WO2017208534A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2017208534A1
WO2017208534A1 PCT/JP2017/007339 JP2017007339W WO2017208534A1 WO 2017208534 A1 WO2017208534 A1 WO 2017208534A1 JP 2017007339 W JP2017007339 W JP 2017007339W WO 2017208534 A1 WO2017208534 A1 WO 2017208534A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
negative electrode
secondary battery
positive electrode
outer package
Prior art date
Application number
PCT/JP2017/007339
Other languages
English (en)
French (fr)
Inventor
堀江 拓也
泰拓 松▲崎▼
和也 石濱
達夫 新野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017208534A1 publication Critical patent/WO2017208534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • a secondary battery generally has a structure in which an electrode assembly (electrode body) is accommodated in an exterior body (case).
  • a spacer for filling the gap between the electrode assembly and the inner surface of the exterior body to prevent the movement of the electrode assembly is provided in the exterior body (for example, Patent Document 1).
  • the secondary battery 500 generally includes an electrode assembly 550 that includes a positive electrode 501, a negative electrode 502, and a separator 503 disposed between the positive electrode 501 and the negative electrode 502.
  • the non-aqueous electrolyte (not shown) is accommodated in the outer package 560.
  • the positive electrode 501 is provided with a positive electrode material layer 515 on the surface of the positive electrode current collector 510.
  • a negative electrode material layer 525 is provided on the surface of the negative electrode current collector 520.
  • the exterior body 560 includes a main body portion 561 and a lid portion 562.
  • spacers 570 and 575 made of a polymer film are interposed between the electrode assembly 550 and the inside of the exterior body 560.
  • An object of the present invention is to provide a secondary battery that achieves thinning and high capacity.
  • the present invention is arranged between a positive electrode having a positive electrode material layer provided on at least one surface of a positive electrode current collector, a negative electrode having a negative electrode material layer provided on at least one surface of a negative electrode current collector, and the positive electrode and the negative electrode.
  • a conductive exterior body is used, and the exterior body has positive polarity or negative polarity in order to positively contact the exterior body and one of the positive electrode and the negative electrode.
  • at least one spacer can be omitted.
  • thickness reduction or size reduction of a secondary battery can be achieved.
  • the spacer can be omitted and the size of the electrode assembly can be increased to the very inner side of the exterior body, the battery capacity can be increased. Since the outermost electrode and the exterior body in the electrode assembly have the same polarity, it is possible to prevent a short circuit due to contact between the electrode assembly and the exterior body.
  • the schematic sectional drawing of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • the schematic sectional drawing of another example of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • the schematic sectional drawing of another example of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • the schematic sectional drawing of another example of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • the schematic sectional drawing of another example of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • the schematic plan view showing an example of the shape which the secondary battery which concerns on this invention can have is shown.
  • the schematic plan view showing an example of the shape which the secondary battery which concerns on this invention can have is shown.
  • the schematic sectional drawing of another example of the secondary battery which concerns on the 1st embodiment of this invention is shown.
  • FIG. 10A is a schematic cross-sectional view of the secondary battery in FIG.
  • the schematic sectional drawing of the secondary battery which concerns on a prior art is shown.
  • the present invention provides a secondary battery.
  • the term “secondary battery” refers to a battery that can be repeatedly charged and discharged.
  • the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”.
  • the secondary battery of the present invention is composed of at least a positive electrode, a negative electrode, a separator, an electrolyte, and an exterior body.
  • the secondary battery of the present invention has a positive electrode (1, 1 ′, 1 ′ ′′), a negative electrode (2, 2 ′, 2 ′′, 2 ′ ′′) as shown in FIGS.
  • an electrode assembly (50A to 50I) including a separator (3, 3a, 3b) and an electrolyte (not shown) are accommodated and sealed in the outer casing 6, and the positive electrode and the negative electrode Are arranged alternately.
  • the outer package has conductivity and has a positive polarity or a negative polarity.
  • the exterior body having a positive polarity or a negative polarity means that the exterior body has either a positive polarity or a negative polarity.
  • contact means electrical contact.
  • the exterior body has a negative polarity in a broad sense means that the exterior body has a negative electrode function, for example, a characteristic that can cause a reaction in which the exterior body receives electrons on the inner surface during charging.
  • the exterior body has a negative polarity means that the exterior body has a potential that is closer to the potential of the negative electrode than the potential of the positive electrode during charging and discharging. It means having.
  • the exterior body having a potential substantially equal to that of the negative electrode means that the exterior body has a potential within a range of ⁇ 1 V of the negative electrode potential during charging and discharging.
  • the exterior body having positive polarity means that the exterior body has a positive electrode function in a broad sense, for example, a characteristic that can cause a reaction in which the exterior body generates electrons on the inner surface during charging.
  • the exterior body has a positive polarity means that the exterior body has a potential closer to the potential of the positive electrode than the potential of the negative electrode during charging and discharging. It means having.
  • the exterior body having a potential substantially equal to that of the positive electrode means that the exterior body has a potential within a range of ⁇ 1 V of the potential of the positive electrode during charging and discharging.
  • the exterior body has a positive polarity or a negative polarity, at least one spacer can be omitted, so that the secondary battery can be reduced in thickness or size. Further, since the size of the electrode assembly can be increased, an increase in battery capacity can be achieved. Further, when the electrode assembly is a planar laminated structure type described later, since at least one of the electrodes facing the inner side of the outer package in the thickness direction of the electrode assembly has the same polarity as the electrode, It is possible to prevent a short circuit due to contact between the assembly and the exterior body.
  • the electrode assembly is a wound structure type, which will be described later, since the electrode on the outermost surface of the electrode assembly and the exterior body have the same polarity, a short circuit due to contact between the electrode assembly and the exterior body is prevented. Is possible.
  • the secondary battery 100 ⁇ / b> A includes a plurality of electrodes in which an electrode assembly 50 ⁇ / b> A includes a positive electrode 1, a negative electrode 2, and a separator 3 disposed between the positive electrode 1 and the negative electrode 2. While having the plane lamination structure which laminated
  • both of the electrodes facing the inner side of the outer package 6 (that is, the outermost electrode) in the thickness direction of the electrode assembly are both negative electrodes 2.
  • both the electrodes 2 and the inside of the outer package 6 are in contact with each other.
  • the exterior body 6 has negative polarity.
  • the thickness direction of the electrode assembly corresponds to the vertical direction in the figure.
  • the plurality of positive electrodes 1 are electronically connected to the positive electrode external terminal 5a through the positive electrode current collecting lead 4a.
  • the positive electrode external terminal 5a is fixed to the exterior body 6 by a seal portion 7a, and the seal portion 7a prevents electrolyte leakage.
  • the insulation between the positive electrode external terminal 5a and the exterior body 6 is ensured by using an insulating polymer or the like as a constituent material of the seal portion 7a.
  • the insulating polymer any insulating polymer used for forming a seal portion in the field of secondary batteries can be used, and examples thereof include a silicone resin.
  • the plurality of negative electrodes 2 are electronically connected to the negative electrode external terminal 5b through the negative electrode current collecting lead 4b.
  • the negative electrode external terminal 5b is fixed to the exterior body 6 by a seal portion 7b, and the seal portion 7b prevents electrolyte leakage.
  • the insulating polymer or the like may be used as a constituent material of the seal portion 7b.
  • the exterior body 6 has a negative polarity, the negative electrode external terminal 5b and the exterior body 6 It is not always necessary to ensure insulation.
  • the outermost electrodes it is only necessary that at least one of the outermost electrodes is a negative electrode, and the negative electrode is in contact with the inside of the outer package.
  • the positive electrode is ensured to be insulated from the inside of the exterior body by the interposition of a spacer.
  • the outer body 6 in the electrode assembly 50 ⁇ / b> B, when the uppermost electrode among the outermost electrodes is the positive electrode 1, the outer body 6 has a negative polarity. 7 is ensured to be insulated from the inside of the exterior body 6.
  • FIG. 2 in the electrode assembly 50 ⁇ / b> B, when the uppermost electrode among the outermost electrodes is the positive electrode 1, the outer body 6 has a negative polarity. 7 is ensured to be insulated from the inside of the exterior body 6.
  • FIG. 2 is the same as the secondary battery 100A of FIG. 1 except that the uppermost electrode in the electrode assembly 50B is the positive electrode 1 and that the secondary battery 100B has the spacer 7.
  • the secondary battery in FIG. 3 is the same as the secondary battery 100A in FIG. 1 except that the lowermost electrode in the electrode assembly 50C is the positive electrode 1 and that the secondary battery 100C has the spacer 7.
  • the plurality of positive electrodes 1 are composed of at least a positive electrode material layer and a positive electrode current collector (foil), and the positive electrode material layer 15 may be provided on at least one surface of the positive electrode current collector 10.
  • each of the plurality of positive electrodes 1 may be independently provided with a positive electrode material layer 15 on both surfaces of the positive electrode current collector 10 as shown in FIGS.
  • a positive electrode material layer 15 may be provided on the substrate.
  • the positive electrode 1 is preferably provided with a positive electrode material layer 15 on both surfaces of the positive electrode current collector 10.
  • the positive electrode material layer 15 contains a positive electrode active material.
  • the plurality of negative electrodes 2 includes at least a negative electrode material layer and a negative electrode current collector (foil), and the negative electrode material layer 25 may be provided on at least one surface of the negative electrode current collector 20.
  • each of the plurality of negative electrodes 2 may be independently provided with a negative electrode material layer 25 on both surfaces of the negative electrode current collector 20 as shown in FIG. 1 to FIG.
  • a negative electrode material layer 25 may be provided on the substrate.
  • the negative electrode 2 is preferably provided with a negative electrode material layer 25 on both surfaces of the negative electrode current collector 20.
  • the negative electrode material layer 25 contains a negative electrode active material.
  • the negative electrode 2 ′ (outermost negative electrode 2 ′) in contact with the inside of the outer package 6 has a negative electrode material layer 25 provided on one side of the negative electrode current collector 20.
  • the other surface (the surface of the negative electrode current collector 20) on which the negative electrode material layer is not provided may be in contact with the inside of the outer package 6.
  • the size of the electrode assembly 50D can be increased by the amount of the negative electrode material layer thus formed, and an increase in battery capacity can be achieved.
  • both the negative electrodes 2 ′ are provided with the negative electrode material layer 25 on one side of the negative electrode current collector 20, and the negative electrode It is preferable that the other surface (the surface of the negative electrode current collector 20) where the material layer is not provided is in contact with the inside of the exterior body 6, but the negative electrode material layer is not provided in at least one of the negative electrodes 2 ′. It is sufficient that the contact between the other surface (the surface of the negative electrode current collector 20) and the inside of the exterior body 6 is achieved.
  • FIG. 4 is a schematic cross-sectional view of another example of the secondary battery according to this embodiment.
  • the outermost negative electrode 2 ′ in the electrode assembly 50D is in contact with the inside of the outer package 6 on the other surface (the surface of the negative electrode current collector 20) where the negative electrode material layer is not provided.
  • the secondary battery is the same as the secondary battery 100A in FIG.
  • the shape of the secondary battery of the present embodiment is not particularly limited, and in a plan view (plan view) when viewed from directly above in the thickness direction of the secondary battery (electrode assembly), for example, a square as shown in FIG.
  • the shape may be a shape having a notch portion (for example, a different shape in which the notch portion 8 is formed in a square shape as shown in FIG. 5B).
  • the internal electrode assembly also has a shape corresponding to the said shape.
  • the plan view is a state when an object (for example, a secondary battery) is placed and viewed from directly above in the thickness (height) direction, and is in agreement with the plan view.
  • the irregular shape in the planar view shape of the secondary battery is a shape having a notch portion in the planar view.
  • the notch is a part where a part of the notch is intentionally lost from the initial shape.
  • the initial shape before the notch formation is usually rectangular.
  • the planar view shape of the notch is not particularly limited, and examples thereof include a rectangular shape, a triangular shape, a fan shape, a semicircular shape, and a circular shape.
  • the shape of the secondary battery of this embodiment is also such that the stepped portion 9 is formed in a shape having a stepped portion (for example, a rectangular parallelepiped shape as shown in FIG. 6) in a side view (side view or cross-sectional view) of the secondary battery. Shape).
  • the internal electrode assembly 50E also has a shape corresponding to the shape as shown in FIG.
  • FIG. 6 is a schematic cross-sectional view of another example of the secondary battery according to this embodiment.
  • the outer package 6 has the step portion 9 in a side view, and accordingly, the dimensions of the positive electrode 1 ′ and the negative electrode 2 ′′ of the electrode assembly 50E are different from those of the secondary battery 100A of FIG. It is the same.
  • the lowermost electrode in the step part 9 is a negative electrode
  • the negative electrode and the inside of the exterior body 6 in the step part 9 may be in contact or may not be in contact.
  • the outer package 6 has a negative polarity in this embodiment. Therefore, the lowermost positive electrode is insulated from the inside of the outer package 6 through the spacer 7. Is secured.
  • the side view is a state when an object (for example, a secondary battery) is placed and viewed from the side in the thickness (height) direction, and is in agreement with the side view.
  • the step portion is a portion having a different thickness (for example, a portion having a small thickness).
  • the secondary battery of this embodiment may have a stepped portion 9 that is smaller in thickness by one step than other portions, or has a stepped portion that is multistep and smaller in thickness. It may be.
  • the electrode assembly is fixed inside the exterior body 6. This is because the movement of the electrode assembly within the exterior body is prevented, and the electrode assembly is prevented from being destroyed.
  • Fixing means that the electrode assembly is fixed to the exterior body.
  • the fixing method is not particularly limited as long as fixing of the electrode assembly to the exterior body is achieved, and examples thereof include a method using an adhesive.
  • the electrode assembly may be fixed to the outer body as long as the electrode assembly is fixed to at least one of the main body 61 or the lid 62 of the outer body 6.
  • the contact may be secured at a part of the interface while ensuring the contact.
  • a non-conductive adhesive is used as the adhesive
  • the non-conductive adhesive layer is used as the spacer 7.
  • the fixation may be achieved at at least a part of the interface between the outer package 6 and the spacer 7, and the fixation may be achieved at at least a part of the interface between the spacer 7 and the positive electrode 1.
  • the non-conductive adhesive any non-conductive adhesive used in the field of secondary batteries can be used, and examples thereof include an acrylic polymer-based adhesive.
  • the contact between the negative electrode 2 and the exterior body 6 is, for example, by surface contact with the bottom 610 of the main body 61 and / or the lid 62 in the exterior body 6 as shown in FIGS. It is achieved, but is not limited to this.
  • the contact between the negative electrode 2 and the outer package 6 due to the contact with the outer package side surface portion 611 that is erected in the left-right direction and the front-back direction in these drawings. Contact may be achieved.
  • the positive electrode active material included in the positive electrode material layer and the negative electrode active material included in the negative electrode material layer are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. As will be described later, the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery according to this embodiment corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and a binder (also referred to as a “binder”) is included in the positive electrode material layer for sufficient contact between the particles and shape retention. preferable. Furthermore, it is also preferable that a conductive additive is included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, and smooth transmission of electrons that promote the battery reaction. In order to do so, a conductive aid may be included in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to this embodiment, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer is polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer is carbon black.
  • the binder and conductive additive of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer is artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer is styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator 3 is a member provided from the viewpoints of preventing a short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous film used as the separator may include, for example, only polyethylene (PE) or only polyethylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer.
  • the surface of the separator may have adhesiveness.
  • Electrolyte helps the movement of metal ions released from the electrodes (positive and negative electrodes).
  • the electrolyte may be a “non-aqueous” electrolyte, such as an organic electrolyte and an organic solvent, or may be a “aqueous” electrolyte containing water.
  • the secondary battery of the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a “non-aqueous” solvent and a solute is used as an electrolyte.
  • the electrolyte may have a form such as liquid or gel (in the present specification, “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution”).
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • non-aqueous electrolyte for example, a mixture of ethylene carbonate and diethyl carbonate.
  • nonaqueous electrolyte solutes for example, Li salts such as LiPF 6 and LiBF 4 are preferably used.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the positive electrode current collecting lead 4a is preferably made of aluminum
  • the negative electrode current collecting lead 4b is preferably made of nickel.
  • the form of the positive electrode current collector lead 4a and the negative electrode current collector lead 4b is not particularly limited, and may be, for example, a linear shape or a plate shape.
  • any external terminals used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the positive electrode external terminal 5a is preferably made of aluminum, and the negative electrode external terminal 5b is preferably made of copper.
  • the form of the positive electrode external terminal 5a and the negative electrode external terminal 5b is not particularly limited, and is usually plate-shaped.
  • the exterior body 6 is usually a conductive hard case and includes a main body portion 61 and a lid portion 62.
  • the main body portion 61 includes a bottom portion 610 that constitutes the bottom surface of the exterior body and two sets of side surface portions 611 that are erected in the left-right direction and the front-back direction in the drawing.
  • the main body 61 and the lid 62 are sealed after receiving the electrode assembly, the electrolyte, and, if desired, the current collecting lead and the external terminal.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • any material capable of constituting a hard case type exterior body in the field of secondary batteries can be used.
  • Such a material may be any material that can achieve electron transfer, and examples thereof include conductive materials such as aluminum, nickel, iron, copper, and stainless steel.
  • Both main body 61 and lid 62 are preferably made of aluminum.
  • the dimensions of the main body 61 and the lid 62 are mainly determined according to the dimensions of the electrode assembly. For example, when the electrode assembly is accommodated, the movement of the electrode assembly within the exterior body (for example, the vertical direction in FIG. It is preferable that the electrode assembly has such a dimension that the displacement of the electrode assembly in the left-right direction and the front-back direction is prevented. By preventing the movement of the electrode assembly, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
  • the exterior body 6 may be a flexible case such as a pouch made of a laminate film as long as it has conductivity.
  • the spacer 7 is not particularly limited as long as, for example, electronic contact between the electrode and the exterior body is prevented.
  • various insulating polymers such as polyolefin (polyethylene, polypyropylene), polyester (polyethylene terephthalate, polybutylene terephthalate), acrylic polymer and the like are usually mentioned.
  • the spacer 7 usually has a film form, but may have any form as long as the contact between the electrode and the outer package is prevented, and examples thereof include a nonwoven fabric.
  • the secondary battery 100 ⁇ / b> F includes a plurality of electrodes in which the electrode assembly 50 ⁇ / b> F includes a positive electrode 1, a negative electrode 2, and a separator 3 disposed between the positive electrode 1 and the negative electrode 2. While having a planar laminated structure in which the units are laminated in a planar shape, the outer package 6 has positive polarity.
  • FIG. 7 is a schematic cross-sectional view of the secondary battery according to this embodiment.
  • the secondary battery 100F of FIG. 7 is the secondary battery of FIG. 1 except that the outermost electrode in the electrode assembly 50F is the positive electrode 1 and that the outer package 6 has a positive polarity, and the following special note. It is the same as battery 100A.
  • both of the electrodes facing the inner side of the exterior body 6 are both positive electrodes 1.
  • both the electrodes are in contact with the inside of the outer package 6.
  • the exterior body 6 has positive polarity. At this time, it is only necessary that at least one of the electrodes 1 is in contact with the inside of the outer package 6.
  • an insulating polymer similar to the insulating polymer in the first embodiment may be used as a constituent material of the seal portion 7a for fixing the positive electrode external terminal 5a. Since the body 6 has positive polarity, it is not always necessary to ensure the insulation between the positive electrode external terminal 5a and the exterior body 6.
  • an insulating polymer similar to the insulating polymer in the first embodiment is used, so that the negative electrode external terminal 5b and the exterior body 6 are separated from each other. Insulation is ensured.
  • the outermost electrodes is a positive electrode, and the positive electrode and the inside of the outer package are in contact with each other.
  • the negative electrode is ensured to be insulated from the inside of the exterior body by the interposition of a spacer.
  • the electrode assembly 50 ⁇ / b> G when the uppermost electrode among the outermost electrodes is the negative electrode 2, the outer casing 6 has a positive polarity, so the uppermost negative electrode 2 is a spacer. 7 is ensured to be insulated from the inside of the exterior body 6.
  • FIG. 8 in the electrode assembly 50 ⁇ / b> G, when the uppermost electrode among the outermost electrodes is the negative electrode 2, the outer casing 6 has a positive polarity, so the uppermost negative electrode 2 is a spacer. 7 is ensured to be insulated from the inside of the exterior body 6.
  • FIG. 8 in the electrode assembly 50 ⁇ / b> G, when the uppermost electrode among the outermost electrodes is the negative electrode 2, the outer casing 6 has a positive polarity, so the
  • FIG. 8 is the same as the secondary battery 100F in FIG. 7 except that the uppermost electrode in the electrode assembly 50G is the negative electrode 2 and that the secondary battery 100G has the spacer 7.
  • the secondary battery in FIG. 9 is the same as the secondary battery 100F in FIG. 7 except that the lowermost electrode in the electrode assembly 50H is the negative electrode 2 and that the secondary battery 100H has the spacer 7.
  • the positive electrode in contact with the inside of the outer package 6 is provided with a positive electrode material layer 15 on one surface of the positive electrode current collector 10 like the negative electrode 2 ′ in contact with the inner side of the outer package 6 in FIG. 4.
  • the other surface (the surface of the positive electrode current collector 10) where the positive electrode material layer is not provided may be in contact with the inside of the outer package 6.
  • the positive electrode material layer 15 is omitted and the size of the electrode assembly is increased by that amount, rather than contacting the outermost positive electrode with the inside of the outer package 6 with the positive electrode material layer 15. This can achieve an increase in battery capacity.
  • both positive electrodes are provided with the positive electrode material layer 15 on one surface of the positive electrode current collector 10 and the other surface on which the positive electrode material layer is not provided.
  • the surface of the positive electrode current collector 10 is in contact with the inside of the outer package 6, at least one of the positive electrodes is the other surface where the positive electrode material layer is not provided (the surface of the positive electrode current collector 10). And contact with the inside of the exterior body 6 only needs to be achieved.
  • contact between the other surface where the positive electrode material layer is not provided (the surface of the positive electrode current collector) and the inside of the exterior body is achieved in the one positive electrode. May be.
  • the shape of the secondary battery of this embodiment is not particularly limited, and in a plan view when viewed from directly above in the thickness direction of the secondary battery (electrode assembly), similarly to the secondary battery in the first embodiment, For example, it may have a quadrangular shape as shown in FIG. 5A or a shape having a notch (for example, a different shape in which the notch 8 is formed in a quadrangular shape as shown in FIG. 5B).
  • the shape of the secondary battery of this embodiment may also be a shape having a stepped portion in a side view (cross-sectional view) of the secondary battery, similar to the secondary battery of the first embodiment.
  • the secondary battery of this embodiment has such a shape in a side view
  • the lowermost electrode in the step portion is a positive electrode
  • the positive electrode and the inside of the exterior body in the step portion are in contact with each other. Or may not be in contact.
  • the lowermost electrode in the step portion is a negative electrode
  • the exterior body has positive polarity in the present embodiment, and therefore, the lowermost negative electrode has insulation from the inside of the exterior body by interposing a spacer.
  • the electrode assembly is fixed to at least a part of the inside of the outer package 6 as in the first embodiment.
  • the positive electrode 1 and the inside of the exterior body 6 are in contact with each other, it is only necessary to achieve fixing at a part of the interface while ensuring the contact.
  • a non-conductive adhesive is used as the adhesive, and the non-conductive adhesive layer is used as the spacer 7.
  • the fixation may be achieved at at least a part of the interface between the outer package 6 and the spacer 7, and the fixation may be achieved at at least a part of the interface between the spacer 7 and the negative electrode 2.
  • the contact between the positive electrode 1 and the exterior body 6 is achieved by surface contact with the bottom 610 of the main body 61 and / or the lid 62 in the exterior body 6 as shown in FIGS.
  • the positive electrode 1 and the exterior body 6 are brought into contact with each other by the contact with the exterior body side surface portion 611 that is erected in the left-right direction and the front-back direction in these drawings. Contact may be achieved.
  • the secondary battery 100I includes an electrode assembly 50I having a positive electrode 1 ′ ′′, a negative electrode 2 ′ ′′, a positive electrode 1 ′ ′′, and a negative electrode 2 ′′. While having the winding structure which wound the electrode unit containing separator 3a, 3b arrange
  • FIG. 10A is a schematic cross-sectional view of a secondary battery according to this embodiment.
  • FIG. 10B is a schematic cross-sectional view of the secondary battery of FIG.
  • the secondary battery 100I includes an electrode assembly 50I having the winding structure, an electrode on the outermost surface of the electrode assembly 50I being a negative electrode 2 ′ ′′, and the outermost surface. 1 is the same as the secondary battery 100A of FIG. 1 except that the negative electrode 2 ′ ′′ is in contact with the inside of the outer package 6 and the following special note.
  • the positive electrode (1 ′′ ′), the negative electrode (2 ′ ′′), and the separators (3a, 3b) each have a dimension that can form a wound structure.
  • 10A and 10B, the positive electrode 1 ′ ′′ and the negative electrode 2 ′ ′′ are illustrated in a simplified manner, but the positive electrode 1 ′ ′′ is similar to the positive electrode 1 of FIG.
  • the positive electrode material layer 15 may be provided on at least one side of the negative electrode 2 ′ ′′, and the negative electrode 2 ′ ′′ is provided with the negative electrode material layer 25 on at least one side of the negative electrode current collector 20 as in the negative electrode 2 of FIG. Just do it.
  • the secondary battery may have an arrangement in which the positive electrode 1 ′′ ′′ and the negative electrode 2 ′′ ′′ are interchanged in the structure shown in FIGS. 10A and 10B. That is, the electrode on the outermost surface of the electrode assembly is a positive electrode, the positive electrode and the inside of the outer package are in contact, and the outer package 6 may have a positive polarity.
  • the positive electrode external terminal 5a is connected to the positive electrode via the positive electrode current collecting lead 4a
  • the negative electrode external terminal 5b is connected to the negative electrode via the negative electrode current collecting lead 4b.
  • the seal portions 7a and 7b are configured similarly to the seal portions 7a and 7b in the second embodiment.
  • an insulating polymer similar to the insulating polymer in the first embodiment may be used, but the outer package 6 has positive polarity. Therefore, it is not always necessary to ensure the insulation between the positive electrode external terminal 5a and the exterior body 6.
  • an insulating polymer similar to the insulating polymer in the first embodiment is used, so that the negative electrode external terminal 5b and the exterior body 6 are separated from each other. Ensure insulation.
  • the electrode assembly is fixed to at least a part of the inside of the outer package 6 as in the first embodiment.
  • the fixation may be achieved at a part of the interface while ensuring the contact.
  • the positive electrode 1 and the inside of the exterior body 6 are in contact with each other, it is only necessary to achieve fixing at a part of the interface while ensuring the contact.
  • the secondary battery according to the present invention can be used in various fields where power storage is assumed.
  • the secondary battery according to the present invention particularly the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smartphone, a notebook computer, and a digital camera) in which a mobile device is used.
  • Mobile devices such as), household / small industrial applications (eg, power tools, golf carts, household / nursing / industrial robots), large industrial applications (eg, forklifts, elevators, bay harbor cranes) , Transportation systems (for example, hybrid vehicles, electric cars, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed power storage systems, etc.) Field), as well as space and deep sea applications (eg, spacecraft, submersible research vessels) Can be used in any field).
  • household / small industrial applications eg, power tools, golf carts, household / nursing / industrial robots
  • large industrial applications eg, forklifts, elevators, bay harbor cranes
  • Transportation systems for example, hybrid vehicles, electric cars, buses, trains, electric assist bicycles, electric motorcycles, etc.
  • power system applications for example, various power generation, road conditioners, smart grids, general home-installed power storage systems, etc.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本発明は薄型化および高容量化を達成する二次電池を提供する。本発明は、正極集電体10の少なくとも片面に正極材層15が設けられた正極1、負極集電体20の少なくとも片面に負極材層25が設けられた負極2および該正極1と該負極2との間に配置されたセパレータ3を含む電極組立体50Aおよび電解質(図示せず)が外装体6に収容された二次電池100Aであって、前記外装体6が導電性を有し、正極性または負極性の極性を有する、二次電池に関する。

Description

二次電池
 本発明は二次電池に関する。
 従来、種々の電子機器の電源として、二次電池が用いられている。二次電池は一般的に外装体(ケース)内に電極組立体(電極体)が収容された構造を有する。
 二次電池においては、電極組立体と外装体の内面との間隙を充填して電極組立体の移動を防止するためのスペーサーが外装体内に設けられている(例えば、特許文献1)。
 このような二次電池においては、詳しくは、外装体内において、電極組立体の両側にスペーサーが設けられている。具体的には、図11に示すように、二次電池500は一般的には、正極501、負極502および該正極501と該負極502との間に配置されたセパレータ503を含む電極組立体550および非水電解質(図示せず)が外装体560に収容された構造を有する。正極501は、正極集電体510の表面に正極材層515が設けられている。負極502は、負極集電体520の表面に負極材層525が設けられている。外装体560は、本体部561および蓋部562からなっている。このような二次電池500において、電極組立体550と外装体560の内側との間には、ポリマーフィルムからなるスペーサー570,575が介在している。
特開2015-146252号公報
 近年、電子機器の薄型化が進んでおり、それに伴い、二次電池の薄型化および高容量化への要求が高まっている。このような状況のもと、本発明の発明者等は、スペーサー自体が電極にとってのデットスペースをもたらすため、スペーサーさえも薄型化および高容量化には不利であることを見い出したものである。
 本発明は、薄型化および高容量化を達成する二次電池を提供することを目的とする。
 本発明は、正極集電体の少なくとも片面に正極材層が設けられた正極、負極集電体の少なくとも片面に負極材層が設けられた負極および該正極と該負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に収容された二次電池であって、
 前記外装体が導電性を有し、正極性または負極性の極性を有する、二次電池に関する。
 本発明の二次電池においては、導電性の外装体を用い、当該外装体と正極または負極の一方の電極とを積極的に接触させるため、外装体は正極性または負極性の極性を有し、結果として少なくとも1つのスペーサーを省略できる。このため、二次電池の薄型化または小型化を達成できる。また、スペーサーを省略し、電極組立体のサイズを外装体の内側のぎりぎりまで大きくすることが可能となるため、電池容量の増加を達成できる。
 電極組立体における最外の電極と外装体とが同一の極性を有することで、電極組立体と外装体との接触による短絡を防ぐことが可能となる。
本発明の第1実施態様に係る二次電池の概略断面図を示す。 本発明の第1実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明の第1実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明の第1実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明に係る二次電池が有し得る形状の一例を表す概略平面図を示す。 本発明に係る二次電池が有し得る形状の一例を表す概略平面図を示す。 本発明の第1実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明の第2実施態様に係る二次電池の概略断面図を示す。 本発明の第2実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明の第2実施態様に係る二次電池の別の一例の概略断面図を示す。 本発明の第3実施態様に係る二次電池の概略断面図を示す。 図10Aの二次電池をP-P断面で矢印方向でみたときの概略断面図を示す。 従来技術に係る二次電池の概略断面図を示す。
 本発明は二次電池を提供する。本明細書中、「二次電池」という用語は充電・放電の繰り返しが可能な電池のことを指している。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。
 本発明の二次電池は、少なくとも正極、負極、セパレータ、電解質および外装体から構成されている。本発明の二次電池は詳しくは、例えば図1~図10に示すように、正極(1、1’、1’’’)、負極(2、2’、2’’、2’’’)およびセパレータ(3、3a、3b)を含む電極組立体(50A~50I)および電解質(図示せず)が外装体6に収容および封入された構造を有しており、正極と負極とがセパレータを介して交互に配置されている。
 本発明においては、外装体は導電性を有し、かつ正極性または負極性の極性を有している。外装体が正極性または負極性の極性を有しているとは、外装体が正極性または負極性のいずれか一方の極性を有しているという意味である。外装体が負極と接触しているとき、外装体は負極性を有し、また外装体が正極と接触しているとき、外装体は正極性を有している。本明細書中、「接触」とは電気的接触のことである。
 外装体が負極性を有するとは、広義には、外装体が負極機能を有し、例えば、充電時において外装体が内面において電子を受け取る反応を引き起こし得る特性を有することをいう。狭義には、外装体が負極性を有するとは、外装体が充電時および放電時において正極の電位よりも負極の電位に近似した電位を有すること、より狭義には負極と略同等の電位を有することをいう。外装体が負極と略同等の電位を有するとは、外装体が充電時および放電時において負極の電位の±1Vの範囲内の電位を有することをいう。
 外装体が正極性を有するとは、広義には、外装体が正極機能を有し、例えば、充電時において外装体が内面において電子を生成する反応を引き起こし得る特性を有することをいう。狭義には、外装体が正極性を有するとは、外装体が充電時および放電時において負極の電位よりも正極の電位に近似した電位を有すること、より狭義には正極と略同等の電位を有することをいう。外装体が正極と略同等の電位を有するとは、外装体が充電時および放電時において正極の電位の±1Vの範囲内の電位を有することをいう。
 外装体が正極性または負極性の極性を有することにより、少なくとも1つのスペーサーを省略できるため、二次電池の薄型化または小型化を達成できる。また電極組立体のサイズをより大きくすることが可能となるため、電池容量の増加を達成できる。
 さらに電極組立体が後述する平面積層構造型の場合においては、電極組立体の厚み方向において外装体の内側と対面する電極のうち少なくとも一方の電極と外装体とが同一の極性を有するため、電極組立体と外装体との接触による短絡を防ぐことが可能となる。電極組立体が後述する巻回構造型の場合においては、電極組立体の最外表面の電極と外装体とが同一の極性を有するため、電極組立体と外装体との接触による短絡を防ぐことが可能となる。
 以下、本発明の二次電池を、幾つかの実施態様により図面を用いて詳しく説明するが、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。本明細書で直接的または間接的に用いる“上下方向”、“左右方向”および“表裏方向”はそれぞれ、図中における上下方向、左右方向および表裏方向に対応した方向に相当する。特記しない限り、同じ符号または記号は、同じ部材または同じ意味内容を示すものとする。
[第1実施態様]
 第1実施態様に係る二次電池100Aは、図1に示すように、電極組立体50Aが、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む複数の電極ユニットを平面状に積層した平面積層構造を有するとともに、外装体6が負極性を有している。
 本実施態様の二次電池100Aの電極組立体50Aは、電極組立体の厚み方向において外装体6の内側と対面する電極(すなわち最外の電極)のうち両方の電極がいずれも負電極2であって、当該両方の電極2と外装体6の内側とが接触している。このため、外装体6は負極性を有している。このとき、当該両方の電極2のうち、少なくとも一方の電極2が外装体6の内側と接触していればよい。電極組立体の厚み方向は、図中、上下方向に対応する。
 本実施態様の二次電池において、複数の正極1は、正極用集電リード4aを介して、正極用外部端子5aに電子的に連結されている。正極用外部端子5aはシール部7aにより外装体6に固定され、当該シール部7aは電解質の液漏れを防止する。本実施態様においては、外装体6は負極性を有しているため、シール部7aの構成材料として絶縁性ポリマー等を用いることにより、正極用外部端子5aと外装体6との絶縁性が確保されている。絶縁性ポリマーとしては、二次電池の分野でシール部の形成に使用されるあらゆる絶縁性ポリマーが使用可能であり、例えば、シリコーン樹脂が挙げられる。
 複数の負極2は、負極用集電リード4bを介して、負極用外部端子5bに電子的に連結されている。負極用外部端子5bはシール部7bにより外装体6に固定され、当該シール部7bは電解質の液漏れを防止する。本実施態様においては、シール部7bの構成材料として前記の絶縁性ポリマー等を用いてもよいが、外装体6は負極性を有しているため、負極用外部端子5bと外装体6との絶縁性を必ずしも確保する必要はない。
 本実施態様の二次電池においては、最外の電極のうち少なくとも一方の電極が負極であり、かつ当該負極と外装体の内側とが接触していればよい。最外の電極のうち一方の電極が正極である場合には、当該正極はスペーサーの介在により外装体の内側との絶縁性が確保される。例えば図2に示すように、電極組立体50Bにおいて、最外の電極のうち最上の電極が正極1である場合、外装体6は負極性を有しているため、当該最上の正極1はスペーサー7の介在により外装体6の内側との絶縁性が確保される。また例えば図3に示すように、電極組立体50Cにおいて、最外の電極のうち最下の電極が正極1である場合、外装体6は負極性を有しているため、当該最下の正極1はスペーサー7の介在により外装体6の内側との絶縁性が確保される。図2および図3はそれぞれ本実施態様に係る二次電池の別の一例の概略断面図を示す。図2の二次電池は、電極組立体50Bにおいて最上の電極が正極1であること、および当該二次電池100Bがスペーサー7を有すること以外、図1の二次電池100Aと同様である。図3の二次電池は、電極組立体50Cにおいて最下の電極が正極1であること、および当該二次電池100Cがスペーサー7を有すること以外、図1の二次電池100Aと同様である。
 複数の正極1は少なくとも正極材層および正極集電体(箔)から構成されており、正極集電体10の少なくとも片面に正極材層15が設けられていればよい。例えば、複数の正極1はそれぞれ独立して、図1~図3に示すように正極集電体10の両面に正極材層15が設けられていてもよいし、または正極集電体10の片面に正極材層15が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい正極1は正極集電体10の両面に正極材層15が設けられている。正極材層15には正極活物質が含まれている。
 複数の負極2は少なくとも負極材層および負極集電体(箔)から構成されており、負極集電体20の少なくとも片面に負極材層25が設けられていればよい。例えば、複数の負極2はそれぞれ独立して、図1~図3に示すように負極集電体20の両面に負極材層25が設けられていてもよいし、または負極集電体20の片面に負極材層25が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい負極2は負極集電体20の両面に負極材層25が設けられている。負極材層25には負極活物質が含まれている。
 本実施態様においては、図4に示すように、外装体6の内側と接触する負極2’(最外の負極2’)は、負極集電体20の片面に負極材層25が設けられており、かつ負極材層が設けられていない他面(負極集電体20の面)で外装体6の内側と接触していてもよい。本実施様態の二次電池においては、最外の負極を負極材層で外装体の内側と接触させるよりも、当該負極材層を省略し、負極集電体の面で接触させる方が、省略された負極材層の分だけ電極組立体50Dのサイズを大きくすることができ、電池容量の増加を達成できる。最外の電極のうち両方の電極が負極である場合、図4に示すように、当該両方の負極2’は、負極集電体20の片面に負極材層25が設けられており、かつ負極材層が設けられていない他面(負極集電体20の面)で外装体6の内側と接触していることが好ましいが、少なくとも一方の負極2’において、負極材層が設けられていない他面(負極集電体20の面)と外装体6の内側との接触が達成されていればよい。最外の電極のうち一方の電極のみが負極である場合、当該一方の負極において、負極材層が設けられていない他面(負極集電体の面)と外装体の内側との接触が達成されていてもよい。図4は本実施態様に係る二次電池の別の一例の概略断面図を示す。図4の二次電池100Dは、電極組立体50Dにおいて最外の負極2’が負極材層が設けられていない他面(負極集電体20の面)で外装体6の内側と接触していること以外、図1の二次電池100Aと同様である。
 本実施態様の二次電池の形状は特に限定されず、二次電池(電極組立体)の厚み方向において真上から見たときの平面図(平面視)において、例えば図5Aに示すような四角形状であってもよいし、または切欠部を有する形状(例えば、図5Bに示すような四角形状に切欠部8を形成した異形状)であってもよい。なお、本実施態様の二次電池が平面図においてあらゆる形状を有する場合、内部の電極組立体もまた当該形状に対応する形状を有している。平面視とは、対象物(例えば、二次電池)を載置してその厚み(高さ)方向の真上から見たときの状態のことであり、平面図と同意である。二次電池の平面視形状における異形状とは、平面視において切欠部を有する形状のことである。切欠部とは、初期の形状からその一部を意図的に欠損させた部分のことである。切欠部形成前の初期の形状は通常、矩形状である。切欠部の平面視形状は特に限定されず、例えば、矩形状、三角形状、扇形形状、半円形状、円形状等が挙げられる。
 本実施態様の二次電池の形状はまた、二次電池の側面視(側面図または断面図)において、例えば段差部を有する形状(例えば、図6に示すような直方体形状に段差部9を形成した形状)であってもよい。なお、本実施態様の二次電池が側面視においてこのような形状を有する場合、内部の電極組立体50Eもまた図6に示すように当該形状に対応する形状を有している。図6は本実施態様に係る二次電池の別の一例の概略断面図を示す。図6の二次電池100Eは、側面視において段差部9を有すること、およびそれに伴い電極組立体50Eにおいて正極1’および負極2’’の寸法が異なること以外、図1の二次電池100Aと同様である。図6において、段差部9における最下の電極が負極の場合、当該負極と段差部9における外装体6の内側とは接触していてもよいし、または接触していなくてもよい。段差部9における最下の電極が正極の場合、本実施態様において外装体6は負極性を有しているため、当該最下の正極はスペーサー7の介在により外装体6の内側との絶縁性が確保される。側面視とは、対象物(例えば、二次電池)を載置してその厚み(高さ)方向の真横から見たときの状態のことであり、側面図と同意である。段差部とは厚みが異なる部分(例えば厚みが小さい部分)のことである。本実施態様の二次電池は、図6に示すように他の部分よりも厚みが1段階で小さい段差部9を有していてもよいし、または厚みが多段階で小さい段差部を有していてもよい。
 本実施態様の二次電池においては、電極組立体が外装体6の内側に固着されていることが好ましい。電極組立体の外装体内での移動が防止され、電極組立体の破壊が防止されるためである。固着とは、電極組立体を外装体に固定した状態にすることをいう。固着方法は、電極組立体の外装体への固定が達成される限り特に限定されず、例えば、接着剤を用いる方法が挙げられる。電極組立体の外装体への固着は、外装体6における本体部61または蓋部62の少なくとも一方への固着が達成されればよい。
 例えば、負極2と外装体6の内側とが接触している場合には、当該接触を確保しつつ、それらの界面の一部で固着を達成すればよい。
 また例えば、正極1と外装体6との間でスペーサー7により絶縁性が確保されている場合には、接着剤として非導電性接着剤を用い、かつスペーサー7として当該非導電性接着剤の層を用いることにより、正極1と外装体6との絶縁性を確保しつつ、正極1と外装体6との界面の全面で固着を達成することができる。それに代えて、外装体6とスペーサー7との界面の少なくとも一部で固着を達成し、当該スペーサー7と正極1との界面の少なくとも一部で固着を達成してもよい。非導電性接着剤としては、二次電池の分野で使用されている非導電性のあらゆる接着剤が使用可能であり、例えば、アクリルポリマー系接着剤が挙げられる。
 本実施態様において負極2と外装体6との接触は、例えば図1~図4および図6に示すように、外装体6における本体部61の底部610および/または蓋部62との面接触により達成されているが、これに限定されるものではない。例えば、このような接触の代わりに、または加えて、これらの図における左右方向および表裏方向で対向して立設されている外装体側面部611との接触により、負極2と外装体6との接触を達成してもよい。
 正極材層に含まれる正極活物質および負極材層に含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。後述でも触れるが、正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、本実施態様に係る二次電池は、いわゆる“リチウムイオン電池”に相当する。
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダー(“結着材”とも称される)が正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていることも好ましい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本実施態様に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層に含まれる正極活物質がコバルト酸リチウムとなっている。
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材層のバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材層の導電助剤はカーボンブラックである。さらに好適な態様では、正極材層のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極材層の負極活物質が人造黒鉛となっている。
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材層に含まれるバインダーはスチレンブタジエンゴムとなっている。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 さらに好適な態様では、負極材層における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
 セパレータ3は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリエチレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。
 電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であっても、または水を含む“水系”の電解質であってもよい。本発明の二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。
 具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの好適な実施態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。
 具体的な非水電解質の溶質としては、例えば、LiPFおよびLiBFなどのLi塩が好ましく用いられる。
 正極用集電リード4aおよび負極用集電リード4bとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リード4aはアルミニウムから構成されることが好ましく、負極用集電リード4bはニッケルから構成されることが好ましい。正極用集電リード4aおよび負極用集電リード4bの形態は特に限定されず、例えば、線状であってもよいし、または板状であってもよい。
 正極用外部端子5aおよび負極用外部端子5bとしては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用外部端子5aはアルミニウムから構成されることが好ましく、負極用外部端子5bは銅から構成されることが好ましい。正極用外部端子5aおよび負極用外部端子5bの形態は特に限定されず、通常は板状である。
 外装体6は通常、導電性ハードケースであり、本体部61および蓋部62からなっている。本体部61は当該外装体の底面を構成する底部610および図中、左右方向および表裏方向で対向して立設されている2組の側面部611からなっている。本体部61と蓋部62とは、電極組立体および電解質ならびに所望により集電リードおよび外部端子の収容後、密封される。密封方法としては、特に限定されず、例えば、レーザー照射法等が挙げられる。本体部61および蓋部62を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部61および蓋部62はともに、アルミニウムから構成されることが好ましい。本体部61および蓋部62の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(例えば、図1等における上下方向、左右方向および表裏方向の電極組立体のズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、二次電池の安全性が向上する。なお、外装体6は、導電性を有する限り、ラミネートフィルムからなるパウチ等のフレキシブルケースであってもよい。
 スペーサー7としては、二次電池の分野で使用されているあらゆるスペーサーが使用可能である。スペーサー7は、例えば、電極と外装体との間の電子的接触を防止する限り、特に限定されない。スペーサー7を構成する材料としては通常、ポリオレフィン(ポリエチレン、ポリピロピレン)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート)、アクリルポリマーなど種々の絶縁性ポリマーが挙げられる。スペーサー7は通常、フィルムの形態を有するが、電極と外装体との接触が防止される限り、あらゆる形態を有していてもよく、例えば、不織布等が挙げられる。
[第2実施態様]
 第2実施態様に係る二次電池100Fは、図7に示すように、電極組立体50Fが、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む複数の電極ユニットを平面状に積層した平面積層構造を有するとともに、外装体6が正極性を有している。図7は本実施態様に係る二次電池の概略断面図を示す。図7の二次電池100Fは、電極組立体50Fにおいて最外の電極が正極1であること、それに伴い外装体6が正極性を有すること、および以下に特記すること以外、図1の二次電池100Aと同様である。
 本実施態様の二次電池100Fの電極組立体50Fは、電極組立体の厚み方向において外装体6の内側と対面する電極(すなわち最外の電極)のうち両方の電極がいずれも正電極1であって、当該両方の電極と外装体6の内側とが接触している。このため、外装体6は正極性を有している。このとき、当該両方の電極1のうち、少なくとも一方の電極1が外装体6の内側と接触していればよい。
 本実施態様の二次電池においては、正極用外部端子5aを固定するためのシール部7aの構成材料として第1実施態様における絶縁性ポリマーと同様の絶縁性ポリマー等を用いてもよいが、外装体6は正極性を有しているため、正極用外部端子5aと外装体6との絶縁性を必ずしも確保する必要はない。負極用外部端子5bを固定するためのシール部7bの構成材料としては、第1実施態様における絶縁性ポリマーと同様の絶縁性ポリマー等を用いることにより、負極用外部端子5bと外装体6との絶縁性が確保される。
 本実施態様の二次電池においては、最外の電極のうち少なくとも一方の電極が正極であり、かつ当該正極と外装体の内側とが接触していればよい。最外の電極のうち一方の電極が負極である場合には、当該負極はスペーサーの介在により外装体の内側との絶縁性が確保される。例えば図8に示すように、電極組立体50Gにおいて、最外の電極のうち最上の電極が負極2である場合、外装体6は正極性を有しているため、当該最上の負極2はスペーサー7の介在により外装体6の内側との絶縁性が確保される。また例えば図9に示すように、電極組立体50Hにおいて、最外の電極のうち最下の電極が負極2である場合、外装体6は正極性を有しているため、当該最下の負極2はスペーサー7の介在により外装体6の内側との絶縁性が確保される。図8および図9はそれぞれ本実施態様に係る二次電池の別の一例の概略断面図を示す。図8の二次電池は、電極組立体50Gにおいて最上の電極が負極2であること、および当該二次電池100Gがスペーサー7を有すること以外、図7の二次電池100Fと同様である。図9の二次電池は、電極組立体50Hにおいて最下の電極が負極2であること、および当該二次電池100Hがスペーサー7を有すること以外、図7の二次電池100Fと同様である。
 本実施態様において外装体6の内側と接触する正極は、図4において外装体6の内側と接触する負極2’のように、正極集電体10の片面に正極材層15が設けられており、かつ正極材層が設けられていない他面(正極集電体10の面)で外装体6の内側と接触していてもよい。本実施様態の二次電池においては、最外の正極を正極材層15で外装体6の内側と接触させるよりも、当該正極材層15を省略し、その分だけ電極組立体のサイズを大きくする方が、電池容量の増加を達成できる。最外の電極のうち両方の電極が正極である場合、当該両方の正極は、正極集電体10の片面に正極材層15が設けられており、かつ正極材層が設けられていない他面(正極集電体10の面)で外装体6の内側と接触していることが好ましいが、少なくとも一方の正極において、正極材層が設けられていない他面(正極集電体10の面)と外装体6の内側との接触が達成されていればよい。最外の電極のうち一方の電極のみが正極である場合、当該一方の正極において、正極材層が設けられていない他面(正極集電体の面)と外装体の内側との接触が達成されていてもよい。
 本実施態様の二次電池の形状は特に限定されず、二次電池(電極組立体)の厚み方向において真上から見たときの平面視において、第1実施態様における二次電池と同様に、例えば図5Aに示すような四角形状であってもよいし、または切欠部を有する形状(例えば、図5Bに示すような四角形状に切欠部8を形成した異形状)であってもよい。
 本実施態様の二次電池の形状はまた、二次電池の側面視(断面図)において、第1実施態様における二次電池と同様に、段差部を有する形状であってもよい。なお、本実施態様の二次電池が側面視においてこのような形状を有するとき、当該段差部における最下の電極が正極の場合、当該正極と段差部における外装体の内側とは接触していてもよいし、または接触していなくてもよい。当該段差部における最下の電極が負極の場合、本実施態様において外装体は正極性を有しているため、当該最下の負極はスペーサーの介在により外装体の内側との絶縁性が確保される。
 本実施態様の二次電池においては、第1実施態様においてと同様に、電極組立体が外装体6の内側の少なくとも一部に固着されていることが好ましい。
 本実施態様においては、例えば、正極1と外装体6の内側とが接触している場合には、当該接触を確保しつつ、それらの界面の一部で固着を達成すればよい。
 また例えば、負極2と外装体6との間でスペーサー7により絶縁性が確保される場合には、接着剤として非導電性接着剤を用い、かつスペーサー7として当該非導電性接着剤の層を用いることにより、負極2と外装体6との絶縁性を確保しつつ、負極2と外装体6との界面の全面で固着を達成することができる。それに代えて、外装体6とスペーサー7との界面の少なくとも一部で固着を達成し、当該スペーサー7と負極2との界面の少なくとも一部で固着を達成してもよい。
 本実施態様において正極1と外装体6との接触は、例えば図7~図9に示すように、外装体6における本体部61の底部610および/または蓋部62との面接触により達成されているが、これに限定されるものではない。例えば、このような接触の代わりに、または加えて、これらの図における左右方向および表裏方向で対向して立設されている外装体側面部611との接触により、正極1と外装体6との接触を達成してもよい。
[第3実施態様]
 第3実施態様に係る二次電池100Iは、図10Aおよび図10Bに示すように、電極組立体50Iが、正極1’’’、負極2’’’および正極1’’’と負極2’’’との間に配置されたセパレータ3a、3bを含む電極ユニットをロール状に巻回した巻回構造を有するとともに、外装体6が負極性を有している。図10Aは本実施態様に係る二次電池の概略断面図を示す。図10Bは、図10Aの二次電池をP-P断面において矢印方向でみたときの概略断面図を示す。
 図10Aおよび図10Bの二次電池100Iは、電極組立体50Iが上記巻回構造を有すること、当該電極組立体50Iの最外表面の電極が負極2’’’であること、当該最外表面の負極2’’’が外装体6の内側と接触していること、および以下に特記すること以外、図1の二次電池100Aと同様である。
 本実施態様において、正極(1’’’)、負極(2’’’)およびセパレータ(3a、3b)はそれぞれ、巻回構造を構成し得る寸法を有すること以外、第1実施態様における正極(1)、負極(2)およびセパレータ(3)と同様である。なお、図10Aおよび図10Bにおいて正極1’’’および負極2’’’は簡略化して記載されているが、正極1’’’は、図1の正極1と同様に、正極集電体10の少なくとも片面に正極材層15が設けられていればよいし、負極2’’’は、図1の負極2と同様に、負極集電体20の少なくとも片面に負極材層25が設けられていればよい。
 本実施態様においては、二次電池は、図10Aおよび図10Bに示される構造において、正極1’’’と負極2’’’とが入れ替わった配置であってもよい。すなわち、電極組立体の最外表面の電極が正極であり、当該正極と外装体の内側とが接触し、外装体6は正極性を有していてもよい。この場合、正極用外部端子5aは正極用集電リード4aを介して正極に連結され、負極用外部端子5bは負極用集電リード4bを介して負極に連結される。この場合にはまた、第2実施態様におけるシール部7a、7bそれぞれと同様に、シール部7a、7bを構成する。詳しくは、正極用外部端子5aを固定するためのシール部7aの構成材料として第1実施態様における絶縁性ポリマーと同様の絶縁性ポリマー等を用いてもよいが、外装体6は正極性を有しているため、正極用外部端子5aと外装体6との絶縁性を必ずしも確保する必要はない。負極用外部端子5bを固定するためのシール部7bの構成材料としては、第1実施態様における絶縁性ポリマーと同様の絶縁性ポリマー等を用いることにより、負極用外部端子5bと外装体6との絶縁性を確保する。
 本実施態様の二次電池においては、第1実施態様においてと同様に、電極組立体が外装体6の内側の少なくとも一部に固着されていることが好ましい。
 例えば、負極2と外装体6の内側とが接触している場合には、当該接触を確保しつつ、それらの界面の一部で固着を達成すればよい。
 また例えば、正極1と外装体6の内側とが接触している場合には、当該接触を確保しつつ、それらの界面の一部で固着を達成すればよい。
 本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)に利用することができる。
 1:1’:1’’’:正極
 10:正極集電体
 15:正極材層
 2:2’:2’’:2’’’:負極
 20:負極集電体
 25:正極材層
 3:3a:3b:セパレータ
 4a:4b:集電リード
 5a:5b:外部端子
 6:外装体
 61:本体部
 62:蓋部
 7a:7b:シール部
 8:切欠部
 9:段差部
 50A~50I:電極組立体
 100A~100I:二次電池

Claims (16)

  1.  正極集電体の少なくとも片面に正極材層が設けられた正極、負極集電体の少なくとも片面に負極材層が設けられた負極および該正極と該負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に収容された二次電池であって、
     前記外装体が導電性を有し、正極性または負極性の極性を有する、二次電池。
  2.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有する、請求項1に記載の二次電池。
  3.  前記外装体が負極性を有し、
     前記電極組立体の厚み方向において前記外装体の内側と対面する電極のうち少なくとも一方の電極が負極であり、該負極と前記外装体の内側とが接触している、請求項2に記載の二次電池。
  4.  前記外装体の内側と接触する負極は前記負極集電体の片面に前記負極材層が設けられており、かつ前記負極材層が設けられていない他面で前記外装体の内側と接触している、請求項3に記載の二次電池。
  5.  前記外装体の内側と対面する電極のうち一方の電極が正極であり、該正極はスペーサーの介在により前記外装体の内側との絶縁性が確保されている、請求項3または4に記載の二次電池。
  6.  前記外装体が正極性を有し、
     前記電極組立体の厚み方向において前記外装体の内側と対面する電極のうち少なくとも一方の電極が正極であり、該正極と前記外装体の内側とが接触している、請求項2に記載の二次電池。
  7.  前記外装体の内側と接触する正極は前記正極集電体の片面に前記正極材層が設けられており、かつ前記正極材層が設けられていない他面で前記外装体の内側と接触している、請求項6に記載の二次電池。
  8.  前記外装体の内側と対面する電極のうち一方の電極が負極であり、該負極はスペーサーの介在により前記外装体の内側との絶縁性が確保されている、請求項6または7に記載の二次電池。
  9.  前記二次電池が、平面視において切欠部を有する、かつ/または側面視において段差部を有する、請求項1~8のいずれかに記載の二次電池。
  10.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む電極ユニットをロール状に巻回した巻回構造を有する、請求項1に記載の二次電池。
  11.  前記外装体が負極性を有し、
     前記電極組立体の最外表面の電極が負極であり、該負極と前記外装体の内側とが接触している、請求項10に記載の二次電池。
  12.  前記外装体が正極性を有し、
     前記電極組立体の最外表面の電極が正極であり、該正極と前記外装体の内側とが接触している、請求項10に記載の二次電池。
  13.  前記電極組立体が前記外装体の内側に固着されている、請求項1~12のいずれかに記載の二次電池。
  14.  前記電解質が非水電解質である、請求項1~13のいずれかに記載の二次電池。
  15.  前記正極材層および前記負極材層がリチウムイオンを吸蔵放出可能な層である、請求項1~14のいずれかに記載の二次電池。
  16.  前記正極材層では、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物が正極活物質として含まれ、
     前記負極材層では、炭素材料が負極活物質として含まれることを特徴とする、請求項1~15のいずれかに記載の二次電池。
PCT/JP2017/007339 2016-05-31 2017-02-27 二次電池 WO2017208534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109174 2016-05-31
JP2016-109174 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208534A1 true WO2017208534A1 (ja) 2017-12-07

Family

ID=60478306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007339 WO2017208534A1 (ja) 2016-05-31 2017-02-27 二次電池

Country Status (1)

Country Link
WO (1) WO2017208534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883033A4 (en) * 2018-12-29 2022-01-12 Contemporary Amperex Technology Co., Limited SECONDARY BATTERY AND BATTERY MODULE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279570A (ja) * 1988-04-30 1989-11-09 Sony Corp 非水電解液二次電池
JPH06168715A (ja) * 1992-11-30 1994-06-14 Canon Inc リチウム二次電池
JP2001256953A (ja) * 2000-03-10 2001-09-21 Sony Corp 固体電解質電池及びその製造方法
JP2005310618A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2015146252A (ja) * 2014-02-03 2015-08-13 株式会社豊田自動織機 蓄電装置
JP2015230812A (ja) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 電気化学セル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279570A (ja) * 1988-04-30 1989-11-09 Sony Corp 非水電解液二次電池
JPH06168715A (ja) * 1992-11-30 1994-06-14 Canon Inc リチウム二次電池
JP2001256953A (ja) * 2000-03-10 2001-09-21 Sony Corp 固体電解質電池及びその製造方法
JP2005310618A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2015146252A (ja) * 2014-02-03 2015-08-13 株式会社豊田自動織機 蓄電装置
JP2015230812A (ja) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 電気化学セル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883033A4 (en) * 2018-12-29 2022-01-12 Contemporary Amperex Technology Co., Limited SECONDARY BATTERY AND BATTERY MODULE
US11476526B2 (en) 2018-12-29 2022-10-18 Contemporary Amperex Technology Co., Limited Secondary battery, battery module and vehicle

Similar Documents

Publication Publication Date Title
WO2017209052A1 (ja) 二次電池
WO2018173751A1 (ja) 二次電池
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
JP6879358B2 (ja) 二次電池
JP6729690B2 (ja) 二次電池の製造方法
US20230057980A1 (en) Secondary battery and method for manufacturing the same
WO2018155210A1 (ja) 二次電池および二次電池の製造方法
WO2017208534A1 (ja) 二次電池
JPWO2018131346A1 (ja) 二次電池
US11411241B2 (en) Secondary battery
US11387493B2 (en) Secondary battery
JP6885410B2 (ja) 二次電池
WO2017208683A1 (ja) 二次電池
WO2018163775A1 (ja) 二次電池の製造方法
WO2022009997A1 (ja) 二次電池
US11342590B2 (en) Secondary battery
US11929467B2 (en) Secondary battery
WO2022044672A1 (ja) 二次電池およびその製造方法
JP2018181705A (ja) 二次電池およびその製造方法
WO2017208532A1 (ja) 二次電池
WO2020071362A1 (ja) 二次電池
WO2018105277A1 (ja) 二次電池
WO2018116623A1 (ja) 二次電池および電池組合体
WO2018100846A1 (ja) 二次電池およびデバイス
JP2020173890A (ja) 組電池および組電池の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806096

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP