WO2013178260A1 - Vorrichtung und verfahren zum bonden von substraten - Google Patents

Vorrichtung und verfahren zum bonden von substraten Download PDF

Info

Publication number
WO2013178260A1
WO2013178260A1 PCT/EP2012/060171 EP2012060171W WO2013178260A1 WO 2013178260 A1 WO2013178260 A1 WO 2013178260A1 EP 2012060171 W EP2012060171 W EP 2012060171W WO 2013178260 A1 WO2013178260 A1 WO 2013178260A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
reduction
module
space
substrate
Prior art date
Application number
PCT/EP2012/060171
Other languages
English (en)
French (fr)
Inventor
Bernhard REBHAN
Original Assignee
Ev Group E. Thallner Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ev Group E. Thallner Gmbh filed Critical Ev Group E. Thallner Gmbh
Priority to ATA9523/2012A priority Critical patent/AT517742A5/de
Priority to KR1020147025507A priority patent/KR101889590B1/ko
Priority to DE112012005906.9T priority patent/DE112012005906A5/de
Priority to US14/387,380 priority patent/US9443820B2/en
Priority to SG2014013015A priority patent/SG2014013015A/en
Priority to ATGM8038/2019U priority patent/AT16645U1/de
Priority to PCT/EP2012/060171 priority patent/WO2013178260A1/de
Priority to JP2015514355A priority patent/JP2015525468A/ja
Priority to CN201280072406.XA priority patent/CN104395999B/zh
Priority to TW102113678A priority patent/TWI604536B/zh
Publication of WO2013178260A1 publication Critical patent/WO2013178260A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/14Preventing or minimising gas access, or using protective gases or vacuum during welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/751Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81054Composition of the atmosphere
    • H01L2224/81065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the present invention relates to a device for bonding a bonding side of a first substrate to a bonding side of a second
  • the oxidation of the bond sides of the substrates to be bonded plays an essential role, by making the bonding process more difficult.
  • the oxide prevents or reduces the
  • Temperature during bonding is or has to be, the greater are the influences of the expansion by temperature differences on the alignment or alignment accuracy of the substrates to each other. Furthermore, for example, certain MEMS and / or HL devices do not allow high process temperatures.
  • the object of the present invention is therefore to specify a device and a method for bonding with which the bonding process can be carried out more efficiently and with less influence on the alignment accuracy.
  • the invention is based on the idea of forming oxide layers on the bond sides of the first substrate and the second substrate by as uniform and complete reduction of the oxide as possible
  • Bonding and bonding of the substrates should provide an effective and / or limited bond. This is solved by a
  • Substrates according to the Invention are, in particular, Si substrates in which Cu-Cu bonds are present on the bond sides, which are bonded to a process in the further course. Alternatively you can
  • substrates with other metal layers such as beispielswei se of Au, W, Ni, Pd, Pt, Sn, etc., or a combination of metals.
  • metal layers such as beispielswei se of Au, W, Ni, Pd, Pt, Sn, etc., or a combination of metals. Examples would be Si wafers coated with Al, Si wafers coated with Cu and Sn,
  • Si wafers which are coated with Ti or Si substrates which are coated with Cu and a commercially available barrier layer below the Cu and known to the person skilled in the art, for example consisting of Ti, Ta, W, TiN, TaN, TiW, etc., which comprises the diffusion of Cu in which Si is to prevent are coated.
  • barrier layer below the Cu and known to the person skilled in the art, for example consisting of Ti, Ta, W, TiN, TaN, TiW, etc., which comprises the diffusion of Cu in which Si is to prevent are coated.
  • Such diffusion barriers are known to those skilled in the art.
  • Process optimization to connect additional modules to the work space in particular for pre- and / or post-treatment and / or the measurement of the physical and / or chemical properties of the substrates to be bonded in the workspace.
  • Essential process steps can thereby Heating, reducing, aligning, cooling,
  • a further module according to the invention is arranged around a central module, in particular the movement device, in particular the reduction module and the bonding module, which can be docked in particular at the central module.
  • the movement device is preferably a commercially available industrial robot
  • the modules may in particular be arranged in a star shape or cluster shape around the central module or be arrangeable.
  • the reduction module is preferably constructed so that several components
  • Bondchucks can be recorded simultaneously.
  • the reduction module and the bond module are constructed in such a way that the throughput of the entire system is maximized with respect to the process steps.
  • the bonding module would have at least two modules attached to it, of which one would be at least one
  • Reduction module is and the second a kind of memory module.
  • Bondchucks are loaded into the reduction module with the loaded washers and treated. Thereafter, the bondchucks can be stored in the memory module and are now available for immediate use
  • the memory module may also be constructed as an eduction module.
  • a reduction space in the reduction module and / or a bonding space in the bonding module of the working space, in particular sealing are separable, preferably by subdivision of the working space.
  • the separation can be done in particular by locks between the central module and the working space and / or bonding space.
  • Reduction space in particular separately from the working space, with a reducing atmosphere, in particular by plasma reduction and / or gas reduction, acted upon, in particular flushable, is.
  • a reducing atmosphere in particular by plasma reduction and / or gas reduction, acted upon, in particular flushable, is.
  • a rinsing process preferably in
  • the reduction / reduction of the oxide layer is optimized. Ideally, the oxide layer is removed completely.
  • the reduction takes place in the reduction space at least predominantly i sothermally, in particular at a temperature between
  • Reduction temperature (RT) and 400 ° C preferably between RT and 300 ° C, more preferably between RT and 200 ° C, most preferably see RT and 1 00 ° C, most preferably Al at RT. instead of.
  • the reduction temperature is approached by a heating ramp which can be selected depending on the particular oxide to be reduced in order to obtain optimum results. In the reduction space can thus
  • the temperature control can be controlled for the respective process individually control.
  • the bonding chip and / or the wafer is brought to temperature in one of the modules and does not lose its heat during the short transport between the modules.
  • the bonding chip therefore preferably has a high heat capacity.
  • the working space in particular with separated Redukti onsraum and / or separated bond space, with a reduced eren the atmosphere is acted upon.
  • the working space can also be influenced separately when the reduction space or bonding space is separated and, in particular, separately controlled.
  • Bonding module through the working space can be carried out at lower pressure than in the environment / atmosphere. Due to the low pressure of the medium, in particular gas or gas mixture, in the working space at this time, the temperature loss of the wafer during this transfer is greatly reduced, since there are hardly any more convection losses. Thus, it can be ensured that the substrates are kept at a temperature greater than 1 00 ° C, which verhi changed that any, im
  • Working space befindli che residual moisture leads to a re Oxi dation of the wafer.
  • the working space is filled with an inert and / or reducing gas, in particular forming gas, even at this low pressure.
  • Fig. 1 is a schematic plan view of an inventive
  • a first substrate and a second substrate are first produced in an external substrate
  • Cleaning module 1 are cleaned.
  • a coarse reduction or a coarse removal can be carried out in particular by etching an all due oxide.
  • Substrates may in particular be wafers.
  • the substrates are then aligned in an alignment module 2, to each other.
  • the alignment is carried out according to the invention on a not shown bonding chip, which receives and fixes the aligned substrates. After fixation bonding chip and substrates can be loaded into the module group 9 and, in particular by a
  • a cluster-shaped or star-shaped module group 9 Preferably in the immediate vicinity is a cluster-shaped or star-shaped module group 9.
  • the main task of the device is to bond the substrates.
  • a working space 1 1 of the module group 9 is hermetically isolated from the environment outside the module group 9, so that in particular no oxidizing gases from outside the module group 9 can enter into the working space 1 1. This means that the atmosphere of the module group 9 can be targeted.
  • the bonding chip with the stack fixed thereon and aligned on both substrates is brought into the module group 9 via a sleeve 3.
  • the thickness of the oxide is at
  • Room temperature depends primarily on the atmosphere (air humidity, temperature, etc.) and the residence time of the substrates in the oxidizing atmosphere. It is therefore advantageous according to the invention to carry out the transfer of the wafers on the bonding chip between the alignment module 2 and the module group 9 as quickly as possible. In a further embodiment, it would be possible, in addition to the cleaning module 1 and / or the alignment module 2 still a
  • Protective layer überzi eht, which slows a further tere oxidation of the surfaces, preferably prevented. In order for a transfer of the wafer in the module group 9 with a low, preferably with no oxidation of the surfaces possible.
  • Passivation layer the removal of the passivation layer in a module with H i 1 f e of thermal energy and / or plasma and / or gas and / or liquid.
  • the passivation layer removal module can also be identical to the reduction module 4.
  • a thermal treatment is first carried out in the reduction group 1 2 of a reduction module 4 in the modu l group 9.
  • An idea according to the invention is to oxidize the intermediate oxide formed by a pump -Purge process, in conjunction with recent
  • the reduction space 1 2 in which the substrates are located on the bonding chip is evacuated at programmable intervals, in particular programmable, temporally constant intervals, and flushed with reducing gas.
  • the atmosphere of the reduction module s 4 within the module group 9 can be related to the
  • Atmosphere of the module group 9 can be isolated. Every flushing process leads to a reduction of the oxide at the surface, j eer Evaku réellesvorgang to a removal of the reduction product.
  • the largest part of the oxide it is possible for me, the largest part of the oxide, to preferentially remove the entire oxide from the metal surfaces.
  • Reduction space 1 2 takes place, which is a Tei l hermetically sealed to the atmosphere module group 9, and which further has even a reducing atmosphere, preferably a vacuum, after unloading the substrates in another module (5, 6,7 , 8) of the same module group 9 no renewed oxidation take place.
  • Fig. 2 symbolically represents a temperature profile and several pump-purge cycles. From an initial temperature Ti, which is chosen so that the substrates during loading into the reduction chamber 12 of the reduction module 4 are not destroyed by a too rapid heating, di e increases
  • Di e temperature scale is the left abscissa in Fig. 2.
  • the pressure scale a for the partial pressure of the reducing gas, represented in the second graph, is the right-hand abscissa. It can be seen that first a decrease of the pressure, in the ideal case takes place against 0 Pa. This means that the reduction space 1 2 is evacuated. Thereafter, the reduction space 12 is purged with reducing gas and evacuated again. This pump purge cycle is
  • the isotherm according to the invention is less than 200 ° C, preferably less than 150 ° C, more preferably less than 100 ° C, most preferably less than 50 ° C, most preferably at room temperature ,
  • the goods to be bonded are used within the module group 9
  • the bonding process takes place at ni edrigen temperatures, preferably below 200 ° C, preferably below 1 50 ° C, more preferably below 100 ° C, most preferably below 50 ° C, with utmost preference at room temperature instead .
  • ni edrigen temperatures preferably below 200 ° C, preferably below 1 50 ° C, more preferably below 100 ° C, most preferably below 50 ° C, with utmost preference at room temperature instead .
  • two voluminous metal surfaces free of oxide are connected to one another.
  • the metal surfaces are preferably copper surfaces.
  • the diffusion process during bonding is preferably carried out under isothermal conditions. By choosing a sufficiently long time interval, the corresponding material is produced. Since the previous oxides have been completely removed, and the temperature is maintained constant during bonding, the
  • the bond time is less than 60 minutes, preferably less than 30 minutes, more preferably less than 10 minutes, most preferably less than 5 minutes, most preferably less than 1 minute.
  • a cooling in a cooling module 6 for example, a cooling in a cooling module 6, with
  • test module 7 metal-tool
  • Test module 8 metal-tool. After the successful bonding process, the bonding chip with the bonded substrates is removed from the module group 9.
  • Another conceivable and useful after-treatment would be modules, the annealing and diffusion processes, stress relaxation or
  • the atmosphere within the module group 9 is preferably one
  • Formiergasatmosphotre more preferably an inert gas atmosphere, most preferably a vacuum, on all heritage preferably an ultra-high vacuum (UHV), or a combination of the aforementioned atmospheres.
  • a Formiergasatmospreheat would consist for example of the following gas mixtures ...
  • Working space 11 is preferably less than 10 5 Pa, more preferably less than 10 3 Pa, more preferably less than 10 1 Pa, most preferably about 1 Pa.
  • the atmosphere in the reduction space 12 is selected according to the chemical and / or physical properties of the oxide to be removed.
  • a reducing atmosphere more preferably plasma reduction, most preferably plasma and gas reduction are combined.
  • Another possibility of oxide removal is sputtering.
  • the sputtering process is understood to mean an abrasive, physical sputtering process.
  • the following gases or gas mixtures can be used as reducing atmospheres ...
  • the pump-purge cycles in the reduction space 12 are repeated as many times as possible, but only as long as necessary to minimize the process time.
  • Period are possible, which is provided by the process times of the other modules, in particular the bonding module 5, provided.
  • the reducing gas which is used in the reduction module, is preferably chosen so that in the reaction with the oxide on the
  • Unified Pod or Front Opening Universal Pod These are standardized wafer boxes used to transport wafers.
  • the advantage of this variant is obvious. It can vollautomatisicrt whole wafer batches loaded and the working space 11 are supplied. The alignment takes place fully automatically in the alignment module 2 'connected to the working space 11.
  • the precaution ie the cleaning, can be obtained either wet-chemically, by plasma by sputtering or by mechanical forces or by reducing gases.
  • the substrate is preferably in a
  • Heat treatment furnace and then optionally moved into a cooling module 6.
  • Bonding module are arbitrary, but is preferably first roughly cleaned (cleaning module 1, 1 '), then aligned
  • the cleaning module 1 may also be an oven. Pretreatment of the cleaning is then carried out with the aid of
  • Forming gas and / or reducing gases performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Die Bonding (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Bonden einer Bondseite eines ersten Substrats mit einer Bondseite eines zweiten Substrats mit folgenden Merkmalen: einer Modulgruppe (9) mit einem zur Umgebung, insbesondere gasdicht, schließbaren gemeinsamen Arbeitsraum, mindestens einem an den Arbeitsraum, insbesondere dichtend, angeschlossenen Bondmodul (5) der Modulgruppe (9), einer Bewegungseinrichtung zur Bewegung des ersten und zweiten Substrats im Arbeitsraum dadurch gekennzeichnet, dass die Modulgruppe (9) ein an den Arbeitsraum, insbesondere dichtend, angeschlossenes Reduktionsmodul (4) zur Reduzierung der Bondseiten aufweist. Weiterhin betrifft die Erfindung ein korrespondierendes Verfahren mit folgendem Ablauf: Reduzierung der Bondseiten in einem an den Arbeits räum angeschlossenen Reduktionsmodul der Modulgruppe (9), Bewegung des ersten und zweiten Substrats im Arbeitsraum von dem Reduktionsmodul in einen Bondraum eines Bondmoduls (5) der Modulgruppe (9) und Bonden des ersten Substrats mit dem zweiten Substrat an den Bondseiten.

Description

Vorrichtung und Verfahren zum Bonden von Substraten
B e s c h r e i b u n g
Die vorliegende Erfindung betrifft eine Vorrichtung zum Bonden einer Bondseite eines ersten Substrats mit einer Bondseite eines zweiten
Substrats gemäß Anspruch 1 sowie ein korrespondierendes Verfahren gemäß Patentanspruch 7.
Insbesondere beim Bonden von metallischen oder metallisierten Substraten oder Substraten mit metallischen Oberflächen spielt die Oxidation der Bondseiten der zu bondenden Substrate eine wesentliche Rolle, indem diese den Bondprozess erschwert. Das Oxid verhindert bzw. reduziert die
Ausbildung eines mechanisch und/oder eines elektrisch hochwertigen Kontakts. Damit verbunden ist insbesondere auf Grund langer Hochheiz- und Abkühlzeiten eine Durchsatzverschlechterung und je höher die
Temperatur beim Bonden ist oder sein muss, desto größer sind die Einflüsse der Ausdehnung durch Temperaturunterschiede auf die Ausrichtung beziehungsweise Justiergenauigkeit der Substrate zueinander. Weiters erlauben beispielsweise gewisse MEMS- und/oder HL Devices keine hohen Prozesstemperaturen. Aufgabe der vorl iegenden Erfindung ist es daher, eine Vorrichtung und ein Verfahren zum Bonden anzugeben, mit dem der Bondvorgang effizienter und mit weni ger Einfluss auf di e Ausrichtungsgenauigkeit durchgeführt werden kann .
Di ese Aufgabe wird mit den M erkmalen der Ansprüche 1 und 7 gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen auch sämtliche
Kombinationen aus zumindest zwei von in der Beschreibung, den
Ansprüchen und/oder den Figuren angegebenen Merkmalen. Bei
angegebenen Wertebereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart und in beliebiger Kombination beanspruchbar sein.
Der Erfindung liegt der Gedanke zugrunde, an den Bondseiten des ersten Substrats und zwe iten Substrats entstehende Oxidschichten durch möglichst durchgängige und vollständige Reduktion der Ox idschi cht bis zum
Kontaktieren und Bonden der Substrate einen wirkungsvo l len und/oder beschl euni gten Bond zu gewährlei sten. Dies wird gelöst indem eine
Modulgruppe mit einem erfindungs gemäß gemeinsamen, gegenüber der Atmosphäre abschließbaren Arbeits räum vorgesehen i st, i n welchem sowohl eine Reduktion der Bondseiten als auch das Bonden der Substrate erfolgt. Durch di e Trennung gegenüber der Atmosphäre kann abhängig von den chemischen und/oder physikalischen Eigenschaften des auf den Bondseiten entstehenden oder vorhandenen Ox i ds eine entsprechende
Medienzusammensetzung im Arbei tsraum eingestellt werden.
Erfindungs gemäße Substrate sind insbesondere S i-Substrate, bei wel chen Cu-Cu Bonds an den Bondseiten vorhanden sind, welche im weiteren Verlauf ein es Prozesses gebondet werden . Alternativ können
erfindungsgemäß Substrate mit anderen Metallschichten wie beispielswei se aus Au, W, Ni, Pd, Pt, Sn etc. oder einer Kombination von Metallen verwendet werden. Beispiele hierfür wären Si-Wafer, welche mit AI beschichtet sind, Si-Wafer, welche mit Cu und Sn beschichtet sind,
Si-Wafer, welche mit Ti beschichtet sind oder Si Substrate welche mit Cu und einer industrieüblichen, unter dem Cu liegenden und dem Fachmann bekannten Sperrschicht, beispielsweise aus Ti, Ta, W, TiN, TaN, TiW etc., welche das Eindiffundieren von Cu in das Si verhindern soll, beschichtet sind. Derartige Diffusionsbarrieren sind dem Fachmann auf dem Gebiet bekannt.
Erfindungsgemäß ist es demnach entscheidend, einen von der Umgebung, also einer oxidierenden Atmosphäre, insbesondere dichtend, vorzugsweise hermetisch, abschließbaren Arbeitsraum vorzusehen, in welchem sowohl eine Reduktion etwaiger Oxidschichten auf den Bondseiten, vorzugsweise dem gesamten Substrat, als auch das Bonden durchführbar ist. Somit kann erfindungsgemäß verhindert werden, dass zwischen einer Reduktion und dem Bondprozess eine erneute Oxidation der Bondseiten stattfindet. Je nach Beschaffenheit der Substrate, insbesondere der auf den Substraten
vorhandenen Metallbeschichtung können verschiedene Bestandteile einer Atmosphäre oxidierend wirken. Zumeist haben jedoch Sauerstoff und chemische Verbindungen, die Sauerstoff enthalten, eine oxidierende
Wirkung. Insbesondere soll daher im Arbeitsraum neben der Verwendung einer reduzierenden edienzusammensetzung die Konzentration von
Sauerstoff und Wasser/Wasserdampf stark reduziert oder bevorzugt annähernd Null sein.
Erfindungsgemäß ist es insbesondere denkbar, zur weiteren
Prozessoptimierung zusätzliche Module an den Arbeitsraum anzuschließen, insbesondere zur Vor- und/oder Nachbehandlung und/oder der Messung der physikalischen und/oder chemischen Eigenschaften der zu bondenden Substrate im Arbeitsraum. Wesentliche Verfahrensschritte können dabei Heizen, Reduzieren, Ausrichten (Alignment) , Kühlen,
Schichtdickenmessung etc. sein.
Besonders vortei lhaft lässt sich dies vorrichtungsgemäß umsetzen, wenn um ein Zentralmodul, insbesondere die Bewegungseinri chtung umfassend, weitere erfindungsgemäße M odule wie insbesondere das Reduktionsmodul und das Bondmodul angeordnet sind, wobei diese insbesondere an dem Zentralmodul andockbar sind. Bei der Bewegungseinrichtung handelt es sich mit Vorzug um einen handelsüblichen Industrieroboter mit
entsprechendem End-Effektor. Dabei können die Module insbesondere sternförmig oder clusterförmig um das Zentralmodul angeordnet oder anordenbar sein.
Das Reduktionsmodul ist vorzugsweise so aufgebaut, dass mehrere
Bondchucks gleichzeitig aufgenommen werden können. Im idealsten Fal l sind Reduktionsmodul und Bondmodul so aufgebaut, dass der Durchsatz der gesamten Anlage bezügl i ch di eser Prozessschritte maximiert wird.
In einer besonders vortei lhaften Aus führung wären dem Bondmodul mindestens zwei Modul e vorgel agert, wovon eines mindestens ein
Reduktionsmodul ist und das zweite eine Art Speichermodul . Di e
Bondchucks werden mit den geladenen W afern in das Reduktionsmodul geladen und behandel t. Danach können di e Bondchucks im Speichermodu l zwischengel agert werden und stehen j ederzeit für den sofortigen
Bondeinsatz zu r Verfügung. In einer speziellen Ausführungs form kann auch das S peichermodul als R eduktionsmodul au fgebaut sein.
Gem äß ein er vorteilhaften Aus führungsform der Erfindung ist vorgesehen , dass ein Reduktionsraum im Reduktionsmodul und/oder ein Bondraum im Bondmodul von dem Arbeitsraum, insbesondere dichtend, abtrennbar i st/sind, vorzugswei se durch Untertei l ung des Arbeitsraums. Somit kann die Reduktion und/oder das Bonden auf den entsprechenden Teil des Arbeitsraums beschränkt werden, wodurch eine weitere Effizienzsteigerung und Beschleunigung ermöglicht wird. Die Abtrennung kann insbesondere durch Schleusen zwischen dem Zentralmodul und dem Arbeitsraum und/oder Bondraum erfolgen. Zusätzlich ist es denkbar, den Reduktionsraum
und/oder Bondraum thermisch zu isolieren und/oder elektromagnetisch abzuschirmen .
Hierbei ist es gemäß einer Ausführungsform von Vorteil, wenn der
Reduktionsraum, insbesondere getrennt vom Arbeitsraum, mit einer reduzierenden Atmosphäre, insbesondere durch Plasmareduzierung und/oder Gasreduktion, beaufschlagbar, insbesondere spülbar, ist. Insbesondere durch mehrfaches Wiederholen eines Spülvorganges, vorzugsweise im
Wechsel mit Evakui erung, wird die Reduzierung/Reduktion der Oxidschicht optimiert. Idealerweise wi rd die Oxidschi cht vol lständig entfernt.
Bevorzugt findet die Reduktion im Reduktionsraum zumindest überwiegend i sotherm , i n sbesondere bei ein er Temperatur zwischen
Reduktionstemperatur (RT) und 400 °C, vorzugsweise zwischen RT und 300 °C, noch bevorzugter zwischen RT und 200°C, am bevorzugtesten twi sehen RT und 1 00°C, am al lerbevorzugtesten bei RT. statt.
Die Reduktionstemperatur wird durch eine Heizrampe angefahren, die abhängig vom j eweiligen zu reduzierenden Oxid gewählt werden kann, um optimale Ergebnisse zu erhalten . Im Reduktionsraum kann somit
erfindungsgemäß ein Temperatur- und/oder Druckprofil ablau fen ,
vorzugsweise gesteuert durch die (zentrale) Steuerungseinrichtung.
Soweit dabei der Reduktionsraum und/oder der Bondraum, insbesondere getrennt vom Arbeitsraum durch, insbesondere separate H eizmittel auf eine Reduk tionstemperatur (Reduktionsraum) oder Bondtemperatur (Bondraum) heizbar sind, lässt sich di e Temperatursteuerun g au f dem jewei l i gen Prozess einzeln steuern . Dies ist mit dem Vortei l verbunden, dass ein kleineres Volumen aufgeheizt werden muss, wodurch der Prozess beschleunigt wird. M it Vorteil wird der Bondchuck und/oder der Wafer in einem der M odule auf Temperatur gebracht und verl iert seine Wärme während des kurzen Transports zwischen den Modulen n icht. Mit Vorzug hat der Bondchuck daher eine hohe W ärmekapazität.
Dabei ist es erfin dungsgemäß von Vorteil , wenn der Redukti onsraum, insbesondere separat, mit einem Temperatur- und/oder Druckprofil
beaufschlagbar ist, insbesondere gekoppelt mit, vorzugsweise mehrfachem, Spülen des Reduktionsraums ( 1 2) mit einem Reduktionsmedium.
In Weiterbildung der Erfindung ist es vorgesehen , dass der Arbeitsraum, insbesondere bei abgetrenntem Redukti onsraum und/oder abgetrenntem Bondraum, mit einer reduzi eren den Atmosphäre beaufschlagbar ist. Somit kann auch der Arbeitsraum bei abgetrennten und insbeson dere separat gesteuertem Reduktionsraum oder Bondraum separat beeinflusst werden .
D ie Handhabung der Wafer zwischen dem Reduktionsmodul und dem
Bondmodul durch den Arbeitsraum kann mit geringerem Druck als in der Umgebung/Atmosphäre durchgeführt werden. Durch den geringen Druck des Mediums, insbesondere Gases oder Gasgemisches, im Arbeitsraum zu diesem Zeitpunkt wird der Temperaturverlust des Wafers während diesem Transfer stark reduzi ert, da kaum noch Konvektions Verl uste statt finden . Somit kann gewährleistet werden, dass die Substrate auf ei ner Temperatur größer 1 00 °C gehalten werden, was verhi ndert, dass etwaige, im
Arbeitsraum befindli che Rest feuchte zu einer erneuten Oxi dation der Wafer führt. Mit Vorzug ist der Arbeitsraum auch bei diesem niedrigen Druck mit einem in erten und/oder reduzierenden Gas, insbesondere Formiergas gefül lt. Soweit vorliegend und/oder in der anschließenden Figurenbeschreibung Vorrichtungsmerkmale offenbart sind, sollen diese auch als
Verfahrensmerkmale offenbart gelten und umgekehrt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:
Fig. 1 eine schematische Aufsicht auf eine erfindungsgemäße
Vorrichtung in einer ersten Ausführungsform,
Fig.2 ein Ablaufdiagramm eines erfindungsgemäßen Verfahrensschritts zur Reduktion in einem erfindungsgemäßen Reduktionsraum und
Fig.3 eine schematische Aufsicht auf eine erfindungsgemäße
Vorrichtung einer zweiten Aus führungs form.
In den Figuren sind Vorteile und Merkmale der Erfindung mit diese jeweils identifizierenden Bezugszeichen gemäß Ausführungs formen der Erfindung gekennzeichnet, wobei Bauteile beziehungsweise Merkmale mit gleicher oder gleichwirkender Funktion mit identischen Bezugszeichen
gekennzeichnet sind.
Erfindungs gemäß wird die (grobe) Oxidentfernung gemäß der ersten
Aus führungs form (Fig. 1 ) so bewerkstelligt, dass ein erstes Substrat und ein zweites Substrat, insbesondere sequentiell, zuerst in einem externen
Reinigungsmodul 1 gereinigt werden. In diesem externen Reinigungsmodul 1 kann bereits eine Grobreduktion oder eine Grobentfernung insbesondere mittels Ätzen eines all fälligen Oxids vorgenommen werden. Substrate können insbesondere Wafer sein. Die Substrate werden danach in einem Ausrichtungsmodul 2, zueinander ausgerichtet. Die Ausrichtung erfolgt erfindungsgemäß auf einem nicht dargestellten Bondchuck, welcher die zueinander ausgerichteten Substrate aufnimmt und fixiert. Nach der Fixierung können Bondchuck und Substrate in die Modulgruppe 9 geladen werden und, insbesondere durch eine
Bewegungseinrichtung 1 0, zwischen den nachfolgend beschriebenen
Modulen bewegt werden.
Vorzugsweise in unmittelbarer Nähe befindet sich eine clusterförmig oder sternförmig angeordnete Modulgruppe 9. Die Hauptaufgabe der Vorrichtung besteht im Bonden der Substrate. Ein Arbeitsraum 1 1 der Modulgruppe 9 ist hermetisch von der Umgebung außerhalb der Modulgruppe 9 isoliert, damit insbesondere keine oxidierenden Gase von außerhalb der Modulgruppe 9 in den Arbeitsraum 1 1 eintreten können. Das bedeutet, dass die Atmosphäre der Modulgruppe 9 gezielt eingestellt werden kann.
Rei n i gungsmodu l 1 und/oder Ausrichtungsmodul 2 si nd gemäß der ersten Ausführungsform von der Modulgruppe 9 getrennt, welche zumindest ein Bondingmodul 5 beinhaltet. Der Bondchuck mit dem darauf fixierten und ausgerichteten Stapel (engl. : Stack) aus beiden Substraten wi rd über eine Sch l euse 3 in die Modul gruppe 9 gebracht. Soweit di e zu bondenden
Oberflächen (B ondseiten) während des Transports zur Modulgruppe 9 der Atmosphäre ausgesetzt sind, erfolgt eine erneute Oxidation der
Metal loberflächen (Bondseiten) . Die Dicke des Oxides i st bei
Raumtemperatur vor allem abhängig von der A tmosph äre ( Luftfeuchti gkeit, Temperatur etc . ) und der Verweilzeit der Substrate in der oxidierenden Atmosphäre. Es ist daher erfindungsgemäß von Vorteil , den Transfer der Wafer auf dem Bondchuck zwischen dem Ausrichtungsmodul 2 und der Modulgruppe 9 mögl ichst schnell durchzuführen . In einer weiteren Ausführungsform wäre es möglich, neben dem Reinigungsmodul 1 und/oder dem Ausrichtungsmodul 2 noch ein
Passivierungsmodul (nicht eingezeichnet) zu verwenden, welches di e
Oberfläche der später zu bondenden Wafer mit einer sehr dünnen
Schutzschicht überzi eht, welche eine wei tere Oxidation der Oberfl ächen verlangsamt, vorzugsweise verhindert. Damit ist eine Übergabe der Wafer in die Modulgruppe 9 mit einer geringen, vorzugsweise mit gar keiner Oxidation der Oberflächen, möglich.
Nach dem Einbringen des Bondchucks mit den ausgerichteten Wafern in die Modulgruppe 9 erfolgt im Falle einer vorher aufgebrachten
Passivierungsschicht, die Entfernung der Passivierungsschicht in einem Modul mit H i 1 f e von thermischer Energie und/oder Plasma und/oder Gas und/oder Flüssigkeit . In einer besonderen Ausführungsform kann das Passi vi erungs schichtentfernungsmodul auch mit dem Reduktionsmodul 4 identi sch sein .
Im Fall , dass die ausgerichteten Wafer nicht mit einer Passivsch icht beschichtet wurden, erfolgt in der Modu lgruppe 9 zuerst eine thermische Behandlung in ei nem Redukti onsraum 1 2 eines Reduktionsmoduls 4. Ein erfindungsgemäßer Gedanke besteht darin, das zwischenzeitlich gebildete Oxi d durch einen Pump-Purge Prozess , in Verbindung mit j eglicher
Methode, welche in der Lage ist das Oxid aufzubrechen, zu reduzi eren, zu entfernen oder zu vermindern , in reduzierender Atmosphäre und bei erhöhter Temperatur im Redukti onsmodul 4 zu entfernen. Bei einem solchen Prozess wird der Reduktionsraum 1 2 , in welchem sich die Substrate au f dem Bondchuck befinden, in programm ierbaren Abständen, insbesondere programmierbaren , zeitli ch konstanten Abständen evakui ert und mit reduzi erendem Gas gespült. M it Vorzug kann daher die Atmosphäre des Reduktionsmodul s 4 innerhalb der M odulgruppe 9 bezügl ich der
Atmosphäre der Modulgruppe 9 isoliert werden . Jeder Spülvorgang führt zu einer Reduktion des Oxids an der Oberfläche, j eder Evakuierungsvorgang zu einer Entfernung des Reduktionsproduktes . Durch mehrmalige
Anwendung dieses Evakuierungs- und Spülvorganges wird es
erfindungsgemäß mögl ich, den größten Antei l des Oxi ds, mit Vorzug das gesamte Oxid von den M etalloberfl ächen zu entfern en . Da di eser
erfin dungsgemäße Prozess innerhalb des Reduktionsmoduls 4 im
Reduktionsraum 1 2 stattfindet, welcher ein Tei l der zur Atmosphäre hin hermetisch abgeriegelten Modulgruppe 9 ist, und welcher des Weiteren selbst eine reduzierende Atmosphäre besitzt, mit Vorzug ein Vakuum, kann nach dem Entladen der Substrate in ein anderes Modul (5 ,6,7 ,8) derselben Modulgruppe 9 keine erneute Oxidation mehr stattfinden.
Fig. 2 stellt symbolisch einen Temperaturverlauf und mehrere Pump-Purge Zyklen dar. Von einer Anfangstemperatur Ti, welche so gewählt wird, dass die Substrate beim Laden in den Reduktionsraum 12 des Reduk tionsmoduls 4 nicht durch ein zu rasches Erwärmen zerstört werden, steigt di e
Temperatur nach der Bel adung der S ubstrate auf den Wert Tf
(Reduzi ertemperatur. Für Cu-Oberflächen beträgt der Wert für T
idealerweise etwa 195 °C. Die genauen Temperaturen müssen entweder empirisch ermittelt oder errechnet werden . Sie können für unterschiedl iche Oxide stark variieren . Der Prozess wird zumindest überwiegend,
insbesondere nach einer Aufheizzeit vollständig, isotherm durchgeführt. Di e Temperaturskala ist in Fig. 2 die linke Abszisse . Die Druckskal a für den Partialdruck des Reduktionsgases, dargestel lt im zweiten Graphen, ist die rechte Abszisse. Es ist zu erkennen, dass zuerst eine Abnahme des Drucks, im Ideal fall gegen 0 Pa erfolgt. Das bedeutet, dass der Reduktionsraum 1 2 evakuiert wird. Danach wird der Redukti onsraum 12 mit Reduktionsgas gespült und erneut evakui ert. Dieser Pump Purge Zyklus ist
erfin dungsgemäß bestens dafür geeignet, das restl iche Oxid der
Met all ober flächen zu reduzieren und die Reduktionsprodukte aus dem Reduktionsraum 1 2 abzuführen. Da der gesamte Arbeitsraum 1 1 der Modulgruppe 9 zumindest mit einem Inertgas geflutet wird, oder im
Idealfall sogar zykl isch evakuiert wurde, findet auch beim Bewegen der Substrate innerhalb des Arbeitsraums, insbesondere von einem Modul zum nächsten, keine oder nur eine vernachlässigbare Oxidation statt.
Nach den Pump- Purge Zyklen kann noch ein i sothermer
Wärmebehandlungsschritt durchgeführt werden . Der Sinn dieser isothermen Wärmebehandlung besteht darin, die Wafer bereits auf die Bondtemperatur zu bringen, bevor sie in einen Bondraum 1 3 des Bondmoduls 5 geladen werden. Dadurch wird der Bondraum 1 3 nicht mit unnötigen Aufheiz- und Abkühlzyklen belastet, was auf Kosten des Durchsatzes gehen würde. Bei Cu-Oberflächen liegt die Isotherme erfindungsgemäß bei weniger als 200 °C, mit Vorzug bei weniger als 1 50 °C, mit größerem Vorzug bei weniger als 100 °C, mit größtem Vorzug bei weniger als 50 °C, mit allergrößtem Vorzug bei Raumtemperatur.
Die zu bondenden W afer werden innerhalb der M odul gruppe 9 zum
Bondmodul 5 geführt und dort mitein ander verbondet. Erfindungsgemäß findet der Bondvorgang bei möglichst ni edrigen Temperaturen, am besten unter 200 °C, mit Vorzug unterhalb von 1 50°C, mit größerem Vorzug unterhalb von 100°C, mit größtem Vorzug unterhalb von 50°C, mit allergrößtem Vorzug bei Raumtemperatur statt. Beim Bondvorgang werden im optimal sten Fal l zwei vol lkommen vom Oxid befreite Metal loberflächen miteinander verbunden . Bei den Metall flächen handelt es sich mi t Vorzug um Cu Oberflächen . Der Diffusions Vorgang während des Bondens wird mit Vorzug unter isothermen Bedingungen durchgeführt. Durch die Wahl eines genügend langen Zei tinterval l s, wird der entsprechende M etal lbond hergestellt. Da di e vorheri gen Oxide vol lständi g entfernt wurden , und die Temperatur während des Bondens konstant geh alten wird, ist der
Bondprozess vorwiegend abhängi g von dem gewählten Zeitintervall . Für Cu-Cu Bonds beträgt die Bondzeit weniger als 60 M inuten, m it Vorzug weniger als 30 Minuten, mit größerem Vorzug weniger als 10 Minuten, mit größtem Vorzug weniger als 5 Minuten, mit allergrößtem Vorzug weniger als 1 Minute.
Der Beitrag der Diffusion während des Aufheiz- und/oder Abkühlvorganges zum Bondergebnis ist dabei vernachlässigbar im Vergleich zur Diffusion, die beim isothermen Bondprozess stattfindet.
Danach können beliebige andere Prozessschritte stattfinden wie
beispielsweise eine Abkühlung in einem Abkühlmodul 6, mit
anschließenden, unterschiedlichen Untersuchungen des Bonds in einem Prüfmodul 7 (metrology-tool) und gegebenenfalls einem weiteren
Prüfmodul 8 (metrology-tool). Nach dem erfolgreichen Bondvorgang wird der Bondchuck mit den gebondeten Substraten aus der Modulgruppe 9 entfernt.
Eine weitere denkbare und nutzbringende Nachbehandlung wären Module, die Ausheil- und Diffusionsprozesse, Spann ungsrelaxation oder
Rekristallisationsprozesse in den verbondeten Strukturen erlauben, beispielsweise ein Ofen.
Die Atmosphäre innerhalb der Modulgruppe 9 ist mit Vorzug eine
Formiergasatmosphäre, noch bevorzugter eine Inertgas atmosphäre am bevorzugtesten ein Vakuum, am all erbe vorzugtesten ein Ultrahochvakuum (UHV), oder eine Kombination der vorgenannten Atmosphären. Eine Formiergasatmosphäre würde beispielsweise aus folgenden Gasmischungen bestehen...
• N2+H2
• Ar+H2
• He+H2 Ne + H2
Kr + H2
Für Inertgas- oder Formiergasatmosphären (Medienzusammensetzung) wird der Arbeitsraum 11 durch vorherige Pump-Purge Reinigungen größtenteils von Sauerstoff und insbesondere Wasser beziehungsweise Wasserdampf welches / welcher insbesondere an Oberflächen der Einhausung des
Arbeitsraumes 9 anhaften können, gereinigt werden. Der Druck im
Arbeitsraum 11 ist vorzugsweise kleiner als 105 Pa, mit Vorzug kleiner 103 Pa, mit größerem Vorzug kleiner 101 Pa, mit größtem Vorzug ca. 1 Pa.
Die Atmosphäre im Reduktionsraum 12 wird entsprechend den chemischen und/oder physikalischen Eigenschaften des zu entfernenden Oxids gewählt. Mit Vorzug existiert eine reduzierende Atmosphäre, mit größerem Vorzug erfolgt eine Plasmareduzierung, mit allergrößtem Vorzug werden Plasma und Gasreduktion kombiniert. Eine weitere Möglichkeit der Oxidentfernung ist das Sputtern. Unter dem Sputterprozess versteht man hierbei einen abtragenden, physikalischen Sputterprozess. Als reduzierende Atmosphären können folgende Gase oder Gasgemische verwendet werden...
• H2
• Ameisensäuredampf
• N2+H2
• Ar+H2
• He+H2
• Ne + H2
• Kr + H2
• N2 + Ameisensäuredampf
• Ar + Ameisensäuredampf
• He + Ameisensäuredampf
• Beliebige andere reduzierende Gase/Gasgemische... Die Pump-Purge Zyklen im Reduktionsraum 12 werden so oft wiederholt wie möglich, aber nur solange wie nötig, um die Prozesszeit minimal zu halten. Erfindungsgemäß sind insbesondere mindestens 3 Wiederholungen, vorzugsweise mindestens 6 Wiederholungen, noch bevorzugter mindestens 9 Wiederholungen, am idealsten so viele Wiederholungen wie in jenem
Zeitraum möglich sind, der durch die Prozesszeiten der anderen Module, insbesondere dem Bondmodul 5, vorgegeben ist, vorgesehen.
Das Reduziergas, welches im Reduktionsmodul Einsatz findet, wird mit Vorzug so gewählt, dass bei der Reaktion mit dem Oxid auf der
Waferoberfläche keine Erhöhung der Oberflächenrauhigkeit stattfindet.
Im zweiten Aus ührungsbei spiel der Erfindung sind das Reinigungsmodul 1 ' und das Ausrichtungsmodul 2' Bestandteil der Modulgruppe 9', also an den Arbeitsraum 11 angeschlossen. Im Reinigungsmodul 1 ' werden
Vorreinigungen bzw. Grobreinigungen der Oberfläche, oder im Idealfall sogar eine vollständige oder beinahe vollständige Reduktion des Oxids, durchgeführt. Im Idealfall der vollständigen oder beinahe vollständigen Oxidreduktion wird eine anschließende Feinreduktion im Modul 4
erleichtert. Da in dieser Variante die Ausrichtung im Ausrichtungsmodul 2' erfolgt und dieses bereits Teil des Arbeitsraums 11 ist, ist es möglich, Waferboxen über einen Substratmodulanschluss 3' (Ports) durch sogenannte SMIFs (Standard Mechanical InterFace) oder FOUPs (Front Opening
Unified Pod bzw. Front Opening Universal Pod) zu laden. Dabei handelt es sich um standardisierte Waferboxen, mit denen Wafer transportiert werden. Der Vorteil dieser Variante liegt auf der Hand. Es können vollautomatisicrt ganze Waferchargen geladen und dem Arbeitsraum 11 zugeführt werden. Die Ausrichtung erfolgt vollautomatisiert im an den Arbeitsraum 11 angeschlossenen Ausrichtungsmodul 2'. gemeine Merkmale der Erfindung
Die Vorbeh andl ung, di e Reini gung kann entweder nasschemi sch, durch Plasma durch Sputtern oder durch mechanische Kräfte oder durch Reduktionsgase erfo lgen.
Nach dem Bondmodul wird das S ubstrat vorzugsweise in einen
Wärmebehandlungsofen und anschließend optional in ein Kühlmodul 6 bewegt.
Die Reihenfo lge und Art der Module vor und/oder nach dem
Bondmodul sind beliebig, allerdings wird vorzugsweise zuerst grob gereinigt (Reinigungsmodul 1 , 1 '), dann ausgerichtet
(Ausrichtungsmodul 2, 2 ' ), dann gebonded (Bondmodul 4), dann wärmebehandelt und gekühlt (Küh lmodul 6).
In besonderen Fällen kann das Reinigungsmodul 1 auch ein Ofen sein . Die Vorbehandl ung des Reini gens wird dann mit Hilfe von
Formiergas und/oder reduzierenden Gasen durchgeführt.
Vorrichtung und Verfahren zum Bonden von Substraten
B e z u g s z e i c h e n l i s t e
Reinigungsmodul
2, 2' Ausrichtungsmodul
3 Schleuse
3' Substratmodul anschluss
Reduktionsmodul
5 Bondmodul
6 Kühlmodul
7 Prüfmodul
8 Prüfmodul
9 Modulgruppe
10 Bewegungseinrichtung
11 Arbeitsraum
12 Reduktionsraum
13 Bondraum
Ti Anfangstemperatur
Tf Reduktionstemperatur

Claims

Vorrichtung und Verfahren zum Bonden von Substraten P at e n t a n s p r ü c h e
1. Vorrichtung zum Bonden einer Bondseite eines ersten Substrats mit einer Bondseite eines zweiten Substrats mit folgenden Merkmalen:
- einer Modulgruppe (9) mit einem zur Umgebung, insbesondere gasdicht, schließbaren gemeinsamen Arbeitsraum (11),
- mindestens einem an den Arbeitsraum (11), insbesondere dichtend, angeschlossenen Bondmodul (5) der Modulgruppe (9),
- einer Bewegungseinrichtung (10) zur Bewegung des ersten und zweiten Substrats im Arbeits räum (11), dadurch gekennzeichnet, dass die Modulgruppe (9) ein an den
Arbeitsraum (11), insbesondere dichtend, angeschlossenes
Reduktionsmodul (4) zur Reduzierung der Bondseiten aufweist.
2. Vorrichtung nach Anspruch 1, wobei ein Reduktionsraum (12) im Reduktionsmodul (4) und/oder ein Bondraum (13) im Bondmodul (5) von dem Arbeitsraum (11), insbesondere dichtend, abtrennbar sind.
3. Vorrichtung nach Anspruch 2, wobei der Reduktionsraum (12),
insbesondere getrennt vom Arbeitsraum (11), mit einer reduzierenden Atmosphäre, insbesondere durch Plasmareduzierung und/oder
Gasreduktion, beaufschlagbar, insbesondere spülbar, ist.
4. Vorrichtung nach einem der Ansprüche 2 oder 3, wobei der
Reduktionsraum (12) und/oder der Bondraum (13), insbesondere getrennt vom Arbeitsraum (12) durch, insbesondere separate,
Heizmittel auf eine Reduktionstemperatur (Reduktionsraum 12) oder Bondtemperatur (Bondraum 13) heizbar sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Arbeitsraum (11), insbesondere bei abgetrenntem Reduktionsraum (12) und/oder abgetrenntem Bondraum (13), mit einer reduzierenden Atmosphäre, beaufschlagbar ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Reduktionsraum (12), insbesondere separat, mit einem Temperatur- und/oder Druckprofil beaufschlagbar ist, insbesondere gekoppelt mit, vorzugsweise mehrfachem, Spülen des Reduktionsraums ( 12) mit einem Reduktionsmedium.
7. Verfahren zum Bonden einer Bondseite eines ersten Substrats mit einer Bondseite eines zweiten Substrats in einem zur Umgebung schließbaren gemeinsamen Arbeitsraum (11) zur Modulgruppe (9) mit folgenden Schritten, insbesondere folgendem Ablauf:
- Reduzierung der Bondseiten in einem an den Arbeitsraum (11) angeschlossenen Reduktionsmodul (4) der Modulgruppe (9),
- Bewegung des ersten und zweiten Substrats im Arbeitsraum (11) von dem Reduktionsmodul (4) in einem Bondraum (13) eines Bondmoduls (5) der Modulgruppe (9) und
Bonden des ersten Substrats mit dem zweiten Substrat an den
Bondseiten.
8. Verfahren nach Anspruch 7, bei dem der Reduktionsraum ( 12),
insbesondere separat, mit einem Temperatur- und/oder Druckprofil beaufschlagt wird, insbesondere gekoppelt mit, vorzugsweise mehrfachem, Spülen des Reduktionsraums ( 12) mit einem
Reduktionsmedium.
PCT/EP2012/060171 2012-05-30 2012-05-30 Vorrichtung und verfahren zum bonden von substraten WO2013178260A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ATA9523/2012A AT517742A5 (de) 2012-05-30 2012-05-30 Vorrichtung und Verfahren zum Bonden von Substraten
KR1020147025507A KR101889590B1 (ko) 2012-05-30 2012-05-30 기판을 접합하기 위한 장치 및 방법
DE112012005906.9T DE112012005906A5 (de) 2012-05-30 2012-05-30 Vorrichtung und Verfahren zum Bonden von Substraten
US14/387,380 US9443820B2 (en) 2012-05-30 2012-05-30 Device and method for bonding substrates
SG2014013015A SG2014013015A (en) 2012-05-30 2012-05-30 Device and method for bonding of substrates
ATGM8038/2019U AT16645U1 (de) 2012-05-30 2012-05-30 Vorrichtung und Verfahren zum Bonden von Substraten
PCT/EP2012/060171 WO2013178260A1 (de) 2012-05-30 2012-05-30 Vorrichtung und verfahren zum bonden von substraten
JP2015514355A JP2015525468A (ja) 2012-05-30 2012-05-30 基板同士をボンディングする装置および方法
CN201280072406.XA CN104395999B (zh) 2012-05-30 2012-05-30 用于接合基片的装置以及方法
TW102113678A TWI604536B (zh) 2012-05-30 2013-04-17 用以基板接合之裝置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/060171 WO2013178260A1 (de) 2012-05-30 2012-05-30 Vorrichtung und verfahren zum bonden von substraten

Publications (1)

Publication Number Publication Date
WO2013178260A1 true WO2013178260A1 (de) 2013-12-05

Family

ID=46201635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060171 WO2013178260A1 (de) 2012-05-30 2012-05-30 Vorrichtung und verfahren zum bonden von substraten

Country Status (9)

Country Link
US (1) US9443820B2 (de)
JP (1) JP2015525468A (de)
KR (1) KR101889590B1 (de)
CN (1) CN104395999B (de)
AT (2) AT517742A5 (de)
DE (1) DE112012005906A5 (de)
SG (1) SG2014013015A (de)
TW (1) TWI604536B (de)
WO (1) WO2013178260A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608573B (zh) * 2016-10-27 2017-12-11 Crystalwise Tech Inc Composite substrate bonding method
TWI797461B (zh) * 2019-07-26 2023-04-01 日商新川股份有限公司 封裝裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105786A (ja) * 2005-10-17 2007-04-26 Tokyo Electron Ltd 金属部材の処理方法
US20070170227A1 (en) * 2004-02-17 2007-07-26 Yasuhide Ohno Soldering method
US20110045653A1 (en) * 2008-05-02 2011-02-24 Yasuhide Ohno Bonding method and bonding apparatus
US20120111925A1 (en) * 2010-11-05 2012-05-10 Raytheon Company Reducing Formation Of Oxide On Solder

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230719B1 (en) * 1998-02-27 2001-05-15 Micron Technology, Inc. Apparatus for removing contaminants on electronic devices
JP2000150836A (ja) * 1998-11-06 2000-05-30 Canon Inc 試料の処理システム
JP2002184847A (ja) * 2000-12-19 2002-06-28 Nec Kansai Ltd 貼付装置
JP4937459B2 (ja) 2001-04-06 2012-05-23 東京エレクトロン株式会社 クラスタツールおよび搬送制御方法
JP2002324829A (ja) * 2001-07-13 2002-11-08 Tokyo Electron Ltd 処理システム
JP2004006707A (ja) * 2002-04-26 2004-01-08 Toray Eng Co Ltd 実装方法および実装装置
KR100500169B1 (ko) * 2003-07-02 2005-07-07 주식회사 디엠에스 도킹형 기판 이송 및 처리 시스템과, 그를 이용한 이송 및 처리 방법
US20070269297A1 (en) * 2003-11-10 2007-11-22 Meulen Peter V D Semiconductor wafer handling and transport
JP2006181641A (ja) * 2004-12-02 2006-07-13 Ebara Corp 接合装置及び接合方法
US7682979B2 (en) 2006-06-29 2010-03-23 Lam Research Corporation Phase change alloy etch
JP2008244059A (ja) * 2007-03-27 2008-10-09 Renesas Technology Corp 半導体装置の製造方法
JP5196467B2 (ja) 2007-05-30 2013-05-15 東京エレクトロン株式会社 半導体装置の製造方法、半導体製造装置及び記憶媒体
JP4992604B2 (ja) * 2007-08-15 2012-08-08 株式会社ニコン 接合装置、接合方法
JP5447110B2 (ja) * 2010-04-06 2014-03-19 株式会社ニコン 基板貼り合わせ装置、積層半導体の製造方法、積層半導体及び基板貼り合わせ方法
JP6014302B2 (ja) * 2010-09-06 2016-10-25 東京応化工業株式会社 貼り合わせ装置および貼り合わせ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170227A1 (en) * 2004-02-17 2007-07-26 Yasuhide Ohno Soldering method
JP2007105786A (ja) * 2005-10-17 2007-04-26 Tokyo Electron Ltd 金属部材の処理方法
US20110045653A1 (en) * 2008-05-02 2011-02-24 Yasuhide Ohno Bonding method and bonding apparatus
US20120111925A1 (en) * 2010-11-05 2012-05-10 Raytheon Company Reducing Formation Of Oxide On Solder

Also Published As

Publication number Publication date
TWI604536B (zh) 2017-11-01
AT517742A5 (de) 2017-04-15
KR101889590B1 (ko) 2018-08-17
TW201401385A (zh) 2014-01-01
US9443820B2 (en) 2016-09-13
DE112012005906A5 (de) 2014-10-30
US20150069115A1 (en) 2015-03-12
AT16645U1 (de) 2020-04-15
CN104395999A (zh) 2015-03-04
CN104395999B (zh) 2017-03-08
SG2014013015A (en) 2014-08-28
JP2015525468A (ja) 2015-09-03
KR20150023224A (ko) 2015-03-05

Similar Documents

Publication Publication Date Title
DE69013149T2 (de) Verfahren zum auftragen einer schicht auf ein substrat sowie verfahrenssystem zu diesem zweck.
DE102014114093B4 (de) Verfahren zum Niedertemperatur-Drucksintern
DE60124385T2 (de) Verfahren zum verbinden eines targets auf einer trägerplatte
EP2026927B1 (de) Verfahren und vorrichtung zur temperaturbehandlung, insbesondere lotverbindung
CH650532A5 (de) Verfahren zur bildung einer haerteschicht im bauteil aus elementen der vierten, fuenften oder sechsten nebengruppen des periodischen systems oder deren legierungen.
EP3127141B1 (de) Verfahren zur oberflächenreinigung von substraten
DE102016102162A1 (de) Sintervorrichtung
DE69005024T2 (de) Diffusionsschweissen von Aluminium und Aluminiumlegierungen.
WO2013178260A1 (de) Vorrichtung und verfahren zum bonden von substraten
EP4149708B1 (de) Anlage zum verbinden von elektronischen baugruppen
DE102016212534B4 (de) Herstellungsverfahren und Vorrichtung zum Herstellen eines Siliziumkarbid-Epitaxialwafers
EP2609619B1 (de) Vorrichtung und verfahren zur prozessierung von wafern
DE19833448C2 (de) Verfahren zur Reinigung von CVD-Anlagen
DE202012001810U1 (de) Vorrichtung zum Verarbeiten von Substraten
DE102009034387A1 (de) Titanblechglühverfahren
DE102016113943A1 (de) Verfahren zum Reinigen hermetisch dichter Halbleitergehäuse
WO2003031372A2 (de) Verfahren zum herstellen von metall-keramik-verbundmaterialien, insbesondere metall-keramik-substraten sowie nach diesem verfahren hergestelltes keramik-verbundmaterial, insbesondere metall-keramik-substrat
EP0563140B1 (de) Verfahren und einrichtung zum herstellen hochdichter sinterwerkstücke
DE112016002950T5 (de) Reaktor für die Herstellung von polykristallinem Silicium und Verfahren zur Herstellung von polykristallinem Silicium
DE3813561C1 (en) Simplified soldering process for titanium materials
DE19824574A1 (de) Verfahren und Vorrichtung zur effektiven Abkühlung von Behandlungsgut
EP3308410A1 (de) Verfahren zur herstellung eines piezoelektrischen schichtstapels sowie piezoelektrischer schichtstapel
DE102022206409A1 (de) Vorrichtung und Verfahren zum Löten von Baugruppen sowie Verwendung der Vorrichtung
DE10304103A1 (de) Verfahren zur Herstellung von mit Aluminium gefüllten Kontaktlöchern
DE10334940B4 (de) Trägereinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724997

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147025507

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012005906

Country of ref document: DE

Ref document number: 1120120059069

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14387380

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015514355

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112012005906

Country of ref document: DE

Effective date: 20141030

122 Ep: pct application non-entry in european phase

Ref document number: 12724997

Country of ref document: EP

Kind code of ref document: A1