WO2013181900A1 - 多晶硅阵列基板上多晶硅薄膜电阻的测试方法 - Google Patents

多晶硅阵列基板上多晶硅薄膜电阻的测试方法 Download PDF

Info

Publication number
WO2013181900A1
WO2013181900A1 PCT/CN2012/084602 CN2012084602W WO2013181900A1 WO 2013181900 A1 WO2013181900 A1 WO 2013181900A1 CN 2012084602 W CN2012084602 W CN 2012084602W WO 2013181900 A1 WO2013181900 A1 WO 2013181900A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
layer
polysilicon film
polysilicon
Prior art date
Application number
PCT/CN2012/084602
Other languages
English (en)
French (fr)
Inventor
田慧
金馝奭
龙春平
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013181900A1 publication Critical patent/WO2013181900A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2637Circuits therefor for testing other individual devices

Definitions

  • Embodiments of the present invention relate to a method of testing polysilicon film resistance on a polysilicon array substrate. Background technique
  • a main feature of a Thin Film Transistor Liquid Crystal Display is to configure a semiconductor switching device, that is, a Thin Film Transistor (TFT) for each pixel. Therefore, the most important step in the TFT-LCD manufacturing process is to form a TFT array (preparation of a polysilicon array substrate) on a substrate. Specifically, a polysilicon film is formed on the substrate, and the polysilicon film is doped to form a source and a drain of the TFT device, and the resistance value and resistance uniformity of the polysilicon film formed at the source and drain directly affect the electrical performance of the transistor device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the conductivity of the polysilicon film is not only related to the doping amount, but also to the crystal structure of the polysilicon film itself. Therefore, in the transistor fabrication process, it is necessary to timely detect the resistance value of the polysilicon film to adjust various parameters in the fabrication process of the polysilicon film and the ion implantation process.
  • the resistance value of the film is generally estimated by measuring the thickness of the polysilicon film, or the resistance of the source and drain of the TFT device is calculated by measuring the I-V curve of the device.
  • the resistance value obtained by thickness estimation is only a theoretical calculation value, and generally differs greatly from the actual value.
  • the resistance calculated by the IV curve is the resistance of the source and drain of the TFT device, generally a multilayer film including a polysilicon film.
  • the total resistance does not accurately reflect the quality of the polysilicon film; other methods of directly measuring the resistance of the polysilicon film, such as the four-probe method, can cause damage to the substrate film (mainly polysilicon film).
  • the technical problem to be solved by the embodiments of the present invention is to provide a test method for polysilicon film resistance on a polysilicon array substrate, which can accurately measure the resistance of the polysilicon film on the polysilicon array substrate, and the test process does not cause damage to the substrate film layer.
  • embodiments of the present invention employ the following technical solutions.
  • An aspect of an embodiment of the present invention provides a method for testing a polysilicon film resistance on a polysilicon array substrate, the method comprising:
  • the method may further include:
  • the subsequent process is continued on the substrate on which the step b has been performed; if the result of the resistance test does not meet the production specification, Then, the substrate on which the step b has been performed is corrected according to the result of the resistance test, so that the polysilicon film on the substrate meets the production specifications.
  • step b includes:
  • the gate insulating layer serves as a barrier layer during the ion implantation.
  • step c includes the following substeps:
  • sub-step c3 is specifically: performing a resistance test on the polysilicon film on the monitor sheet by a four-probe method.
  • the gate insulating layer on the polysilicon film is removed by wet etching.
  • the doping ions in the polysilicon film are activated by rapid annealing.
  • the sub-step bl includes:
  • the amorphous silicon thin film is simultaneously crystallized by an excimer laser to form a polycrystalline silicon thin film.
  • the buffer layer film comprises: a SiO 2 film layer, a SiN film layer or a SiO 2 film layer and a SiN film layer.
  • the amorphous silicon film has a thickness of 40 nm to 200 nm.
  • step b further includes the following steps:
  • the gate insulating layer in sub-step b2 comprises: a SiO 2 film layer, a SiN film layer or a composite layer formed by a SiO 2 film layer and a SiN film layer.
  • a doped polysilicon film, a gate insulating layer, and a polysilicon film on the monitor sheet are simultaneously formed on the substrate and the monitor sheet by providing a monitor sheet. Perform a resistance test to determine whether the monitor continues to perform subsequent processes on the monitored substrate based on the results of the monitor resistance test.
  • the resistance of the polysilicon film on the substrate is indirectly tested by the monitoring sheet, and the resistance of the polysilicon film on the substrate can be monitored in a timely and accurate manner, and the testing process does not cause damage to the substrate film layer. Conducive to the correct evaluation of the quality of polysilicon film, can reduce production losses and improve production efficiency.
  • FIG. 1 is a flow chart showing a test method for a polysilicon film resistor on a polysilicon array substrate according to an embodiment of the invention
  • FIG. 2 is a flow chart showing a test method for a polysilicon film resistor on a polysilicon array substrate according to an embodiment of the invention
  • FIG. 3 is a flow chart showing a test method for a polysilicon film resistor on a polysilicon array substrate according to an embodiment of the invention
  • FIG. 4 is a flow chart of a method for testing polysilicon film resistance on a polysilicon array substrate according to an embodiment of the invention. detailed description
  • Embodiments of the present invention provide a method for testing a polysilicon film resistor on a polysilicon array substrate, which can timely and accurately monitor the resistance of the doped polysilicon film, thereby reducing production loss and improving production efficiency.
  • An embodiment of the invention provides a method for testing a polysilicon film resistor on a polysilicon array substrate. As shown in FIG. 1, the method includes:
  • a doped polysilicon film and a gate insulating layer on the substrate and the monitor sheet, wherein a patterned polysilicon film is formed on the substrate, and patterned polysilicon is formed on the monitor sheet.
  • the specific number of the monitoring pieces can be set according to the production requirements, which is not limited in this embodiment. Since the material of the substrate has an influence on the composition, structure and quality of the film layer formed thereon, for example, the monitor sheet can be made of the same material as the substrate.
  • the substrate and the monitor sheet perform step b together to form a doped polysilicon film and a gate insulating layer simultaneously on the substrate and the monitor sheet.
  • the substrate and the monitoring sheet execute the respective processes in the same batch in the same line on the production line, thereby ensuring that the film layers deposited on the substrate are consistent with the film layers formed on the monitoring sheet, and the resistance test result of the monitoring sheet is It can represent the electrical resistance of the polysilicon film on the substrate being monitored.
  • a doped polysilicon film and a gate insulating layer are synchronously formed on the substrate and the monitor sheet, and then the polysilicon film on the monitor chip is subjected to a resistance test, thereby indirectly obtaining a polysilicon film on the substrate.
  • the resistance According to the testing method of the polysilicon film resistor according to the embodiment of the present invention, by setting the monitoring piece, the polycrystalline film of the monitoring piece can be directly The silicon film is subjected to resistance test to avoid damage of the film layer (mainly polysilicon film) on the substrate by the resistance test, and the polysilicon film resistance after doping can be directly and accurately monitored, thereby reducing production loss and improving production efficiency.
  • the method may further include:
  • the subsequent process is continued on the substrate on which the step b has been performed; if the result of the resistance test on the monitor sheet does not meet the production specification, The substrate on which the step b has been performed is corrected according to the result of the resistance test, so that the polysilicon film on the substrate meets the production specifications.
  • the resistance and uniformity of the polysilicon film forming the drain of the transistor source directly affect the electrical properties of the device, and the conductivity of the polysilicon film is not only related to the doping amount, the activation degree of the doping ions, but also the crystal of the polysilicon film itself. Related to grain structure. If the resistance of the monitor does not meet the production specifications, in order to reduce the production loss, the substrate after the step b has been corrected according to the result of the resistance test, so that the polysilicon film on the substrate meets the production specifications, and then continues. Process.
  • the correction of the substrate may be performed by increasing the resistance of the polysilicon film by means of secondary doping or the like, or reducing the resistance of the polysilicon film by re-annealing at a higher temperature, or by using the substrate.
  • the uniformity of resistance of the upper polysilicon film is improved. For example, if the resistance of the polysilicon film of the monitor sheet is less than the minimum resistance required by the production specification, the substrate may be subjected to secondary ion implantation to increase the doping amount, and the doping amount at the time of secondary ion implantation may be tested according to production specifications and resistance. The result is determined. Alternatively, to monitor the results of the compensation for secondary ion implantation, secondary ion implantation can be performed along with the monitor.
  • the step d may further include: adjusting the manufacturing process of the polysilicon film and the parameters in the ion implantation process according to the result of the resistance test, so that the substrate produced in the next batch meets the production specification.
  • the substrate can be corrected according to the result of the resistance test of the monitor sheet, and the polysilicon film on the board meets the production specifications, thereby reducing production loss and improving production efficiency.
  • step b a part of the process of forming a polysilicon TFT is performed on the substrate and the monitor sheet in step b. It is well known to those skilled in the art that the specific embodiments are various. A specific embodiment is shown as a reference. 3, wherein the step b includes:
  • a polysilicon film is formed on the substrate and the monitor sheet, and the specific implementation manner thereof is various.
  • a specific method for preparing the polysilicon film includes:
  • the amorphous silicon thin film is simultaneously crystallized by an excimer laser to form a polycrystalline silicon thin film.
  • Bl01 ⁇ bl03 is only one specific embodiment for preparing a polycrystalline silicon film on a substrate and a monitor sheet.
  • the method is not limited thereto.
  • the method for preparing the polycrystalline silicon film does not affect the implementation and implementation effects of the present invention. No longer here - introduction.
  • step b further includes:
  • the buffer layer film comprises: a SiO 2 film layer, a SiN film layer or a SiO 2 film layer and a SiN film layer.
  • the amorphous silicon film has a thickness of 40 nm to 200 nm.
  • the gate insulating layer in step b2 comprises: a SiO 2 film layer, a SiN film layer or a composite layer formed by a SiO 2 film layer and a SiN film layer.
  • step c performs a resistance test on the polysilicon film on the monitor sheet, and the step is performed separately on the monitor sheet.
  • the specific implementation manner is related to the specific implementation process of step b, and the specific implementation process of step b described above is combined.
  • step c may include the following sub-steps:
  • sub-steps cl and c2 are prepared for the resistance test in c3.
  • the gate insulating layer on the polysilicon film is removed (can be removed by etching), and the underlying polysilicon film is exposed to facilitate direct resistance testing of the polysilicon film.
  • step b4 is further included in step b, then in step cl, it is also necessary to remove the layer structure formed on the polysilicon film on the monitor sheet.
  • the doping ions introduced during ion implantation in the polysilicon film are activated, so that the doping ions are electrically active, generating free carriers, and also eliminating/repairing lattice damage caused by ion implantation.
  • step c the doped ions may also be activated first, and then the gate insulating layer is removed by etching, and the polysilicon film is subjected to resistance test after drying.
  • the resistance test described in substep c3 is a test of the resistance and resistance uniformity of the polysilicon film used to form the source and drain electrodes on the monitor chip.
  • Sub-steps cl ⁇ c3 are implemented in various ways, but it should be noted that in sub-step c2, the parameters of the process of activating the doping ions performed on the monitor sheet are generally performed with the activated dopant ions subsequently performed by the substrate monitored by the monitor sheet. The parameters of the process are consistent.
  • fast doping may be used to activate doped ions in the polysilicon film.
  • the gate insulating layer on the polysilicon film is removed by wet etching.
  • the polysilicon film on the monitor chip is subjected to a resistance test by a four-probe method in sub-step c3.
  • the four-probe method is a standard method for measuring semiconductor resistivity and sheet resistivity.
  • the device is simple, easy to operate, and highly accurate, but it is destructive to the sample to be tested (especially the layer to be tested).
  • a four-probe method to indirectly obtain the polysilicon film resistance on the substrate, and solving the polysilicon film in the prior art.
  • gate insulating layer a barrier layer for ion implantation in the doped region
  • the technical problem of directly measuring the resistance of the polysilicon film on the substrate by using the four-probe method can be used to timely and accurately monitor the resistance of the polysilicon film on the substrate, and also Damage to the polysilicon film on the substrate is avoided.
  • the result of the resistance test includes at least resistance test results of nine sets of measurement points on the polysilicon film to ensure accuracy of resistance uniformity evaluation of the polysilicon film.
  • the electrode in sub-step c3, in order to facilitate resistance testing of the polysilicon film, the electrode may be evaporated on the polysilicon film.
  • the method for testing the polysilicon film resistor according to the embodiment of the invention indirectly testing the polysilicon film on the polysilicon array substrate through the monitoring sheet, can timely and accurately monitor the resistance of the polysilicon film on the polysilicon array substrate, and the test process is not correct Damage caused by the substrate film layer is beneficial to the correct evaluation of the quality of the polysilicon film, which can reduce production loss and improve production efficiency.
  • the method according to another embodiment of the present invention may further include: d. if the result of the resistance test performed on the monitor sheet meets the production specification requirements, then the step b has been performed. The substrate continues to perform the subsequent process; if the result of the resistance test on the monitor sheet does not meet the production specification requirements, the substrate on which the step b has been performed is corrected according to the result of the resistance test, so that the polysilicon film on the substrate meets the production specifications. Claim.
  • the test method for the polysilicon film resistor according to the embodiment of the present invention determines whether the subsequent process in the transistor production process is continued on the substrate by setting the monitor piece according to the result of the resistance test of the monitor piece, and the doping can be monitored in time and accurately.
  • the polysilicon film resistor can reduce production losses and increase production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明的实施例公开了多晶硅阵列基板上多晶硅薄膜电阻的测试方法,可及时、准确地监测掺杂后的多晶硅薄膜电阻,能够降低生产损失,提高生产效率。所述方法包括:提供基板和监控片;在所述基板和监控片上同步形成掺杂的多晶硅薄膜、栅极绝缘层,其中,在所述基板上形成的为图案化的多晶硅薄膜,在所述监控片上形成的为图案化的多晶硅薄膜或不具有图案的多晶硅薄膜;对所述监控片上的多晶硅薄膜进行电阻测试。

Description

多晶硅阵列基板上多晶硅薄膜电阻的测试方法 技术领域
本发明的实施例涉及多晶硅阵列基板上多晶硅薄膜电阻的测试方法。 背景技术
薄膜晶体管液晶显示器 ( Thin Film Transistor Liquid Crystal Display, TFT-LCD)的主要特点是为每个像素配置一个半导体开关器件 ,即薄膜晶体管 (Thin Film Transistor, TFT)。 因此, TFT-LCD制造过程中, 最重要的一步即 是在基板上形成 TFT阵列 (制备多晶硅阵列基板)。 具体地, 先在基板上形 成多晶硅薄膜, 多晶硅薄膜再经掺杂形成 TFT器件的源漏极, 而形成源漏极 处的多晶硅薄膜的电阻值以及电阻均匀性直接影响到晶体管器件的电学性 能。 多晶硅薄膜的导电性能不只与掺杂剂量有关, 还与多晶硅薄膜本身的晶 粒结构有关。 因此,在晶体管制作过程中需要及时检测多晶硅薄膜的电阻值, 以调整多晶硅薄膜的制作工艺和离子注入工艺中的各项参数。 现有技术中, 一般通过测量多晶硅薄膜的厚度估算薄膜的电阻值, 或者通过测定器件的 I-V曲线来计算 TFT器件源漏极的电阻。
在上述过程中, 现有技术存在如下问题:
现有测量方法无法准确且无损地对多晶硅阵列基板上的多晶硅薄膜进行 电阻测试。 现有技术中通过厚度估算得到的电阻值只是理论计算值, 通常与 实际值相差较大, 通过 I-V曲线计算得到的是 TFT器件源漏极的电阻, 一般 是包括多晶硅薄膜在内的多层薄膜的总电阻, 也不能准确反映多晶硅薄膜的 质量; 而其它直接测量多晶硅薄膜电阻的方法如四探针法, 又会对基板膜层 (主要是多晶硅薄膜 )造成损伤。 发明内容
本发明的实施例所要解决的技术问题在于提供一种多晶硅阵列基板上多 晶硅薄膜电阻的测试方法,可准确测量多晶硅阵列基板上多晶硅薄膜的电阻, 并且测试过程不会对基板膜层造成损伤。 为达到上述目的, 本发明的实施例釆用如下技术方案。
本发明的实施例的一个方面提供了一种多晶硅阵列基板上多晶硅薄膜电 阻的测试方法, 该方法包括:
a、 提供基板和监控片;
b、 在基板和监控片上同步形成掺杂的多晶硅薄膜、 栅极绝缘层, 其中, 在所述基板上形成的为图案化的多晶硅薄膜, 在所述监控片上形成的为图案 化的多晶硅薄膜或不具有图案的多晶硅薄膜;
c、 对所述监控片上的多晶硅薄膜进行电阻测试。
可选地, 所述方法还可以包括:
d、如果对所述监控片进行的所述电阻测试的结果符合生产规格要求,则 对已执行完步骤 b的所述基板继续执行后继制程; 如果所述电阻测试的结果 不符合生产规格要求, 则根据所述电阻测试的结果对已执行完步骤 b的所述 基板进行修正, 使所述基板上的多晶硅薄膜符合生产规格要求。
可选地, 步骤 b包括:
bl、 在所述基板和监控片上同步形成多晶硅薄膜;
b2、 在所述多晶硅薄膜上同步形成栅绝缘层;
b3、 对所述多晶硅薄膜进行离子注入, 形成掺杂区域, 所述栅绝缘层作 为所述离子注入时的阻挡层。
可选地, 步骤 c包括以下子步骤:
cl、 去除所述监控片上的栅绝缘层;
c2、 激活所述多晶硅薄膜中的掺杂离子;
c3、 对所述多晶硅薄膜进行电阻测试。
可选地,子步骤 c3具体为: 通过四探针法对所述监控片上的多晶硅薄膜 进行电阻测试。
可选地, 子步骤 cl中釆用湿法刻蚀去除所述多晶硅薄膜上的栅绝缘层。 可选地, 子步骤 c2中釆用快速退火激活所述多晶硅薄膜中的掺杂离子。 可选地, 子步骤 bl包括:
在所述基板和监控片上同步形成緩冲层薄膜;
在所述緩冲层薄膜上同步形成非晶硅薄膜;
利用准分子激光仪对所述非晶硅薄膜同步进行晶化,以形成多晶硅薄膜。 可选地, 所述緩冲层薄膜包括: Si02薄膜层、 SiN 膜层或 Si02薄膜层 和 SiN 膜层形成的复合层。
可选地, 所述非晶硅薄膜的厚度为 40nm~200nm。
可选地, 步骤 b还包括以下步骤:
b4、 在所述基板和监控片上形成栅极图案、 保护层、 源电极图案和漏电 极图案; 或在基板上形成栅极图案、 保护层、 源电极图案和漏电极图案, 在 监控片上形成栅金属层、 保护层、 源漏金属层。
可选地, 子步骤 b2中所述栅绝缘层包括: Si02薄膜层、 SiN 膜层或 Si02薄膜层和 SiN 膜层形成的复合层。
本发明实施例所述的多晶硅阵列基板上多晶硅薄膜电阻的测试方法, 通 过设置监控片, 在所述基板和监控片上同步形成掺杂的多晶硅薄膜、 栅极绝 缘层, 然后对监控片上的多晶硅薄膜进行电阻测试, 根据监控片电阻测试的 结果确定监控片是否对所监控的基板继续执行后继制程。 根据本发明实施例 所述的测试方法, 通过监控片间接对基板上多晶硅薄膜进行电阻进行测试, 能及时、 准确地监控基板上多晶硅薄膜的电阻, 并且测试过程不会对基板膜 层造成损伤, 有利于对多晶硅薄膜质量做出正确评价, 能够降低生产损失, 提高生产效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为根据本发明一实施例的多晶硅阵列基板上多晶硅薄膜电阻的测试 方法流程图;
图 2为根据本发明一实施例的多晶硅阵列基板上多晶硅薄膜电阻的测试 方法流程图;
图 3为根据本发明一实施例的多晶硅阵列基板上多晶硅薄膜电阻的测试 方法流程图;
图 4为根据本发明一实施例的多晶硅阵列基板上多晶硅薄膜电阻的测试 方法流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种多晶硅阵列基板上多晶硅薄膜电阻的测试方法, 可及时、 准确地监测掺杂后多晶硅薄膜的电阻, 能够降低生产损失, 提高生 产效率。
下面结合附图对本发明实施例进行详细描述。 此处所描述的具体实施方 式仅仅用以解释本发明, 并不用于限定本发明。
本发明的一实施例提供一种多晶硅阵列基板上多晶硅薄膜电阻的测试方 法, 如图 1所示, 该方法包括:
a、 提供基板和监控片;
b、在所述基板和监控片上同步形成掺杂的多晶硅薄膜、栅极绝缘层, 其 中, 在所述基板上形成的为图案化的多晶硅薄膜, 在所述监控片上形成的为 图案化的多晶硅薄膜或不具有图案的多晶硅薄膜;
c、 对所述监控片上的多晶硅薄膜进行电阻测试。
所述监控片的具体数目可根据生产需要进行设置, 本实施例对此不加限 定。 由于衬底材质对形成在其上的膜层组分、 结构及膜层质量有影响, 所以 例如监控片可以选用与基板相同的材质。
基板和监控片一起执行步骤 b, 即在基板和监控片上同步形成掺杂的多 晶硅薄膜、 栅极绝缘层。 一般情况下, 具体实施中基板和监控片在生产线上 同炉同批次执行各制程, 由此保证基板上沉积的各膜层与监控片上形成的各 膜层一致, 监控片的电阻测试结果即可代表所监控的基板上的多晶硅薄膜的 电阻。
根据本实施例的所述多晶硅薄膜电阻的测试方法, 在基板和监控片上同 步形成掺杂的多晶硅薄膜和栅绝缘层, 然后再对监控片上的多晶硅薄膜进行 电阻测试, 从而间接获得基板上多晶硅薄膜的电阻。 根据本发明该实施例所 述的多晶硅薄膜电阻的测试方法, 通过设置监控片, 可直接对监控片的多晶 硅薄膜进行电阻测试, 避免电阻测试对基板上的膜层(主要是多晶硅薄膜) 的破坏, 可直接、 准确地监测掺杂后的多晶硅薄膜电阻, 能够降低生产损失, 提高生产效率。
根据本发明的另一实施例, 如图 2所示, 所述方法还可以包括:
d、如果对监控片进行的电阻测试的结果符合生产规格要求,则对已执行 完步骤 b的所述基板继续执行后继制程; 如果对监控片进行的电阻测试的结 果不符合生产规格要求, 则根据电阻测试的结果对已执行完步骤 b的基板进 行修正, 使所述基板上的多晶硅薄膜符合生产规格要求。
形成晶体管源漏极处的多晶硅薄膜的电阻以及电阻均匀性直接影响到器 件的电学性能, 而多晶硅薄膜的导电性能不只与掺杂剂量、 掺杂离子的激活 程度有关, 还与多晶硅薄膜本身的晶粒结构有关。 如果监控片的电阻不符合 生产规格要求, 则为能够降低生产损失, 需根据电阻测试的结果对已执行完 步骤 b的基板进行修正, 使基板上的多晶硅薄膜符合生产规格要求后, 再继 续后继制程。 其中, 所述对基板进行的修正, 可以是通过二次掺杂等方式增 加多晶硅薄膜的电阻, 也可以是通过更高温度再次退火等方式减小多晶硅薄 膜的电阻,或者是通过这些方式对基板上多晶硅薄膜的电阻均匀性进行改进。 例如, 如果监控片的多晶硅薄膜的电阻小于生产规格所要求的最小电阻, 可 对基板进行二次离子注入以增加掺杂剂量, 二次离子注入时的掺杂剂量可根 据生产规格要求及电阻测试的结果来确定。 可选地, 为对二次离子注入的补 偿性修正的结果进行监控, 可连同监控片一起进行二次离子注入。
可选地, 步骤 d还可包括: 根据电阻测试的结果调整多晶硅薄膜的制作 工艺和离子注入工艺中的各项参数, 以使下一批次生产的基板符合生产规格 要求。
根据本发明的该实施例的多晶硅薄膜电阻的测试方法, 还可以根据监控 片电阻测试的结果对基板进行修正, 板上的多晶硅薄膜符合生产规格要 求, 由此可能够降低生产损失, 提高生产效率。
上述各实施例中, 在步骤 b中对基板和监控片一起执行形成多晶硅 TFT 的部分制程, 本领域技术人员十分清楚其具体实施方式多样, 现举出一种具 体的实施范例作为参考, 如图 3所示, 其中, 所述步骤 b包括:
bl、 在所述基板和监控片上同步形成多晶硅薄膜; b2、 在所述多晶硅薄膜上同步形成栅绝缘层;
b3、 对所述多晶硅薄膜同步进行离子注入, 形成掺杂区域, 所述栅绝缘 层作为所述离子注入时的阻挡层。
其中,在子步骤 bl中在所述基板和监控片上形成多晶硅薄膜,其具体实 现方式多样, 一种具体的多晶硅薄膜制备方法, 包括:
bl01、 在所述基板和监控片上同步形成緩冲层薄膜;
bl02、 在所述緩冲层薄膜上同步形成非晶硅薄膜;
bl03、 利用准分子激光仪对所述非晶硅薄膜同步进行晶化, 以形成多晶 硅薄膜。
bl01~bl03仅为在基板和监控片上一起制备多晶硅薄膜的一种具体实施 方式, 具体实施中, 并不仅限于此, 具体釆用何种方法制备多晶硅薄膜并不 影响本发明的实施及实施效果, 此处不再——介绍。
可选地, 步骤 b还包括:
b4、 在所述基板和监控片上形成栅极图案、 保护层、 源电极图案和漏电 极图案; 或在基板上形成栅极图案、 保护层、 源电极图案和漏电极图案, 在 监控片上形成栅金属层、 保护层、 源漏金属层。 即在基板和监控片上同步执 行完整的多晶硅 TFT制程; 或在基板上执行完整的多晶硅 TFT制程, 而在 监控片上形成与基板上的多晶硅 TFT的相对应的、但不具有具体图案的层结 构。 在此步骤之后再进行步骤 c中的测试, 也可实现相同的技术效果。
其中, 可选地, 所述緩冲层薄膜包括: Si02薄膜层、 SiN 膜层或 Si02 薄膜层和 SiN 膜层形成的复合层。
可选地, 所述非晶硅薄膜的厚度为 40nm~200nm。
可选地, 步骤 b2中所述栅绝缘层包括: Si02薄膜层、 SiN 膜层或 Si02 薄膜层和 SiN 膜层形成的复合层。
上述各实施例中, 步骤 c对监控片上的多晶硅薄膜进行电阻测试, 该步 骤为对监控片单独执行, 具体实现方式与步骤 b的具体实现过程有关, 结合 上面所述的步骤 b的具体实施过程, 对应地, 如图 3所示, 步骤 c可包括以 下子步骤:
cl、 去除监控片上多晶硅薄膜上的栅绝缘层;
c2、 激活所述多晶硅薄膜中的掺杂离子; c3、 对多晶硅薄膜进行电阻测试。
本步骤中, 子步骤 cl和 c2是为 c3中的电阻测试做准备。 在子步骤 cl 中去除多晶硅薄膜上的栅极绝缘层(可通过刻蚀去除) , 露出下层的多晶硅 薄膜从而便于直接对多晶硅薄膜进行电阻测试。 若步骤 b中还包括所述步骤 b4,则在步骤 cl中还需要去除监控片上形成于多晶硅薄膜上方的层结构。在 子步骤 c2中激活多晶硅薄膜中在离子注入时引入的掺杂离子,使掺杂离子具 有电活性,产生自由载流子,同时亦可消除 /修复离子注入时造成的晶格损伤。 子步骤 cl和 c2的执行顺序并不影响本发明的实施效果, 所以本实施例对子 步骤 cl和 c2的执行顺序并不加以限制。在步骤 c中也可先激活掺杂的离子, 再通过刻蚀去除栅绝缘层, 烘干后对多晶硅薄膜进行电阻测试。 另外, 子步 骤 c3 中所述的电阻测试是对监控片上用于形成源漏极的多晶硅薄膜进行的 电阻及电阻均匀性测试。
子步骤 cl~c3具体实现方式多样, 不过需注意的是子步骤 c2中,对监控 片执行的激活掺杂离子的工艺的参数一般要与监控片所监控的基板后续执行 的激活掺杂离子的工艺的参数一致。
可选地, 子步骤 c2 中可釆用快速退火激活所述多晶硅薄膜中的掺杂离 子。
可选地, 子步骤 cl中釆用湿法刻蚀去除所述多晶硅薄膜上的栅绝缘层。 可选地,子步骤 c3中通过四探针法对所述监控片上的多晶硅薄膜进行电 阻测试。
四探针法是一种测量半导体电阻率及薄层电阻电阻率的标准方法, 设备 简单, 操作方便, 精确度高, 但对被测样品(尤其是被测膜层)具有一定破 坏性。 本实施例通过设置监控片, 并刻蚀去除监控片上的栅绝缘层, 用四探 针法测量监控片的多晶硅薄膜电阻来间接获得基板上的多晶硅薄膜电阻, 解 决了现有技术中因多晶硅薄膜上存在栅绝缘层 (掺杂区域离子注入的阻挡 层) , 而无法使用四探针法直接测量基板上的多晶硅薄膜电阻的技术问题, 能及时、 准确地监控基板上多晶硅薄膜的电阻, 同时还避免了对基板上的多 晶硅薄膜的损坏。
可选地, 所述电阻测试的结果, 至少包括多晶硅薄膜上九组测量点的电 阻测试结果, 以保证对多晶硅薄膜的电阻均匀性评价的准确性。 可选地,子步骤 c3中为便于对多晶硅薄膜进行电阻测试,可在多晶硅薄 膜上蒸镀电极。
本发明实施例所述的多晶硅薄膜电阻的测试方法, 通过监控片间接对多 晶硅阵列基板上多晶硅薄膜进行电阻测试, 能及时、 准确地监控多晶硅阵列 基板上多晶硅薄膜的电阻, 并且测试过程不会对基板膜层造成损伤, 有利于 对多晶硅薄膜质量做出正确评价, 能够降低生产损失, 提高生产效率。
进一步地, 如图 4所示, 根据本发明的另一实施例的方法还可包括: d、如果对监控片进行的电阻测试的结果符合生产规格要求,则对已执行 完步骤 b的所述基板继续执行后继制程; 如果对监控片进行的电阻测试的结 果不符合生产规格要求, 则根据电阻测试的结果对已执行完步骤 b的基板进 行修正, 使所述基板上的多晶硅薄膜符合生产规格要求。
本发明实施例所述的多晶硅薄膜电阻的测试方法, 通过设置监控片, 根 据监控片电阻测试的结果确定是否在基板上继续执行晶体管生产过程中的后 继制程, 可及时、 准确地监测掺杂后的多晶硅薄膜电阻, 能够降低生产损失, 提高生产效率。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种多晶硅阵列基板上多晶硅薄膜电阻的测试方法, 包括: a、 提供基板和监控片;
b、在所述基板和监控片上同步形成掺杂的多晶硅薄膜、栅极绝缘层, 其 中, 在所述基板上形成的为图案化的多晶硅薄膜, 在所述监控片上形成的为 图案化的多晶硅薄膜或不具有图案的多晶硅薄膜;
c、 对所述监控片上的多晶硅薄膜进行电阻测试。
2、 根据权利要求 1所述的方法, 还包括:
d、如果对所述监控片进行的所述电阻测试的结果符合生产规格要求,则 对已执行完步骤 b的所述基板继续执行后继制程; 如果所述电阻测试的结果 不符合生产规格要求, 则根据所述电阻测试的结果对已执行完步骤 b的所述 基板进行修正, 使所述基板上的多晶硅薄膜符合生产规格要求。
3、 根据权利要求 1和 2中的任一项所述的方法, 其中步骤 b包括: bl、 在所述基板和监控片上同步形成多晶硅薄膜;
b2、 在所述基板和所述监控片上同步形成栅绝缘层;
b3、 对所述基板和监控片上的多晶硅薄膜同步进行离子注入, 形成掺杂 区域, 所述栅绝缘层作为所述离子注入时的阻挡层。
4、根据权利要求 1至 3中的任一项所述的方法,其中步骤 c包括以下子 步骤:
cl、 去除所述监控片上的栅绝缘层;
c2、 激活所述多晶硅薄膜中的掺杂离子;
c3、 对所述多晶硅薄膜进行电阻测试。
5、 根据权利要求 4所述的方法, 其中子步骤 c3包括通过四探针法对所 述监控片上的多晶硅薄膜进行电阻测试。
6、 根据权利要求 4和 5中的任一项所述的方法, 其中, 子步骤 cl中釆 用湿法刻蚀去除所述多晶硅薄膜上的栅绝缘层。
7、 根据权利要求 4至 6的任一项所述的方法, 其中, 子步骤 c2中釆用 快速退火激活所述多晶硅薄膜中的掺杂离子。
8、 根据权利要求 3至 7的任一项所述的方法, 其中, 子步骤 bl包括: 在所述基板和监控片上同步形成緩冲层薄膜;
在所述緩冲层薄膜上同步形成非晶硅薄膜;
利用准分子激光仪对所述非晶硅薄膜同步进行晶化,以形成多晶硅薄膜。
9、 根据权利要求 8所述的方法, 其中,
所述緩冲层薄膜包括: Si02薄膜层、 SiNx薄膜层或 Si02薄膜层和 SiNx 薄膜层形成的复合层。
10、 根据权利要求 8或 9所述的方法, 其中, 所述非晶硅薄膜的厚度为 40nm~200nm„
11、根据权利要求 3至 10的任一项所述的方法,其中步骤 b还包括以下 步骤:
b4、 在所述基板和监控片上形成栅极图案、 保护层、 源电极图案和漏电 极图案; 或在基板上形成栅极图案、 保护层、 源电极图案和漏电极图案, 在 监控片上形成栅金属层、 保护层、 源漏金属层。
12、 根据权利要求 3至 11的任一项所述的方法, 其中, 子步骤 b2中所 述栅绝缘层包括: Si02薄膜层、 SiN 膜层或 Si02薄膜层和 SiN 膜层形 成的复合层。
PCT/CN2012/084602 2012-06-07 2012-11-14 多晶硅阵列基板上多晶硅薄膜电阻的测试方法 WO2013181900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210187361.2 2012-06-07
CN201210187361.2A CN102721873B (zh) 2012-06-07 2012-06-07 多晶硅阵列基板上多晶硅薄膜电阻的测试方法

Publications (1)

Publication Number Publication Date
WO2013181900A1 true WO2013181900A1 (zh) 2013-12-12

Family

ID=46947690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084602 WO2013181900A1 (zh) 2012-06-07 2012-11-14 多晶硅阵列基板上多晶硅薄膜电阻的测试方法

Country Status (2)

Country Link
CN (1) CN102721873B (zh)
WO (1) WO2013181900A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721873B (zh) * 2012-06-07 2014-09-03 京东方科技集团股份有限公司 多晶硅阵列基板上多晶硅薄膜电阻的测试方法
CN103543397B (zh) * 2013-10-23 2016-06-01 山东大学 一种半绝缘4H-SiC晶型的鉴别方法
CN107993950A (zh) * 2017-11-21 2018-05-04 长江存储科技有限责任公司 一种用于三维存储器阵列区共源极的测量方法
CN109309079B (zh) * 2018-09-18 2020-05-05 成都迈斯派尔半导体有限公司 半导体测试结构、制造方法及方块电阻测量方法
CN112908898B (zh) 2021-01-27 2022-09-02 长鑫存储技术有限公司 控片量测方法及量测装置
CN113363137A (zh) * 2021-05-28 2021-09-07 上海华力微电子有限公司 一种SiGe结构载流子浓度的监控方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914611A (en) * 1992-11-10 1999-06-22 Cheng; David Method and apparatus for measuring sheet resistance and thickness of thin films and substrates
JP2004235275A (ja) * 2003-01-28 2004-08-19 Kyocera Corp 多結晶シリコン基板の抵抗率測定装置およびそれを用いた抵抗率測定方法
CN101312139A (zh) * 2007-05-22 2008-11-26 中芯国际集成电路制造(上海)有限公司 多晶硅膜阻值的测试方法
CN101441331A (zh) * 2004-08-09 2009-05-27 株式会社液晶先端技术开发中心 包括半导体薄膜的半导体器件、该薄膜的结晶方法及装置
CN101958242A (zh) * 2009-07-21 2011-01-26 中芯国际集成电路制造(上海)有限公司 制作栅氧化层和栅极多晶硅层的方法
CN102315112A (zh) * 2011-09-28 2012-01-11 上海宏力半导体制造有限公司 堆栈金属栅极的刻蚀方法
CN102446783A (zh) * 2011-09-08 2012-05-09 上海华力微电子有限公司 一种用于监测离子注入剂量的方法
CN102721873A (zh) * 2012-06-07 2012-10-10 京东方科技集团股份有限公司 多晶硅阵列基板上多晶硅薄膜电阻的测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914611A (en) * 1992-11-10 1999-06-22 Cheng; David Method and apparatus for measuring sheet resistance and thickness of thin films and substrates
JP2004235275A (ja) * 2003-01-28 2004-08-19 Kyocera Corp 多結晶シリコン基板の抵抗率測定装置およびそれを用いた抵抗率測定方法
CN101441331A (zh) * 2004-08-09 2009-05-27 株式会社液晶先端技术开发中心 包括半导体薄膜的半导体器件、该薄膜的结晶方法及装置
CN101312139A (zh) * 2007-05-22 2008-11-26 中芯国际集成电路制造(上海)有限公司 多晶硅膜阻值的测试方法
CN101958242A (zh) * 2009-07-21 2011-01-26 中芯国际集成电路制造(上海)有限公司 制作栅氧化层和栅极多晶硅层的方法
CN102446783A (zh) * 2011-09-08 2012-05-09 上海华力微电子有限公司 一种用于监测离子注入剂量的方法
CN102315112A (zh) * 2011-09-28 2012-01-11 上海宏力半导体制造有限公司 堆栈金属栅极的刻蚀方法
CN102721873A (zh) * 2012-06-07 2012-10-10 京东方科技集团股份有限公司 多晶硅阵列基板上多晶硅薄膜电阻的测试方法

Also Published As

Publication number Publication date
CN102721873A (zh) 2012-10-10
CN102721873B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013181900A1 (zh) 多晶硅阵列基板上多晶硅薄膜电阻的测试方法
CN103123910B (zh) 阵列基板及其制造方法、显示装置
TWI451218B (zh) 統計程序控制之方法
CN109148491B (zh) 一种阵列基板及其制备方法、显示装置
WO2015027590A1 (zh) 阵列基板及其制备方法和显示装置
CN104979215B (zh) 低温多晶硅薄膜晶体管及其制备方法
CN105762195B (zh) 金属氧化物薄膜晶体管及其制备方法
US8618825B2 (en) Array substrate, manufacturing method and detecting method thereof, and liquid crystal panel
US20160071691A1 (en) A method for monitoring ion implantation
WO2016106892A1 (zh) 阵列基板、显示面板及阵列基板的制备方法
WO2015081672A1 (zh) 电极结构及制备方法、阵列基板及制备方法和显示装置
CN105742240B (zh) 一种ltps阵列基板的制造方法
US9502571B2 (en) Thin film layer and manufacturing method thereof, substrate for display and liquid crystal display
WO2014169544A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
CN112002640B (zh) 监控退火工艺稳定性的方法
US8900887B2 (en) Method for etching polysilicon gate
JP2009081383A (ja) 薄膜半導体素子を備えた表示装置及び薄膜半導体素子の製造方法
US20140011304A1 (en) Measurement of lateral diffusion of implanted ions in doped well region of semiconductor devices
CN104538354B (zh) 一种ltps tft像素单元及其制造方法
WO2014146362A1 (zh) 阵列基板及其制备方法和显示面板
WO2019184380A1 (zh) 阵列基板及其制备方法、显示装置
WO2015027577A1 (zh) 检测光阻层离子注入阻挡能力的方法
JP2009180717A (ja) シリコン薄膜の評価方法
JP3848833B2 (ja) 半導体層の評価方法及び半導体装置の製造方法
WO2008072373A1 (ja) 半導体基板の評価方法および半導体基板評価用素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12878288

Country of ref document: EP

Kind code of ref document: A1