化剂与末端改性剂形成配位结构,从而高活性的催化剂很难残留下来,于是熔融加工时的热分解反应得到抑制,提高聚酯树脂的熔融滞留稳定性。
即本发明的技术方案包括如下构成。
1.一种末端改性聚酯树脂的制造方法,其中,由以对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇、以及包含碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的单体经过酯化反应或酯交换反应,随后进行缩聚反应从而得到所述末端改性聚酯树脂;
所述制造方法的特征在于,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,添加0.040重量份以上且0.155重量份以下的钛化合物,并添加0.010重量份以上且0.110重量份以下的选自有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种成分。
2.根据上述1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,还 添加大于0重量份且为0.065重量份以下的锡化合物。
3.根据上述2所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述锡化合物添加量为0.030重量份以上且0.050重量份以下。
4.根据上述2所述的末端改性聚酯树脂的制备方法,其中,所述锡化合物为二丁基氧化锡、甲基苯基氧化锡、四乙基锡、六乙基二氧化锡、六环己基二氧化锡、双十二烷基氧化锡、单丁基氧化锡、三乙基氢氧化锡、三苯基氢氧化锡、乙酸三异丁基锡、二乙酸二丁基锡、二月桂酸二苯基锡、丁基三氯化锡、二丁基二氯化锡、三丁基氯化锡、二丁基硫化锡、丁基羟基氧化锡、甲基锡酸、乙基锡酸、丁基锡酸中的至少一种。
5.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述二元醇中1,4-丁二醇的含量为80mol%以上。
6.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述以1,4-丁二醇为主要成分的二元醇与所述二元羧酸和/或其可形成酯的衍生物的摩尔比为1.1以上且1.5以下。
7.根据上述1所述的末端改性聚酯树脂的制备方法,其中,相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,所述碳原子数为5以上且50以下的一元醇以及所述碳原子数为5以上且50以下的一元羧酸的总添加量为0.5mol%以上且3.0mol%以下。
8.根据上述7所述的末端改性聚酯树脂的制备方法,其中,相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,所述碳原子数为5以上且50以下的一元醇以及碳原子数为5以上且50以下的一元羧酸的总添加量为0.8mol%以上且2.0mol%以下。
9.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述一元醇和所述一元羧酸的碳原子数分别为16以上且36以下。
10.根据上述1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚 反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述钛化合物的添加量为0.075重量份以上且0.120重量份以下。
11.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述钛化合物为钛酸四甲酯、钛酸四正丙酯、钛酸四正丁酯、钛酸四异丙酯、钛酸四异丁酯、钛酸四叔丁酯、钛酸环己酯、钛酸四苯酯、钛酸四苄酯、钛酸四甲基苯酯中的至少一种。
12.根据上述1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐的总添加量为0.030重量份以上且0.060重量份以下。
13.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的有机羧酸为碳原子数为1以上且18以下的脂肪族一元羧酸中的至少一种。
14.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的有机羧酸为甲酸、乙酸、丙酸、硬脂酸中的至少一种。
15.根据上述1所述的末端改性聚酯树脂的制备方法,其中,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的碱金属、碱土金属和过渡金属为钠、钾、铯、镁、钙、锌中的至少一种。
16.一种末端改性聚酯树脂,其主链结构的45mol%以上是聚对苯二甲酸丁二醇酯,且其包含来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团;
所述末端改性聚酯树脂的特征在于,所述聚酯树脂中含有钛原子、以及选自碱金属原子、碱土金属原子和过渡金属原子中的至少一者,所述钛原子的含量、以及所述碱金属原子、碱土金属原子和过渡金属原子的总含量满足:
1.2mmol/kg≤钛原子含量≤4.5mmol/kg
0.6mmol/kg≤碱金属原子、碱土金属原子和过渡金属原子的总含量≤6.0mmol/kg。
17.根据上述16所述的末端改性聚酯树脂,其中,所述聚酯树脂中进一步含有锡原子,所述锡原子的含量满足:
0mmol/kg<锡原子含量≤3.0mmol/kg。
18.根据上述17所述的末端改性聚酯树脂,其中,所述锡原子的含量满足:
1.4mmol/kg≤锡原子含量≤2.4mmol/kg。
19.根据上述16所述的末端改性聚酯树脂,其中,所述来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团的总含量为16mmol/kg以上且136mmol/kg以下。
20.根据上述19所述的末端改性聚酯树脂,其中,所述来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团的总含量为25mmol/kg以上且91mmol/kg以下。
21.根据上述16所述的末端改性聚酯树脂,其中,来源于碳原子数为5以上且50以下的一元醇的末端基团和来源于碳原子数为5以上且50以下的一元羧酸的末端基团的碳原子数分别为16以上且36以下。
22.根据上述16所述的末端改性聚酯树脂,其中,所述钛原子的含量满足:
2.2mmol/kg≤钛原子含量≤3.5mmol/kg。
23.根据上述16所述的末端改性聚酯树脂,其中,所述碱金属原子、碱土金属原子和过渡金属原子的总含量满足:
1.7mmol/kg≤碱金属原子、碱土金属原子和过渡金属原子的总含量≤3.4mmol/kg。
24.根据上述16所述的末端改性聚酯树脂,其中,所述碱金属、碱土金属和过渡金属为钠、钾、铯、镁、钙、锌中的至少一种。
25.根据上述16所述的末端改性聚酯树脂,其中,以六氟异丙醇为溶剂,通过凝胶渗透色谱所测得的所述末端改性聚酯树脂的重均分子量为8,000以上且25,000以下。
26.根据上述16所述的末端改性聚酯树脂,其在23℃下通过圆柱形谐振腔微扰法所测得的5.8GHz下的介质损耗角正切值为0.0060以下。
27.根据上述16所述的末端改性聚酯树脂,其在氮气气氛、260℃熔融状态下处理10分钟后的重均分子量Mwb与处理前的重均分子量Mwa的比Mwb/Mwa为0.60以上。
28.一种末端改性聚酯树脂组合物,其包含上述16-27中任意一项所述的末端改性聚酯树脂。
29.一种成型品,其使用上述16-27中任意一项所述的末端改性聚酯树脂或上述28中所述的末端改性聚酯树脂组合物。
发明的效果
根据本发明,通过在以包含一元醇和/或一元羧酸的封端剂进行封端的末端改性聚酯树脂的缩聚反应终止前的任意阶段,加入特定量的催化剂钛化合物以及可与羧基末端存在相互作用的选自有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种进行反应后所得到的末端改性聚酯树脂具有高熔融滞留稳定性和低介电损耗。
下面,对本发明进行更详细的说明。
本发明的末端改性聚酯树脂由以对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇、以及包含碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的单体制备得到。本发明中,所述“对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物”是指所述对苯二甲酸和/或其可形成酯的衍生物相对于作为聚酯树脂的原料的所有的二元羧酸和/或其可形成酯的衍生物成分而言,其含量为45mol%以上, 优选为60mol%以上,再优选为70mol%以上,更优选为80mol%以上。所述“以1,4-丁二醇为主要成分的二元醇”是指1,4-丁二醇相对于作为聚酯树脂的原料的所有的二元醇成分而言,其含量为45mol%以上,优选为60mol%以上,再优选为70mol%以上,更优选为80mol%以上。所述末端改性聚酯树脂,可以是均聚物,也可以是共聚物。例如,上述末端改性聚酯树脂中对苯二甲酸和/或其可形成酯的衍生物相对于作为聚酯树脂原料所使用的所有的二元羧酸和/或其可形成酯的衍生物的含量为45mol%以上、并且1,4-丁二醇相对于作为聚酯树脂原料所使用的所有的二元醇成分的含量为45mol%以上的情况定义为聚合所得到的末端改性聚酯树脂的主链结构的45mol%以上是聚对苯二甲酸丁二醇酯。从维持高耐热性和低介电损耗的观点来看,所述末端改性聚酯树脂的主链结构中聚对苯二甲酸丁二醇酯的含量优选为45mol%以上,更优选为60mol%以上,进一步优选为80mol%以上。
除作为主要成分的对苯二甲酸和/或其可形成酯的衍生物以外,所述二元羧酸及其可形成酯的衍生物可举出间苯二甲酸、邻苯二甲酸、2,6-萘二羧酸、2,7-萘二羧酸、2,3-萘二羧酸、1,4-萘二羧酸、1,5-萘二羧酸、1,8-萘二羧酸、二苯甲烷-4,4’-二羧酸、蒽二羧酸、4,4’-二苯基二羧酸、二苯氧基乙烷二羧酸、4,4’-二苯醚二羧酸、5-磺酸基间苯二甲酸或间苯二甲酸-5-磺酸钠等芳香族二羧酸,1,3-环己烷二羧酸、1,4-环己烷二羧酸、环戊烷二羧酸、或4,4’-二环己基二羧酸等脂环族二羧酸,草酸、丁二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十二烷二酮酸或二聚酸等脂肪族二元羧酸。也可以使用上述二元羧酸相应的烷基二酯和二酰氯作为单体原料。
除作为主要成分的1,4-丁二醇以外,所述二元醇可举出乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,3-戊二醇、1,3-己二醇、1,3-庚二醇、1,4-戊二醇、1,5-己二醇、2,3-丁二醇、2,3-戊二醇、2,3-己二醇、2,3-庚二醇、2,3-辛二醇、3,4-己二醇、3,4-庚二醇、3,4-辛二醇、4,5-辛二醇、2,4-戊二醇、2,4-己二 醇、2,4-辛二醇、3,5-庚二醇、2,5-己二醇、2,5-庚二醇、2,5-辛二醇、3,6-辛二醇、1,5-己二烯-3,4-二醇、2-甲基-1,3-丙二醇、2-乙基-1,3-丙二醇、2-丙基-1,3-丙二醇、2-异丙基-1,3-丙二醇、2-亚甲基-1,3-丙二醇、1,2-丁二醇、1,2-戊二醇、1,2-己二醇、1,2-庚二醇、1,2-辛二醇、1,2-癸二醇、3,3-二甲基-1,2-丁二醇、7-辛烯-1,2-二醇、3-丁烯-1,2-二醇、1,5-戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇或1,10-癸二醇等脂肪族二元醇,1,2-环己烷二甲醇、1,3-环己烷二甲醇、1,4-环己烷二醇、1,4-环己烷二甲醇、4,4,’-二环己烷二甲醇、2,2,4,4-四甲基-1,3-环丁二醇、或三环癸烷二甲醇等脂环族二醇,苯二甲醇、双(对羟基)联苯、双(对羟基)二苯基丙烷、2,2-双[4-(2-羟基乙氧基)苯基]丙烷、双[4-(2-羟基乙氧基)苯基]砜、1,1-双(4-羟基苯基)环己烷、1,1-双[4-(2-羟基乙氧基)苯基]环己烷、4,4-二羟基对三联苯、或4,4-二羟基对四联苯等芳香族二醇,聚乙二醇、聚丙二醇、聚四氢呋喃等含末端羟基的聚醚。所述二元醇也可以以乙酰化物或碱金属盐等的形式使用。
本发明的末端改性聚酯树脂由上述以对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇经过酯化反应或酯交换反应,随后进行缩聚反应从而得到。
在本发明中,从降低高频交变电场下聚酯树脂极性末端基的运动性从而降低聚酯树脂介电损耗的观点来看,在上述对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇进行的酯化反应或酯交换反应以及随后进行的缩聚反应终止前的任意阶段加入包含碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的单体,从而对聚酯树脂进行末端改性以降低聚酯的羟基末端含量,改善所得末端改性聚酯树脂的介电性能。
上述一元醇和一元羧酸是以由氢原子和碳原子所形成的碳氢化合物为主骨架,碳原子成链状连接成的结构可以是直链状也可以是支链状,或者可以 具有环状结构。
所述的碳原子数为5以上且50以下的一元醇包含1-戊醇(C5)、1-己醇(C6)、1-庚醇(C7)、1-辛醇(C8)、1-壬醇(C9)、1-癸醇(C10)、1-十一烷醇(C11)、月桂醇(C12)、1-十三烷醇(C13)、肉豆蔻醇(C14)、1-十五烷醇(C15)、鲸蜡醇(C16)、1-十七烷醇(C17)、硬脂醇(C18)、1-十九烷醇(C19)、1-二十烷醇(C20)、1-二十一烷醇(C21)、1-二十二烷醇(C22)、1-二十三烷醇(C23)、1-二十四烷醇(C24)、1-二十五烷醇(C25)、1-二十六烷醇(C26)、1-二十七烷醇(C27)、1-二十八烷醇(C28)、蜂花醇(C30)、1-四十烷醇(C40)等直链型饱和脂肪族一元醇,新戊醇(C5)、2-丁基-1-己醇(C10)、2-丁基-1-辛醇(C12)、2-己基-1-辛醇(C14)、2-己基-1-癸醇(C16)、2-丁基-1-十四烷醇(C18)、2-己基-1-十二烷醇(C18)、2-辛基-1-癸醇(C18)、5,7,7-三甲基-2-(1,3,3-三甲基丁基)-1-辛醇(C18)、2-己基-1-十四烷醇(C20)、2-辛基-1-十二烷醇(C20)、2-辛基-1-十四烷醇(C22)、2-辛基-1-十六烷醇(C24)、2-癸基-1-十四烷醇(C24)、2-十二烷基-1-十四烷醇(C26)、2-癸基-1-十八烷醇(C28)、2-十二烷基-1-十六烷醇(C28)、2-十四烷基-1-十八烷醇(32)、2-十六烷基-1-二十烷醇(C36)等支链型饱和脂肪族一元醇,顺-9-十六烯醇(C16)、油醇(C18)、亚麻醇(C18)、顺-13-二十二烯醇(C22)等不饱和脂肪族一元醇,苯甲醇(C7)、苯乙醇(C8)、1-苯基-1-丙醇(C9)、1-苯基-2-丙醇(C9)等芳香族一元醇。上述C之后所记载的数字标识碳原子数目。从色度的观点来看,优选为直链型或支链型的饱和脂肪族一元醇和芳香族一元醇。一元醇的碳原子数为5以上且50以下时,能够有效地降低末端改性聚酯树脂的羟基末端含量从而降低树脂介电损耗。从进一步降低树脂介电损耗的观点来看,碳原子数的下限优选为7以上,更优选为16以上、进一步优选为20以上。碳原子数的上限优选为36以下,更优选为32以下。
所述的碳原子数为5以上且50以下的一元羧酸包含戊酸(C5)、己酸(C6)、 庚酸(C7)、辛酸(C8)、月桂酸(C12)、硬脂酸(C18)、油酸(C18)、亚油酸(C18)、花生酸(C20)、辣木子油酸(C22)、木蜡酸(C24)、蜡酸(C26)、二十八酸(C28)、蜂花酸(C30)、环己烷甲酸(C7)等脂肪族或脂环族一元羧酸,苯甲酸(C7)、3-(4-甲苯)丙酸(C10)、2-萘甲酸(C11)、9-蒽甲酸(C15)、联苯-2-甲酸(C13)、联苯-4-甲酸(C13)、2-氯苯甲酸(C7)、3-氯苯甲酸(C7)、4-氯苯甲酸(C7)、水杨酸(C7)、间羟基苯甲酸(C7)、对羟基苯甲酸(C7)等芳香族一元羧酸。从进一步降低树脂介电损耗的观点来看,碳原子数下限优选为7以上,更优选为12以上,进一步优选为16以上、更进一步优选为20以上。碳原子数的上限优选为36以下,更优选为32以下。
从降低末端改性聚酯树脂羟基末端含量以降低介电损耗的观点来看,上述碳原子数为5以上且50以下的一元醇以及碳原子数为5以上且50以下的一元羧酸,相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,其总添加量优选为0.5mol%以上,更优选为0.8mol%以上,进一步优选为1.0mol%以上。从维持树脂实际使用时所需要的分子量的观点来看,上述碳原子数为5以上且50以下的一元醇以及碳原子数为5以上且50以下的一元羧酸相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,其总添加量优选为3.0mol%以下,更优选为2.0mol%以下,进一步优选为1.5mol%以下。
本发明所得的末端改性聚酯树脂末端包含来源于上述碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的基团。由于在所述的酯化反应、酯交换反应以及缩聚反应过程中所添加的一部分上述一元醇和一元羧酸蒸发,造成反应后导入到本发明所得的末端改性聚酯树脂末端的来源于上述一元醇和/或一元羧酸的末端基团含量要低于通过添加量计算所得理论含量。根据实际实验结果所得,导入末端改性聚酯末端的来源于所述碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的基团的含量为以100%导入率计算所得的理论末端含量的70% 以上。因此,所述来源于上述一元醇和/或一元羧酸的基团的末端含量优选值为通过优选添加量计算值的70%以上、100%以下。即,从降低末端改性聚酯树脂羟基末端含量以降低介电损耗的观点来看,本发明中所得的末端改性聚酯树脂末端包含来源于上述碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的基团,其总含量优选为16mmol/kg以上,更优选为25mmol/kg以上,进一步优选为32mmol/kg以上。从维持树脂实际使用时所需要的分子量的观点来看,来源于上述碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的基团的总含量优选为136mmol/kg以下,更优选为91mmol/kg以下,进一步优选为68mmol/kg以下。
本发明中,末端改性聚酯树脂末端反应导入的来源于一元醇和/或一元羧酸的基团的含量是以六氟异丙醇为溶剂,通过 1H-NMR测定的由来自末端基团的峰的积分比所计算求得的值。
在本发明中,从进一步保障实际使用时所需的机械特性、低介电损耗的方面考虑,所述末端改性聚酯树脂的重均分子量(Mw)优选为8,000以上且25,000以下。重均分子量的下限值更优选为10,000以上,进一步优选为12,000以上,另一方面,重均分子量的上限值更优选为20,000以下,进一步优选为17,000以下。在本发明中,所述末端改性聚酯树脂的重均分子量是以六氟异丙醇为溶剂,通过凝胶渗透色谱(GPC)测定后以聚甲基丙烯酸甲酯(PMMA)为标准样品所换算得到的值。
在本发明中,从提升树脂熔融滞留稳定性的观点考虑,由本发明所得到的末端改性聚酯树脂的羧基末端含量优选为60mmol/kg以下,更优选为50mmol/kg以下,进一步优选为40mmol/kg以下。所述羧基末端含量的下限值为0mmol/kg。本发明中,末端改性聚酯树脂羧基末端含量是将所述末端改性聚酯树脂溶解于邻甲酚/三氯甲烷的混合溶剂中后使用氢氧化钾的乙醇溶液滴定所测定的值。
在本发明中,从抑制末端改性高频交变电场下聚酯树脂末端基的分子运 动性,更大程度地降低其介电损耗的方面考虑,本发明的末端改性聚酯树脂中的羟基末端基含量优选50mmol/kg以下,更优选为40mmol/kg以下,进一步优选为30mmol/kg以下。
本发明得到的末端改性聚酯树脂在23℃使用圆筒形谐振腔微扰法测试5.8GHz频率的介质损耗角正切值优选为0.0060以下。介质损耗角正切值在0.0060以下即可降低介电损耗,抑制高频率信号的损失,可获得更高的天线增益和更高的雷达精度。上述介质损耗角正切值更优选为0.0055以下,进一步优选为0.0050以下。
本发明所得到的末端改性聚酯树脂在氮气气氛、260℃熔融状态下处理10分钟后的重均分子量Mwb与处理前的重均分子量Mwa的比Mwb/Mwa优选为0.60以上。上述Mwb/Mwa为0.60以上即意味着有良好的熔融滞留稳定性,可抑制在进行熔融加工后的末端改性聚酯树脂机械性能的下降。上述Mwb/Mwa更优选为0.63以上,进一步优选为0.65以上。
本发明的末端改性聚酯树脂可以通过如下方法制备得到:将对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇原料在150-250℃温度范围内,在常压或减压的条件下进行酯化反应或者酯交换反应,然后在240-270℃温度下且在500Pa以下的压力下进行缩聚反应。从降低所得末端改性聚酯树脂的羟基末端含量以降低介质损耗的观点来看,1,4-丁二醇为主要成分的二元醇与对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物的摩尔比优选为1.10以上且1.50以下。从提高所得末端改性聚酯分子量、改善其熔融热滞留稳定性的观点来看,所述二元醇与二元羧酸和/或其可形成酯的衍生物的摩尔比更优选为1.15以上,进一步优选为1.20以上。从进一步降低所得末端改性聚酯羟基末端含量的观点来看,上述摩尔比更优选为1.40以下,进一步优选为1.30以下。
为了可以制得分子量高的末端改性聚酯树脂,上述的240-270℃温度下且 在500Pa以下的压力下进行缩聚反应的反应时间优选为100分钟以上,进一步优选为110分钟以上,更进一步优选为120分钟以上。另一方面,为了抑制热分解,缩聚反应的反应时间优选为350分钟以下,进一步优选为330分钟以下,更进一步优选为310分钟以下。
为了有效进行酯化反应、酯交换反应以及缩聚反应,这些反应中添加作为聚合反应催化剂的钛化合物,作为聚合反应催化剂的钛化合物具体可以列举为:钛酸四甲酯、钛酸四正丙酯、钛酸四正丁酯、钛酸四异丙酯、钛酸四异丁酯、钛酸四叔丁酯、钛酸环己酯、钛酸四苯酯、钛酸四苄酯、钛酸四甲基苯酯,或这些钛酸酯的混合物等有机钛化合物。更优选为钛酸四正丙酯、钛酸四正丁酯或钛酸四异丙酯,进一步优选为钛酸四正丁酯。
从提高反应速率以获得高分子量的末端改性聚酯、降低羟基末端以降低介电损耗并抑制热分解反应、改善熔融滞留稳定性的观点来看,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,添加0.040重量份以上且0.155重量份以下的上述钛化合物。从进一步提高反应速率以获得分子量更高、羟基末端含量更低、介电损耗更低的末端改性聚酯树脂的观点来看,上述钛化合物的添加量优选为0.075重量份以上。从抑制钛原子所造成的热分解反应的发生以进一步改善熔融滞留稳定性的观点来看,所述钛化合物的添加量优选为0.120重量份以下。
本发明中所得的末端改性聚酯树脂中含有来自于上述所添加的钛化合物的钛原子,上述钛原子在本发明中所得的末端改性聚酯树脂中的含量为1.2mmol/kg以上且4.5mmol/kg以下。从进一步提高反应速率以获得分子量更高、羟基末端含量更低、介电损耗更低的末端改性聚酯树脂的观点来看,上述钛原子的含量优选为2.2mmol/kg以上。从抑制钛原子所造成的热分解反应的发生以进一步改善熔融滞留稳定性的观点来看,所述钛原子的含量优选为3.5mmol/kg以下。
本发明中,从进一步提高进行酯化反应、酯交换反应以及缩聚反应的速 率,提高所得末端改性聚酯的分子量、降低树脂末端羧基、羟基含量的观点来看,这些反应中优选添加锡化合物催化剂。作为聚合反应催化剂的锡化合物具体可以列举为:二丁基氧化锡、甲基苯基氧化锡、四乙基锡、六乙基二氧化锡、六环己基二氧化锡、双十二烷基氧化锡、单丁基氧化锡、三乙基氢氧化锡、三苯基氢氧化锡、乙酸三异丁基锡、二乙酸二丁基锡、二月桂酸二苯基锡、丁基三氯化锡、二丁基二氯化锡、三丁基氯化锡、二丁基硫化锡、丁基羟基氧化锡、甲基锡酸、乙基锡酸、丁基锡酸,等烷基锡酸的锡化物或这些锡化合物的混合物等有机锡化合物,其中更优选为单丁基氧化锡。
从进一步提高反应速率,提高所得末端改性聚酯的分子量以降低所得末端改性聚酯树脂的羧基、羟基末端含量的观点来看,优选在所述缩聚反应终止前的任意阶段,添加上述锡化合物,相对于100重量份所得到的末端改性聚酯树脂,其添加量优选为大于0重量份且为0.065重量份以下。从提高反应速率,提高分子量并降低末端改性聚酯羟基末端、羧基末端含量的观点来看,所述锡化合物的添加量更优选为0.020重量份以上,进一步优选为0.030重量份以上。从抑制锡原子造成的热裂解反应的发生以进一步改善熔融滞留稳定性的观点来看,所述锡化合物的添加量更优选为0.050重量份以下。
本发明中所得的末端改性聚酯树脂中优选含有来自于上述所添加的锡化合物的锡原子,上述锡原子在本发明中所得的末端改性聚酯树脂中的含量优选为大于0mmol/kg且为3.0mmol/kg以下。从进一步提高反应速率,提高分子量以降低所得末端改性聚酯树脂的羧基、羟基末端含量的观点来看,上述锡原子的含量更优选为1.0mmol/kg以上,进一步优选为1.4mmol/kg以上。从抑制锡原子造成的热裂解反应的发生以进一步改善熔融滞留稳定性的观点来看,所述锡化合物的含量更优选为2.4mmol/kg以下。
本发明中,从改善熔融滞留稳定性的观点来看,在所述缩聚反应终止前的任意阶段,添加有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种。
所述有机羧酸可以是甲酸(C1)、乙酸(C2)、丙酸(C3)、正丁酸(C4)、月桂酸(C12)、硬脂酸(C18)、褐煤酸(C28)等脂肪族一元羧酸,苯甲酸(C7)、水杨酸(C7)等芳香族一元羧酸,草酸(C2)、丁二酸(C4)等脂肪族二元羧酸,对苯二甲酸(C8)、邻苯二甲酸(C8)等芳香族二元羧酸以及其混合物。其中,从进一步改善熔融滞留稳定性的观点来看,优选脂肪族一元羧酸,更优选碳原子数为1以上且18以下的脂肪族一元羧酸,进一步优选为甲酸、乙酸、丙酸和硬脂酸。
从改善熔融滞留稳定性的观点来看,所述碱金属、碱土金属和过渡金属优选为钠、钾、铯、镁、钙、锌中的至少一种,更优选为钠和钙,进一步优选为钙。
本发明中,从改善熔融滞留稳定性的观点来看,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,添加0.010重量份以上且0.110重量份以下的选自有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种成分。从降低本发明所得末端改性聚酯树脂末端羟基含量从而降低介电损耗的观点来看,上述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐的总添加量优选为0.020重量份以上,更优选为0.030重量份以上。从进一步改善熔融滞留稳定性的观点来看,上述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐的总添加量优选为0.080重量份以下,更优选为0.060重量份以下。
本发明中,从改善熔融滞留稳定性的观点来看,由本发明所得的末端改性聚酯树脂中含有来源于上述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的碱金属原子、碱土金属原子和过渡金属原子中的至少一种。上述碱金属原子、碱土金属原子和过渡金属原子在本发明所得的末端改性聚酯树脂中的总含量为0.6mmol/kg以上且6.0mmol/kg以下。从降低本发明所得末端改性聚酯树脂末端羟基含量从而降低介电损耗的观点来看,上述碱金属原子、碱土金属原子和过渡金属原子的总含量优选为1.1mmol/kg以上,更优 选为1.7mmol/kg以上。从进一步改善熔融滞留稳定性的观点来看,上述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐的总添加量优选为4.5mmol/kg以下,更优选为3.4mmol/kg以下。
此外,本发明还涉及包含所述末端改性聚酯树脂的末端改性聚酯树脂组合物。并且,所述末端改性聚酯树脂组合物中,还可以包含填充材料。所述填充材料可以举出但不仅限于以下实例:玻璃纤维、碳纤维、钛钾酸晶须、氧化锌晶须、硼酸铝晶须、氧化铝纤维、碳化硅纤维、陶瓷纤维、石棉纤维、石膏纤维或金属纤维等纤维状无机或有机填充材料;硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶蜡石、膨润土、蒙脱土、石棉、硅酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃微珠、陶瓷微珠、氮化硼、碳化硅或二氧化硅等非纤维状无机填充材料。上述填充材料可以为中空的,另外,上述填充材料也可经异氰酸系化合物、有机硅烷化合物、有机钛酸盐系化合物、有机硼烷化合物或环氧化合物等偶联剂处理。上述蒙脱土也可以是片层间离子通过有机铵盐进行阳离子交换后的有机化蒙脱土。从提高末端改性聚酯树脂组合物的力学性能、降低其成形收缩率的方面考虑,上述填充材料优选为纤维状的无机填充材料,进一步优选为玻璃纤维或碳纤维。纤维状填充材料的断面形状没有特别的限定,可以是圆形、或扁平状。另外,上述填充材料可以单独添加也可以选取两种以上配合添加。
所述末端改性聚酯树脂组合物中,相对于末端改性聚酯树脂100重量份,上述填充材料的混合量优选为0.1重量份以上且150重量份以下。该填充材料混合量的下限值进一步优选为10重量份以上,更进一步优选为30重量份以上。另一方面,该填充材料混合量的上限值优选为100重量份以下,更进一步优选80重量份以下。
本发明的末端改性聚酯树脂组合物中也可以含有稳定剂、成核剂、抗氧化剂、脱模剂、阻燃剂和色母粒等添加剂。
所述稳定剂可例举为磷酸、磷酸三甲酯、磷酸三乙酯、膦酰基乙酸三乙酯、3,9-双(2,6-二叔丁基-4-甲基苯氧基)-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷、四(2,4-二叔丁基-5-甲基苯基)[1,1-联苯基]-4,4'-二基双膦酸酯等。
所述成核剂可以使用无机系结晶成核剂或有机结晶成核剂中的一种以上。所述无机系结晶成核剂,可例举为二氧化硅、氧化铝、氧化锆、氧化钛、硅灰石、高岭土、滑石粉、云母、或碳化硅等。
另外,所述有机结晶成核剂,可例举为脂肪族羧酸酰胺、羧酸金属盐、或山梨醇系衍生物等。所述脂肪族羧酸酰胺中,可以列举出如月桂酸酰胺、棕榈酸酰胺、油酸酰胺、硬脂酸酰胺、芥酸酰胺、山嵛酸酰胺、蓖麻油酸酰胺、或羟基硬脂酸酰胺等的脂肪族单羧酸酰胺类;N-油烯基棕榈酸酰胺、N-油烯基油酸酰胺、N-油烯基硬脂酸酰胺、N-硬脂基油酸酰胺、N-硬脂基硬脂酸酰胺、N-硬脂基芥酸酰胺、N-羟甲基硬脂酸酰胺、或N-羟甲基山嵛酸酰胺等的N-取代脂肪族单羧酸酰胺类;亚甲基双硬脂酸酰胺、乙撑双月桂酸酰胺、亚乙基双癸酸酰胺、亚乙基双油酸酰胺、亚乙基双硬脂酸酰胺、亚乙基双芥酸酰胺、亚乙基双山嵛酸酰胺、亚乙基双异硬脂酸酰胺、亚乙基双羟基硬脂酸酰胺、亚丁基双硬脂酸酰胺、六亚甲基双油酸酰胺、六亚甲基双硬脂酸酰胺、六亚甲基双山萮酸酰胺、六亚甲基双羟基硬脂酸酰胺、间苯二甲基双硬脂酸酰胺、或间苯二甲基二-12-羟基硬脂酸酰胺等的脂肪族双羧酸酰胺类;N,N'-二油烯基癸二酸酰胺、N,N'-二油烯基己二酸酰胺、N,N-二硬脂基己二酸酰胺、N,N'-二硬脂基癸二酸酰胺、N,N'-二硬脂基间苯二甲酸酰胺、或N,N'-二硬脂基对苯二甲酸酰胺等的N-取代脂肪族羧酸二酰胺类;N-丁基-N'-硬脂基脲、N-丙基-N'-硬脂基脲、N-硬脂基-N'-硬脂基脲、N-苯基-N'-硬脂基脲、亚二甲苯基双硬脂基脲、甲苯基双硬脂基脲、六亚甲基双硬脂基脲、二苯甲烷双硬脂基脲、或二苯甲烷双月桂基脲等的N-取代脲类。
作为所述羧酸金属盐,可例举为安息香酸钠、安息香酸钾、安息香酸锂、安息香酸钙、安息香酸镁、安息香酸钡、对苯二甲酸锂、对苯二甲酸钠、对 苯二甲酸钾、草酸钙、月桂酸钠、月桂酸钾、肉豆蔻酸钠、肉豆蔻酸钾、肉豆蔻酸钙、二十八烷基酸钠、二十八烷基酸钙、硬脂酸钠、硬脂酸钾、硬脂酸锂、硬脂酸钙、硬脂酸镁、硬脂酸钡、褐煤酸钠、褐煤酸钙、甲苯酸钠、水杨酸钠、水杨酸钾、水杨酸锌、二苯甲酸铝、二苯甲酸钾、二苯甲酸锂、萘二甲酸钠、环己甲酸钠。
作为所述山梨醇系衍生物,可以列举出如双亚苄基山梨糖醇、双(对甲基亚苄基)山梨糖醇、双(对乙基亚苄基)山梨糖醇、双(对氯亚苄基)山梨糖醇、双(对溴亚苄基)山梨糖醇或由上述山梨糖醇衍生物再经化学改性得到的山梨糖醇衍生物等。
考虑促进末端改性聚酯树脂结晶的效果,成核剂优选二氧化硅、硅灰石、高岭土、滑石粉、云母或脂肪族羧酸酰胺。并且,本发明的末端改性聚酯树脂组合物中,相对于100重量份的末端改性聚酯树脂,所述成核剂的含量优选为0.05重量份以上且5重量份以下。控制在此范围内,可以维持促进结晶效果,得到具有优良韧性的末端改性聚酯树脂组成物。进一步地,所述成核剂的含量的下限值更优选为0.1重量份以上,另外,其上限值更优选为3重量份以下,进一步优选为2重量份以下。
所述抗氧化剂优选为酚类抗氧化剂或硫类抗氧化剂中的至少一种。为了获得更优的耐热性和热稳定性,优选并用酚类抗氧化剂和硫类抗氧化剂。
所述酚类抗氧化剂可以列举出如2,4-二甲基-6-叔丁基苯酚、2,6-二叔丁基苯酚、2,6-二叔丁基对甲酚、2,6-二叔丁基-4-乙基苯酚、4,4'-亚丁基双(6-叔丁基-3-甲基苯酚)、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2'-亚甲基-双(4-乙基-6-叔丁基苯酚)、十八烷基-3-(3',5'-二叔丁基-4'-羟基苯)丙酸酯、季戊四醇四[3-(3,5-二叔丁基-4-羟基苯)]丙酸酯、1,1,3-三(2-甲基-4-羟基-5-二叔丁基苯基)丁烷、三(3,5-二叔丁基-4-羟基苄)异氰脲酸酯、三甘醇-双[3-(3-叔丁基-4-羟基-5-甲基苯)丙酸酯]、1,6-己二醇双[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、2,4-双(正辛基硫代)-6-(4-羟基-3,5-二叔丁基苯胺基)-1,3,5-三嗪、 2,2-硫代二乙烯双[3-(3,5-二叔丁基-4-羟基苯)丙酸酯]、N,N'-六亚甲基双(3,5-二叔丁基-4-羟基氢化肉桂酰胺)、3,5-二叔丁基-4-羟基苄基膦酸二乙酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄)苯、三(3,5-二叔丁基-4-羟基苄基)异氰脲酸酯、2,4-双[(辛基硫代)甲基]邻甲酚、或异辛基-3-(3,5-二叔丁基-4-羟基苯)丙酸酯等。
所述硫类抗氧化剂可以列举出如二月桂基硫代二丙酸酯、二肉豆蔻基硫代二丙酸酯、二硬脂基硫代二丙酸酯、二(十三烷基)硫代二丙酸酯、季戊四烷基(3-月桂基硫代丙酸酯)、或2-巯基苯并咪唑等。
以上所述的抗氧化剂,既可单独使用,同时由于将两种以上的抗氧化剂组合会产生协同效果,也可两种以上并用。
本发明的末端改性聚酯树脂组合物中,相对于末端改性聚酯树脂100重量份,所述抗氧化剂的含量优选为0.01重量份以上且3.00重量份以下。在此范围内,可以维持抗氧化的效果,同时可以抑制熔融加工中气体的产生。进一步地,所述抗氧化剂含量的下限值更优选为0.05重量份以上,进一步优选为0.10重量份以上。另外,其上限值更优选为2.00重量份以下,进一步优选为1.00重量份以下。
所述脱模剂没有特别的限制,凡是用于通常热塑性树脂的脱模剂都可以使用。具体地,可例举为脂肪酸、脂肪酸金属盐、羟基脂肪酸、脂肪酸酯、脂肪族部分皂化酯、链烷烃、低分子量聚烯烃、脂肪酸酰胺、亚烷基双脂肪酸酰胺、脂肪族酮、脂肪酸低级醇酯、脂肪酸多元醇酯、脂肪酸聚二元醇酯、或改性聚硅氧烷等。
所述脂肪酸,优选碳原子数为6以上且40以下的脂肪酸,具体地可例举为油酸、月桂酸、硬脂酸、羟基硬脂酸、二十二烷酸、花生四烯酸、亚油酸、亚麻酸、蓖麻醇酸、棕榈酸、硬脂酸、褐煤酸、或它们的混合物等。
所述脂肪酸金属盐,优选碳原子数为6以上且40以下的脂肪酸碱金属盐或碱土类金属盐,具体地可例举为硬脂酸钙、褐煤酸钠、或褐煤酸钙等。
所述羟基脂肪酸,可例举为1,2-羟基脂肪酸等。
所述脂肪酸酯,可例举为硬脂酸酯、油酸酯、亚油酸酯、亚麻酸酯、己二酸酯、二十二烷酸酯、花生四烯酸酯、褐煤酸酯、异硬脂酸酯、或聚合酸的酯等。
所述脂肪族部分皂化酯,可例举为褐煤酸部分皂化酯等。
所述链烷烃,优选碳原子数为18以上的链烷烃,可例举为液体石蜡、天然石蜡、微晶蜡、或矿脂等。
所述低分子量聚烯烃,优选重均分子量为5000以下的聚烯烃,具体地可例举为聚乙烯蜡、马来酸改性聚乙烯蜡、氧化型聚乙烯蜡、氯化型聚乙烯蜡、或聚丙烯蜡等。
所述脂肪酸酰胺,优选碳原子数为6以上的脂肪酸酰胺,具体地可例举为油酸酰胺、芥酸酰胺、或二十二烷酸酰胺等。
所述亚烷基双脂肪酸酰胺,优选碳原子数为6以上的亚烷基双脂肪酸酰胺,具体地可例举为亚甲基双硬脂酰胺、亚乙基双硬脂酰胺、或N,N-双(2-羟乙基)硬脂酰胺等。
所述脂肪族酮,可例举为高级脂肪族酮等。
所述脂肪酸低级醇酯,优选碳原子数为6以上的脂肪酸低级醇酯,具体地可例举为硬脂酸乙酯、硬脂酸丁酯、二十二烷酸乙酯、或米蜡等。
所述脂肪酸多元醇酯,可例举为甘油单硬脂酸酯、季戊四醇单硬脂酸酯、季戊四醇四硬脂酸酯、季戊四醇己二酸硬脂酸酯、二季戊四醇己二酸硬脂酸酯、或山梨糖醇酐单硬脂酸酯等。
所述脂肪酸聚二元醇酯,可例举为聚乙二醇脂肪酸酯或聚丙二醇脂肪酸酯。
所述改性聚硅氧烷,可例举为甲基苯乙烯基改性聚硅氧烷、聚醚改性聚硅氧烷、高级脂肪酸烷氧基改性聚硅氧烷、含高级脂肪酸的聚硅氧烷、高级脂肪酸酯改性聚硅氧烷、甲基丙烯酸改性聚硅氧烷、或氟改性聚硅氧烷等。
所述阻燃剂可以例举为基于溴的阻燃剂,包括十溴二苯醚、八溴二苯基醚、四溴二苯基醚、四溴邻苯二甲酸酐、六溴环十二烷、双(2,4,6-三溴苯氧基)乙烷、亚乙基双四溴邻苯二甲酰亚胺、六溴苯、1,1-磺酰基[3,5-二溴-4-(2,3-二溴丙氧基)]苯、聚二溴亚苯基氧化物、四溴双酚-S,三(2,3-二溴丙基)异氰脲酸酯、三溴苯酚、三溴苯基烯丙基醚、三溴新戊基醇、溴化聚苯乙烯、溴化聚乙烯、四溴双酚-A、四溴双酚-A衍生物、溴化环氧树脂如四溴双酚-A-环氧化物低聚物或聚合物和溴化苯酚线型酚醛清漆环氧化物、四溴双酚-A-碳酸酯低聚物或聚合物、四溴双酚-A-双(2-羟基二乙基醚)、四溴双酚-A-双(2,3-二溴丙基醚)、四溴双酚-A-双(烯丙基醚)、四溴环辛烷、亚乙基双五溴二苯基、三(三溴新戊基)磷酸酯、聚(五溴苄基聚丙烯酸酯)、八溴三甲基苯基二氢化茚、二溴新戊二醇、五溴苄基聚丙烯酸酯、二溴甲苯基缩水甘油醚、或N,N’-亚乙基-双-四溴对苯二甲酰亚胺等。在本发明中,上述阻燃剂也可以例举为基于氯的阻燃剂,包括氯化石蜡、氯化聚乙烯、全氯环十五烷、或四氯邻苯二甲酸酐等。
本发明的末端改性聚酯树脂或含有本发明的末端改性聚酯树脂的组合物可以通过注塑成型、挤出成型、吹塑成型、真空成型、熔融纺丝、或膜成型等任意的成型方法来成型为所需的形状的成型品。
本发明的由末端改性聚酯树脂或含有本发明的末端改性聚酯树脂的组合物制成的成型品,由于其良好的机械性和耐热性,可以作为机械结构部件、电气部件、电子部件以及汽车部件等使用。由于本发明的成型品具有高频的低介电特性,可以特别用作高频通信传输部件使用。
机械结构部件、电气部件、电子部件以及汽车部件具体可列举为:断路器、电磁开闭器、聚焦盒、回扫变压器、复印件和印刷机等定影器部件、一般家庭电器制品、OA机器等外壳保护部件,可变电容器、各种端子板、转换器、印制电路板、外壳保护部件、端子台、线圈骨架、连接器、继电器、磁盘驱动支架、变压器、开关部件、插座部件、马达部件、插口、插头、聚光 器、各种壳体类、电阻器、金属端子和导线组合的电气电子部件,计算机关联部件、音响部件等声音部件、照明部件、电信设备关联部件、电话设备关联部件、空调部件、VTR、电视等家电部件,复印机部件、传真用部件、光学仪器部件、汽车点火装置部件、汽车用连接器、以及各种汽车用电装部件。
高频通信传输部件可以列举:5G通信产业、无线通信产业、卫星通信、基站、导航、医疗、运输、仓库等各种各样的树脂部件,在移动通信末端、通信基站、毫米波传感器、车载通信机器等中使用的电气电子部件,如印制电路基板、天线基材、连接器、框体、天线外壳、传感器外壳、电力增幅器、电源部件、高频滤波器。
具体实施方式
下面通过具体的实施例来进一步说明本发明,以下实施例在本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例和对比例所得末端改性聚酯树脂的各种特性,均是按以下方法测定的。
(1)官能团(羟基末端、来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团)含量的测定
将各实施例或对比例中制备得到的末端改性聚酯树脂,以30mg/ml的浓度溶于氘代HFIP(六氟异丙醇)中,在扫描次数为64次、弛豫时间7s的条件下采用日本电子JEOL ECX 400P进行 1H-NMR核磁测试。对 1H-NMR谱图中各种结构上与氧相邻的亚甲基(-CH 2-O-)上的氢对应的峰、以及作为主成分的末端改性聚酯主链重复单元的源自对苯二甲酸及/或其能形成酯的衍生物的单体单元上的氢对应的峰进行归属后,对各峰进行积分得到峰面积。以末端改性聚酯主链的源自对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物的单体单元上氢对应的峰面积为基准,再结 合各结构所含有的氢原子数计算得到末端改性聚酯树脂中各种末端基团的含量。
来源于对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物的积分值为Sa,氢原子数为Ha,来源于末端基团的积分值为Sb,氢原子数为Hb,则可根据式(1)求得末端基团的含量。
末端基团含量(mmol/kg)=[(Sb/Sa)×(Ha/Hb)]/结构单元平均分子量×1000000……(1)
上述结构单元平均分子量是指来源于二元羧酸和/或其可形成酯的衍生物的基团与来源于以二元醇的基团的分子量与其共聚比的乘积的合计值。
(2)羧基末端含量
称量各实施例或对比例中制备得到的末端改性聚酯树脂0.4g溶于20mL邻甲酚/三氯甲烷(体积比2/1)的混合溶剂中。以1wt%的溴酚蓝乙醇溶液为指示剂,使用0.02mol/L的氢氧化钾乙醇溶液滴定计算得出树脂中的羧基末端含量。
(3)重均分子量(Mw)
称量各实施例或对比例中制备得到的末端改性聚酯树脂2.5mg溶于3ml含0.0075mol/L的三氟乙酸钠的六氟异丙醇中后,用孔径为0.45μm的过滤器过滤后使用凝胶渗透色谱(GPC)测定数均分子量Mw,测定条件如下:
泵:e-Alliance GPC system(Waters制)
检测器:示差检测器Waters 2414(Waters制)
色谱柱:Shodex HFIP-806M(2根)+HFIP-LG
溶剂:六氟异丙醇(添加0.0075mol/L的三氟乙酸钠)
流速:0.5ml/min
样品注入量:0.1ml
温度:40℃
分子量校正:聚甲基丙烯酸甲酯(PMMA)。
(4)熔融滞留稳定性
称量各实施例或对比例制得的末端改性聚酯树脂10mg,使用热失重分析仪(TGA)进行热处理,处理条件如下:
仪器:SDT Q600
气氛:氮气
熔融滞留条件:使用热失重分析仪的最快升温速度急速升温至260℃使所得末端改性聚酯树脂处于熔融状态后保持10min
待热失重分析仪冷却至室温后取出热处理后的聚酯树脂,按(3)中所述的方法测定热处理前的重均分子量(Mwa)、热处理后的重均分子量(Mwb)。则热处理后的重均分量保持率可根据式(2)求得:
热处理后重均分子量保持率(%)=(Mwb/Mwa)×100……(2)
热处理后重均分子量保持率为60%以上,即认为有高的熔融滞留稳定性,65%以上则有更高的熔融滞留稳定性。
上述热处理后的重均分子量保持率越高,则熔融滞留稳定性越高。
(5)高频介电性能(介质损耗角正切值tanδ)
测试样品:使用Sodick Co.,Ltd制造的注塑机(TR30EHA),在成型温度为260℃、模具温度为80℃的条件下,将成型时的射出时间和保压时间之和设置为3s、冷却时间设置为15s,以上述周期时间进行自动成型,将各实施例或对比例制得的末端改性聚酯树脂注塑成型得到的30mm×30mm×0.5mmt的角板状样品。将制得的角板状样品平行于其注塑成型时的树脂流动方向切割成宽度为1mm的样品(30mm×1mm×0.5mmt)作为介电性能评价的样条。
介质损耗角正切值测试:采用Agilent Technologies.Co.,Ltd./Kanto Electronics Co.,Ltd.的空洞共振器CP521、在频率为5.8GHz条件下测定介质损耗角正切值。介质损耗角正切值在0.0060以下即认为好的高频介电性能,0.0055以下则有更好的高频介电性能。
(6)金属元素分析法
称量各实施例或对比例制得的末端改性聚酯树脂5g,在热台上熔融后,用Xiamen Lith Machine Limited制造的液压机(LITH-SYP-3T)将其压成板状,然后用Xenemetrix制造的X射线荧光光谱仪(X-Calibur)进行测试。
实施例和对比例中所用的原料如下:
对苯二甲酸(TPA):三井化学株式会社制
1,4-丁二醇(BDO):三菱化学株式会社制
钛酸四正丁酯(TBT):梯希爱(上海)化成工业发展有限公司制
单丁基氧化锡(MBO):梯希爱(上海)化成工业发展有限公司制
抗氧剂IR1010:巴斯夫股份公司制
磷酸:梯希爱(上海)化成工业发展有限公司制
一元醇
正丁醇:Sigma-Aldrich制,碳原子数4
苯甲醇:Sigma-Aldrich制,碳原子数7
硬脂醇:梯希爱(上海)化成工业发展有限公司制,碳原子数18
2-癸基-1-十四烷醇:梯希爱(上海)化成工业发展有限公司制,碳原子数24
2-十二烷基-1-十六烷基醇:沙索公司制ISOFOL28,碳原子数28
2-十四烷基-1-十八烷基醇:沙索公司制ISOFOL32,碳原子数32
一元羧酸
丁酸:Sigma-Aldrich制,碳原子数4
苯甲酸:Sigma-Aldrich制,碳原子数7
硬脂酸:Sigma-Aldrich制,碳原子数18
褐煤酸:Sigma-Aldrich制,碳原子数28
金属盐类添加剂
甲酸钙:阿法埃莎(中国)化学有限公司制,碳原子数1
乙酸钙:一水合物:Sigma-Aldrich制,碳原子数2
丙酸钙:Sigma-Aldrich制,碳原子数3
硬脂酸钙:Sigma-Aldrich制,碳原子数18
氯化钙:国药集团化学试剂有限公司制,无机盐,碳原子数0
乙酸钠:国药集团化学试剂有限公司制,碳原子数2
乙酸钾:上海阿拉丁生化科技股份有限公司制,碳原子数2
乙酸锌:上海阿拉丁生化科技股份有限公司制,碳原子数2
制备例1:TBT催化剂溶液配制
将100g的1,4-丁二醇与11.2g的钛酸四正丁酯加入到带有冷凝管的250ml三口烧瓶中,在氮气气氛中,150℃加热3小时。
制备例2:磷酸的BDO溶液配制
将100g的1,4-丁二醇与11.2g的磷酸加入到装有冷凝管的250ml三口烧瓶中充分共混制备。
实施例1
将0.640mol的对苯二甲酸(TPA、106.2g)、0.832mol的1,4-丁二醇(1,4-BDO、75.0g)、锡化合物催化剂MBO(添加量:相对于最终末端改性聚酯树脂质量的0.042wt%)、抗氧化剂IR1010(添加量:相对于最终末端改性聚酯树脂质量的0.019wt%)、0.0064mol一元醇类封端剂2-癸基-1-十四烷醇(碳原子数24,添加量:2.270g,相对于上述添加的对苯二甲酸100mol%,其添加量为1.0mol%)加入到装有精馏塔的250ml四口烧瓶反应器内。通入氮气开始搅拌,升温至100℃后添加制备例1的TBT催化剂溶液(溶液中的TBT的添加量:相对于最终末端改性聚酯树脂质量的0.045wt%),反应5min内维持温度为100℃减压至60kPa下开始酯化反应,5min后开始缓慢升高温度。进一步反应105min后升温至205℃时,开始缓慢降低体系压力并进一步 提高反应温度,再进一步反应90min后最终体系压力到达33.3kPa、最终温度达到238℃的条件下进行酯化反应,当更进一步反应30min即总反应时间为230min反应液体变得透明时,终止反应倒出低聚物熔体。
在缩聚专用反应管中添加所得到预聚物、抗氧化剂IR1010(添加量:相对于最终末端改性聚酯树脂质量的0.031wt%)、有机羧酸碱土金属盐乙酸钙一水合物(相对于最终末端改性聚酯树脂质量的0.011wt%)。随后将反应管内气氛置换为氮气后将反应管放入255℃的油浴。等待预聚物完全熔融后使用针筒添加钛化合物TBT催化剂溶液(溶液中的TBT的添加量:相对于最终末端改性聚酯树脂质量的0.050wt%)以及制备例2的磷酸溶液(溶液中的磷酸的添加量:相对于最终末端改性聚酯树脂质量的0.017wt%)。随后缓慢降低体系压力在反应45min后体系压力降至200Pa以下,随后在温度255℃、压力200Pa以下的条件下进行缩聚反应,总反应时间反应210min时停止缩聚反应,吐出得到末端改性聚酯树脂。
实施例2
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐乙酸钙一水合物的添加量为相对于最终末端改性聚酯树脂质量的0.030wt%。
实施例3
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐乙酸钙一水合物的添加量为相对于最终末端改性聚酯树脂质量的0.060wt%。
实施例4
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐乙酸钙一水合物的添加量为相对于最终末端改性聚酯树脂质量的0.106wt%。
对比例1
重复实施例1,不同的是缩聚反应中不添加有机羧酸碱土金属盐乙酸钙一水合物。
对比例2、3
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐乙酸钙一水合物的添加量分别为相对于最终末端改性聚酯树脂质量的0.006wt%和0.120wt%。
实施例5
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐是甲酸钙,其添加量为相对于最终末端改性聚酯树脂质量的0.022wt%,其中所含有的钙原子的摩尔数与实施例2中的钙原子摩尔数相同。
实施例6
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐是丙酸钙,其添加量为相对于最终末端改性聚酯树脂质量的0.032wt%,其中所含有的钙原子的摩尔数与实施例2中的钙原子摩尔数相同。
实施例7
重复实施例1,不同的是缩聚反应中添加的有机羧酸碱土金属盐是硬脂酸钙,其添加量为相对于最终末端改性聚酯树脂质量的0.103wt%,其中所含有的钙原子的摩尔数与实施例2中的钙原子摩尔数相同。
实施例8
重复实施例1,不同的是缩聚反应中添加的是有机羧酸碱金属盐的乙酸钠,其添加量为相对于最终末端改性聚酯树脂质量的0.028wt%,其中所含有的钠原子的摩尔数为实施例2中的钙原子摩尔数的2倍,即本实施例中钠离子所带电荷总数与实施例2中钙离子所带电荷总数相同。
实施例9
重复实施例1,不同的是缩聚反应中添加的是有机羧酸碱金属盐的乙酸钾,其添加量为相对于最终末端改性聚酯树脂质量的0.034wt%,其中所含有的钾原子的摩尔数为实施例2中的钙原子摩尔数的2倍,即本实施例中钾离子所带电荷总数与实施例2中钙离子所带电荷总数相同。
实施例10
重复实施例1,不同的是缩聚反应中添加的是有机羧酸过渡金属盐的乙酸锌,其添加量为相对于最终末端改性聚酯树脂质量的0.031wt%,其中所含有的锌原子的摩尔数与实施例2中的钙原子摩尔数相同,即本实施例中锌离子所带电荷总数与实施例2中钙离子所带电荷总数相同。
对比例4
重复实施例1,不同的是缩聚反应中添加的是无机盐氯化钙,其添加量为相对于最终末端改性聚酯树脂质量的0.019wt%,其中所含有的钙原子的摩尔数与实施例2中的钙原子摩尔数相同。
实施例11
重复实施例2,不同的是酯化反应中钛化合物TBT的添加量为相对于最终末端改性聚酯树脂质量的0.040wt%,缩聚反应中不添加钛化合物TBT。
实施例12-14
重复实施例2,不同的是缩聚反应中钛化合物TBT的添加量分别为相对于最终末端改性聚酯树脂质量的0.030wt%、0.075wt%、0.108wt%。
对比例5
重复实施例2,不同的是酯化反应中钛化合物TBT的添加量为相对于最终末端改性聚酯树脂质量的0.030wt%,缩聚反应中不添加钛化合物TBT。
对比例6
重复实施例2,不同的是缩聚反应中钛化合物TBT的添加量为相对于最终末端改性聚酯树脂质量的0.120wt%。
实施例15、16
重复实施例3,不同的是缩聚反应中钛化合物TBT的添加量分别为相对于最终末端改性聚酯树脂质量的0.030wt%和0.075wt%。
对比例7
重复实施例3,不同的是酯化反应中钛化合物TBT的添加量为相对于最终末端改性聚酯树脂质量的0.030wt%,缩聚反应中不添加钛化合物TBT。
对比例8
重复实施例3,不同的是缩聚反应中钛化合物TBT的添加量为相对于最终末端改性聚酯树脂质量的0.130wt%。
实施例17-20
重复实施例2,不同的是酯化反应中相对于所添加的对苯二甲酸100mol%,一元醇类封端剂2-癸基-1-十四烷醇(碳原子数24)的添加量分别为0.3mol%、0.5mol%、0.8mol%、1.0mol%、2.0mol%。
实施例21
重复实施例2,不同的是酯化反应中添加的一元醇类封端剂为苯甲醇(碳原子数7),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例22
重复实施例2,不同的是酯化反应中添加的一元醇类封端剂为硬脂醇(碳原子数18),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例23
重复实施例2,不同的是酯化反应中添加的一元醇类封端剂为2-十二烷基-1-十六烷醇(碳原子数28),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例24
重复实施例2,不同的是酯化反应中添加的一元醇类封端剂为2-十四烷基-1-十八烷醇(碳原子数32),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例25
重复实施例2,不同的是酯化反应中添加的是一元羧酸类封端剂苯甲酸(碳原子数7),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例26
重复实施例2,不同的是酯化反应中添加的是一元羧酸类封端剂硬脂酸 (碳原子数18),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
实施例27
重复实施例2,不同的是酯化反应中添加的是一元羧酸类封端剂褐煤酸(碳原子数28),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。
对比例9
重复实施例2,不同的是酯化反应中添加一元醇类封端剂为正丁醇(碳原子数4),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。缩聚反应的反应时间为150min。
对比例10
重复实施例2,不同的是酯化反应中添加的是一元羧酸类封端剂丁酸(碳原子数4),相对于所添加的对苯二甲酸100mol%其添加量为1.0mol%。缩聚反应的反应时间为150min。
实施例28
重复实施例3,不同的是酯化反应中不添加锡化合物MBO。
实施例29-33
重复实施例3,不同的是酯化反应中添加的锡化合物MBO的添加量分别为相对于最终末端改性聚酯树脂质量的0.021wt%、0.030wt%、0.042wt%、0.050wt%、0.063wt%、0.070wt%。
实施例34
重复实施例2,不同的是酯化反应中添加的1,4-丁二醇的添加量为0.0704mol(1,4-丁二醇和对苯二甲酸的摩尔比为1.1)。
实施例35
重复实施例2,不同的是酯化反应中添加的1,4-丁二醇的添加量为0.0960mol(1,4-丁二醇和对苯二甲酸的摩尔比为1.5),缩聚反应时间为200min。
表1
Figure PCTCN2022103977-appb-000001
表2
Figure PCTCN2022103977-appb-000002
表3
Figure PCTCN2022103977-appb-000003
表4
Figure PCTCN2022103977-appb-000004
表5
Figure PCTCN2022103977-appb-000005
实施例1-4和对比例1-3的比较说明,在末端改性聚酯树脂的合成时加入特定量的有机羧酸的碱土金属盐后所得到的末端改性聚酯树脂相对于未添加上述特定量的有机羧酸碱土金属盐所得的末端改性聚酯树脂,其羧基末端含量并未有大幅度的下降,却具有更为优异的熔融滞留稳定性,并且具有优异的介电性能。有机羧酸的碱土金属盐的添加量过少时,经过热处理后末端改性聚酯树脂的分子量保持率低,即其熔融滞留稳定性差。有机羧酸的碱土金属盐的添加量过多时,末端改性聚酯树脂的分子量保持率低,其熔融滞留稳定性变差。
实施例5-10和对比例4的比较说明,在末端改性聚酯树脂的合成时加入有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的至少一种,所得到的末端改性聚酯树脂具有优异的熔融滞留稳定性和介电性能。若添加的是氯化金属盐则无法获得改善热滞留稳定性的效果。
实施例2、实施例11-14和对比例5-6的比较以及实施例3、实施例15-16和对比例7-8的比较说明,在末端改性聚酯树脂合成时加入特定量的钛化合物时,所得的末端改性聚酯树脂具有优异的熔融滞留稳定性和介电性能。钛化合物的添加量过少时,所得末端改性聚酯树脂的羟基末端含量增多,造成其高频下的介质损耗角正切值过高。钛化合物添加量过多时,会促进热分解反应的进行从而造成熔融滞留稳定性的下降。
实施例2、实施例17-27和对比例9-10的对比说明,在聚酯树脂合成时加入碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的封端剂来对所得聚酯树脂进行末端改性的情况下,所得的末端改性聚酯树脂的羟基末端含量低,具有低介质损耗角正切值。
实施例2、实施例21-27的对比说明,使用碳原子数为16以上36以下的一元醇和/或碳原子数为16以上36以下的一元羧酸对聚酯树脂进行末端改性的情况下,所得的末端改性聚酯树脂具有更低介质损耗角正切值。
实施例2和实施例17-20的对比说明,在聚酯树脂合成时加入特定量的碳 原子数为5以上且50以下的一元醇封端剂所得到的末端改性聚酯树脂具有优异的介电性能。碳原子数为5以上且50以下的一元醇封端剂的添加量少时,所得末端改性聚酯树脂的羟基末端含量增高,介质损耗角正切值的降低量变少,介电性能的改善效果降低。
实施例3和实施例28-33的对比说明,在末端改性聚酯树脂的合成时加入特定量的锡化合物所得到的末端改性聚酯树脂具有优异的熔融滞留稳定性和介电性能。锡化合物的添加量少时,缩聚速率降低导致所得末端改性聚酯的分子量降低,所得末端改性聚酯的羟基末端含量增大,介电性能的改善效果降低。锡化合物的添加量多时,促进热分解反应的进行从而造成热处理后的分子量保持率降低,熔融滞留稳定性的改善效果降低。
实施例2和实施例34-35的对比说明,在一定的二元醇与二元羧酸的摩尔比的情况下制得的末端改性聚酯树脂具有优异的熔融滞留稳定性和介电性能。二元醇与二元羧酸的摩尔比降低时,缩聚变困难,所得的末端改性聚酯树脂的分子量降低,羧基末端含量增大,造成其熔融滞留稳定的改善效果降低。二元醇与二元羧酸的摩尔比增大时,所得末端改性聚酯树脂的羟基末端含量增大,介质损耗角正切值增大,造成其介电性能改善效果降低。

Claims (29)

  1. 一种末端改性聚酯树脂的制造方法,其中,由以对苯二甲酸和/或其可形成酯的衍生物为主要成分的二元羧酸和/或其可形成酯的衍生物、以1,4-丁二醇为主要成分的二元醇、以及包含碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的单体经过酯化反应或酯交换反应,随后进行缩聚反应从而得到所述末端改性聚酯树脂;
    所述制造方法的特征在于,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,添加0.040重量份以上且0.155重量份以下的钛化合物,并添加0.010重量份以上且0.110重量份以下的选自有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐中的至少一种成分。
  2. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,还添加大于0重量份且为0.065重量份以下的锡化合物。
  3. 根据权利要求2所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述锡化合物添加量为0.030重量份以上且0.050重量份以下。
  4. 根据权利要求2所述的末端改性聚酯树脂的制备方法,其中,所述锡化合物为二丁基氧化锡、甲基苯基氧化锡、四乙基锡、六乙基二氧化锡、六环己基二氧化锡、双十二烷基氧化锡、单丁基氧化锡、三乙基氢氧化锡、三苯基氢氧化锡、乙酸三异丁基锡、二乙酸二丁基锡、二月桂酸二苯基锡、丁基三氯化锡、二丁基二氯化锡、三丁基氯化锡、二丁基硫化锡、丁基羟基氧化锡、甲基锡酸、乙基锡酸、丁基锡酸中的至少一种。
  5. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述二元醇中1,4-丁二醇的含量为80mol%以上。
  6. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述以1,4-丁二醇为主要成分的二元醇与所述二元羧酸和/或其可形成酯的衍生物的 摩尔比为1.1以上且1.5以下。
  7. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,所述碳原子数为5以上且50以下的一元醇以及所述碳原子数为5以上且50以下的一元羧酸的总添加量为0.5mol%以上且3.0mol%以下。
  8. 根据权利要求7所述的末端改性聚酯树脂的制备方法,其中,相对于总量为100mol%的所述二元羧酸和/或其可形成酯的衍生物,所述碳原子数为5以上且50以下的一元醇以及碳原子数为5以上且50以下的一元羧酸的总添加量为0.8mol%以上且2.0mol%以下。
  9. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述一元醇和所述一元羧酸的碳原子数分别为16以上且36以下。
  10. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述钛化合物的添加量为0.075重量份以上且0.120重量份以下。
  11. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述钛化合物为钛酸四甲酯、钛酸四正丙酯、钛酸四正丁酯、钛酸四异丙酯、钛酸四异丁酯、钛酸四叔丁酯、钛酸环己酯、钛酸四苯酯、钛酸四苄酯、钛酸四甲基苯酯中的至少一种。
  12. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,在所述缩聚反应终止前的任意阶段,相对于100重量份所得到的末端改性聚酯树脂,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐、过渡金属盐的总添加量为0.030重量份以上且0.060重量份以下。
  13. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的有机羧酸为碳原子数为1以上且18以下的脂肪族一元羧酸中的至少一种。
  14. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述有 机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的有机羧酸为甲酸、乙酸、丙酸、硬脂酸中的至少一种。
  15. 根据权利要求1所述的末端改性聚酯树脂的制备方法,其中,所述有机羧酸和/或碳酸的碱金属盐、碱土金属盐和过渡金属盐中的碱金属、碱土金属和过渡金属为钠、钾、铯、镁、钙、锌中的至少一种。
  16. 一种末端改性聚酯树脂,其主链结构的45mol%以上是聚对苯二甲酸丁二醇酯,且其包含来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团;
    所述末端改性聚酯树脂的特征在于,所述聚酯树脂中含有钛原子和选自碱金属原子、碱土金属原子和过渡金属原子中的至少一者,所述钛原子的含量、以及所述碱金属原子、碱土金属原子和过渡金属原子的总含量满足:
    1.2mmol/kg≤钛原子含量≤4.5mmol/kg
    0.6mmol/kg≤碱金属原子、碱土金属原子和过渡金属原子的总含量≤6.0mmol/kg。
  17. 根据权利要求16所述的末端改性聚酯树脂,其中,所述聚酯树脂中进一步含有锡原子,所述锡原子的含量满足:
    0mmol/kg<锡原子含量≤3.0mmol/kg。
  18. 根据权利要求17所述的末端改性聚酯树脂,其中,所述锡原子的含量满足:
    1.4mmol/kg≤锡原子含量≤2.4mmol/kg。
  19. 根据权利要求16所述的末端改性聚酯树脂,其中,所述来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团的总含量为16mmol/kg以上且136mmol/kg以下。
  20. 根据权利要求19所述的末端改性聚酯树脂,其中,所述来源于碳原子数为5以上且50以下的一元醇和/或碳原子数为5以上且50以下的一元羧酸的末端基团的总含量为25mmol/kg以上且91mmol/kg以下。
  21. 根据权利要求16所述的末端改性聚酯树脂,其中,来源于碳原子数为5以上且50以下的一元醇的末端基团和来源于碳原子数为5以上且50以下的一元羧酸的末端基团的碳原子数分别为16以上且36以下。
  22. 根据权利要求16所述的末端改性聚酯树脂,其中,所述钛原子的含量满足:
    2.2mmol/kg≤钛原子含量≤3.5mmol/kg。
  23. 根据权利要求16所述的末端改性聚酯树脂,其中,所述碱金属原子、碱土金属原子和过渡金属原子的总含量满足:
    1.7mmol/kg≤碱金属原子、碱土金属原子和过渡金属原子的总含量≤3.4mmol/kg。
  24. 根据权利要求16所述的末端改性聚酯树脂,其中,所述碱金属、碱土金属和过渡金属为钠、钾、铯、镁、钙、锌中的至少一种。
  25. 根据权利要求16所述的末端改性聚酯树脂,其中,以六氟异丙醇为溶剂,通过凝胶渗透色谱所测得的所述末端改性聚酯树脂的重均分子量为8,000以上且25,000以下。
  26. 根据权利要求16所述的末端改性聚酯树脂,其在23℃下通过圆柱形谐振腔微扰法所测得的5.8GHz下的介质损耗角正切值为0.0060以下。
  27. 根据权利要求16所述的末端改性聚酯树脂,其在氮气气氛、260℃熔融状态下处理10分钟后的重均分子量Mwb与处理前的重均分子量Mwa的比Mwb/Mwa为0.60以上。
  28. 一种末端改性聚酯树脂组合物,其包含权利要求16-27中任意一项所述的末端改性聚酯树脂。
  29. 一种成型品,其使用了权利要求16-27中任意一项所述的末端改性聚酯树脂或权利要求28中所述的末端改性聚酯树脂组合物。
PCT/CN2022/103977 2021-07-05 2022-07-05 末端改性聚酯树脂、其组合物、成型品和制备方法 WO2023280172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280005903.1A CN116194510A (zh) 2021-07-05 2022-07-05 末端改性聚酯树脂、其组合物、成型品和制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110758235 2021-07-05
CN202110758235.7 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023280172A1 true WO2023280172A1 (zh) 2023-01-12

Family

ID=84801293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103977 WO2023280172A1 (zh) 2021-07-05 2022-07-05 末端改性聚酯树脂、其组合物、成型品和制备方法

Country Status (2)

Country Link
CN (1) CN116194510A (zh)
WO (1) WO2023280172A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004173B (zh) * 2023-08-30 2024-03-19 浙江万赛汽车零部件股份有限公司 一种改性酚醛树脂刹车片中的生产工艺

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067662A (zh) * 1991-06-12 1993-01-06 韩国科学技术研究院 聚对苯二甲酸丁二酯基聚合物的制备方法
EP0683201A1 (en) * 1992-12-03 1995-11-22 Polyplastics Co. Ltd. Process for the preparation of modified polybutylene terephthalate resin
JP2001114881A (ja) * 1999-10-15 2001-04-24 Toray Ind Inc ポリエステルの製造法およびポリエステル組成物
JP2002284870A (ja) * 2001-03-27 2002-10-03 Toray Ind Inc ポリブチレンテレフタレートの製造法
CN1472234A (zh) * 2002-07-31 2004-02-04 通用电气公司 结晶聚酯树脂及其制备方法
JP2005029581A (ja) * 2002-05-17 2005-02-03 Mitsubishi Chemicals Corp ポリブチレンテレフタレート樹脂
CN1753929A (zh) * 2003-02-28 2006-03-29 三菱化学株式会社 聚对苯二甲酸丁二酯及其组合物
CN1753930A (zh) * 2002-12-27 2006-03-29 三菱化学株式会社 聚对苯二甲酸丁二酯及其制造方法以及其组合物和膜
CN104059341A (zh) * 2014-06-24 2014-09-24 新疆康润洁环保科技有限公司 一种纳米银聚酯生物降解保鲜膜及其制备和应用
CN104540873A (zh) * 2012-06-05 2015-04-22 三菱化学株式会社 聚对苯二甲酸丁二酯的制造方法
CN109929096A (zh) * 2019-03-05 2019-06-25 腾龙特种树脂(厦门)有限公司 一种耐高温改性共聚酯
TW202112885A (zh) * 2019-07-31 2021-04-01 日商東麗股份有限公司 熱可塑性聚酯樹脂、熱可塑性聚酯樹脂組成物及成形品
CN112851919A (zh) * 2019-11-12 2021-05-28 中国科学院化学研究所 一种1,4;3,6-二缩水己六醇改性pet聚酯及其半连续制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067662A (zh) * 1991-06-12 1993-01-06 韩国科学技术研究院 聚对苯二甲酸丁二酯基聚合物的制备方法
EP0683201A1 (en) * 1992-12-03 1995-11-22 Polyplastics Co. Ltd. Process for the preparation of modified polybutylene terephthalate resin
JP2001114881A (ja) * 1999-10-15 2001-04-24 Toray Ind Inc ポリエステルの製造法およびポリエステル組成物
JP2002284870A (ja) * 2001-03-27 2002-10-03 Toray Ind Inc ポリブチレンテレフタレートの製造法
JP2005029581A (ja) * 2002-05-17 2005-02-03 Mitsubishi Chemicals Corp ポリブチレンテレフタレート樹脂
CN1472234A (zh) * 2002-07-31 2004-02-04 通用电气公司 结晶聚酯树脂及其制备方法
CN1753930A (zh) * 2002-12-27 2006-03-29 三菱化学株式会社 聚对苯二甲酸丁二酯及其制造方法以及其组合物和膜
CN1753929A (zh) * 2003-02-28 2006-03-29 三菱化学株式会社 聚对苯二甲酸丁二酯及其组合物
CN104540873A (zh) * 2012-06-05 2015-04-22 三菱化学株式会社 聚对苯二甲酸丁二酯的制造方法
CN104059341A (zh) * 2014-06-24 2014-09-24 新疆康润洁环保科技有限公司 一种纳米银聚酯生物降解保鲜膜及其制备和应用
CN109929096A (zh) * 2019-03-05 2019-06-25 腾龙特种树脂(厦门)有限公司 一种耐高温改性共聚酯
TW202112885A (zh) * 2019-07-31 2021-04-01 日商東麗股份有限公司 熱可塑性聚酯樹脂、熱可塑性聚酯樹脂組成物及成形品
CN112851919A (zh) * 2019-11-12 2021-05-28 中国科学院化学研究所 一种1,4;3,6-二缩水己六醇改性pet聚酯及其半连续制备方法

Also Published As

Publication number Publication date
CN116194510A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP5928655B2 (ja) ポリエステル樹脂
JP6115038B2 (ja) 熱可塑性ポリエステル樹脂組成物およびそれからなる成形体
KR20070090031A (ko) 폴리(트리메틸렌 테레프탈레이트) 조성물 및 그로부터제조된 성형품
TWI610983B (zh) 增進聚(對苯二甲酸1,4-環己二甲酯)顏色的方法與由此得的聚(對苯二甲酸1,4-環己二甲酯)
WO2023280172A1 (zh) 末端改性聚酯树脂、其组合物、成型品和制备方法
WO2014204296A1 (en) Semi-crystalline polyester
TWI589639B (zh) 具有增進顏色的聚(對苯二甲酸1,4-環己二甲酯樹脂)的方法與以此方法製備的聚(對苯二甲酸1,4-環己二甲酯樹脂)
TWI696645B (zh) 末端改質聚對苯二甲酸丁二酯樹脂、含有其之熱可塑性樹脂組成物及成形品
WO2016064241A1 (ko) 결정화 속도가 향상된 폴리사이클로헥실렌디메틸렌테레프탈레이트 수지 및 이의 제조방법
TW202128825A (zh) 聚酯樹脂、聚酯樹脂組成物及其成型品
CN107955141B (zh) 聚对苯二甲酸丙二醇酯组合物的制备方法
JP2010070613A (ja) ポリエーテルエステルブロック共重合体組成物及びその医療用成形体
WO2021129393A1 (zh) 聚酯树脂、聚酯树脂组合物及其成型品
JP2011046771A (ja) ポリエステル樹脂組成物およびその製造方法ならびに成形体
KR20070012469A (ko) 폴리에스테르 수지 및 그의 제조 방법
JP2008013664A (ja) 共重合ポリエステルおよびその成形体
JP5940919B2 (ja) ポリエステルおよびその製造方法
JP5731319B2 (ja) 耐加水分解性ポリエチレンテレフタレート組成物の製造方法およびそれによって得られた耐加水分解性ポリエチレンテレフタレート組成物
JP5729220B2 (ja) ポリエステルの製造方法
JP2011231157A (ja) 高熱伝導性熱可塑性樹脂
JP3044747B2 (ja) ポリエステル重合体の製造方法
JP2022150406A (ja) ポリエステルおよび、その製造方法
JP2013166816A (ja) 良流動性ポリエステル樹脂及びその製造方法
JP2013203981A (ja) ポリエステル組成物及びその製造方法
JP2008050396A (ja) 共重合ポリエステルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE