WO2013183274A1 - 3ピース缶体およびその製造方法 - Google Patents
3ピース缶体およびその製造方法 Download PDFInfo
- Publication number
- WO2013183274A1 WO2013183274A1 PCT/JP2013/003481 JP2013003481W WO2013183274A1 WO 2013183274 A1 WO2013183274 A1 WO 2013183274A1 JP 2013003481 W JP2013003481 W JP 2013003481W WO 2013183274 A1 WO2013183274 A1 WO 2013183274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- strength
- piece
- roundness
- steel plate
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D7/00—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
- B65D7/42—Details of metal walls
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D7/00—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
- B65D7/02—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape
- B65D7/04—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape of curved cross-section, e.g. cans of circular or elliptical cross-section
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Definitions
- the present invention relates to a high-strength three-piece can and a manufacturing method thereof.
- Steel plates for cans are becoming thinner due to cost reduction (weight reduction) and environmental protection. Further, a steel plate as a can-making material is required to have a strength corresponding to the plate thickness, and a yield strength of about 440 MPa or more is required to ensure the strength of the can by reducing the thickness. There is concern about a reduction in can strength accompanying such a reduction in plate thickness, and some research and development have been conducted on countermeasures for it. In order to increase the strength of the steel sheet, 0.08% by mass or more of C is added to ensure the strength of the steel sheet, or after cold rolling and annealing, the second cold rolling is performed, and the steel sheet is formed by work hardening. There was one with increased strength (DR steel plate (double reduced steel sheet)).
- the body of a three-piece beverage can comprising three members with a lid and bottom attached to the can body is subjected to flange processing at both ends in order to tighten the lid and bottom after being formed into a cylindrical shape.
- about 12% of total elongation is required at the end of the can body.
- Conventionally used DR steel sheets can be increased in strength by work hardening. However, at the same time, there is a problem that the total elongation is lowered by work hardening and the workability is poor.
- the steel sheet is shipped as a steel sheet for cans through a surface treatment process, it is further welded with a welding machine after being subjected to painting, slitting process, and processing by roll foam. After that, it is heated by repair painting of the welded part, and becomes a product through neck / flange processing, bottom cover attachment, inner surface painting and painting baking process. Further, after the contents are filled and the upper lid is attached, the paste is subjected to heat sterilization by retort processing. When this retort sterilization is performed, it is necessary to maintain the strength of the can that resists the external pressure caused by the retort steam against the negative pressure inside.
- the strength of the can body is lower than the external pressure, there is a problem that a dent is generated in the can surface portion.
- the material for cans has been thinned in order to realize environmentally friendly can weight reduction, and high strength materials such as DR materials have been used to maintain the strength of the can body.
- high strength materials such as DR materials have been used to maintain the strength of the can body.
- the use of a thin, high-strength material results in a decrease in shape freezing property, and there are cases in which the shape does not become cylindrical after roll forming.
- Patent Document 1 contains C: 0.01 to 0.10 wt%, Mn: 0.1 to 1.0 wt%, and has a Young's modulus E of 170 GPa or less.
- a steel plate for cans that is less likely to change its degree and has excellent shape maintainability and a technique for manufacturing the same are disclosed.
- the steel sheet described in Patent Document 1 In order to reduce the Young's modulus, the steel sheet described in Patent Document 1 needs to be rolled below the transformation point in hot rolling finish rolling, and the rolling load increases, making it difficult to manufacture. In addition, the uniformity of the material in the width direction is significantly reduced.
- the steel sheet described in Patent Document 2 in order to increase the strength, it is necessary to perform secondary cold rolling at a high pressure reduction rate after primary cold rolling and annealing, and an increase in cost is inevitable. Further, in the DR steel sheet, the total elongation is reduced by performing secondary cold rolling after annealing, and it is not possible to ensure a total elongation of 12% or more in all the portions in the width direction and the longitudinal direction of the coil.
- the present invention has been made in view of such circumstances, and a steel plate having a yield strength of 440 MPa or more and a total elongation of 12% or more, which is suitable as a three-piece can body material, has a roundness of a can body after can molding. It aims at providing the 3 piece can body excellent in the workability for making it a cylindrical shape close
- the inventors have intensively studied to solve the above problems and have obtained the following knowledge.
- the strength can be increased by strain aging hardening by undergoing the baking treatment in the weld repair coating and the can inner surface coating.
- the present invention has been made based on the above findings, and the gist thereof is as follows.
- C 0.020% to 0.100%
- Si 0.10% or less
- Mn 0.10% to 0.80%
- P 0.001% to 0.000. 100% or less
- S 0.001% to 0.020%
- Al 0.005% to 0.100%
- N 0.0130% to 0.0200%
- the balance being Fe and
- a three-piece can body having a can body portion formed of a steel plate made of inevitable impurities, having a yield strength of 440 MPa or more and a total elongation of 12% or more so that the roundness of the can body is 0.34 mm or less.
- a three-piece can body excellent in workability and a method for producing the same can be provided.
- the three-piece can body according to the present invention is a can obtained by forming a steel plate having a predetermined component, a yield strength of 440 MPa or more, and a total elongation of 12% or more so that the roundness of the can body is 0.34 mm or less. It has the trunk
- the steel plate for cans of the present invention high strength is ensured by increasing the N content, while high strength is exhibited by increasing the C content.
- the C content is less than 0.020%, the yield strength 440 MPa necessary for obtaining a remarkable economic effect due to the thinning of the steel sheet cannot be obtained. Therefore, the lower limit of the C amount is 0.020%.
- the C content exceeds 0.100%, the C content becomes a subperitectic region and becomes excessively hard, the hot ductility at the time of casting is reduced, slab cracking is likely to occur, and workability is ensured. It becomes difficult to manufacture a thin steel plate as it is. Therefore, the upper limit of the C amount is 0.100%. Preferably, it is 0.020% or more and 0.080% or less.
- Si 0.10% or less If the amount of Si exceeds 0.10%, problems such as deterioration of surface treatment properties and deterioration of corrosion resistance are caused, so the upper limit is made 0.10%. On the other hand, if it is less than 0.003%, the refining cost becomes excessive, so the lower limit is preferably 0.003%.
- Mn 0.10% or more and 0.80% or less Mn is an element necessary for securing a desirable material because it has a function of preventing red heat embrittlement during hot rolling and making crystal grains finer. . Furthermore, in order to satisfy the can strength with the thinned material, it is necessary to increase the strength of the material. In order to cope with this increase in strength, the lower limit of the amount of Mn is 0.10%. On the other hand, if Mn is added in a large amount, the corrosion resistance deteriorates and the steel sheet becomes excessively hardened, so the upper limit is made 0.80%.
- P 0.001% or more and 0.100% or less P is a harmful element that hardens steel and deteriorates workability and at the same time deteriorates corrosion resistance. Therefore, the upper limit is made 0.100%. On the other hand, in order to make P less than 0.001%, the dephosphorization cost becomes excessive. Therefore, the lower limit is made 0.001%.
- S 0.001% or more and 0.020% or less S exists as an inclusion in steel, and is a harmful element that causes reduction in ductility and deterioration in corrosion resistance. Therefore, the upper limit is made 0.020%. On the other hand, desulfurization cost becomes excessive to make S less than 0.001%. Therefore, the lower limit is made 0.001%.
- Al 0.005% or more and 0.100% or less
- Al is an element necessary as a deoxidizer during steelmaking.
- the addition amount is small, deoxidation becomes insufficient, inclusions increase, and workability deteriorates. Therefore, if the lower limit is 0.005%, sufficient deoxidation is performed.
- the content exceeds 0.100%, the frequency of occurrence of surface defects due to alumina clusters and the like increases. Therefore, the upper limit of the Al amount is 0.100%.
- the upper limit is 0.0200%.
- the lower limit of the N amount is 0.0130%.
- it is 0.0150% or more and 0.0180% or less.
- the balance is Fe and inevitable impurities.
- Yield strength is 440 MPa or more. If the yield strength is less than 440 MPa, the steel plate cannot be made thin enough to obtain a remarkable economic effect in order to secure the strength of the steel plate as a can-making material. Therefore, the yield strength is set to 440 MPa or more.
- the total elongation is 12% or more. If the total elongation is less than 12%, cracking occurs when the three-piece can is flanged. Even when applied to EOE (can lid), cracks occur during rivet processing. Therefore, the total elongation is 12% or more.
- the tensile strength and the total elongation can be measured by a metal material tensile test method shown in “JIS Z 2241”.
- the roundness of the can is 0.34 mm or less.
- the strength of the can body can be set to 0.147 MPa or more where the can body is not crushed by the external pressure after completion of the retort sterilization.
- the roundness of the can body is (1) control of the shape by changing the stress at the time of forming the roll form in can body processing, and control of the springback amount after can body processing by changing the N amount, And (2) It is controlled by adjusting the clearance between the gate roller that keeps the shape of the can at the time of welding and sends out the can and the can body.
- the roundness of the can body in the present invention is such that when the circular shape (can body) is sandwiched between two concentric geometric circles as shown in “JIS B 0621”, the interval between the concentric two circles is It can be determined by the difference between the radii of the two circles in the case of the minimum, and the roundness in the circumferential direction of the can body (cross section of the can body) is taken as the roundness of the can body.
- the roundness of the can body can be measured by the roundness measurement method shown in “JIS B 0621” and “JIS B 0021” using a roundness measuring device defined in “JIS B 7451”. it can.
- the roundness was measured using a can body with an upper lid and a bottom lid, and the center of the can body in the height direction was measured in the circumferential direction. Further, the spring back test method was performed by the method shown in “JIS G 3303”, and the spring back angle ⁇ (°) was used as an evaluation index.
- the strength can be increased by using high-N steel and further using strain age hardening by C and N. That is, when C and N are used as component ranges of the present invention to increase the amount of dissolved C and N, and when strain is introduced by temper rolling or the like, dislocation occurs and a stress field is generated.
- the strength can be increased by gathering around the dislocations and fixing the dislocations.
- the steel plate used for the three-piece can of the present invention is a steel slab having the above composition manufactured by continuous casting. After this steel slab is hot-rolled, it is wound at a temperature of less than 620 ° C., and then primary cold-rolled at a primary cold rolling rate of over 85%. After annealing at a soaking temperature of 620 ° C. or higher and 780 ° C. or lower, cooling is performed at a cooling rate of 80 ° C./second or higher and 300 ° C./second or lower, and then temper rolling is performed at a rolling rate of less than 5%. During annealing, annealing is performed at a temperature higher than the recrystallization temperature to complete the recrystallization.
- Winding temperature after hot rolling less than 620 ° C.
- the coiling temperature after hot rolling is preferably less than 620 ° C. More preferably, it is 590 degrees C or less. More preferably, it is 560 degrees C or less.
- Primary cold rolling rate When the primary cold rolling rate is over 85% and the primary cold rolling rate is small, it is necessary to increase the hot rolling rate in order to finally obtain a very thin steel plate. Increasing the hot rolling rate is not preferable because the hot-rolled material is thinned, cooling is promoted and it becomes difficult to ensure the finishing temperature. For the above reasons, the primary cold rolling reduction is preferably over 85%. More preferably, it is 90% or more and 92% or less.
- the soaking temperature is preferably 620 to 780 ° C.
- a gas jet device can be used for cooling.
- Temper rolling ratio 5% or less
- the temper rolling ratio is preferably 5% or less. If the temper rolling ratio exceeds 5%, the load of the temper rolling mill increases, and the processing load becomes excessive. In addition, slip and jumping phenomenon of the steel sheet is likely to occur, and it becomes difficult to perform temper rolling. Therefore, the temper rolling ratio is preferably 5% or less. More preferably, it is 0.5% or more and 3.5% or less.
- the process such as surface treatment is performed as usual, and finished as a steel plate for cans.
- the steel plate for cans obtained by the above method is subjected to surface treatment such as plating and laminating, and printing and coating are performed as necessary.
- the obtained material is cut into a predetermined size to obtain a rectangular blank.
- the can body can be manufactured by joining the end portions. A lid and bottom are attached to the resulting can body to form a three-piece can body.
- the steel plate obtained as described above was continuously subjected to Sn plating on both sides to obtain a tin plate having a single-side Sn adhesion amount of 2.8 g / m 2 .
- a tensile test was performed on the plated steel sheet (blink) obtained as described above after a heat treatment equivalent to a coating baking at 210 ° C. for 10 minutes.
- yield strength and total elongation were measured at a tensile speed of 10 mm / min using a JIS No. 5 size tensile test piece.
- the can strength was measured by the following method. Can strength is affected by yield strength and roundness. The can strength is measured when a sample having a thickness of 0.185 mm is formed into a can having a diameter of 63 mm, the can is inserted into the chamber, compressed air is introduced into the chamber, and the can body is deformed. The pressure was measured. When the internal pressure is 0.147 MPa, the can body is not deformed ⁇ , when the internal pressure is 0.137 MPa or more and less than 0.147 MPa, the can lid is deformed, and when the internal pressure is less than 0.137 MPa, the can lid is deformed The case where it did is made x.
- the comparative example is inferior in can strength or workability.
- Comparative Example No. Since 1, 3, 11, and 17 have a roundness that is too large at 0.35 mm, the can strength is inferior.
- Comparative Example No. No. 1 has insufficient yield strength because the C content is too small.
- No. of the comparative example. Since 2 has too much C content, ductility is impaired by temper rolling and the total elongation is insufficient.
- Comparative Example No. No. 3 has insufficient yield strength because the Mn content is too small.
- Comparative Example No. Since No. 4 has too much Mn content, ductility is impaired by temper rolling and the total elongation is insufficient.
- No. of the comparative example. No. 5 has insufficient yield strength because the N content is too small. Comparative Example No. In No. 11, the winding temperature is too high, so the crystal grains become coarse and the strength is insufficient.
- the three-piece can body of the present invention has excellent can strength and can be used for various applications that require can strength.
- This material can also be used for lids, bottoms, EOE and 2-piece can bodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Abstract
Description
(1)適切な量のNを添加して強度を付与しつつ、再結晶温度以上で焼鈍後に急冷させることによって、過飽和のC、Nを確保し強度と伸びを確保する。
(2)高N鋼を用い、さらにC、Nによる歪時効硬化を用いることで、ロールフォーミング時は、降伏強度が低く容易に真円度の良好な円筒形状と為すことができ、ロールフォーミング後に溶接部補修塗装や缶内面塗装での焼付け処理を受けることで歪時効硬化により強度を上昇させることが出来る。
(3)(2)を受け、素材のロールフォーミング性も良好なため、溶接時のゲート調整がしやすく真円度に優れた缶体を製造することが出来る。
(4)缶の真円度を規定することにより、レトルト(加圧加熱)殺菌処理での外圧を受けたときに真円度の悪い部分に圧力が集中することによる缶の凹みを回避することができる。
なお、歪時効硬化は、鋼板中の固溶C、N量を増加させ、調質圧延等により歪が導入されることにより、転位が生じて応力場が発生し、C、N原子が転位の周辺に集まり転位を固着させることで強度を上昇させる硬化手法である。
[1]質量%で、C:0.020%以上0.100%以下、Si:0.10%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%以上0.0200%以下を含有し、残部はFeおよび不可避的不純物からなり、降伏強度が440MPa以上、全伸びが12%以上である鋼板を缶体の真円度が0.34mm以下となるように成形した缶胴部を有する3ピース缶体。
[2]質量%で、C:0.020%以上0.100%以下、Si:0.10%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%以上0.0200%以下を含有し、残部はFeおよび不可避的不純物からなり、降伏強度が440MPa以上、全伸びが12%以上である鋼板を缶体の真円度が0.34mm以下となるように缶胴部を成形することを特徴とする3ピース缶体の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明の缶用鋼板において、高強度とは降伏強度440MPa以上、高加工性とは全伸び12%以上をいう。
そして、このような鋼板は、0.0130%以上0.0200%以下のNを含有する鋼を用いて、熱間圧延後の巻き取り温度および調質圧延率、ならびに焼鈍温度、冷却速度を適正な条件に設定することにより、製造することが可能となる。焼鈍温度を上昇させることで鋼板の延性を向上させることが出来るため、缶の加工性を改善することができる。
本発明の缶用鋼板においては、N量を高めることで高強度を確保する一方、C量を高めとすることで高強度を発揮する。C量が0.020%未満であると、鋼板の薄肉化による顕著な経済効果を得るために必要な降伏強度440MPaが得られない。したがって、C量の下限は0.020%とする。一方、C量が0.100%を超えるとC量が亜包晶領域となって過剰に硬質となり、鋳造時の熱間延性が低下し、スラブ割れなどが発生しやすくなり、加工性を確保したまま薄い鋼板を製造することが困難となる。したがって、C量の上限は0.100%とする。好ましくは、0.020%以上0.080%以下である。
Si量が0.10%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こすので、上限は0.10%とする。一方、0.003%未満とするには精錬コストが過大となるため、下限は0.003%が望ましい。
Mnは、Sによる熱延中の赤熱脆性を防止し、結晶粒を微細化する作用を有するので、望ましい材質を確保する上で必要な元素である。さらに、薄肉化した材料で缶強度を満足するには材料の高強度化が必要である。この高強度化に対応するためにはMn量の下限は0.10%とする。一方、Mnを多量に添加し過ぎると、耐食性が劣化し、また鋼板が過剰に硬質化するので、上限は0.80%とする。
Pは、鋼を硬質化させ、加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。そのため、上限は0.100%とする。一方、Pを0.001%未満とするには脱リンコストが過大となる。よって、下限は0.001%とする。
Sは、鋼中で介在物として存在し、延性の低下、耐食性の劣化をもたらす有害な元素である。そのため、上限は0.020%とする。一方、Sを0.001%未満とするには脱硫コストが過大となる。よって、下限は0.001%とする。
Alは、製鋼時の脱酸材として必要な元素である。添加量が少ないと、脱酸が不十分となり、介在物が増加し、加工性が劣化する。したがって、下限が0.005%であれば十分に脱酸が行われる。一方、含有量が0.100%を超えると、アルミナクラスターなどに起因する表面欠陥の発生頻度が増加する。よって、Al量の上限は0.100%とする。
Nは多量に添加すると、鋳造時のN気泡がスラブ表層にトラップされるため、ブローホールが増加して、表面欠陥が発生し表面品質が低下する傾向となり、熱間延性が劣化し、連続鋳造においてスラブの割れが発生する。よって、上限は0.0200%とする。また、鋼板強度維持の観点から、N量の下限は0.0130%とする。好ましくは、0.0150%以上0.0180%以下である。N量を0.0180%以下とすることで表面品質の低下及び熱間延性の劣化が特に抑制され、N量を0.0150%以上とすることで鋼板強度の維持が特に容易になるので好ましい。
なお、上記引張強度および上記全伸びは「JIS Z 2241」に示される金属材料引張試験方法により測定することができる。
なお、缶体の真円度は「JIS B 7451」で規定された真円度測定装置を用い、「JIS B 0621」及び「JIS B 0021」に示される真円度測定方法により測定することができる。真円度の測定には上蓋、底蓋を取り付けた缶体を用い、缶胴の高さ方向の中央部を円周方向に測定した。また、スプリングバックの試験法は「JIS G 3303」で示されている方法で行い、評価指標としてスプリングバック角度θ(°)を使用した。
熱間圧延後の巻き取り温度が620℃以上であると、降伏強度上昇のために確保した固溶Nが、AlNとして再析出し、降伏強度低下を引き起こす場合がある。よって、熱間圧延後の巻き取り温度は620℃未満が好ましい。さらに好ましくは590℃以下である。より好ましくは560℃以下である。
一次冷間圧延率が小さい場合、最終的に極薄の鋼板を得るために熱間圧延の圧延率を大きくする必要がある。熱間圧延率を大きくすることは熱延材を薄くすることで、冷却が促進され、仕上げ温度を確保することが難しくなるため好ましくない。以上の理由により、一次冷間圧延率は85%超えとすることが好ましい。より好ましくは、90%以上92%以下である。
焼鈍時には再結晶温度以上で加熱する。操業効率および薄鋼板の焼鈍中の破断防止の観点から均熱温度は620~780℃とすることが好ましい。さらに、目標降伏強度440MPa以上とするためには、加熱後に冷却速度80℃/秒以上300℃/秒以下での急速冷却を実施することが好ましい。これにより、過飽和C、Nを確保することができる。より好ましくは、80℃/秒以上130℃/秒以下である。なお、冷却にはガスジェット装置を用いることができる。
調質圧延率は5%以下とすることが好ましい。調質圧延率を5%超えとすると、調質圧延ミルの荷重が増大し、加工負荷が過大となる。また、鋼板のスリップやジャンピング現象が発生しやすくなり、調質圧延を行うのが困難となる。したがって、調質圧延率は5%以下とすることが好ましい。さらに好ましくは0.5%以上3.5%以下である。
Claims (2)
- 質量%で、C:0.020%以上0.100%以下、Si:0.10%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%以上0.0200%以下を含有し、残部はFeおよび不可避的不純物からなり、降伏強度が440MPa以上、全伸びが12%以上である鋼板を缶体の真円度が0.34mm以下となるように成形した缶胴部を有する3ピース缶体。
- 質量%で、C:0.020%以上0.100%以下、Si:0.10%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%以上0.0200%以下を含有し、残部はFeおよび不可避的不純物からなり、降伏強度が440MPa以上、全伸びが12%以上である鋼板を缶体の真円度が0.34mm以下となるように缶胴部を成形することを特徴とする3ピース缶体の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13800513.7A EP2860124B2 (en) | 2012-06-06 | 2013-06-03 | Three-piece can and method for producing same |
KR1020147031723A KR101645840B1 (ko) | 2012-06-06 | 2013-06-03 | 3 피스 캔체 및 그 제조 방법 |
IN2290MUN2014 IN2014MN02290A (ja) | 2012-06-06 | 2013-06-03 | |
US14/405,409 US9669961B2 (en) | 2012-06-06 | 2013-06-03 | Three-piece can and method of manufacturing the same |
CN201380029333.0A CN104334460A (zh) | 2012-06-06 | 2013-06-03 | 三片罐及其制造方法 |
JP2014519833A JP5854134B2 (ja) | 2012-06-06 | 2013-06-03 | 3ピース缶体およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-128739 | 2012-06-06 | ||
JP2012128739 | 2012-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183274A1 true WO2013183274A1 (ja) | 2013-12-12 |
Family
ID=49711680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003481 WO2013183274A1 (ja) | 2012-06-06 | 2013-06-03 | 3ピース缶体およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9669961B2 (ja) |
EP (1) | EP2860124B2 (ja) |
JP (1) | JP5854134B2 (ja) |
KR (1) | KR101645840B1 (ja) |
CN (1) | CN104334460A (ja) |
IN (1) | IN2014MN02290A (ja) |
MY (1) | MY170304A (ja) |
TW (1) | TWI493053B (ja) |
WO (1) | WO2013183274A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016157877A1 (ja) * | 2015-03-31 | 2016-10-06 | Jfeスチール株式会社 | 缶蓋用鋼板およびその製造方法 |
EP3186401B1 (de) * | 2014-08-27 | 2019-06-12 | ThyssenKrupp Rasselstein GmbH | Verfahren zur herstellung eines aufgestickten verpackungsstahls |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103938103B (zh) * | 2014-04-15 | 2016-05-11 | 河北钢铁股份有限公司唐山分公司 | 两片罐用马口铁mrt-3基板及其生产方法 |
MY173780A (en) * | 2015-03-31 | 2020-02-20 | Jfe Steel Corp | Steel sheet for can and method for manufacturing the same |
CN108779526A (zh) | 2016-02-29 | 2018-11-09 | 杰富意钢铁株式会社 | 罐用钢板及其制造方法 |
CN110040329A (zh) * | 2019-05-13 | 2019-07-23 | 福建德通金属容器股份有限公司 | 多边形几何结构罐身的三片罐 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128212A (ja) * | 1983-12-14 | 1985-07-09 | Nippon Steel Corp | 温間強度特性のすぐれたイ−ジ−オ−プン缶用鋼板の製造法 |
JP2000282289A (ja) * | 1999-03-31 | 2000-10-10 | Kawasaki Steel Corp | 高速溶接性に優れた缶用鋼板およびその製造方法 |
JP2002294399A (ja) * | 2001-04-03 | 2002-10-09 | Nippon Steel Corp | フランジ成形性に優れた高強度溶接缶用薄鋼板及びその製造方法 |
JP3663918B2 (ja) | 1998-07-02 | 2005-06-22 | Jfeスチール株式会社 | 形状維持性に優れる缶用鋼板およびその製造方法 |
JP2009084687A (ja) * | 2007-09-10 | 2009-04-23 | Nippon Steel Corp | 製缶用高強度薄鋼板及びその製造方法 |
JP2009174055A (ja) * | 1999-08-04 | 2009-08-06 | Jfe Steel Corp | 高強度極薄冷延鋼板用母板およびその製造方法 |
JP2009263788A (ja) * | 2008-04-03 | 2009-11-12 | Jfe Steel Corp | 高強度缶用鋼板およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3593235B2 (ja) | 1997-02-26 | 2004-11-24 | 新日本製鐵株式会社 | 成形性に優れた高強度な極薄溶接缶用鋼板の製造方法 |
FR2795744B1 (fr) † | 1999-07-01 | 2001-08-03 | Lorraine Laminage | Tole d'acier a basse teneur en aluminium pour emballage |
FR2795743B1 (fr) † | 1999-07-01 | 2001-08-03 | Lorraine Laminage | Tole d'acier a basse teneur en aluminium pour emballage |
JP3565131B2 (ja) | 2000-03-30 | 2004-09-15 | Jfeスチール株式会社 | ロールフォーミング性に優れた3ピース缶用鋼板 |
JP3879440B2 (ja) * | 2001-06-07 | 2007-02-14 | Jfeスチール株式会社 | 高強度冷延鋼板の製造方法 |
TW200827460A (en) * | 2006-08-11 | 2008-07-01 | Nippon Steel Corp | DR steel sheet and manufacturing method thereof |
KR100851158B1 (ko) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법 |
-
2013
- 2013-06-03 WO PCT/JP2013/003481 patent/WO2013183274A1/ja active Application Filing
- 2013-06-03 US US14/405,409 patent/US9669961B2/en active Active
- 2013-06-03 JP JP2014519833A patent/JP5854134B2/ja active Active
- 2013-06-03 CN CN201380029333.0A patent/CN104334460A/zh active Pending
- 2013-06-03 EP EP13800513.7A patent/EP2860124B2/en active Active
- 2013-06-03 MY MYPI2014703519A patent/MY170304A/en unknown
- 2013-06-03 KR KR1020147031723A patent/KR101645840B1/ko active IP Right Grant
- 2013-06-03 IN IN2290MUN2014 patent/IN2014MN02290A/en unknown
- 2013-06-06 TW TW102120136A patent/TWI493053B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128212A (ja) * | 1983-12-14 | 1985-07-09 | Nippon Steel Corp | 温間強度特性のすぐれたイ−ジ−オ−プン缶用鋼板の製造法 |
JP3663918B2 (ja) | 1998-07-02 | 2005-06-22 | Jfeスチール株式会社 | 形状維持性に優れる缶用鋼板およびその製造方法 |
JP2000282289A (ja) * | 1999-03-31 | 2000-10-10 | Kawasaki Steel Corp | 高速溶接性に優れた缶用鋼板およびその製造方法 |
JP2009174055A (ja) * | 1999-08-04 | 2009-08-06 | Jfe Steel Corp | 高強度極薄冷延鋼板用母板およびその製造方法 |
JP2002294399A (ja) * | 2001-04-03 | 2002-10-09 | Nippon Steel Corp | フランジ成形性に優れた高強度溶接缶用薄鋼板及びその製造方法 |
JP4276388B2 (ja) | 2001-04-03 | 2009-06-10 | 新日本製鐵株式会社 | フランジ成形性に優れた高強度溶接缶用薄鋼板及びその製造方法 |
JP2009084687A (ja) * | 2007-09-10 | 2009-04-23 | Nippon Steel Corp | 製缶用高強度薄鋼板及びその製造方法 |
JP2009263788A (ja) * | 2008-04-03 | 2009-11-12 | Jfe Steel Corp | 高強度缶用鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2860124A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3186401B1 (de) * | 2014-08-27 | 2019-06-12 | ThyssenKrupp Rasselstein GmbH | Verfahren zur herstellung eines aufgestickten verpackungsstahls |
WO2016157877A1 (ja) * | 2015-03-31 | 2016-10-06 | Jfeスチール株式会社 | 缶蓋用鋼板およびその製造方法 |
JPWO2016157877A1 (ja) * | 2015-03-31 | 2017-04-27 | Jfeスチール株式会社 | 缶蓋用鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150136635A1 (en) | 2015-05-21 |
EP2860124B1 (en) | 2016-12-28 |
TW201404897A (zh) | 2014-02-01 |
CN104334460A (zh) | 2015-02-04 |
MY170304A (en) | 2019-07-17 |
KR20150004375A (ko) | 2015-01-12 |
JP5854134B2 (ja) | 2016-02-09 |
US9669961B2 (en) | 2017-06-06 |
EP2860124A1 (en) | 2015-04-15 |
JPWO2013183274A1 (ja) | 2016-01-28 |
EP2860124B2 (en) | 2020-03-18 |
EP2860124A4 (en) | 2015-08-19 |
IN2014MN02290A (ja) | 2015-08-07 |
KR101645840B1 (ko) | 2016-08-04 |
TWI493053B (zh) | 2015-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5794004B2 (ja) | フランジ加工性に優れる高強度缶用鋼板およびその製造方法 | |
JP5854134B2 (ja) | 3ピース缶体およびその製造方法 | |
JP6455640B1 (ja) | 2ピース缶用鋼板及びその製造方法 | |
JP5018843B2 (ja) | 高加工性3ピース溶接缶用鋼板およびその製造方法 | |
WO2010113333A1 (ja) | 高強度容器用鋼板およびその製造方法 | |
JP6028884B1 (ja) | 缶用鋼板及び缶用鋼板の製造方法 | |
WO2015166653A1 (ja) | 高強度容器用鋼板及びその製造方法 | |
JP5939368B1 (ja) | 缶用鋼板及びその製造方法 | |
WO2020129482A1 (ja) | 缶用鋼板およびその製造方法 | |
JP6019719B2 (ja) | 高強度高延性鋼板の製造方法 | |
JP5803660B2 (ja) | 高強度高加工性缶用鋼板およびその製造方法 | |
JP5463720B2 (ja) | 缶用鋼板用冷延鋼板と缶用鋼板およびそれらの製造方法 | |
JP6421773B2 (ja) | 缶用鋼板およびその製造方法 | |
JP5988012B1 (ja) | 王冠用鋼板およびその製造方法ならびに王冠 | |
JP2008163390A (ja) | 異型缶用鋼板 | |
JP6060603B2 (ja) | フランジ加工性に優れた高強度缶用鋼板およびその製造方法 | |
JP6421772B2 (ja) | 缶用鋼板の製造方法 | |
JP5803510B2 (ja) | 高強度高加工性缶用鋼板およびその製造方法 | |
JP6176225B2 (ja) | 王冠用鋼板およびその製造方法ならびに王冠 | |
WO2020261965A1 (ja) | 缶用鋼板およびその製造方法 | |
WO2018181451A1 (ja) | 鋼板およびその製造方法と王冠およびdrd缶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13800513 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014519833 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147031723 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14405409 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013800513 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013800513 Country of ref document: EP |