WO2018181451A1 - 鋼板およびその製造方法と王冠およびdrd缶 - Google Patents

鋼板およびその製造方法と王冠およびdrd缶 Download PDF

Info

Publication number
WO2018181451A1
WO2018181451A1 PCT/JP2018/012699 JP2018012699W WO2018181451A1 WO 2018181451 A1 WO2018181451 A1 WO 2018181451A1 JP 2018012699 W JP2018012699 W JP 2018012699W WO 2018181451 A1 WO2018181451 A1 WO 2018181451A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
drd
crown
rolling
steel sheet
Prior art date
Application number
PCT/JP2018/012699
Other languages
English (en)
French (fr)
Inventor
房亮 假屋
卓嗣 植野
嘉秀 山本
克己 小島
文吾 舘野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MYPI2019005043A priority Critical patent/MY193307A/en
Priority to JP2018541434A priority patent/JP6468405B1/ja
Priority to CN202111367805.6A priority patent/CN114277312A/zh
Priority to CN201880021688.8A priority patent/CN110462089B/zh
Priority to KR1020197031995A priority patent/KR102288712B1/ko
Publication of WO2018181451A1 publication Critical patent/WO2018181451A1/ja
Priority to PH12019501996A priority patent/PH12019501996A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel sheet, particularly a high-strength thin steel sheet having excellent formability and a method for producing the same.
  • Typical examples of such steel plates include DRD (Drawing and Redrawing) cans formed by combining drawing and redrawing, as well as thin steel plates that serve as crown materials used as stoppers for glass bottles and the like.
  • the present invention relates to a crown and a DRD can obtained by forming the steel plate.
  • crowns are widely used for narrow-mouthed glass bottles.
  • a crown is manufactured by press-molding a thin steel plate, and consists of a disk-shaped part that closes the mouth of the bottle and a bowl-shaped part around it. Seal the jar by caulking.
  • Bottles that use crowns are often filled with high internal pressure contents such as beer and carbonated drinks. For this reason, even when the internal pressure increases due to a change in temperature or the like, the crown needs to have high pressure strength so that the crown is not deformed and the sealing of the bottle is not broken. Moreover, even if the strength of the material is sufficient, if the material uniformity of the steel plate used for the crown is low, the shape of the crown is not uniform, and those that are out of product specifications are included. Even if such a poorly shaped crown is caulked to the mouth of the bottle, sufficient sealing performance may not be obtained. Therefore, the steel plate used as the crown material must also be excellent in material uniformity.
  • SR (Single Reduced) steel sheet is mainly used for the thin steel sheet used for the crown material.
  • annealing is performed and temper rolling is performed.
  • the sheet thickness of conventional steel plates for crowns is generally 0.22 mm or more, and sufficient compressive strength and formability are ensured by applying SR material made of mild steel used for food and beverage cans and the like. It was possible.
  • the center of the crown is squeezed to some extent in the initial stage of molding, and then the outer edge is molded into a bowl shape.
  • the material of the crown is a steel plate with low material uniformity
  • the crown manufactured from the steel plate may have irregular outer diameters and heights, which may be out of product specifications. If the outer diameter and height of the crown become uneven, and there are things that deviate from the product specification, there is a problem that the yield when a large number of crowns are manufactured decreases.
  • a crown whose outer diameter and height are out of specification is liable to cause leakage of contents during transportation after being plugged into a bottle, and has a problem that it does not serve as a lid.
  • the crown Even if the outer diameter and height of the crown are within the product specification, if the steel plate strength is low, the crown may be removed due to insufficient pressure strength. In particular, when the plate thickness is as thin as 0.17 mm or less, for example, the crown is often disengaged according to the conventional pressure strength standard, and higher pressure strength is required as compared with the conventional case.
  • the steel sheet described in Patent Document 1 uses steel containing 0.0060% or less of C, and has a predetermined relationship between the tension between the stands and the annealing temperature in secondary cold rolling. Value (direction / size) is obtained. Since this method does not control the hot rolling process that affects the formation of the metal structure, the obtained steel sheet has a large variation in material, and is difficult to put into practical use.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a steel plate having sufficient strength and excellent formability even when it is thinned, and a method for manufacturing the steel plate. Furthermore, the objective of this invention is providing the crown and DRD can excellent in shape stability adjusted to a predetermined dimension and shape.
  • the inventors diligently studied how to solve the above-mentioned problems, and found that high strength and excellent formability can be imparted by specifying mechanical properties under a predetermined component composition.
  • the present invention is derived from this finding, and the gist of the present invention is as follows.
  • a DRD can comprising the steel plate according to (1) or (2).
  • the present invention it is possible to provide a steel sheet having sufficient strength and excellent formability even with a thin wall, together with its advantageous manufacturing method. Furthermore, when the steel plate of the present invention is used for, for example, a crown or a DRD can, a crown having a high pressure strength and a DRD can excellent in shape stability can be formed.
  • the steel sheet according to the present invention is in mass%, C: more than 0.0060% and 0.0100% or less, Si: 0.05% or less, Mn: 0.05% or more and 0.60% or less, P: 0.050. %: S: 0.050% or less, Al: 0.020% or more and 0.050% or less, N: 0.0140% or more and 0.0180% or less and Cr: 0.040% or less, the balance being It has a component composition of Fe and inevitable impurities, and an aging index in the rolling direction is 25 to 55 MPa.
  • the "%" display regarding a component shows "mass%".
  • C more than 0.0060% 0.0100% or less
  • the aging index in the rolling direction of the steel sheet after the secondary cold rolling described later becomes less than 25 MPa, for example for crown use
  • the pressure resistance decreases.
  • wrinkles are generated in the flange portion when the DRD can is formed, resulting in a poorly shaped can.
  • the C content exceeds 0.0100%, the ferrite of the steel sheet after the secondary cold rolling becomes too fine, the steel sheet strength is excessively increased, and the formability deteriorates, for example, when used for a crown In addition, the pressure strength is reduced due to the deterioration of the shape of the molded crown.
  • the C content is more than 0.0060% and 0.0100% or less.
  • the C content is 0.0065% or more and 0.0090% or less.
  • the Si content is 0.05% or less.
  • the Si content is preferably 0.004% or more. More preferably, it is 0.01% or more and 0.03% or less.
  • Mn 0.05% or more and 0.60% or less
  • the Mn content is 0.05% or more.
  • the Mn content is set to 0.60% or less.
  • the Mn content is 0.10% or more and 0.50% or less.
  • the upper limit of the P content is 0.050%.
  • the content of P is preferably made 0.001% or more.
  • S 0.050% or less S combines with Mn in a steel plate to form MnS, and precipitates in a large amount to lower the hot ductility of the steel plate. This effect becomes significant when the S content exceeds 0.050%. Therefore, the upper limit of the S content is 0.050%. Further, in order to make S less than 0.005%, the removal S cost becomes excessive, so the S content is preferably made 0.004% or more.
  • Al 0.020% or more and 0.050% or less
  • Al is an element to be contained as a deoxidizing agent, and forms N and AlN in the steel to reduce the solid solution N in the steel. If the Al content is less than 0.020%, the effect as a deoxidizer becomes insufficient, causing solidification defects and increasing the steelmaking cost. Further, the aging index in the rolling direction of the steel sheet after the secondary cold rolling becomes less than 25 MPa, and for example, when it is used for a crown, the pressure strength decreases. Similarly, for example, when it is used for a DRD can, it causes a shape defect in which wrinkles are generated in the flange portion when the DRD can is formed.
  • the Al content exceeds 0.050%, the formation of AlN increases, the amount of N contributing to the steel sheet strength as solute N described later decreases, and the steel sheet strength decreases. Is 0.050% or less.
  • the Al content is 0.030% or less and 0.045% or less.
  • N More than 0.0140% and 0.0180% or less
  • the aging index in the rolling direction of the steel sheet after the secondary cold rolling becomes less than 25 MPa, which is used for, for example, a crown.
  • the pressure strength decreases, and the amount of N that contributes to the strength of the steel sheet as solute N described later decreases, and the strength of the steel sheet decreases.
  • a wrinkle will occur in a flange part at the time of DRD can fabrication, and it will become a poor shape can.
  • the N content exceeds 0.0180%, the above aging index exceeds 55 MPa, and the steel sheet after the secondary cold rolling becomes excessively hardened, for example, when used for a crown, The shape deteriorates and the pressure strength decreases. Or when it uses for DRD cans, for example, the shape defect which a wrinkle generate
  • the N content is more than 0.0150% and not more than 0.0170%.
  • the Cr content exceeds 0.040%, the aging index in the rolling direction of the steel sheet after the secondary cold rolling becomes less than 25 MPa.
  • the pressure strength is high. While decreasing, the amount of C which contributes to steel plate strength as solute C decreases, and steel plate strength decreases. Or when it uses for DRD cans, for example, the shape defect which a wrinkle generate
  • the aging index in the rolling direction is 25 to 55 MPa. That is, when the aging index in the rolling direction of the steel sheet is less than 25 MPa, when the steel sheet is used for a crown, for example, a large number of crowns are formed and subjected to a pressure test, a crown having a low pressure strength is occasionally found. Thus, the yield when manufacturing the crown is reduced. Or when it uses for DRD cans, for example, the shape defect which a wrinkle generate
  • the shape of the crown becomes non-uniform, and a large number of crowns are molded and subjected to a pressure test. As a result, there are some crowns with low pressure strength, and the yield in manufacturing the crown is lowered. Or when it uses for DRD cans, for example, the shape defect which a wrinkle generate
  • the aging index satisfying the above is adjusted by adjusting the component composition, adjusting the heating temperature in the hot rolling process, the finishing rolling temperature, the rolling reduction of the final stand, and the winding temperature, and adjusting the rolling reduction of the primary cold rolling rate. And it can obtain by adjusting the cooling rate in a continuous annealing process, and adjusting the rolling reduction in a secondary cold rolling process. Details of the manufacturing conditions will be described later.
  • the steel plate of the present invention is required to have a pressure strength that prevents the crown crimped on the mouth of the bottle from being removed by the internal pressure when the steel plate is used, for example.
  • the steel plate for crowns that has been used conventionally has a thickness of 0.22 mm or more, but in order to reduce the thickness to 0.20 mm or less, particularly 0.18 mm or less, higher strength is required than before. .
  • the yield strength of the steel sheet is less than 620 MPa, it is impossible to give sufficient pressure resistance to the thin crown as described above. For that purpose, the yield strength needs to be 620 MPa or more. If the yield strength is too high, the crown height becomes low during crown molding and the crown shape becomes non-uniform, so the yield strength in the rolling direction needs to be 700 MPa or less.
  • yield strength can be measured by a metal material tensile test method shown in “JIS Z 2241”.
  • a steel material (steel slab) having the above composition is heated at 1200 ° C. or higher, the finish rolling temperature is 870 ° C. or higher, and the rolling reduction of the final stand is 10% or higher.
  • the holding time in the temperature range of 660 to 760 ° C. is 60 seconds or less, and the temperature is cooled to 450 ° C. or less at an average cooling rate of 10 ° C./s or more.
  • the temperature specification is based on the surface temperature of the steel sheet.
  • the average cooling rate is a value obtained by calculation based on the surface temperature. For example, the average cooling rate from the soaking temperature to a temperature range of 450 ° C. or less is ((soaking temperature ⁇ (temperature range of 450 ° C. or less)) / cooling time from the soaking temperature to (temperature range of 450 ° C. or less) ).
  • the “temperature range of 450 ° C. or lower” in the above equation means a cooling stop temperature in the temperature range.
  • the molten steel is adjusted to the above chemical components by a known method using a converter or the like, and then, for example, a slab by a continuous casting method is used as a steel material.
  • Step material heating temperature 1200 ° C or higher
  • the heating temperature of the steel material in the hot rolling process is set to 1200 ° C. or higher.
  • the heating temperature is less than 1200 ° C.
  • the amount of solute N necessary for securing strength in the present invention is reduced and the strength is lowered, so that the heating temperature is 1200 ° C. or higher.
  • N in the steel is mainly present as AlN. Therefore, the total amount of N (Ntotal) minus the amount of N present as AlN (NasAlN) is subtracted (Ntotal ⁇ (NasAlN)). The amount of dissolved N was considered.
  • the solute N amount is preferably 0.0141% or more, and can be ensured by setting the steel material heating temperature to 1200 ° C. or more.
  • a more preferable amount of solute N is 0.0150% or more.
  • the heating temperature of the steel material is preferably 1220 ° C. or more.
  • the steel material heating temperature is preferably 1300 ° C. or lower because the effect is saturated even when the temperature exceeds 1300 ° C.
  • the finishing temperature in the hot rolling process is less than 870 ° C.
  • the aging index in the rolling direction of the steel sheet is less than 25 MPa, and for example, when it is used for a crown, the pressure resistance is lowered.
  • a steel plate is used for, for example, a DRD can
  • a shape defect that causes wrinkles in the flange portion at the time of forming the DRD can results.
  • the finishing temperature is applied to, for example, a DRD can, a defective shape is generated in which wrinkles are generated in the flange portion when the DRD can is formed.
  • the finishing temperature is 870 ° C. or higher.
  • raising the finish rolling temperature more than necessary may make it difficult to produce a thin steel sheet.
  • the finish rolling temperature is preferably in the temperature range of 870 ° C. or more and 950 ° C. or less.
  • the rolling reduction of the final stand in the hot rolling process is 10% or more.
  • the rolling reduction of the final stand is less than 10%, the aging index in the rolling direction of the steel sheet is less than 25 MPa, and for example, when it is used for a crown, the pressure resistance decreases.
  • the rolling reduction of the final stand is 10% or more.
  • the rolling reduction of the final stand is preferably 12% or more.
  • the upper limit of the rolling reduction of the final stand is preferably 15% or less from the viewpoint of rolling load.
  • Winding temperature 550-750 ° C
  • the aging index in the rolling direction of the steel sheet is less than 25 MPa.
  • the pressure resistance decreases when used for a crown, or for a DRD can, for example.
  • the winding temperature is set to 550 ° C. or higher.
  • the coiling temperature is higher than 750 ° C., a part of the ferrite of the steel sheet is coarsened, and the strength of the steel sheet is lowered.
  • the winding temperature is preferably 750 ° C. or lower. Preferably they are 600 degreeC or more and 700 degrees C or less.
  • pickling is preferably performed.
  • the pickling is not particularly limited as long as the surface scale can be removed.
  • the cold rolling is performed in two steps with the annealing interposed therebetween.
  • Primary cold rolling reduction 88% or more
  • the rolling reduction in the primary cold rolling process is 88% or more.
  • the strain applied to the steel sheet by cold rolling decreases, so recrystallization in the continuous annealing process becomes non-uniform, and the size of the ferrite grain size after recrystallization
  • the variation increases, the aging index in the rolling direction of the steel sheet after the secondary cold rolling becomes less than 25 MPa, and the pressure strength decreases.
  • the rolling reduction in the primary cold rolling process is set to 88% or more. More preferably, the content is 89 to 94%.
  • the soaking temperature in the continuous annealing step is 660 to 760 ° C.
  • the soaking temperature is higher than 760 ° C., it is easy to cause troubles such as a heat buckle during continuous annealing, which is not preferable.
  • the ferrite grain size of the steel sheet is partially increased to reduce the strength of the steel sheet, and the aging index in the rolling direction of the steel sheet is less than 25 MPa.
  • the pressure strength decreases.
  • a steel plate is used for, for example, a DRD can, a shape defect that causes wrinkles in the flange portion at the time of forming the DRD can results.
  • the annealing temperature is less than 660 ° C., recrystallization becomes incomplete, the ferrite grain size of the steel sheet becomes partially fine, and the aging index in the rolling direction of the steel sheet after secondary cold rolling becomes less than 25 MPa. The pressure strength decreases.
  • the soaking temperature is 660 to 760 ° C.
  • the temperature is 680 to 730 ° C.
  • the holding time when the soaking temperature is in the temperature range of 660 to 760 ° C is 60 seconds or less.
  • C contained in the steel sheet segregates to the ferrite grain boundary, precipitates as carbides in the cooling process in the continuous annealing process, reduces the amount of solute C contributing to the steel sheet strength, and yield.
  • the strength decreases the aging index in the rolling direction of the steel sheet after the secondary cold rolling becomes less than 25 MPa, and the pressure strength decreases.
  • a shape defect that causes wrinkles in the flange portion at the time of forming the DRD can results.
  • the holding time when the soaking temperature is in the temperature range of 660 to 760 ° C. is set to 60 seconds or less.
  • the holding time is less than 5 seconds, the stability when the steel plate passes through the soaking roll is impaired, and therefore the holding time is preferably 5 seconds or more.
  • Pre-cooling Cooling to 450 ° C or less at an average cooling rate of 10 ° C / s or more
  • the average cooling rate is less than 10 ° C./s, carbide precipitation is promoted during cooling, the amount of solute C contributing to the steel plate strength is reduced, the yield strength is reduced, and the steel plate after the secondary cold rolling.
  • the aging index in the rolling direction becomes less than 25 MPa, and the pressure strength decreases.
  • an average cooling rate shall be 50 degrees C / s or less.
  • carbide precipitation is promoted after the former stage cooling, the amount of solute C contributing to the steel sheet strength is reduced, the yield strength is lowered, and The aging index in the rolling direction of the steel sheet after the next cold rolling becomes less than 25 MPa, and the pressure strength decreases.
  • a shape defect in which wrinkles are generated in the flange portion when the DRD can is formed is caused.
  • the cooling stop temperature in the pre-cooling after soaking is less than 300 ° C., not only the carbide precipitation suppression effect is saturated, but also the aging index in the rolling direction of the steel sheet after secondary cold rolling becomes more than 55 MPa, and the steel sheet strength
  • the shape of the crown becomes uneven, and if a large number of crowns are molded and subjected to a pressure test, there will be some crowns with low pressure strength. Yield in manufacturing decreases.
  • the cooling stop temperature after soaking is preferably 300 ° C. or higher.
  • the average cooling rate in the subsequent cooling is preferably 30 ° C./s or less. More preferably, it is 25 ° C./s or less. In the latter stage cooling, it is cooled to 140 ° C. or lower.
  • the amount of solute C contributing to the strength of the steel sheet is reduced, the yield strength is reduced, and the aging index in the rolling direction of the steel sheet after the secondary cold rolling is less than 25 MPa, so that the pressure strength is reduced.
  • a steel plate is used for, for example, a DRD can, a shape defect in which wrinkles are generated in the flange portion when the DRD can is formed is caused.
  • the cooling stop temperature is less than 100 ° C., the effect is saturated, and an excessive cost is generated in the cooling facility. More preferably, it is 120 ° C. or higher.
  • the steel sheet of the present invention can obtain high yield strength by the second cold rolling after annealing. That is, when the rolling reduction of secondary cold rolling is less than 10%, sufficient yield strength cannot be obtained, and for example, the pressure resistance when used for a crown is lowered. Moreover, if the rolling reduction of secondary cold rolling exceeds 40%, anisotropy will become excessive, for example, the pressure-resistant intensity
  • the cold-rolled steel sheet obtained as described above is then subjected to plating treatment such as tin plating, chromium plating, nickel plating, etc., for example, by electroplating on the surface of the steel sheet, if necessary, to form a plating layer.
  • plating treatment such as tin plating, chromium plating, nickel plating, etc.
  • electroplating on the surface of the steel sheet, if necessary, to form a plating layer.
  • the steel sheet of the present invention can have sufficient strength and excellent material uniformity even if it is thinned. Therefore, the steel sheet of the present invention is particularly suitable as a material for crowns or DRD cans.
  • the crown of the present invention is formed using the steel plate described above.
  • the crown is mainly composed of a disk-shaped part that closes the mouth of the bottle and a bowl-shaped part provided around the disk-shaped part.
  • the crown of the present invention can be formed by press molding after punching the steel plate of the present invention into a circular blank. Since the crown of the present invention is manufactured from a steel sheet having sufficient yield strength and excellent material uniformity, it has excellent pressure resistance as a crown even when it is thinned, and has an outer diameter and high crown. Since the uniformity of the thickness is excellent, the yield in the crown manufacturing process is improved, and the amount of waste generated by the crown manufacturing is reduced.
  • the DRD can of the present invention is formed using the steel plate described above.
  • the DRD can be formed by punching the steel sheet of the present invention into a circular blank and then performing drawing and redrawing. Since the DRD can made of the steel plate of the present invention has a uniform shape and does not deviate from the product standard, the yield in the DRD can manufacturing process is improved, and the amount of waste generated in the DRD can manufacturing is reduced. Have.
  • Steel slabs were obtained by containing the component composition shown in Table 1, with the balance being made of Fe and unavoidable impurities in a converter and continuously cast.
  • the steel slab obtained here was subjected to hot rolling at the slab heating temperature, finish rolling temperature, and winding temperature shown in Table 2. After this hot rolling, pickling was performed. Next, primary cold rolling was performed at the rolling reduction shown in Table 2, and continuous annealing was performed under the continuous annealing conditions shown in Table 2, followed by secondary cold rolling at the rolling reduction shown in Table 2.
  • the obtained steel sheet was continuously subjected to electrolytic chromic acid treatment to obtain tin-free steel.
  • the steel plate obtained in accordance with the above was subjected to a heat treatment equivalent to 210 ° C. and 15 minutes of paint baking, and then subjected to a tensile test.
  • the tensile test was performed according to “JIS Z 2241” using a JIS No. 5 size tensile test piece, and the yield strength in the rolling direction was measured. Further, the aging index in the rolling direction of the steel sheet was determined according to the measurement method described above.
  • the heat treatment equivalent to this paint baking does not affect the steel plate material before the heat treatment.
  • the obtained crown was also subjected to a pressure resistance test.
  • the pressure resistance test was performed by molding a vinyl chloride liner inside the crown, plugging it into a commercial beer bottle, measuring the internal pressure at which the crown was released using the Secure Pal Secure Security Tester, and measuring the internal pressure at which the crown was released. The pressure strength was taken.
  • the pressure resistance test is performed on 50 crowns, the number of crowns with a pressure strength of 165 psi or more is 47 or more, and the number of crowns with a pressure strength of 165 psi or more is 45 or 46 , And the case where the number of crowns having a pressure strength of 165 psi or more and less than 45 was evaluated as x.
  • Table 2 The obtained results are shown in Table 2.
  • the obtained steel sheet was subjected to a heat treatment equivalent to coating baking at 210 ° C. for 15 minutes, then formed into a DRD can, and the DRD can formability was evaluated. That is, using a circular blank having a diameter of 158 mm, drawing and redrawing were performed, a DRD can having an inner diameter of 82.8 mm and a flange diameter of 102 mm was formed, and DRD can moldability was evaluated.
  • the steel sheets 1 to 22 had a stable pressure resistance, with a yield strength in the rolling direction of 600 MPa or more and a number of crowns having a pressure strength of 165 psi or more and 45 or more crowns. Further, the yield strength in the rolling direction was 560 MPa or more, and the standard deviation of the crown height was 0.09 mm or less, the crown moldability was good, and the DRD can moldability was good.
  • the steel plate No. 29 has too much Mn content, so that the steel plate is excessively hardened and the shape of the crown deteriorates, so that the number of crowns having a pressure strength of 165 psi or more is less than 45 and has a high pressure resistance. The strength was not stably obtained. Moreover, it turned out that DRD can moldability also deteriorates.
  • the steel plate No. 31 has too little Al content, the effect as a deoxidizing agent is insufficient, causing the occurrence of solidification defects and increasing the steelmaking cost.
  • No. Steel plates 32 to 34 have an N content that is too high, so the aging index is over 55 MPa, the steel plate after secondary cold rolling is excessively hardened, and the shape of the formed crown is uneven. As a result, the number of crowns having a pressure strength of 165 psi or more was less than 45, and a high pressure strength could not be stably obtained. Moreover, it turned out that DRD can moldability also deteriorates.
  • No. Steel sheets 35 to 37 have a low N content, so the aging index in the rolling direction of the steel sheet after secondary cold rolling is less than 25 MPa, and the number of crowns with a pressure strength of 165 psi or more is less than 45 and stable. It was found that the amount of N contributing to the steel plate strength as a solid solution N is reduced and the steel plate strength is lowered. Moreover, it turned out that DRD can moldability also deteriorates.
  • the aging index in the rolling direction of the steel plate after the secondary cold rolling is less than 25 MPa, and the shape of the formed crown is non-uniform.
  • the number of crowns having a strength of 165 psi or more was less than 45, and high pressure strength could not be stably obtained.
  • DRD can moldability also deteriorates.
  • the steel plate No. 39 has too much Cr, the aging index in the rolling direction of the steel plate after secondary cold rolling is less than 25 MPa, the number of crowns with a pressure strength of 165 psi or more is less than 45, and stable pressure resistance. It has been found that the amount of C that does not have strength and contributes to steel plate strength as solute C is reduced, and the steel plate strength is reduced. Moreover, it turned out that DRD can moldability also deteriorates.
  • No. The number of crowns having a pressure strength of 165 psi or more is less than 45 due to the fact that the steel plate of 40 has too much Si content and the steel plate becomes excessively hard and the shape of the molded crown becomes non-uniform. Thus, a high pressure strength could not be stably obtained. Moreover, it turned out that DRD can moldability also deteriorates.
  • Steel slabs were obtained by melting the steel having the component compositions of 4, 10 and 17 with the balance being Fe and inevitable impurities in a converter and continuously casting the steel.
  • the steel slab obtained here was hot-rolled at the slab heating temperature, finish rolling temperature, and coiling temperature shown in Table 3. After hot rolling, pickling was performed. Next, primary cold rolling is performed at the rolling reduction shown in Table 3, and the soaking temperature, soaking time, precooling average speed, precooling cooling stop temperature, precooling average cooling speed, and postcooling cooling stop temperature shown in Table 3 are used. Continuous annealing was performed, followed by secondary cold rolling at the rolling reduction shown in Table 3.
  • the obtained steel sheet was continuously subjected to electrolytic chromic acid treatment to obtain tin-free steel.
  • the steel plate obtained as described above was subjected to a tensile test by the same method as described above, and similarly the aging index in the rolling direction of the steel plate was obtained. Furthermore, the crown moldability, the pressure strength of the crown and the DRD can moldability were evaluated in the same manner as described above. The obtained results are shown in Table 3.
  • steel plate No. which is an example of the present invention.
  • Steel plates of 41, 44, 46, 48, 49, 53 to 56, 59, 60, 64 have 45 or more crowns with a yield strength in the rolling direction of 600 MPa or more and a pressure strength of 165 psi or more, It had a stable pressure strength. Further, the yield strength in the rolling direction was 560 MPa or more, and the standard deviation of the crown height was 0.09 mm or less, the crown moldability was good, and the DRD can moldability was also good.
  • steel plate No. which is a comparative example.
  • Steel plates 42, 43, 45, 47, 50, 51, 52, 57, 58, 61, 62, 65, and 67 have slab heating temperature, finish rolling temperature, rolling reduction at the final stand in the hot rolling process, and winding.
  • any of temperature, primary cold rolling reduction, soaking temperature, soaking holding time, pre-cooling average speed, secondary cold rolling reduction, and post-cooling average speed are out of the scope of the present invention, so secondary cold rolling It was found that the aging index in the rolling direction of the later steel sheet was less than 25 MPa, the number of crowns having a compressive strength of 165 psi or more was less than 45, and there was no stable compressive strength and / or the yield strength in the rolling direction was reduced. . Alternatively and / or DRD can moldability was found to deteriorate.
  • Steel plate No. is a comparative example.
  • the steel plate No. 63 has a secondary cold reduction ratio that is too high, so that the anisotropy becomes excessive, and the number of crowns having a pressure strength of 165 psi or more is less than 45 due to impairing the uniformity of the crown shape. It was found that it does not have a stable pressure strength. Moreover, it turned out that DRD can moldability deteriorates.
  • Steel plate No. is a comparative example. Since the steel plate No. 66 has a too low pre-cooling stop temperature, the aging index in the rolling direction of the steel plate after the secondary cold rolling is over 55 MPa, the steel plate strength is excessively increased, and the pressure strength is 165 psi or higher. The number was less than 45, and it was found that the pressure resistance was not stable. Moreover, it turned out that DRD can moldability deteriorates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

質量%で、C:0.0060%超0.0100%以下、Si:0.05%以下Mn:0.05%以上0.60%以下、P:0.050%以下、S:0.050%以下、Al:0.020%以上0.050%以下、N:0.0140%超0.0180%以下およびCr:0.040%以下を含有し、残部はFeおよび不可避的不純物の成分組成と、圧延方向の時効指数が25~55MPaおよび降伏強度が620~700MPaである機械的性質とをそなえるものとすることによって、薄肉化しても十分な強度と優れた成形性を備える鋼板を提供する。

Description

鋼板およびその製造方法と王冠およびDRD缶
 本発明は、鋼板、特に成形性に優れる高強度薄鋼板およびその製造方法に関するものである。このような鋼板の典型例としては、絞り加工と再絞り加工とを組み合わせて成形されるDRD(Drawing and Redrawing)缶の他、ガラス瓶などの栓として用いられる王冠の素材として供する、薄鋼板がある。さらに、本発明は、前記鋼板を成形して得られる王冠およびDRD缶に関するものである。
 さて、清涼飲料水や酒類などの飲料用の容器には、従来ガラス瓶が多く用いられている。特に、細口のガラス瓶には、王冠と呼ばれる金属製の栓が広く用いられている。一般的に、王冠は、薄鋼板を素材としてプレス成形によって製造され、瓶の口を塞ぐ円盤状の部分と、その周囲に設けられた襞状の部分からなり、襞状の部分を瓶の口にかしめることによって瓶を密封する。
 王冠が用いられる瓶には、ビールや炭酸飲料など、高い内圧を生じる内容物が充填されることが多い。このため、温度の変化などで内圧が高まった場合にも、王冠が変形して瓶の密封が破られることがないように、王冠には、高い耐圧強度が必要である。また、素材の強度が十分であっても、王冠に用いられる鋼板の材質均一性が低い場合は、王冠の形状が不揃いになって製品規格から外れるものが含まれることになる。このような不良形状の王冠を瓶の口にかしめても十分な密封性が得られない場合が生じるため、王冠の素材となる鋼板は材質均一性に優れていることも必要である。
 王冠の素材に供する薄鋼板には、主にSR(Single Reduced)鋼板が用いられている。これは、冷間圧延により鋼板を薄くした後に、焼鈍を施し、調質圧延を行うものである。従来の王冠用鋼板の板厚は、一般的に0.22mm以上であり、食品や飲料の缶などに用いる軟鋼を素材としたSR材を適用することで十分な耐圧強度と成形性を確保することが可能であった。
 近年、缶用鋼板と同様に、王冠用鋼板についてもコストダウンを目的とした薄肉化の要求が高まっている。王冠用鋼板の板厚が、0.22mm未満とりわけ0.20mm以下になると、従来のSR材で製造した王冠では耐圧強度が不足することになる。王冠用鋼板として耐圧強度を確保するためには、薄肉化に伴う強度の低下を補う必要があり、焼鈍後に再度冷間圧延を施して加工硬化させる、DR(Double Reduced)鋼板が適用されている。
 ところで、王冠は、成形初期に中央部がある程度絞られ、その後、外縁部が襞形状に成形される。ここで、王冠の素材が材質均一性の低い鋼板であると、該鋼板から製造される、王冠は外径および高さが不揃いになって製品規格から外れることがある。王冠の外径および高さが不揃いになって製品規格から外れるものがあると、大量に王冠を製造した際の歩留りが低下するといった問題がある。さらに、外径および高さが規格を外れた王冠は、瓶に打栓された後の輸送中に内容物の漏洩が生じ易く、蓋としての役割を果たさないといった問題もある。また、王冠の外径および高さが製品規格内であっても、鋼板強度が低い場合には、耐圧強度不足により王冠が外れる可能性がある。特に、板厚が例えば0.17mm以下と薄い場合には、従来の耐圧強度基準では王冠が外れることが多く、従来に比べて、より高い耐圧強度が要求されている。
 また、DRD缶の素材として、材質均一性の低い鋼板を適用すると、DRD缶の成形時に缶のフランジ部に発生する皺に代表される、形状不良をまねく可能性がある。このDRD缶についても、形状不良により製品規格から外れるものがあると、大量に王冠を製造した際の歩留りが低下するという、上記した王冠の場合と同様の問題となる。
 以上の点を踏まえた、王冠用の高強度薄鋼板について、例えば特許文献1には、質量%で、C:0.0010%以上0.0060%以下、Si:0.005%以上0.050%以下、Mn:0.10%以上0.50%以下、P:0.040%以下、S:0.040%以下、Al:0.1000%以下、N:0.0100%以下を含有し、圧延方向に対して25~65°の方向のr値の最小値と全方向のr値の平均値、および降伏強度を適切に制御することにより薄厚でも十分な王冠耐圧を満たす王冠用鋼板およびその製造方法が開示されている。
特許第6057023号公報
 特許文献1に記載の鋼板は、0.0060%以下のCを含有した鋼を用い、二次冷間圧延におけるスタンド間張力と焼鈍温度を所定の関係とすることにより、王冠加工に適したr値(方向・大きさ)を得ている。この方法は、金属組織形成に影響を及ぼす熱間圧延工程を制御していないために、得られる鋼板は材質のばらつきが大きくなり、実用に供するのは困難である。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、薄肉化しても十分な強度と優れた成形性を備える鋼板およびその製造方法を提供することにある。さらに、本発明の目的は、所定の寸法および形状に整えられる、形状安定性に優れた王冠およびDRD缶を提供することにある。
 発明者らは、上記した課題を解決するための方途について鋭意究明したところ、所定の成分組成の下に機械的性質を特定することによって、高強度かつ優れた成形性を付与できることを見出した。本発明はこの知見に由来するものであり、その要旨構成は次のとおりである。
(1)質量%で、
 C:0.0060%超0.0100%以下、
 Si:0.05%以下、
 Mn:0.05%以上0.60%以下、
 P:0.050%以下、
 S:0.050%以下、
 Al:0.020%以上0.050%以下、
 N:0.0140%超0.0180%以下および
 Cr:0.040%以下
を含有し、残部はFeおよび不可避的不純物の成分組成を有し、
 圧延方向の時効指数が25~55MPaであり、
 降伏強度が620~700MPaである鋼板。
(2)板厚が0.20mm以下である前記(1)に記載の鋼板。
(3)前記(1)または(2)に記載の鋼板からなる王冠。
(4)前記(1)または(2)に記載の鋼板からなるDRD缶。
(5)前記(1)または(2)に記載の鋼板の製造方法であり、
 鋼素材を1200℃以上で加熱し、仕上げ圧延温度:870℃以上および最終スタンドの圧下率:10%以上の条件にて圧延を施して550~750℃の温度範囲内で巻取る熱間圧延工程と、
 前記熱間圧延後の熱延板に酸洗を行う酸洗工程と、
 前記酸洗後の熱延板に、圧下率:88%以上の冷間圧延を行う一次冷間圧延工程と、
 前記一次冷間圧延後の冷延板を、660~760℃の温度域に60秒以下で保持したのち、10℃/s以上の平均冷却速度で450℃以下の温度域まで冷却し、次いで5℃/s以上の平均冷却速度で140℃以下の温度域まで冷却する焼鈍工程と、
 前記焼鈍板に、10%以上40%以下の圧下率で冷間圧延を行う二次冷間圧延工程と、を有する鋼板の製造方法。
 本発明によれば、薄肉化しても十分な強度を有しかつ成形性に優れる鋼板を、その有利な製造方法と共に提供することができる。さらに、本発明の鋼板を例えば王冠用あるいはDRD缶用に供した場合に、高い耐圧強度を安定して有する王冠あるいは形状安定性に優れたDRD缶を成形することができる。
 本発明に係る鋼板は、質量%で、C:0.0060%超0.0100%以下、Si:0.05%以下、Mn:0.05%以上0.60%以下、P:0.050%以下、S:0.050%以下、Al:0.020%以上0.050%以下、N:0.0140%超0.0180%以下およびCr:0.040%以下を含有し、残部はFeおよび不可避的不純物の成分組成を有し、圧延方向の時効指数が25~55MPaである。
 まず、鋼板の成分組成における各成分量の限定理由から順に説明する。なお、成分に関する「%」表示は、特に断らない限り「質量%」を示す。
C:0.0060%超0.0100%以下
 Cの含有量を0.0060%以下とすると、後述の二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に、耐圧強度が低下する。同様に、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生し形状不良の缶となる。一方、C含有量が0.0100%超となると、二次冷間圧延後の鋼板のフェライトが微細となりすぎて鋼板強度が過剰に上昇して成形性が劣化し、例えば王冠用に供した場合に、成形した王冠の形状が劣化することに起因して、耐圧強度が低下する。同様に、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生し形状不良の缶となる。よって、Cの含有量は0.0060%超0.0100%以下とする。好ましくは、Cの含有量は0.0065%以上0.0090%以下とする。
Si:0.05%以下
 Siを多く含むと鋼板強度が過剰に上昇して成形性が劣化し、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。よって、Siの含有量は0.05%以下とする。また、過剰にSiを低下させることは製鋼コストの増大を招くため、Siの含有量は0.004%以上とすることが好ましい。より好ましくは、0.01%以上0.03%以下である。
Mn:0.05%以上0.60%以下
 Mnの含有量が0.05%を下回ると、Sの含有量を低下させても熱間脆化を回避することが困難になり、連続鋳造時に表面割れなどの問題が生じる。よって、Mnの含有量は0.05%以上とする。一方、Mnを多く含むと、Cと同様の理由により、例えば王冠用に供した場合に、成形した王冠の形状が劣化して耐圧強度が低下する。同様に、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。よって、Mnの含有量は0.60%以下とする。好ましくは、Mnの含有量は0.10%以上0.50%以下である。
P:0.050%以下
 Pの含有量が0.050%を超えると、鋼板が過剰に硬質化し、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に、成形した王冠の形状が劣化するとともに、耐圧強度が低下する。同様に、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。よって、Pの含有量の上限値は0.050%とする。また、Pを0.001%未満とするには脱Pコストが過大となるため、Pの含有量は0.001%以上とすることが好ましい。
S:0.050%以下
 Sは、鋼板中でMnと結合してMnSを形成し、多量に析出することで鋼板の熱間延性を低下させる。Sの含有量が0.050%を超えるとこの影響が顕著となる。よって、Sの含有量の上限値は0.050%とする。また、Sを0.005%未満とするには脱Sコストが過大となるため、Sの含有量は0.004%以上とすることが好ましい。
Al:0.020%以上0.050%以下
 Alは、脱酸剤として含有させる元素であり、また鋼中のNとAlNを形成し、鋼中の固溶Nを減少させる。Al含有量が0.020%未満であると脱酸剤としての効果が不十分になり、凝固欠陥の発生を招くとともに製鋼コストが増大する。さらに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下する。同様に、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。一方、Alの含有量が0.050%超となると、AlNの形成が増加して、後述する固溶Nとして鋼板強度に寄与するN量が低減し、鋼板強度が低下するため、Al含有量は0.050%以下とする。好ましくは、Al含有量は0.030%以下0.045%以下である。
N:0.0140%超0.0180%以下
 Nの含有量を0.0140%以下とすると、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下するとともに、後述する固溶Nとして鋼板強度に寄与するN量が低減し、鋼板強度が低下する。あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生し形状不良の缶となる。一方、N含有量が0.0180%超となると、上記の時効指数が55MPa超となり、二次冷間圧延後の鋼板が過剰に硬質化し、例えば王冠用に供した場合に、成形した王冠の形状が劣化して耐圧強度が低下する。あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。好ましくは、Nの含有量は0.0150%超0.0170%以下とする。
Cr:0.040%以下
 Crの含有量が0.040%を超えると、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下するとともに、固溶Cとして鋼板強度に寄与するC量が低減し、鋼板強度が低下する。あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。よって、Crの含有量の上限値は0.040%とする。また、Crを0.001%未満とするためには製鋼コストが過大となるため、Crの含有量は0.001%以上とすることが好ましい。
 以上の成分以外の残部は、Feおよび不可避的不純物とする。
 次に、本発明に係る鋼板の機械的性質として、圧延方向の時効指数が25~55MPaであることが肝要である。
 すなわち、鋼板の圧延方向の時効指数が25MPa未満となると、該鋼板を例えば王冠用に供して多数の王冠を成形して耐圧試験に供した場合に、耐圧強度の低い王冠が散見されることになり、王冠を製造する際の歩留りが低下する。あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。一方、時効指数が55MPaを超えると、鋼板強度が過剰に上昇するために、例えば王冠用に供した際に王冠の形状が不均一となり、多数の王冠を成形して耐圧試験に供した場合に、耐圧強度の低い王冠が散見されることになり、王冠を製造する際の歩留りが低下する。あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。
 ここで、鋼板の圧延方向の時効指数は、鋼板の圧延方向に平行にJIS5号サイズの引張試験片を採取して、「JIS G3135」を参考に試験を行って得られる。すなわち、試験片に予ひずみ8%を与えて、そのときの荷重(8%予ひずみ荷重;P1)を読み取り、その後荷重を除去した。次いで、予ひずみを与えた試験片に100℃で1時間の熱処理を施した。熱処理後に引張試験を実施して降伏荷重(熱処理後荷重;P2)を読み取り、次式で時効指数を求めた。
 時効指数=(P2-P1)/A (A;予ひずみ前の試験片平行部断面積)
 上記を満足する時効指数は、成分組成を調整し、熱間圧延工程での加熱温度、仕上げ圧延温度、最終スタンドの圧下率、巻取り温度を調整し、一次冷間圧延率の圧下率を調整し、連続焼鈍工程での冷却速度を調整し、二次冷間圧延工程における圧下率を調整することで得ることができる。なお、製造条件の詳細については、後述する。
 以上の成分組成および機械的性質を有する鋼板では、例えば0.20mm以下の板厚であっても、高い強度、具体的には620MPa以上の降伏強度を確保することができる。
 すなわち、本発明の鋼板には、例えば王冠に供する場合に、瓶の口にかしめた王冠が内圧によって外れないための、耐圧強度が求められる。従来用いられてきた王冠用鋼板の板厚は0.22mm以上であったが、板厚を0.20mm以下、特に0.18mm以下とする薄肉化にあたっては、従来よりも高い強度が必要となる。鋼板の降伏強度が620MPa未満であると、上記のような薄肉化した王冠に十分な耐圧強度を付与することが不可能である。そのためには、降伏強度は620MPa以上である必要がある。降伏強度が高すぎると王冠成形時に王冠高さが低くなり王冠形状が不均一となるため、圧延方向の降伏強度は700MPa以下である必要がある。
 なお、降伏強度は「JIS Z 2241」に示される金属材料引張試験方法により測定できる。
 次に、本発明に係る鋼板の製造方法について説明する。
 本発明の鋼板は、上記成分組成からなる鋼素材(鋼スラブ)を、1200℃以上で加熱し、仕上げ圧延温度が870℃以上で、最終スタンドの圧下率が10%以上とし、550~750℃の温度範囲内で巻取る熱間圧延工程と、前記熱間圧延後に酸洗する酸洗工程と、前記酸洗工程後に、圧下率が88%以上で冷間圧延する一次冷間圧延工程と、前記一次冷間圧延後に、均熱温度が660~760℃の温度域にある保持時間が60秒以下とし、10℃/s以上の平均冷却速度で450℃以下の温度域まで冷却し、5℃/s以上の平均冷却速度で140℃以下の温度域まで冷却する連続焼鈍工程と、10%以上40%以下の圧下率で二次冷間圧延を行うことで製造される。
 なお、以下の説明において、温度の規定は鋼板の表面温度を基準とする。また、平均冷却速度は表面温度を基に計算して得られた値とする。例えば、均熱温度から450℃以下の温度域までの平均冷却速度は((均熱温度-(450℃以下の温度域))/均熱温度から(450℃以下の温度域)までの冷却時間)で表される。なお、上式における「450℃以下の温度域」とは該温度域にある冷却停止温度を意味している。
 本発明に係る鋼板を製造する際は、転炉などを用いた公知の方法により、溶鋼を上記の化学成分に調整し、その後、例えば連続鋳造法によるスラブとして、鋼素材とする。
(鋼素材加熱温度:1200℃以上)
 熱間圧延工程の鋼素材の加熱温度は1200℃以上とする。該加熱温度が1200℃未満であると、本発明において強度を確保するために必要な固溶N量が低減し、強度が低下するため、1200℃以上とする。なお、本発明の鋼組成では鋼中Nは主にAlNとして存在すると考えられるため、Nの総量(Ntotal)からAlNとして存在するN量(NasAlN)を差し引いた(Ntotal-(NasAlN))を固溶N量とみなした。鋼板の圧延方向の降伏強度を600MPa以上とするためには、固溶N量は0.0141%以上であることが好ましく、鋼素材加熱温度を1200℃以上とすることで確保することができる。より好ましい固溶N量は、0.0150%以上であり、そのためには鋼素材加熱温度を1220℃以上とするとよい。鋼素材加熱温度は1300℃超としても効果が飽和するため1300℃以下が好ましい。
(仕上げ圧延温度:870℃以上)
 熱間圧延工程の仕上げ温度が870℃未満となると、鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、仕上げ温度は、例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良を生じる。従って、仕上げ温度は、870℃以上とする。一方、必要以上に仕上げ圧延温度を高くすることは薄鋼板の製造を困難にする場合がある。具体的には、仕上げ圧延温度は870℃以上950℃以下の温度範囲内とすることが好ましい。
(最終スタンドの圧下率:10%以上)
 熱間圧延工程の最終スタンドの圧下率は10%以上とする。最終スタンドの圧下率が10%未満となると、鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、最終スタンドの圧下率は10%以上とする。フェライト粒径の標準偏差を小さくするには最終スタンドの圧下率は12%以上とすることが好ましい。最終スタンドの圧下率の上限は、圧延荷重の観点で15%以下とすることが好ましい。
(巻取温度:550~750℃)
 熱間圧延工程の巻取温度が550℃未満となると、鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下するため、あるいは、例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、巻取温度は550℃以上とする。一方、巻取温度が750℃より高くなると、鋼板のフェライトの一部が粗大化し、鋼板の強度が低下し、例えば王冠用に供した場合に耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、巻取温度は750℃以下が好ましい。好ましくは600℃以上700℃以下である。
(酸洗)
 その後、酸洗を行うことが好ましい。酸洗は、表層スケールが除去できればよく、特に条件を限定する必要はない。
 次に、冷間圧延は、焼鈍を挟む2回に分けて行う。
(一次冷間圧延圧下率:88%以上)
まず、一次冷間圧延工程の圧下率は88%以上とする。一次冷間圧延工程の圧下率は88%未満となると冷間圧延で鋼板に付与されるひずみが低下するため、連続焼鈍工程における再結晶が不均一となり、再結晶後のフェライト粒径のサイズのばらつきが大きくなり、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、一次冷間圧延工程の圧下率は88%以上とする。より好ましくは89~94%とする。
 一次冷間圧延後の焼鈍工程では、660~760℃の温度域に60秒以下で保持したのち、10℃/s以上の平均冷却速度で450℃以下の温度域まで冷却する前段冷却と、次いで5℃/s以上の平均冷却速度で140℃以下の温度域まで冷却する後段冷却と、を行う。
(均熱温度:660~760℃)
 すなわち、連続焼鈍工程における均熱温度は、660~760℃の温度で行う。均熱温度を760℃超とすると、連続焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなり、好ましくない。また、鋼板のフェライト粒径が一部粗大化し、鋼板の強度が低下するとともに、鋼板の圧延方向の時効指数が25MPa未満となり、例えば王冠用に供した場合に耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。一方、焼鈍温度が660℃未満であると、再結晶が不完全となり、鋼板のフェライト粒径が一部細かくなり、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、均熱温度は、660~760℃の温度で行うこととする。好ましくは、680~730℃の温度で行う。
 均熱温度が660~760℃の温度域にある保持時間は60秒以下とする。保持時間が60秒を超えると、鋼板に含有するCがフェライト粒界へ偏析して、連続焼鈍工程での冷却過程で炭化物として析出し、鋼板強度に寄与する固溶C量が低減し、降伏強度が低下するとともに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。従って、均熱温度が660~760℃の温度域にある保持時間は60秒以下とする。なお、保持時間が5秒未満となると、均熱帯のロールを鋼板が通板する際の安定性が損なわれるため、好ましくは保持時間を5秒以上とする。
(前段冷却:10℃/s以上の平均冷却速度で450℃以下まで冷却)
 前記均熱後、10℃/s以上の平均冷却速度で450℃以下の温度域まで冷却する。平均冷却速度が10℃/s未満となると、冷却中に炭化物析出が促進されて、鋼板強度に寄与する固溶C量が低減し、降伏強度が低下するとともに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合に、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。なお、平均冷却速度が50℃/s超となると上記の効果が飽和するため、平均冷却速度は50℃/s以下とすることが好ましい。
 また、均熱後の前段冷却における冷却停止温度が450℃超となると、前段冷却後に炭化物析出が促進されて、鋼板強度に寄与する固溶C量が低減し、降伏強度が低下するとともに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。なお、均熱後の前段冷却における冷却停止温度が300℃未満となると、炭化物析出抑制効果が飽和するばかりか、二次冷間圧延後の鋼板の圧延方向の時効指数が55MPa超となり、鋼板強度が過剰に上昇するため、例えば王冠用に供した場合に王冠の形状が不均一となり、多数の王冠を成形して耐圧試験に供すると耐圧強度の低い王冠が散見されることになり、王冠を製造する際の歩留りが低下する。さらに、鋼板を例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。さらにまた、通板する際の鋼板形状が劣化してトラブルが発生する、虞れがあるため、均熱後の冷却停止温度は300℃以上とすることが好ましい。
(後段冷却:5℃/s以上の平均冷却速度で140℃以下まで)
 前段冷却後の後段冷却では、5℃/s以上の平均冷却速度で前段冷却時の冷却停止温度から140℃以下の温度域まで冷却する。平均冷却速度が5℃/s未満となると、鋼板強度に寄与する固溶C量が低減し降伏強度が低下するとともに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。なお、平均冷却速度が30℃/s超となると、効果が飽和するばかりか、冷却設備に過剰なコストが発生するため後段冷却での平均冷却速度は30℃/s以下が好ましい。より好ましくは25℃/s以下である。
 後段冷却では140℃以下まで冷却する。140℃超となると、鋼板強度に寄与する固溶C量が低減し、降伏強度が低下するとともに、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となって耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。なお、冷却停止温度が100℃未満となると効果が飽和するばかりか、冷却設備に過剰なコストが発生するため100℃以上が好ましい。より好ましくは120℃以上である。
(二次冷間圧延圧下率:10%以上40%以下)
 本発明の鋼板は、焼鈍後の二回目の冷間圧延により高い降伏強度を得ることができる。すなわち、二次冷間圧延の圧下率が10%未満であると、十分な降伏強度が得られず、例えば王冠用に供した場合の耐圧強度が低下する。また、二次冷間圧延の圧下率が40%を超えると、異方性が過大となり、例えば王冠用に供した場合の耐圧強度が低下する。さらに、鋼板を例えばDRD缶用に供した場合、DRD缶成形時にフランジ部にしわが発生する形状不良をまねく。よって、二次冷間圧延の圧下率は10%以上40%以下とすることが好ましい。より好ましくは、二次冷間圧延の圧下率は15%超35%以下である。
 上記のようにして得た冷延鋼板は、その後、必要に応じて、鋼板表面に、例えば電気めっきにより、錫めっき、クロムめっき、ニッケルめっき等のめっき処理を施してめっき層を形成し、めっき鋼板として使用に供してもよい。なお、めっき等の表面処理の膜厚は、板厚に対して十分に小さいので、鋼板の機械特性への影響は無視できるレベルである。
 以上、説明したように、本発明の鋼板は、薄肉化しても十分な強度および優れた材質均一性を備えることができる。従って、本発明の鋼板は特に王冠あるいはDRD缶の素材としては最適である。
 また、本発明の王冠は、上述した鋼板を用いて成形されるものである。王冠は、主に瓶の口を塞ぐ円盤状の部分と、その周囲に設けられた襞状の部分とから構成される。本発明の王冠は、本発明の鋼板を円形のブランクに打ち抜いた後、プレス成形により成形することができる。本発明の王冠は、十分な降伏強度を有し、かつ、材質均一性に優れた鋼板から製造されるので、薄肉化しても王冠としての耐圧強度に優れており、かつ王冠の外径および高さの均一が優れているため、王冠製造工程での歩留りが向上し、王冠製造に伴う廃棄物の排出量を減らす効果を有する。
 同様に、本発明のDRD缶は、上述した鋼板を用いて成形されるものである。DRD缶は、本発明の鋼板を円形のブランクに打ち抜いた後、絞り加工および再絞り加工を施すことにより成形することができる。本発明の鋼板を素材とするDRD缶は、形状が均一で製品規格から外れることがないため、DRD缶製造工程での歩留まりが向上し、DRD缶製造に伴う廃棄物の排出量を減らす効果も有する。
 表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼スラブを得た。ここで得られた鋼スラブに対して、表2に示すスラブ加熱温度、仕上圧延温度、巻取り温度での熱間圧延を施した。この熱間圧延後には酸洗を行った。次いで、表2に示す圧下率で一次冷間圧延を行い、表2に示す連続焼鈍条件にて連続焼鈍し、引き続き、表2に示す圧下率で二次冷間圧延を施した。得られた鋼板に電解クロム酸処理を連続的に施して、ティンフリースチールを得た。
Figure JPOXMLDOC01-appb-T000001
 以上にしたがって得られた鋼板に対して、210℃および15分の塗装焼付け相当の熱処理を行った後、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて、「JIS Z 2241」に従って行い、圧延方向の降伏強度を測定した。また、上記した測定方法に従って、鋼板の圧延方向の時効指数を求めた。
 なお、この塗装焼付け相当の熱処理は、該熱処理前の鋼板材質に何ら影響を与えるものではない。
 得られた鋼板を用いて王冠に成形し、王冠成形性を評価した。すなわち、直径37mmの円形ブランクを使用し、プレス加工により各鋼板について各50個(N=50)の王冠を成形した。次いで、王冠の高さ(王冠天面からスカート下端までの距離)をマイクロメータにて測定した。なお、N=20の王冠高さの標準偏差が0.09mm以下は王冠形状に優れ、同0.09mm超は王冠形状に劣ると判定した。得られた測定結果を表2に示す。
 また、得られた王冠について、耐圧試験も行った。
 ここで、耐圧試験は、王冠の内側に塩化ビニル製ライナーを成形し、市販ビール瓶に打栓してSecure Pak社製Secure Seal Testerを用いて王冠が外れる内圧を測定し、王冠が外れた内圧を耐圧強度とした。各50個の王冠に耐圧試験を実施して、耐圧強度が165psi以上である王冠の数が47個以上の場合を◎、耐圧強度が165psi以上である王冠の数が45個または46個の場合を○、耐圧強度が165psi以上である王冠の数が45未満の場合を×と評価した。得られた結果を表2に示す。
 得られた鋼板を用いて、210℃、15分の塗装焼付け相当の熱処理を行った後、DRD缶に成形し、DRD缶成形性を評価した。すなわち、直径158mmの円形ブランクを使用し、絞り加工および再絞り加工を施し、内径82.8mm、フランジ径102mmのDRD缶を成形し、DRD缶成形性を評価した。評価は、目視でフランジ部に微細なしわが3箇所以上見られるサンプルを×、フランジ部の微細なしわが2箇所であるサンプルを○、フランジ部の微細なしわが1箇所以下であるサンプルを◎とした。この評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明例であるNo.1~22の鋼板は、圧延方向の降伏強度が600MPa以上、かつ耐圧強度が165psi以上である王冠の数が45個以上であり、安定した耐圧強度を有していた。また、圧延方向の降伏強度が560MPa以上、かつ王冠高さの標準偏差が0.09mm以下であり、王冠成形性が良好であり、DRD缶成形性が良好であった。
 一方、比較例であるNo.23~25の鋼板は、Cの含有量が多すぎるため、二次冷間圧延後の鋼板のフェライト粒径が微細となることならびに時効指数が55MPa超となり鋼板が過剰に硬質化するため、成形した王冠の形状が不均一となることに起因して、耐圧強度が165psi以上である王冠の数が45未満となり王冠相互で耐圧強度がばらつき高い耐圧強度を安定して得られなかった。さらに、王冠高さの標準偏差が0.09mm超となり王冠成形性が劣化し、DRD缶成形性も劣化することが分かった。
 No.26~28の鋼板は、Cの含有量が少なすぎるため、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、耐圧強度が165psi以上である王冠の数が45未満となり王冠相互で耐圧強度がばらつくことが分かった。また、DRD缶成形性も劣化することが分かった。
 No.29の鋼板は、Mnの含有量が多すぎるため、鋼板が過剰に硬質化するため王冠の形状が劣化することに起因して、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。また、DRD缶成形性も劣化することが分かった。
 No.30の鋼板は、Alの含有量が多すぎるため、AlNの形成が増加して、固溶Nとして鋼板強度に寄与するN量が低減し、鋼板強度が低下するためならびに二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。また、DRD缶成形性も劣化することが分かった。
 No.31の鋼板は、Alの含有量が少なすぎるため、脱酸剤としての効果が不十分であり、凝固欠陥の発生を招くとともに製鋼コストが増大する。また、時効指数が55MPa超となり、二次冷間圧延後の鋼板が過剰に硬質化し、成形した王冠の形状が不均一となることに起因して、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。また、DRD缶成形性も劣化することが分かった。
 No.32~34の鋼板は、Nの含有量が多すぎるため、時効指数が55MPa超となり、二次冷間圧延後の鋼板が過剰に硬質化し、成形した王冠の形状が不均一となることに起因して、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。また、DRD缶成形性も劣化することが分かった。
 No.35~37の鋼板は、Nの含有量が少なすぎるため、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、耐圧強度が165psi以上である王冠の数が45未満となり安定した耐圧強度を有しないとともに固溶Nとして鋼板強度に寄与するN量が低減し、鋼板強度が低下することが分かった。また、DRD缶成形性も劣化することが分かった。
 No.38の鋼板は、Pの含有量が多すぎるため、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、成形した王冠の形状が不均一となることに起因して、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。またDRD缶成形性も劣化することが分かった。
 No.39の鋼板は、Crの含有量が多すぎるため、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、耐圧強度が165psi以上である王冠の数が45未満となり安定した耐圧強度を有しないとともに固溶Cとして鋼板強度に寄与するC量が低減し、鋼板強度が低下することが分かった。またDRD缶成形性も劣化することが分かった。
 また、No.40の鋼板は、Siの含有量が多すぎるため、鋼板が過剰に硬質化し、成形した王冠の形状が不均一となることに起因して、耐圧強度が165psi以上である王冠の数が45未満となり高い耐圧強度を安定して得られなかった。またDRD缶成形性も劣化することが分かった。
 表1に示した鋼No.4、10および17の成分組成を有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼スラブを得た。ここで得られた鋼スラブに対して、表3に示すスラブ加熱温度、仕上圧延温度、巻取温度での熱間圧延を施した。熱間圧延後には酸洗を施した。次いで、表3に示す圧下率で一次冷間圧延を行い、表3に示す均熱保持温度、均熱保持時間、前段冷却平均速度、前段冷却停止温度、後段冷却平均速度、後段冷却停止温度で連続焼鈍し、引き続き、表3に示す圧下率で二次冷間圧延を施した。得られた鋼板に電解クロム酸処理を連続的に施して、ティンフリースチールを得た。
 以上により得られた鋼板に対して、前述と同様の方法で引張試験を行うとともに、同様に鋼板の圧延方向の時効指数を求めた。さらに、前述と同様の方法で王冠成形性および王冠の耐圧強度とDRD缶成形性を評価した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例である鋼板No.41、44、46、48、49、53~56、59、60、64の鋼板は、圧延方向の降伏強度が600MPa以上、かつ耐圧強度が165psi以上である王冠の数が45個以上であり、安定した耐圧強度を有していた。また、圧延方向の降伏強度が560MPa以上、かつ王冠高さの標準偏差が0.09mm以下であり、王冠成形性は良好であり、DRD缶成形性も良好であった。
 一方、比較例である鋼板No.42、43、45、47、50、51、52、57、58、61、62、65、67の鋼板は、スラブ加熱温度、仕上圧延温度、熱間圧延工程の最終スタンドの圧下率、巻取温度、一次冷間圧延圧下率、均熱温度、均熱保持時間、前段冷却平均速度、二次冷間圧下率、後段冷却平均速度の何れかが本発明範囲を外れるため、二次冷間圧延後の鋼板の圧延方向の時効指数が25MPa未満となり、耐圧強度が165psi以上である王冠の数が45未満となり安定した耐圧強度を有しないあるいは/または圧延方向の降伏強度が低下することが分かった。あるいは/またはDRD缶成形性が劣化することが分かった。
 比較例である鋼板No.63の鋼板は、二次冷間圧下率が高すぎるため、異方性が過大となり、王冠形状の均一性を損なうことに起因して、耐圧強度が165psi以上である王冠の数が45未満となり安定した耐圧強度を有しないことが分かった。またDRD缶成形性が劣化することが分かった。
 比較例である鋼板No.66の鋼板は、前段冷却停止温度が低すぎるため、二次冷間圧延後の鋼板の圧延方向の時効指数が55MPa超となり、鋼板強度が過剰に上昇して耐圧強度が165psi以上である王冠の数が45未満となり、安定した耐圧強度を有しないことが分かった。また、DRD缶成形性が劣化することが分かった。

Claims (5)

  1.  質量%で、
     C:0.0060%超0.0100%以下、
     Si:0.05%以下、
     Mn:0.05%以上0.60%以下、
     P:0.050%以下、
     S:0.050%以下、
     Al:0.020%以上0.050%以下、
     N:0.0140%超0.0180%以下および
     Cr:0.040%以下
    を含有し、残部はFeおよび不可避的不純物の成分組成を有し、
     圧延方向の時効指数が25~55MPaであり、
    降伏強度が620~700MPaである鋼板。
  2.  板厚が0.20mm以下である請求項1に記載の鋼板。
  3.  請求項1または2に記載の鋼板からなる王冠。
  4.  請求項1または2に記載の鋼板からなるDRD缶。
  5.  請求項1または2に記載の鋼板の製造方法であり、
     鋼素材を1200℃以上で加熱し、仕上げ圧延温度:870℃以上および最終スタンドの圧下率:10%以上の条件にて圧延を施して550~750℃の温度範囲内で巻取る熱間圧延工程と、
     前記熱間圧延後の熱延板に酸洗を行う酸洗工程と、
     前記酸洗後の熱延板に、圧下率:88%以上の冷間圧延を行う一次冷間圧延工程と、
     前記前記一次冷間圧延後の冷延板を、660~760℃の温度域に60秒以下で保持したのち、10℃/s以上の平均冷却速度で450℃以下300℃以上の温度域まで冷却し、次いで5℃/s以上30℃/s以下の平均冷却速度で140℃以下の温度域まで冷却する焼鈍工程と、
     前記焼鈍板に、10%以上40%以下の圧下率で冷間圧延を行う二次冷間圧延工程と、を有する鋼板の製造方法。
PCT/JP2018/012699 2017-03-31 2018-03-28 鋼板およびその製造方法と王冠およびdrd缶 WO2018181451A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2019005043A MY193307A (en) 2017-03-31 2018-03-28 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (drd) can
JP2018541434A JP6468405B1 (ja) 2017-03-31 2018-03-28 鋼板およびその製造方法と王冠およびdrd缶
CN202111367805.6A CN114277312A (zh) 2017-03-31 2018-03-28 钢板以及瓶盖和drd罐
CN201880021688.8A CN110462089B (zh) 2017-03-31 2018-03-28 钢板的制造方法
KR1020197031995A KR102288712B1 (ko) 2017-03-31 2018-03-28 강판 및 그의 제조 방법과 왕관 및 drd캔
PH12019501996A PH12019501996A1 (en) 2017-03-31 2019-08-30 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (drd) can

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071559 2017-03-31
JP2017-071559 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181451A1 true WO2018181451A1 (ja) 2018-10-04

Family

ID=63677905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012699 WO2018181451A1 (ja) 2017-03-31 2018-03-28 鋼板およびその製造方法と王冠およびdrd缶

Country Status (7)

Country Link
JP (1) JP6468405B1 (ja)
KR (1) KR102288712B1 (ja)
CN (2) CN110462089B (ja)
MY (1) MY193307A (ja)
PH (1) PH12019501996A1 (ja)
TW (1) TWI668313B (ja)
WO (1) WO2018181451A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270191A (ja) * 2008-04-10 2009-11-19 Nippon Steel Corp 深絞り性に優れた冷延鋼板およびその製造方法
WO2013008457A1 (ja) * 2011-07-12 2013-01-17 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2016104773A1 (ja) * 2014-12-26 2016-06-30 新日鐵住金株式会社 王冠用鋼板の製造方法及び王冠用鋼板
JP2017214619A (ja) * 2016-05-31 2017-12-07 Jfeスチール株式会社 容器用鋼板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057023B2 (ja) 1979-07-25 1985-12-12 松下電工株式会社 防排煙制御装置の断線短絡検出回路
CN1101482C (zh) * 1998-04-08 2003-02-12 川崎制铁株式会社 罐用钢板及其制造方法
JP2000054070A (ja) * 1998-08-05 2000-02-22 Kawasaki Steel Corp 耐肌荒れ性および耐時効性に優れる缶用鋼板およびその製造方法
KR20100047008A (ko) * 2008-10-28 2010-05-07 현대제철 주식회사 가공성이 우수한 비시효 열연강판 및 그 제조방법
US9090960B2 (en) * 2010-11-22 2015-07-28 Nippon Steel and Sumitomo Metal Corporation Strain aging hardening steel sheet excellent in aging resistance, and manufacturing method thereof
CN103998638B (zh) * 2011-12-12 2016-05-18 杰富意钢铁株式会社 耐时效性优良的钢板及其制造方法
JP5803836B2 (ja) * 2012-07-30 2015-11-04 新日鐵住金株式会社 熱間プレス鋼板部材、その製造方法と熱間プレス用鋼板
BR112016019612A2 (pt) * 2014-02-25 2018-10-23 Jfe Steel Corp folha de aço para tampa de coroa, método para fabricação da mesma e tampa de coroa
BR112016025118B1 (pt) * 2014-04-30 2021-02-17 Jfe Steel Corporation chapa de aço de alta resistência e método para fabricação da mesma

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270191A (ja) * 2008-04-10 2009-11-19 Nippon Steel Corp 深絞り性に優れた冷延鋼板およびその製造方法
WO2013008457A1 (ja) * 2011-07-12 2013-01-17 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2016104773A1 (ja) * 2014-12-26 2016-06-30 新日鐵住金株式会社 王冠用鋼板の製造方法及び王冠用鋼板
JP2017214619A (ja) * 2016-05-31 2017-12-07 Jfeスチール株式会社 容器用鋼板

Also Published As

Publication number Publication date
JPWO2018181451A1 (ja) 2019-04-04
JP6468405B1 (ja) 2019-02-13
CN114277312A (zh) 2022-04-05
PH12019501996A1 (en) 2020-03-16
TWI668313B (zh) 2019-08-11
MY193307A (en) 2022-10-03
TW201837201A (zh) 2018-10-16
CN110462089B (zh) 2022-03-15
KR102288712B1 (ko) 2021-08-10
KR20190133744A (ko) 2019-12-03
CN110462089A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP5858208B1 (ja) 高強度容器用鋼板及びその製造方法
JP5958630B2 (ja) 王冠用鋼板およびその製造方法
TWI493053B (zh) 三片式罐體及其製造方法
WO2016056239A1 (ja) 王冠用鋼板およびその製造方法
JP6601571B2 (ja) 王冠用鋼板およびその製造方法並びに王冠
JP5988012B1 (ja) 王冠用鋼板およびその製造方法ならびに王冠
JP6468405B1 (ja) 鋼板およびその製造方法と王冠およびdrd缶
JP6468406B1 (ja) 鋼板およびその製造方法と王冠およびdrd缶
JP6052474B1 (ja) 王冠用鋼板、王冠用鋼板の製造方法および王冠
JP6468404B1 (ja) 鋼板およびその製造方法と王冠およびdrd缶
JP6465265B1 (ja) 王冠用鋼板、王冠、および王冠用鋼板の製造方法
JP6176225B2 (ja) 王冠用鋼板およびその製造方法ならびに王冠

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541434

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031995

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777440

Country of ref document: EP

Kind code of ref document: A1