WO2018105277A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018105277A1
WO2018105277A1 PCT/JP2017/039448 JP2017039448W WO2018105277A1 WO 2018105277 A1 WO2018105277 A1 WO 2018105277A1 JP 2017039448 W JP2017039448 W JP 2017039448W WO 2018105277 A1 WO2018105277 A1 WO 2018105277A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
step portion
negative electrode
positive electrode
electrode
Prior art date
Application number
PCT/JP2017/039448
Other languages
English (en)
French (fr)
Inventor
徹 川合
大塚 正博
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018105277A1 publication Critical patent/WO2018105277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • the secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • Patent Document 1 discloses a secondary battery having a step region.
  • the inventors of the present application have found that the following problems may occur when a secondary battery having a stepped region is used. Specifically, when the present inventors use a secondary battery having a stepped region, the wiring structure depends on the location of the external terminal of the secondary battery that is electrically connected to the substrate via the wiring. Found that there is a risk of complications.
  • an object of the present invention is to provide a secondary battery including a step region that can simplify a wiring structure for connecting an external terminal of a secondary battery and a substrate.
  • An electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte, and a secondary battery in which an electrolyte is housed
  • the exterior body includes at least two step portions that are adjacent to each other and have different top surface heights, A step surface is formed between the upper surface of the lower step portion having a relatively low height and the upper surface of the higher step portion adjacent to the lower step portion, and A secondary battery is provided in which an external terminal of the secondary battery is configured to be exposed to at least one of a stepped surface and an upper surface of a low stepped portion.
  • FIG. 1 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 4A is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 4B is a plan view schematically showing the secondary battery according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an electrode assembly according to an embodiment.
  • FIG. 6 is a cross-sectional view schematically showing an aspect in which the electrode tabs of the electrode assembly are connected only by the lead portion.
  • FIG. 1 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing
  • FIG. 7 is a cross-sectional view schematically showing an aspect in which the electrode tabs of the electrode assembly are connected by a combination of the lead portion and the connection portion.
  • FIG. 8 is a cross-sectional view schematically showing an electrode assembly according to an embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a basic configuration of an electrode assembly having a planar laminated structure.
  • FIG. 10 is a cross-sectional view schematically showing a basic configuration of an electrode assembly having a winding structure.
  • FIG. 11 is a cross-sectional view schematically showing a specific configuration of the electrode assembly.
  • the secondary battery is also described in an embodiment of the present invention described below.
  • the secondary battery has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in an exterior body.
  • the “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the subject of the present invention.
  • the electrode assembly includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. Examples of the type of electrode assembly include the following types.
  • the electrode assembly 10A has a planar stacked structure in which a plurality of unit electrode units including positive electrodes 1 and 1A, negative electrodes 2 and 2A, and separators 3 and 3A are stacked (see FIG. 9).
  • the electrode assembly 10B has a winding structure in which electrode units including the positive electrodes 1 and 1B, the negative electrodes 2 and 2B, and the separators 3 and 3B are wound in a roll shape (see FIG. 10). ).
  • the electrode assembly is formed by folding a positive electrode, a negative electrode, a separator, and a negative electrode unit (particularly preferably an electrode unit (laminate) extending long in one direction). It may have a stack and fold structure.
  • the exterior body may take the form of a conductive hard case or a flexible case (such as a pouch).
  • a flexible case such as a pouch
  • each of the plurality of positive electrodes is connected to the positive electrode external terminal via the positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • each of the plurality of negative electrodes is connected to a negative electrode external terminal via a negative electrode current collecting lead.
  • the external terminal for negative electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the present invention is not limited thereto, and the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of a positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes.
  • the lead may have a function of an external terminal for negative electrode.
  • each of the plurality of positive electrodes is connected to a positive electrode external terminal via a positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the positive electrode 1 is composed of at least a positive electrode current collector 11 and a positive electrode material layer 12 (see FIG. 11), and a positive electrode material layer 12 is provided on at least one surface of the positive electrode current collector 11.
  • a positive electrode side extraction tab 13 is positioned at a portion of the positive electrode current collector 11 where the positive electrode material layer 12 is not provided, that is, at an end of the positive electrode current collector 11.
  • the positive electrode material layer 12 contains a positive electrode active material as an electrode active material.
  • the negative electrode 2 is composed of at least a negative electrode current collector 21 and a negative electrode material layer 22 (see FIG. 11), and the negative electrode current material layer 22 is provided on at least one surface of the negative electrode current collector 21.
  • a negative electrode side extraction tab 23 is positioned at a portion of the negative electrode current collector 21 where the negative electrode material layer 22 is not provided, that is, at an end of the negative electrode current collector 21.
  • the negative electrode material layer 22 contains a negative electrode active material as an electrode active material.
  • the positive electrode active material contained in the positive electrode material layer 12 and the negative electrode active material contained in the negative electrode material layer 22 are materials directly involved in the transfer of electrons in the secondary battery, and are the main positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. It is a substance. More specifically, ions are brought into the electrolyte due to “the positive electrode active material contained in the positive electrode material layer 12” and “the negative electrode active material contained in the negative electrode material layer 22”, and these ions are converted into the positive electrode 1 and the negative electrode. 2 is transferred between the two and the electrons are transferred and charged and discharged.
  • the positive electrode material layer 12 and the negative electrode material layer 22 are particularly preferably layers capable of occluding and releasing lithium ions.
  • a secondary battery in which lithium ions move between the positive electrode 1 and the negative electrode 2 through the electrolyte and the battery is charged and discharged is preferable.
  • the secondary battery corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer 12 is made of, for example, a granular material, and a binder (also referred to as a “binder”) is included in the positive electrode material layer 12 for sufficient contact between the particles and shape retention. It is preferable. Furthermore, a conductive additive may be included in the positive electrode material layer 12 to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer 22 is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, which facilitates the transfer of electrons that promote the battery reaction. In order to do so, a conductive additive may be included in the negative electrode material layer 22. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer 12 and the negative electrode material layer 22 can also be referred to as a “positive electrode mixture layer” and a “negative electrode mixture layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer 12 of the secondary battery, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer 12 is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer 12 is not particularly limited, but poly (vinylidene fluoride), vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene copolymer. And at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive additive that can be included in the positive electrode material layer 12 is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase.
  • the binder of the positive electrode material layer 12 may be polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer 12 may be carbon black.
  • the binder and conductive support agent of the positive electrode material layer 12 may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector 21.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer 22 may be artificial graphite.
  • the binder that can be included in the negative electrode material layer 22 is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Species can be mentioned.
  • the binder contained in the negative electrode material layer 22 may be styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer 22 is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer 22.
  • the negative electrode active material and binder in the negative electrode material layer 22 may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector 11 and the negative electrode current collector 21 used for the positive electrode 1 and the negative electrode 2 are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector 11 used for the positive electrode 1 is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector 21 used for the negative electrode 2 is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator 3 used for the positive electrode 1 and the negative electrode 2 is a member provided from the viewpoints of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator 3 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 1 and the negative electrode 2.
  • the separator 3 is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous film used as the separator 3 may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator 3 may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator 3 may be covered with an inorganic particle coat layer and / or an adhesive layer.
  • the surface of the separator may have adhesiveness.
  • the separator 3 is not particularly restricted by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
  • it is preferable that the separator 3 and the electrode (positive electrode 1 / negative electrode 2) are bonded from the viewpoint of further improving the handling of the electrode.
  • the separator 3 and the electrode are bonded by using an adhesive separator as the separator 3, applying an adhesive binder on the electrode material layer (positive electrode material layer 12 / negative electrode material layer 22) and / or thermocompression bonding, or the like. Can be done.
  • the adhesive that provides adhesion to the separator 3 or the electrode material layer include polyvinylidene fluoride and an acrylic adhesive.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte and / or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte).
  • the electrolyte metal ions released from the electrodes (the positive electrode 1 and the negative electrode 2) exist, and therefore the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • the combination of cyclic carbonate and chain carbonate is used as a nonaqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate may be used.
  • a Li salt such as LiPF 6 or LiBF 4
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material that can achieve electron movement, and is made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the positive electrode current collector lead is preferably composed of aluminum, and the negative electrode current collector lead is preferably composed of nickel.
  • the form of the positive electrode current collector lead and the negative electrode current collector lead is not particularly limited, and may be, for example, a wire or a plate.
  • any external terminal used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the present invention is not limited to this, and the positive electrode current collecting lead electrically connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and electrically connected to each of the plurality of negative electrodes.
  • the negative electrode current collecting lead may have the function of the negative electrode external terminal.
  • the exterior body may have the form of a conductive hard case or a flexible case (such as a pouch) as described above.
  • the conductive hard case consists of a main body and a lid.
  • a main-body part consists of the bottom part and side part which comprise the bottom face of the said exterior body.
  • the main body and the lid are sealed after the electrode assembly, the electrolyte, the current collecting lead, and the external terminal are accommodated.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • a material constituting the main body part and the lid part any material capable of constituting a hard case type exterior body in the field of secondary batteries can be used.
  • Such a material may be any material that can achieve electron transfer, and examples thereof include conductive materials such as aluminum, nickel, iron, copper, and stainless steel.
  • the dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly.
  • the dimensions are such that the electrode assembly is prevented from moving (displacement) within the exterior body. It is preferable to have. By preventing the movement of the electrode assembly, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
  • the flexible case is composed of a soft sheet.
  • the soft sheet only needs to have a degree of softness that can achieve bending of the seal portion, and is preferably a plastic sheet.
  • the plastic sheet is a sheet having a characteristic that the deformation due to the external force is maintained when the external sheet is applied and then removed.
  • a so-called laminate film can be used.
  • a flexible pouch made of a laminate film can be produced, for example, by laminating two laminate films and heat-sealing the peripheral edge.
  • the laminate film a film obtained by laminating a metal foil and a polymer film is generally used. Specifically, a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used.
  • Secondary battery of the present invention A secondary battery according to an embodiment of the present invention will be described below in consideration of the basic configuration of the secondary battery. Note that the secondary battery according to the embodiment of the present invention is preliminarily assumed to be a secondary battery having a step region.
  • FIG. 1 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • the secondary battery 100A has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in an exterior body 20A. As shown in FIG. 1, the outer package 20A is made of a conductive hard case.
  • the exterior body 20A includes at least two steps.
  • the exterior body 20A may include two step portions (a first step portion 20Aa and a second step portion 20Ab).
  • the two steps are configured to be adjacent to each other and have different top surface heights.
  • the “height of the upper surface” refers to a length dimension along a substantially vertical direction between the bottom surface and the upper surface of the stepped portion which is a component of the exterior body.
  • the width dimension W 2 (longitudinal direction) of the upper surface 20Ab 1 of the second step portion 20Ab is the width dimension W 1 of the upper surface 20Aa 1 of the first step portion 20Aa. (Longitudinal direction).
  • Step surface 20Ab 2 has a height h 3 and the width (longitudinal direction) W 3.
  • the height h 3 of the step surface 20Ab 2 is equal to the difference between the height h 2 of the upper surface 20Ab 1 of the second step portion 20Ab and the height h 1 of the upper surface 20Aa 1 of the first step portion 20Aa.
  • the width W 3 of the stepped surface 20Ab 2 (longitudinal direction), a width dimension W 2 of the upper surface 20Ab 1 of the second step portion 20Ab (longitudinal direction) and the width W 1 of the top surface 20Aa 1 of the first step portion 20Aa ( In the longitudinal direction).
  • Step surface 20Ab 2 is configured so as to be continuous with the upper surface 20Aa 1 of the first stage portion 20Aa.
  • the upper surface 20Aa 1 of the first step portion 20Aa is continuous with the stepped surface 20Ab 2 so as to extend in different directions with respect to the extending direction of the step surface 20Ab 2.
  • an upper surface 20Aa 1 of the first step portion 20Aa may not extend in a direction perpendicular to the extending direction of the step surface 20Ab 2.
  • the angle between the step surface 20Ab 2 and the upper surface 20Aa 1 of the first stage portion 20Aa theta may have a 90 °.
  • the stepped surface 20Ab 2 the angle ⁇ between the upper surface 20Aa 1 of the first stage portion 20Aa, a 30 ° to 150 ° in consideration of the arrangement of the substrate to be described later It is preferably 50 ° to 130 °, more preferably 70 ° to 110 °.
  • external terminals 30A (positive electrode external terminals 30Aa and negative electrode external terminals 30Ab) for secondary batteries are provided on the surface of the outer package 20A.
  • External terminal 30A is configured so as to be exposed to the step surface 20Ab 2. It is not limited to this, the external terminal 30A may be configured to expose the top surface 20Aa 1 of the first stage portion 20Aa. That is, the external terminal 30A is configured to be positioned in a space region formed between the stepped surface 20Ab 2 and the upper surface 20Aa 1 of the first step portion 20Aa (corresponding to above-described step region). Such a configuration is a characteristic part of the present embodiment.
  • the external terminal 30A for example, present in step surface 20Ab 2, the following effects are achieved.
  • the external terminal 30A can be positioned close to the side of the board, the length of the wiring connecting the external terminal 30A and the board can be relatively shortened, and the wiring can be The structure can be oriented in one direction, that is, in a substantially horizontal direction without complicating the structure. That is, the structure of the wiring connecting the external terminal and the substrate can be simplified.
  • the above-described substrate may be a so-called rigid substrate or a flexible substrate, and is preferably a rigid substrate.
  • any rigid substrate used in the field of substrates used with secondary batteries can be used, and examples thereof include a glass / epoxy resin substrate.
  • the substrate include a circuit board such as a printed circuit board and a protection circuit board, a semiconductor substrate such as a silicon wafer, and a glass substrate such as a display panel.
  • a secondary battery pack is constituted by the protection circuit board and the secondary battery.
  • FIG. 2 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • the secondary battery 100B has a structure in which the electrode assembly and the electrolyte are accommodated and enclosed in the exterior body 20B.
  • the exterior body 20 ⁇ / b> B is different from the above embodiment in that it is not a conductive hard case but a flexible case (such as a pouch).
  • the exterior body 20B includes at least two steps.
  • the exterior body 20B may include two step portions (a first step portion 20Ba and a second step portion 20Bb) as shown in FIG.
  • the two steps are configured to be adjacent to each other and have different top surface heights.
  • the height level of the upper surface 20Ba 1 of the first stage portion 20Ba and the height level of the upper surface 20Bb 1 of the second step portion 20Bb are different from each other, and the upper surface 20Ba 1 of the first stage portion 20Ba of the second step portion 20Bb step surface 20Bb 2 is formed between the upper surface 20Bb 1.
  • the step surface 20Bb 2 has a height h 3 and a width dimension (longitudinal direction) W 3 .
  • the height h 3 of the stepped surface 20Bb 2 is equal to the difference between the height h 1 of the upper surface 20Ba 1 between the height h 2 of the top surface 20Bb 1 of the second step portion 20Bb first step portion 20Ba.
  • the width W 3 of the stepped surface 20Bb 2 (longitudinal direction), a width dimension W 2 of the upper surface 20Bb 1 of the second step portion 20Bb (longitudinal direction) and the width W 1 of the upper surface 20Ba 1 of the first stage portion 20Ba ( In the longitudinal direction).
  • Step surface 20Bb 2 is configured so as to be continuous with the upper surface 20Ba 1 of the first stage portion 20Ba.
  • the upper surface 20Ba 1 of the first stage portion 20Ba is continuous with the stepped surface 20Bb 2 so as to extend in different directions with respect to the extending direction of the step surface 20Bb 2.
  • the top surface 20Ba 1 of the first stage portion 20Ba may not extend in a direction perpendicular to the extending direction of the step surface 20Bb 2.
  • the angle between the step surface 20Bb 2 and the upper surface 20Ba 1 of the first stage portion 20Ba theta may have a 90 °.
  • the stepped surface 20Bb 2 the angle ⁇ between the upper surface 20Ba 1 of the first stage portion 20Ba, a 30 ° to 150 ° in consideration of the arrangement of the substrate to be described later It is preferably 50 ° to 130 °, more preferably 70 ° to 110 °.
  • external terminals 30B for the secondary battery are provided on the surface of the outer package 20B.
  • External terminal 30B is configured so as to be exposed to the step surface 20Bb 2. It is not limited to this, the external terminal 30B may be configured to expose the upper surface 20Ba 1 of the first stage portion 20Ba. That is, the external terminal 30B is configured to be positioned in a space region formed between the stepped surface 20Bb 2 and the upper surface 20Ba 1 of the first stage portion 20Ba (corresponding to above-described step region). Such a configuration is a characteristic part of the present embodiment.
  • the external terminal 30B is arranged such that one laminate film constituting the first step portion 20Ba and the other laminate film constituting the second step portion 20Bb are exposed to the outside from the welding location.
  • the external terminal 30 ⁇ / b> B in order to expose the external terminal 30 ⁇ / b> B to the step surface 20 ⁇ / b> Bb 2 , it is preferable to adjust so that the welding location is located in the formation region of the step surface 20 ⁇ / b> Bb 2 .
  • the external terminal 30B is present in step surface 20Bb 2
  • the stepped area in particular providing a substrate in terms of efficient use of space regions on the upper surface 20Ba 1 of the first stage portion 20Ba, the following advantages Played.
  • the length of the wiring connecting the external terminal 30B and the board can be relatively shortened, and the wiring can be
  • the structure can be oriented in one direction, that is, in a substantially horizontal direction without complicating the structure. That is, the structure of the wiring connecting the external terminal and the substrate can be simplified.
  • FIG. 3 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • the secondary battery 100C has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in the exterior body 20C.
  • the outer package 20C may be made of a conductive hard case or a flexible case.
  • the exterior body 20C may include, for example, three step portions (a first step portion 20Ca, a second step portion 20Cb, and a third step portion 20Cc).
  • a first step portion 20Ca and the second step portion 20Cb, than the height h 4 of the upper surface of the height h 5 of the upper surface 20Cb 1 of adjacent to each other and the second step portion 20Cb is the first step portion 20Ca 20Ca 1 It is comprised so that it may become small.
  • the first step surface 20Ca 2 is formed between the upper surface 20Cb 1.
  • the second step portion 20Cb and the third step portion 20 cc, adjacent to each other and the height of the upper surface 20 cc 1 height h 5 of the upper surface 20Cb 1 of the second step portion 20Cb third step portion 20 cc h 6 It is comprised so that it may become smaller.
  • the height level of the upper surface 20Cb 1 of the second step portion 20Cb and height level of the upper surface 20 cc 1 of the third step portion 20 cc are different from each other, and the upper surface 20Cb 1 of the second step portion 20Cb of the third step portion 20 cc the second step surface 20 cc 2 is formed between the upper surface 20 cc 1.
  • the first step surface 20Ca 2 has a height h 7.
  • the height h 7 of the first step surface 20Ca 2 is equal to the difference between the height h 4 of the upper surface 20Ca 1 of the first step portion 20Ca and the height h 5 of the upper surface 20Cb 1 of the second step portion 20Cb.
  • the second step surface 20 cc 2 have the same height h 7.
  • the height h 7 of the second step surface 20Cc 2 is equal to the difference between the height h 6 of the upper surface 20Cc 1 of the third step portion 20Cc and the height h 5 of the upper surface 20Cb 1 of the second step portion 20Cb. .
  • the first step surface 20Ca 2 is configured to be continuous with the upper surface 20Cb 1 of the second step portion 20Cb.
  • the upper surface 20Cb 1 of the second step portion 20Cb is continuous with the first step surface 20Ca 2 so as to extend in different directions with respect to the first extending direction of the step surface 20Ca 2.
  • the upper surface 20Cb 1 of the second step portion 20Cb may not extend in a direction perpendicular to the first extending direction of the step surface 20Ca 2.
  • the angle ⁇ between the first step surface 20Ca 2 and the upper surface 20Cb 1 of the second step portion 20Cb may have a 90 °.
  • the angle ⁇ between the first step surface 20Ca 2 and the upper surface 20Cb 1 of the second step portion 20Cb is 30 ° to 150 ° in consideration of the substrate arrangement described later.
  • the angle may be 50 to 130 degrees, more preferably 70 to 110 degrees.
  • the second stepped surface 20 cc 2 is configured so as to be continuous with the upper surface 20Cb 1 of the second step portion 20Cb.
  • the upper surface 20Cb 1 of the second step portion 20Cb is continuous with the second step surface 20 cc 2 so as to extend in different directions with respect to the second extending direction of the step surface 20 cc 2.
  • the upper surface 20Cb 1 of the second step portion 20Cb may not extend in a direction perpendicular to the second extending direction of the step surface 20 cc 2.
  • the angle ⁇ between the second step surface 20 cc 2 and the upper surface 20Cb 1 of the second step portion 20Cb may have a 90 °.
  • the angle ⁇ between the upper surface 20Cb 1 of the second step portion 20Cb, 30 degrees to 150 degrees in view of the arrangement of the substrate to be described later The angle may be 50 to 130 degrees, more preferably 70 to 110 degrees.
  • External terminals 30C for the secondary battery are provided on the surface of the outer package 20C.
  • External terminal 30C is configured so as to be exposed at the second step surface 20 cc 2. It is not limited to this, the external terminal 30C may be configured to expose the upper surface 20Cb 1 of the second step portion 20Cb. That is, the external terminal 30C is configured to be positioned in a space region formed between the stepped surface 20 cc 2 and the upper surface 20Cb 1 of the second step portion 20Cb (corresponding to above-described step region). Such a configuration is a characteristic part of the present embodiment. When the external terminal 30C is present in 20 cc 2, the following effects are achieved.
  • the following advantages are achieved.
  • the external terminal 30C can be positioned close to the side portion of the substrate on which the external terminal 30C is disposed, the length of the wiring connecting the external terminal 30C and the substrate can be relatively shortened.
  • the groove region of this embodiment is advantageous in that the substrate to be arranged can be more stably fixed due to its shape.
  • FIG. 4A is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 4B is a plan view schematically showing the secondary battery according to the embodiment of the present invention.
  • the secondary battery 100D has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in the exterior body 20D.
  • the exterior body 20D may be formed of a conductive hard case or a flexible case.
  • the exterior body 20D includes at least two steps.
  • the exterior body 20D may include two step portions (first step portion 20Da and second step portion 20Db) as shown in FIGS. 4A and 4B.
  • the two steps are configured to be adjacent to each other and have different top surface heights.
  • a first step portion 20Da and the second step portion 20 dB, the height h 9 of the upper surface 20 dB 1 of adjacent to each other and the second step portion 20 dB of the upper surface 20Da 1 the first step portion 20Da high and it is configured to be larger than h 8 is.
  • the height level of the upper surface 20Da 1 the first step portion 20Da and height level of the upper surface 20 dB 1 of the second step portion 20 dB are different from each other, and the upper surface 20Da 1 the first step portion 20Da of the second step portion 20 dB step surface is formed between the upper surface 20 dB 1.
  • the step surface is formed of two surfaces as shown in FIGS. 4A and 4B. This is because the step surface does not extend in one direction when viewed from the direction of the arrow in FIG. 4, that is, in plan view, one first step surface 20Db 2 extends the other second step surface 20Db 2 ′. This is because it is continuous with the second step surface 20Db 2 ′ so as to extend in a direction different from the direction (width direction).
  • Both the first step surface 20Db 2 and the second step surface 20Db 2 ′ have a height h 10 .
  • the height h 10 is equal to the difference between the height h 8 of the upper surface 20 Da 1 between the height h 9 of the upper surface 20 dB 1 of the second step portion 20 dB first step portion 20 Da.
  • both the first step surface 20Db 2 and the second step surface 20Db 2 ′ are configured to be continuous with the upper surface 20Da 1 of the first step portion 20Da.
  • the upper surface 20Da 1 the first step portion 20Da is continuous with Ryodan Samen so as to extend in different directions with respect to the two stepped surface extending direction (height direction).
  • the upper surface 20Da 1 the first step portion 20Da may not extend in a direction perpendicular to the two stepped surface extending direction (height direction).
  • the angle ⁇ between two step surfaces and the upper surface 20Da 1 the first step portion 20Da may have a 90 °.
  • two stepped surface and the angle ⁇ between the upper surface 20 Da 1 of the first step portion 20 Da may be 30 degrees to 150 degrees in consideration of the arrangement of the substrate,
  • the angle is preferably 50 ° to 130 °, more preferably 70 ° to 110 °.
  • External terminals 30D for secondary batteries are provided on the surface of the exterior body 20D.
  • External terminals 30D is configured so as to be exposed at the first step surface 20 dB 2.
  • the external terminal 30D may be configured to be exposed on the second step surface 20Db 2 ′ or the upper surface 20Da 1 of the first step portion 20Da. That is, the external terminal 30D is formed in a step region that is formed by the first step surface 20Db 2 , the second step surface 20Db 2 ', and the upper surface 20Da 1 of the first step portion 20Da. It is configured to be positioned.
  • a first step surface 20 dB 2 and the second step surface 20 dB 2 'step region formed by the upper surface 20 Da 1 of the first step portion 20 Da specifically in the case where in view of efficient utilization of space regions on the upper surface 20Da 1 the first step portion 20Da providing a substrate, the following advantages are achieved. Specifically, since the external terminal 30D can be positioned close to the side of the substrate, the length of the wiring connecting the external terminal 30D and the substrate can be relatively shortened, and the wiring can be The structure can be oriented in one direction, that is, in a substantially horizontal direction without complicating the structure. That is, the structure of the wiring connecting the external terminal and the substrate can be simplified.
  • first step surface 20 dB 2 extends in extension different directions with respect to the extension direction (width direction) of the second step surface 20 dB 2 'second step surface 20 dB It is continuous with 2 '. Therefore, the first step surface 20Db 2 and the second step surface 20Db 2 ′ serve as a stop surface, which is advantageous in that the substrate to be arranged can be more stably fixed.
  • the exterior body which is a component of the secondary battery according to the embodiment of the present invention, includes at least two step portions (a lower step portion having a relatively low upper surface height and an upper surface adjacent to the lower step portion. A high step portion having a relatively high height). Since the upper surface of the low step portion and the upper surface of the high step portion have different height levels, a step surface is formed between the upper surface of the low step portion and the upper surface of the high step portion. Thereby, an exterior body will be provided with the level
  • the electrode assembly disposed in the exterior body having the stepped region is substantially the same as the exterior body in a sectional view from the viewpoint of preventing the electrode assembly from moving (displacement) in the exterior body. It is preferable to have a stepped region having a shape.
  • the content described below is merely an example, and it is confirmed that it is assumed that the electrode assembly is provided inside an exterior body having two steps.
  • the electrode assembly which is a component of the secondary battery includes the positive electrode, the negative electrode, and the separator disposed between the positive electrode and the negative electrode as described above.
  • Examples of the type of electrode assembly include the following types.
  • first type planar laminated structure type
  • second type winding structure type
  • an electrode assembly 10B in which an electrode unit including positive electrodes 1 and 1B, negative electrodes 2 and 2B, and separators 3 and 3B is wound in a roll shape (FIG. 10). reference).
  • the electrode assembly is formed by folding a positive electrode, a negative electrode, a separator, and a negative electrode unit (particularly preferably an electrode unit (laminate) extending long in one direction). It may have a stack and fold structure.
  • the electrode assembly 10 may comprise at least two planar stacked sub-electrode assemblies (see FIG. 5).
  • the electrode assembly 10 may comprise a first planar layered structure type sub-electrode assembly 10A 1 and the second planar layered structure type sub-electrode assembly 10A 2.
  • the first planar layered structure type sub-electrode assembly 10A 1 is to the positive electrode 1A 1, the unit electrode unit including a negative electrode 2A 1, and the separator 3A 1 are stacked.
  • the second planar layered structure type sub-electrode assembly 10A 2 are those unit electrode unit including the positive electrode 1A 2, the negative electrode 2A 2, and the separator 3A 2 are stacked.
  • the second planar stacked structure type sub-electrode assembly 10A 2 is changed into a first planar stacked structure type sub-electrode assembly 10A in a sectional view as shown in FIG. has a larger width than the first width dimension, and in contact with the first planar layered structure type sub-electrode assembly 10A 1 and each other as to be positioned below the first planar layered structure type sub-electrode assembly 10A 1 It may be.
  • the electrode assembly 10 can include a step region in a cross-sectional view.
  • connection tab in the present specification refers to a member corresponding to an uncoated portion of the electrode (positive electrode / negative electrode) and not joined to the current collecting lead.
  • the “connecting portion” in the present specification refers to a member configured to be connectable to each of a plurality of connection tabs.
  • the “drawer tab” referred to in the present specification is a portion corresponding to an uncoated portion of an electrode (positive electrode / negative electrode) and refers to a member bonded to a current collecting lead. Further, the “drawer portion” in this specification refers to a member configured to be connectable to each of a plurality of drawer tabs.
  • the electrode assembly 10 including the step region is continuous to the first region 10X having a relatively high height in a cross-sectional view and the first region 10X as shown in FIG. Second region 10Y having a relatively low height.
  • the positive electrode side extraction portion 14 in order to connect each of the plurality of positive electrode side extraction tabs 13, for example, it extends in one direction substantially perpendicular to the extending direction of the positive electrode side extraction tab 13.
  • the positive electrode side extraction part 14 comprised is mentioned.
  • Each of the negative electrode side extraction tabs 23 included in each of the negative electrodes of the plurality of negative electrodes composed of 2A 2 is connected to each other by a negative electrode side extraction portion 24 as shown in FIG.
  • the negative electrode side extraction part 24 in order to connect each of the plurality of negative electrode side extraction tabs 23, it is configured to extend in one direction substantially perpendicular to the extending direction of the negative electrode side extraction tab 23.
  • the negative electrode side lead part 24 made is mentioned.
  • the positive electrode lead-out portion 14 that connects all the positive electrodes in the first region 10X to each other is connected to an external terminal (for example, an external terminal in FIG. Terminal 30Aa, external terminal 30Ba in FIG. 2, external terminal 30Ca in FIG. 3, external terminal 30Da in FIG. 4A and FIG. 4B, etc.).
  • an external terminal for example, an external terminal in FIG. Terminal 30Aa, external terminal 30Ba in FIG. 2, external terminal 30Ca in FIG. 3, external terminal 30Da in FIG. 4A and FIG. 4B, etc.
  • the negative electrode side lead portion 24 that connects all the negative electrodes in the first region 10X to each other is connected to the external terminal (for example, the external terminal of FIG. Terminal 30Ab, external terminal 30Bb in FIG. 2, external terminal 30Cb in FIG. 3, external terminal 30Db in FIG. 4A and FIG. 4B, etc.).
  • the external terminal for example, the external terminal of FIG. Terminal 30Ab, external terminal 30Bb in FIG. 2, external terminal 30Cb in FIG. 3, external terminal 30Db in FIG. 4A and FIG. 4B, etc.
  • the battery reaction can be stably generated in all the electrodes, so that the battery characteristics can be stabilized.
  • the present invention is not limited to the above-described embodiment.
  • each of the positive side lead tabs 13X respectively included in the positive electrode of the "portion" of a plurality of the positive electrode composed of positive electrode 1A 2 Metropolitan stereoscopic 10A 2 found one another by positive-side lead sections 14X, as shown in FIG. 7 It is connected to the.
  • the positive electrode side extraction tab 13X extends in one direction substantially perpendicular to the extending direction of the positive electrode side extraction tab 13X There is a positive electrode side lead portion 14X configured to do so.
  • a positive electrode side extraction portion 14X configured to be connected to a “part” of a plurality of positive electrode side extraction tabs 13X from a predetermined location can be cited.
  • a plurality consists of first planar layered structure type sub-electrode assembly 10A 1 of the negative electrode 2A 1 and the second planar laminate structure-type sub-electrode assembly 10A 2 negative electrode 2A 2 Metropolitan located in the first region 10X
  • Each of the negative electrode side extraction tabs 23 ⁇ / b> X included in each “part” of the negative electrodes is connected to each other by the negative electrode side extraction portion 24 ⁇ / b> X as shown in FIG. 7.
  • the negative electrode side extraction portion 24X for example, in order to connect “parts” of the plurality of negative electrode side extraction tabs 23X, it extends in one direction substantially perpendicular to the extending direction of the negative electrode side extraction tabs 23X.
  • the negative electrode side extraction part 24X comprised so that it may be mentioned.
  • a second negative electrode side extraction portion 24X configured to be connected to a “part” of a plurality of negative electrode side extraction tabs 23X from a predetermined location can be cited.
  • the positive lead-out portion 14X is connected to an external terminal (for example, the external terminal 30Aa in FIG. 1, the external terminal 30Ba in FIG. 2, the external terminal 30Ca in FIG. 3, the FIG. 4A and FIG. It may be configured to be electrically connected to an external terminal 30Da or the like.
  • an external terminal for example, the external terminal 30Aa in FIG. 1, the external terminal 30Ba in FIG. 2, the external terminal 30Ca in FIG. 3, the FIG. 4A and FIG. It may be configured to be electrically connected to an external terminal 30Da or the like.
  • the negative lead-out portion 24X is connected to an external terminal (for example, the external terminal 30Ab in FIG. 1, the external terminal 30Bb in FIG. 2, the external terminal 30Cb in FIG. 3, the FIG. 4A and FIG. 4B) via the negative current collecting lead. It may be configured to be electrically connected to the external terminal 30Db or the like.
  • each positive electrode side connection portion of the positive electrode side connection tabs 13Y of the cathode 1A 2 of the second flat stacked structure type sub-electrode assembly 10A 2 14Y is connected to each other.
  • the positive electrode side connection portion 14Y for example, in order to connect each positive electrode side connection tab 13Y, it is configured to extend in one direction substantially perpendicular to the extending direction of the positive electrode side connection tab 13Y.
  • the positive electrode side connection part 14Y is mentioned.
  • the negative electrode in the second region 10Y are connected to each other by each of the negative electrode side connection portion 24Y of the negative electrode side connection tabs 23Y of the negative electrode 2A 2 of the second flat stacked structure type sub-electrode assembly 10A 2 ing.
  • the negative electrode side connection tab 24Y is configured to extend in one direction substantially perpendicular to the extending direction of the negative electrode side connection tab 23Y.
  • the negative electrode side connection part 24Y is mentioned.
  • At least one positive electrode 1A 2 located in the second region 10Y is located in the first region 10X. there needs to be configured so as to be electrically connected to each other and one at least one of the positive electrode 1A.
  • at least one positive electrode needs to include both the positive electrode extraction tab 13X and the positive electrode connection tab 13Y in a plan view. There is. Similarly, as shown in FIG.
  • the negative electrode 2A 2 at least one positioned in the second region 10Y is positioned in the first region 10X at least one of the negative electrode 2A 1 mutually are required to be configured to be electrically connected to.
  • at least one negative electrode needs to include both the negative electrode side extraction tab 23X and the negative electrode side connection tab 23Y in a plan view. There is.
  • a positive electrode side lead portion configured to be electrically connected to an external terminal as described above, and a positive electrode side connection portion provided to ensure electrical continuity between the positive electrodes. It has been.
  • the negative electrode side lead portion configured to be electrically connected to the external terminal as described above, and the negative electrode side connection provided to ensure electrical continuity between the negative electrodes. Is provided.
  • between each positive electrode and each negative electrode can be electrically connected as a whole. Therefore, if the drawer portion is installed at an arbitrary position, the degree of freedom of installation of the external terminal that is electrically connected to the drawer portion can be increased.
  • the positive electrode side lead portion 14X and the negative electrode side lead portion 24X, and the positive electrode side connection portion 14Y and the negative electrode side connection portion 24Y are arranged only on one side in the exterior body, respectively. It is preferable that it is comprised.
  • the positive electrode side lead portion 14X and the positive electrode side connection portion 14Y are disposed on one side of the electrode assembly 10, while the negative electrode side lead portion 24X and the negative electrode side connection portion 24Y are disposed on the electrode assembly 10.
  • the negative electrode side lead portion 24X and the negative electrode side connection portion 24Y do not exist on the other side.
  • the width dimension of the electrode assembly 10 can be made relatively small. Therefore, due to the relative reduction in the width dimension of the electrode assembly 10, the dimension of the exterior body that houses the electrode assembly 10 can be relatively reduced. That is, the size of the secondary battery according to the embodiment of the present invention can be made relatively small.
  • the electrode assembly 10 ′ may include at least a planar stacked structure type sub-electrode assembly and a wound structure type sub-electrode assembly (see FIG. 8).
  • the planar laminated structure type sub-electrode assembly 10A 1 ′ is obtained by laminating a plurality of unit electrode units including a positive electrode 1A 1 ′, a negative electrode 2A 1 ′, and separators 3A 1 ′.
  • the wound structure type sub-electrode assembly 10B 1 ′ is obtained by winding an electrode unit including a positive electrode 1B 1 ′, a negative electrode 2B 1 ′, and a separator 3B 1 ′ in a roll shape.
  • the width of the planar laminate structure-type sub-electrode assembly 10A 1 in cross-section view as shown in FIG. 8 It has a greater width dimension than the dimension, and may be in contact with the planar laminate structure-type sub-electrode assembly 10A 1 and each other as to be positioned below the planar laminate structure-type sub-electrode assembly 10A 1.
  • planar laminated structure type sub-electrode assembly has a width dimension larger than the width dimension of the wound structure type sub-electrode assembly in a cross-sectional view
  • the winding structure type sub-electrode assembly may be in contact with each other so as to be positioned below the winding structure type sub-electrode assembly.
  • the electrode assembly may include at least two wound structure type sub-electrode assemblies (not shown).
  • the electrode assembly may include a first winding structure type sub-electrode assembly and a second winding structure type sub-electrode assembly. Both the first winding structure type sub-electrode assembly and the second winding structure type sub-electrode assembly are obtained by winding an electrode unit including a positive electrode, a negative electrode, and a separator in a roll shape.
  • the second winding structure type planar laminated structure type sub-electrode assembly is larger than the width dimension of the first winding structure type sub-electrode assembly in a cross-sectional view.
  • the first winding structure type sub-electrode assembly may be in contact with each other so as to have a width dimension and to be positioned below the first winding structure type sub-electrode assembly.
  • the assembly includes at least a planar stacked subelectrode assembly and a wound subelectrode assembly (see FIG. 8), and the electrode assembly includes at least two wound subelectrode assemblies.
  • a pattern using only a lead part for connecting the lead tabs of each electrode may be applied, and the above-mentioned is from the viewpoint of improving the degree of freedom of installation of the external terminals.
  • a pattern using both the drawer portion and the connection portion may be applied.
  • the secondary battery according to an embodiment of the present invention can be used in various fields where power storage is assumed.
  • the secondary battery according to an embodiment of the present invention particularly the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smart phone, a notebook)
  • Mobile devices such as personal computers and digital cameras, activity meters, arm computers, and electronic paper
  • home and small industrial applications eg, power tools, golf carts, home, nursing and industrial robots
  • large industries Applications eg, forklifts, elevators, bay harbor cranes
  • transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles
  • power system applications eg, various power generation
  • IoT field space and deep sea applications (for example, spacecraft, areas such as submersible research vessel) and the like.

Abstract

本発明では、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む電極組立体10と、電解質とが外装体20に収容された二次電池が提供される。当該二次電池100Aでは、外装体20は、相互に隣接しかつ上面の高さが相互に異なる少なくとも2つの段部20Aa,20Abを備え、相対的に高さが低い低段部20Aaの上面20Aaと低段部20Aaに隣接する相対的に高さが高い高段部20Abの上面20Abとの間に段差面20Abが形成され、および、二次電池100Aの外部端子30Aが、段差面20Abおよび低段部20Aaの上面20Aaの少なくとも一方に露出するように構成されている。

Description

二次電池
 本発明は、二次電池に関する。
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。
 近年、電子機器の薄型化・小型化の要求が一層高まっており、それに伴い、電子機器内にて二次電池に基板等を効率的に設けることが要求されている。これにつき、特許文献1には、段差領域を備えた二次電池が開示されている。
特表2014-523629号公報
 本願発明者らは、段差領域を備えた二次電池を用いる場合、以下の問題が生じ得ることを見出した。具体的には、本願発明者らは、段差領域を備えた二次電池を用いる場合、配線を介して基板と電気的に接続される二次電池の外部端子の配置箇所によっては、当該配線構造が複雑化する虞があることを見出した。
 本発明は、かかる事情に鑑みて案出されたものである。具体的には、本発明は、二次電池の外部端子と基板とを接続する配線構造を簡素化可能な段差領域を備えた二次電池を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態では、
 正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体と、電解質とが外装体に収容された二次電池であって、
 外装体は、相互に隣接しかつ上面の高さが相互に異なる少なくとも2つの段部を備え、
 相対的に高さが低い低段部の上面と低段部に隣接する相対的に高さが高い高段部の上面との間に段差面が形成され、および、
 二次電池の外部端子が、段差面および低段部の上面の少なくとも一方に露出するように構成されている、二次電池が提供される。
 本発明によれば、段差領域を備えた二次電池の外部端子と基板とを接続する配線構造を簡素化可能である。
図1は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。 図2は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。 図3は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。 図4Aは、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。 図4Bは、本発明の一実施形態に係る二次電池を模式的に示した平面図である。 図5は、一実施形態に係る電極組立体を模式的に示した断面図である。 図6は、電極組立体の電極タブが引出し部のみにより接続されている態様を模式的に示した断面図である。 図7は、電極組立体の電極タブが引出し部と接続部との組合せにより接続されている態様を模式的に示した断面図である。 図8は、一実施形態に係る電極組立体を模式的に示した断面図である。 図9は、平面積層構造を有する電極組立体の基本的構成を模式的に示した断面図である。 図10は、巻回構造を有する電極組立体の基本的構成を模式的に示した断面図である。 図11は、電極組立体の具体的構成を模式的に示した断面図である。
 以下、本発明の一実施形態に係る二次電池について説明する前に、二次電池の基本的構成について説明しておく。
[二次電池の基本的構成] 
 二次電池は、下記の本発明の一実施形態においても述べるが、外装体の内部に電極組立体と電解質とが収容および封入された構造を有して成る。本明細書において「二次電池」とは、充電および放電の繰り返しが可能な電池のことを指す。従って、本発明の二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども本発明の対象に含まれ得る。電極組立体は、正極、負極、および正極と負極との間に配置されたセパレータを含んでいる。電極組立体のタイプとしては下記のタイプが挙げられる。第1のタイプは、電極組立体10Aが正極1,1A、負極2,2Aおよびセパレータ3,3Aを含む単位電極ユニットが複数積層された平面積層構造を有するものである(図9参照)。第2のタイプは、電極組立体10Bが、正極1,1B、負極2,2Bおよびセパレータ3,3Bを含む電極ユニットがロール状に巻回された巻回構造を有するものである(図10参照)。更に、第3のタイプとして、電極組立体は、正極、負極、セパレータおよび負極の電極ユニット(特に好ましくは一方向に長く延在する電極ユニット(積層体))を折り畳むことで形成された、いわゆるスタックアンドフォールド構造を有するものであってもよい。また、外装体は、導電性ハードケース又はフレキシブルケース(パウチ等)の形態を採ってよい。外装体の形態がフレキシブルケース(パウチ等)である場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。同様に、複数の負極の各々は、負極用集電リードを介して負極用外部端子に連結されている。負極用外部端子はシール部により外装体に固定され、シール部が電解質の液漏れを防止する。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードは正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。外装体の形態が導電性ハードケースの場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。
 正極1は、少なくとも正極集電体11および正極材層12から構成されており(図11参照)、正極集電体11の少なくとも片面に正極材層12が設けられている。当該正極集電体11のうち正極材層12が設けられていない箇所、すなわち正極集電体11の端部には正極側引出しタブ13が位置付けられている。正極材層12には電極活物質として正極活物質が含まれている。負極2は少なくとも負極集電体21および負極材層22から構成されており(図11参照)、負極集電体21の少なくとも片面に負極材層22が設けられている。当該負極集電体21のうち負極材層22が設けられていない箇所、すなわち負極集電体21の端部には負極側引出しタブ23が位置付けられている。負極材層22には電極活物質として負極活物質が含まれている。
 正極材層12に含まれる正極活物質および負極材層22に含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層12に含まれる正極活物質」および「負極材層22に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極1と負極2との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層12および負極材層22は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極1と負極2との間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、二次電池は、いわゆる“リチウムイオン電池”に相当する。
 正極材層12の正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダー(“結着材”とも称される)が正極材層12に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層12に含まれていてよい。同様に、負極材層22の負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層22に含まれていてよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層12および負極材層22はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、二次電池の正極材層12においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層12に含まれる正極活物質がコバルト酸リチウムとなっている。
 正極材層12に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層12に含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層12のバインダーはポリフッ化ビニリデンであってよく、また、正極材層12の導電助剤はカーボンブラックであってよい。あくまでも例示にすぎないが、正極材層12のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体21との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、負極材層22の負極活物質が人造黒鉛となっていてよい。
 負極材層22に含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば負極材層22に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層22に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層22には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 あくまでも例示にすぎないが、負極材層22における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっていてよい。
 正極1および負極2に用いられる正極集電体11および負極集電体21は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極1に用いられる正極集電体11は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極2に用いられる負極集電体21は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
 正極1および負極2に用いられるセパレータ3は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ3は、正極1と負極2との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ3は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータ3として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ3は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータ3の表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。なお、セパレータ3は、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。なお、電極の取扱いの更なる向上の観点から、セパレータ3と電極(正極1/負極2)は接着されていることが好ましい。セパレータ3と電極との接着は、セパレータ3として接着性セパレータを用いること、電極材層(正極材層12/負極材層22)の上に接着性バインダーを塗布および/または熱圧着すること等によって為され得る。セパレータ3または電極材層に接着性を供する接着剤としては、ポリフッ化ビニリデン、アクリル系接着剤等が挙げられる。
 正極1および負極2がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質および/または有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極1・負極2)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられてよい。また、具体的な非水電解質の溶質としては、例えばLiPF、LiBF等のLi塩が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPFおよび/またはLiBF等のLi塩が用いられる。
 正極用集電リードおよび負極用集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リードはアルミニウムから構成されることが好ましく、負極用集電リードはニッケルから構成されることが好ましい。正極用集電リードおよび負極用集電リードの形態は特に限定されず、例えば、線又はプレート状であってよい。
 外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。なお、これに限定されず、複数の正極の各々と電気的に接続される正極用集電リードが正極用外部端子の機能を備えていてよく、また、複数の負極の各々と電気的に接続される負極用集電リードは負極用外部端子の機能を備えていてよい。
 外装体は、上述のように導電性ハードケース又はフレキシブルケース(パウチ等)の形態を有していてよい。
 導電性ハードケースは、本体部および蓋部からなっている。本体部は当該外装体の底面を構成する底部および側面部から成る。本体部と蓋部とは、電極組立体、電解質、集電リードおよび外部端子の収容後に密封される。密封方法としては、特に限定されるものではなく、例えばレーザー照射法等が挙げられる。本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(ズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、二次電池の安全性が向上する。
 フレキシブルケースは、軟質シートから構成される。軟質シートは、シール部の折り曲げを達成できる程度の軟質性を有していればよく、好ましく可塑性シートである。可塑性シートは、外力を付与した後、除去したとき、外力による変形が維持される特性を有するシートのことであり、例えば、いわゆるラミネートフィルムが使用できる。ラミネートフィルムからなるフレキシブルパウチは例えば、2枚のラミネートフィルムを重ね合わせ、その周縁部をヒートシールすることにより製造できる。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。
[本発明の二次電池]
 上記二次電池の基本的構成を考慮した上で、以下、本発明の一実施形態に係る二次電池について説明する。なお、本発明の一実施形態に係る二次電池は、段差領域を備えた二次電池であることを前提としていることを予め述べておく。
(第1実施形態)
 図1は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。
 二次電池100Aは、外装体20Aの内部に電極組立体と電解質とが収容および封入された構造を有して成る。図1に示すように、外装体20Aは、導電性ハードケースから成っている。
 外装体20Aは、少なくとも2つの段部を備えている。例えば、外装体20Aは、2つの段部(第1段部20Aaおよび第2段部20Ab)を備えていてよい。2つの段部は、相互に隣接しかつ上面の高さが相互に異なるように構成されている。ここでいう「上面の高さ」とは、外装体の構成要素である段部の底面と上面との間の略鉛直方向に沿った長さ寸法を指す。具体的には、第1段部20Aaと第2段部20Abとは、相互に隣接しかつ第2段部20Abの上面20Abの高さhが第1段部20Aaの上面20Aaの高さhよりも大きくなるように構成されている。第1段部20Aaの上面20Aaの高さレベルと第2段部20Abの上面20Abの高さレベルとが相互に異なるため、第1段部20Aaの上面20Aaと第2段部20Abの上面20Abとの間に段差面20Abが形成される。一方、第1段部20Aaと第2段部20Abとは、第2段部20Abの上面20Abの幅寸法W(長手方向)が第1段部20Aaの上面20Aaの幅寸法W(長手方向)と等しくなるように構成されている。
 段差面20Abは、高さhおよび幅寸法(長手方向)Wを有する。段差面20Abの高さhは、第2段部20Abの上面20Abの高さhと第1段部20Aaの上面20Aaの高さhとの差分に等しくなっている。一方、段差面20Abの幅W(長手方向)は、第2段部20Abの上面20Abの幅寸法W(長手方向)と第1段部20Aaの上面20Aaの幅寸法W(長手方向)とにそれぞれ等しくなっている。
 段差面20Abは第1段部20Aaの上面20Aaと連続するように構成されている。具体的には、第1段部20Aaの上面20Aaは、段差面20Abの延在方向に対して異なる方向に延在するように段差面20Abと連続している。特に限定されるものではないが、第1段部20Aaの上面20Aaは、段差面20Abの延在方向に対して垂直な方向に延在していてよい。つまり、段差面20Abと第1段部20Aaの上面20Aaとの間の角度θが90度となっていてよい。なお、これに限定されることなく、段差面20Abと第1段部20Aaの上面20Aaとの間の角度θは、後述する基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
 また、外装体20Aの表面には二次電池用の外部端子30A(正極用外部端子30Aaおよび負極用外部端子30Ab)が設けられている。外部端子30Aは段差面20Abに露出するように構成されている。なお、これに限定されるものではなく、外部端子30Aは第1段部20Aaの上面20Aaに露出するように構成されてよい。つまり、外部端子30Aは、段差面20Abと第1段部20Aaの上面20Aaとの間に形成される空間領域(既述の段差領域に相当)に位置付けられるように構成されている。かかる構成が本実施形態の特徴部分である。外部端子30Aが例えば段差面20Abに存在すると、以下の効果が奏される。詳細には、段差面20Abと第1段部20Aaの上面20Aaとの間に形成される空間領域(既述の段差領域に相当)(具体的には第1段部20Aaの上面20Aa上の空間領域)の効率的な活用の観点から基板を設ける場合において、以下の効果が奏される。具体的には、外部端子30Aは基板の側部と近接して位置付けられ得るため、外部端子30Aと基板とをつなぐ配線の長さを相対的に短くすることができ、また当該配線を、その構造を複雑化することなく一方向に、すなわち略水平方向に方向付けることができる。つまり、外部端子と基板とをつなぐ配線の構造を簡素化することができる。
 なお、上述の基板はいわゆるリジッド基板又はフレキシブル基板であってよく、好ましくはリジッド基板である。リジッド基板としては、二次電池とともに使用される基板の分野で使用されるあらゆるリジッド基板が使用可能であり、例えば、ガラス・エポキシ樹脂基板が挙げられる。基板としては、プリント基板、保護回路基板などの回路基板、シリコンウェハーなどの半導体基板、ディスプレイパネルなどのガラス基板等が挙げられる。基板が、二次電池の過充電、過放電および過電流を防止するための、いわゆる保護回路基板であるとき、当該保護回路基板および上記二次電池より、二次電池パックが構成される。
(第2実施形態)
 図2は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。
 二次電池100Bは、外装体20Bの内部に電極組立体と電解質とが収容および封入された構造を有して成る。図2に示すように、外装体20Bは、上記実施形態と比べて導電性ハードケースではなくフレキシブルケース(パウチ等)である点で異なる。
 外装体20Bは少なくとも2つの段部を備えている。例えば、外装体20Bは、図2に示すように2つの段部(第1段部20Baおよび第2段部20Bb)を備えていてよい。2つの段部は、相互に隣接しかつ上面の高さが相互に異なるように構成されている。具体的には、第1段部20Baと第2段部20Bbとは、相互に隣接しかつ第2段部20Bbの上面20Bbの高さhが第1段部20Baの上面20Baの高さhよりも大きくなるように構成されている。第1段部20Baの上面20Baの高さレベルと第2段部20Bbの上面20Bbの高さレベルとが相互に異なるため、第1段部20Baの上面20Baと第2段部20Bbの上面20Bbとの間に段差面20Bbが形成される。一方、第1段部20Baと第2段部20Bbとは、第2段部20Bbの上面20Bbの幅寸法W(長手方向)が第1段部20Baの上面20Baの幅寸法W(長手方向)と等しくなるように構成されている。
 段差面20Bbは、高さhおよび幅寸法(長手方向)Wを有する。段差面20Bbの高さhは、第2段部20Bbの上面20Bbの高さhと第1段部20Baの上面20Baの高さhとの差分に等しくなっている。一方、段差面20Bbの幅W(長手方向)は、第2段部20Bbの上面20Bbの幅寸法W(長手方向)と第1段部20Baの上面20Baの幅寸法W(長手方向)とにそれぞれ等しくなっている。
 段差面20Bbは第1段部20Baの上面20Baと連続するように構成されている。具体的には、第1段部20Baの上面20Baは、段差面20Bbの延在方向に対して異なる方向に延在するように段差面20Bbと連続している。特に限定されるものではないが、第1段部20Baの上面20Baは、段差面20Bbの延在方向に対して垂直な方向に延在していてよい。つまり、段差面20Bbと第1段部20Baの上面20Baとの間の角度θが90度となっていてよい。なお、これに限定されることなく、段差面20Bbと第1段部20Baの上面20Baとの間の角度θは、後述する基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
 また、外装体20Bの表面には二次電池用の外部端子30B(正極用外部端子30Baおよび負極用外部端子30Bb)が設けられている。外部端子30Bは段差面20Bbに露出するように構成されている。なお、これに限定されるものではなく、外部端子30Bは第1段部20Baの上面20Baに露出するように構成されてよい。つまり、外部端子30Bは、段差面20Bbと第1段部20Baの上面20Baとの間に形成される空間領域(既述の段差領域に相当)に位置付けられるように構成されている。かかる構成が本実施形態の特徴部分である。詳細には、第1段部20Baを構成する一方のラミネートフィルムと、第2段部20Bbを構成する他方のラミネートフィルムとが溶着箇所から外部に露出するように外部端子30Bが配置されている。具体的には、外部端子30Bを段差面20Bbに露出させるために、溶着箇所が段差面20Bbの形成領域に位置するように調整することが好ましい。外部端子30Bは段差面20Bbに存在すると、段差領域、具体的には第1段部20Baの上面20Ba上の空間領域の効率的な活用の観点から基板を設ける場合において、以下の効果が奏される。具体的には、外部端子30Bは基板の側部と近接して位置付けられ得るため、外部端子30Bと基板とをつなぐ配線の長さを相対的に短くすることができ、また当該配線を、その構造を複雑化することなく一方向に、すなわち略水平方向に方向付けることができる。つまり、外部端子と基板とをつなぐ配線の構造を簡素化することができる。
(第3実施形態)
 図3は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。
 二次電池100Cは、外装体20Cの内部に電極組立体と電解質とが収容および封入された構造を有して成る。外装体20Cは、導電性ハードケース又はフレキシブルケースから成ってよい。
 外装体20Cは、例えば3つの段部(第1段部20Ca、第2段部20Cb、および第3段部20Cc)を備えていてよい。第1段部20Caと第2段部20Cbとは、相互に隣接しかつ第2段部20Cbの上面20Cbの高さhが第1段部20Caの上面20Caの高さhよりも小さくなるように構成されている。第1段部20Caの上面20Caの高さレベルと第2段部20Cbの上面20Cbの高さレベルとが相互に異なるため、第1段部20Caの上面20Caと第2段部20Cbの上面20Cbとの間に第1段差面20Caが形成される。また、第2段部20Cbと第3段部20Ccとは、相互に隣接しかつ第2段部20Cbの上面20Cbの高さhが第3段部20Ccの上面20Ccの高さhよりも小さくなるように構成されている。第2段部20Cbの上面20Cbの高さレベルと第3段部20Ccの上面20Ccの高さレベルとが相互に異なるため、第2段部20Cbの上面20Cbと第3段部20Ccの上面20Ccとの間に第2段差面20Ccが形成される。
 第1段差面20Caは、高さhを有する。第1段差面20Caの高さhは、第1段部20Caの上面20Caの高さhと第2段部20Cbの上面20Cbの高さhとの差分に等しくなっている。第2段差面20Ccは、同じ高さhを有する。第2段差面20Ccの高さhは、第3段部20Ccの上面20Ccの高さhと第2段部20Cbの上面20Cbの高さhとの差分に等しくなっている。
 第1段差面20Caは第2段部20Cbの上面20Cbと連続するように構成されている。具体的には、第2段部20Cbの上面20Cbは、第1段差面20Caの延在方向に対して異なる方向に延在するように第1段差面20Caと連続している。特に限定されるものではないが、第2段部20Cbの上面20Cbは、第1段差面20Caの延在方向に対して垂直な方向に延在していてよい。つまり、第1段差面20Caと第2段部20Cbの上面20Cbとの間の角度θが90度となっていてよい。なお、これに限定されることなく、第1段差面20Caと第2段部20Cbの上面20Cbとの間の角度θは、後述する基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
 同様に、第2段差面20Ccは第2段部20Cbの上面20Cbと連続するように構成されている。具体的には、第2段部20Cbの上面20Cbは、第2段差面20Ccの延在方向に対して異なる方向に延在するように第2段差面20Ccと連続している。特に限定されるものではないが、第2段部20Cbの上面20Cbは、第2段差面20Ccの延在方向に対して垂直な方向に延在していてよい。つまり、第2段差面20Ccと第2段部20Cbの上面20Cbとの間の角度θが90度となっていてよい。なお、これに限定されることなく、第2段差面20Ccと第2段部20Cbの上面20Cbとの間の角度θは、後述する基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
 外装体20Cの表面には二次電池用の外部端子30C(正極用外部端子30Caおよび負極用外部端子30Cb)が設けられている。外部端子30Cは第2段差面20Ccに露出するように構成されている。なお、これに限定されるものではなく、外部端子30Cは第2段部20Cbの上面20Cbに露出するように構成されてよい。つまり、外部端子30Cは、段差面20Ccと第2段部20Cbの上面20Cbとの間に形成される空間領域(既述の段差領域に相当)に位置付けられるように構成されている。かかる構成が本実施形態の特徴部分である。外部端子30Cが20Ccに存在すると、以下の効果が奏される。詳細には、相互に対向する第1段差面20Caおよび第2段差面20Ccと、第2段部20Cbの上面20Cbとの間に形成される溝領域、具体的には第2段部20Cbの上面20Cb上の空間領域の効率的な活用の観点から基板を設ける場合において、以下の効果が奏される。具体的には、外部端子30Cは配置される基板の側部と近接して位置付けられ得るため、外部端子30Cと基板とをつなぐ配線の長さを相対的に短くすることができ、また当該配線を、その構造を複雑化することなく一方向に、すなわち略水平方向に方向付けることができる。つまり、外部端子と基板とをつなぐ配線の構造を簡素化することができる。更に、上記実施形態における段差領域と比べて本実施形態の溝領域ではその形状に起因して配置する基板をより安定して固定することができる点においても有利である。
(第4実施形態)
 図4Aは、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。図4Bは、本発明の一実施形態に係る二次電池を模式的に示した平面図である。
 二次電池100Dは、外装体20Dの内部に電極組立体と電解質とが収容および封入された構造を有して成る。図4Aおよび図4Bに示すように、外装体20Dは、導電性ハードケース又はフレキシブルケースから成ってよい。
 外装体20Dは少なくとも2つの段部を備えている。例えば、外装体20Dは、図4Aおよび図4Bに示すように2つの段部(第1段部20Daおよび第2段部20Db)を備えていてよい。2つの段部は、相互に隣接しかつ上面の高さが相互に異なるように構成されている。具体的には、第1段部20Daと第2段部20Dbとは、相互に隣接しかつ第2段部20Dbの上面20Dbの高さhが第1段部20Daの上面20Daの高さhよりも大きくなるように構成されている。第1段部20Daの上面20Daの高さレベルと第2段部20Dbの上面20Dbの高さレベルとが相互に異なるため、第1段部20Daの上面20Daと第2段部20Dbの上面20Dbとの間に段差面が形成される。
 当該段差面は、図4Aおよび図4Bに示すように2面から形成されている。これは、図4の矢印方向から見た場合、すなわち平面視にて段差面が一方向に延在せず、一方の第1段差面20Dbが他方の第2段差面20Db’の延在方向(幅方向)に対して異なる方向に延在するように第2段差面20Db’と連続していることに起因する。
 第1段差面20Dbおよび第2段差面20Db’は共に高さh10を有する。当該高さh10は、第2段部20Dbの上面20Dbの高さhと第1段部20Daの上面20Daの高さhとの差分に等しくなっている。
 また、第1段差面20Dbおよび第2段差面20Db’ともに第1段部20Daの上面20Daと連続するように構成されている。具体的には、第1段部20Daの上面20Daは、2つの段差面の延在方向(高さ方向)に対して異なる方向に延在するように量段差面と連続している。特に限定されるものではないが、第1段部20Daの上面20Daは、2つの段差面の延在方向(高さ方向)に対して垂直な方向に延在していてよい。つまり、2つの段差面と第1段部20Daの上面20Daとの間の角度θが90度となっていてよい。なお、これに限定されることなく、2つの段差面と第1段部20Daの上面20Daとの間の角度θは、基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
 外装体20Dの表面には二次電池用の外部端子30D(正極用外部端子30Daおよび負極用外部端子30Db)が設けられている。外部端子30Dは第1段差面20Dbに露出するように構成されている。なお、これに限定されるものではなく、外部端子30Dは、第2段差面20Db’又は第1段部20Daの上面20Daに露出するように構成されてよい。つまり、外部端子30Dは、第1段差面20Dbと第2段差面20Db’と第1段部20Daの上面20Daとにより形成される空間領域(既述の段差領域に相当)段差領域に位置付けられるように構成されている。外部端子30Dは第1段差面20Dbに存在すると、第1段差面20Dbと第2段差面20Db’と第1段部20Daの上面20Daとにより形成される段差領域、具体的には第1段部20Daの上面20Da上の空間領域の効率的な活用の観点から基板を設ける場合において、以下の効果が奏される。具体的には、外部端子30Dは基板の側部に近接して位置付けられ得るため、外部端子30Dと基板とをつなぐ配線の長さを相対的に短くすることができ、また当該配線を、その構造を複雑化することなく一方向に、すなわち略水平方向に方向付けることができる。つまり、外部端子と基板とをつなぐ配線の構造を簡素化することができる。更に、上記実施形態における段差領域と比べて、第1段差面20Dbが第2段差面20Db’の延在方向(幅方向)に対して異なる方向に延在するように第2段差面20Db’と連続している。そのため、第1段差面20Dbと第2段差面20Db’とがストップ面の機能を果たし、それにより配置する基板をより安定して固定することができる点においても有利である。
 以下、本発明の一実施形態に係る二次電池の構成要素である電極組立体について説明する。
 本発明の一実施形態の二次電池の構成要素である外装体は、上述のように少なくとも2つの段部(上面の高さが相対的に低い低段部および低段部に隣接する上面の高さが相対的に高い高段部)を備えている。当該低段部の上面と当該高段部の上面とは相互に高さレベルが異なるため、それに起因して低段部の上面と高段部の上面との間に段差面が形成される。これにより、外装体は、当該段差面と低段部の上面との間に形成される段差領域を備えることとなる。本発明の一実施形態では、当該段差領域を備えた外装体内に配置する電極組立体は、外装体内での電極組立体の移動(ズレ)防止等の観点から、断面視において外装体と略同一形状の段差領域を備えていることが好ましい。
 なお、下記で説明する内容は、あくまでも一例にすぎず、電極組立体が、2つの段部を備えている外装体の内部に設ける場合を前提としていることを確認的に述べておく。
 二次電池の構成要素である電極組立体は、上述のように正極、負極、および正極と負極との間に配置されたセパレータを含んでいる。電極組立体のタイプとしては下記のタイプが挙げられる。第1のタイプ(平面積層構造型)は、電極組立体10Aが正極1,1A、負極2,2Aおよびセパレータ3,3Aを含む単位電極ユニットが複数積層されたものであり(図9参照)。第2のタイプ(巻回構造型)は、電極組立体10Bが、正極1,1B、負極2,2Bおよびセパレータ3,3Bを含む電極ユニットがロール状に巻回されたものである(図10参照)。更に、第3のタイプとして、電極組立体は、正極、負極、セパレータおよび負極の電極ユニット(特に好ましくは一方向に長く延在する電極ユニット(積層体))を折り畳むことで形成された、いわゆるスタックアンドフォールド構造を有するものであってもよい。
 一態様では、電極組立体10は少なくとも2つの平面積層構造型のサブ電極組立体を備えていてよい(図5参照)。例えば、電極組立体10は、第1平面積層構造型サブ電極組立体10Aおよび第2平面積層構造型サブ電極組立体10Aを備えていてよい。第1平面積層構造型サブ電極組立体10Aは、正極1A、負極2Aおよびセパレータ3Aを含む単位電極ユニットが複数積層されたものである。同様に、第2平面積層構造型サブ電極組立体10Aは、正極1A、負極2Aおよびセパレータ3Aを含む単位電極ユニットが複数積層されたものである。
 この場合において、一例を挙げると、電極組立体10では、第2平面積層構造型サブ電極組立体10Aが、図5に示すように断面視にて第1平面積層構造型サブ電極組立体10Aの幅寸法よりも大きな幅寸法を有し、かつ第1平面積層構造型サブ電極組立体10Aの下方に位置するように第1平面積層構造型サブ電極組立体10Aと相互に接触していてよい。かかる構造を有することにより、電極組立体10は断面視において段差領域を備え得る。
 以下、本発明の一実施形態に係る二次電池の構成要素である電極組立体が断面視において段差領域を備える場合を前提として説明する。なお、以下、本明細書でいう「接続タブ」とは、電極(正極/負極)の未塗工部に相当する部分であって、集電リードに接合されていない部材を指す。本明細書でいう「接続部」とは、複数の接続タブの各々と接続可能に構成された部材を指す。本明細書でいう「引出しタブ」とは、電極(正極/負極)の未塗工部に相当する部分であって、集電リードに接合される部材を指す。又、本明細書でいう「引出し部」とは、複数の引出しタブの各々と接続可能に構成された部材を指す。
 かかる場合、本発明の一実施形態では、段差領域を備える電極組立体10は、図6に示すように断面視において相対的に高さの高い第1領域10Xと、第1領域10Xに連続する相対的に高さが低い第2領域10Yとを含む。
 本発明の一実施形態では、第1領域10X内の第1平面積層構造型サブ電極組立体10Aの正極1Aと、第1領域10X内の第2平面積層構造型サブ電極組立体10Aの正極1Aとから構成される複数の正極にそれぞれ含まれる正極側引出しタブ13の各々が、図6に示すように正極側引出し部14により相互に接続されている。正極側引出し部14の態様としては、複数の正極側引出しタブ13の各々を接続するために、例えば当該正極側引出しタブ13の延在方向に対して略垂直な一方向に延在するように構成された正極側引出し部14が挙げられる。正極側引出し部14の別態様としては、所定箇所から複数の正極側引出しタブ13の各々に接続するように構成された正極側引出し部14が挙げられる。
 同様に、本発明の一実施形態では、第1領域10X内に位置する第1平面積層構造型サブ電極組立体10Aの負極2Aと第2平面積層構造型サブ電極組立体10Aの負極2Aとから構成される複数の負極の各々の負極にそれぞれ含まれる負極側引出しタブ23の各々が、図6に示すように負極側引出し部24により相互に接続されている。負極側引出し部24の態様としては、複数の負極側引出しタブ23の各々を接続するために、当該負極側引出しタブ23の延在方向に対して略垂直な一方向に延在するように構成された負極側引出し部24が挙げられる。負極側引出し部24の別態様としては、所定箇所から複数の負極側引出しタブ23の各々に接続するように構成された負極側引出し部24が挙げられる。
 この場合、本発明の一実施形態では、第1領域10X内の全ての正極の各々を相互に接続する正極側引出し部14が、正極側集電リードを介して外部端子(例えば図1の外部端子30Aa、図2の外部端子30Ba、図3の外部端子30Ca、図4Aおよび図4Bの外部端子30Da等)と電気的に接続されるように構成されていてよい。
 同様に、本発明の一実施形態では、第1領域10X内の全ての負極の各々を相互に接続する負極側引出し部24が、負極側集電リードを介して外部端子(例えば図1の外部端子30Ab、図2の外部端子30Bb、図3の外部端子30Cb、図4Aおよび図4Bの外部端子30Db等)と電気的に接続されるように構成されていてよい。
 本態様では、単一の正極側引出し部14によって全ての正極が相互に接続されるため、それに起因して各正極間の電気的接続を安定させることができる。また、単一の負極側引出し部24によって全ての負極が相互に接続されるため、それに起因して各負極間の電気的接続を安定させることができる。以上により、全ての電極で電池反応を安定的に生じさせることが可能となるため、電池特性を安定させることができ得る。
 また、上記態様に限定されず、例えば、第1領域10X内の第1平面積層構造型サブ電極組立体10Aの正極1Aと、第1領域10X内の第2平面積層構造型サブ電極組立体10Aの正極1Aとから構成される複数の正極のうちの「一部」の正極にそれぞれ含まれる正極側引出しタブ13Xの各々が、図7に示すように正極側引出し部14Xにより相互に接続されている。正極側引出し部14Xの態様としては、例えば複数の正極側引出しタブ13Xの「一部」を接続するために、当該正極側引出しタブ13Xの延在方向に対して略垂直な一方向に延在するように構成された正極側引出し部14Xが挙げられる。正極側引出し部14Xの別態様としては、例えば所定箇所から複数の正極側引出しタブ13Xの「一部」に接続するように構成された正極側引出し部14Xが挙げられる。
 同様に、第1領域10X内に位置する第1平面積層構造型サブ電極組立体10Aの負極2Aと第2平面積層構造型サブ電極組立体10Aの負極2Aとから構成される複数の負極のうちの「一部」の負極にそれぞれ含まれる負極側引出しタブ23Xの各々が、図7に示すように負極側引出し部24Xにより相互に接続されている。負極側引出し部24Xの態様としては、例えば複数の負極側引出しタブ23Xの「一部」を接続するために、当該負極側引出しタブ23Xの延在方向に対して略垂直な一方向に延在するように構成された負極側引出し部24Xが挙げられる。負極側引出し部24Xの別態様としては、例えば所定箇所から複数の負極側引出しタブ23Xの「一部」に接続するように構成された第2の負極側引出し部24Xが挙げられる。
 この場合、当該正極側引出し部14Xが、正極側集電リードを介して外部端子(例えば図1の外部端子30Aa、図2の外部端子30Ba、図3の外部端子30Ca、図4Aおよび図4Bの外部端子30Da等)と電気的に接続されるように構成されていてよい。
 同様に、当該負極側引出し部24Xが、負極側集電リードを介して外部端子(例えば図1の外部端子30Ab、図2の外部端子30Bb、図3の外部端子30Cb、図4Aおよび図4Bの外部端子30Db等)と電気的に接続されるように構成されていてよい。
 一方、図7に示すように、第2領域10Y内の正極、具体的には第2平面積層構造型サブ電極組立体10Aの正極1Aの正極側接続タブ13Yの各々が正極側接続部14Yにより相互に接続されている。
 正極側接続部14Yの態様としては、例えば各正極側接続タブ13Yを接続するために、当該正極側接続タブ13Yの延在方向に対して略垂直な一方向に延在するように構成された正極側接続部14Yが挙げられる。正極側接続部14Yの別態様としては、例えば所定箇所から各正極側接続タブ13Yに接続するように構成された正極側接続部14Yが挙げられる。
 同様に、第2領域10Y内の負極、具体的には第2平面積層構造型サブ電極組立体10Aの負極2Aの負極側接続タブ23Yの各々が負極側接続部24Yにより相互に接続されている。
 負極側接続部24Yの態様としては、例えば各負極側接続タブ24Yを接続するために、当該負極側接続タブ23Yの延在方向に対して略垂直な一方向に延在するように構成された負極側接続部24Yが挙げられる。負極側接続部24Yの別態様としては、例えば所定箇所から各負極側接続タブ23Yに接続するように構成された負極側接続部24Yが挙げられる。
 なお、図7に示すように、電極組立体10が全体として電気的に接続可能とする観点から、第2領域10Y内に位置する少なくとも1つの正極1Aは、第1領域10X内に位置する少なくとも1つの正極1Aと相互に電気的に接続されるように構成されている必要がある。端的に言うと、電極組立体10が全体として電気的に接続可能とする観点から、少なくとも1つの正極が、平面視にて正極側引出しタブ13Xと正極側接続タブ13Yの両方を備えている必要がある。同様に、図7に示すように、電極組立体10が全体として電気的に導通可能とする観点から、第2領域10Y内に位置する少なくとも1つの負極2Aは、第1領域10X内に位置する少なくとも1つの負極2Aと相互に電気的に接続されるように構成されている必要がある。端的に言うと、電極組立体10が全体として電気的に導通可能とする観点から、少なくとも1つの負極が、平面視にて負極側引出しタブ23Xと負極側接続タブ23Yの両方を備えている必要がある。
 本態様では、上述のように外部端子と電気的に接続され得るように構成されている正極側引出し部と、各正極間の電気的導通を確保するために供される正極側接続部が設けられている。同様に、本態様では、上述のように外部端子と電気的に接続され得るように構成されている負極側引出し部と、各負極間の電気的導通を確保するために供される負極側接続部が設けられている。本態様では、当該引出し部と当該接続部とを設けた上で、各正極間および各負極間を全体として電気的に接続可能としている。従って、引出し部を任意の箇所に設置すれば、それに起因して当該引出し部と電気的に接続される外部端子の設置の自由度を高めることができ得る。
 一態様では、例えば図7に示すように、正極側引出し部14Xおよび負極側引出し部24X、並びに正極側接続部14Yおよび負極側接続部24Yが、外装体内の一方の側のみにそれぞれ配置されるように構成されていることが好ましい。
 かかる構成を採ると、例えば、正極側引出し部14Xと正極側接続部14Yが電極組立体10の一方の側に配置される一方、負極側引出し部24Xと負極側接続部24Yが電極組立体10の一方の側に対向する他方の側に配置されている場合と比べて、例えば電極組立体10の他方の側に負極側引出し部24Xと負極側接続部24Yが存在しないことに起因して平面視において電極組立体10の幅寸法を相対的に小さくすることができ得る。従って、かかる電極組立体10の幅寸法の相対的な低減に起因して、電極組立体10を内部に収容する外装体の寸法を相対的に小さくすることができ得る。つまり、本発明の一実施形態に係る二次電池の寸法を相対的に小さくすることができ得る。
 別の態様では、電極組立体10’は、少なくとも平面積層構造型サブ電極組立体と巻回構造型サブ電極組立体を備えていてよい(図8参照)。平面積層構造型サブ電極組立体10A’は、正極1A’、負極2A’およびセパレータ3A’を含む単位電極ユニットが複数積層されたものである。一方、巻回構造型サブ電極組立体10B’は、正極1B’、負極2B’およびセパレータ3B’を含む電極ユニットがロール状に巻回されたものである。この場合において、一例を挙げると、電極組立体10’では、巻回構造型サブ電極組立体10Bは、図8に示すように断面視にて平面積層構造型サブ電極組立体10Aの幅寸法よりも大きな幅寸法を有し、かつ当該平面積層構造型サブ電極組立体10Aの下方に位置するように平面積層構造型サブ電極組立体10Aと相互に接触していてよい。
 なお、これに限定されることなく、更に別の態様では、平面積層構造型サブ電極組立体は、断面視にて巻回構造型サブ電極組立体の幅寸法よりも大きな幅寸法を有し、かつ当該巻回構造型サブ電極組立体の下方に位置するように巻回構造型サブ電極組立体と相互に接触していてよい。
 更に別の態様では、電極組立体は少なくとも2つの巻回構造型のサブ電極組立体を備えていてよい(図示せず)。例えば、電極組立体は、第1巻回構造型サブ電極組立体および第2巻回構造型サブ電極組立体を備えていてよい。第1巻回構造型サブ電極組立体および第2巻回構造型サブ電極組立体は共に、正極、負極、およびセパレータを含む電極ユニットがロール状に巻回されたものである。この場合において、一例を挙げると、電極組立体では、第2巻回構造型平面積層構造型サブ電極組立体が、断面視にて第1巻回構造型サブ電極組立体の幅寸法よりも大きな幅寸法を有し、かつ第1巻回構造型サブ電極組立体の下方に位置するように第1巻回構造型サブ電極組立体と相互に接触していてよい。
 なお、上述の電極組立体が少なくとも2つの平面積層構造型のサブ電極組立体を備えている態様(図5参照)において述べた内容と重複する部分があるため、詳細な説明は避けるが、電極組立体が少なくとも平面積層構造型サブ電極組立体と巻回構造型サブ電極組立体を備えている態様(図8参照)、および電極組立体が少なくとも2つの巻回構造型のサブ電極組立体を備えている態様(図示せず)のいずれの態様においても、各電極の引出しタブ同士を接続する引出し部のみを用いるパターンが適用されてよいし、外部端子の設置自由度を向上させる観点から上述の引出し部と接続部とを併用するパターンが適用されてよい。
 本発明の一実施形態に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
 100A,100B       二次電池
 1,1A,1B         正極
 2,2A,2B         負極
 3,3A,3B         セパレータ
 10,10A,10B      電極組立体
 10A            第1平面積層構造型サブ電極組立体
 10A            第2平面積層構造型サブ電極組立体
 10A’           平面積層構造型サブ電極組立体
 10B’           巻回構造型サブ電極組立体
 20A,20B,20C,20D 外装体
 20Aa            第1段部
 20Aa           第1段部の上面
 20Aa           第1段部の端部側面
 20Ab            第2段部
 20Ab           第2段部の上面
 20Ba            第1段部
 20Ba           第1段部の上面
 20Ba           第1段部の端部側面
 20Bb            第2段部
 20Bb           第2段部の端部側面
 20Bb           第2段部の上面
 20Bc            第3段部
 20Bc           第3段部の上面
 20Ab           段差面
 20Bb           第1段差面
 20Bc           第2段差面
 20Ca            第1段部
 20Ca           第1段部の上面
 20Ca           第1段差面
 20Cb            第2段部
 20Cb           第2段部の上面
 20Cc            第3段部
 20Cc           第3段部の上面
 20Cc           第2段差面

 20Da            第1段部
 20Db            第2段部
 20Da           第1段部の上面
 20Db            第2段部
 20Db           第2段部の上面
 20Db           第1段差面
 20Db’          第1段差面
 30A,30B,30C,30D 外部端子

Claims (16)

  1.  正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体と、電解質とが外装体に収容された二次電池であって、
     前記外装体は、相互に隣接しかつ上面の高さが相互に異なる少なくとも2つの段部を備え、
     相対的に高さが低い低段部の上面と該低段部に隣接する相対的に高さが高い高段部の上面との間に段差面が形成され、および、
     前記二次電池の外部端子が、前記段差面および前記低段部の前記上面の少なくとも一方に露出するように構成されている、二次電池。
  2.  前記段差面が前記高段部の側面を成している、請求項1に記載の二次電池。
  3.  前記低段部の前記上面が、前記段差面の延在方向に対して異なる方向に延在するように前記段差面と連続する、請求項1又は2に記載の二次電池。
  4.  前記段差面が、前記低段部の前記上面と、該低段部の一方の側に隣接する前記高段部の前記上面との間に形成されている、請求項1~3のいずれかに記載の二次電池。
  5.  前記段差面が、前記低段部の前記上面と、該低段部の両側に隣接する前記高段部の前記上面との間にそれぞれ形成されている、請求項1~4のいずれかに記載の二次電池。
  6.  前記二次電池が、平面視において一方向に延在する第1段差面と該一方向とは異なる方向に延在する第2段差面とを備えており、
     前記第1段差面と前記第2段差面とが連続形態を成している、請求項1~5のいずれかに記載の二次電池。
  7.  前記電極組立体は、断面視において幅寸法の異なる少なくとも2つのサブ電極組立体を備えている、請求項1~6のいずれかに記載の二次電池。
  8.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有する、請求項1~7のいずれかに記載の二次電池。
  9.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む電極ユニットをロール状に巻回した巻回構造を有する、請求項1~8のいずれかに記載の二次電池。
  10.  前記電極組立体が、前記平面積層構造と前記巻回構造との組合せから成っている、請求項8に従属する請求項9に記載の二次電池。
  11.  前記低段部の前記上面上に、基板を配置可能と成っており、
     前記外部端子は、配線を介して前記低段部の前記上面上に配置された前記基板と電気的に接続可能に構成されている、請求項1~10のいずれかに記載の二次電池。
  12.  前記基板がリジッド基板またはフレキシブル基板である、請求項11に記載の二次電池。
  13.  前記基板が保護回路基板である、請求項11又は12に記載の二次電池。
  14.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1~13のいずれかに記載の二次電池。
  15.  請求項1~14のいずれかに記載の前記二次電池;および
     前記低段部の前記上面上に配置された前記基板を含む、デバイス。
  16.  前記デバイスがモバイル機器である、請求項15に記載のデバイス。
PCT/JP2017/039448 2016-12-06 2017-10-31 二次電池 WO2018105277A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237019 2016-12-06
JP2016-237019 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018105277A1 true WO2018105277A1 (ja) 2018-06-14

Family

ID=62490950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039448 WO2018105277A1 (ja) 2016-12-06 2017-10-31 二次電池

Country Status (1)

Country Link
WO (1) WO2018105277A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110038A (ja) * 2011-11-23 2013-06-06 Denso Corp 組電池
JP2014524131A (ja) * 2012-05-25 2014-09-18 エルジー・ケム・リミテッド 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
JP2016207307A (ja) * 2015-04-16 2016-12-08 ヤマハ発動機株式会社 バッテリ、バッテリケース及び電動車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110038A (ja) * 2011-11-23 2013-06-06 Denso Corp 組電池
JP2014524131A (ja) * 2012-05-25 2014-09-18 エルジー・ケム・リミテッド 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
JP2016207307A (ja) * 2015-04-16 2016-12-08 ヤマハ発動機株式会社 バッテリ、バッテリケース及び電動車両

Similar Documents

Publication Publication Date Title
WO2017209052A1 (ja) 二次電池
WO2018154989A1 (ja) 二次電池およびその製造方法
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US20190348647A1 (en) Secondary battery
US20190181505A1 (en) Secondary battery
US11417912B2 (en) Secondary battery and method of manufacturing the same
WO2018155210A1 (ja) 二次電池および二次電池の製造方法
US11411241B2 (en) Secondary battery
US11387493B2 (en) Secondary battery
JP6885410B2 (ja) 二次電池
US20190334210A1 (en) Secondary battery
JP6888634B2 (ja) 二次電池
WO2018163775A1 (ja) 二次電池の製造方法
WO2018105277A1 (ja) 二次電池
WO2017208534A1 (ja) 二次電池
WO2018154987A1 (ja) 二次電池およびその製造方法
WO2018100846A1 (ja) 二次電池およびデバイス
WO2018100927A1 (ja) 二次電池およびデバイス
WO2017208683A1 (ja) 二次電池
WO2017208532A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP