WO2013176534A1 - 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스 - Google Patents

단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스 Download PDF

Info

Publication number
WO2013176534A1
WO2013176534A1 PCT/KR2013/004620 KR2013004620W WO2013176534A1 WO 2013176534 A1 WO2013176534 A1 WO 2013176534A1 KR 2013004620 W KR2013004620 W KR 2013004620W WO 2013176534 A1 WO2013176534 A1 WO 2013176534A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode assembly
stack
unit
stacked
Prior art date
Application number
PCT/KR2013/004620
Other languages
English (en)
French (fr)
Inventor
권성진
안순호
김동명
김기웅
김영훈
윤성한
류승민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13793522.7A priority Critical patent/EP2858165B1/en
Priority to CN201380002744.0A priority patent/CN104011929B/zh
Priority to JP2014522783A priority patent/JP5943243B2/ja
Priority to US14/059,757 priority patent/US9431679B2/en
Publication of WO2013176534A1 publication Critical patent/WO2013176534A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode assembly, and more particularly, to an electrode assembly having a step including two or more kinds of electrode units having different sizes.
  • the present invention also relates to a battery cell, a battery pack, a device and a method of manufacturing the battery including the electrode assembly.
  • lithium secondary batteries with high energy density, high operating voltage, and excellent storage and life characteristics are used for various mobile devices as well as various electronic products. It is widely used as an energy source.
  • a lithium secondary battery is formed in a structure that seals an electrode assembly and an electrolyte in a battery case, and is classified into a cylindrical battery, a square battery, and a pouch-type battery according to its appearance, and according to the type of electrolyte, lithium ion battery and lithium. It may be classified into an ionic polymer battery and a lithium polymer battery.
  • the electrode assembly accommodated in the battery case may be classified into a jelly-roll type (wound type), a stacked type (stacked type), or a stack and folding type (composite type) according to its shape.
  • the jelly-roll type electrode assembly is coated with a metal foil used as a current collector plate and pressed to cut into a band having a desired width and length, and then the membrane and the cathode using a separator film to form a diaphragm and then spirally It is manufactured by winding.
  • the stacked electrode assembly may be an electrode assembly formed by vertically stacking a cathode, a separator, and an anode.
  • the complex electrode assembly may include a plurality of unit cells including a cathode, a separator, and an anode on a sheet separator. After disposing, the sheet cells are manufactured by laminating the unit cells while folding the sheet-shaped separation film.
  • the conventional electrode assembly is manufactured by stacking unit cells or individual electrodes of the same size, the degree of freedom in shape is significantly reduced, and thus there are many limitations in implementing various designs. Further, in order to change the design, a complicated and difficult process is often required in manufacturing individual electrodes, stacking electrodes, or making electrical connections.
  • an electrode assembly that can implement a variety of designs.
  • one embodiment of the present invention is to provide an electrode assembly that is thin, and has excellent capacitive characteristics.
  • a plurality of electrode units having electrode tabs are stacked, and at least one stack and folding type stack in which the electrode units are separated from each other by a sheet type separation film is stacked, and the stack includes adjacent electrode units.
  • An object of the present invention is to provide an electrode assembly including at least one step formed by stacking electrode units having an area difference with respect to.
  • the facing electrodes facing each other at the boundary of the separation film may be electrodes having different polarities.
  • the stack-and-fold type electrode stack may be a Z-fold type electrode stack, and the electrode assembly may include one or two steps.
  • the facing electrode of the electrode unit with a large area among the electrode units adjacent to the said electrode unit which has the said area difference is a cathode.
  • Each of the electrode units may be independently selected from a group consisting of an anode, a cathode, and a unit cell in which at least one anode and at least one cathode are stacked with a separator interposed therebetween.
  • the unit cell may be independently selected from the group consisting of jelly roll type, stack type, lamination and stack type, and stack and folding type.
  • the unit cell may include at least one step formed by stacking electrodes having an area difference with respect to an electrode adjacent to a separator.
  • the separator is a sheet-type separation film, the sheet-type separation film may be bent or cut to match the step shape.
  • the laminate is a laminate formed of a jelly roll laminate, a lamination and stacked laminate, a stack and folded laminate or a combination thereof together with the Z-folding laminate is laminated by the sheet-type separation film. It may be.
  • the electrode assembly together with the Z-folding laminate, is a group consisting of a stacked laminate, a jelly roll laminate, a lamination and stacked laminate, a stack and folded laminate and a laminate of two or more thereof.
  • the stack may further include at least one selected from a stack, a jelly roll stack, a lamination and stack stack, a stack and folding stack, and a stack of at least one of a combination thereof. It may be to have.
  • the laminate may include at least one electrode unit having a different shape of at least one corner portion.
  • the laminate may include one or more electrode units having at least one corner portion curved, wherein the at least one corner portion includes two or more electrode units curved. At least one of the electrode units may be different.
  • the curvature may have a curved portion having a different curvature from the electrode unit.
  • the stack may be stacked such that the area of the electrode unit is smaller in the height direction in which the electrode units are stacked, and may be stacked in an arrangement in which one edge of each electrode unit is matched. At least one of the electrode units adjacent to each other at the boundary of the film may be stacked to be included in the surface of the other electrode unit. Furthermore, the stack may be stacked such that the centers of the electrode units coincide with each other.
  • the electrode units may have the same thickness and may be different from each other.
  • the electrode disposed at the outermost portion of the electrode assembly may be a single-sided coated electrode whose one side is the electrode non-coated portion, the electrode non-coated portion is disposed to face the outside of the electrode assembly, the electrode assembly is exposed to the separation film or separator outside Can be.
  • the single-sided coating electrode may be an anode.
  • the electrode disposed on the outermost portion of the electrode assembly may be a cathode, the electrode assembly may be exposed to the separation film or membrane.
  • each electrode tab may be the same or different in size.
  • the present invention provides a lithium ion secondary battery or a lithium ion polymer secondary battery as a battery cell housed in the battery case
  • the battery case may be a pouch type case.
  • the battery case may accommodate the electrode assembly therein, but may have a stepped or inclined surface corresponding to the shape of the electrode assembly.
  • the present invention provides a device including one or more of the battery cells.
  • the system parts of the device may be located in the surplus space of the battery cell, the device is a mobile phone, portable computer, smart phone, smart pad, netbook, LEV (Light Electronic Vehicle), electric vehicle, hybrid electric vehicle, plug A hybrid electric vehicle, or a power storage device.
  • LEV Light Electronic Vehicle
  • an electrode assembly having a step may be obtained in one process by Z-folding, and thus, a battery having a variety of designs may be implemented.
  • an electrode assembly having a step in manufacturing an electrode assembly having a step, it is possible to simplify the arrangement structure of the unit cells, it is simple to manufacture, as well as the unit cell in which the positive and negative electrodes are assembled, as well as the unit cell
  • the electrode assembly can be manufactured using a unit electrode without manufacturing, and the process can also be simplified.
  • the electrode assembly having a step obtained in accordance with the present invention in the manufacture of the battery it is possible to minimize the dead space (dead space) caused by the design element can increase the space utilization, Furthermore, battery capacity can be improved.
  • the electrode assembly of the present invention is formed to face different types of electrodes at the interface between the unit cells of different sizes, the electrochemical reaction occurs at the interface portion, As a result, compared to the conventional composite electrode assembly, it is possible to implement a high output compared to the same size.
  • 1 to 4 show an exploded view of an electrode unit for manufacturing an electrode assembly having a step of the present invention.
  • 5 to 7 are schematic views showing the laminated section of the electrode assembly having a step obtained in accordance with the present invention.
  • FIGS. 8 to 12 are schematic cross-sectional views of an electrode assembly having a step obtained by the present invention.
  • 13 to 15 are diagrams schematically showing an example of a lamination and stack type unit cell used as a unit cell in the present invention.
  • 16 is a diagram schematically showing an example of an electrode assembly having one step.
  • 17 is a view schematically showing a cross-sectional shape of an electrode assembly having a step obtained by the present invention.
  • FIGS. 18 to 24 are perspective views of a battery cell having a step according to various embodiments obtained in accordance with an embodiment of the present invention.
  • FIG. 25 illustrates a stacked form of an electrode tab according to an embodiment of the present invention, where (a) is a plan view and (b) is a front view.
  • the present invention seeks to provide an electrode assembly having a step.
  • the electrode assembly having the step can be obtained by the stack and folding type.
  • it may be an electrode assembly by a winding type for folding the separation film in a predetermined direction according to the electrode units stacked thereon, Z-folding to arrange the electrode units on the sheet-like separation film, folding them in the form of a folding screen ( zigzag-folding) electrode assembly can be obtained.
  • Z-folding types are schematically illustrated in FIGS. 1 to 4.
  • the present invention will be described with reference to the electrode assembly of the Z-folding type.
  • the electrode assembly of the present invention may be a combination of electrode units having different areas.
  • the electrode unit includes a unit cell including a separator interposed between a cathode, an anode, or a cathode and an anode, and the electrode assembly may be configured by any one or a combination thereof.
  • that the area is different means that the areas of the facing electrodes of the two electrode units facing each other are not the same because either of the widths or the widths of the electrode units facing each other are different.
  • the area difference of the electrode unit is not particularly limited as long as it can form a step in the electrode assembly formed by stacking the electrode units.
  • the width or width of the relatively small area electrode unit may range from 20% to 95%, for example 30 to 90% of the width or width of the relatively large area electrode unit.
  • the electrode unit may have an area difference by any one of a width and a width, and of course, may have an area difference by both.
  • an electrode assembly having a step height may be formed by stacking a second electrode stack in which a single or plurality of electrode units having a smaller size is stacked on a first electrode stack in which one or a plurality of electrode units having a predetermined area are stacked. You can get it.
  • stacking of an electrode unit is not specifically limited,
  • the height of the said electrode laminated body is not limited, It is the same for each laminated body. Of course, it may be different.
  • the step of the electrode assembly is not particularly limited as long as it is one or more.
  • an electrode assembly having two steps may be obtained by stacking three electrode stacks having an area difference, and an electrode assembly having one step may be stacked by stacking an electrode stack having two area differences. You can get it.
  • further steps may be formed as necessary.
  • the electrode assembly having two steps will be described, but is not limited thereto.
  • each electrode unit forming each laminate may use an electrode unit, in particular, an electrode having the same thickness within the same laminate as well as between the laminates. Can be formed.
  • an electrode unit in particular, an electrode having the same thickness within the same laminate as well as between the laminates. Can be formed.
  • the electrode unit having a small area of the electrode to form a step it is possible to offset the decrease in battery capacity due to the reduction of the area of the electrode by increasing the loading amount of the electrode active material.
  • the present invention is not necessarily limited thereto, and the thickness of the electrode unit having a large area can be increased if necessary, and conversely, the thickness can be reduced.
  • the thickness of the electrode unit can be appropriately selected by a person skilled in the art in consideration of the shape and height of the battery, the battery capacity, and the like required by the device to which the battery to be manufactured is applied.
  • the material of each of the positive electrode, the negative electrode and the separator is not particularly limited, and may be used without particular limitation in the present invention as long as it is commonly used in the art.
  • the electrode active material is apply
  • the electrode current collector plates 21 and 31 have the same size as the negative electrode 20 and the current collector plates 21 and 31 of the positive electrode 30.
  • the electrode active materials 21 and 31 are not necessarily limited thereto, but may be coated on the entire surface of the electrode current collector plates 21 and 31, and in some cases, the terminal portions may not be coated. Therefore, when the electrode active material is coated on the entire surface of the electrode current collector plate, the two electrodes have the same size. However, in this case, lithium contained in the positive electrode active material may be precipitated during the battery reaction, which may cause a decrease in battery performance.
  • an area in which the cathode active material is applied to the cathode electrode may be coated to be smaller than an area in which the anode active material is applied to the anode electrode.
  • the negative electrode and the positive electrode may be suitably used in the nickname as long as they are commonly used in the art.
  • the negative electrode is a negative electrode manufactured by copper, nickel, aluminum, or a combination thereof.
  • One or both of the negative electrode active materials selected from lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon compound, tin compound, titanium compound or alloys thereof, or a combination thereof are coated on one or both sides of the current collector plate. Formed ones can be used.
  • the positive electrode may include lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide and combinations thereof or composite oxides thereof on one or both surfaces of the positive electrode current collector plate made of aluminum, nickel, or an alloy thereof, or a combination thereof. It may be formed by coating the positive electrode active material.
  • each electrode current collector may be coated with the same amount of the electrode active material to form the same electrode thickness, and the coating amount of the electrode active material may be different to make the electrode thickness different. Furthermore, the coating amount of the electrode active material may be coated in different amounts with respect to both sides of the electrode current collector with respect to one electrode, and further, the electrode active material may not be coated on any one surface.
  • the separator is, for example, a multilayer film made of polyethylene, polypropylene or a combination thereof having a microporous structure, or polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride Polymer films for solid polymer electrolytes or gel polymer electrolytes such as hexafluoropropylene copolymers can be used. Sheet-type separation film used in the present invention may be used the same material as the separator.
  • FIGS. 1 to 4 The developed view of the electrode laminate obtained by arranging the above electrode units on the separation film and Z-folding is shown in FIGS. 1 to 4. These developments are only examples for manufacturing an electrode assembly having a step, and it will be readily understood by those skilled in the art that the electrode assembly can be manufactured by various arrangements other than the development shown in these drawings.
  • the drawing shows an example of laminating using one separator film, but by arranging two or more separator films in parallel, and arranging and folding electrode units between the separator films and on at least one separator film. As the electrode assembly can be obtained, a person skilled in the art can easily understand.
  • the electrode stack means that the electrode unit selected from the group consisting of a cathode, an anode, and a unit cell in which a cathode and an anode are laminated with a separator interposed therebetween has a structure in which two or more layers are laminated on a separator or sheet-like separator film.
  • the electrode stack may be one unit cell in which two or more electrodes are stacked and may be a combination of one or more unit cells and one or more electrodes. Therefore, in the present invention, the unit cell and the electrode laminate may not be strictly distinguished.
  • such an electrode stack can form an electrode assembly by one electrode stack, and can be obtained by combining two or more electrode stacks or combining one or more single electrodes together. Therefore, the electrode laminate used below may be one unit structure forming an electrode assembly, and may be an electrode assembly itself, and is not particularly limited.
  • a single electrode of each of the cathode 20 and the anode 30 having different areas is laminated on the sheet-type separation film 40 and folded in the zigzag direction to obtain an electrode laminate having a step difference.
  • have. 1 (a) shows an example of Z-folding by sequentially arranging a single negative electrode 20 and a positive electrode 30 as an electrode unit on one surface of the sheet-type separation film 40 at regular intervals.
  • (b) shows a single cathode 20 and the anode 30 arranged on both sides of the sheet-like separation film 40 to produce an electrode laminate, on one surface of the sheet-like separation film 40
  • An example of obtaining an electrode stack by arranging the cathodes 20 at regular intervals and arranging and Z-folding the anodes on opposite sides of the sheet-shaped separation film 40 where the cathodes 30 are not located is shown.
  • FIG. 2 is a development view of manufacturing an electrode stack by arranging unit cells 60 having different areas on one surface of a separation film and Z-folding.
  • the unit cells 60 are a cathode 20 and an anode.
  • 30 may be unit cells 60 (full cells) stacked one by one on the separator 50, and the cathode 20 and the anode 30 are laminated on the separator 50 by the boundary, but the same on both sides.
  • the unit cell 60 (bicell) in which an electrode is located may be sufficient. Examples of these are shown in FIGS. 3 and 4.
  • FIG. 3 illustrates a bi-cell (A-type bi-cell) in which a negative electrode 20 is interposed between two anodes 30, and a separator 50 is interposed between two cathodes 20.
  • An exploded view in which the anode 30 is stacked on the sheet-type separation film 40 using a bi-cell (C-type bi-cell) on which the anode 30 is stacked (a) shows an electrode unit arranged on one surface of the sheet-type separation film 40.
  • C-type bi-cell bi-cell
  • FIG. 3 illustrates a bi-cell (A-type bi-cell) in which a negative electrode 20 is interposed between two anodes 30, and a separator 50 is interposed between two cathodes 20.
  • An exploded view in which the anode 30 is stacked on the sheet-type separation film 40 using a bi-cell (C-type bi-cell) on which the anode 30 is stacked (a) shows an electrode unit arranged on one surface of the sheet-type separation film 40.
  • FIG. 4 shows a developed view in which the bi-cell and the full cell are arranged on the sheet-type separation film 40, and (a) shows an electrode stack by arranging electrode units on one surface of the separation film 40 and Z-folding them. (B) is a developed view of manufacturing an electrode laminate by Z-folding the electrode units on both sides of the separation film 40.
  • unit electrodes may be arranged together as an electrode unit.
  • various types of unit cells 60 in which two or more cathodes 20 and two or more anodes 30 are stacked around the separator 50 may be used, and thus, other than those shown in FIGS. 2 to 4 may be used.
  • the electrode units can be arranged in various ways.
  • FIGS. . FIG. 5 shows an electrode assembly 1 having a step obtained by Z-folding a single electrode 10 arranged on both sides of the sheet-shaped separation film 40 as shown in FIG. 1 (b), and FIG.
  • the lamination form of 1) is shown
  • FIG. 7 shows the lamination form of the electrode assembly 1 obtained by Z-folding arranged on one surface of the sheet-shaped separation film 40 using bicells having different areas.
  • a step is formed between electrode units stacked on each other by stacking electrode units having an area difference.
  • the electrode units having the area difference and the electrode units adjacent thereto are arranged such that the facing electrodes facing each other at the boundary of the separation film face the electrodes having different polarities.
  • a battery reaction does not occur between the two facing electrodes.
  • electrodes having different polarities are stacked to face each other, a battery reaction may occur between the facing electrodes, thereby widening the reaction area as a whole, thereby increasing the battery capacity at the same size.
  • the electrode units it is preferable to arrange the electrode units so that the cathodes are disposed on the facing electrodes of the electrode units having the larger area among the electrode units adjacent to the electrode units having the area difference. That is, when the electrode units having different areas face the separation film in the electrode assembly, a portion of the surface of the large electrode unit faces toward the outside in the state in which the separation films are stacked. It is preferable to arrange
  • the cathode 20 is positioned on at least one surface of the electrode assembly 1 obtained by laminating the electrode units. It is preferable to arrange an electrode unit so that it may By doing in this way, as shown in FIGS. 5-7, the electrode assembly 1 in which the cathode 20 is arrange
  • an anode 30 may be disposed on at least one surface of the electrode assembly of the present invention in addition to the cathode 20 as shown in FIG. 5.
  • the positive electrode 30 is a single-sided coated positive electrode 33 having an uncoated portion on which the positive electrode 30 and the active material 32 are not coated.
  • the electrode unit stacked on the bottom thereof has a positive electrode 30 disposed thereon, and a surface facing toward the outside of the positive electrode 30 is a positive electrode uncoated portion without an electrode active material coated.
  • a separator or a separation film may be disposed on the outer surface of the outermost electrode so that the electrode surface is not exposed to the outside.
  • the unit cell which is a kind of the electrode unit, is not particularly limited, but may be a stacked laminate formed by sequentially stacking a cathode and an anode with a separator therebetween.
  • the unit cell may include one or more anodes, one or more cathodes, and one or more separators, and the configuration thereof is not particularly limited.
  • the unit cell when manufacturing an electrode laminate by lamination and stacking, is configured to include a basic structure consisting of a cathode / separator / anode / separator or a separator / cathode / separator / anode. It is preferable to be.
  • the unit cell may include one or a plurality of basic structures.
  • the electrode stack of the lamination and stack method may be composed of only the electrode unit including the unit cell of the above-described basic structure, or may be used in combination with the electrode unit having the basic structure and the electrode unit of the other structure. .
  • 13 to 15 disclose various examples of electrode laminates fabricated in a lamination and stack manner.
  • FIG. 13 illustrates a lamination and stack type electrode stack including electrode units 65 having a basic structure of a separator 50, a cathode 20, a separator 50, and an anode 30.
  • the basic structure is disclosed as a separator / cathode / separator / anode in FIG. 13, the basic structure of the separator / anode / separator / cathode may be formed by changing positions of the anode and the cathode.
  • FIG. 13 illustrates a lamination and stack type electrode stack including electrode units 65 having a basic structure of a separator 50, a cathode 20, a separator 50, and an anode 30.
  • the anode is exposed to the outermost portion of the electrode stack without a separator, and thus, when using such a basic structure, As the positive electrode exposed to the outer shell, it may be preferable to use a single-side coated positive electrode in which the active material is not coated on the exposed surface in the electrode design considering capacity.
  • the electrode units are disclosed as having one basic structure, the present invention is not limited thereto, and two or more basic structures may be used as one electrode unit.
  • the electrode units 66 having the basic structure of the separator 50, the cathode 20, the separator 50, and the anode 20, and the separator 50, the cathode 20, and the separator 50 have a structure.
  • the electrode stack consisting of stacked electrode units is shown.
  • the anode 30 may be prevented from being exposed to the outside.
  • the advantage is that the capacitance can be increased.
  • an electrode unit having a separator / anode / separator structure may be stacked on top of the electrode unit. In this case, the capacity of the cathode may be maximized.
  • FIG. 15 shows the electrode units 68 having the basic structure of the cathode 20 / separator 50 / the anode 30 / the separator 50 and the cathode 20 / separator 50 / anode 30 / separator
  • An electrode laminate in which an electrode unit 67 having a structure of 50 / cathode 20 is stacked is shown.
  • the electrode unit 67 having the structure of the cathode 20 the separator 50, the anode 30, the separator 50, and the cathode 20 is stacked on the outermost surface of the electrode stack.
  • the electrode stacks manufactured by the lamination and stack method are different from each other in arrangement and configuration with a single electrode, a separator, or the electrode units together with the electrode units having the above-described basic structure.
  • Unit cells can be used in combination.
  • a single electrode, single-side coating on the outermost side and / or both sides of the electrode stack in terms of improving the battery capacity and / or the side to prevent the anode from being exposed to the outside
  • An electrode, a separator, or a unit cell different in arrangement and configuration from the above electrode units may be disposed.
  • electrode units having different structures are stacked on top of the electrode stack, but the present invention is not limited thereto, and electrode units having other structures are stacked on the bottom of the electrode stack as necessary. In addition, electrode units having different structures may be stacked on both top and bottom portions thereof.
  • a stack and a folding stack in which a cathode and an anode or at least one cathode and at least one anode are stacked on a sheet-shaped separator with a separator interposed therebetween, and the sheet separator is folded and folded.
  • a separator interposed therebetween, and the sheet separator is folded and folded.
  • the stack and folding type laminate may be a winding type laminate that is folded in one direction and a Z-foldable laminate that is folded in a zigzag direction.
  • the winding type laminate is not shown in the drawings, the winding direction by the sheet-shaped separation film may be changed from clockwise to counterclockwise and vice versa.
  • the winding direction of the winding unit cell 71 may be changed as in the winding method of the jellyroll type unit cell 73 of FIG. 11.
  • a winding type laminated body can also be wound up.
  • the at least one rectangular sheet-like cathode and the at least one rectangular sheet-shaped anode may be a jelly roll-type laminate in which the sheet-type separation film is helically folded.
  • the Z-folding type laminate according to the present invention is formed by one separation film, and the jellyroll type laminate is continuously formed, or the stack and folding type laminate is formed, or continuously By forming, an electrode assembly having a step of the present invention can be obtained.
  • the electrode assembly of the present invention may be a Z-folding electrode assembly by combining the respective electrode stacks as described above, as well as a Z-folding electrode assembly in which a plurality of stacks are stacked.
  • other electrode units for example a single electrode, can also be stacked together.
  • the Z-folding electrode assembly by arranging at least one or more of the stacked stack, lamination and stacked stack, stack and folding stack, and jelly roll stack as one unit cell on one or both sides of one sheet separator film.
  • the unit cell may form a step by stacking unit cells having an area difference with respect to adjacent unit cells bordering the separator.
  • FIG. 8 shows one jelly roll type unit cell 73 as a large area unit cell, one stacked stack 74 as a medium area unit cell, and one stack and folding type laminate.
  • An electrode assembly 1 having a step formed by Z-folding into one sheet-type separation film 40 using a Z-foldable laminate 76 and a single electrode 10 as a small area unit cell.
  • the electrode assembly 1 having various structures different from the structure shown in FIG. 8 can be formed.
  • the electrode assembly of the present invention may have a structure in which some or all of the electrode units are wound by at least one sheet-like separation film.
  • the laminate 70 itself used as the unit cell may have a step.
  • the electrode assembly of the present invention can be formed by folding the electrode electrode unit in the Z type and the winding type by one sheet-type separation film, and also in the gel roll type.
  • FIG. 9 An example of this is shown in FIG. 9.
  • a single stack-type separator film 40 forms a winding-type stack and folding type stack 72 as a large area electrode unit, and a Z-folding type as a medium area electrode unit.
  • a stack-and-fold laminate 71 is formed, and then an electrode assembly 1 in which the jellyroll-type electrode laminate 73 is formed of a small area electrode unit can be obtained, thereby forming an electrode assembly having a step of the present invention. can do.
  • the electrode assembly 1 obtained by using one sheet-type separation film 40 is illustrated in FIG. 9, two or more separation films 40 are connected in series to have an electrode assembly having a step structure as shown in FIG. 9. (1) can be formed.
  • the cathode 20 is stacked on the upper end of the electrode assembly 1 shown in FIG. 9 as a single electrode 10 having the separator 50 stacked on the outside.
  • the negative electrode 20 is stacked as an electrode facing to the outside, and the anode 30 having the separation film 40 stacked on the outside of the unit cell 60 of the jelly roll stacked thereunder. Since this exists, a separate negative electrode 20 is further laminated.
  • a single-side coated anode 33 having an anode non-coating portion on which the separator film 40 is stacked is directed to the outside.
  • the electrode assembly of the present invention in addition to the Z-folding electrode stack, a separate stacked stack, a jelly roll stacked stack, or a stack and folded stack may be further stacked.
  • the electrode assembly may include at least one or more electrode stacks, and two or more electrode stacks of the same type may be included.
  • the electrode stack may have a step formed therein, and the step may be formed by a combination of the electrode stacks.
  • a single electrode can also be stacked. Each electrode stack or single electrode constituting the electrode assembly of the present invention may be laminated with a separator as necessary.
  • FIG. 10 An electrode assembly of such a structure is illustrated in FIG. 10.
  • the electrode assembly 1 shown in FIG. 10 is a large area electrode unit, in which a single electrode 10 is stacked, and a Z-folding laminate 71 in which a step between the large area electrode unit and the medium area electrode unit is formed. Is stacked, the single-electrode 10 and the jelly roll-type unit cell 73 are combined as the medium-area electrode unit, and the Z-folding unit cell 71 is stacked as the small-area electrode unit.
  • 11 and 12 illustrate another example in which a plurality of electrode stacks are stacked to form an electrode assembly having a step.
  • 11 and 12 are the same except that the winding direction is different in assembling a jelly roll-type laminate 73 having a step. That is, the jelly roll-type laminate 73 of FIG. 11 rolls the large-area jelly roll-type unit cell 73 clockwise and the large-area jelly-roll unit cell 73 counterclockwise to rotate each jelly-roll unit cell. It is formed by forming one sheet-type separation film and laminating these medium area and large area jelly roll type unit cells with each other.
  • a Z-folding laminate 71 which is an electrode unit having a step of a large area and a medium area, is laminated
  • a jelly roll type electrode unit cell which is an electrode unit having a step of a medium area and a small area.
  • the jelly roll unit cells of FIGS. 11 and 12 may be replaced with a winding type of stack and folding type wound like a winding method of a jelly roll unit cell.
  • the electrode assembly having two steps is described with reference to the accompanying drawings as an example, but as described above, the electrode assembly of the present invention may form an electrode assembly having one step by stacking two electrode stacks. .
  • An example of this electrode assembly is shown in FIG. 16.
  • the electrode assembly of the present invention may have a stacked structure of various forms.
  • FIG. 16 is a cross-sectional view of the electrode assembly and schematically illustrates a stacked form of the electrode unit.
  • the size of the electrode unit can be reduced in the stacking direction of the electrode units, that is, the height direction (a), and, conversely, can be stacked to increase the size of the electrode unit (b). It can also be laminated so as to decrease after increasing in the stacking direction (c), and conversely, can be laminated so as to increase after decreasing in area in the stacking direction.
  • These laminated forms may achieve vertical symmetry.
  • the stacked form may not have a constant pattern.
  • each electrode unit may be stacked so that one corner portion coincides.
  • each electrode unit may have a different area but the same shape, or may have a different area and shape as shown in FIGS. 20 to 22.
  • At least one electrode unit may have rounded corners, and two or more rounded corners may be formed in one electrode unit. Only the round shape is illustrated as an example of the corner shape, but it may have various shapes. This is also the same below.
  • the curvature of the corner rounds may be different from each other.
  • the shape of a corner part may differ from each other.
  • one side and two corner portions adjacent to the side may have one round shape.
  • the electrode units may be stacked to include the small electrode unit in the surface of the large electrode unit, and in this case, the electrode units may be stacked without forming a predetermined pattern. Further, as shown in FIG. 23, the surface centers may be stacked to coincide with each other.
  • each electrode unit has the same length in the longitudinal direction of the electrode assembly 1, but may form a step in the width direction, where the step is a step in one or both directions in the width direction. Can be formed.
  • the electrode assembly 1 may have a step formed in the longitudinal direction.
  • the electrode units of the present invention may have various shapes of corner portions.
  • the electrode unit may be stacked to include the electrode unit having a small area in the surface of the large electrode unit, as well as a part of the contact surface of the facing electrode such as a cross (+) shape. May be stacked so that they contact each other and some do not contact each other.
  • the stacked shape of the electrode assembly 1 As described above, by forming the stacked shape of the electrode assembly 1, the shape of the electrode unit, the corner shape, and the like in various ways, various types of battery designs may be realized, and further, space utilization may be improved.
  • the electrode units each include a cathode electrode tab and / or a cathode electrode tab.
  • the electrode unit is a unit cell, both the negative electrode tab and the positive electrode tab are provided, and when the electrode unit is composed of individual electrodes, only one electrode tab is provided.
  • the electrode tabs are inserted into the battery case and then electrically connected to electrodes of the same polarity.
  • the attachment position of the electrode tabs can be variously selected.
  • the electrode tabs of the two polarities are formed at one end of the electrode unit, and the electrode tabs are stacked to face in the same direction.
  • the electrode tabs are formed on one side of the electrode assembly 1.
  • the tabs 25 and 35 may be protruded.
  • the respective electrode tabs 25 and 35 may protrude from two side surfaces of the electrode assembly 1.
  • the electrode units in order to facilitate electrical connection of the electrode tabs after insertion of the battery case, it is preferable to arrange the electrode units so that electrodes of the same polarity can overlap each other.
  • the step when the step is formed in the form as shown in Fig. 22 or 24, when attaching the electrode tabs 25, 35 of the electrode assembly 1, the electrode tabs 25, 35 and the electrode unit having a larger area;
  • the contact between the electrode tabs 25 and 35 and the electrode unit may be interrupted.
  • an insulating resin may be applied to the surface of the electrode tabs 25 and 35. Can be coated.
  • the shape of the electrode tab is not particularly limited, and the area of the electrode tab may also be variously formed.
  • the electrode tabs may have the same width and length, or at least one of them may be different.
  • the electrode tabs having small areas can be arranged side by side on the one end of the electrode tabs having a large area.
  • the stacked form of the electrode tabs in the case of using electrode tabs having different areas is as shown in FIG. 22.
  • the separation film is formed by the top of the larger electrode unit stack and the top of the smaller electrode unit.
  • the separation film may form an inclined surface by the step. Such an inclined surface may be formed especially when a step is formed by a winding type stack and folding type electrode assembly, or when the step formed electrode assembly is wound with a separation film.
  • the inclined surface may be formed to match the inclined surface of the separation film as the shape of the electrode case in which the electrode assembly is accommodated.
  • the separation film is preferably formed in accordance with the shape of the electrode assembly in terms of space utilization. Therefore, when the separation film is spaced apart from the electrode assembly, the separation film may be elongated by heating or pressing to form the same as the shape of the electrode assembly. In this case, bending may be formed in a portion having a step. In addition, in the part which has a level
  • the battery cell of this invention is demonstrated.
  • 23 shows an embodiment of the battery cell 100 of the present invention.
  • the battery cell 100 of the present invention includes the electrode assembly 1 of the present invention inside the battery case 120.
  • the battery case 120 may be a pouch type case.
  • the pouch-type case may be formed of a laminate sheet, wherein the laminate sheet may be formed of an outer resin layer forming an outermost shell, a barrier metal layer preventing penetration of materials, and an inner resin layer for sealing, but is not limited thereto. no.
  • the battery case is preferably formed of a structure in which an electrode lead for electrically connecting the electrical terminals of the electrode units of the electrode assembly is exposed to the outside, and although not shown, the electrode lead is protected on the upper and lower surfaces of the electrode lead. An insulating film for attaching may be attached.
  • the battery case may vary the shape of the battery case according to the shape of the electrode assembly of the present invention.
  • the shape of the battery case may be formed in such a manner that the battery case itself is deformed.
  • the shape and size of the battery case do not have to be exactly the same as the shape and size of the electrode assembly, and may be any shape and size that can prevent the internal short circuit caused by the sliding of the electrode assembly.
  • the shape of the battery case of the present invention is not limited thereto, and battery cases of various shapes and sizes may be used as necessary.
  • the battery case may have a step formed according to the shape of the electrode assembly 1 having the step of the present invention.
  • the battery case may have an inclined surface in the step in which the step of the electrode assembly is formed. That is, in the region forming the step difference of the electrode assembly, the inclined surface can be formed by having the battery case have the same shape as the upper corners and corners of the respective stages.
  • Such inclined surfaces may include curved surfaces, and the inclined surfaces may have two or more inclined surfaces.
  • the battery cell may be preferably a lithium ion battery or a lithium ion polymer battery, but is not limited thereto.
  • the battery cell of the present invention as described above may be used alone, or may be used in the form of a battery pack including at least one battery cell.
  • a battery cell and / or battery pack of the present invention is a variety of devices, for example, mobile phones, portable computers, smart phones, smart pads, netbooks, light electronic vehicles (LEV), electric vehicles, hybrid electric vehicles, plug-in hybrid It can be usefully used in electric vehicles, or power storage devices. Since the structure of these devices and their fabrication methods are known in the art, detailed description thereof is omitted herein.
  • the system parts of the device can be located in the surplus space formed due to the structure of the battery cell or the battery pack of the present invention.
  • the battery cell or the battery pack of the present invention is formed of electrode assemblies having different sizes, the electrode assembly itself is formed in a stepped form, and the battery case is formed in accordance with the shape of the electrode, and when the device is mounted, the conventional rectangular or Excess space that does not exist in the oval battery cell or battery pack is generated.
  • the system parts of the device When the system parts of the device are mounted in such a surplus space, the system parts of the device and battery cells or battery packs can be flexibly arranged, thereby improving space utilization and reducing the thickness or volume of the entire device. A slim design can be realized.
  • electrode assembly 10 single electrode
  • battery cell 120 battery case

Abstract

본 발명은 전극 탭이 부착된 전극 유닛이 복수개 적층되되, 시트형 분리필름에 의해 상기 전극 유닛이 서로 분리되어 적층된 스택앤 폴딩형의 적층체를 하나 이상 포함하며, 상기 적층체는 인접하는 전극 유닛에 대하여 면적 차를 갖는 전극 유닛이 적층되어 형성된 단차를 하나 이상 갖는 전극 조립체를 제공한다.

Description

단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
본 발명은 전극 조립체에 관한 것으로서, 보다 구체적으로는 크기가 상이한 2종 이상의 전극 유닛을 포함하는 단차를 갖는 전극 조립체에 관한 것이다.
본 발명은 또한, 상기 전극 조립체를 포함하는 전지셀, 전지팩, 디바이스 및 전지를 제조하는 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있으며, 그 중에서도 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수한 리튬 이차전지는 각종 모바일 기기는 물론 다양한 전자제품의 에너지원으로 널리 사용되고 있다.
일반적으로 리튬 이차 전지는 전지 케이스 내부에 전극 조립체와 전해질을 밀봉하는 구조로 형성되며, 외형에 따라 크게 원통형 전지, 각형 전지, 파우치형 전지 등으로 분류되며, 전해액의 형태에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 한다.
이와 같은 모바일 기기의 소형화에 대한 최근의 경향으로 인해, 두께가 얇은 각형 전지, 파우치형 전지에 대한 수요가 증가하고 있으며, 특히 중량이 적은 파우치형 전지에 대한 관심이 증대되고 있다.
전지 케이스에 수납되는 전극 조립체는 그 형태에 따라, 젤리-롤형(권취형), 스택형(적층형), 또는 스택 앤 폴딩형(복합형)의 구조로 구분될 수 있다.
상기 젤리-롤형 전극 조립체는 전류 집전판으로 사용되는 금속 호일에 전극활물질을 코팅하고 프레싱하여 원하는 폭과 길이를 갖는 밴드 형태로 재단한 다음, 분리막 필름을 이용하여 음극과 양극을 격막한 후 나선형으로 감아서 제조된다. 또, 상기 스택형 전극 조립체는 음극, 분리막, 양극을 수직으로 적층하여 형성되는 전극 조립체이며, 나아가, 상기 복합형 전극 조립체는 시트형 분리 필름 상에 음극/분리막/양극을 포함하는 다수의 유닛셀들을 배치한 다음, 상기 시트형 분리 필름을 접으면서 상기 유닛셀들을 적층하는 방식으로 제조된다.
일반적으로 종래의 전극 조립체는 동일한 크기의 유닛셀이나 개별 전극들을 적층하는 방식으로 제조되기 때문에 형상 자유도가 현저하게 저하되어 다양한 디자인을 구현하는데 많은 한계를 가지고 있었다. 나아가, 디자인을 변경하기 위해서는 개별 전극 제조시, 전극 적층시 또는 전기적 연결시 복잡하고 까다로운 공정이 요구되는 경우가 많았다.
이와 같이, 최근의 모바일 기기는 다양한 형태로 출시되고 있고, 이에 따라 모바일 기기에 장착되는 전지 또한 다양한 형태를 가질 것이 요구되고 있다. 이에, 모바일 기기의 형태에 따른 요구에 수반하여 전지셀이 적용되는 디바이스 모양에 따라 다양한 형태로의 변형이 용이한 전지를 제조할 수 있는 새로운 형태의 전극 조립체가 요구되고 있다.
본 발명의 일 구현예에 따르면 다양한 디자인을 구현할 수 있는 전극 조립체를 제공하고자 한다.
또한, 본 발명의 일 구현예는 박형이면서, 우수한 전기 용량 특성을 갖는 전극 조립체를 제공하고자 한다.
나아가, 본 발명의 전극 조립체를 포함하는 전지셀, 전지팩 및 디바이스를 제공하고자 한다.
본 발명은 전극 탭이 부착된 전극 유닛이 복수개 적층되되, 시트형 분리필름에 의해 상기 전극 유닛이 서로 분리되어 적층된 스택앤 폴딩형의 적층체를 하나 이상 포함하며, 상기 적층체는 인접하는 전극 유닛에 대하여 면적 차를 갖는 전극 유닛이 적층되어 형성된 단차를 하나 이상 포함하는 전극 조립체를 제공하고자 한다.
상기 면적 차를 갖는 전극 유닛과 이에 인접하는 전극 유닛은 분리필름을 경계로 상호 대면하는 대면 전극이 서로 다른 극성의 전극인 것이 바람직하다.
상기 스택앤 폴딩형 전극 적층체는 Z 폴딩형의 전극 적층체일 수 있으며,이때, 상기 전극 조립체는 상기 단차를 1 또는 2개 포함할 수 있다.
또한, 상기 면적 차를 갖는 전극 유닛과 인접하는 전극 유닛 중 면적이 큰 전극 유닛의 대면 전극은 음극인 것이 바람직하다.
상기 전극 유닛은 각각 독립적으로 양극, 음극, 및 적어도 하나의 양극과 적어도 하나의 음극이 분리막이 개재된 상태로 적층된 유닛셀로 이루어진 그룹으로부터 선택될 수 있다.
이때, 상기 유닛셀은 독립적으로 젤리롤형, 스택형, 라미네이션 앤 스택형 및 스택 앤 폴딩형으로 이루어진 그룹으로부터 선택될 수 있다.
나아가, 상기 유닛셀은 분리막을 경계로 인접하는 전극에 대하여 면적 차를 갖는 전극이 적층되어 형성된 단차를 적어도 하나 포함할 수 있다.
상기 분리막은 시트형 분리필름이며, 상기 시트형 분리필름은 상기 단차 형상에 부합하도록 굴곡되거나 절단되어 있을 수 있다.
한편, 상기 적층체는 상기 Z-폴딩형의 적층체와 함께, 젤리롤형 적층체, 라미네이션 앤 스택형 적층체, 스택 앤 폴딩형 적층체 또는 이들의 조합인 적층체가 상기 시트형 분리필름에 의해 적층된 것일 수 있다.
나아가, 상기 전극 조립체는 상기 Z-폴딩형의 적층체와 함께, 스택형 적층체, 젤리롤형 적층체, 라미네이션 앤 스택형 적층체, 스택 앤 폴딩형 적층체 및 이들이 2 이상 조합된 적층체로 이루어진 그룹으로부터 선택되는 적어도 하나를 더 포함하여 적층될 수 있으며, 상기 스택형 적층체, 젤리롤형 적층체, 라미네이션 앤 스택형 적층체, 스택앤 폴딩형 적층체 및 이들의 조합 중 적어도 하나의 적층체는 단차를 갖는 것일 수 있다.
한편, 상기 적층체는 적어도 하나의 코너부 형상이 상이한 전극 유닛을 적어도 하나 포함할 수 있다.
나아가, 상기 적층체는 적어도 하나의 코너부가 곡면 형상인 전극 유닛을 하나 이상 포함할 수 있으며, 상기 적어도 하나의 코너부가 곡면 형상인 전극 유닛을 2 이상 포함하며, 이 중 적어도 하나의 전극 유닛은 다른 전극 유닛과 곡률이 상이한 곡면 형상의 코너부를 가질 수 있다.
상기 적층체는, 예를 들어, 상기 전극 유닛이 적층되는 높이 방향으로 전극 유닛의 면적이 작아지도록 적층된 것일 수 있고, 각 전극 유닛의 일 모서리가 일치되는 배열로 적층될 수 있으며, 또한, 분리필름을 경계로 상호 인접하는 전극 유닛 중 적어도 하나는 다른 전극 유닛의 면 내에 포함되도록 적층될 수 있다. 나아가, 상기 적층체는 각 전극 유닛의 중심부가 일치되도록 적층될 수 있다.
한편, 상기 전극 유닛은 두께가 서로 동일할 수 있고, 또 상이할 수 있다.
또한, 상기 전극 조립체의 최외각에 배치되는 전극은 일면이 전극 무지부인 단면 코팅 전극일 수 있으며, 상기 전극 무지부가 전극 조립체의 외부를 향하도록 배치되되 상기 전극 조립체는 분리필름 또는 분리막이 외부에 노출될 수 있다. 이때, 상기 단면 코팅 전극은 양극일 수 있다.
한편, 상기 전극 조립체의 최외각에 배치되는 전극은 음극일 수 있으며, 상기 전극 조립체는 분리필름 또는 분리막이 외부에 노출될 수 있다.
상기 전극 유닛은 각각의 전극에 대응하는 전극탭이 부착되며, 상기 각각의 전극탭은 크기가 서로 동일하거나 상이한 것일 수 있다.
한편, 본 발명은 상기 전극 조립체가 전지 케이스에 수납되어 있는 전지셀로서, 리튬 이온 이차 전지 또는 리튬이온 폴리머 이차 전지를 제공하며, 상기 전지 케이스는 파우치형 케이스일 수 있다. 이때, 상기 전지 케이스는 상기 전지 케이스는 내부에 전극 조립체를 수납하되, 전극 조립체의 형상에 대응하여 단차 또는 경사면을 가질 수 있다.
나아가, 본 발명은 상기 전지셀을 하나 이상 포함하는 디바이스를 제공한다. 이때, 상기 전지셀의 잉여 공간에 디바이스의 시스템 부품이 위치할 수 있으며, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치일 수 있다.
본 발명의 일 구현예에 따르면, Z-폴딩에 의해 하나의 공정으로 단차를 갖는 전극 조립체를 얻을 수 있어, 보다 다양한 디자인의 전지를 구현할 수 있다.
본 발명의 일 구현예에 따르면, 단차를 갖는 전극 조립체를 제조함에 있어서, 유닛셀의 배열 구조를 단순화할 수 있어, 제조가 간단하며, 양극과 음극이 조립되어 있는 유닛셀은 물론, 유닛셀을 제조하지 않고 단위 전극을 사용하여 전극 조립체를 제조할 수 있어, 공정 간소화를 도모할 수도 있다.
본 발명의 다른 구현예에 따르면, 본 발명에 따라 얻어진 단차를 갖는 전극 조립체를 전지 제조에 사용함으로써 디자인적인 요소 때문에 발생하게 되는 데드 스페이스(dead space)를 최소화할 수 있어 공간 활용도를 높일 수 있고, 나아가, 전지 용량을 향상시킬 수 있다.
나아가, 본 발명의 또 다른 구현예에 따르면, 본 발명의 전극 조립체는 크기가 다른 유닛셀들 간의 계면에서 서로 다른 종류의 전극이 대면하도록 형성되어 있기 때문에, 계면 부분에서도 전기 화학적 반응이 발생되며, 그 결과 종래의 복합형 전극 조립체와 비교할 때, 동일 크기 대비 높은 출력을 구현할 수 있다.
본 발명의 효과는 상기한 것으로 한정되지 않으며, 이하에서 기술하는 사항에 의해 다양한 발명의 효과가 얻어짐을 통상의 기술자라면 용이하게 이해할 수 있을 것이다.
도 1 내지 도 4는 본 발명의 단차를 갖는 전극 조립체를 제조하는 전극 유닛의 전개도를 나타낸다.
도 5 내지 도 7은 본 발명에 따라 얻어진 단차를 갖는 전극 조립체의 적층 단면을 개략적으로 나타낸 도면이다.
도 8 내지 도 12는 본 발명에 의해 얻어진 단차를 갖는 전극 조립체의 적층 단면을 개략적으로 나타낸 도면이다.
도 13 내지 15는 본 발명에서 유닛셀로 사용되는 라미네이션 앤 스택형 유닛셀의 예를 개략적으로 나타낸 도면이다.
도 16은 하나의 단차를 갖는 전극 조립체의 예를 개략적으로 나타낸 도면이다.
도 17은 본 발명에 의해 얻어진 단차를 갖는 전극 조립체의 단면 형상을 개략적으로 나타낸 도면이다.
도 18 내지 도 24는 본 발명의 일 실시예에 따라 얻어진 다양한 구현예에 따른 단차를 갖는 전지셀의 사시도이다.
도 25는 본 발명의 일 실시예에 따른 전극 탭의 적층 형태를 나타내는 것으로서, (a)는 평면도이며, (b)는 정면도이다.
이하, 도면을 참조하여, 본 발명을 보다 구체적으로 설명하기로 한다. 다만, 하기 도면은 본 발명의 이해를 돕기 하기 위한 것으로, 본 발명의 일 실시예에 불과하며, 본 발명의 범위가 이들 도면에 의해 한정되는 것은 아니다. 이하의 도면은 발명의 원활한 이해를 위해 일부 구성요소가 과장, 축소 또는 생략되어 표현될 수 있다.
본 발명은 단차를 갖는 전극 조립체를 제공하고자 한다. 본 발명에 있어서, 상기 단차를 갖는 전극 조립체는 스택앤 폴딩 타입에 의해 얻을 수 있다. 예를 들어, 분리필름을 그 위에 적층된 전극 유닛에 따라 일정한 방향으로 폴딩하는 와인딩 타입에 의한 전극 조립체일 수 있으며, 시트형 분리필름 상에 전극 유닛을 배열하고, 이를 병풍 형태로 접는 Z-폴딩(zigzag-folding) 타입에 의해 전극 조립체를 얻을 수 있다. 상기 폴딩 타입 중 Z-폴딩 타입에 대하여 도 1 내지 도 4에 개략적으로 나타내었다. 이하, Z-폴딩 타입의 전극 조립체를 기준으로 본 발명을 설명한다.
본 발명의 전극 조립체는 면적이 상이한 전극 유닛의 조합일 수 있다. 이때, 상기 전극 유닛은 음극, 양극 또는 음극과 양극 사이에 개재된 분리막을 포함하는 유닛셀을 포함하는 것으로서, 이들 중 어느 하나이거나 이들의 조합에 의해 전극 조립체가 구성될 수 있다. 본 발명에 있어서, 면적이 상이하다고 함은 서로 대면하는 전극 유닛의 폭 또는 너비 중 어느 하나가 상이함으로 인해 서로 대면하는 두 전극 유닛의 대면 전극의 면적이 동일하지 않은 것을 의미하는 것이다.
전극 유닛의 면적 차이는 전극 유닛이 적층되어 형성되는 전극 조립체에 단차를 형성할 수 있는 것이라면 특별히 한정하지 않는다. 예를 들어, 상대적으로 면적이 작은 전극 유닛의 폭 또는 너비는 상대적으로 면적이 큰 전극 유닛의 폭 또는 너비의 20% 내지 95%, 예를 들어, 30 내지 90% 범위일 수 있다. 상기 전극 유닛은 너비 및 폭 중 어느 하나가 상이함으로써 면적 차를 갖는 것일 수 있음은 물론, 둘 모두 상이함으로써 면적차를 갖는 것일 수 있다.
예를 들어, 일정한 면적을 갖는 전극 유닛이 하나 또는 복수개 적층된 제1 전극 적층체 상에 보다 작은 크기를 갖는 전극 유닛이 단수 또는 복수개 적층된 제2 전극 적층체를 적층함으로써 단차를 갖는 전극 조립체를 얻을 수 있다. 또한, 상기 제1 전극 적층체 및 제2 전극 적층체를 형성함에 있어서, 전극 유닛의 적층 수는 특별히 한정하지 않으며, 또한, 상기 전극 적층체의 높이 또한 한정하지 않는 것으로서, 각 적층체 별로 동일할 수 있음은 물론, 상이할 수도 있다.
본 발명에 있어서, 상기 전극 조립체의 단차는 1 이상이라면 특별히 한정하지 않는다. 예를 들어, 3개의 면적차를 갖는 전극 적층체를 적층함으로써 2개의 단차를 갖는 전극 조립체를 얻을 수 있음은 물론, 2개의 면적차를 갖는 전극 적층체를 적층함으로써 하나의 단차를 갖는 전극 조립체를 얻을 수 있다. 나아가, 필요에 따라서는 그 이상의 단차가 형성될 수도 있다. 이하, 2개의 단차를 갖는 전극 조립체를 중심으로 설명하나, 이에 한정되는 것은 아니다.
한편, 각 적층체를 형성하는 각 전극 유닛은 동일 적층체 내에서는 물론, 적층체 간에 있어서도 동일한 두께를 갖는 전극 유닛, 특히 전극을 사용할 수도 있으나, 두께가 상이한 전극을 적층하여 각 전극 유닛 적층체를 형성할 수 있다. 예를 들어, 단차를 형성하기 위해 전극의 면적이 작은 전극 유닛에 대하여는 전극 활물질의 로딩량을 증대시킴으로써 전극의 면적 감소로 인한 전지 용량 감소를 상쇄시킬 수 있을 것이다. 그러나, 반드시 이로 한정되는 것은 아니며, 필요에 따라서 면적이 큰 전극 유닛에 대하여 두께를 증대시킬 수 있으며, 반대로 두께를 감소시킬 수도 있다. 이때, 전극 유닛의 두께는 제조되는 전지가 적용되는 디바이스에서 요구하는 전지 형상 및 높이, 전지 용량 등을 고려하여 통상의 기술자가 적절히 선택할 수 있는 것으로서, 본 발명에서는 특별히 한정하지 않는다.
본 발명의 전극 조립체를 구성함에 있어서, 상기 각각의 양극, 음극 및 분리막의 재질은 특별히 한정되지 않는 것으로서, 본 기술분야에서 통상적으로 사용되는 것이라면 본 발명에서도 특별한 제한없이 사용될 수 있다.
본 발명의 유닛셀에 있어서 음극 전극과 양극 전극의 각각의 전극 집전판 표면에 전극 활물질이 도포되어 있다. 이때, 도 5에 나타낸 바와 같이, 상기 전극 집전판(21, 31)은 음극(20)과 양극(30)의 집전판(21, 31)의 사이즈가 동일하다. 한편, 전극 활물질(21, 31)은 반드시 이에 한정하는 것은 아니지만, 전극 집전판(21,31) 표면의 전체에 대하여 코팅될 수 있으며, 경우에 따라서는 말단 일부 영역은 코팅되지 않을 수 있다. 따라서, 전극 집전판의 전체 면에 전극 활물질이 코팅되는 경우에는 두 전극은 사이즈가 동일하게 된다. 그러나 이 경우, 전지 반응 중에 양극 활물질에 포함된 리튬이 석출되어 나오는 경우가 있어, 전지 성능 저하를 초래할 우려가 있다. 따라서, 경우에 따라서는 양극 활물질이 양극 전극에 도포되는 영역은 음극 전극에 음극활물질이 도포되는 면적보다 작도록 코팅될 수 있다. 이에 의해 양극 활물질로부터 리튬이 석출되는 것을 억제할 수 있다.
상기 음극 및 양극은 본 분야에서 통상적으로 사용되는 것이라면 본 별명에서도 적절하게 사용할 수 있는 것으로서, 예를 들면, 이에 한정하는 것은 아니지만, 상기 음극은 구리, 니켈, 알루미늄 또는 이들의 조합에 의해 제조된 음극 집전판의 일면 또는 양면에 리튬금속, 리튬합금, 카본, 석유 코크, 활성화 카본, 그라파이트, 실리콘 화합물, 주석 화합물, 티타늄 화합물 또는 이들의 합금, 또는 이들의 조합으로부터 선택된 1종 이상의 음극 활물질을 코팅하여 형성된 것을 사용할 수 있다. 또한, 양극은 알루미늄, 니켈 또는 이들의 합금, 또는 이들의 조합에 의해 제조된 양극 집전판의 일면 또는 양면에 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물 및 이들의 조합 또는 이들의 복합산화물 등과 같은 양극 활물질을 코팅하여 형성된 것일 수 있다.
이때, 상기 각각의 전극 집전체에는 동일한 양의 전극 활물질을 코팅하여 전극 두께를 동일하게 형성할 수 있으며, 전극 활물질의 코팅양은 다르게 하여 전극 두께를 상이하게 할 수 있다. 나아가, 상기 전극 활물질의 코팅양은 하나의 전극에 대하여 전극 집전체의 양면에 대하여 상이한 양으로 코팅될 수 있으며, 나아가, 어느 일면에 전극 활물질이 코팅되지 않을 수 있다.
또한, 상기 분리막은, 예를 들면, 미세 다공 구조를 가지는 폴리에틸렌, 폴리프로필렌 또는 이들의 조합에 의해 제조되는 다층 필름이나, 폴리비닐리덴 플루오라이드, 폴리에틸렌 옥사이드, 폴리아크릴로니트릴 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름을 사용할 수 있다. 본 발명에서 사용되는 시트형 분리필름은 상기 분리막과 동일한 재질의 것을 사용할 수 있다.
상기와 같은 전극 유닛을 분리필름 상에 배열하고 Z-폴딩함으로써 얻어지는 전극 적층체의 전개도를 도 1 내지 도 4에 나타내었다. 이들 전개도는 단차를 갖는 전극 조립체를 제조할 수 있는 예시에 불과한 것으로서, 이들 도면으로 나타낸 전개도로부터 이외의 다양한 배열에 의해 전극 조립체를 제조할 수 있음은 통상의 기술자라면 용이하게 이해할 수 있을 것이다. 또한, 도면에는 하나의 분리필름을 사용하여 적층하는 예를 나타내었으나, 2 이상의 분리필름을 병렬로 배열하고, 상기 분리필름 사이 및 적어도 하나의 분리필름 상에 전극 유닛을 배열하여 폴딩함으로써 본 발명의 전극 조립체를 얻을 수 있는 것으로서, 통상의 기술자라면 용이하게 이해할 수 있을 것이다.
상기 전극 적층체는 음극, 양극 및 음극과 양극이 분리막이 개재된 상태로 적층된 유닛셀로 이루어진 그룹으로부터 선택되는 전극 유닛이 분리막 또는 시트상의 분리필름을 경계로 2 이상 적층된 구조를 갖는 것을 의미하는 것으로서, 상기 전극 적층체는 2 이상의 전극이 적층되어 형성되는 하나의 유닛셀일 수 있으며, 또한, 하나 이상의 유닛셀과 하나 이상의 전극의 조합일 수 있다. 따라서, 본 발명에 있어서, 유닛셀과 전극 적층체는 엄밀하게 구별되지 않을 수 있다. 나아가, 이와 같은 전극 적층체는 하나의 전극 적층체에 의해 전극 조립체를 형성할 수 있으며, 2 이상의 전극 적층체를 조합하거나, 하나 이상의 단일 전극을 함께 조합함으로써 전극 조립체 얻을 수 있다. 따라서, 이하에서 사용되는 전극 적층체는 전극 조립체를 형성하는 하나의 단위 구조일 수 있으며, 그 자체가 전극 조립체일 수도 있는 것으로서 특별히 한정하지 않는다.
도 1로부터 알 수 있는 바와 같이, 면적이 상이한 음극(20) 및 양극(30) 각각의 단일 전극을 시트형 분리필름(40) 상에 적층하여 지그재그 방향으로 폴딩함으로써 단차를 갖는 전극 적층체를 얻을 수 있다. 도 1의 (a)는 시트형 분리필름(40)의 일면에 전극 유닛으로서 단일의 음극(20) 및 양극(30)을 일정한 간격을 두고 순차로 교차 배열하여 Z-폴딩하는 예를 나타낸 것이다. 한편, (b)는 단일의 음극(20) 및 양극(30)을 시트형 분리필름(40)의 양면에 배열하여 전극 적층체를 제조하는 것을 도시한 것으로서, 상기 시트형 분리필름(40)의 일면에 음극(20)을 일정한 간격을 두고 배열하고, 상기 시트형 분리필름(40) 중 상기 음극(30)이 위치하지 않는 반대 면에 양극을 배열하고 Z-폴딩함으로써 전극 적층체를 얻는 예를 나타낸 것이다.
또한, 도 2 내지 도 4에 나타낸 바와 같이, 음극(20)과 양극(30)이 분리막(50)이 개재된 상태로 적층된 유닛셀(60)을 사용하여 Z-폴딩함으로써 전극 적층체를 얻을 수 있다. 도 2는 면적이 서로 다른 유닛셀(60)을 분리 필름의 일면에 배열하여 Z-폴딩함으로써 전극 적층체를 제조하는 전개도를 나타낸 것으로서, 이때, 상기 유닛셀(60)은 음극(20)과 양극(30)이 분리막(50)을 경계로 하나씩 적층된 유닛셀(60)(풀셀)일 수 있으며, 음극(20)과 양극(30)이 분리막(50)을 경계로 교차 적층되되, 양면에는 동일한 전극이 위치하는 유닛셀(60)(바이셀)일 수도 있다. 이들의 예를 도 3 및 4에 나타내었다.
도 3은 두 개의 양극(30) 사이에 분리막(50)이 개재된 음극(20)이 적층된 바이셀(A-타입 바이셀)과 두 개의 음극(20) 사이에 분리막(50)이 개재된 양극(30)이 적층된 바이셀(C-타입 바이셀)을 사용하여 시트형 분리필름(40)에 배열한 전개도를 나타내는 것으로서, (a)는 시트형 분리필름(40)의 일면에 전극 유닛을 배열하여 Z-폴딩에 의해 전극 적층체를 제조하는 전개도이고, (b)는 시트형 분리필름(40)의 양면에 전극 유닛을 배열하여 Z-폴딩에 의해 전극 적층체를 제조하는 전개도이다.
또한, 도 4는 상기 바이셀과 풀셀을 조합하여 시트형 분리필름(40)에 배열한 전개도를 나타내는 것으로서, (a)는 분리필름(40)의 일면에 전극 유닛을 배열하여 Z-폴딩함으로써 전극 적층체를 제조하는 전개도이고, (b)는 분리필름(40)의 양면에 전극 유닛을 배열하여 Z-폴딩함으로써 전극 적층체를 제조하는 전개도이다.
상기 도 2 내지 도 4에는 풀셀과 바이셀을 혼용하여 분리필름(40)에 배열한 예를 나타내었으나, 이외에도 전극 유닛으로서 단위 전극이 함께 배열될 수도 있다. 나아가, 2 이상의 음극(20) 과 2 이상의 양극(30)이 분리막(50)을 경계로 적층된 다양한 형태의 유닛셀(60)이 사용될 수도 있으며, 따라서, 도 2 내지 도 4에 나타낸 것 이외의 다양한 방법으로 전극 유닛을 배열할 수 있다.
도 1 내지 도 4에 도시된 바와 같이 하나의 시트형 분리필름(40) 상에 전극 유닛을 배열하여 Z-폴딩함으로써 얻어진 전극 조립체(1)의 적층형태에 대한 예를 도 5 내지 도 7에 나타내었다. 도 5는 도 1 (b)에 나타낸 바와 같이 단일 전극(10)이 시트형 분리필름(40)의 양면에 배열된 것을 Z-폴딩하여 얻은 단차를 갖는 전극 조립체(1)를 나타내며, 도 6은 도 3의 (a) 또는 도 4의 (a)와 같은 전개도로 시트형 분리필름(40)의 일면에 면적이 상이한 풀셀과 바이셀을 전극 유닛으로서 조합하여 배열하고, 이를 Z-폴딩함으로써 얻어진 전극 조립체(1)의 적층 형태를 나타내며, 도 7은 면적이 상이한 바이셀을 사용하여 시트형 분리필름(40)의 일면에 배열하고 Z-폴딩에 의해 얻어진 전극 조립체(1)의 적층 형태를 나타낸다.
본 발명에 있어서는 면적차를 갖는 전극 유닛을 상호 적층함으로써 서로 적층되는 전극 유닛 간에 단차가 형성된다. 이때, 상기 면적 차를 갖는 전극 유닛과 이에 인접하는 전극 유닛은 분리필름을 경계로 상호 대면하는 대면 전극이 서로 다른 극성의 전극이 대면하도록 전극 유닛을 배열하는 것이 바람직하다. 동일한 극성의 전극이 분리필름을 경계로 서로 대면하는 경우, 두 대면 전극 간에는 전지 반응이 일어나지 않게 된다. 그러나, 서로 상이한 극성의 전극이 대면하도록 적층되는 경우에는 대면전극 간에 전지 반응을 일으킬 수 있어 전체적으로 반응면적을 넓힐 수 있고, 이로 인해 동일한 크기에서 전지 용량 증대의 효과를 얻을 수 있다.
보다 바람직하게는 상기 면적 차를 갖는 전극 유닛과 인접하는 전극 유닛 중 면적이 큰 전극 유닛의 대면 전극이 음극이 배치되도록 전극 유닛을 배열하는 것이 바람직하다. 즉, 전극 조립체에서 면적이 상이한 전극 유닛이 분리필름을 경계로 대면하는 경우, 분리필름이 적층된 상태에서 면적이 큰 전극 유닛의 표면 일부가 외부를 향하게 되는데, 이때, 상기 외부를 향하는 전극 유닛의 전극이 음극이 되도록 배치하는 것이 바람직하다. 양극의 표면에는 양극 활물질로서 리튬이 존재하게 되는데, 양극이 외부를 향하게 되는 경우, 양극 표면으로부터 리튬 금속이 석출되어 전지 수명이 단축되거나, 전지의 안정성이 저하되는 문제점이 발생할 수 있기 때문이다.
이와 동일한 이유로 상기 전극 유닛을 분리필름 상에 배치함에 있어서는, 도 1, 도 3 및 도 4에 나타낸 바와 같이, 전극 유닛의 적층에 의해 얻어진 전극 조립체(1)의 적어도 일면에는 음극(20)이 위치하도록 전극 유닛을 배치하는 것이 바람직하다. 이와 같이 함으로써 도 5 내지 7에 나타낸 바와 같이 전극 조립체(1)의 일면 또는 양면에 음극(20)이 배치되는 전극 조립체(1)를 얻을 수 있다.
또한, 본 발명의 전극 조립체의 적어도 일면에는 도 5에 나타낸 바와 같이 상기 음극(20) 이외에 양극(30)이 배치될 수 있다. 그러나, 이 경우에는 상기 양극(30)은 외부를 향하는 면에 양극(30) 활물질(32)이 코팅되지 않은 무지부를 갖는 단면 코팅 양극(33)인 것이 바람직하다. 도 5의 전극 조립체는 하단에 적층되는 전극 유닛은 양극(30)이 배치되며, 상기 양극(30)의 외부를 향하는 면은 전극 활물질이 코팅되지 않은 양극 무지부이다. 이때, 특별히 기재하지 않았으나, 전극 표면이 외부로 노출되지 않도록 상기 최외각 전극의 외부면은 분리막 또는 분리필름이 배치될 수 있다.
한편, 상기 전극 유닛의 일종인 유닛셀은 특별히 한정하지 않으나, 음극과 양극을 분리막을 사이에 두고 순차 적층하여 형성되는 스택형 적층체일 수 있다.
또한, 본 발명에 있어서, 상기와 같은 전통적인 방식으로 제조되는 것뿐만 아니라, 하나 이상의 양극, 하나 이상의 분리막을 라미네이션(lamination)하여 전극셀을 형성한 후, 이 전극셀들을 적층(stacking)하는 방식(이하 '라미네이션 앤 스택 방식'으로 지칭됨)으로 제조된 전극 적층체를 포함하는 개념으로 이해되어야 할 것이다.
상기 라미네이션 앤 스택 방식으로 전극 적층체를 제조할 경우, 상기 유닛셀은 하나 이상의 양극, 하나 이상의 음극 및 하나 이상의 분리막을 포함하는 것이면 되고, 그 구성이 특별히 제한되는 것은 아니다.
그러나, 공정의 간편성 및 경제성의 관점에서, 라미네이션 앤 스택 방식으로 전극 적층체를 제조할 경우에는 유닛셀은 음극/분리막/양극/분리막 또는 분리막/음극/분리막/양극으로 이루어진 기본 구조를 포함하도록 구성되는 것이 바람직하다. 이때, 상기 유닛셀은 하나 또는 복수개의 기본 구조를 포함할 수 있다.
한편, 상기 라미네이션 앤 스택 방식의 전극 적층체는 상기한 기본 구조의 유닛셀을 포함하는 전극 유닛만으로 구성되어도 되고, 상기 기본 구조를 갖는 전극 유닛과 다른 구조의 전극 유닛을 조합하여 사용하여도 무방하다.
도 13 내지 도 15에는 라미네이션 앤 스택 방식으로 제조된 전극 적층체들의 다양한 예들이 개시되어 있다.
도 13에는 분리막(50)/음극(20)/분리막(50)/양극(30)의 기본구조를 갖는 전극 유닛들(65)로 이루어진 라미네이션 앤 스택 방식의 전극 적층체가 도시되어 있다. 도 13에는 기본 구조가 분리막/음극/분리막/양극으로 개시되어 있으나, 양극과 음극의 위치를 바꿔 분리막/양극/분리막/음극의 기본 구조로 형성하여도 무방하다. 한편, 도 13에 도시된 바와 같이, 전극 유닛의 기본 구조가 분리막/음극/분리막/양극인 경우에는 전극 적층체의 최외각에 분리막 없이 양극이 노출되게 되므로, 이러한 기본 구조를 사용하는 경우에는 최외각에 노출되는 양극은 노출되는 면에 활물질이 코팅되지 않는 단면 코팅 양극을 사용하는 것이 용량 등을 고려한 전극 설계 시 바람직할 수도 있다. 한편, 도 13에는 전극 유닛들이 하나의 기본 구조를 갖는 것으로 개시되어 있으나, 이에 한정되는 것은 아니며, 기본 구조가 2개 이상 반복하여 적층되어 있는 것을 하나의 전극 유닛으로 사용할 수도 있다.
도 14에는 분리막(50)/음극(20)/분리막(50)/양극(20)의 기본구조를 갖는 전극 유닛(66)들과 분리막(50)/음극(20)/분리막(50)구조로 이루어진 전극 유닛이 적층(stacking)되어 이루어진 전극 적층체가 도시되어 있다. 도 14와 같이, 최외각면에 분리막(50)/음극(20)/분리막(50)구조로 이루어진 전극 유닛을 적층할 경우, 양극(30)이 외부로 노출되는 것을 방지할 수 있을 뿐 아니라, 전기 용량을 높일 수 있다는 장점이 있다. 이와 유사하게, 전극 단위체의 최외각에 음극이 위치하는 배열의 경우에는, 그 상부에 분리막/양극/분리막 구조로 이루어진 전극 유닛을 적층할 수 있으며, 이 경우, 음극의 용량을 최대한 사용할 수 있다는 점에서 장점이 있다.
도 15에는 음극(20)/분리막(50)/양극(30)/분리막(50)의 기본구조를 갖는 전극 유닛(68)들과 음극(20)/분리막(50)/양극(30)/분리막(50)/음극(20)의 구조를 갖는 전극 유닛(67)이 적층(stacking)되어 이루어진 전극 적층체가 도시되어 있다. 도 15와 같이, 전극 적층체의 최외각면에 음극(20)/분리막(50)/양극(30)/분리막(50)/음극(20)의 구조를 갖는 전극 유닛(67)을 적층할 경우, 양극이 외부로 노출하는 것을 방지할 수 있을 뿐 아니라, 전기 용량도 높일 수 있다는 장점이 있다.
도 14 및 도 15에 예시된 바와 같이, 라미네이션 앤 스택 방식으로 제조된 전극 적층체들은 상기한 기본 구조를 갖는 전극 유닛들과 함께, 단일 전극, 분리막 또는 상기한 전극 유닛들과 배열 및 구성이 상이한 유닛셀들을 조합하여 사용할 수 있다. 특히, 기본 구조를 갖는 전극 유닛들을 적층하였을 때, 외부로 양극이 노출되는 것을 방지하기 위한 측면 및/또는 전지 용량의 향상 측면에서 전극 적층체의 최외각 일면 및/또는 양면에 단일 전극, 단면 코팅 전극, 분리막 또는 상기한 전극 유닛들과 배열 및 구성이 상이한 유닛셀을 배치할 수 있다. 한편, 도 14 및 도 15에는 전극 적층체의 상부에 다른 구조의 전극 유닛이 적층되어 있는 것으로 도시되어 있으나, 이에 한정되는 것은 아니며, 필요에 따라 전극 적층체의 하부에 다른 구조의 전극 유닛이 적층될 수도 있고, 상부와 하부에 모두 다른 구조의 전극 유닛이 적층될 수도 있다.
나아가, 하나의 시트형 분리필름 상에 음극 및 양극 또는 적어도 하나의 음극과 적어도 하나의 양극이 분리막을 개재한 상태로 적층된 적층체를 배열하고, 상기 시트형 분리필름을 접어서 폴딩한 스택 앤 폴딩형 적층체일 수 있다.
이때, 상기 스택 앤 폴딩형 적층체는 일 방향으로 폴딩하는 와인딩형 적층체와 지그재그 방향으로 폴딩한 Z-폴딩형 적층체일 수 있다. 한편, 상기 와인딩형 적층체는 도면으로 나타내지는 않았으나, 시트형 분리필름에 의한 권취 방향이 시계 방향에서 반시계 방향으로, 또 그 반대로 변경될 수 있다. 예를 들면 도 11의 젤리롤형 유닛셀(73)의 권취 방법과 같이 와인딩형 유닛셀(71)의 권취 방향이 변경될 수 있다. 또한, 도 12의 젤리롤형 유닛셀(73)의 권취 방법과 같이 와인딩형 적층체를 권취할 수도 있다.
또한, 적어도 하나의 장방형 시트형 음극과 적어도 하나의 장방형 시트형 양극을 시트형 분리필름이 개재되어 나선형으로 폴딩된 젤리롤형 적층체일 수 있다. 예를 들어, 하나의 분리필름에 의해 본 발명에 따른 Z-폴딩 타입의 적층체를 형성하고, 연속하여 젤리롤 타입의 적층체를 형성하거나, 스택앤 폴딩 타입의 적층체를 형성하거나, 연속하여 형성함으로써 본 발명의 단차를 갖는 전극 조립체를 얻을 수 있다.
이때, 본 발명의 전극 조립체는 상기와 같은 각각의 전극 적층체의 조합에 의한 Z-폴딩형의 전극 조립체일 수 있음은 물론, 어느 하나의 적층체를 복수개 적층한 Z-폴딩형의 전극 조립체일 수 있고, 또한, 이들 적층체 이외에, 다른 전극 유닛, 예를 들어, 단일 전극이 함께 적층될 수 있다.
이와 같이, 유닛셀로서 상기 스택형 적층체, 라미네이션 앤 스택형 적층체, 스택 앤 폴딩형 적층체 및 젤리롤형 적층체 중 적어도 하나 이상을 하나의 시트형 분리필름의 일면 또는 양면에 배열하여 Z-폴딩함으로써 본 발명에 따른 Z-폴딩형의 전극 조립체를 얻을 수 있다. 이때, 상기 유닛셀은 분리막을 경계로 인접하는 유닛셀에 대하여 면적 차를 갖는 유닛셀을 적층함으로써 단차를 형성할 수 있다.
전극 유닛으로서, 상기와 같은 적층체를 유닛셀로 포함하는 본 발명의 전극 조립체의 일 예를 도 8에 나타내었다. 도 8은 하나의 젤리롤형 유닛셀(73)을를 대면적 유닛셀로 사용하고, 하나의 스택형 적층체(74)를 중면적 유닛셀로 사용하며, 또, 하나의 스택 앤 폴딩형 적층체로서 Z-폴딩형 적층체(76)와 단일 전극(10)을 소면적 유닛셀로 사용하여 하나의 시트형 분리필름(40)으로 Z-폴딩함으로써 형성된 단차를 갖는 전극 조립체(1)이다. 도 8에 나타낸 구조와는 상이한 다양한 구조의 전극 조립체(1)가 형성될 수 있음은 물론이다.
또한, 본 발명의 전극 조립체는, 전극 유닛들의 일부 또는 모든 전극 유닛들이 적어도 하나의 시트형 분리 필름에 의해 권취되어 있는 구조로 이루어질 수도 있다. 한편, 도 8에 나타내지는 않았으나, 상기 유닛셀로서 사용되는 적층체(70) 자체가 단차를 갖는 것일 수 있다.
한편, 본 발명의 전극 조립체는 하나의 시트형 분리필름에 의해 전극 전극 유닛을 Z타입 및 와인딩타입으로 폴딩하고, 또한 젤로롤 타입으로 폴딩하여 형성할 수 있다. 이에 대한 일 예를 도 9에 나타내었다. 도 9로부터 알 수 있는 바와 같이, 하나의 시트형 분리필름(40)에 의해 대면적 전극 유닛으로서 와인딩 타입의 스택 앤 폴딩형 적층체(72)가 형성되고, 중면적 전극 유닛으로서 Z-폴딩 타입의 스택앤 폴딩형 적층체(71)가 형성되며, 이어서, 젤리롤형 전극 적층체(73)가 소면적 전극 유닛으로 형성된 전극 조립체 (1)를 얻을 수 있어, 본 발명의 단차를 갖는 전극 조립체를 형성할 수 있다. 이때, 도 9에는 하나의 상기 시트형 분리필름(40)을 사용하여 얻어진 전극 조립체(1)를 예시하였으나, 2 이상의 분리필름(40)을 직렬로 연결하여 도 9와 같은 구조의 단차를 갖는 전극 조립체(1)를 형성할 수 있다.
한편, 도 9에 도시된 전극 조립체(1)의 상단에는 외부에 분리막(50)이 적층되어 있는 단일 전극(10)으로서 음극(20)이 적층되어 있다. 이는 상기한 바와 같이, 외부로 향하는 전극으로 음극(20)이 적층되는 것이 바람직한데, 그 하부에 적층된 젤리롤의 유닛셀(60)의 외부에는 분리필름(40)이 적층된 양극(30)이 존재하기 때문에 별도의 음극(20)을 추가로 적층한 것이다. 또한, 도 9의 최하단에는 분리필름(40)이 적층된 양극 무지부가 외부로 향하는 단면 코팅 양극(33)이 배치되어 있다.
본 발명의 전극 조립체는 전극 유닛으로서, 상기 Z-폴딩형의 전극 적층체 이외에, 별개의 스택형 적층체, 젤리롤형 적층체 또는 스택 앤 폴딩형 적층체가 추가로 적층될 수 있다. 이때, 상기 전극 조립체는 상기 전극 적층체를 적어도 일종 이상 포함할 수 있으며, 동일한 종류의 전극 적층체가 2 이상 포함될 수도 있다. 또한, 상기 전극 적층체는 그 내부에 단차가 형성된 것일 수 있으며, 전극 적층체의 조합에 의해 단차가 형성될 수 있다. 나아가, 상기 적층체 이외에 단일 전극이 또한 적층될 수 있다. 상기 본 발명의 전극 조립체를 구성하는 각각의 전극 적층체 또는 단일 전극은 필요에 따라 분리막이 개재되어 적층될 수 있다.
이와 같은 구조의 전극 조립체가 도 10에 예시되어 있다. 도 10에 도시된 전극 조립체(1)는 대면적 전극 유닛으로서, 단일 전극(10)이 적층되고, 또, 대면적 전극 유닛과 중면적 전극 유닛의 단차가 형성된 Z-폴딩형 적층체(71)가 적층되어 있으며, 나아가 중면적 전극 유닛으로 단일 전극(10)과 젤리롤 형 유닛셀(73)이 조합되어 있으며, 소면적 전극 유닛으로 Z-폴딩형의 유닛셀(71) 이 적층되어 있는 구조를 갖는다.
나아가, 도 11 및 도 12에 복수의 전극 적층체가 적층되어 단차를 갖는 전극 조립체를 구성하는 다른 예가 도시되어 있다. 도 11 및 도 12는 단차를 갖는 젤리롤형의 적층체(73)를 조립함에 있어서, 권취하는 방향이 상이한 것을 제외하고는 동일하다. 즉, 도 11의 젤리롤형 적층체(73)은 중면적 젤리롤형 유닛셀(73)을 시계방향으로, 그리고, 대면적 젤리롤형 유닛셀(73) 을 반시계 방향으로 말아 각 젤리롤형 유닛셀을 하나의 시트형 분리필름으로 형성하고, 이들 중면적 및 대면적 젤리롤형 유닛셀을 서로 적층함으로써 형성된 것이다. 도 11 및 도 12에 따르면, 대면적 및 중면적의 단차를 갖는 전극 유닛인 Z-폴딩형 적층체(71)가 적층되고, 중면적 및 소면적의 단차를 갖는 전극 유닛인 젤리롤형의 전극 유닛셀(63)과 소면적 전극 유닛으로서, 단일 전극(10)이 적층된 전극 조립체(1)가 도시되어 있다. 이때, 도 11 및 도 12의 상기 젤리롤형 유닛셀은 젤리롤형 유닛셀의 권취 방법과 같이 권취된 스택 앤 폴딩형의 와인딩 타입으로 대체될 수 있다.
이상에서는 2개의 단차를 갖는 전극 조립체에 대하여 첨부 도면을 예로 들어 설명하였으나, 상기한 바와 같이, 본 발명의 전극 조립체는 2개의 전극 적층체를 적층하여 하나의 단차를 갖는 전극 조립체를 형성할 수 있다. 이에 대한 전극 조립체의 예를 도 16에 나타내었다.
본 발명의 전극 조립체는 다양한 형태의 적층 구조를 가질 수 있다. 도 16은 전극 조립체의 단면을 나타내는 것으로서, 전극 유닛의 적층 형태를 개략적으로 나타낸 것이다. 도 17로부터 알 수 있는 바와 같이, 전극 유닛의 적층방향, 즉, 높이 방향으로 전극 유닛의 크기가 작아질 수 있으며(a), 반대로, 전극 유닛의 크기가 증가하도록 적층될 수 있다(b). 또한, 적층 방향으로 증가한 후에 감소하도록 적층될 수 있으며(c), 반대로, 적층방향으로 면적이 감소한 후에 증가하도록 적층될 수 있다. 이들 적층 형태는 상하 대칭을 이룰 수도 있다. 물론, 적층 형태가 일정한 패턴을 갖지 않을 수도 있다.
또한, 예를 들어, 도 18 내지 도 22에 나타낸 바와 같이 하나의 코너부가 일치하도록 전극 유닛들이 적층될 수 있다. 이때, 도 18 또는 도 19와 같이 각 전극 유닛은 면적은 상이하나 형상이 동일할 수 있으며, 또, 도 20 내지 도 22와 같이 면적 및 형상이 상이할 수도 있다.
예를 들어, 도 20 내지 도 21에 나타낸 바와 같이 적어도 하나의 전극 유닛은 코너부가 라운드 형상일 수 있으며, 이러한 코너부 라운드 형상은 하나의 전극 유닛에 2 이상 형성될 수 있다. 이와 같은 코너부 형상에 대하여 라운드 형상만을 예로 나타내었으나, 이외에 다양한 형상을 가질 수 있다. 이는 이하에서도 동일하다.
이때, 도 20에 나타낸 바와 같이, 코너부 라운드의 곡률은 서로 상이할 수 있다. 또한, 도 21에 나타낸 바와 같이 코너부의 형상이 서로 상이할 수 있다. 한편, 도 22에 나타낸 바와 같이, 하나의 변과 그 변에 인접하는 두 코너부가 하나의 라운드 형상을 가질 수도 있다.
또한, 도시하지는 않았으나, 전극 유닛은 큰 전극 유닛의 면 내에 작은 전극 유닛이 포함되도록 적층될 수 있으며, 이때, 일정한 패턴을 형성함이 없이 적층될 수 있다. 나아가, 도 23에 나타낸 바와 같이 면 중심이 일치되도록 적층될 수 있다.
나아가, 도 24에 나타낸 바와 같이, 각 전극 유닛은 전극 조립체(1)의 세로 방향으로 길이가 동일하나, 폭 방향으로 단차를 형성할 수 있으며, 이때, 단차는 폭 방향의 하나 또는 양 방향으로 단차가 형성될 수 있다. 또한, 도 25에 나타낸 바와 같이, 전극 조립체(1)는 길이 방향으로 단차가 형성될 수도 있다.
상기 도면으로 나타낸 형태 이외에 본 발명의 전극 유닛들은 다양한 형태의 코너부 형상을 가질 수 있다. 상기와 같은 도면으로부터 알 수 있는 바와 같이 전극 유닛은 면적이 큰 전극 유닛의 면 내에 면적이 작은 전극 유닛이 포함되도록 적층될 수 있음은 물론, 십자가(+) 형태와 같이 대면 전극의 접촉 면 중 일부가 서로 접촉하고, 일부는 서로 접촉하지 않도록 적층될 수도 있다.
이와 같이 전극 조립체(1)의 적층 형태 및 전극 유닛의 형상, 코너부 형상 등을 다양하게 형성함으로써, 다양한 형태의 배터리 디자인을 구현할 수 있으며, 나아가, 공간 활용도도 향상시킬 수 있다.
또한, 본 발명의 전극 조립체에 있어서, 상기 전극 유닛들은 각각 음극 전극 탭 및/또는 양극 전극 탭을 포함한다. 전극 유닛이 유닛셀인 경우에는 음극 전극 탭 및 양극 전극 탭을 모두 구비하며, 전극 유닛이 개별 전극으로 이루어지는 경우에는 하나의 전극 탭만을 구비한다. 상기 전극 탭들은 전지 케이스에 삽입된 후 동일한 극성의 전극끼리 전기적으로 연결된다.
상기 전극 탭들의 부착 위치는 다양하게 선택할 수 있다. 상기 두 극성의 전극 탭을 전극 유닛의 일 단부에 형성하고, 전극 탭을 동일한 방향으로 향하도록 적층함으로써, 예를 들어, 도 18 내지 도 25에 나타낸 바와 같이 전극 조립체(1)의 일 측면에 전극 탭(25, 35)이 돌출되도록 할 수 있다. 또한, 도 24와 같이 전극조립체(1)의 2 측면에 각각의 전극 탭(25, 35)이 돌출되도록 할 수도 있다.
다만, 전지 케이스 삽입 후 전극 탭들의 전기적 연결을 용이하게 하기 위해서는, 동일한 극성의 전극들끼리 중첩될 수 있도록 전극 유닛들을 배치하는 것이 바람직하다.
한편, 도 22 또는 도 24와 같은 형태로 단차가 형성되는 경우, 전극 조립체(1)의 전극 탭(25, 35)을 부착하는 경우, 전극 탭(25, 35)이 보다 면적이 큰 전극 유닛과 접촉하게 되어, 전지 안전성에 영향을 끼칠 수 있는바, 전극 탭(25, 35)과 전극 유닛간의 접촉은 차단하는 것이 바람직하며, 경우에 따라서는 전극 탭(25, 35) 표면에 절연성 수지 등을 이용하여 코팅할 수 있다.
상기 전극 탭의 형태는 특별히 한정되지 않으며, 상기 전극 탭의 면적 역시 다양하게 형성될 수 있다. 예를 들면, 상기 전극 탭들은 그 폭 및 길이가 동일하거나, 이 중 적어도 하나가 상이할 수 있다. 이와 같이 다양한 사이즈의 전극 탭을 사용함으로써 면적이 큰 일단의 전극 탭 위에 면적이 작은 전극 탭을 나란히 배열하여 적층할 수도 있다. 그 예로 면적이 상이한 전극 탭을 사용하는 경우의 전극 탭의 적층 형태는 도 22에 나타낸 바와 같다.
한편, 전극 유닛들의 일부 또는 모든 전극 유닛들이 적어도 하나의 시트형 분리 필름에 의해 폴딩되어 전극 조립체를 구성하는 경우, 상기 분리필름은 면적이 큰 전극 유닛 적층체의 상단과 보다 작은 전극 유닛의 상단이 형성하는 단차에 의해 분리필름이 경사면을 형성할 수 있다. 이와 같은 경사면은 특히 와인딩 타입의 스택 앤 폴딩형 전극 조립체에 의해 단차가 형성되거나, 또는 단차가 형성된 전극 조립체를 분리필름으로 감는 경우에 형성될 수 있을 것이다.
이 경우, 전극 조립체가 수납되는 전극 케이스의 형상을 상기와 같은 분리필름의 경사면에 부합하도록 경사면이 형성될 수 있다. 이 경우, 필요 이상으로 디바이스의 공간을 차지하게 되므로, 상기 분리필름은 전극 조립체의 형상에 부합하도록 형성되는 것이 공간 활용면에서 바람직하다. 따라서, 분리필름이 전극 조립체로부터 이격되어 있는 경우에는 분리필름을 가열 또는 가압에 의해 신장하여 전극 조립체의 형상과 동일하게 형성시킬 수 있다.이 경우, 단차를 갖는 부분에서는 굴곡이 형성될 수 있다. 또한, 단차를 갖는 부분에 있어서는 분리필름을 절단함으로써 전극 조립체의 형상과 동일하게 할 수 있다.
다음으로, 본 발명의 전지셀에 대해 설명한다. 도 23에는 본 발명의 전지셀(100)의 일 실시예가 도시되어 있다. 도 23에 도시된 바와 같이, 본 발명의 전지셀(100)은 전지 케이스(120) 내부에 본 발명의 전극 조립체(1)가 내장되어 있다. 이때, 상기 전지 케이스(120)는 파우치형 케이스일 수 있다.
상기 파우치형 케이스는 라미네이트 시트로 이루어질 수 있으며, 이때 상기 라미네이트 시트는 최외각을 이루는 외측 수지층, 물질의 관통을 방지하는 차단성 금속층, 밀봉을 위한 내측 수지층으로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 전지 케이스는 전극 조립체의 전극 유닛들의 전기 단자들을 전기적으로 연결하기 위한 전극 리드가 외부로 노출된 구조로 형성되는 것이 바람직하며, 도시되지는 않았으나, 상기 전극 리드의 상하면에는 전극 리드를 보호하기 위한 절연 필름이 부착될 수 있다.
또한, 상기 전지 케이스는, 본 발명의 전극 조립체의 형상에 따라 전지 케이스의 형상을 다양하게 할 수 있다. 이러한 전지케이스의 형상은 전지케이스 자체를 변형하여 형성하는 방식으로 형성될 수 있다. 이때, 전지케이스의 형상 및 크기가 전극 조립체의 형상 및 크기가 완전히 일치해야 하는 것은 아니며, 전극 조립체의 밀림현상으로 인한 내부 단락을 방지할 수 있는 정도의 형상 및 크기이면 무방하다. 한편, 본 발명의 전지 케이스의 형상이 이에 한정되는 것은 아니며, 필요에 따라 다양한 형상 및 크기의 전지 케이스가 사용될 수 있다.
예를 들어, 상기 전지 케이스는 도 23에 나타낸 바와 같이, 본 발명의 단차를 갖는 전극 조립체(1)의 형상에 따라 단차가 형성될 수 있다. 나아가, 도시하지는 않았으나, 상기 전지 케이스는 전극 조립체가 갖는 단차가 형성되는 면에서 경사면을 가질 수 있다. 즉, 전극 조립체의 단차를 형성하는 영역에 대하여는 전지 케이스가 각 단의 상측 모서리 및 코너부와 동일한 형상을 갖도록 함으로써 경사면을 형성할 수 있다. 이와 같은 경사면은 곡면을 포함할 수 있으며, 경사면은 기울기가 2개 이상일 수 있다.
상기 전지셀은 바람직하게는 리튬이온 전지 또는 리튬이온 폴리머 전지일 수 있지만, 이들만으로 한정되는 것은 아니다.
상기와 같은 본 발명의 전지셀은 단독으로 사용될 수도 있고, 전지셀을 적어도 하나 이상 포함하는 전지팩의 형태로 사용될 수도 있다. 이러한 본 발명의 전지셀 및/또는 전지팩은 다양한 디바이스, 예를 들면, 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치 등에 유용하게 사용될 수 있다. 이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
한편, 본 발명의 전지셀 또는 전지팩이 상기와 같은 디바이스에 장착될 경우, 본 발명의 전지셀 또는 전지팩의 구조로 인해 형성된 잉여 공간에 디바이스의 시스템 부품이 위치하도록 할 수 있다. 본 발명의 전지셀 또는 전지팩은 크기가 상이한 전극 조립체로 형성되기 때문에 전극 조립체 자체가 단차가 있는 형태로 형성되며, 전지 케이스를 전극 형상에 맞춰 형성하고, 이를 디바이스 장착할 경우, 종래의 각형 또는 타원형 전지셀 또는 전지팩에는 없었던 잉여의 공간이 발생하게 된다.
이와 같은 잉여 공간에 디바이스의 시스템 부품을 장착할 경우, 디바이스의 시스템 부품과 전지셀 또는 전지팩을 유연하게 배치할 수 있으므로 공간 활용도를 향상시킬 수 있을 뿐 아니라, 전제 디바이스의 두께나 부피를 감소시켜 슬림한 디자인을 구현할 수 있다.
1: 전극 조립체 10: 단일 전극
20: 음극 21: 음극 집전판
22: 음극 활물질 25: 음극 전극 탭
30: 양극 31: 양극 집전판
32: 양극 활물질 33: 단면 코팅 양극
35: 양극 전극 탭 40: 시트형 분리필름
50: 분리막
61, 71: 스택 앤 폴딩형 유닛셀 또는 적층체 (Z-폴딩 타입)
62, 72: 스택 앤 폴딩형 유닛셀 또는 적층체 (와인딩 타입)
63, 73: 젤리롤형 유닛셀 또는 적층체
64: 스택형 유닛셀
65, 66, 67, 68: 라미네이션 앤드 스택형 유닛셀
80: 코너부 90: 단차
100: 전지셀 120: 전지 케이스

Claims (33)

  1. 전극 유닛이 복수개 적층되되, 시트형 분리필름에 의해 상기 전극 유닛이 서로 분리되어 적층된 스택앤 폴딩형 전극 적층체를 하나 이상 포함하며,
    상기 전극 적층체는 분리필름을 경계로 인접하는 전극 유닛에 대하여 면적 차를 갖는 전극 유닛이 적층되어 형성된 단차를 하나 이상 포함하는 전극 조립체.
  2. 제 1항에 있어서, 상기 전극 유닛은 시트형 분리필름의 일면 또는 양면에 배치된 것인 전극 조립체.
  3. 제 1항에 있어서, 상기 스택앤 폴딩형 전극 적층체는 Z 폴딩형의 전극 적층체인 전극 조립체.
  4. 제 1항에 있어서, 상기 단차를 1 또는 2개 포함하는 전극 조립체.
  5. 제 1항에 있어서, 상기 면적 차를 갖는 전극 유닛과 이에 인접하는 전극 유닛은 분리필름을 경계로 상호 대면하는 대면 전극이 서로 다른 극성의 전극인 전극 조립체.
  6. 제 2항에 있어서, 상기 면적 차를 갖는 전극 유닛과 인접하는 전극 유닛 중 면적이 큰 전극 유닛의 대면 전극이 음극인 전극 조립체.
  7. 제 1항에 있어서, 상기 전극 유닛은 각각 독립적으로 양극, 음극 및 적어도 하나의 양극과 적어도 하나의 음극이 분리막이 개재된 상태로 적층된 유닛셀로 이루어진 그룹으로부터 선택되는 전극 조립체.
  8. 제 7항에 있어서, 상기 유닛셀은 각각 독립적으로 젤리롤형, 스택형, 라미네이션 앤 스택형 및 스택 앤 폴딩형으로 이루어진 그룹으로부터 선택되는 전극 조립체.
  9. 제 8항에 있어서, 상기 유닛셀은 분리막을 경계로 인접하는 유닛셀에 대하여 면적 차를 갖는 유닛셀이 적층되어 형성된 단차를 적어도 하나 포함하는 것인 전극 조립체.
  10. 제 1항에 있어서, 상기 적층체는 상기 Z-폴딩형 적층체와 함께, 젤리롤형 적층체, 스택 앤 폴딩형 적층체 또는 이들의 조합인 적층체가 상기 분리필름에 의해 적층된 것인 전극 조립체.
  11. 제 10항에 있어서, 상기 스택 앤 폴딩형 적층체는 단차를 포함하는 것인 전극 조립체.
  12. 제 1항에 있어서, 상기 전극 조립체는 상기 Z-폴딩형의 적층체와 함께, 스택형 적층체, 젤리롤형 적층체, 스택 앤 폴딩형 적층체 및 이들이 2 이상 조합된 적층체로 이루어진 그룹으로부터 선택되는 적어도 하나를 더 포함하는 전극 조립체.
  13. 제 12항에 있어서, 상기 스택형 적층체, 젤리롤형 적층체, 스택앤 폴딩형 적층체 및 이들의 조합 중 적어도 하나의 적층체는 단차를 갖는 것인 전극 조립체.
  14. 제 1항에 있어서, 상기 적층체는 적어도 하나의 코너부 형상이 상이한 전극 유닛을 적어도 하나 포함하는 전극 조립체.
  15. 제 1항에 있어서, 상기 적층체는 적어도 하나의 코너부가 곡면 형상인 전극 유닛을 하나 이상 포함하는 전극 조립체.
  16. 제 15항에 있어서, 상기 적어도 하나의 코너부가 곡면 형상인 전극 유닛을 2 이상 포함하며, 적어도 하나의 전극 유닛은 다른 전극 유닛과 곡률이 상이한 곡면 형상의 코너부를 갖는 전극 조립체.
  17. 제 1항에 있어서, 상기 적층체는 상기 전극 유닛이 적층되는 높이 방향으로 전극 유닛의 면적이 작아지도록 적층된 전극 조립체.
  18. 제 1항에 있어서, 상기 적층체는 각 전극 유닛의 일 모서리가 일치되는 배열로 적층되어 있는 전극 조립체.
  19. 제 1항에 있어서, 상기 적층체는 분리필름을 경계로 상호 인접하는 전극 유닛 중 적어도 하나는 다른 전극 유닛의 면 내에 포함되도록 적층된 전극 조립체.
  20. 제 1항에 있어서, 상기 적층체는 각 전극 유닛의 중심부가 일치되도록 적층된 전극 조립체.
  21. 제 1항에 있어서, 상기 전극 유닛은 두께가 서로 동일 또는 상이한 것인 전극 조립체.
  22. 제 1항에 있어서, 상기 전극 조립체의 최외각에 배치되는 전극은 일면이 전극 무지부인 단면 코팅 전극이며, 상기 전극 무지부가 전극 조립체의 외부를 향하도록 배치되되 상기 전극 조립체는 분리필름 또는 분리막이 외부에 노출되는 것인 전극 조립체.
  23. 제 19항에 있어서, 상기 단면 코팅 전극은 양극인 전극 조립체.
  24. 제 1항에 있어서, 상기 전극 조립체의 최외각에 배치되는 전극은 음극이며, 상기 전극 조립체는 분리필름 또는 분리막이 외부에 노출되는 것인 전극 조립체.
  25. 제 1항에 있어서, 상기 전극 유닛들은 각각의 전극에 대응하는 전극 탭을 가지며, 상기 전극 탭들의 크기가 서로 동일하거나 상이한 것인 전극 조립체.
  26. 제 1항에 있어서, 상기 전극 탭은 전극 유닛의 어느 하나의 단부 또는 서로 마주보는 단부에 부착된 전극 조립체.
  27. 제 1항 내지 제 26항 중 어느 한 항의 전극 조립체가 전지 케이스에 수납되어 있는 전지셀.
  28. 제 27항에 있어서, 상기 전지 케이스는 파우치형 케이스인 전지셀.
  29. 제 28항에 있어서, 상기 전지 케이스는 내부에 전극 조립체를 수납하되, 전극 조립체의 형상에 대응하여 단차 또는 경사면을 갖는 전지셀.
  30. 제 27항에 있어서, 상기 전지셀은 리튬 이온 이차 전지 또는 리튬이온 폴리머 이차 전지인 전지셀.
  31. 제 27항의 전지셀을 하나 이상 포함하는 디바이스.
  32. 제 31항에 있어서, 상기 전지셀의 잉여 공간에 디바이스의 시스템 부품이 위치하는 디바이스.
  33. 제 31항에 있어서, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치인 디바이스.
PCT/KR2013/004620 2012-05-25 2013-05-27 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스 WO2013176534A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13793522.7A EP2858165B1 (en) 2012-05-25 2013-05-27 Stepped electrode assembly and battery cell, battery pack, and device comprising same
CN201380002744.0A CN104011929B (zh) 2012-05-25 2013-05-27 具有阶梯式部分的电极组件和包括该电极组件的电池单元、电池组和装置
JP2014522783A JP5943243B2 (ja) 2012-05-25 2013-05-27 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
US14/059,757 US9431679B2 (en) 2012-05-25 2013-10-22 Electrode assembly having stepped portion, as well as battery cell, battery pack, and device including the electrode assembly

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20120056326 2012-05-25
KR10-2012-0056326 2012-05-25
KR1020120127030A KR20130132230A (ko) 2012-05-25 2012-11-09 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR10-2012-0127030 2012-11-09
KR1020130069029A KR101395017B1 (ko) 2012-05-25 2013-05-27 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR10-2013-0069029 2013-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/059,757 Continuation US9431679B2 (en) 2012-05-25 2013-10-22 Electrode assembly having stepped portion, as well as battery cell, battery pack, and device including the electrode assembly

Publications (1)

Publication Number Publication Date
WO2013176534A1 true WO2013176534A1 (ko) 2013-11-28

Family

ID=49981185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004620 WO2013176534A1 (ko) 2012-05-25 2013-05-27 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스

Country Status (6)

Country Link
US (1) US9431679B2 (ko)
EP (1) EP2858165B1 (ko)
JP (1) JP5943243B2 (ko)
KR (2) KR20130132230A (ko)
CN (1) CN104011929B (ko)
WO (1) WO2013176534A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312547B2 (en) 2015-11-25 2019-06-04 Robert Bosch Battery Systems Llc Cross-woven electrode assembly
CN112331994A (zh) * 2019-11-19 2021-02-05 宁德时代新能源科技股份有限公司 软包电池模组及其成组方法、电池包以及使用软包电池模组作为电源的设备
CN114430870A (zh) * 2020-06-04 2022-05-03 株式会社Lg新能源 具有增加的能量密度的袋状二次电池及其制造方法

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155605B2 (ja) * 2012-11-16 2017-07-05 ソニー株式会社 リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101586201B1 (ko) * 2013-02-13 2016-01-20 주식회사 엘지화학 엇갈린 배열 구조의 전극조립체를 포함하는 전지셀
JP6249509B2 (ja) * 2013-07-31 2017-12-20 エルジー・ケム・リミテッド 曲がった形状の電極積層体及びそれを含む電池セル
TWI491099B (zh) * 2013-08-29 2015-07-01 Htc Corp 電池結構、電子裝置及電池結構的製造方法
KR102195730B1 (ko) * 2014-05-20 2020-12-28 삼성에스디아이 주식회사 전극 구조체 및 이를 채용한 리튬 전지
KR102195731B1 (ko) * 2014-05-21 2020-12-28 삼성에스디아이 주식회사 전극 구조체 및 이를 채용한 리튬 전지
KR101725921B1 (ko) * 2014-08-11 2017-04-11 주식회사 엘지화학 단위셀 적층체들과 중간 적층셀을 포함하고 있는 전지셀
KR102025564B1 (ko) * 2015-08-21 2019-09-26 주식회사 엘지화학 전지 소자들 사이에 개재되어 있는 단위셀을 포함하는 전극조립체
KR101826142B1 (ko) * 2015-08-27 2018-02-07 삼성에스디아이 주식회사 전극 조립체 및 그 제조 방법과 이차 전지
US9882185B2 (en) * 2015-10-22 2018-01-30 Lg Chem, Ltd. Battery cell assembly
WO2017142381A1 (ko) * 2016-02-19 2017-08-24 주식회사 엘지화학 전극 조립체
KR101995288B1 (ko) 2016-02-19 2019-07-03 주식회사 엘지화학 전극 조립체
KR102101428B1 (ko) * 2016-02-29 2020-04-16 주식회사 엘지화학 방열 성능이 개선된 전기화학소자용 전극 조립체
US11171375B2 (en) * 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
JPWO2017169843A1 (ja) * 2016-03-28 2018-11-01 株式会社村田製作所 蓄電デバイス及びその製造方法
KR20170130855A (ko) * 2016-05-19 2017-11-29 삼성에스디아이 주식회사 이차 전지
JP6547906B2 (ja) * 2016-05-31 2019-07-24 株式会社村田製作所 蓄電デバイス
CN109196709A (zh) * 2016-05-31 2019-01-11 株式会社村田制作所 充电电池
KR102217441B1 (ko) 2016-06-09 2021-02-22 주식회사 엘지화학 이차전지용 전극 조립체
KR102142565B1 (ko) * 2016-06-10 2020-08-07 주식회사 엘지화학 단차가 형성된 단위전지셀 및 그의 제조방법
KR102229624B1 (ko) * 2016-09-21 2021-03-17 삼성에스디아이 주식회사 이차전지
FR3059160B1 (fr) * 2016-11-23 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Accumulateur metal-ion a empilement d'electrodes, a forte densite d'energie et/ou a forte capacite
JP6888634B2 (ja) * 2016-12-06 2021-06-16 株式会社村田製作所 二次電池
WO2018105276A1 (ja) * 2016-12-06 2018-06-14 株式会社村田製作所 二次電池
WO2018105277A1 (ja) * 2016-12-06 2018-06-14 株式会社村田製作所 二次電池
US10505232B2 (en) 2016-12-30 2019-12-10 Microsoft Licensing Technology, LLC Stacked, rolled-electrode battery cell with y-axis bending
KR102256302B1 (ko) 2017-03-09 2021-05-26 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 리튬 전지
US11404682B2 (en) * 2017-07-05 2022-08-02 Apple Inc. Non-rectangular shaped electrodes utilizing complex shaped insulation
US20200358124A1 (en) * 2017-11-03 2020-11-12 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Foldable flexible assembling of cells for a lithium-ion battery and current collector with carbon based conductive material
KR102244951B1 (ko) * 2017-11-21 2021-04-27 주식회사 엘지화학 전극 조립체와 이차전지 및 그 전극 조립체와 이차전지의 제조방법
KR20190071129A (ko) 2017-12-14 2019-06-24 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차전지
KR102555500B1 (ko) * 2017-12-18 2023-07-12 삼성에스디아이 주식회사 전극 조립체
CN109546230B (zh) * 2017-12-29 2022-03-29 蜂巢能源科技股份有限公司 电极层叠组件的制造方法以及电极层叠组件
KR102363977B1 (ko) 2018-01-03 2022-02-17 주식회사 엘지에너지솔루션 전극 조립체 제조방법
DE102018200958A1 (de) * 2018-01-22 2019-07-25 Volkswagen Aktiengesellschaft Verfahren zum Herstellen eines Elektrodenstapels für Energiespeicher, Stapelanlage
KR102287768B1 (ko) 2018-01-29 2021-08-10 주식회사 엘지에너지솔루션 전극 조립체 제조방법 및 이차전지 제조방법
KR102445958B1 (ko) 2018-01-29 2022-09-20 주식회사 엘지에너지솔루션 전극 조립체 제조방법 및 이차전지 제조방법
KR102301720B1 (ko) 2018-07-10 2021-09-10 주식회사 엘지에너지솔루션 전기화학 커패시터 및 이의 제조 방법
KR102563163B1 (ko) 2018-08-27 2023-08-04 주식회사 엘지에너지솔루션 전극 조립체 제조장치
KR102578215B1 (ko) 2018-08-27 2023-09-14 주식회사 엘지에너지솔루션 전극 조립체 제조장치
KR102578204B1 (ko) 2018-08-27 2023-09-14 주식회사 엘지에너지솔루션 전극 조립체 제조장치
KR102311950B1 (ko) 2018-11-19 2021-10-14 주식회사 엘지에너지솔루션 전극조립체
KR20200058173A (ko) * 2018-11-19 2020-05-27 삼성에스디아이 주식회사 이차 전지
JP7205710B2 (ja) * 2018-12-07 2023-01-17 トヨタ紡織株式会社 二次電池
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
KR20200088533A (ko) 2019-01-14 2020-07-23 주식회사 엘지화학 이차전지용 전극 제조장치
KR20200088067A (ko) * 2019-01-14 2020-07-22 에스케이이노베이션 주식회사 2차 전지용 스택 형 젤리롤, 이를 포함하는 배터리 셀, 이를 포함하는 배터리 팩 및 이의 제조 방법
KR102430866B1 (ko) 2019-01-17 2022-08-10 주식회사 엘지에너지솔루션 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
KR20200104598A (ko) 2019-02-27 2020-09-04 주식회사 엘지화학 전극 주행롤러와, 전극 주행롤러를 포함하는 전극 제조장치와, 이를 통해 제조된 전극 및 이차전지
CN112151879B (zh) * 2020-10-13 2022-04-01 厦门美力新能源科技有限公司 一种锂电池极片叠片设备及其叠片方法
WO2023282714A1 (en) 2021-07-09 2023-01-12 Lg Energy Solution, Ltd. Electrode assembly
WO2023282718A1 (en) 2021-07-09 2023-01-12 Lg Energy Solution, Ltd. Manufacturing method for electrode assembly and electrode assembly manufacturing equipment
KR20230087086A (ko) 2021-12-09 2023-06-16 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법 및 전극 조립체의 제조장치
WO2023110632A1 (de) * 2021-12-16 2023-06-22 Mercedes-Benz Group AG Verfahren zum herstellen einer batterieeinzelzelle und bandmaterial zum herstellen einer batterieeinzelzelle
CN117413390A (zh) 2021-12-23 2024-01-16 株式会社Lg新能源 电极组件及其制造方法
KR20230098048A (ko) 2021-12-24 2023-07-03 주식회사 엘지에너지솔루션 전극 조립체 제조 방법, 전극 조립체 및 상기 전극 조립체를 포함하는 이차전지
KR20230119905A (ko) 2022-02-08 2023-08-16 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법 및 전극 조립체의 제조장치
KR20230132255A (ko) 2022-03-08 2023-09-15 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법 및 전극 조립체의 제조장치
KR20230133518A (ko) 2022-03-11 2023-09-19 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법, 이차전지 및 이차전지의 제조방법
KR20230135010A (ko) 2022-03-15 2023-09-22 주식회사 엘지에너지솔루션 전극 조립체, 전극 조립체의 제조 장치 및 전극 조립체의 제조 방법
KR20230142917A (ko) 2022-04-04 2023-10-11 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법 및 전극 조립체의 제조장치
KR20230144765A (ko) 2022-04-08 2023-10-17 주식회사 엘지에너지솔루션 이차전지 및 이의 제조방법
KR20230148633A (ko) 2022-04-18 2023-10-25 주식회사 엘지에너지솔루션 전극 조립체의 제조 방법 및 전극 조립체의 제조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080030700A (ko) * 2006-10-02 2008-04-07 주식회사 엘지화학 보호테이프로 외면을 감싼 구조의 젤리-롤 및 이를포함하고 있는 이차전지
US7629077B2 (en) * 2004-02-26 2009-12-08 Qinetiq Limited Pouch cell construction
US20100190081A1 (en) * 2006-06-13 2010-07-29 Hey Woong Park Stacking-typed secondary battery providing two or more operation voltages
KR20100118173A (ko) * 2009-04-28 2010-11-05 에스케이에너지 주식회사 2차 전지 내부 셀 스택 적층 장치 및 방법
KR20120039469A (ko) * 2010-10-15 2012-04-25 주식회사 엘지화학 실링부의 절연성이 향상된 이차전지

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207630A (en) * 1961-06-27 1965-09-21 Yardney International Corp Electrode assembly
US5525441A (en) * 1994-09-13 1996-06-11 Power Conversion, Inc. Folded electrode configuration for galvanic cells
US6224995B1 (en) * 1997-03-06 2001-05-01 Mitsubishi Chemical Corporation Three dimensional free form battery apparatus
JP2001028275A (ja) * 1999-06-25 2001-01-30 Mitsubishi Chemicals Corp 立体自由形状バッテリー装置
JP3611765B2 (ja) 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
KR100497147B1 (ko) * 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
KR100515572B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
KR100440934B1 (ko) * 2002-02-06 2004-07-21 삼성에스디아이 주식회사 이차전지
KR100884945B1 (ko) * 2006-04-03 2009-02-23 주식회사 엘지화학 파우치형 이차전지
KR100873308B1 (ko) * 2006-06-05 2008-12-12 주식회사 엘지화학 두 개 이상의 유닛 셀들을 포함하고 있는 고용량 전지셀
JP5157244B2 (ja) * 2007-05-11 2013-03-06 Tdk株式会社 電気化学デバイス及びその製造方法
US8486549B2 (en) 2007-07-19 2013-07-16 Panasonic Corporation Lithium ion secondary battery
US20100304198A1 (en) * 2009-05-28 2010-12-02 Samsung Sdi Co., Ltd. Electrode assembly for secondary battery and method of manufacturing the same
JP2011014426A (ja) * 2009-07-03 2011-01-20 Panasonic Corp 非水電解質二次電池用負極および非水電解質二次電池
US8940429B2 (en) * 2010-07-16 2015-01-27 Apple Inc. Construction of non-rectangular batteries
US9276287B2 (en) * 2011-10-28 2016-03-01 Apple Inc. Non-rectangular batteries for portable electronic devices
KR20130118716A (ko) * 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101934398B1 (ko) * 2012-07-04 2019-01-02 삼성에스디아이 주식회사 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629077B2 (en) * 2004-02-26 2009-12-08 Qinetiq Limited Pouch cell construction
US20100190081A1 (en) * 2006-06-13 2010-07-29 Hey Woong Park Stacking-typed secondary battery providing two or more operation voltages
KR20080030700A (ko) * 2006-10-02 2008-04-07 주식회사 엘지화학 보호테이프로 외면을 감싼 구조의 젤리-롤 및 이를포함하고 있는 이차전지
KR20100118173A (ko) * 2009-04-28 2010-11-05 에스케이에너지 주식회사 2차 전지 내부 셀 스택 적층 장치 및 방법
KR20120039469A (ko) * 2010-10-15 2012-04-25 주식회사 엘지화학 실링부의 절연성이 향상된 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858165A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312547B2 (en) 2015-11-25 2019-06-04 Robert Bosch Battery Systems Llc Cross-woven electrode assembly
CN112331994A (zh) * 2019-11-19 2021-02-05 宁德时代新能源科技股份有限公司 软包电池模组及其成组方法、电池包以及使用软包电池模组作为电源的设备
CN114430870A (zh) * 2020-06-04 2022-05-03 株式会社Lg新能源 具有增加的能量密度的袋状二次电池及其制造方法

Also Published As

Publication number Publication date
KR20130132230A (ko) 2013-12-04
JP5943243B2 (ja) 2016-07-05
CN104011929B (zh) 2017-07-14
CN104011929A (zh) 2014-08-27
EP2858165A4 (en) 2015-11-25
KR20130132341A (ko) 2013-12-04
US20140050958A1 (en) 2014-02-20
KR101395017B1 (ko) 2014-05-16
US9431679B2 (en) 2016-08-30
EP2858165B1 (en) 2016-09-14
EP2858165A1 (en) 2015-04-08
JP2014524131A (ja) 2014-09-18

Similar Documents

Publication Publication Date Title
WO2013176534A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013176533A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013180541A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013180378A1 (ko) 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013180482A1 (ko) 전극탭 접합성이 우수한 전극 조립체, 이를 포함하는 전지셀, 디바이스 및 이의 제조방법
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
US7585589B2 (en) Pouch-type lithium secondary battery
WO2013042948A2 (ko) 다공성 구조의 전극조립체 및 이를 포함하는 이차전지
WO2013157874A1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2014081163A1 (ko) 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2014104479A1 (ko) 계단 구조의 전극 조립체
WO2012026705A2 (ko) 개선된 구조의 젤리-롤 및 이를 포함하는 이차전지
WO2014081164A1 (ko) 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
KR20180058370A (ko) 전극판의 경계 부위에 절연 보강부가 형성된 분리막을 포함하는 전극조립체
WO2019045447A1 (ko) 이차전지 및 그 제조방법과, 이차전지 제조용 가압블록
WO2020017923A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2020060022A1 (ko) 전극조립체
WO2016093590A1 (ko) 개선된 출력 특성을 가진 이차 전지
WO2019050356A1 (ko) 전기화학 소자 및 그 제조 방법
WO2019108017A1 (ko) 전극 및 전극조립체
WO2023013933A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014522783

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013793522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013793522

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE