WO2013179510A1 - 磁石式回転電機の回転子ならびにその製造方法および装置 - Google Patents

磁石式回転電機の回転子ならびにその製造方法および装置 Download PDF

Info

Publication number
WO2013179510A1
WO2013179510A1 PCT/JP2012/077254 JP2012077254W WO2013179510A1 WO 2013179510 A1 WO2013179510 A1 WO 2013179510A1 JP 2012077254 W JP2012077254 W JP 2012077254W WO 2013179510 A1 WO2013179510 A1 WO 2013179510A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnet
jig
rotor
magnet piece
Prior art date
Application number
PCT/JP2012/077254
Other languages
English (en)
French (fr)
Inventor
浅尾 淑人
政之 宮岡
隆介 片山
昭彦 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12877744.8A priority Critical patent/EP2858213B1/en
Priority to US14/395,669 priority patent/US9985486B2/en
Priority to CN201280073619.4A priority patent/CN104364995B/zh
Publication of WO2013179510A1 publication Critical patent/WO2013179510A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2781Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1075Prior to assembly of plural laminae from single stock and assembling to each other or to additional lamina
    • Y10T156/1077Applying plural cut laminae to single face of additional lamina

Definitions

  • the present invention relates to a rotor in a permanent magnet type rotating electrical machine, and a manufacturing method and apparatus thereof.
  • a rotor using a permanent magnet (hereinafter simply referred to as “magnet”) is well known as a rotor of a rotating electrical machine.
  • magnet a permanent magnet
  • a ring-shaped magnet is divided into segment-shaped magnets, and the cross-sectional shape of the magnet is a semi-cylindrical shape.
  • the rotor magnet described in Patent Document 1 has a semi-cylindrical cross-sectional shape, and the thickness of the magnet in the cross-section is set to be thinner at both ends than at the center. Further, the core of the rotor is formed in a substantially polygonal column, and is provided so that radial projections are positioned at the upper and lower ends of the core at each corner.
  • each magnet is affixed on the core of the rotor of the said shape using the adhesive agent between each protrusion.
  • the predetermined position when affixing the magnet, while holding each magnet on the core, pressing the magnet from the radially outer side toward the center of the core, or dropping the magnet from the upper axial direction of the core, the predetermined position.
  • a large-scale tool is required as a magnet sticking jig.
  • the magnet when the magnet is attached, positioning is performed by bringing one side of the magnet into contact with one side of the core protrusion. In this case, although the magnet is properly positioned in the circumferential direction of the core, the positioning in the axial direction is performed. Since there is no means, the arrangement work is performed so that the magnet does not protrude from the core because the axial length of the core is longer than the axial length of the magnet.
  • a conventional rotor of a magnetic rotating electrical machine and a manufacturing method and apparatus thereof require a large jig when attaching a segmented magnet between the protrusions of the rotor core using an adhesive. There was a problem.
  • positioning is performed by contacting one side of the magnet to one side of the core protrusion, but there is no positioning means in the axial direction, so there is a problem that workability is poor. It was.
  • the present invention has been made to solve the above-described problems, and is a magnet-type rotation that ensures positioning between the rotor core and each magnet and that is easy to manufacture with a simple device and configuration. It is an object of the present invention to obtain an electric rotor and a method and apparatus for manufacturing the same.
  • the rotor of the magnet-type rotating electrical machine is a rotor of a magnet-type rotating electrical machine configured by a cylindrical or polygonal column-shaped core and a plurality of magnets in close contact with the outer peripheral surface of the core,
  • the core has a plurality of protrusions arranged along the outer peripheral surface and projecting radially outward.
  • the plurality of protrusions are arranged at least near the end in the axial direction of the core, and each of the plurality of magnets is a strip.
  • the circumferential width of the strip shape is set to be narrower than the mutual interval of the protrusions, and the axial length of the strip shape is set to be shorter than the axial length of the core, and each of the plurality of magnets
  • the inner surface in the radial direction is closely attached to the outer peripheral surface of the core between the plurality of protrusions, and each of the plurality of magnets is closer to one protrusion side than the central portion between the two protrusions located on both sides of each magnet.
  • the position of one end surface of each of the plurality of magnets in the axial direction is shifted. In which it coincides with the end face position in the axial direction of the core.
  • the positioning of the rotor core and the segmented magnet is simplified, and the manufacturing process and the manufacturing apparatus can be simplified.
  • Example 2 It is the top view and side view which show the rotor of the magnet type rotary electric machine which concerns on Embodiment 1 of this invention.
  • Example 1 It is a flowchart which shows roughly the manufacturing process of the rotor which concerns on Embodiment 1 of this invention.
  • Example 1 It is explanatory drawing which shows the sticking process of the magnet piece to the core by Embodiment 1 of this invention with a top view.
  • Example 1 It is explanatory drawing which shows the axial direction adjustment process of the magnet piece by Embodiment 1 of this invention with a side view.
  • Example 1 It is the upper side figure and side view which show the axial direction adjustment process of the rotor of the magnet type rotary electric machine which concerns on Embodiment 2 of this invention. (Example 2)
  • FIG. 1 is a top view (a) and a side view (b) showing a rotor 1 of a magnetic rotating electrical machine according to Embodiment 1 of the present invention.
  • a rotor 1 is constituted by a magnetic material core 3 in which a plurality of magnets 2 are positioned and arranged.
  • the upper and lower end surfaces of the core 3 are provided with protrusions 4 and 4b arranged at equal intervals along the outer peripheral portion.
  • the upper and lower end portions of the magnet 2 are positioned on the side end surfaces of the protrusions 4 and 4b. These are arranged at equal intervals along the outer peripheral surface of the core 3.
  • the core 3 is formed with a central hole 5 penetrating along the central axis and a plurality of peripheral holes 6 penetrating in parallel with the central hole 5 around the central hole 5.
  • the core 3 of the rotor 1 has a substantially polygonal column shape (for example, a 10-sided prism as shown in the figure), and the protrusions 4 and 4b are provided at each corner of the polygonal column on the radially outer side of the core 3. Yes.
  • a cylindrical stator having a plurality of windings facing each magnet 2 is arranged on the outer peripheral portion of the rotor 1 so as to be opposed to the rotor 1 and the stator.
  • An electric machine is configured.
  • an output shaft (not shown) of the magnet type rotating electrical machine is inserted into the center hole 5 of the core 3.
  • the core 3 is configured by laminating a large number of thin plates in the axial direction.
  • the plurality of peripheral holes 6 are formed for the purpose of reducing the weight of the core 3, the presence or absence of the peripheral holes 6 does not particularly affect the magnetic characteristics.
  • the magnet 2 having a strip shape is mounted between the protrusions 4 and 4b in parallel with the axial direction.
  • the bottom surface of the magnet 2 bonded to the core 3 is flat because it is disposed on the flat surface of the polygonal column.
  • the upper surface of the magnet 2 located on the radially outer side has a semi-cylindrical cross-sectional shape.
  • the magnet 2 may have any shape as long as the thickness of the central portion is larger than the thickness of both left and right end portions, and the thickness gradually decreases from the central portion toward both end sides. Reference) is not limited.
  • a part of the magnet 2a shown in FIG. 1A is used, but instead of the kamaboko-shaped magnet 2, for example, a magnet 2a having a substantially trapezoidal cross section may be used.
  • Each magnet 2 is disposed so that one side surface of the upper and lower ends of the magnet 2 is in contact with one side surface of the protrusions 4 and 4b in the radial height direction.
  • the axial length ML of the magnet 2 is set to be shorter than the axial length CL2 of the core 3, and one end surface (lower end surface) of the magnet 2 is one end surface (lower end surface) of the core 3. On the other hand, it is the same surface position with almost no step. On the other hand, the other end surface (upper end surface) of the magnet 2 has a step with the end surface of the core 3 because ML ⁇ CL2.
  • the axial length CL2 of the core 3, the axial length ML of the magnet 2, and the axial length CL1 of the non-projecting portion of the core 3 has a relationship of CL2>ML> CL1. More specifically, if expressed using the axial length CL3 of the protrusion 4b on the lower end side, there is a relationship of CL2>ML> CL1 + CL3.
  • the magnet 2 and the core 3 are attached with an adhesive 7, but another part (such as a cylindrical case) is attached to the outer periphery of the magnet 2, and the magnet 2. It is good also as a structure which can prevent scattering and damage of. Further, without using the adhesive 7, the magnet 2 and the core 3 may be fixed by fitting by uneven fitting.
  • FIG. 2 is a flowchart schematically showing the manufacturing process of the rotor 1.
  • the process related to the core 3 steps S 1 to S 4
  • the process related to the magnet 2 steps S 5 to S 7
  • subsequent steps steps S8 to S12
  • a thin steel plate is cut into a substantially polygonal shape to form a plurality of pieces of the core 3 (step S1). At this time, it is cut into a polygonal shape having a protrusion 4, a center hole 5, and a peripheral hole 6. Subsequently, the core 3 having a length CL2 is formed by stacking and integrating a predetermined number of pieces of the core 3 with reference to the protrusion 4 or the center hole 5 (step S2).
  • step S3 the core 3 completed in step S2 is mounted on a jig (step S3), and an adhesive 7 is applied between the mounting position of the magnet 2, that is, between the protrusions 4 on the outer peripheral portion of the core 3 (step S4).
  • the jig on which the core 3 is mounted is configured to fix the core 3 in the axial direction from above and below and to rotate in the circumferential direction of the core 3. Is desirable. In this case, it is possible to apply the adhesive 7 while rotating the rotary jig 10 in the adhesive application step (step S4).
  • step S5 the material (powder) of the magnet 2 is put into a mold and sintered, and a rough prototype of the kamaboko-shaped magnet 2 is obtained.
  • a piece is manufactured (step S5).
  • cutting for making the original piece into a predetermined shape is performed to form a magnet piece 2p (see FIGS. 3 and 4) having the final shape of the magnet 2 (step S6).
  • a predetermined number of magnet pieces 2p to be attached to the core 3 are mounted in alignment with a magnet restricting jig (step S7).
  • tool for magnets is the control jig
  • the magnet pieces 2p are mounted on the outer peripheral surface of the core 3 one by one while rotating the core 3 (step S8). Subsequently, as will be described later (see FIG. 4), shift adjustment is performed so that the axial position of the magnet piece 2p coincides with the end face position of the core 3 (step S9).
  • step S9 the rotor 1 is completed in shape, but when the magnet piece 2p is not magnetized and the adhesive 7 is not completely hardened, the magnet piece 2p is the core. There is a possibility of dropping from 3.
  • step S9 the magnet piece 2p is pressed toward the central axis side of the core 3 (step S10), and further, the adhesive 7 is cured by heating or the like, so that all the magnet pieces 2p are replaced with the core 3 (Step S11). Finally, each magnet piece 2p is magnetized to complete the final rotor 1 (step S12), and the manufacturing process of FIG. 2 is completed.
  • step S10 the pressing process (step S10) of the magnet piece 2p was performed after the axial direction adjustment process (step S9), the execution order of step S9 and step S10 may be changed.
  • the output shaft of the magnetic rotating electrical machine is finally inserted into the center hole 5 of the core 3, but the process of inserting the output shaft into the center hole 5 is final. May be executed after the magnetizing step (step S12), or may be executed after the core 3 stacking step (step S2).
  • FIGS. 3 (a) to 3 (f) are top views showing the step of attaching the magnet piece 2p to the core 3 (step S8), and the lower end side in the axial direction of the core 3 is not shown.
  • step S9 the axial direction adjustment process performed by the lower end side of the core 3 is later mentioned with FIG.
  • the restriction jig 20 for the magnet piece 2 p is attached to the left and right restriction member 21 that houses a plurality of magnet pieces 2 p in a fixed posture, and the magnet piece 2 p in the left and right restriction member 21 is directed toward the side surface of the core 3.
  • both ends of the core 3 in the axial direction are fixed by the rotating jig 10, and one set (10 pieces) of the magnet pieces 2p are fixed to the left and right restricting members. Align with 21 and attach to the restriction jig 20.
  • step S4 the adhesive 7 has already been applied to the magnet mounting surface of the core 3 by the adhesive application step (step S4).
  • the rotating jig 10 rotates counterclockwise in the figure with the central portion (+) as an axis, as shown in FIGS. 3 (c) to 3 (f). To do.
  • the gates 23 disposed on the left and right of the front end portion (the leftmost end in the drawing) of the left and right restricting member 21 are closed before the mounting process to prevent the magnet piece 2 p from popping out. Yes.
  • the urging force of the pressing rod 22 increases the adhesion of the magnet piece 2p to the core 3.
  • the urging force of the pressing rod 22 increases the adhesion of the magnet piece 2p to the core 3.
  • the magnet piece 2p attached to the restricting jig 20 moves to the core 3 side together with the restricting jig 20 as shown by a solid arrow (left direction in the figure) in FIG.
  • the outer peripheral part of the core 3 is approached.
  • the rotating jig 10 rotates counterclockwise, and as shown in FIG. 3B, one protrusion 4 on the core 3 faces the center of the magnet pieces 2p aligned in the left-right regulating member 21. Position so that.
  • the position of the protrusion 4 may be determined by the protrusion 4 itself, or the peripheral hole 6 may be used.
  • the magnet piece 2p is approaching the core 3 due to the movement of the restricting jig 20, but there is a slight gap between the tip of the protrusion 4 of the core 3 and the end face of the magnet piece 2p. There is a gap.
  • the first magnet piece 2p is pressed by the urging force of the pressing rod 22, and the rotating jig 10 continues to rotate, so that the first magnet piece 2p moves in the temporarily fixed state and moves between the two protrusions 4 in the center. It will contact not the position but the side wall of the protrusion 4 on the rear side in the rotational direction. As a result, the magnet piece 2p. Finally, only the rear side of the two protrusions 4 is abutted and positioned.
  • the rotation of the rotary jig 10 proceeds, and in FIG. 3E, the second magnet piece 2p is separated from the first magnet piece 2p, and the adhesive between the next protrusions 4 is mutually. 7 is contacted with the coated surface. Further, the rotating jig 10 is rotated, and in FIG. 3 (f), the second magnet piece 2 p is housed in the position between the protrusions 4 and temporarily fixed with the adhesive 7. Thereafter, the above sequence is repeated, and one set (10 pieces) of the magnet pieces 2p is temporarily fixed to the 10 side surfaces of the decagonal core 3.
  • the magnet pieces 2p are sequentially attached to the predetermined positions by the rotation of the core by the steps of FIGS. 3A to 3F.
  • one side surface of the magnet piece 2p and the side wall on the rear side in the rotation direction of the protrusion 4 come into contact with each other, and all the magnet pieces 2p are similarly placed in place.
  • step S10 of the magnet piece 2p is performed by the press jig
  • the roller 25 of the pressing jig 24 abuts the magnet piece 2p while rotating in the direction of the solid arrow in synchronization with the rotation of the core 3, thereby pressing the magnet piece 2p against the core 3. This is to improve the adhesion to the adhesive and the compatibility with the adhesive 7 to reliably prevent the magnet piece 2p from falling off.
  • the pressing jig 24 is arranged on the opposite side of the mounting position of the magnet piece 2p (the regulating jig 20) (180 ° rotation side of the core 3).
  • the pressing jig 24 may be arranged on the rotation side (for example, about 30 ° rotation side) of the core 3 immediately after the mounting position of the magnet piece 2p.
  • the manufacturing apparatus according to the first embodiment of the present invention can be handled only by the configuration of the rotating jig 10 and the regulating jig 20, and the structure of the manufacturing apparatus is simple and small in size. Become.
  • the radial height of the protrusion 4 of the core 3 needs to be lower than the maximum thickness of the magnet piece 2p (kamaboko-shaped curved surface position). If possible, it is desirable that the radial height of the protrusion 4 is approximately the same as or less than the radial height of the side surface of the magnet piece 2p.
  • the radially outer upper surface (mounting surface of the magnet piece 2p) of the protrusion 4 is a flat surface, but is not limited to a flat surface, and may be, for example, an arc shape.
  • the cross-sectional shape of the magnet piece 2p is a semi-cylindrical shape, it is not limited to the semi-cylindrical shape, and it goes without saying that the same mounting method can be applied to a rectangular parallelepiped shape, for example.
  • FIG. 4 (a) to 4 (c) are explanatory views showing the axial adjustment step (step S9) of the magnet piece 2p in a side view.
  • the axial adjustment jig 11 for executing the axial adjustment step is disposed on the lower end side of the core 3. Further, the lower end side of the core 3 is positioned and fixed by a rotation jig 10b similar to the rotation jig 10 on the upper end side.
  • tool 11 is immediately after the control jig
  • the rotational position of the core 3 (about 30 °) may be used, or the rotational position of about one (about 330 °) may be used.
  • the circumferential position of the magnet piece 2p is determined, but the axial position is not accurately determined. That is, as shown in FIG. 4A, the mounting position of each magnet piece 2p in the axial direction (left-right direction in the figure) depends on the pressing force of the magnet piece 2p, the amount of the adhesive 7, and the variation in the application position.
  • the core 3 is slightly shifted from the lower end surface.
  • FIG. 4A for the sake of convenience, the core 3 is shown sideways, but in reality, the core 3 is installed in the vertical direction. That is, the lower end portion of the magnet piece 2 p protrudes slightly below the lower end portion of the core 3.
  • FIG. 4A shows a state immediately before the axial adjustment jig 11 moves in the direction of the broken arrow and is pressed against the lower end of the magnet piece 2p, but the core 3 has not yet rotated. .
  • the axial direction adjusting jig 11 has an inclined surface 12 that is obliquely cut on one side end surface (abutting surface with the magnet piece 2p by the rotation of the core 3).
  • the one-directional end surface of the magnet piece 2p is pushed along the inclined surface 12 along with the rotation of the core 3 (broken arrow). Is moved until the one-directional end surface of the core 3 and the one-directional end surface of the magnet piece 2p coincide.
  • FIG. 4B shows a state in which the magnet piece 2p that is first abutted is pressed by the movement of the axial adjustment jig 11 (solid arrow), and when the core 3 rotates (broken arrow), It can be seen that the lower end surface (right end surface in the drawing) of the magnet piece 2p and the lower end surface (right end surface in the drawing) of the core 3 are moved to the same surface position.
  • FIG. 4C shows that the magnet piece 2p pressed by the axial direction adjusting jig 11 is in a predetermined position in the axial direction (the same position as the lower end surface of the core 3) on the upstream side in the rotation direction of the core 3 (broken arrow).
  • the magnet piece 2p before being pressed by the axial direction adjusting jig 11 is shown protruding from the lower end surface of the core 3 before the movement.
  • the axial adjustment jig 11 starts from the rotational position before the axial adjustment jig 11 contacts the magnet piece 2p.
  • a partition (not shown) may be mounted so as to be positioned on the outer peripheral portion of the axial adjustment jig 11 in the rotation region up to the rotation position away from the magnet piece 2p. Thereby, drop-off of the magnet piece 2p during the position adjustment process can be prevented.
  • both the circumferential direction and the axial direction of the magnet piece 2p with respect to the core 3 can be positioned by the rotation of the core 3, and the process can be simplified. It can be realized on a scale.
  • the axial position adjusting step (step S9) of the magnet piece 2p shown in FIG. 4 is performed at the rotational position (for example, 90) between the regulating jig 20 and the pressing jig 24 shown in FIG. It is desirable to place it at ° position. This is because the process proceeds in sequence from the process of mounting the magnet piece 2p in FIG. 2 to the core 3 (step S8) to the axial position adjustment (step S9) and the pressing process of the magnet piece 2p (step S10). Because it becomes.
  • FIG. 4 The rotor 1 completed as shown in FIG. 4 is removed from the rotating jigs 10 and 10b, and a curing process (heating process or the like) of the adhesive 7 is performed separately in a different process.
  • the restricting jig 20 restricts the magnet piece 2p from falling down at least at two places above and below according to the axial length ML of the magnet piece 2p. It is necessary to make the magnet piece 2p easy to move as a loose fit in the left and right regulating member 21.
  • the pressing rod 22 of the regulating jig 20 does not press the entire width direction of the magnet piece 2p but presses only the vicinity of the central portion in the width direction. Further, the tip portion of the pressing rod 22 pushes in the vicinity of the center in the length direction of the magnet piece 2p or from the center to the lower side according to the axial length ML of the magnet piece 2p. In addition, the shape may be changed according to the ease of movement of the magnet piece 2p.
  • the rotating jigs 10 and 10b hold the vicinity of the central axis of the core 3, and the regulating jig 20 regulates a part of the magnet piece 2p in the axial direction. Even if the number of magnet pieces 2p is different, the magnet piece 2p can be attached to the core 3 by the same process as in FIG. 3 and the same apparatus as in FIG. . Therefore, it can respond to the rotor 1 of various sizes.
  • the rotor 1 of the magnet-type rotating electrical machine according to the first embodiment (FIGS. 1 to 4) of the present invention includes a polygonal column-shaped core 3 and a plurality of closely attached to the outer peripheral surface of the core 3.
  • the core 3 includes a plurality of protrusions 4 (4b) that are arranged along the outer peripheral surface and protrude outward in the radial direction, and the plurality of protrusions 4 are at least the core 3. It is arrange
  • Each of the plurality of magnets 2 has a strip shape, and the circumferential width of the strip shape is set narrower than the interval between the protrusions 4.
  • the strip-shaped axial length ML is the axial length of the core 3. It is set shorter than CL2.
  • each of the plurality of magnets 2 includes two protrusions located on both sides of each magnet 2.
  • the one end surface position in the axial direction of each of the plurality of magnets 2 coincides with the one end surface position in the axial direction of the core 3.
  • each central portion in the circumferential direction of the plurality of magnets 2 is set to a value larger than the radial height of the two protrusions 4 located on both sides of each magnet 2.
  • the magnet mounting surface between the plurality of protrusions 4 is a flat surface, and the radially inner circumferential surface of each of the plurality of magnets 2 is a flat surface equivalent to the magnet mounting surface.
  • each of the plurality of magnets 2 is formed such that in the cross-sectional shape, the thickness in the circumferential central portion is larger than the thickness of both side surface portions, and the thickness decreases from the circumferential central portion toward both side surface portions. .
  • the manufacturing method of the rotor 1 of the magnet-type rotary electric machine which concerns on Embodiment 1 (FIG. 2) of this invention has a polygonal column shape, and the predetermined number of protrusions 4 (4b) protruded radially outward.
  • Step S4) and a strip-shaped magnet as a prototype of the magnet 2 A magnet jig forming process (steps S5 and S6) in which the pieces 2p are formed by sintering, and the magnet jig 2p formed by the magnet piece forming process are aligned by a predetermined number to be mounted on the core 3, and the regulating jig 20
  • the regulating jig mounting step (Step S7) to be mounted on the magnet 3 and the magnet piece 2p is pressed against the core 3 by the regulating jig 20 while the core 3 is rotated by the rotating jig 10, so that a predetermined number of magnet pieces 2p are 1
  • the magnet piece 2p has a thickness in the central portion that is larger than the thickness of the both side surfaces in the cross section, and the thickness decreases as it goes from the circumferential center portion to the both side surface portions.
  • 3 is larger than the radial height of the projection 4, and the axial length ML is shorter than the axial length CL 2 of the core 3.
  • the magnet piece 2p is mounted at the magnet mounting position between the circumferential directions of the two protrusions 4 of the core 3 on the radially inner circumferential surface, and one of the magnet pieces 2p is rotated by the rotation of the rotating jig 10.
  • the side surfaces of the two projections 4 are in contact with one inner side wall in the circumferential direction of the two projections 4 and are mounted so as to have a positional relationship having a gap between the other side surface of the magnet piece 2p and the other side wall of the two projections 4. .
  • the manufacturing method of the rotor 1 of the magnet-type rotary electric machine which concerns on Embodiment 1 of this invention is the magnet piece 2p after mounting
  • one axial end surface of the magnet piece 2 p is rotated.
  • the jig 10 is moved in one axial end face direction in the axial direction of the core 3 by the rotation of the jig 10.
  • the core 3 is mounted on the rotating jig 10 and rotated, and the magnet piece 2p at the tip of the predetermined number of magnet pieces mounted on the regulating jig 20 is turned into the rotating core 3. And a step of pressing it against the surface.
  • the manufacturing method of the rotor 1 of the magnet-type rotary electric machine which concerns on Embodiment 1 of this invention is a press process (step S10) which presses the magnet piece 2p toward the center axis
  • the magnet fixing process (step S11) which hardens the adhesive agent 7 and fixes the magnet piece 2p to the core 3 after the pressing process is provided.
  • the core 3 having the protrusions 4 (4b) and the predetermined number of strip-shaped magnets 2 which are in close contact with the outer peripheral surface of the core 3 so as to contact the side surfaces of one protrusion between the predetermined number of protrusions 4
  • the cutting device which cut
  • a stacking device that forms the core 3 by stacking, a rotating jig 10 that rotatably mounts the core 3, a coating device that applies the adhesive 7 to the magnet mounting position on the outer peripheral surface of the core 3, and a prototype of the magnet 2 Magnet piece forming apparatus for forming a strip-shaped magnet piece 2p
  • a restriction jig 20 for mounting a predetermined number of magnet pieces 2p to be mounted on the core 3 and mounting one end surface position of each of the predetermined number of magnet pieces 2p in the axial direction
  • the magnet pieces 2p are pressed against the core 3 by the regulating jig 20, and the magnets of the core 3 are sequentially attached to the predetermined number of magnet pieces 2p one by one.
  • the radially inner surface of each of the predetermined number of magnet pieces 2p is brought into close contact with the outer peripheral surface of the core 3 between the predetermined number of protrusions 4, and each of the predetermined number of magnet pieces 2p is The magnet pieces 2p are arranged so as to be shifted to one projection side from the central portion between the two projections located on both sides of each magnet piece 2p.
  • the manufacturing apparatus of the rotor 1 of the magnet-type rotary electric machine which concerns on Embodiment 1 of this invention makes each magnet piece 2p arrange
  • a pressing jig 24 having a roller 25 for pressing is provided.
  • the magnet pieces 2p arranged in the restriction jig 20 are sequentially mounted on the core 3 rotated by the rotating jig 10, and then the axial position of the magnet piece 2p is utilized by using the rotation of the core 3. , The axial end face of the core 3 and the axial end face of the magnet are easily matched, and then the magnet piece 2p is magnetized to form the magnet 2, whereby the rotor 1 can be completed.
  • the positioning of the core 3 of the rotor 1 and the strip-shaped (segmented) magnet 2 is simplified, and the magnet 2 is placed at a predetermined position of the core 3 of the rotor 1. It is possible to provide a rotor 1 of a magnet-type rotating electrical machine that can be easily mounted, and a manufacturing method and apparatus thereof.
  • the cross-sectional shape of the core 3 is a polygonal column, and the joint surface between the protrusions 4 and the magnet 2 (magnet piece 2p) is a plane.
  • the core 3A may have a substantially circular cross-sectional shape, and magnet pieces 2b having a circular arc cross-section may be mounted between the protrusions 4c.
  • a restricting plate 26 for collectively adjusting the axial position of the magnet piece 2p may be used.
  • FIGS. 5 (a) and 5 (b) are a top view and a side view showing an axial adjustment step of the rotor 1A of the magnet type rotating electrical machine according to the second embodiment of the present invention, as described above (FIG. 1, FIG. 5). 4), the same reference numerals as those described above are attached, or “A” is added after the reference numerals, and detailed description thereof is omitted.
  • the same processing process and jig as those described above see FIGS. 2 and 3) can be applied.
  • each of the magnet pieces 2b has a strip shape, and the circumferential width of the strip shape is set to be narrower than the mutual interval of the protrusions 4c.
  • the basic shape of the magnet piece 2b and the positioning state of the magnet piece 2b with respect to the core 3A are the same as described above.
  • the axial length MLb of the strip-shaped magnet piece 2b is set to be shorter than the axial length CLA of the core 3A.
  • a restricting plate 26 for collectively adjusting the axial positions of the plurality of magnet pieces 2b is disposed at the lower end of the rotor 1A.
  • the outer peripheral cross-sectional shape of the core 3A constituting the rotor 1A is substantially circular, and eight protrusions 4c are formed on the outer peripheral portion.
  • the lower end portion of the core 3A is held by the rotating jig 10b.
  • the protrusion 4c is formed continuously from the upper end surface to the lower end surface of the core 3A.
  • the magnet piece 2b has an arc shape so as to follow the outer peripheral shape of the core 3A, and is mounted in a temporarily fixed state between the protrusions 4c.
  • One side surface of the magnet piece 2b is regulated by one inner surface of the protrusion 4c, and the lower end surface of the magnet piece 2b is adjusted by the regulating plate 26 so as to coincide with the end surface of the core 3A.
  • the arc-shaped magnet piece 2b has an eccentric shape that is similar to the kamaboko-shaped magnet 2 described above (FIG. 1), and is formed such that the thickness of the central portion is larger than both end portions in the rotational direction. . That is, when considering the respective curvature radii of the inner peripheral diameter and the outer peripheral diameter of the magnet piece 2b, a convex lens shape is formed in which the outer peripheral diameter is smaller than the inner peripheral diameter.
  • an arc-shaped magnet piece 2c having an inner diameter and an outer diameter that are substantially the same (uniform thickness).
  • an arc-shaped magnet piece 2d that is close to a trapezoid (the side surface length is larger on the inner peripheral surface side than on the outer peripheral surface side) may be used.
  • the outer peripheral portion of the core 3A is shown as a part in FIG. 5A for convenience, so as to engage with the side surface (slope) of the magnet piece 2d.
  • a protrusion 4d that is larger on the outer peripheral surface side than on the inner peripheral surface side is formed.
  • the smaller the number of magnets the greater the cost reduction effect when the arc-shaped magnet piece 2b is used.
  • the thickness of the magnet piece 2b is reduced by 10%, the magnetic force of the completed magnet after magnetization is not reduced by 10%.
  • the radially outer upper surface of the protrusion 4 c has an arc shape and a shape in which the central portion is swollen, so that the magnet piece 2 b can be easily moved. If possible, the arc of the protrusion 4c should be smaller than the arc of the inner peripheral surface of the magnet piece 2b.
  • the position adjustment is made possible by pressing the axial adjustment jig 11 and the rotation of the core 3, but in the second embodiment (FIG. 5) of the present invention, By simply disposing the regulating plate 26 on the rotating jig 10b in the vicinity of the lower end surface (right end surface in the drawing) of the core 3A, collective adjustment becomes possible.
  • the axial direction of the magnet piece 2b is positioned by pushing up the magnet piece 2b while rotating the core 3A using the axial direction adjusting jig 11 having the inclined surface 12. May be.
  • the magnet piece 2d shown in a part of FIG. 5A has an inclined side surface, and the inner peripheral surface in close contact with the core 3A has a longer shape than the outer peripheral surface.
  • the protrusion 4d that engages with the inclined side surface of the magnet piece 2d has a shape opposite to the inclined side surface of the magnet piece 2d, and the outer peripheral surface length is set larger than the inner peripheral surface near the core 3A. Since it engages with one side surface of the magnet piece 2d, there is an advantage that the projection 4d can play a role of preventing the magnet piece 2d from being scattered.
  • the axial length of the protrusion 4c (4d) is set to the same length as the axial length CLA of the core 3A.
  • the axial position adjustment can be further simplified by appropriately devising the manufacturing equipment such as the rotating jig 10 and the regulating jig 20 described above (FIG. 3) and the adhesive application device (not shown). Is possible.
  • the rotor 1A of the magnet type rotating electrical machine includes the columnar core 3A and a plurality of magnets (magnet pieces) closely attached to the outer peripheral surface of the core 3A. 2b), and the core 3A has a plurality of protrusions 4c (4d) arranged along the outer peripheral surface and projecting radially outward, and the plurality of protrusions 4c are axial lengths of the core 3A.
  • Each of the plurality of magnets has a strip shape, and the circumferential width of the strip shape is set to be narrower than the interval between the protrusions 4c, and the axial length of the strip shape
  • the length MLb is set shorter than the axial length CLA of the core 3.
  • the inner surfaces in the radial direction of the plurality of magnets are in close contact with the outer peripheral surface of the core 3A between the plurality of protrusions 4c, and each of the plurality of magnets 2 is located on both sides of each magnet.
  • the one end surface position in the axial direction of each of the plurality of magnets coincides with the one end surface position in the axial direction of the core 3A.
  • the magnet mounting surface between the plurality of protrusions 4c is an arc surface
  • the radially inner circumferential surface of each of the plurality of magnets is an arc surface equivalent to the magnet mounting surface.
  • the manufacturing method of the rotor 1A of the magnet type rotating electrical machine according to the second embodiment (FIG. 2) of the present invention has a cylindrical shape, and a predetermined number of protrusions 4c protruding outward in the radial direction follow the outer peripheral surface. And a predetermined number of magnets (magnet pieces 2b) in close contact with the outer peripheral surface of the core 3A, in which a thin steel plate is cut to remove the core 3A. It is formed by a cutting process of forming pieces, a stacking process of stacking a predetermined number of core pieces formed by the cutting process corresponding to the axial length of the core 3A to form the core 3A, and a stacking process.
  • a rotating jig mounting step for mounting the core 3A on the rotating jig 10 a coating step for applying the adhesive 7 to the magnet mounting position on the outer peripheral surface of the core 3A, and a strip-shaped magnet piece 2b as a prototype of the magnet.
  • Magnet piece forming process to be formed A regulation jig mounting step in which a predetermined number of magnet pieces 2b formed in the magnet piece formation step are aligned and mounted on the regulation jig 20 and the core 3A is rotated by the rotation jig 10.
  • the magnet mounting step of pressing the magnet pieces 2b against the core 3A by the restriction jig 20 and mounting the predetermined number of magnet pieces 2b one by one at the magnet mounting position of the core 3A, and the core 3A mounted on the core 3A A magnetizing step of magnetizing each of the predetermined number of magnet pieces 2b in a predetermined direction.
  • the core 3A is erected so that the axial direction is a perpendicular line, and a regulating plate 26 having an outer diameter larger than the outer diameter of the core 3A is disposed at the lower end in the axial direction of the core 3A.
  • the magnet piece 2b is mounted at a predetermined circumferential position within the magnet mounting position of the core 3A, the magnet piece 2b falls due to its own weight, and the lower end surface in the axial direction abuts against the restriction plate 26, thereby lowering the axial direction of the core 3A. It arrange
  • the manufacturing apparatus of the rotor 1A of the magnet type rotating electrical machine according to the second embodiment of the present invention has a columnar shape, and is arranged along the outer peripheral surface and protrudes radially outwards 4c (4d). And a plurality of strip-shaped magnets (magnet pieces 2b) in close contact with the outer peripheral surface of the core 3A so as to come into contact with the side surface of one of the protrusions 4c between the plurality of protrusions 4c.
  • a rotor 1A manufacturing apparatus that cuts a thin steel plate to form a piece of a core 3A, and a predetermined number of core 3A pieces corresponding to the axial length of the core 3A.
  • the magnet piece 2b is formed
  • the stone piece forming device, the restricting jig 20 for mounting the magnet pieces 2b in alignment with the predetermined number to be mounted on the core 3A, and the axial end face position of each of the predetermined number of magnet pieces 2b are defined as the core 3A.
  • a restricting plate 26 (axial adjusting jig) that matches the position of one end surface in the axial direction, and a magnetizing device that magnetizes each of the predetermined number of magnet pieces 2b mounted on the core 3A in a predetermined direction. I have.
  • the magnet pieces 2b are pressed against the core 3A by the regulating jig 20, and a predetermined number of magnet pieces 2b are sequentially attached to the core 3A one by one.
  • the radially inner surfaces of the plurality of magnet pieces 2b are brought into close contact with the outer peripheral surface of the core 3A between the plurality of protrusions 4c, and each of the plurality of magnet pieces 2b is attached to each magnet piece.
  • the central portion between the two protrusions 4c located on both sides of 2b is shifted from the center of one protrusion.
  • the rotating jig 10b includes a regulating plate 26 that functions as an axial adjustment jig.
  • the regulating plate 26 has an outer diameter larger than the outer diameter of the core 3A, and the axial lower end surface of the core 3A. Is arranged.
  • the rotor 1A of a magnet type rotating electrical machine that can easily mount a magnet (magnet piece 2b) at a predetermined position of the core 3A of the rotor 1A, and its manufacturing method and apparatus Can be provided.
  • the axial position is adjusted by the pushing-up action of the axial adjustment jig 11 accompanying the rotation of the core 3, but according to the second embodiment of the present invention,
  • the restriction plate 26 can be arranged by placing it on the rotating jig 10b near the lower end surface (right side in the drawing) of the core 3A, and the adjustment work can be further simplified.
  • the magnet piece 2b moves away from the left and right regulating member 21 of the regulating jig 20 and moves to the side surface of the core 3A, the magnet piece 2b falls slightly due to its own weight, and the magnet Since the lower end surface of the piece 2b comes into contact with the restriction plate 26 and stops, the axial stop position of the magnet piece 2b coincides with the lower end surface of the core 3A. Therefore, the axial position of the magnet piece 2b is determined by the installation position of the restricting plate 26, and variations in the axial position of each magnet piece 2b can be easily prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 磁石を回転子のコアの所定位置に簡単に装着可能な磁石式回転電機の回転子ならびにその製造方法および装置を得る。回転子のコアのピースを切断して積層し、コア3を形成する工程と、コア3を回転治具10に装着する工程と、磁石ピース2pを所定形状に焼結して形成する工程と、所定数の磁石ピース2pを規制治具20に装着する工程と、コア3を回転治具10により回転させながら、規制治具20により磁石ピース2pを押圧し、コア3に磁石ピース2pを装着する工程と、磁石ピース2pの軸方向位置を調整し、コア3の軸方向端面と磁石ピース2pの軸方向端面とを一致させる工程とを備える。

Description

磁石式回転電機の回転子ならびにその製造方法および装置
 この発明は、永久磁石式の回転電機における回転子、ならびにその製造方法および装置に関するものである。
 従来から、回転電機の回転子としては、永久磁石(以下、単に「磁石」という)を用いたものがよく知られている。この種の回転子においては、モータに適用した場合のコギングトルクを低減するために、リング状の磁石からセグメント状の磁石に分割され、さらに、磁石の断面形状がかまぼこ状をなしたものが提案されている(たとえば、特許文献1参照)。
 上記特許文献1に記載された回転子の磁石は、かまぼこ状の断面形状を有し、断面における磁石の厚みは、両端側が中央部よりも薄く設定されている。また、回転子のコアは、ほぼ多角柱に形成され、各々の角部において、径方向の突起がコアの上下端に位置するように設けられている。
 なお、上記形状の回転子のコアには、各突起同士の相互間に、接着剤を使用して各磁石が貼付けられている。
 このとき、磁石を貼付ける際に、各磁石をコア上に保持しながら、それぞれ径方向外側からコアの中心に向かって押し付ける方法や、コアの軸方向上側から磁石を落下させながら、所定の位置に貼付ける方法が適用されるが、磁石貼付け用の治具として、大掛かりなものが必要となる。
 また、磁石の貼付け時に、コアの突起の片側に磁石の一側面を当接させて位置決めが行われるが、この場合、コアの周方向に対する磁石の位置決めは適切になされるものの、軸方向に対する位置決め手段はないので、コアの軸長が磁石の軸長よりも長いという関係から、磁石がコアからはみ出すことがないように配置作業が行われている。
国際公開第2009/063696号公報
 従来の磁石式回転電機の回転子ならびにその製造方法および装置は、接着剤を使用して回転子のコアの各突起間にセグメント状の磁石を貼付ける際に、大掛かりな治具が必要となるという課題があった。
 また、コアに磁石を貼付ける際に、コアの突起の片側に磁石の一方の側面を当接して位置決めをしているものの、軸方向に対する位置決め手段がないので、作業性が悪いという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、回転子のコアと各磁石との位置決めを確実に行うとともに、簡単な装置および構成で製造を容易にした磁石式回転電機の回転子ならびにその製造方法および装置を得ることを目的とする。
 この発明に係る磁石式回転電機の回転子は、円柱形状または多角柱形状のコアと、コアの外周面に密着された複数の磁石とにより構成された磁石式回転電機の回転子であって、コアは、外周面に沿って配置されて径方向外側に突出した複数の突起を有し、複数の突起は、少なくともコアの軸方向の端部付近に配置され、複数の磁石の各々は、短冊形状であって、短冊形状の周方向幅は、突起の相互間隔よりも狭く設定されるとともに、短冊形状の軸方向長さは、コアの軸方向長さよりも短く設定され、複数の磁石の各々の径方向内面は、複数の突起の相互間のコアの外周面に密着され、複数の磁石の各々は、各磁石の両側に位置する2つの突起の間の中央部よりも一方の突起側にずれて配置され、複数の磁石の各々の軸方向の一端面位置は、コアの軸方向の一端面位置と一致しているものである。
 この発明によれば、回転子のコアとセグメント状の磁石との位置決めが簡単になり、引いては製造工程および製造装置を簡単にすることができる。
この発明の実施の形態1に係る磁石式回転電機の回転子を示す上面図および側面図である。(実施例1) この発明の実施の形態1に係る回転子の製造工程を概略的に示すフローチャートである。(実施例1) この発明の実施の形態1によるコアへの磁石ピースの貼付け工程を上面図で示す説明図である。(実施例1) この発明の実施の形態1による磁石ピースの軸方向調整工程を側面図で示す説明図である。(実施例1) この発明の実施の形態2に係る磁石式回転電機の回転子の軸方向調整工程を示す上面図および側面図である。(実施例2)
 (実施例1)
 以下、図面を参照しながら、この発明の実施の形態1について説明する。
 図1はこの発明の実施の形態1に係る磁石式回転電機の回転子1を示す上面図(a)および側面図(b)である。
 図1において、回転子1は、複数の磁石2が位置決め配置された磁性材のコア3により構成されている。
 コア3の上下両端面には、外周部に沿って等間隔に配置された突起4、4bが設けられており、磁石2の上下両端部は、突起4、4bの各側端面に位置決めされて、コア3の外周面に沿って等間隔に配置されている。
 また、コア3には、中心軸に沿って貫通された中心穴5と、中心穴5の周辺に中心穴5と平行に貫通された複数の周辺穴6と、が形成されている。
 回転子1のコア3は、ほぼ多角柱形状(たとえば図示したように、10角柱)をなしており、突起4、4bは、コア3の径方向外側において多角柱の各角部に設けられている。
 なお、図示しないが、回転子1の外周部には、各磁石2に対向する複数の巻線を備えた円筒形状の固定子が対向配置されており、回転子1および固定子により磁石式回転電機が構成されている。また、コア3の中心穴5には、磁石式回転電機の出力軸(図示せず)が挿入される。
 コア3は、図1(b)に示すように、多数の薄板を軸方向に積層して構成されている。
 なお、複数の周辺穴6は、コア3の重量低減を目的として形成されているが、周辺穴6の有無は、特に磁力的特性に影響を与えることはない。
 短冊形状(セグメント状)をなす磁石2は、突起4、4bの間に、軸方向と平行に装着されている。
 また、この場合、コア3に対して接着される磁石2の底面は、多角柱の平面部に配設されることから平坦である。一方、径方向外側に位置する磁石2の上面は、かまぼこ状の断面形状となっている。
 なお、磁石2は、中央部の厚みが左右両端部の厚みよりも大きく、中央部から両端側に向かって次第に厚みが小さくなっている形状であればよいので、かまぼこ形状の磁石2(図1参照)に限定されることはない。
 ここでは、便宜的に図1(a)内の一部に示すが、かまぼこ形状の磁石2に代えて、たとえば、断面形状がほぼ台形の磁石2aを用いてもよい。
 各磁石2は、磁石2の上下両端部の1側面が、突起4、4bの径方向高さ方向の1側面と当接するように配置されている。
 また、磁石2の軸方向長さMLは、コア3の軸方向長さCL2よりも短く設定されており、磁石2の軸方向一端面(下端面)は、コア3の一端面(下端面)に対して、ほぼ段差がない同一面位置となっている。一方、磁石2の他の一端面(上端面)は、ML<CL2であることから、コア3の端面との間で段差を有している。
 具体的には、軸方向長さに関しては、コア3の軸方向長さCL2、磁石2の軸方向長さML、および、コア3の非突起部の軸方向長さCL1(突起4、4bを除いた長さ)は、CL2>ML>CL1の関係にある。
 さらに詳細に、下端側の突起4bの軸方向長さCL3を用いて表せば、CL2>ML>CL1+CL3の関係にある。
 なお、コア3の非突起部の軸方向長さCL1は、できれば磁石2の軸方向長さMLと近い値である方がよい。
 なぜなら、突起4、4bの全長にわたって磁石2がある場合(CL2=ML)と比較して、N極からS極への磁束漏れが少なく、強い磁力が得られるからである。
 また、磁石2とコア3との間は、後述するように(図3参照)、接着剤7により貼り付けられるが、磁石2の外周に別部品(筒状ケースなど)を付けて、磁石2の飛散や破損を防止可能な構成としてもよい。
 また、接着剤7を用いなくても、磁石2とコア3とを凹凸嵌合による嵌め合いで固定してもよい。
 次に、図2を参照しながら、図1に示したこの発明の実施の形態1に係る回転子1の製造工程について説明する。
 図2は回転子1の製造工程を概略的に示すフローチャートであり、コア3に関する工程(ステップS1~S4)と、磁石2に関する工程(ステップS5~S7)と、コア3への磁石2の装着およびその後の工程(ステップS8~S12)と、を示している。
 図2において、まず、コア3を製造するために、薄板鋼板をほぼ多角形状に切断し、コア3のピースを複数枚形成する(ステップS1)。このとき、突起4、中心穴5および周辺穴6を有する多角形状に切断する。
 続いて、コア3のピースを、突起4または中心穴5を基準として、所定枚数だけ積層して一体化することにより、長さCL2のコア3を形成する(ステップS2)。
 なお、コア3のピースを積層して一体化する際には、溶接や凹凸嵌合など種々の方法が適用可能である。
 次に、ステップS2で完成したコア3を治具に装着し(ステップS3)、磁石2の装着位置、すなわちコア3の外周部の突起4の相互間に接着剤7を塗布する(ステップS4)。
 なお、コア3が装着される治具は、後述するように(図3、図4参照)、コア3を上下から軸方向に固定し、かつコア3の周方向に回転可能な構成とすることが望ましい。
 この場合、接着剤塗布工程(ステップS4)において、回転治具10を回転させながら接着剤7を塗布することが可能となる。
 一方、コア3の外周部に接着される磁石2のピースを製造するためには、まず、磁石2の材料(粉末)を型に入れて焼結を行い、かまぼこ形状の磁石2の大まかな原型ピースを製造する(ステップS5)。
 続いて、原型ピースを所定の形状にするための切削などを行い、磁石2の最終形状を有する磁石ピース2p(図3、図4参照)を形成する(ステップS6)。
 次に、コア3に貼り付けるべき所定数の磁石ピース2pを、磁石規制用の治具に整列させて装着する(ステップS7)。
 なお、磁石用の治具は、後述するように(図3参照)、磁石ピース2pの向き、および移動を規制するための規制治具20である。
 次に、後述するように(図3参照)、コア3を回転させながら、磁石ピース2pを1個ずつコア3の外周面に装着する(ステップS8)。
 続いて、後述するように(図4参照)、磁石ピース2pの軸方向位置をコア3の端面位置と一致させるようにシフト調整を行う(ステップS9)。
 ステップS9により、回転子1は、形状的には完成したことになるが、磁石ピース2pが未着磁であり、また、接着剤7が完全に固まっていない場合には、磁石ピース2pがコア3から脱落する可能性がある。
 そこで、ステップS9に続いて、磁石ピース2pをコア3の中心軸側に向かって押圧し(ステップS10)、さらに、加熱するなどにより、接着剤7を硬化させてすべての磁石ピース2pをコア3に固定する(ステップS11)。
 最後に、各磁石ピース2pをそれぞれ着磁することにより、最終品の回転子1が完成させて(ステップS12)、図2の製造工程を終了する。
 なお、図2においては、磁石ピース2pの押圧工程(ステップS10)を、軸方向調整工程(ステップS9)の後に実行したが、ステップS9とステップS10との実行順序を入れ替えてもよい。
 また、回転子1として完成するためには、最終的には、コア3の中心穴5に磁石式回転電機の出力軸が挿入されるが、中心穴5への出力軸の挿入工程は、最終の着磁工程(ステップS12)の後に実行してもよく、または、コア3の積層工程(ステップS2)の後に実行してもよい。
 次に、図3を参照しながら、コア3への磁石ピース2pの貼付け工程について、具体的に説明する。
 図3(a)~図3(f)は、コア3への磁石ピース2pの貼付け工程(ステップS8)を上面図で示す説明図であり、コア3の軸方向下端側は図示されていない。
 図3においては、回転治具10に装着されたコア3と、規制治具20に装着された磁石ピース2pと、ステップS10を実行する押圧治具24と、の相互の位置関係が示されている。なお、コア3の下端側で実行される軸方向調整工程(ステップS9)については、図4とともに後述する。
 図3において、磁石ピース2pの規制治具20は、複数の磁石ピース2pを一定姿勢で収納する左右規制部材21と、左右規制部材21内の磁石ピース2pをコア3の側面方向に向けて付勢する押圧ロッド22と、磁石ピース2pのコア3への装着時に左右規制部材21の先端部を開放して磁石ピース2pを1個ずつ導出するゲート23と、を備えている。
 まず、図3(a)のように、コア3の軸方向両端(下端は図示せず)を、回転治具10により固定するとともに、1セット(10個)の磁石ピース2pを、左右規制部材21により整列させて規制治具20に装着する。
 なお、コア3の磁石装着面には、接着剤塗布工程(ステップS4)により、すでに接着剤7が塗布されているものとする。
 回転治具10は、図3(c)~図3(f)のように、磁石ピース2pがコア3に装着されるごとに、中心部(+)を軸として図中の反時計方向に回転する。
 規制治具20の左右規制部材21の間には、10個の磁石ピース2pが、左右(図中上下)方向の移動を規制され、かつ遊嵌状態で挿入されている。
 また、左右規制部材21内において、図中の最右端に位置する磁石ピース2pは、移動自在かつ付勢力を有する押圧ロッド22により、破線矢印方向に押圧されている。
 規制治具20において、左右規制部材21の先端部(図中最左端)の左右に配置されたゲート23は、装着工程の前では、磁石ピース2pの飛び出しを防止するために、閉成されている。
 なお、押圧ロッド22の付勢力は、強い方が磁石ピース2pのコア3に対する密着性がよくなるが、磁石ピース2p自体の破損回避、およびコア3の回転時の摺動良好性などを考慮して適切な値に決定する必要がある。
 規制治具20に装着された磁石ピース2pは、図3(a)内の実線矢印(図中左方向)のように、規制治具20とともにコア3側に移動し、図3(b)のように、コア3の外周部に接近する。
 このとき、回転治具10が反時計方向に回転し、図3(b)のように、コア3上の1つの突起4が、左右規制部材21内で整列された磁石ピース2pの中央に向くように位置決めする。
 なお、突起4の位置は、突起4自体で位置決めしてもよく、または、周辺穴6を利用してもよい。
 図3(b)においては、規制治具20の移動により磁石ピース2pがコア3に接近しているが、コア3の突起4の先端部と磁石ピース2pの端面との間には、わずかな空隙がある。
 これが磁石ピース2pの装着開始位置となり、左右のゲート23が開放される。
 これにより、左右規制部材21内で整列された最左端の第1番目の磁石ピース2pは、押圧ロッド22により押し出されて、突起4に当接する。
 続いて、図3(c)のように、回転治具10が反時計方向(破線矢印方向)に回転を開始すると、第1番目の磁石ピース2pが、隣接する2つの突起4の間に押し出されて、位置決めされつつ突起4の相互間に収納される。
 このとき、第1番目の磁石ピース2pは、固着まではされないが、接着剤7により、コア3の外周側面から外れない程度には仮固定される。
 また、第1番目の磁石ピース2pは、押圧ロッド22の付勢力により押さえ付けられるとともに、回転治具10が回転を続けているので、仮固定状態で移動し、2つの突起4の間の中央位置ではなく、回転方向の後方側の突起4の側壁と当接することになる。
 この結果、磁石ピース2pは。最終的に、2つの突起4の後方側の一方とのみ当接して位置決めされる。
 次に、図3(d)においては、回転治具10が回転継続中であり、ゲート23が開放状態であり、整列された磁石ピース2pは付勢され続けているので、第1番目の磁石ピース2pの上面と、第2番目の磁石ピース2pの底面とが接触し、第2番目の磁石ピース2pは、第1番目の磁石ピース2pの上面および突起4の上を滑りながら、コア3の次の突起4の相互間の所定位置に向かって移動することになる。
 次に、回転治具10の回転が進み、図3(e)においては、第2番目の磁石ピース2pが、第1番目の磁石ピース2pから離れて、次の突起4の相互間の接着剤7の塗布面と接触する。
 さらに、回転治具10が回転し、図3(f)においては、第2番目の磁石ピース2pが突起4の相互間位置に収納され、接着剤7で仮固定される。以下、上記シーケンスを繰り返し、1セット(10個)の磁石ピース2pが、10角柱形状のコア3の10側面に仮固定される。
 以上にように、図3(a)~図3(f)の工程により、順次に1個ずつ磁石ピース2pがコアの回転により所定位置に装着される。
 また、磁石ピース2pの一方の側面と、突起4の回転方向の後方側の側壁とが当接することになり、すべての磁石ピース2pが同様に定位置に収まることになる。
 さらに、図3(f)においては、コア3の近傍に配置されてローラ25を有する押圧治具24により、磁石ピース2pの押圧工程(ステップS10)が実行される。
 この押圧工程は、押圧治具24のローラ25が、コア3の回転と同期して実線矢印方向に回転しながら磁石ピース2pに当接することにより、磁石ピース2pをコア3に押さえ付け、コア3への密着性および接着剤7とのなじみ性を向上させて、磁石ピース2pの脱落を確実に防止するためのものである。
 なお、図3(f)においては、押圧治具24を、磁石ピース2pの装着位置(規制治具20)の反対側(コア3の180°回転側)に配置したが、図3(f)の配置に限定されることはなく、磁石ピース2pの装着位置の直後のコア3の回転側(たとえば、約30°回転側)に、押圧治具24を配置してもよい。
 図3(b)~図3(f)のように、コア3を回転させつつ磁石ピース2pを押圧供給することにより、第1の磁石ピース2pの背面突部(かまぼこ形状の曲面)、およびコア3の突起4の上を、第2の磁石ピース2pの底面を滑らせるように移動させ、さらには、突起4の回転後方側の一方の内側に当接させて、1セット分の磁石ピース2pを順次にコア3上の所定位置に装着することができる。
 つまり、この発明の実施の形態1に係る製造装置としては、回転治具10および規制治具20の構成のみで対応することができ、製造装置の構造が単純で、かつ小規模で済むことになる。
 ただし、コア3の突起4の径方向高さは、磁石ピース2pの最大厚み(かまぼこ形状の曲面位置)よりも低いことが必要である。
 できれば、突起4の径方向高さは、磁石ピース2pの側面の径方向高さと同程度、または、それ以下であることが望ましい。
 また、図1~図3において、突起4の径方向外側上面(磁石ピース2pの装着面)を平面としたが、平面に限定されることはなく、たとえば円弧状であってもよい。
 さらに、磁石ピース2pの断面形状をかまぼこ状としたが、かまぼこ状に限定されることはなく、たとえば直方体形状であっても、同様の装着方法が適用可能なことは言うまでもない。
 次に、図4を参照しながら、磁石ピース2pの軸方向の位置決めについて説明する。
 図4(a)~図4(c)は、磁石ピース2pの軸方向調整工程(ステップS9)を側面図で示す説明図である。
 図4において、軸方向調整工程を実行するための軸方向調整治具11は、コア3の下端側に配置されている。
 また、コア3の下端側は、上端部側の回転治具10と同様の回転治具10bにより、位置決め固定されている。
 なお、軸方向調整治具11の配置位置は、図4(b)、図4(c)内の破線矢印で示すコア3の回転方向に対して、図3内の規制治具20の直後のコア3の回転位置(約30°)であってもよく、ほぼ1回転位置(約330°)であってもよい。
 図3の装着工程のみによれば、磁石ピース2pの周方向位置は決定されるが、軸方向位置は正確には決定されない。
 すなわち、図4(a)にように、各磁石ピース2pの軸方向(図中の左右方向)の装着位置は、磁石ピース2pの押圧力や、接着剤7の量および塗布位置のバラツキなどによって、コア3の下端面から若干ずれて配置されている。
 図4(a)においては、便宜的に、コア3を横向きに示しているが、実際には、コア3は縦方向に設置される。すなわち、磁石ピース2pの下端部は、コア3の下端部よりもわずかに下側にはみ出している。
 図4(a)においては、軸方向調整治具11が破線矢印方向に移動して、磁石ピース2pの下端部に押し当てられる直前の状態を示しているが、コア3はまだ回転していない。
 軸方向調整治具11は、一方の側端面(コア3の回転による磁石ピース2pとの衝合面)において、斜めカットされた傾斜面12を有する。
 これにより、図4(b)、図4(c)のように、磁石ピース2pの一方向端面は、コア3の回転(破線矢印)にともない傾斜面12に沿って押されるので、最終的には、コア3の一方向端面と、磁石ピース2pの一方向端面とが一致するまで移動される。
 図4(b)においては、軸方向調整治具11の移動(実線矢印)により、最初に衝合した磁石ピース2pが押圧された状態を示しており、コア3が回転(破線矢印)すると、磁石ピース2pの下端面(図中右端面)と、コア3の下端面(図中右端面)とが、同一面位置になるまで移動させられることが分かる。
 図4(c)は、コア3の回転方向(破線矢印)の上流側では、軸方向調整治具11により押圧された磁石ピース2pが軸方向所定位置(コア3の下端面と同一位置)に移動され、コア3の回転方向(破線矢印)下流側では、軸方向調整治具11により押圧される前の磁石ピース2pが、移動前のコア3の下端面からはみ出た状態を示している。
 また、位置調整工程中において、磁石ピース2pがコア3から脱落する可能性がある場合には、軸方向調整治具11が磁石ピース2pに当接する前の回転位置から、軸方向調整治具11が磁石ピース2pから離れる回転位置までの回転領域内に、軸方向調整治具11の外周部に位置するように、衝立(図示せず)を装着すればよい。
 これにより、位置調整工程中の磁石ピース2pの脱落を防止することができる。
 図4(b)、図4(c)のように、コア3の回転を利用して、磁石ピース2pの軸方向位置を調整することにより、コア3の一方向端面と磁石ピース2pの一方向端面とが所定位置へ治まることになり、簡単に軸方向の位置決めも可能となる。
 したがって、図3および図4により、コア3に対する磁石ピース2pの周方向および軸方向の両方とも、コア3の回転により位置決めすることができ、工程も単純化することができるので、製造装置として小規模なもので実現することができる。
 なお、図4に示した磁石ピース2pの軸方向の位置調整工程(ステップS9)は、図3(f)に示した規制治具20と押圧治具24との間の回転位置(たとえば、90°位置)に配置することが望ましい。
 なぜなら、図2中の磁石ピース2pのコア3への装着工程(ステップS8)から、軸方向位置調整(ステップS9)および磁石ピース2pの押圧工程(ステップS10)へと、順に工程が進むことになるからである。
 なお、接着剤7の硬化時間は、使用する接着剤7の種類によっても異なるが、通常、硬化時間の方が、図3および図4における磁石ピース2pの装着時間よりも長いので、図3および図4により完成した回転子1を、回転治具10、10bから外して、別途に異なる工程で接着剤7の硬化工程(加熱工程など)が実行される。
 また、規制治具20は、磁石ピース2pの軸方向長さMLに応じて、上方および下方の少なくとも2箇所では、磁石ピース2pが倒れないように規制するが、磁石ピース2pを押さえ付けるのではなく、左右規制部材21内で遊嵌状態として、磁石ピース2pが移動しやすくする必要がある。
 また、規制治具20の押圧ロッド22は、磁石ピース2pの幅方向全体を押すのではなく、幅方向の中央部付近のみを押し付けるものである。
 また、押圧ロッド22の先端部分は、磁石ピース2pの軸方向長さMLに応じて、磁石ピース2pの長さ方向の中央付近、または中央から下側にかけて、さらには、上下2箇所を押すように、磁石ピース2pの移動しやすさに応じて、形状を変更してもよい。
 さらに、回転治具10、10bは、コア3の中心軸近傍を保持しており、規制治具20も、磁石ピース2pの軸方向の一部分を規制しているので、コア3の径または軸長が異なるものであっても、磁石ピース2pの装着枚数が異なるものであっても、図3と同一の工程および図4と同一の装置により、コア3への磁石ピース2pの装着が可能である。
 したがって、種々の大きさの回転子1に対応することができる。
 以上のように、この発明の実施の形態1(図1~図4)に係る磁石式回転電機の回転子1は、多角柱形状のコア3と、コア3の外周面に密着された複数の磁石2(2b)とにより構成されており、コア3は、外周面に沿って配置されて径方向外側に突出した複数の突起4(4b)を有し、複数の突起4は、少なくともコア3の軸方向の端部付近に配置されている。
 複数の磁石2の各々は、短冊形状であって、短冊形状の周方向幅は、突起4の相互間隔よりも狭く設定され、短冊形状の軸方向長さMLは、コア3の軸方向長さCL2よりも短く設定されている。
 また、複数の磁石2の各々の径方向内面は、複数の突起4の相互間のコア3の外周面に密着され、複数の磁石2の各々は、各磁石2の両側に位置する2つの突起4の間の中央部よりも一方の突起側にずれて配置され、複数の磁石2の各々の軸方向の一端面位置は、コア3の軸方向の一端面位置と一致している。
 複数の磁石2の各々の周方向中央部の厚みは、各磁石2の両側に位置する2つの突起4の径方向高さよりも大きい値に設定されている。
 複数の突起4の相互間の磁石装着面は、平面からなり、複数の磁石2の各々の径方向内周面は、磁石装着面と同等の平面からなる。
 さらに、複数の磁石2の各々は、断面形状において、周方向中央部の厚みが両側面部の厚みよりも大きく、周方向中央部から両側面部に向かうにしたがって厚みが小さくなるように形成されている。
 また、この発明の実施の形態1(図2)に係る磁石式回転電機の回転子1の製造方法は、多角柱形状を有し、径方向外側に突出した所定数の突起4(4b)が外周面に沿って配置されたコア3と、コア3の外周面に密着された所定数の磁石2とにより構成された回転子1の製造方法であって、薄板鋼板を切断してコア3のピースを形成する切断工程(ステップS1)と、切断工程により形成されたコア3のピースを、コア3の軸方向長さ分に相当する所定枚数だけ積層してコア3を形成する積層工程(ステップS2)と、積層工程により形成されたコア3を回転治具10に装着する回転治具装着工程(ステップS3)と、コア3の外周面の磁石装着位置に接着剤7を塗布する塗布工程(ステップS4)と、磁石2の原型となる短冊形状の磁石ピース2pを焼結して形成する磁石ピース形成工程(ステップS5、S6)と、磁石ピース形成工程により形成された磁石ピース2pを、コア3に装着すべき所定数だけ整列させて規制治具20に装着する規制治具装着工程(ステップS7)と、回転治具10によりコア3を回転させながら、規制治具20により磁石ピース2pをコア3に押圧して、所定数の磁石ピース2pを1枚ずつ順次にコア3の磁石装着位置に装着する磁石装着工程(ステップS8)と、コア3上に装着された所定数の磁石ピース2pの各々を所定方向に着磁する着磁工程(ステップS12)と、を備えている。
 磁石ピース形成工程において、磁石ピース2pは、断面において中央部の厚みが両側面の厚みよりも大きく、かつ周方向中央部から両側面部に向かうにしたがって厚みが小さくなり、また中央部の厚みがコア3の突起4の径方向高さよりも大きく、さらに軸方向長さMLがコア3の軸方向長さCL2よりも短くなるように形成されている。
 磁石装着工程において、磁石ピース2pは、径方向内周面がコア3の2つの突起4の周方向間の磁石装着位置に装着されるとともに、回転治具10の回転により、磁石ピース2pの一方の側面が2つの突起4の周方向一方の内側壁と当接し、磁石ピース2pの他方の側面と2つの突起4の他方の側壁との間に空隙を有する位置関係となるように装着される。
 また、この発明の実施の形態1に係る磁石式回転電機の回転子1の製造方法は、磁石装着工程により、磁石装着位置内の周方向所定位置に磁石ピース2pを装着した後に、磁石ピース2pの軸方向の一端面を移動させて、コア3の軸方向の一方向端面と一致させる軸方向調整工程を備えており、軸方向調整工程において、磁石ピース2pの軸方向の一端面は、回転治具10の回転によりコア3の軸方向の一方向端面方向に移動される。
 磁石装着工程は、コア3を回転治具10に装着して回転させる工程と、規制治具20に装着された所定数の磁石ピースのうちの先端部の磁石ピース2pを、回転中のコア3に対向して押し付ける工程と、からなる。
 また、この発明の実施の形態1に係る磁石式回転電機の回転子1の製造方法は、磁石装着工程の後に、磁石ピース2pをコア3の中心軸側に向かって押圧する押圧工程(ステップS10)を備えている。
 また、押圧工程の後に、接着剤7を硬化させて磁石ピース2pをコア3に固定する磁石固定工程(ステップS11)を備えている。
 さらに、この発明の実施の形態1に係る磁石式回転電機の回転子1の製造装置は、円柱形状または多角柱形状をなし、外周面に沿って配置されて径方向外側に突出した所定数の突起4(4b)を有するコア3と、所定数の突起4の相互間で一方の突起の側面に当接するようにコア3の外周面に密着された所定数の短冊形状の磁石2と、により構成された回転子1の製造装置であって、薄板鋼板を切断してコア3のピースを形成する切断装置と、コア3のピースを、コア3の軸方向長さ分に相当する所定枚数だけ積層してコア3を形成する積層装置と、コア3を回転自在に装着する回転治具10と、コア3の外周面の磁石装着位置に接着剤7を塗布する塗布装置と、磁石2の原型となる短冊形状の磁石ピース2pを形成する磁石ピース形成装置と、磁石ピース2pを、コア3に装着すべき所定数だけ整列させて装着する規制治具20と、所定数の磁石ピース2pの各々の軸方向の一端面位置を、コア3の軸方向の一端面位置と一致させる軸方向調整治具11と、コア3上に装着された所定数の磁石ピース2pの各々を所定方向に着磁する着磁装置と、を備えている。
 上記製造装置においては、回転治具10によりコア3を回転させながら、規制治具20により磁石ピース2pをコア3に押圧させ、所定数の磁石ピース2pを1枚ずつ順次にコア3の磁石装着位置に装着することにより、所定数の磁石ピース2pの各々の径方向内面を、所定数の突起4の相互間のコア3の外周面に密着させるとともに、所定数の磁石ピース2pの各々を、各磁石ピース2pの両側に位置する2つの突起の間の中央部よりも一方の突起側にずれて配置させる。
 また、この発明の実施の形態1に係る磁石式回転電機の回転子1の製造装置は、コア3の磁石装着位置内の所定位置に配置された各磁石ピース2pを、コア3の中心軸側に押圧するためのローラ25を有する押圧治具24を備えている。
 このように、回転治具10により回転するコア3上に、規制治具20内に配列された磁石ピース2pを順次に装着した後、コア3の回転を利用して磁石ピース2pの軸方向位置を調整し、コア3の軸方向端面と磁石の軸方向端面とを容易に一致させた後、磁石ピース2pを着磁して磁石2とすることにより、回転子1を完成することができる。
 したがって、この発明の実施の形態1によれば、回転子1のコア3と短冊形状(セグメント状)の磁石2との位置決めが簡単になり、磁石2を回転子1のコア3の所定位置に簡単に装着可能な磁石式回転電機の回転子1ならびにその製造方法および装置を提供することができる。
 (実施例2)
なお、上記実施の形態1(図1~図4)では、コア3の断面形状を多角柱とし、突起4の相互間の磁石2(磁石ピース2p)との接合面を平面としたが、図5(a)のように、コア3Aの断面形状をほぼ円形とし、突起4cの相互間に断面円弧形状の磁石ピース2bを装着してもよい。
 また、図5(b)のように、磁石ピース2pの軸方向位置を一括調整するための規制板26を用いてもよい。
 図5(a)、図5(b)はこの発明の実施の形態2に係る磁石式回転電機の回転子1Aの軸方向調整工程を示す上面図および側面図であり、前述(図1、図4参照)と同様のものについては、前述と同一符号を付して、または符号の後に「A」が付して詳述を省略する。
 なお、コア3Aおよび磁石ピース2bの製造工程においては、前述(図2、図3参照)と同様の処理工程および治具を適用することができる。
 この場合も、前述と同様に、磁石ピース2bの各々は短冊形状であって、短冊形状の周方向幅は突起4cの相互間隔よりも狭く設定されている。また、磁石ピース2bの基本的形状、およびコア3Aに対する磁石ピース2bの位置決め状態については、前述と同様である。
 また、図5(b)に示すように、短冊形状の磁石ピース2bの軸方向長さMLbは、コア3Aの軸方向長さCLAよりも短く設定されている。
 図5において、回転子1Aの下端部には、複数の磁石ピース2bの軸方向位置を一括調整するための規制板26が配設されている。
 回転子1Aを構成するコア3Aの外周断面形状は、ほぼ円形であり、外周部には、8個の突起4cが形成されている。コア3Aの下端部は、回転治具10bにより保持されている。なお、この場合、突起4cは、コア3Aの上端面から下端面まで連続して形成されているものとする。
 磁石ピース2bは、コア3Aの外周形状に倣うように円弧状であり、各突起4cの相互間に、仮固定の状態で装着されている。
 磁石ピース2bの一方の側面は、突起4cの一方の内面により規制され、また、磁石ピース2bの下端面は、規制板26により、コア3Aの端面と一致するように調整されている。
 円弧状の磁石ピース2bは、前述(図1)のかまぼこ状の磁石2と近似した、偏心形状を有しており、回転方向に対して中央部の厚みが両端部よりも大きく形成されている。すなわち、磁石ピース2bの内周径および外周径の各曲率半径を考えた場合に、内周径よりも外周径の方が小さい凸レンズ形状をなしている。
 ただし、図5に示すような、偏心形状の磁石ピース2bに限定されることはない。
 たとえば、便宜的に図5(a)内の一部に示すように、偏心形状の磁石ピース2bに代えて、内周径と外周径とがほぼ同じ(均一厚み)の円弧状の磁石ピース2cを用いてもよく、さらに、台形に近い(側面長が外周面側よりも内周面側の方が大きい)円弧状の磁石ピース2dを用いてもよい。
 なお、磁石ピース2dを用いた場合には、磁石ピース2dの側面(斜面)に係合するように、便宜的に図5(a)内の一部に示すように、コア3Aの外周部には、突起4cに代えて、内周面側よりも外周面側の方が大きい突起4dが形成される。
 上記の磁石ピース2b、2c、2dのいずれを用いた場合も、前述の実施の形態1(かまぼこ状)の磁石2(磁石ピース2p)を用いた場合と比較して、内側の円弧部分だけ磁石の体積が減るので、磁石自体のコスト低減を実現することができる。
 また、磁石の枚数が少ないほど、円弧状の磁石ピース2bを用いた場合、コスト低減効果が大きくなるメリットがある。
 なお、たとえば、磁石ピース2bの厚みを10%減らしたからといって、着磁後の完成磁石の磁力が10%減ることはない。
 ここでは、詳述を省略するが、円弧状の磁石ピース2bのコア3Aへの装着工程においては、前述(図3)と同様の装置が適用可能であり、コア3Aを回転させながら、磁石ピース2bを押し付けることにより、貼付け装着することができる。
 また、図5においては、突起4cの径方向外側上面は、円弧状で中央部分が膨らんだ形状を有するので、磁石ピース2bの移動が容易になっている。
 できれば、突起4cの円弧は、磁石ピース2bの内周面の円弧よりも小さい方がよい。
 また、前述(図4)の位置調整工程では、軸方向調整治具11の押圧とコア3の回転とにより、位置調整を可能にしたが、この発明の実施の形態2(図5)においては、単に、規制板26をコア3Aの下端面(図中右端面)近傍の回転治具10bに配置することにより、一括調整が可能となる。
 ただし、前述(図4)と同様に、傾斜面12を有する軸方向調整治具11を用いて、コア3Aを回転させながら、磁石ピース2bを押し上げることにより、磁石ピース2bの軸方向を位置決めしてもよい。
 また、図5(a)の一部に示した磁石ピース2dは、側面が傾斜しており、コア3Aと密着する内周面の方が、外周面よりも長い形状をしている。
 この場合、磁石ピース2dの傾斜側面と係合する突起4dは、磁石ピース2dの傾斜側面とは逆形状に、コア3Aに近い内周面よりも外周面の長さが大きく設定されており、磁石ピース2dの一側面と係合するので、突起4dが磁石ピース2dの飛散防止を担うことができるメリットがある。
 また、図5(b)に示すように、突起4c(4d)の軸方向長さは、コア3Aの軸方向長さCLAと同一長さに設定されているので、磁石漏れ磁束に関してはわずかに不利な条件となるものの、前述(図2)の切断工程(ステップS1)において、コア3Aの薄板鋼板を常に同一形状で打ち抜くことができ、製造工程を簡略化することが可能となる。
 また、前述(図3)の回転治具10および規制治具20や、接着剤塗布装置(図示せず)などの製造設備を適宜工夫することにより、軸方向位置調整をさらに簡略化することも可能である。
 以上のように、この発明の実施の形態2(図5)に係る磁石式回転電機の回転子1Aは、円柱形状のコア3Aと、コア3Aの外周面に密着された複数の磁石(磁石ピース2b)とにより構成されており、コア3Aは、外周面に沿って配置されて径方向外側に突出した複数の突起4c(4d)を有し、複数の突起4cは、コア3Aの軸方向長さCLAと同一長さにわたって配置され、複数の磁石の各々は、短冊形状であって、短冊形状の周方向幅は、突起4cの相互間隔よりも狭く設定されるとともに、短冊形状の軸方向長さMLbは、コア3の軸方向長さCLAよりも短く設定されている。
 また、複数の磁石(磁石ピース2b)の各々の径方向内面は、複数の突起4cの相互間のコア3Aの外周面に密着され、複数の磁石の各々は、各磁石の両側に位置する2つの突起4cの間の中央部よりも一方の突起側にずれて配置され、複数の磁石の各々の軸方向の一端面位置は、コア3Aの軸方向の一端面位置と一致している。
 さらに、複数の突起4cの相互間の磁石装着面は、円弧面からなり、複数の磁石の各々の径方向内周面は、磁石装着面と同等の円弧面からなる。
 また、この発明の実施の形態2(図2)に係る磁石式回転電機の回転子1Aの製造方法は、円柱形状を有し、径方向外側に突出した所定数の突起4cが外周面に沿って配置されたコア3Aと、コア3Aの外周面に密着された所定数の磁石(磁石ピース2b)とにより構成された回転子1Aの製造方法であって、薄板鋼板を切断してコア3Aのピースを形成する切断工程と、切断工程により形成されたコアのピースを、コア3Aの軸方向長さ分に相当する所定枚数だけ積層してコア3Aを形成する積層工程と、積層工程により形成されたコア3Aを回転治具10に装着する回転治具装着工程と、コア3Aの外周面の磁石装着位置に接着剤7を塗布する塗布工程と、磁石の原型となる短冊形状の磁石ピース2bを形成する磁石ピース形成工程と、磁石ピース形成工程により形成された磁石ピース2bを、コア3Aに装着すべき所定数だけ整列させて規制治具20に装着する規制治具装着工程と、回転治具10によりコア3Aを回転させながら、規制治具20により磁石ピース2bをコア3Aに押圧して、所定数の磁石ピース2bを1枚ずつ順次にコア3Aの磁石装着位置に装着する磁石装着工程と、コア3A上に装着された所定数の磁石ピース2bの各々を所定方向に着磁する着磁工程と、を備えている。
 磁石装着工程において、コア3Aは、軸方向が垂線となるように直立され、コア3Aの軸方向下端部には、コア3Aの外径よりも大きい外径を有する規制板26が配置されている。
 磁石ピース2bは、コア3Aの磁石装着位置内の周方向所定位置に装着される際に、自重により落下して、軸方向下端面が規制板26に当接することにより、コア3Aの軸方向下端面と一致するように配置される。
 さらに、この発明の実施の形態2に係る磁石式回転電機の回転子1Aの製造装置は、円柱形状をなし、外周面に沿って配置されて径方向外側に突出した複数の突起4c(4d)を有するコア3Aと、複数の突起4cの相互間で一方の突起の側面に当接するようにコア3Aの外周面に密着された複数の短冊形状の磁石(磁石ピース2b)と、により構成された回転子1Aの製造装置であって、薄板鋼板を切断してコア3Aのピースを形成する切断装置と、コア3Aのピースを、コア3Aの軸方向長さ分に相当する所定枚数だけ積層してコア3Aを形成する積層装置と、コア3Aを回転自在に装着する回転治具10と、コア3Aの外周面の磁石装着位置に接着剤7を塗布する塗布装置と、磁石の原型となる短冊形状の磁石ピース2bを形成する磁石ピース形成装置と、磁石ピース2bを、コア3Aに装着すべき所定数だけ整列させて装着する規制治具20と、所定数の磁石ピース2bの各々の軸方向の一端面位置を、コア3Aの軸方向の一端面位置と一致させる規制板26(軸方向調整治具)と、コア3A上に装着された所定数の磁石ピース2bの各々を所定方向に着磁する着磁装置と、を備えている。
 上記製造装置においては、回転治具10によりコア3Aを回転させながら、規制治具20により磁石ピース2bをコア3Aに押圧させ、所定数の磁石ピース2bを1枚ずつ順次にコア3Aの磁石装着位置に装着することにより、複数の磁石ピース2bの各々の径方向内面を、複数の突起4cの相互間のコア3Aの外周面に密着させるとともに、複数の磁石ピース2bの各々を、各磁石ピース2bの両側に位置する2つの突起4cの間の中央部よりも一方の突起側にずれて配置させる。
 また、回転治具10bは、軸方向調整治具として機能する規制板26を備えており、規制板26は、コア3Aの外径よりも大きい外径を有し、コア3Aの軸方向下端面に配置されている。
 上記構成により、前述の実施の形態1と同様に、磁石(磁石ピース2b)を回転子1Aのコア3Aの所定位置に簡単に装着可能な磁石式回転電機の回転子1Aならびにその製造方法および装置を提供することができる。
 また、前述(図4)の実施の形態1では、コア3の回転にともなう軸方向調整治具11の押し上げ作用により軸方向位置を調整したが、この発明の実施の形態2によれば、単に規制板26をコア3Aの下端面(図中右側)近傍の回転治具10bに配置することで可能となり、さらに調整作業を簡略化することができる。
 具体的には、たとえば図3の装着工程において、磁石ピース2bが規制治具20の左右規制部材21から離れてコア3Aの側面に移動する際に、磁石ピース2bの自重により若干落下し、磁石ピース2bの下端面が規制板26に当接して停止するので、磁石ピース2bの軸方向停止位置は、コア3Aの下端面と一致することになる。
 したがって、規制板26の設置位置によって磁石ピース2bの軸方向位置が決定され、各磁石ピース2bでの軸方向位置のバラツキを容易に防止することができる。
 1、1A 回転子、2、2a 磁石、2b、2c、2d、2p 磁石ピース、3、3A コア、4、4b、4c、4d 突起、5 中心穴、6 周辺穴、7 接着剤、10、10b 回転治具、11 軸方向調整治具、12 傾斜面、20 規制治具、21 左右規制部材、22 押圧ロッド、23 ゲート、24 押圧治具、25 ローラ、26 規制板、S1 切断工程、S2 積層工程、S3 回転治具装着工程、S4 塗布工程、S5 焼結工程、S6 磁石ピース形成工程、S7 規制治具装着工程、S8 磁石装着工程、S9 軸方向調整工程、S10 押圧工程、S11 磁石固定工程、S12 着磁工程。

Claims (14)

  1.  円柱形状または多角柱形状のコアと、前記コアの外周面に密着された複数の磁石とにより構成された磁石式回転電機の回転子であって、
     前記コアは、外周面に沿って配置されて径方向外側に突出した複数の突起を有し、
     前記複数の突起は、少なくとも前記コアの軸方向の端部付近に配置され、
     前記複数の磁石の各々は、短冊形状であって、前記短冊形状の周方向幅は、前記突起の相互間隔よりも狭く設定されるとともに、前記短冊形状の軸方向長さは、前記コアの軸方向長さよりも短く設定され、
     前記複数の磁石の各々の径方向内面は、前記複数の突起の相互間の前記コアの外周面に密着され、
     前記複数の磁石の各々は、各磁石の両側に位置する2つの突起の間の中央部よりも一方の突起側にずれて配置され、
     前記複数の磁石の各々の軸方向の一端面位置は、前記コアの軸方向の一端面位置と一致していることを特徴とする磁石式回転電機の回転子。
  2.  前記複数の磁石の各々の周方向中央部の厚みは、各磁石の両側に位置する2つの突起の径方向高さよりも大きい値に設定されたことを特徴とする請求項1に記載の磁石式回転電機の回転子。
  3.  前記複数の突起の相互間の磁石装着面は、平面または円弧面からなり、前記複数の磁石の各々の径方向内周面は、前記磁石装着面と同等の平面または円弧面からなることを特徴とする請求項1または請求項2に記載の磁石式回転電機の回転子。
  4.  前記複数の磁石の各々は、断面形状において、周方向中央部の厚みが両側面部の厚みよりも大きく、前記周方向中央部から前記両側面部に向かうにしたがって厚みが小さくなるように形成されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の磁石式回転電機の回転子。
  5.  円柱形状または多角柱形状を有し、径方向外側に突出した所定数の突起が外周面に沿って配置されたコアと、前記コアの外周面に密着された所定数の磁石とにより構成された磁石式回転電機の回転子の製造方法であって、
     薄板鋼板を切断して前記コアのピースを形成する切断工程と、
     前記切断工程により形成された前記コアのピースを、前記コアの軸方向長さ分に相当する所定枚数だけ積層して前記コアを形成する積層工程と、
     前記積層工程により形成された前記コアを回転治具に装着する回転治具装着工程と、
     前記コアの外周面の磁石装着位置に接着剤を塗布する塗布工程と、
     前記磁石の原型となる短冊形状の磁石ピースを形成する磁石ピース形成工程と、
     前記磁石ピース形成工程により形成された磁石ピースを、前記コアに装着すべき所定数だけ整列させて規制治具に装着する規制治具装着工程と、
     前記回転治具により前記コアを回転させながら、前記規制治具により前記磁石ピースを前記コアに押圧して、前記所定数の磁石ピースを1枚ずつ順次に前記コアの磁石装着位置に装着する磁石装着工程と、
     前記コア上に装着された所定数の磁石ピースの各々を所定方向に着磁する着磁工程と、
     を備えたことを特徴とする磁石式回転電機の回転子の製造方法。
  6.  前記磁石ピース形成工程において、前記磁石ピースは、断面において中央部の厚みが両側面の厚みよりも大きく、かつ周方向中央部から両側面部に向かうにしたがって厚みが小さくなり、また中央部の厚みが前記コアの突起の径方向高さよりも大きく、さらに軸方向長さが前記コアの軸方向長さよりも短くなるように形成され、
     前記磁石装着工程において、前記磁石ピースは、径方向内周面が前記コアの2つの突起の周方向間の磁石装着位置に装着されるとともに、前記回転治具の回転により、前記磁石ピースの一方の側面が前記2つの突起の周方向一方の内側壁と当接し、前記磁石ピースの他方の側面と前記2つの突起の他方の側壁との間に空隙を有する位置関係となるように装着されることを特徴とする請求項5に記載の磁石式回転電機の回転子の製造方法。
  7.  前記磁石装着工程により、前記磁石装着位置内の周方向所定位置に前記磁石ピースを装着した後に、
     前記磁石ピースの軸方向の一端面を移動させて、前記コアの軸方向の一方向端面と一致させる軸方向調整工程を備え、
     前記軸方向調整工程において、前記磁石ピースの軸方向の一端面は、前記回転治具の回転により前記コアの軸方向の一方向端面方向に移動されることを特徴とする請求項5または請求項6に記載の磁石式回転電機の回転子の製造方法。
  8.  前記磁石装着工程において、
     前記コアは、軸方向が垂線となるように直立され、
     前記コアの軸方向下端部には、前記コアの外径よりも大きい外径を有する規制板が配置され、
     前記磁石ピースは、前記コアの磁石装着位置内の周方向所定位置に装着される際に、自重により落下して、軸方向下端面が前記規制板に当接することにより、前記コアの軸方向下端面と一致するように配置されることを特徴とする請求項5または請求項6に記載の磁石式回転電機の回転子の製造方法。
  9.  前記磁石装着工程は、
     前記コアを前記回転治具に装着して回転させる工程と、
     前記規制治具に装着された所定数の磁石ピースのうちの先端部の磁石ピースを、回転中の前記コアに対向して押し付ける工程と、
     からなることを特徴とする請求項5から請求項8までのいずれか1項に記載の磁石式回転電機の回転子の製造方法。
  10.  前記磁石装着工程の後に、前記磁石ピースを前記コアの中心軸側に向かって押圧する押圧工程を備えたことを特徴とする請求項5から請求項9までのいずれか1項に記載の磁石式回転電機の回転子の製造方法。
  11.  前記押圧工程の後に、前記接着剤を硬化させて前記磁石ピースを前記コアに固定する磁石固定工程を備えたことを特徴とする請求項10に記載の磁石式回転電機の回転子の製造方法。
  12.  円柱形状または多角柱形状をなし、外周面に沿って配置されて径方向外側に突出した所定数の突起を有するコアと、前記所定数の突起の相互間で一方の突起の側面に当接するように前記コアの外周面に密着された所定数の短冊形状の磁石と、により構成された磁石式回転電機の回転子の製造装置であって、
     薄板鋼板を切断して前記コアのピースを形成する切断装置と、
     前記コアのピースを、前記コアの軸方向長さ分に相当する所定枚数だけ積層して前記コアを形成する積層装置と、
     前記コアを回転自在に装着する回転治具と、
     前記コアの外周面の磁石装着位置に接着剤を塗布する塗布装置と、
     前記磁石の原型となる短冊形状の磁石ピースを形成する磁石ピース形成装置と、
     前記磁石ピースを、前記コアに装着すべき所定数だけ整列させて装着する規制治具と、
     前記所定数の磁石ピースの各々の軸方向の一端面位置を、前記コアの軸方向の一端面位置と一致させる軸方向調整治具と、
     前記コア上に装着された所定数の磁石ピースの各々を所定方向に着磁する着磁装置と、を備え、
     前記回転治具により前記コアを回転させながら、前記規制治具により前記磁石ピースを前記コアに押圧させ、前記所定数の磁石ピースを1枚ずつ順次に前記コアの磁石装着位置に装着することにより、
     前記所定数の磁石ピースの各々の径方向内面を、前記所定数の突起の相互間の前記コアの外周面に密着させるとともに、前記所定数の磁石ピースの各々を、各磁石ピースの両側に位置する2つの突起の間の中央部よりも一方の突起側にずれて配置させることを特徴とする磁石式回転電機の回転子の製造装置。
  13.  前記回転治具は、前記軸方向調整治具として機能する規制板を備え、
     前記規制板は、前記コアの外径よりも大きい外径を有し、前記コアの軸方向下端面に配置されたことを特徴とする請求項12に記載の磁石式回転電機の回転子の製造装置。
  14.  前記コアの磁石装着位置内の所定位置に配置された各磁石ピースを、前記コアの中心軸側に押圧するためのローラを有する押圧治具を備えたことを特徴とする請求項12または請求項13に記載の磁石式回転電機の回転子の製造装置。
PCT/JP2012/077254 2012-05-31 2012-10-22 磁石式回転電機の回転子ならびにその製造方法および装置 WO2013179510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12877744.8A EP2858213B1 (en) 2012-05-31 2012-10-22 Rotor for magnetic rotating electrical machine, production method for same, and device
US14/395,669 US9985486B2 (en) 2012-05-31 2012-10-22 Rotor for magnetic rotating electrical machine, production method for same, and device
CN201280073619.4A CN104364995B (zh) 2012-05-31 2012-10-22 磁铁式旋转电机的转子及其制造方法以及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012124023A JP5496255B2 (ja) 2012-05-31 2012-05-31 磁石式回転電機の回転子の製造方法およびその製造装置
JP2012-124023 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013179510A1 true WO2013179510A1 (ja) 2013-12-05

Family

ID=49672752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077254 WO2013179510A1 (ja) 2012-05-31 2012-10-22 磁石式回転電機の回転子ならびにその製造方法および装置

Country Status (5)

Country Link
US (1) US9985486B2 (ja)
EP (1) EP2858213B1 (ja)
JP (1) JP5496255B2 (ja)
CN (1) CN104364995B (ja)
WO (1) WO2013179510A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
CN104868623A (zh) * 2014-02-21 2015-08-26 发那科株式会社 电动机的转子、电动机以及电动机的转子的制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753265B (zh) * 2013-12-25 2018-07-20 安川电机(沈阳)有限公司 磁铁粘贴的支架装置、定位夹具以及粘贴方法
EP3109972B1 (en) 2014-02-17 2018-12-05 Mitsubishi Electric Corporation Permanent magnet motor
KR101703891B1 (ko) * 2014-06-13 2017-02-07 엘지이노텍 주식회사 모터 및 이를 포함하는 듀얼 클러치 트랜스미션
EP2999089B1 (de) * 2014-09-19 2017-03-08 Siemens Aktiengesellschaft Reluktanzläufer
US10840756B2 (en) 2015-03-02 2020-11-17 Mitsubishi Electric Corporation Rotor and motor of rotating electrical device
EP3306795A1 (en) * 2016-09-30 2018-04-11 Huangshi Dongbei Electrical Appliance Co., Ltd. Rotor for a brushless motor
JP7209148B2 (ja) * 2017-03-29 2023-01-20 パナソニックIpマネジメント株式会社 エンドプレート、それが設けられたモータの回転子およびモータ
CN109546832B (zh) * 2017-09-21 2021-08-10 德昌电机(深圳)有限公司 无刷直流电机及其双离合变速器
KR20190041308A (ko) 2017-10-12 2019-04-22 주식회사 엘지화학 슈트 타입 모노머 디스펜서
CN108377071B (zh) * 2018-04-26 2024-05-28 重庆智驱科技有限公司 永磁电机转子磁钢粘贴装置
JP7169170B2 (ja) * 2018-11-15 2022-11-10 株式会社ミツバ ロータ、モータ及びブラシレスモータ
CN109921581A (zh) * 2019-04-04 2019-06-21 深圳市泉天下泵业有限公司 一种转子铁芯磁铁装配装置
US11961660B2 (en) * 2020-08-31 2024-04-16 General Electric Company Systems and methods for assembling a magnetic-core assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161287A (ja) * 1991-11-29 1993-06-25 Fanuc Ltd 同期機のロータ
JPH07312853A (ja) * 1994-05-13 1995-11-28 Yaskawa Electric Corp 永久磁石形回転子の製造方法
JP2004289936A (ja) * 2003-03-24 2004-10-14 Moric Co Ltd 回転電機の回転子
JP2006081360A (ja) * 2004-09-13 2006-03-23 Yaskawa Electric Corp ロータ表面へのマグネット接着装置
JP2006254676A (ja) * 2005-03-14 2006-09-21 Tdk Corp アクチュエータ及びその製造方法、製造装置
JP2007006641A (ja) * 2005-06-24 2007-01-11 Asmo Co Ltd ロータの製造方法、及びロータ
WO2009063696A1 (ja) 2007-11-15 2009-05-22 Mitsubishi Electric Corporation 永久磁石型回転電機及び電動パワーステアリング装置
JP2010239800A (ja) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp 回転電機の回転子およびその製造方法
JP2011120328A (ja) * 2009-12-01 2011-06-16 Yaskawa Electric Corp 永久磁石形モータ用のロータ、永久磁石形モータ及びこれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397951A (en) 1991-11-29 1995-03-14 Fanuc Ltd. Rotor for a synchronous rotary machine
EP1430587A4 (en) * 2001-09-14 2004-12-29 Delphi Tech Inc METHOD AND DEVICE FOR REDUCING THE TORQUE Ripple in Sinusoidally Excited Brushless Permanent Magnet Motors
CN102035316B (zh) * 2009-09-27 2015-07-08 天津市松正电动汽车技术股份有限公司 用于永磁同步电机凸出式转子铁心磁钢的粘贴方式
DE102010016535B4 (de) * 2010-04-20 2012-11-08 Haprotec Gmbh Vorrichtung, Verfahren und System für die Magnetbestückung eines Läuferrohlings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161287A (ja) * 1991-11-29 1993-06-25 Fanuc Ltd 同期機のロータ
JPH07312853A (ja) * 1994-05-13 1995-11-28 Yaskawa Electric Corp 永久磁石形回転子の製造方法
JP2004289936A (ja) * 2003-03-24 2004-10-14 Moric Co Ltd 回転電機の回転子
JP2006081360A (ja) * 2004-09-13 2006-03-23 Yaskawa Electric Corp ロータ表面へのマグネット接着装置
JP2006254676A (ja) * 2005-03-14 2006-09-21 Tdk Corp アクチュエータ及びその製造方法、製造装置
JP2007006641A (ja) * 2005-06-24 2007-01-11 Asmo Co Ltd ロータの製造方法、及びロータ
WO2009063696A1 (ja) 2007-11-15 2009-05-22 Mitsubishi Electric Corporation 永久磁石型回転電機及び電動パワーステアリング装置
JP2010239800A (ja) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp 回転電機の回転子およびその製造方法
JP2011120328A (ja) * 2009-12-01 2011-06-16 Yaskawa Electric Corp 永久磁石形モータ用のロータ、永久磁石形モータ及びこれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858213A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
US9515528B2 (en) 2014-01-06 2016-12-06 Mitsubishi Electric Corporation Permanent magnet rotary electric machine
CN104868623A (zh) * 2014-02-21 2015-08-26 发那科株式会社 电动机的转子、电动机以及电动机的转子的制造方法
CN104868623B (zh) * 2014-02-21 2017-11-14 发那科株式会社 电动机的转子、电动机以及电动机的转子的制造方法

Also Published As

Publication number Publication date
EP2858213B1 (en) 2019-05-08
CN104364995B (zh) 2016-12-28
EP2858213A1 (en) 2015-04-08
EP2858213A4 (en) 2016-05-11
US20150076950A1 (en) 2015-03-19
JP2013251968A (ja) 2013-12-12
CN104364995A (zh) 2015-02-18
US9985486B2 (en) 2018-05-29
JP5496255B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5496255B2 (ja) 磁石式回転電機の回転子の製造方法およびその製造装置
TWI596868B (zh) 永久磁鐵式馬達及永久磁鐵式馬達之製造方法
US20170162311A1 (en) Arcuate magnet piece, permanent magnet piece, permanent magnet assembly, permanent magnet application device, and motor
JP2004153913A (ja) 永久磁石モータの回転子
JP2017192222A (ja) 回転電機用回転子の製造方法
JP5327257B2 (ja) 巻鉄心、電磁部品とその製造方法および電磁機器
TWI699074B (zh) 徑向間隙式旋轉電機及其製造方法、旋轉電機用齒片的製造裝置、旋轉電機用齒構件的製造方法
JP6493257B2 (ja) ロータの製造方法
JP2017169402A (ja) 電動機用ロータ、およびブラシレスモータ
JP6011693B1 (ja) ロータの製造方法、及びロータ
JP2011120328A (ja) 永久磁石形モータ用のロータ、永久磁石形モータ及びこれらの製造方法
US10263482B2 (en) Permanent magnet embedded-type rotating electric machine and manufacturing method thereof
JP2005354768A (ja) 表面磁石型界磁ロータ及びそれを利用したモータ
JP2007037288A (ja) 永久磁石形回転電機用回転子及びその製造方法
US20160126813A1 (en) Rotor manufacturing method
JP6424615B2 (ja) ロータ及びその製造方法、並びにそれを備えた回転電気機械
JP4494883B2 (ja) ロータの製造方法及びその装置
US10199911B2 (en) Orientation magnetization device and magnet-embedded rotor
JP2010259249A (ja) 回転電機
US20170288494A1 (en) Spindle motor
JP2001128422A (ja) 2軸同期型電動機
JP2017127135A (ja) ロータの製造方法、及びロータ
JP2017079575A (ja) ロータの製造方法
JP2006217718A (ja) 積層鉄心とその製造方法
JP5812683B2 (ja) 永久磁石モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14395669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012877744

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE