WO2014081164A1 - 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스 - Google Patents

전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스 Download PDF

Info

Publication number
WO2014081164A1
WO2014081164A1 PCT/KR2013/010472 KR2013010472W WO2014081164A1 WO 2014081164 A1 WO2014081164 A1 WO 2014081164A1 KR 2013010472 W KR2013010472 W KR 2013010472W WO 2014081164 A1 WO2014081164 A1 WO 2014081164A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
unit
anode
full width
length
Prior art date
Application number
PCT/KR2013/010472
Other languages
English (en)
French (fr)
Inventor
권성진
김기웅
안순호
김동명
김영훈
윤성한
류승민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130028289A external-priority patent/KR20130118769A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/354,251 priority Critical patent/US9231279B2/en
Priority to CN201380003653.9A priority patent/CN104081575B/zh
Priority to EP13840124.5A priority patent/EP2924794B1/en
Priority to JP2014548708A priority patent/JP5889435B2/ja
Publication of WO2014081164A1 publication Critical patent/WO2014081164A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode assembly having a step, more specifically, an electrode assembly composed of electrode units having the same length of the full length and different lengths of the full width, and electrodes having the same length of the full length and different lengths of the full length.
  • An electrode assembly and a battery including the same are formed so that electrodes of different polarities face each other at an interface between units.
  • the present invention also relates to a battery cell, a battery pack, and a device including the electrode assembly having the step difference.
  • secondary batteries with high energy density, high operating voltage, and excellent storage and life characteristics are energy of various mobile devices as well as various electronic products. It is widely used as a circle.
  • the lithium secondary battery is formed in a structure that seals the electrode assembly and the electrolyte inside the battery case, and is classified into a cylindrical battery, a square battery, and a pouch type battery according to its appearance. It may be classified into a polymer battery and a lithium polymer battery.
  • a polymer battery and a lithium polymer battery are classified into a polymer battery and a lithium polymer battery.
  • the electrode assembly accommodated in the battery case may be classified into a jelly-roll type (wound type), a stacked type (stacked type), or a stack / foldable type (composite type) according to its shape.
  • a jelly-roll type electrode assembly is coated with an electrode active material on a metal foil used as a current collector, pressed, cut into a band having a desired width and length, and then the separator and the cathode are separated by a separator film.
  • the electrode assembly is manufactured by spirally winding
  • the stacked electrode assembly refers to an electrode assembly manufactured by vertically stacking a cathode, a separator, and an anode.
  • the stack / foldable electrode assembly refers to an electrode assembly manufactured by rolling or folding electrode stacks consisting of a single electrode or a cathode / separator / anode into a long sheet-type separation film.
  • the present invention is to solve the above problems, and to provide an electrode assembly and an electric cell and device including the same, which can implement a variety of designs, thin, excellent capacitive characteristics.
  • the present invention includes a combination of two or more electrode units having the same length of the full length and different lengths of the full length, and stacked so that a step is formed between the electrode units.
  • An electrode assembly is provided so that electrodes of different polarities face an interface between two or more electrode units having the same length and different lengths.
  • the electrode assembly is a positive electrode of an electrode unit having a relatively short full width and a cathode of an electrode unit having a relatively long full width at an interface between two or more electrode units having different full widths. It is preferable that they are formed to face each other.
  • the electrode assembly of the present invention when the charge and discharge 500 times at 25 ° C is 60% or more of the capacitance after a single charge and discharge, the thickness change rate of the entire electrode assembly is preferably 15% or less, to this end, the balance between the positive electrode and the negative electrode facing at the interface between the electrode units having different full width length can be adjusted.
  • the electrode assembly of the present invention comprises at least n + 1 electrode units (wherein n is an integer of 1 or more) having different full lengths, and includes a negative electrode of the electrode unit having the nth longest full width.
  • Equation 1 N n / P n ⁇ N n / P n + 1
  • the electrode assembly of the present invention includes n + 2 or more electrode units having different full width lengths
  • the total reversible capacity per unit area of the negative electrode of the electrode unit having the nth longest width is N n and the nth longest full width.
  • the ratio of N n to P n + 1 is the ratio of n n to P n (i.e., n n / P n) not less than the ratio of n n + 1 to P n + 1 (i.e., n n It is preferably formed not to be larger than +1 / P n + 1 ).
  • the ratio of N n + 1 to P n + 1 is the ratio of N n + 1 to P n + 2 (i.e., N n + 1 / P It is preferably formed not to be larger than n + 2 ). That is, when the electrode assembly of the present invention includes three or more kinds of electrode units having different full widths, the electrode assembly may be configured to satisfy Equation 2 below.
  • Equation 2 N n / P n ⁇ N n / P n + 1 ⁇ N n + 1 / P n + 1 ⁇ N n + 1 / P n + 2
  • an electrode unit including three or more kinds of electrode units having different full width lengths and having an n + 2th longest full width is the electrode unit having the nth longest full width and n + 1th when interposed between the electrode unit having a long width
  • the ratio of the n n + 1 to P n + 2 i.e., n n + 1 / P n + 2
  • n n + 1 / P n + 2 is of n n to P n + 2 It is preferably formed not smaller than the ratio (ie N n / P n + 2 ). That is, the electrode assembly of the present invention may be configured to satisfy the following equation (3).
  • Equation 3 N n / P n + 2 ⁇ N n + 1 / P n + 2
  • the electrode assembly of the present invention comprises a combination of n + 1 or more electrode units having different full widths, and the thickness of the cathode of the electrode unit having the nth longest width dN n , n
  • the ratio of dN n to dP n is preferably formed so as not to be greater than the ratio of dN n to dP n + 1 (ie, dN n / dP n + 1 ). That is, in this case, the electrode assembly of the present invention may be configured to satisfy the following equation (4).
  • Equation 4 dN n / dP n ⁇ dN n / dP n + 1
  • the electrode assembly of the present invention when the electrode assembly of the present invention includes three or more kinds of electrode units having different lengths of full width, the electrode assembly of the present invention dN has a thickness of the cathode of the electrode unit having the nth longest full width.
  • thickness dP of the anode of the electrode unit with the nth longest width n , dN is the thickness of the cathode of the electrode unit having the n + 1
  • dP is the thickness of the anode of the electrode unit having the n + 1
  • dP is the thickness of the anode of the electrode unit having the n + 2 DP n + 1 DN for n
  • the electrode assembly of the present invention may be configured to satisfy the following equation 5.
  • Equation 5 dN n / dP n ⁇ dN n / dP n + 1 ⁇ dN n + 1 / dP n + 1 ⁇ dN n + 1 / dP n + 2
  • the electrode assembly of the present invention an electrode unit including three or more kinds of electrode units having different lengths of full widths, and an electrode unit having an n + 2th longest full width and an n + 1th electrode unit having an nth longest full width in the case interposed between the electrode unit having a long width, the dP n + 2 ratio of dN n + 1 for the (i. e., dN n + 1 / dP n + 2) is of dN n for dP n + 2 It is preferably formed no smaller than the ratio (ie, dN n / dP n + 2 ). That is, in this case, the electrode assembly of the present invention may be configured to satisfy the following formula 6.
  • Equation 6 dN n / dP n + 2 ⁇ dN n + 1 / dP n + 2
  • the electrode assembly of the present invention in the positive electrode and the negative electrode opposed at the interface between the electrode unit having a different full length, it is preferable that the ratio of the thickness of the negative electrode to the thickness of the positive electrode is about 0.5 to 2
  • the positive electrode and the negative electrode facing at the interface between the electrode units having different full widths are such that the ratio of the reversible capacity per unit area of the negative electrode to the reversible capacity per unit area of the positive electrode is about 1 or more. It is preferably configured, for example, 1 to 2, 1 to 1.5, 1 to 1.2, 1 to 1.1, 1. 5 to 2, 1 to 1.09, 1.02 to 1.2, 1.02 to 1.09 or 1.05 to 1.09, more It is preferable to be comprised so that it may be specifically about 1.05, 1.06, 1.07, 1.08, 1.09.
  • the electrode assembly of the present invention includes three or more kinds of electrode units having different full lengths
  • the ratio of the reversible capacity per unit area of the positive electrode and the negative electrode facing each other at the interface between the electrode units is configured to be the same, or As the contact area between the electrode units is smaller, the ratio of the reversible capacity per unit area of the cathode to the anode may be increased.
  • the electrode unit is a single electrode; At least one unit cell including at least one anode, at least one cathode, and at least one separator; And it may be made of one or more selected from the group consisting of a combination thereof, wherein the unit cell may be selected from the group consisting of jelly-roll type, stack type, lamination and stack type and stack and folding type unit cell
  • the unit cells may have the same polarity or different polarities of two electrodes disposed on outermost both surfaces thereof.
  • the electrode assembly of the present invention may have a structure in which a single electrode and a part or all of the unit cells constituting the electrode units are surrounded by at least one long sheet-like separation film.
  • the electrode unit of the present invention may have a variety of cross-sectional shape, for example, it may have a cross-sectional shape of a quadrangle, a quadrangle, trapezoidal or at least one or more sides of the curved shape of at least one corner.
  • the electrode assembly of the present invention may be made of a combination of electrode units having different cross-sectional shapes, or may be made of a combination of electrode units having the same cross-sectional shape.
  • the electrode units of the present invention may include at least one electrode tab, wherein the electrode tabs are electrically connected to electrodes of the same polarity.
  • the electrode tabs may have the same size or may have different sizes depending on the area of the electrode unit.
  • two or more electrode units having the same length of the full length and different lengths of the full length may be stacked in various arrangements.
  • the stacking method of the electrode units is not particularly limited, and for example, the electrode units may be stacked in an arrangement in which the length of the full width of the electrode unit becomes smaller from the lower direction to the upper direction of the electrode assembly.
  • the electrode units may be stacked in an array in which the full width of the electrode unit is increased from the direction toward the upper direction, or the electrode units having the longest full width among the electrode units may be stacked in the intermediate layer of the electrode assembly. It may be.
  • the electrode units are stacked in an arrangement in which the center points in the planar direction of each electrode unit are matched, or stacked in an arrangement in which the center points in the planar direction of each electrode unit are spaced at predetermined intervals.
  • one side of the electric field of each electrode unit may be stacked in a matching arrangement.
  • the present invention provides a battery cell in which the electrode assembly of the present invention as described above is built in a battery case.
  • the battery case may be a battery cell that is a pouch type case, but is not necessarily limited thereto.
  • the battery case of the present invention preferably, may be formed in a shape corresponding to the shape of the electrode assembly.
  • the battery cell of the present invention may be a lithium ion secondary battery or a lithium ion polymer secondary battery.
  • the present invention provides a device including one or more battery cells of the present invention as described above.
  • the device may be a mobile phone, a portable computer, a smart phone, a smart pad, a netbook, a LEV (Light Electronic Vehicle), an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a device that is a power storage device.
  • LEV Light Electronic Vehicle
  • the system component of the device may be located in the surplus space of the battery cell.
  • Electrode assembly of the present invention by using a combination of two or more kinds of electrode units of different full lengths, not only can implement a wide variety of designs compared to the prior art, but also has a high level of capacitance and durability characteristics that are commercially available.
  • the electrode assembly of the present invention balances the positive electrode and the negative electrode at the interface between the electrode units having different full widths, thereby maintaining the capacity characteristics and the durability characteristics, and the thickness as well as the area of the electrode units constituting each stage are relatively low. Design freedom is very good because it can be adjusted freely. As a result, the dead space (DEAD SPACE) caused by the design element when mounting the device can be minimized, so the space utilization is excellent.
  • DEAD SPACE dead space
  • FIG. 1 is a perspective view of an electrode assembly according to an embodiment of the present invention.
  • FIG 2 is a side view of an electrode assembly according to a first embodiment of the present invention.
  • FIG 3 is a side view of an electrode assembly according to a second exemplary embodiment of the present invention.
  • FIG 4 is a side view of an electrode assembly according to a third exemplary embodiment of the present invention.
  • FIG 5 is a side view of an electrode assembly according to a fourth exemplary embodiment of the present invention.
  • FIG. 6 is a side view of an electrode assembly according to a fifth exemplary embodiment of the present invention.
  • FIG. 7 is an exploded view of an electrode assembly according to an embodiment of the present invention.
  • FIG. 8 is a view showing the configuration of an electrode tab according to an embodiment of the present invention.
  • FIG. 9 is a diagram for explaining an example of stacking electrode units of the present invention.
  • FIG. 10 is a perspective view of a battery cell according to an embodiment of the present invention.
  • FIG. 11 is a perspective view of a battery cell according to another embodiment of the present invention.
  • FIG. 12 is a graph showing the capacitance and the rate of change in thickness when the electrode assemblies prepared by Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention were charged and discharged 500 times.
  • FIG. 13 is a graph showing a change in energy density according to a reversible capacity ratio of a cathode / anode at an interface between electrode units.
  • 15 to 17 are diagrams showing implementations of lamination and stacked unit cells.
  • the electrode assembly of the present invention includes a combination of two or more types of electrode units 110, 120, and 130 having the same length of the full length L and different lengths of the full width W,
  • the electrode assemblies are stacked so that a step is formed between the electrode units, and electrodes having different polarities face each other at an interface between electrode units having the same length of the electric field L and different lengths of the full width W. It is characterized in that it is formed to.
  • the electric field L of the electrode unit is relatively long in the electrode unit having the largest area among the electrode units composed of four sides having the same length of two sides facing each other as a component of the electrode assembly. Say two sides.
  • the full width (W) refers to two remaining sides of the four sides of the electrode unit except for the full length (L).
  • each electrode unit refers to the basic unit constituting a layer in the stepped electrode assembly of the present invention, each electrode unit comprises a single electrode such as a cathode or an anode; At least one unit cell including at least one cathode, at least one anode, and at least one separator; Or a combination thereof.
  • the term 'unit cell' is a concept including all of the electrode stack including at least one cathode, at least one anode and at least one separator, the method of laminating the cathode, anode and separator in a unit cell It is not specifically limited.
  • the term 'unit cell' may include: an electrode laminate manufactured by a jelly-roll method, which is manufactured by spirally winding a sheet-type anode and a sheet-type anode using a separator film; At least one cathode, at least one separator, and at least one anode, in which a stack is manufactured by stacking an electrode; Or a plurality of electrode stacks manufactured by a stack and folding method of disposing a single electrode and / or at least one electrode stack in which at least one anode, separator, and cathode are stacked on a long sheet-type separation film, and then folding the stack. It should be understood.
  • the unit cells may be the electrodes disposed on both outermost sides of the unit cell, such as anode / separator / cathode / separator / anode or cathode / separator / anode / separator / cathode, etc. may have the same polarity.
  • the electrodes disposed on both outermost sides of the unit cell, such as anode / separator / cathode or anode / separator / cathode / separator / anode / separator / cathode may have opposite polarities.
  • the electrode stack manufactured by the stacking method is not only manufactured by the conventional method of sequentially stacking anodes, separators, and cathodes one by one, but also one or more anodes, one or more cathodes, and one or more separators.
  • lamination to form an electrode unit it is to be understood as a concept including an electrode laminate manufactured by a method of stacking the electrode units (hereinafter, referred to as a 'lamination and stack method').
  • the electrode unit when manufacturing an electrode laminate by the lamination and stack method, the electrode unit may be one including at least one anode, at least one cathode and at least one separator, the configuration is not particularly limited.
  • the electrode unit when manufacturing the electrode stack by lamination and stack method, is the first electrode / separator / second electrode / separator or separator / first electrode / separator / second electrode It is preferably configured to include a basic structure consisting of.
  • the electrodes having different polarities of the first electrode and the second electrode may be an anode or a cathode, and the electrode unit may include one or a plurality of basic structures.
  • the electrode laminate of the lamination and stack method may be composed of only the electrode unit including the above-described basic structure, or may be used in combination with the electrode unit having the basic structure and an electrode structure of a different structure.
  • 15 to 17 disclose various examples of electrode laminates fabricated in a lamination and stack manner.
  • the positive electrode exposed to the outer shell may be preferable to use a single-side coated positive electrode that is not coated with the active material on the exposed surface when designing an electrode in consideration of capacity.
  • FIG. 15 discloses that the electrode units have one basic structure, the present invention is not limited thereto, and two or more basic structures may be used as one electrode unit.
  • the electrode units 810 having the basic structure of the separator 60, the cathode 50, the separator 60, and the anode 40, and the separator 60, the cathode 50, and the separator 60 have a structure.
  • An electrode stack is shown in which the electrode structures that are made are stacked.
  • the anode 50 may be prevented from being exposed to the outside. The advantage is that the capacitance can be increased.
  • an electrode structure composed of a separator / anode / separator structure may be stacked on top of the electrode unit, in which case the capacity of the cathode may be used to the maximum.
  • FIG. 17 illustrates electrode units 810 ′ having a basic structure of a cathode 50, a separator 60, an anode 40, and a separator 60, and a cathode 50, a separator 60, an anode 40, and the like.
  • An electrode laminate in which an electrode structure 820 'having a structure of a separator 60 / cathode 50 is stacked is shown.
  • an electrode structure 820 ′ having a structure of a cathode 50, a separator 60, an anode 40, a separator 60, and a cathode 50 may be stacked on the outermost surface of the electrode stack. In this case, not only can the anode be prevented from being exposed to the outside, but also the electric capacity can be increased.
  • the electrode stacks manufactured by the lamination and stack method, together with the electrode units having the above-described basic structure differ in arrangement and configuration from a single electrode, a separator, or the above-described electrode units.
  • Unit cells may be used in combination.
  • a single electrode, single-side coating on the outermost side and / or both sides of the electrode laminate in terms of improving the battery capacity and / or side to prevent the positive electrode is exposed to the outside Unit cells different in arrangement and configuration from an electrode, a separator, or the above electrode units may be disposed.
  • electrode structures having different structures are stacked on top of the electrode stack, but the present invention is not limited thereto, and electrode structures having other structures may be stacked below the electrode stack as necessary. Alternatively, electrode structures having different structures may be stacked on both top and bottom portions thereof.
  • the term 'stack and folding', the first electrode and / or at least one or more of the positive electrode, the separator, the negative electrode stacked on the sheet-like separation film is placed and folded
  • the folding method is not particularly limited, and various folding methods well known in the art, for example, folding a sheet-like separation film in a zigzag form (referred to as Z-folding or folding type), At least one cathode and anode are laminated on one surface of the sheet-shaped separation film via a separator, and then rolled and rolled in one direction, or single electrodes are alternately arranged on both sides of the sheet-type separation film, and then sheet-shaped.
  • a unit cell manufactured by a jelly-roll method is a jelly-roll-type unit cell
  • a unit cell manufactured by a stack method is a stack-type unit cell
  • a unit cell manufactured by a stack-and-fold method is a stack-folding unit. This is referred to as a cell.
  • the difference in the length of the full width W may be a level that can form a step when the electrode units are stacked, and is not particularly limited, and may be freely adjusted in consideration of a desired battery design and the like. Can be.
  • an electrode unit having a relatively short full width W may have a relatively long full width W electrode unit.
  • the length of the full width (W) of 100% may have a length in the range of 20% to 95%, preferably in the range of 30 to 90%.
  • each electrode unit may be the same or different from each other, it is not particularly limited.
  • an electrode unit having a relatively long full width W may have a thickness thinner than an electrode unit having a relatively short full width W, or may have a thick thickness.
  • the electrode assembly of the present invention is arranged so that the electrodes of different polarities are opposed to each other at the interface between the electrode units having different lengths of the full width (W), it is possible to store electricity at the interface between the electrode units, as a result It has the effect of increasing the dose.
  • the term “opposed” means that the two electrodes are disposed to face each other, and the two opposing electrodes do not have to be in contact with each other, and other components between the two electrodes, for example, a separator and It is a concept encompassing the case where the sheet-type separation film is interposed.
  • the electrode assembly of the present invention the negative electrode of the electrode unit having a long length of the full width (W) at the interface between two or more types of electrode units having the same length of the full length (L) and different lengths of the full width (W) And the positive electrode of the shorter electrode having the full width W may be formed to face each other.
  • a positive electrode of an electrode unit having a long full width W is disposed at an interface between electrode units having different lengths of full width W, lithium metal is precipitated from the positive electrode of the electrode unit to shorten battery life, or This is because a problem of deterioration of stability may occur.
  • the electrode assembly of the present invention includes electrode units having different full width lengths, and if necessary, the thickness of each electrode unit may be configured differently, and thus, there is an advantage in that a wide variety of designs can be realized.
  • the thickness of the electrode unit is unit cell.
  • the degree of freedom in design in the thickness direction is very limited because it is limited to a multiple of the thickness or the thickness of the unit electrode. Accordingly, the inventors of the present invention have repeatedly studied to manufacture an electrode assembly having superior design freedom, in particular, design freedom in thickness direction, which has superior output efficiency and structural stability to commercialization. It has been found that by adjusting the balance at the interface between the electrode units, it is possible to produce an electrode assembly with excellent capacity, durability and design freedom in the thickness direction.
  • the balance of the balance between the electrode units having different full lengths may be adjusted to match the positive and negative electrodes facing each other at the interface between the electrode units so as to maintain output efficiency and battery stability stably within a predetermined cycle. It means to design a, for example, it can be achieved by appropriately adjusting the capacity and thickness of the anode and cathode at the interface. More specifically, the electrode assembly of the present invention has a capacitance of 500 times at 25 ° C., and is 60% or more of the capacitance after one time of charge and discharge, and has a thickness change rate of 15% or less. It is preferable to design the anode and the cathode opposed at the interface between the electrode units having different full width lengths.
  • the capacitance refers to the capacitance measured under the following charging conditions (A) and discharge conditions (B). On the other hand, a 10 minute rest period was provided between charging and discharging.
  • the thickness change rate of the electrode assembly means (thickness of the entire electrode assembly after 500 charge / discharge cycles / thickness of the entire electrode assembly after 1 charge / discharge operation) ⁇ 100.
  • the inventors have found out that after a long study, the reversible capacitance per unit area of the negative electrode and the positive electrode facing each other at the interface between the electrode units having different widths can be balanced so as to satisfy a specific condition, thereby achieving a balance at the interface between the electrode units. .
  • the reversible capacitance per unit area of the negative electrode of the electrode unit having the nth long full width is N n
  • the reversible capacity per unit area of the negative electrode of the electrode unit having the nth long full width is N n + 1, nth long
  • the electrode assembly of the present invention is P n.
  • the ratio of N n to (i.e., N n / P n ) may be formed no greater than the ratio of N n to P n + 1 (ie, N n / P n + 1 ), and more specifically, It is preferable that it is comprised so that following formula (1) may be satisfied.
  • Equation 1 N n / P n ⁇ N n / P n + 1
  • n is an integer of 1 or more.
  • the reversible capacity per unit area of the negative electrode means a value defined by negative electrode charge capacity [mAh / cm 2 ] ⁇ negative electrode efficiency [%] per unit area
  • the negative electrode charge capacity per unit area is the loading amount of the negative electrode active material per unit area.
  • [g / cm 2 ] ⁇ refers to a value defined as the negative electrode charge capacity [mAh / g] per unit weight
  • the negative electrode efficiency refers to a value defined as the ratio ⁇ 100 of the discharge capacity of the negative electrode to the charge capacity of the negative electrode.
  • the reversible capacity per unit area of the positive electrode means a value defined as the loading amount of the positive electrode active material [g / cm 2 ] ⁇ positive charge capacity per unit weight [mAh / g] minus the irreversible capacity per unit area of the negative electrode [mAh] do.
  • the negative electrode active material loading amount means weight per unit area of the negative electrode active material coated on the negative electrode current collector
  • the positive electrode active material loading amount means weight per unit area of the positive electrode active material coated on the positive electrode current collector.
  • the charge capacity, discharge capacity and irreversible capacity of the positive electrode and the negative electrode per unit weight may be measured through the following method, respectively.
  • the counter electrode was composed of lithium metal, charged under a constant current of 0.1 C, and the capacitance was measured when the working electrode potential reached 4.25V. Then, a value obtained by dividing the measured electric capacity by the weight of the active material of the positive electrode half cell is taken as the charging capacity of the positive electrode per unit weight.
  • the counter electrode was composed of lithium metal, charged under a constant current of 0.1 C, and the capacitance when the working electrode potential reached 1.6 V was measured. Then, the measured electric capacity divided by the weight of the active material of the negative electrode half cell is the charge capacity of the negative electrode per unit weight.
  • the counter electrode is made of lithium metal, charged under a constant current of 0.1C, and discharged under a constant current of 0.1C after reaching a working electrode potential of 1.6V.
  • the capacitance at 0V was measured.
  • the measured electric capacity divided by the weight of the active material of the negative electrode half cell is the charge capacity of the negative electrode per unit weight.
  • the difference between the charge capacity and the discharge capacity of the negative electrode measured in the above manner is obtained by dividing the weight of the active material of the negative electrode half cell.
  • N n / P n and N n / P n +1 is preferably 1 or more, more preferably Preferably from 1 to 1.2. That is, the electrode assembly of the present invention may be configured to satisfy the following Equation 1-1, and more preferably, may be configured to satisfy the following Equation 1-2.
  • Equation 1-1 1 ⁇ N n / P n ⁇ N n / P n + 1
  • Equation 1-2 1 ⁇ N n / P n ⁇ N n / P n + 1 ⁇ 1.2
  • the electrode assembly of the present invention includes at least n + 2 electrode units having different full widths (n is an integer of 1 or more), the reversible capacity per unit area of the cathode of the electrode unit having the nth longest full width is N.
  • the electrode assembly of the present invention in a ratio of N n to P n + 1 (i.e., N n / P n + 1) is the ratio of N n to P n not less than (i.e., N n / P n), P n + 1 to be formed are not larger than the ratio (i.e., n n + 1 / P n + 1) of n n + 1 are preferred for
  • the ratio of N n + 1 to P n + 1 is the ratio of N n + 1 to P n + 2 (i.e., N n + 1 / P It is preferably formed not to be larger than n + 2 ). That is, when the electrode assembly of this invention contains the combination of three or more types of electrode units from which a full width differs, it is preferable to be comprised so that following formula (2) may be satisfied.
  • Equation 2 N n / P n ⁇ N n / P n + 1 ⁇ N n + 1 / P n + 1 ⁇ N n + 1 / P n + 2
  • n is an integer of 1 or more.
  • the N n / P n, N n / P n + 1 N n + 1 / P n + 1 And N n + 1 / P n + 2 Is preferably 1 or more, more preferably 1 to 1.2 or so. That is, the electrode assembly of the present invention is more preferably configured to satisfy the following formula 2-1.
  • Equation 2-1 1 ⁇ N n / P n ⁇ N n / P n + 1 ⁇ N n + 1 / P n + 1 ⁇ N n + 1 / P n + 2
  • Equation 2-2 1 ⁇ N n / P n ⁇ N n / P n + 1 ⁇ N n + 1 / P n + 1 ⁇ N n + 1 / P n + 2 ⁇ 1.2
  • the electrode assembly of the present invention includes n + 2 or more electrode units having different full widths, and an electrode unit having an n + 2th long full width has an n + 1th long full width with an electrode unit having an nth long full width.
  • the P n + 2 ratio to the n n + 1 for the (i. e., n n + 1 / P n + 2) is the ratio of n n to P n + 2 (n n / P n + 2 ) is preferably formed less than. That is, when the electrode assembly of this invention contains the combination of three or more types of electrode units from which the full width differs, it is more preferable that it is comprised so that Formula 2 and Formula 3 may be satisfied simultaneously.
  • Equation 3 N n / P n + 2 ⁇ N n + 1 / P n + 2
  • n is an integer of 1 or more
  • N n is a reversible capacity per unit area of a cathode of an electrode unit having an nth long full width
  • N n + 1 is a unit of a cathode of an electrode unit having an n + 1 th long full width
  • P n + 1 is the reversible capacity per unit area of the anode of the electrode unit having the n + 1th long full width
  • P n + 2 is the reversible capacity per unit area of the anode of the electrode unit having the n + 2th long full width .
  • the output width and the structural stability are excellent while varying the full width and thickness of each electrode unit. That is, it was found that an electrode assembly having a charge capacity of 500 times at 25 ° C. and having a charge capacity of 60% or more compared to the capacity capacity after one charge and discharge, and having a thickness change rate of the entire electrode assembly of 15% or less.
  • the ratio of the reversible capacity per unit area of the negative electrode to the reversible capacity per unit area of the positive electrode opposed at the interface between the electrode units having different full width lengths is 1 or more, preferably 1 to 2, It can be designed to be 1 to 1.5, 1 to 1.1, 1 to 1.09, 1. 5 to 2, 1.02 to 1.09, 1.05 to 1.09 1.05, 1.06, 1.07, 1.08 or 1.09.
  • a battery capacity of a commercially available level can be changed even if the area or thickness of the electrode unit is changed relatively freely within a range that satisfies a condition in which the available capacity ratio per unit area of the negative electrode with respect to the positive electrode facing the interface is at least 1; It has been shown that durability can be obtained. However, when the ratio of the reversible capacity per unit area of the positive electrode and the negative electrode opposed at the interface is less than 1, swelling has occurred and the battery stability and electrode efficiency have been shown to decrease sharply.
  • the electrode assembly of the present invention includes a combination of three or more kinds of electrode units having different full lengths
  • the ratio of the reversible capacity of the cathode per unit area to the reversible capacity of the anode per unit area at the interface between the electrode units is It is preferable that they are designed to be equal to each other or to be larger as the contact area between the electrode units is smaller.
  • the electrode unit with the longest full length (conventionally referred to as the first electrode unit), the electrode unit with the full width middle (for convenience, referred to as the second electrode unit), and the electrode unit with the shortest full length (for convenience, third) Electrode unit), the ratio of the reversible capacitance per unit area of the positive electrode and the negative electrode disposed at the interface between the second electrode unit and the third electrode unit is disposed at the interface between the first electrode unit and the second electrode unit. It is preferably equal to or greater than the ratio of the reversible capacity per unit area of the positive and negative electrodes.
  • the ratio of the thickness of the positive electrode and the negative electrode opposite at the interface between the electrode units having different full width lengths is specified.
  • the ratio of the thickness of the cathode ie, cathode thickness / anode thickness
  • the thickness of the anode opposite at the interface between the electrode units having different full widths may be about 0.5 to 2, and Preferably, it may be about 0.7 to 1.8, more preferably about 1.0 to 1.4.
  • the thickness ratio of the positive electrode and the negative electrode opposite to each other at the interface between the electrode units is less than 0.5, there is not enough place of the negative electrode to receive the lithium ions of the positive electrode, and thus lithium ions may be precipitated to show the performance and the capacity lower than the designed capacity.
  • the number of sites of the negative electrode capable of receiving lithium ions during the initial charging increases, the irreversible capacity is increased, the actual capacity is lower than the designed capacity, and the excessive amount of the negative electrode is used, which is the energy efficiency of the capacity compared to the cell density.
  • problems such as deterioration of the coating force may result in detachment of the negative electrode active material.
  • the thicknesses of the anode and the cathode may be measured by cutting the electrode assembly using an ion milling prevention (CP, cross section polisher) to expose the cross section, and then scanning the cross section using SEM equipment.
  • the thickness of the positive electrode and the negative electrode refers to a thickness including both an electrode current collector and an electrode active material layer.
  • the thickness of the active material layer and the current collector is added together.
  • a double-sided electrode in which the electrode active material layer is coated on both surfaces that is, in the case of an electrode made of an active material layer / current collector / active material layer, it means a thickness obtained by adding two active material layers and a current collector.
  • the thickness of the cathode of the electrode unit having the nth longest full width is dN n
  • the thickness of the anode of the electrode unit having the nth longest full width is dP n , n + 1.
  • the ratio of dN n to dP n is the ratio of dN n to dP n + 1 (that is, , dN n / dP n + 1 ). That is, the electrode assembly of the present invention is preferably configured to satisfy the following equation (4).
  • Equation 4 dN n / dP n ⁇ dN n / dP n + 1
  • n is an integer of 1 or more.
  • the dN n / dP n and dN n / dP n + 1 is preferably about 0.5 to 2, It may be more preferably about 0.6 to 1.9, even more preferably about 1.0 to 1.5. That is, the electrode assembly of the present invention is preferably configured to satisfy the following formula 4-1, more preferably may be configured to satisfy the following formula 4-2, most preferably the following formula 4-3 It may be configured to satisfy.
  • Equation 4-1 0.5 ⁇ dN n / dP n ⁇ dN n / dP n + 1 ⁇ 2
  • Equation 4-2 0.6 ⁇ dN n / dP n ⁇ dN n / dP n + 1 ⁇ 1.9
  • Equation 4-3 1.0 ⁇ dN n / dP n ⁇ dN n / dP n + 1 ⁇ 1.5
  • the electrode assembly of the present invention when the electrode assembly of the present invention includes n + 2 or more electrode units having different full widths, the electrode assembly of the present invention has the thickness of the cathode of the electrode unit having the nth longest full width dN.
  • dP is the thickness of the anode of the electrode unit n
  • dN is the thickness of the cathode of the electrode unit having the n + 1
  • dP is the thickness of the anode of the electrode unit having the n + 1
  • dP is the thickness of the anode of the electrode unit having the n + 2 DP n + 1 DN for n
  • dN n / dP n + 1 DP n DN for n
  • the ratio of (i.e. dN n / dP n Not less than dP n + 1 DN for n + 1 The ratio of (i.e. dN n + 1 / dP n + 1 It is preferably formed so as not to be larger than).
  • the dP n + 1 DN for n + 1 The ratio of (i.e. dN n + 1 / dP n + 1 ) Is dP n + 2 DN for n + 1
  • the electrode assembly of the present invention includes three or more kinds of electrode units having different full widths, the electrode assembly may be configured to satisfy Equation 5 below.
  • Equation 5 dN n / dP n ⁇ dN n / dP n + 1 ⁇ dN n + 1 / dP n + 1 ⁇ dN n + 1 / dP n + 2
  • n is an integer of 1 or more.
  • the dN n / dP n , dN n / dP n + 1 , dN n + 1 / dP n + 1 and dN n + 1 / dP n + 2 may be preferably about 0.5 to 2, more preferably about 0.6 to 1.9, and even more preferably about 1.0 to 1.5. That is, the electrode assembly of the present invention may be configured to satisfy the following Equation 5-1, more preferably may be configured to satisfy the Equation 5-2, and most preferably to satisfy the following Equation 5-3. Can be configured.
  • the electrode assembly of the present invention includes three or more kinds of electrode units having different full widths, and the electrode units having the n + 2th longest full width are the electrode units having the nth longest full width and the n + 1th longest full width.
  • the ratio of dN n + 1 for the dP n + 2 i.e., dN n + 1 / dP n + 2
  • the ratio of dN n for dP n + 2 is configured to satisfy Equation 5 and Equation 6 below.
  • Equation 6 dN n / dP n + 2 ⁇ dN n + 1 / dP n + 2
  • n is an integer of 1 or more
  • dN n is the thickness of the cathode of the electrode unit having the nth longest full width
  • dN n + 1 is the thickness of the cathode of the electrode unit having the n + 1th longest full width
  • dP n + 1 is the thickness of the anode of the electrode unit having the n + 1th longest full width
  • dP n + 2 is the thickness of the anode of the electrode unit having the n + 2th longest full width.
  • the design is simple compared to the method of adjusting the ratio of the reversible capacity.
  • the specification of the electrode used varies depending on the electrode unit, the balance may not be balanced only by the thickness ratio. Therefore, in such a case, it is desirable to design the electrode assembly in accordance with a method of adjusting the ratio of the reversible capacity of the positive electrode and the negative electrode at the interface.
  • the charging capacity of the negative electrode active material used is about 1.5 to 3 times the charging capacity of the positive electrode active material, preferably 1.8 times. In the case of about 2.5 to 2.5 times, by designing the thickness of the positive electrode and the negative electrode at the interface between the electrode units in the above range, it is possible to easily balance the balance at the interface.
  • each of the positive electrode and the negative electrode included in the electrode assembly of the present invention may be designed so that the balance at the interface between the electrode unit, the electrode thickness, porosity, loading amount and the like are not particularly limited.
  • the thicknesses of the positive electrode and the negative electrode included in the electrode assembly of the present invention may be appropriately selected in consideration of the type of electrode active material used, the battery capacity to be implemented, and the like.
  • the thickness of the positive electrode may be about 50 ⁇ 150 ⁇ m, 80 ⁇ 140 ⁇ m or 100 ⁇ 150 ⁇ m
  • the thickness of the cathode is 80 ⁇ 200 ⁇ m, 100 ⁇ 200 ⁇ m or 100 ⁇ 150 ⁇ m or so.
  • the coating amount (also referred to as loading amount) per unit area of the electrode active material is not particularly limited, and the type of electrode active material used, the battery capacity to be implemented, and the like. It may be appropriately selected in consideration.
  • the coating amount per unit area of the positive electrode active material is about 10 mg / cm 2 to 30 mg / cm 2, about 10 mg / cm 2 to 25 mg / cm 2 , or 15 mg / cm 2 to 30 mg.
  • / cm 2 may be about, coating amount per unit area of the negative electrode active material is about 5 mg / cm 2 to 20 mg / cm 2 , 5 mg / cm 2 to 15 mg / cm 2 , or 10 mg / cm 2 to 20 mg / cm It can be two degrees.
  • porosity is not particularly limited, and may be appropriately selected in consideration of the type of electrode active material used, battery capacity to be implemented, and the like.
  • the porosity of the positive electrode may be about 10 to 30%, about 15 to 30%, or about 10 to 25%
  • the porosity of the negative electrode is about 15 to 50%, about 20 to 50% or It may be about 15 to 40%.
  • the output width and / or thickness of each electrode unit are varied in various ways, and the output power and structure are excellent.
  • an electrode assembly having a charge capacity of 500 times at 25 ° C. and a discharge capacity of 60% or more compared to a capacity after one charge and discharge, and having a thickness change rate of 15% or less of the entire electrode assembly can be obtained.
  • the electrode units included in the electrode assembly of the present invention may be formed in a wide variety of combinations.
  • the configuration of the electrode unit of the present invention 2 to 5 show various embodiments showing the configuration of the electrode unit in the electrode assembly according to the present invention.
  • the electrode assembly of the present invention may be formed of three types of electrode units 110, 120, and 130 having different lengths of full widths W, wherein the electrode units are formed of the anode 40.
  • the cathode 50 may be configured to include stacked unit cells stacked through the separator 60.
  • each of the electrode units may be formed of one unit cell 105, such as the electrode unit 130, or two of the same length of the full length L and the length of the full width W, such as the electrode unit 110 or 120.
  • the electrode unit may be composed of a jelly roll-type unit cell, a stack-and-fold unit cell in addition to the stacked unit cell, or may be a combination of these unit cells and a single electrode, or different types of units. It may also consist of a combination of cells.
  • FIG. 3 discloses a cross-sectional view of an electrode assembly comprising an electrode unit consisting of a combination of a jelly-roll unit cell and a single electrode.
  • the electrode assembly of the present invention may be formed of, for example, two kinds of electrode units 210 and 220 having different lengths of the full width W. In this case, the full width W is relatively high.
  • the electrode unit 210 having a short length of) is a combination of a jelly-roll type unit cell 201 and a single electrode 202, and the electrode unit 220 having a relatively long full width W has a jelly-roll type. It may be made of a unit cell 203.
  • the jelly-roll type unit cells 201 and 203 are wound around the negative electrode sheet 50 'and the positive electrode sheet 40' with the separator 60 'interposed therebetween. It is preferable to be wound up to come out, and the single electrode 202 is preferably an anode.
  • the present invention is not limited thereto, and it is also possible to use a jelly roll-type unit cell wound up so that the positive electrode sheet comes outward, and in this case, to form an uncoated portion that does not coat the positive electrode active material on the part exposed to the outside. It is preferable.
  • FIG. 3 illustrates an electrode unit consisting of a combination of a jelly-roll type unit cell and a single electrode and an electrode unit consisting of one jelly-roll type unit cell, but the present invention is not limited thereto.
  • / or a single electrode unit may be configured by combining a stack and folding unit cell and a single electrode, or a single electrode unit may be configured by combining two or more kinds of different unit cells.
  • the electrode assembly of the present invention may be implemented by combining the stacked unit cell and the stack and folding unit cell.
  • the electrode assembly of the present invention may be formed of three kinds of electrode units 310, 320, and 330 having different lengths of the full width W, and the shortest length of the full width W may be used.
  • the electrode unit 310 and the electrode unit 330 having the longest width W have the longest length, and the electrode unit 320 having the middle width of the full width W has a stack and folding unit cell. It may be made of.
  • the electrode unit 310 having the shortest full width W has a cathode 50, a separator 60, an anode 40, a separator 60, an anode 50, a separator 60, and an anode 40.
  • the electrode unit 330 of the longest width (W) is the cathode 50 / separator 60 / anode 40 / separator 60 / It may be made of a stacked unit cell consisting of a structure of the cathode 50 / separator 60 / anode 40 / separator 60 / cathode 50.
  • the unit cells of the present invention may have different or different polarities of electrodes disposed on the outermost both surfaces, and may include one or more anodes and / or one or more cathodes in one unit cell.
  • the electrode unit 320 having a full width W in the middle is composed of a stack-and-fold type unit cell in which electrode stacks including a cathode, an anode, and a separator are wound and stacked by the sheet-type separation film 70.
  • the electrode assembly of the present invention may include an electrode unit 420 made of a single electrode and an electrode unit 410 made of one or more unit cells 401, 402.
  • one electrode unit may be formed of a single electrode, at least one unit cell, or a combination thereof, wherein the unit cell is generally used in the art.
  • Various unit cells for example, stacked, jelly-rolled, stacked and folded unit cells, and / or combinations thereof may be used without limitation.
  • the electrode assembly of the present invention may have a structure in which some or all of the single electrode and the unit cells constituting the electrode units are surrounded by at least one sheet-like separation film.
  • FIG. 6 shows an embodiment of the electrode assembly of the present invention formed in a structure in which some or all of a single electrode and unit cells constituting the electrode unit are surrounded by a sheet-type separation film.
  • the unit cells 501, 502, 503, 504, 505, 506, and 507 constituting the electrode units 510, 520, and 530 are wrapped using the sheet type separation film 70.
  • the portion indicated by the dotted line may be without the sheet-like separation film.
  • Figure 6 is shown in the sheet-like separation film 70 wraps the unit cells 501, 502, 503, 504, 505, 506, 507 in a zigzag manner, the present invention is not limited thereto.
  • the method of winding a single electrode and / or unit cells with a sheet type separation film may be implemented in various ways.
  • the unit cells 601, 602, 603, 604, 605, and 606 having the same length of the full length L and different lengths of the full width W on the sheet-shaped separation film 670. , 607) can be arranged at appropriate intervals, and then the sheet-shaped separation film can be rolled to produce the electrode assembly of the present invention.
  • the electrode assembly of the present invention is manufactured by arranging the anodes on one surface of the sheet-shaped separation film at predetermined intervals, arranging the cathodes on the opposite surface at a predetermined interval, and then rolling the sheet-shaped separation film.
  • two sheet separator films are prepared, one sheet separator film is laminated with a negative electrode in a predetermined arrangement, and the other sheet separator film is laminated with a positive electrode in a predetermined array, and then the two sheet separator films are laminated. It may be prepared by rolling together.
  • the method of enclosing part or all of the electrode unit using the sheet-shaped separation film may exist in various ways depending on the shape of the electrode assembly to be manufactured, and all such various modifications should be interpreted as falling within the scope of the present invention.
  • the positive electrode, the negative electrode, and the separator included in the electrode assembly of the present invention are not particularly limited, and the positive electrode, the negative electrode, and the separators known in the art may be used without limitation.
  • the negative electrode may be a lithium current, a lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon compound in a negative electrode current collector manufactured by copper, nickel, aluminum or an alloy containing at least one of them. It may be formed by coating a negative electrode active material, such as a tin compound, titanium compounds or alloys thereof.
  • the positive electrode for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate in a positive electrode current collector made of aluminum, nickel, copper or an alloy containing at least one of them Or, it may be formed by coating a positive electrode active material such as compounds and mixtures containing one or more of these.
  • a positive electrode active material such as compounds and mixtures containing one or more of these.
  • an area in which the electrode active material is coated in the positive electrode and the negative electrode constituting one unit cell may be the same or may be different.
  • the unit cells of FIG. 2 show the case where the coating areas of the electrode active material coated on the negative electrode and the positive electrode are the same
  • the unit cells of FIG. 4 show the case where the coating areas of the electrode active material coated on the negative electrode and the positive electrode are different.
  • the electrode active materials may be coated on both sides of the current collector, or to coat the electrode active material only on one surface of the current collector to form a non-coated portion.
  • the separator is, for example, a multi-layer film made of polyethylene, polypropylene or a combination thereof having a microporous structure, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride It may be a polymer film for a solid polymer electrolyte or a gel polymer electrolyte such as hexafluoropropylene copolymer.
  • the electrode units may include at least one electrode tab.
  • the electrode unit is configured as a single electrode (for example, 520 of FIG. 5), only one electrode tab is provided, and when the electrode unit is configured to include a unit cell, it is generally provided with both the negative electrode tab and the positive electrode tab. to be.
  • the electrode tabs are electrically connected to electrodes of the same polarity after the case is inserted.
  • the area, the arrangement position, and the like of the electrode tabs are not particularly limited, but are preferably located on the same side of the four sides of the electrode unit.
  • the electrode tabs may be formed on the side of the full width direction or the side of the full length direction of the electrode unit. In particular, when the electrode tab is formed on the side of the full width direction, the full width of the electrode unit having the smallest full length It is preferable to arrange
  • the electrode tabs may be disposed at various positions of the electrode unit, and for example, some or all of the electrode tabs having the same polarity may be disposed to overlap each other.
  • the electrode tabs having the same polarity in order to facilitate the electrical connection of the electrode tabs after insertion of the battery case, it was common to arrange the electrode tabs having the same polarity to overlap. In this case, however, when the number of electrode stacks increases, the thickness of the electrode tabs becomes thick, which may cause a problem of inferior bonding between the electrode tabs. If the electrode tabs are not overlapped with each other but only partially overlapped, the above-described problems may be substantially reduced.
  • the electrode assembly of the present invention may use electrode tabs 10, 20, and 30 having different areas according to the electrode units, and arrange the electrode tabs such that only some of the electrode tabs overlap. .
  • the electrode units of the present invention may be composed of four sides each having the same length of two opposite sides.
  • the electrode units of the present invention may be formed in a rectangular shape such as a rectangle, a square, a parallelogram, a lozenge, or the like, one or more corners may be chamfered, a rectangular shape formed of a curved line, or one or more sides formed of a curved line. It may be a shape.
  • the electrode assembly of the present invention may be formed by stacking electrode units having the same shape, and as shown in FIG. 11, electrode units having different shapes may be used in combination.
  • electrode units having different shapes may be used in combination.
  • the electrode assembly of the present invention in the electrode assembly of the present invention, the two or more electrode units having the same length of the full length (L) and different length of the full width (W) in various arrangements Can be laminated.
  • the method of stacking the electrode units is not particularly limited, and for example, as shown in FIG. 9A, the length of the full width W of the electrode unit decreases from the lower direction to the upper direction of the electrode assembly.
  • the electrode units may be stacked, and conversely, as shown in FIG. 9B, the electrode units may be stacked in an arrangement in which the length of the full width W of the electrode unit increases from the lower direction to the upper direction of the electrode assembly.
  • the electrode units having the longest width W among the electrode units may be stacked in an arrangement arranged in the intermediate layer of the electrode assembly.
  • the electrode units are stacked in an arrangement in which the center points in the planar direction of each electrode unit coincide, or ( As shown in d), the center points in the planar direction of each electrode unit may be stacked in an array in which one side of the electric field L of each electrode unit is aligned while being spaced at predetermined intervals.
  • 10 and 11 illustrate an embodiment of a battery cell of the present invention.
  • the battery cell 900 of the present invention is characterized in that the electrode assembly 100 of the present invention is built in the battery case 910.
  • the battery case 910 may be a pouch type case and may have a shape corresponding to the shape of the electrode assembly, but is not limited thereto.
  • the pouch-type case may be formed of a laminate sheet, wherein the laminate sheet may be formed of an outer resin layer forming an outermost shell, a barrier metal layer preventing penetration of materials, and an inner resin layer for sealing. It doesn't happen.
  • the battery case is preferably formed of a structure in which the electrode leads 920 and 930 for electrically connecting the electrical terminals of the electrode units of the electrode assembly are exposed to the outside.
  • An insulating film for protecting the electrode lead may be attached thereto.
  • the battery case may be formed in a shape corresponding to the shape of the electrode assembly of the present invention
  • the shape of the battery case may be formed in a manner that is formed by deforming the battery case itself.
  • the shape and size of the battery case does not have to be completely identical to the shape and size of the electrode assembly, and may be any shape and size that can prevent an internal short circuit caused by the sliding phenomenon of the electrode assembly.
  • the shape of the battery case of the present invention is not limited thereto, and battery cases of various shapes and sizes may be used as necessary.
  • the battery cell is preferably a lithium ion battery or a lithium ion polymer battery, but is not limited to these.
  • the battery cell of the present invention as described above may be used alone, or may be used in the form of a battery pack including at least one battery cell.
  • a battery cell and / or battery pack of the present invention is a variety of devices, for example, mobile phones, portable computers, smart phones, smart pads, netbooks, LEV (Light Electronic Vehicle), electric vehicle, hybrid electric vehicle, plug-in hybrid It can be usefully used in electric vehicles, or power storage devices. Since the structure of these devices and their fabrication methods are known in the art, detailed description thereof is omitted herein.
  • the system parts of the device can be located in the surplus space formed due to the structure of the battery cell or the battery pack of the present invention.
  • the battery cell or the battery pack of the present invention is formed of electrode assemblies having different sizes, the electrode assembly itself is formed in a stepped form, and the battery case is formed in accordance with the shape of the electrode, and when the device is mounted, the conventional rectangular or Excess space that does not exist in the oval battery cell or battery pack is generated.
  • the system parts of the device are mounted in such a surplus space, the system parts of the device and battery cells or battery packs can be flexibly arranged, thereby improving space utilization and reducing the thickness or volume of the entire device. A slim design can be realized.
  • LiCoO 2 was used as the positive electrode active material and PVDF (PolyVinyliDene Fluoride) was used as the binder.
  • the positive electrode active material and the binder were dissolved in N-methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone, NMP), followed by mixing Paste was prepared.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode paste was coated on both sides of an aluminum foil current collector having a thickness of 15 ⁇ m, dried in a 150 degree oven, and then pressed to prepare a positive electrode A.
  • the prepared anode A had a thickness of 100 ⁇ m, a porosity of 21%, and a reversible capacity of 335 mAh.
  • a positive electrode B was manufactured in the same manner as in Preparation Example 1, except that the thickness of the positive electrode was 110 ⁇ m.
  • the prepared anode B had a thickness of 110 ⁇ m, a porosity of 21%, and a reversible capacity of 375 mAh.
  • a negative electrode active material natural graphite and artificial graphite were used as a blend material, and as a binder, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (Carboxymethyl Cellulose (CMC)) were used.
  • SBR styrene-butadiene rubber
  • CMC Carboxymethyl Cellulose
  • the negative electrode active material and the binder were dissolved in distilled water. And mixed to prepare a negative electrode paste.
  • the paste thus obtained was applied to both surfaces of a 10 ⁇ m-thick copper foil current collector, and then heat-treated in an oven at 100 ° C. to prepare a negative electrode A.
  • the prepared cathode A had a thickness of 105 ⁇ m, a porosity of 27%, and a reversible capacity of 348 mAh.
  • a negative electrode B was manufactured in the same manner as in Preparation Example 3, except that the thickness of the negative electrode was 108 ⁇ m.
  • the prepared cathode B had a thickness of 105 ⁇ m, a porosity of 27%, and a reversible capacity of 359 mAh.
  • a negative electrode C was prepared in the same manner as in Preparation Example 3, except that the thickness of the negative electrode was 118.8 ⁇ m.
  • the prepared cathode C had a thickness of 118.8 ⁇ m, a porosity of 27%, and a reversible capacity of 400 mAh.
  • a negative electrode D was manufactured in the same manner as in Preparation Example 3, except that the thickness of the negative electrode was 90 ⁇ m.
  • the prepared negative electrode D had a thickness of 90 ⁇ m, a porosity of 27%, and a reversible capacity of 294 mAh.
  • a negative electrode E was manufactured in the same manner as in Preparation Example 3, except that the thickness of the negative electrode was 140 ⁇ m.
  • the manufactured cathode E had a thickness of 140 ⁇ m, a porosity of 27%, and a reversible capacity of 465 mAh.
  • Example 1 After cutting the positive electrode A and the negative electrode A to 100 mm x 150 mm, and laminating the positive electrode A and the negative electrode A to 80 mm x 150 mm on a large-area electrode unit manufactured by laminating through a separator, and laminated through the separator.
  • the electrode assembly was manufactured by stacking the small area electrode units prepared.
  • the term 'large area electrode unit' refers to an electrode unit having a long full width
  • the term 'small area electrode unit' refers to an electrode unit having a short full width
  • Example 1 A A 1.05 A A 1.05 1.05 1.03
  • Example 2 A A 1.05 A B 1.08 1.05 1.03 Comparative Example 1 A B 1.08 B D 1.08 0.98 0.957 Comparative Example 2 A D 0.90 A A 1.05 0.90 0.878
  • the capacitance was measured under the following charging and discharging conditions, and a 10 minute rest period was provided between charging and discharging.
  • the thickness change rate of the electrode assembly was calculated by measuring the total thickness of the electrode assembly each time charging and discharging was completed.
  • the measurement result is shown in FIG. As shown in FIG. 12, in the electrode assemblies of Examples 1 and 2 manufactured according to the present invention, even after 500 cycles, the electric capacity is very excellent as 80% or more compared to the electric capacity after one charge and discharge, and also the thickness change rate While it is 10% or less, it can be seen that the electrode assemblies of Comparative Examples 1 and 2 exhibit rapid capacitance change and thickness change between 400 cycles and 500 cycles.
  • the positive electrode A and the negative electrode E were cut to 80 mm x 150 mm, respectively, and laminated through a separator to prepare a small area electrode unit.
  • the negative electrodes 1 to 8 were prepared in the same manner as in Preparation Example 3. Reversible capacities of the prepared negative electrodes 1 to 8 are as described in the following [Table 2]. Then, the positive electrode A and the negative electrodes 1 to 8 were cut to 100 mm x 150 mm, respectively, and laminated through a separator to prepare large area electrode units 1 to 8.
  • the small area electrode units were laminated on the large area electrode units 1 to 8, respectively, to prepare electrode assemblies 1 to 8.
  • Electrode Assembly 1 Cathode 1 40 27 105 0.31 0.4 Electrode assembly 2 Cathode 2 50 27 141 0.42 0.5 Electrode assembly 3 Cathode 3 80 27 251 0.75 0.8 Electrode assembly 4 Cathode 4 110 27 360 1.07 1.1 Electrode assembly 5 Cathode 5 140 27 465 1.39 1.4 Electrode Assembly 6 Cathode 6 170 27 574 1.71 1.7 Electrode Assembly 7 Cathode 7 200 27 682 2.04 2.0 Electrode Assembly 8 Cathode 8 220 27 753 2.25 2.2
  • the electrode assemblies 1 to 8 manufactured as described above were charged and discharged once under the following charging and discharging conditions. Then, the capacitance and the voltage were measured, and the electric energy was calculated by multiplying the measured capacitance and the voltage. Then, the calculated electrical energy value was divided by the volume of the electrode assembly to calculate the energy density per unit volume.
  • FIG. 13 is a graph showing energy density according to a ratio of reversible capacity per unit area of a cathode to an anode at an interface between electrode units based on the measured value
  • FIG. 14 is an anode at an interface between electrode units based on the measured value. It is a graph showing the energy density according to the thickness ratio of the cathode to.
  • the energy density per unit volume is very high when the ratio of the reversible capacity per unit area of the cathode to the anode at the interface between the electrode units is about 1 to 1.5, particularly about 1 to 1.2.
  • the ratio of the reversible capacity per unit area at the interface is 1 or less, it is possible to obtain a commercially available energy density, but as described in Experimental Example 1, in this case, charge and discharge As the cycle is repeated, a sudden decrease in capacitance and a change in thickness occur, which makes it difficult to commercialize.
  • the energy density per unit volume is commercially available at 300 Wh / l or more, and the thickness ratio of the electrode is 0.6 to At about 1.9, the energy density per unit volume is significantly higher than 350 Wh / l, and when the thickness ratio of the electrode is about 0.8 to 1.5, especially about 1.0 to 1.5, the energy density per unit volume is very good at 400 Wh / l or more. It can be seen that the energy density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 전장의 길이가 동일하고 전폭의 길이가 상이한 두 종류 이상의 전극 유닛들의 조합을 포함하고, 상기 전극 유닛들 간에 단차가 형성되도록 적층된 전극 조립체이며, 상기 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들 간의 경계면에서 서로 다른 극성의 전극이 대향되도록 형성된 전극 조립체 및 이를 포함하는 전지셀 및 디바이스에 관한 것이다.

Description

전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
본 발명은 단차를 갖는 전극 조립체에 관한 것으로서, 보다 구체적으로는 전장의 길이가 동일하고 전폭의 길이가 서로 다른 전극 유닛들로 구성된 전극 조립체며, 상기 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들 간의 경계면에서 서로 다른 극성의 전극이 대향되도록 형성된 전극 조립체 및 이를 포함하는 전지에 관한 것이다.
본 발명은 또한, 상기 단차를 갖는 전극 조립체를 포함하는 전지셀, 전지팩, 디바이스에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있으며, 그 중에서도 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수한 이차 전지가 각종 모바일 기기는 물론 다양한 전자제품의 에너지원으로 널리 사용되고 있다.
일반적으로 이차 전지. 특히 리튬 이차 전지는 전지 케이스 내부에 전극 조립체와 전해질을 밀봉하는 구조로 형성되며, 외형에 따라 크게 원통형 전지, 각형 전지, 파우치형 전지 등으로 분류되며, 전해액의 형태에 따라 리튬 이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 한다. 최근 모바일 기기의 소형화에 대한 최근의 경향으로 인해, 두께가 얇은 각형 전지, 파우치형 전지에 대한 수요가 증가하고 있으며, 특히 중량이 적은 파우치형 전지에 대한 관심이 증대되고 있다.
한편, 전지 케이스에 수납되는 전극 조립체는 그 형태에 따라, 젤리-롤형(권취형), 스택형(적층형), 또는 스택/폴딩형(복합형)의 구조로 구분될 수 있다. 통상 젤리-롤형 전극 조립체는 전류 집전체로 사용되는 금속 호일에 전극활물질을 코팅하고, 프레싱한 후, 원하는 폭과 길이를 갖는 밴드 형태로 재단한 다음, 분리 필름을 이용해 음극과 양극을 격막한 후 나선형으로 감아서 제조되는 전극 조립체를 말하며, 스택형 전극 조립체는 음극, 분리막, 양극을 수직으로 적층하는 방식으로 제조되는 전극 조립체를 말한다. 한편, 스택/폴딩형 전극 조립체는 단일 전극 또는 음극/분리막/양극으로 이루어진 전극 적층체들을 길이가 긴 시트형 분리 필름으로 말거나 접어서 제조되는 전극 조립체를 말한다.
그러나, 현재까지 알려진 종래의 전극 조립체들은 일반적으로 동일한 크기의 단위셀이나 개별 전극들을 적층하는 방식으로 제조되기 때문에 형상 자유도가 떨어져 디자인적인 제약이 많았다. 이에 다양한 디자인을 구현하기 위해, 서로 다른 크기를 갖는 전극들 또는 단위셀들을 적층하여 단차가 있는 전지를 제조하는 방안들이 제안되었다. 그러나 현재까지 제안된 단차가 있는 전지들은 양극판 및 음극판을 원하는 면적으로 재단하여 서로 다른 면적의 단위셀들을 만들고 이들을 적층하는 방법으로 제조되는데, 이 경우 각 단의 면적을 조절할 수는 있지만, 각 단의 두께는 단위셀 두께의 배수로 한정되기 때문에 전지의 두께 방향의 디자인 자유도가 그다지 넓지 않다.
또한, 상기 종래 기술들의 경우, 단순히 음극판과 양극판을 원하는 크기로 재단하여 서로 다른 크기의 단위셀들을 형성한 후, 이들을 적층하여 디자인을 변경할 수 있다는 아이디어 정도만을 제시하고 있을 뿐, 실제로 사용가능한 정도의 전지 특성을 갖는 전지를 제조할 수 있는 구체적인 방법은 전혀 제시하고 있지 못하다. 예를 들면, 단차가 있는 전지의 경우, 전지를 구성하는 크기가 다른 단위셀들 각각은 문제없이 작동하더라도, 각 단을 구성하는 단위셀들의 구성에 따라 이들을 적층하였을 때는 작동이 불가능하거나, 동일 부피 대비 전지 용량이 현저하게 떨어진다거나, 충방전이 반복됨에 따라 단과 단 사이의 계면에서 스웰링이 심하게 발생하여 제품 수명이 지나치게 짧은 등의 문제점이 발생하여 실제로 사용할 수 없는 경우가 많다. 그러나 종래 제안된 단차가 있는 전지들의 경우, 이러한 문제점에 대해서 전혀 고려하고 있지 않다.
따라서, 전지셀이 적용되는 디바이스에 모양에 따라 다양한 디자인을 구현하면서도, 대용량 및 고내구성 특성을 갖는 전극 조립체 및 이를 이용한 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 다양한 디자인을 구현할 수 있고, 박형이며, 우수한 전기 용량 특성을 갖는 전극 조립체 및 이를 포함하는 전기셀 및 디바이스를 제공하고자 한다.
본 발명의 일 구현예에 따르면, 본 발명은 전장의 길이가 동일하고 전폭의 길이가 상이한 2 이상의 전극 유닛들의 조합을 포함하고, 상기 전극 유닛 들간에 단차가 형성되도록 적층되었으며, 상기 전장의 길이가 동일하고 전폭의 길이가 상이한 2 이상의 전극 유닛 들간의 경계면에 서로 다른 극성의 전극이 대면되도록 형성된 전극 조립체를 제공한다.
본 발명의 일 구현예에 따르면, 상기 전극 조립체는 전폭의 길이가 상이한 2 이상의 전극 유닛들간의 경계면에서, 상대적으로 전폭의 길이가 긴 전극 유닛의 음극과 상대적으로 전폭의 길이가 짧은 전극 유닛의 양극이 대향되도록 형성되는 것이 바람직하다.
한편, 본 발명의 전극 조립체는 25℃에서 500회의 충방전을 실시하였을 때의 전기 용량이 1회 충방전 후의 전기용량 대비 60% 이상이고, 전극 조립체 전체의 두께 변화율이 15% 이하인 것이 바람직하며, 이를 위해, 서로 다른 전폭 길이를 갖는 전극 유닛들 간의 경계면에서 대향되는 양극과 음극의 밸런스(balance)가 맞도록 조절될 수 있다.
바람직한 구현예에 따르면, 본 발명의 전극 조립체는, 전폭 길이가 상이한 n+1개 이상(이때, n은 1 이상의 정수)의 전극 유닛을 포함하며, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역 용량을 Nn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역 용량을 Pn, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량을 Pn+1이라 할 때, Pn에 대한 Nn의 비율(즉, Nn/Pn)이 Pn+1에 대한 Nn의 비율(즉, Nn/Pn+1)보다 크지 않게 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체는 하기 식 1을 만족하도록 구성될 수 있다.
식 1: Nn/Pn ≤ Nn/Pn+1
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 n+2개 이상의 전극 유닛을 포함하는 경우, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역 용량을 Nn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역 용량을 Pn, n+1번째로 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역용량을 Nn+1, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량을 Pn+1, n+2번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량을 Pn+2이라 할 때, Pn+1에 대한 Nn의 비율(즉, Nn/Pn+1)은, Pn에 대한 Nn의 비율(즉, Nn/Pn)보다 작지 않고, Pn+1에 대한 Nn+1의 비율(즉, Nn+1/Pn+1)보다 크지 않도록 형성되는 것이 바람직하다. 또한, 상기 Pn+1에 대한 Nn+1의 비율(즉, Nn+1/Pn+1)은 Pn+2에 대한 Nn+1의 비율(즉, Nn+1/Pn+2)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛을 포함하는 경우에는 하기 식 2를 만족하도록 구성될 수 있다.
식 2: Nn/Pn≤ Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2
또한, 본 발명의 전극 조립체에 있어서, 전폭 길이가 상이한 세 종류 이상의 전극 유닛을 포함하고, n+2번째로 긴 전폭을 갖는 전극 유닛이 n번째로 긴 전폭을 갖는 전극 유닛과 n+1번째로 긴 전폭을 갖는 전극 유닛 사이에 개재되는 경우에는, 상기 Pn+2에 대한 Nn+1에 대한 비율(즉, Nn+1/Pn+2)은 Pn+2에 대한 Nn의 비율(즉, Nn/Pn+2)보다 작지 않게 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체는, 하기 식 3을 만족하도록 구성될 수 있다.
식 3: Nn/Pn+2 ≤ Nn+1/Pn+2
또 다른 바람직한 구현예에 따르면, 본 발명의 전극 조립체는, 전폭 길이가 상이한 n+1개 이상의 전극 유닛들의 조합을 포함하고, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+1라 할 때, dPn에 대한 dNn의 비율(즉, dNn/dPn)이 dPn+1에 대한 dNn의 비율(즉, dNn/dPn+1)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 이 경우, 본 발명의 전극 조립체는 하기 식 4를 만족하도록 구성될 수 있다.
식 4: dNn/dPn≤ dNn/dPn+1
한편, 본 발명의 전극 조립체가 전폭의 길이가 상이한 세 종류 이상의 전극 유닛을 포함하는 경우, 본 발명의 전극 조립체는, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께 dPn, n+1번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn+1, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+1, n+2번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+2이라 할 때, dPn+1에 대한 dNn의 비율(즉, dNn/dPn+1)이 dPn에 대한 dNn의 비율(즉, dNn/dPn)보다 작지 않고, dPn+1에 대한 dNn+1의 비율(즉, dNn+1/dPn+1)보다 크지 않도록 형성되는 것이 바람직하다. 또한, 상기 dPn+1에 대한 dNn+1의 비율(즉, dNn+1/dPn+1)은 dPn+2에 대한 dNn+1의 비율(즉, dNn+1/dPn+2)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 이 경우, 본 발명의 전극 조립체는 하기 식 5를 만족하도록 구성될 수 있다.
식 5: dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2
또한, 본 발명의 전극 조립체에 있어서, 전폭의 길이가 상이한 세 종류 이상의 전극 유닛을 포함하고, n+2번째로 긴 전폭을 갖는 전극 유닛이 n번째로 긴 전폭을 갖는 전극 유닛과 n+1번째로 긴 전폭을 갖는 전극 유닛 사이에 개재되는 경우에는, 상기 dPn+2에 대한 dNn+1의 비율(즉, dNn+1/dPn+2)은 dPn+2에 대한 dNn의 비율(즉, dNn/dPn+2)보다 작지 않게 형성되는 것이 바람직하다. 즉, 이 경우, 본 발명의 전극 조립체는 하기 식 6을 만족하도록 구성될 수 있다.
식 6: dNn/dPn+2 ≤ dNn+1/dPn+2
한편, 본 발명의 전극 조립체는, 전폭 길이가 상이한 전극 유닛들 간의 경계면에서 대향되는 양극과 음극에 있어서, 상기 양극의 두께에 대한 상기 음극의 두께의 비율이 0.5 내지 2 정도가 되도록 구성되는 것이 바람직하며, 예를 들면, 0.6 내지 1.9, 0.8 내지 1.5, 또는 1.0 내지 1.5 정도, 보다 구체적으로는, 1.0, 1.1, 1.2, 1.3, 1.4 정도가 되도록 구성되는 것이 바람직하다.
또한, 본 발명의 전극 조립체에 있어서, 전폭 길이가 상이한 전극 유닛들 간의 경계면에서 대향되는 양극 및 음극은 상기 양극의 단위 면적당 가역 용량에 대한 상기 음극의 단위 면적당 가역 용량의 비율이 약 1 이상이 되도록 구성되는 것이 바람직하며, 예를 들면, 1 ~ 2, 1 ~ 1.5, 1 ~ 1.2, 1 ~ 1.1, 1. 5 ~ 2, 1 ~ 1.09, 1.02 ~ 1.2, 1.02 ~ 1.09 또는 1.05 ~1.09 정도, 보다 구체적으로는, 1.05, 1.06, 1.07, 1.08, 1.09 정도가 되도록 구성되는 것이 바람직하다.
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛들을 포함할 경우, 상기 전극 유닛들 간의 경계면에서 대항되는 양극과 음극의 단위 면적당 가역 용량의 비율은 서로 동일하게 구성되거나, 또는, 상기 전극 유닛들 간의 접촉 면적이 작아질수록 양극에 대한 음극의 단위 면적당 가역 용량의 비율이 증가하도록 구성될 수 있다.
한편, 본 발명에 있어서, 상기 전극 유닛은 단일 전극; 적어도 하나의 양극, 적어도 하나의 음극 및 적어도 하나의 분리막을 포함하는 적어도 하나의 단위셀; 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상으로 이루어질 수 있으며, 이때, 상기 단위셀은 젤리-롤형, 스택형, 라미네이션 앤 스택형 및 스택 앤 폴딩형 단위셀로 이루어지는 군으로부터 선택되는 것일 수 있으며, 상기 단위셀은 최외각 양면에 배치되는 2개의 전극의 극성이 서로 동일하거나, 상이할 수 있다.
또한 바람직하게는, 본 발명의 전극 조립체는 상기 전극 유닛들을 구성하는 단일 전극 및 단위셀의 일부 또는 전부가 적어도 하나의 길이가 긴 시트형 분리필름에 의해 감싸져 있는 구조로 이루어질 수 있다.
한편, 본 발명의 상기 전극 유닛은 다양한 단면 형상을 가질 수 있으며, 예를 들면, 사각형, 적어도 하나의 모서리가 곡선 형태인 사각형, 사다리꼴 또는 적어도 하나 이상의 변이 곡선 형태인 단면 형상을 가질 수 있다.
또한, 본 발명의 전극 조립체는 단면 형상이 상이한 전극 유닛들의 조합으로 이루어질 수도 있고, 단면 형상이 동일한 전극 유닛들의 조합으로 이루어질 수도 있다.
한편, 본 발명의 상기 전극 유닛들은 적어도 하나 이상의 전극탭을 구비할 수 있으며, 이때, 상기 전극탭들은 동일한 극성의 전극끼리 전기적으로 연결된다. 이때, 상기 전극탭들은 그 크기가 동일할 수도 있고, 전극 유닛의 면적에 따라 서로 상이한 크기를 가질 수도 있다.
한편, 본 발명의 전극 조립체에 있어서, 상기 전장의 길이가 동일하고 전폭의 길이가 상이한 2 이상의 전극 유닛들은 다양한 배열로 적층될 수 있다. 전극 유닛의 적층 방법은 특별히 한정되는 것은 아니며, 예를 들면, 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭의 길이가 작아지는 배열로 전극 유닛들을 적층할 수 있고, 반대로 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭의 길이가 커지는 배열로 전극 유닛들을 적층할 수도 있으며, 또는 전극 유닛들 중 가장 전폭의 길이가 긴 전극 유닛이 상기 전극 조립체의 중간층에 배치되는 배열로 적층할 수도 있다.
또한 본 발명의 전극 조립체에 있어서, 상기 전극 유닛들은 각각의 전극 유닛의 평면 방향의 중심점이 일치되는 배열로 적층되거나, 각각의 전극 유닛의 평면 방향의 중심점이 소정의 간격으로 이격되어 있는 배열로 적층되거나, 또는 각각의 전극 유닛의 전장의 일 변이 일치되는 배열로 적층될 수도 있다.
본 발명의 다른 구현예에 따르면, 본 발명은 상기와 같은 본 발명의 전극 조립체가 전지케이스에 내장되어 있는 전지셀을 제공한다. 이때, 상기 전지케이스는 파우치형 케이스인 전지셀일 수 있으나 반드시 이에 국한되는 것은 아니다. 또한 본 발명의 상기 전지케이스는, 바람직하게는, 전극 조립체의 형상에 대응하는 형상으로 형성될 수 있다. 또한 본 발명의 상기 전지셀은 리튬 이온 이차 전지 또는 리튬 이온 폴리머 이차 전지일 수 있다.
본 발명의 또 다른 구현예에 따르면, 본 발명은 상기와 같은 본 발명의 전지셀을 하나 이상 포함하는 디바이스를 제공한다. 이때, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치인 디바이스일 수 있다.
한편, 본 발명에 따르면, 상기 전지셀의 잉여 공간에 디바이스의 시스템 부품이 위치할 수 있다.
본 발명의 전극 조립체는 전폭 길이가 다른 2종 이상의 전극 유닛들을 조합하여 사용함으로써, 종래에 비해 매우 다양한 디자인을 구현할 수 있을 뿐 아니라, 상용화 가능한 수준의 우수한 전기 용량 및 내구성 특성을 갖는다.
또한, 본 발명의 전극 조립체는 전폭 길이가 상이한 전극 유닛들 간의 경계면에서의 양극과 음극의 밸런스를 맞춤으로써, 용량 특성 및 내구성 특성을 유지하면서도 각 단을 구성하는 전극 유닛들의 면적뿐 아니라 두께도 비교적 자유롭게 조절할 수 있기 때문에 디자인 자유도가 매우 우수하다. 그 결과, 디바이스 장착 시에 디자인적인 요소 때문에 발생하게 되는 데드 스페이스(DEAD SPACE)를 최소화할 수 있어 공간 활용도가 우수하다.
도 1은 본 발명의 일 실시예에 따른 전극 조립체의 사시도이다.
도 2은 본 발명의 제1실시예에 따른 전극 조립체의 측면도이다.
도 3는 본 발명의 제2실시예에 따른 전극 조립체의 측면도이다.
도 4은 본 발명의 제3실시예에 따른 전극 조립체의 측면도이다.
도 5는 본 발명의 제4실시예에 따른 전극 조립체의 측면도이다.
도 6는 본 발명의 제5실시예에 따른 전극 조립체의 측면도이다.
도 7은 본 발명의 일 실시예에 따른 전극 조립체의 전개도이다.
도 8은 본 발명의 일 실시예에 따른 전극탭의 구성을 보여주기 위한 도면이다.
도 9은 본 발명의 전극 유닛들의 적층예를 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 전지셀의 사시도이다.
도 11은 본 발명의 다른 실시예에 따른 전지셀의 사시도이다.
도 12는 본 발명의 실시예 1~2 및 비교예 1~2에 의해 제조된 전극 조립체를 500회 충방전하였을 때의 전기 용량 및 두께 변화율을 보여주는 그래프이다.
도 13은 전극 유닛 간 경계면에서의 음극/양극의 가역 용량 비율에 따른 에너지 밀도의 변화를 보여주는 그래프이다.
도 14는 전극 유닛 간 경계면에서의 음극/양극의 두께 비율에 따른 에너지 밀도의 변화를 보여주는 그래프이다.
도 15 내지 도 17은 라미네이션 앤 스택형 단위셀의 구현예들을 보여주는 도면이다.
이하, 도면을 참조하여, 본 발명을 보다 구체적으로 설명하기로 한다. 다만, 하기 도면은 본 발명의 이해를 원활하게 하기 위한 것으로, 본 발명의 일 실시예에 불과하며, 본 발명의 범위가 도면에 기재된 범위로 한정되는 것은 아니다. 또한 하기 도면에서 동일한 부호는 동일한 구성요소를 지칭하며, 발명의 원활한 이해를 위해 일부 구성요소가 과장, 축소 또는 생략되어 표현될 수 있다.
도 1에는 본 발명의 전극 조립체의 일 실시예가 도시되어 있다. 도 1에 도시된 바와 같이, 본 발명의 전극 조립체는, 전장(L)의 길이가 동일하고 전폭(W)의 길이가 상이한 두 종류 이상의 전극 유닛(110, 120, 130)들의 조합을 포함하며, 상기 전극 유닛들 간에 단차가 형성되도록 적층된 전극 조립체이며, 상기 전장(L)의 길이가 동일하고 전폭(W)의 길이가 상이한 전극 유닛들 간의 경계면에서 서로 다른 극성의 전극이 대향(對向)되도록 형성되는 것을 그 특징으로 한다.
본 발명에서 전극 유닛의 전장(L)은, 전극 조립체의 구성요소로서 마주보는 두 개의 변의 길이가 각각 동일한 네 개의 변으로 구성된 전극 유닛들 중 가장 면적이 큰 전극 유닛에 있어서, 상대적으로 길이가 긴 두 변을 말한다. 전폭(W)은 전극 유닛의 네 개의 변 중 상기 전장(L)을 제외한 나머지 두 변을 말한다.
또한, 상기 '전극 유닛'은 본 발명의 단차가 있는 전극 조립체에 있어서의 한 층을 구성하는 기본 단위를 지칭하는 것으로, 각각의 전극 유닛들은 음극 또는 양극과 같은 단일 전극; 적어도 하나의 음극, 적어도 하나의 양극 및 적어도 하나의 분리막을 포함하는 적어도 하나 이상의 단위셀; 또는 이들의 조합으로 이루어질 수 있다.
한편, 상기 '단위셀'이라는 용어는 적어도 하나의 음극, 적어도 하나의 양극 및 적어도 하나의 분리막을 포함하는 전극 적층체를 모두 포함하는 개념으로, 단위셀에서의 음극, 양극 및 분리막의 적층 방법은 특별히 한정되지 않는다. 예를 들면, 본 발명에 있어서, 상기 '단위셀'이라는 용어는, 시트형 음극 및 시트형 양극을 분리막 필름을 이용하여 격막한 후, 나선형으로 감아서 제조되는 젤리-롤 방식으로 제조된 전극 적층체; 적어도 하나 이상의 음극, 적어도 하나 이상의 분리막, 적어도 하나 이상의 양극을 순차적으로 적층하여 제조되는 스택 방식으로 제조된 전극 적층체; 또는 단일 전극 및/또는 적어도 하나 이상의 양극, 분리막, 음극들이 적층된 전극 적층체들을 길이가 긴 시트형 분리 필름 상에 배치한 다음 폴딩하는 스택 앤 폴딩 방식으로 제조되는 전극 적층체들을 모두 포함하는 개념으로 이해되어야 할 것이다.
한편, 본 발명에 있어서, 상기 단위셀들은 양극/분리막/음극/분리막/양극 또는 음극/분리막/양극/분리막/음극 등과 같이 단위셀의 최외각의 양면에 배치되는 전극들이 동일한 극성을 갖는 것일 수도 있고, 양극/분리막/음극 또는 양극/분리막/음극/분리막/양극/분리막/음극과 같이 단위셀의 최외각의 양면에 배치되는 전극들이 반대의 극성을 갖는 것일 수도 있다.
한편, 본 발명에 있어서, 상기 스택 방식으로 제조된 전극 적층체는, 양극, 분리막, 음극을 하나씩 순차적으로 적층하는 전통적인 방식으로 제조되는 것뿐 아니라, 하나 이상의 양극, 하나 이상의 음극 및 하나 이상의 분리막을 라미네이션(lamination)하여 전극 단위체를 형성한 다음, 이 전극 단위체들을 적층(stacking)하는 방식(이하 '라미네이션 앤 스택 방식'으로 지칭됨)으로 제조된 전극 적층체를 포함하는 개념으로 이해되어야 할 것이다.
한편, 상기 라미네이션 앤 스택 방식으로 전극 적층체를 제조할 경우, 상기 전극 단위체는 하나 이상의 양극, 하나 이상의 음극 및 하나 이상의 분리막을 포함하는 것이면 되고, 그 구성이 특별히 제한되는 것은 아니다.
그러나, 공정의 간편성 및 경제성의 관점에서, 라미네이션 앤 스택 방식으로 전극 적층체를 제조할 경우에는 전극 단위체는 제1전극/분리막/제2전극/분리막 또는 분리막/제1전극/분리막/제2전극으로 이루어진 기본 구조를 포함하도록 구성되는 것이 바람직하다. 이때, 상기 제1전극과 제2전극의 서로 다른 극성을 갖는 전극으로, 양극 또는 음극일 수 있으며, 상기 전극 단위체는 하나 또는 복수개의 기본 구조를 포함할 수 있다.
한편, 상기 라미네이션 앤 스택 방식의 전극 적층체는 상기한 기본 구조를 포함하는 전극 단위체만으로 구성되어도 되고, 상기 기본 구조를 갖는 전극 단위체와 다른 구조의 전극 구조체를 조합하여 사용하여도 무방하다.
도 15 내지 도 17에는 라미네이션 앤 스택 방식으로 제조된 전극 적층체들의 다양한 예들이 개시되어 있다.
도 15에는 분리막(60)/음극(50)/분리막(60)/양극(40)의 기본구조를 갖는 전극 단위체들(710)로 이루어진 라미네이션 앤 스택 방식의 전극 적층체가 도시되어 있다. 도 15에는 기본 구조가 분리막/음극/분리막/양극으로 개시되어 있으나, 양극과 음극의 위치를 바꿔 분리막/양극/분리막/음극의 기본 구조로 형성하여도 무방하다. 한편, 도 15에 도시된 바와 같이, 전극 단위체의 기본 구조가 분리막/음극/분리막/양극인 경우에는 전극 적층체의 최외각에 분리막 없이 양극이 노출되게 되므로, 이러한 기본 구조를 사용하는 경우에는 최외각에 노출되는 양극은 노출되는 면에는 활물질이 코팅되지 않는 단면 코팅 양극을 사용하는 것이 용량 등을 고려한 전극 설계 시 바람직할 수도 있다. 한편, 도 15에는 전극 단위체들이 하나의 기본 구조를 갖는 것으로 개시되어 있으나, 이에 한정되는 것은 아니며, 기본 구조가 2개 이상 반복하여 적층되어 있는 것을 하나의 전극 단위체로 사용할 수도 있다.
도 16에는 분리막(60)/음극(50)/분리막(60)/양극(40)의 기본구조를 갖는 전극 단위체(810)들과 분리막(60)/음극(50)/분리막(60)구조로 이루어진 전극 구조체가 적층(stacking)되어 이루어진 전극 적층체가 도시되어 있다. 도 16과 같이, 최외각면에 분리막(60)/음극(40)/분리막(60)구조로 이루어진 전극 구조체를 적층할 경우, 양극(50)이 외부로 노출되는 것을 방지할 수 있을 뿐 아니라, 전기 용량을 높일 수 있다는 장점이 있다. 이와 유사하게, 전극 단위체의 최외각에 음극이 위치하는 배열의 경우에는, 그 상부에 분리막/양극/분리막 구조로 이루어진 전극 구조체를 적층할 수 있으며, 이 경우, 음극의 용량을 최대한 사용할 수 있다는 점에서 장점이 있다.
도 17에는 음극(50)/분리막(60)/양극(40)/분리막(60)의 기본구조를 갖는 전극 단위체(810')들과 음극(50)/분리막(60)/양극(40)/분리막(60)/음극(50)의 구조를 갖는 전극 구조체(820')가 적층(stacking)되어 이루어진 전극 적층체가 도시되어 있다. 도 17과 같이, 전극 적층체의 최외각면에 음극(50)/분리막(60)/양극(40)/분리막(60)/음극(50)의 구조를 갖는 전극 구조체(820')를 적층할 경우, 양극이 외부로 노출하는 것을 방지할 수 있을 뿐 아니라, 전기 용량도 높일 수 있다는 장점이 있다.
도 16 및 도 17에 예시된 바와 같이, 라미네이션 앤 스택 방식으로 제조된 전극 적층체들은 상기한 기본 구조를 갖는 전극 단위체들과 함께, 단일 전극, 분리막 또는 상기한 전극 단위체들과 배열 및 구성이 상이한 단위셀들을 조합하여 사용할 수 있다. 특히, 기본 구조를 갖는 전극 단위체들을 적층하였을 때, 외부로 양극이 노출되는 것을 방지하기 위한 측면 및/또는 전지 용량의 향상 측면에서 전극 적층체의 최외각 일면 및/또는 양면에 단일 전극, 단면 코팅 전극, 분리막 또는 상기한 전극 단위체들과 배열 및 구성이 상이한 단위셀들을 배치할 수 있다. 한편, 도 16 및 17에는 전극 적층체의 상부에 다른 구조의 전극 구조체가 적층되어 있는 것으로 도시되어 있으나, 이에 한정되는 것은 아니며, 필요에 따라 전극 적층체의 하부에 다른 구조의 전극 구조체가 적층될 수도 있고, 상부와 하부에 모두 다른 구조의 전극 구조체가 적층될 수도 있다.
한편, 본 발명에 있어서, 상기 '스택 앤 폴딩'이라는 용어는, 길이가 긴 시트형 분리 필름 상에 단일 전극 및/또는 적어도 하나 이상의 양극, 분리막, 음극들이 적층된 전극 적층체들을 배치한 다음 폴딩하는 방식을 통칭하는 것으로, 폴딩 방식은 특별히 제한되지 않으며, 당해 기술 분야에 잘 알려진 다양한 폴딩 방식, 예를 들면, 시트형 분리 필름을 지그재그 형태로 접는 방식(Z-폴딩형 또는 병풍형으로 지칭됨), 시트형 분리 필름의 일면에 적어도 하나 이상의 음극과 양극을 분리막을 개재하여 적층시킨 전극 적층체들을 배치한 다음 일 방향으로 감아서 마는 방식, 또는 시트형 분리 필름의 양면에 단일 전극들을 교대로 배치한 다음 시트형 분리 필름을 감아서 마는 방식 등과 같은 다양한 폴딩 방식들을 모두 포괄하는 개념으로 이해되어야 한다. 본 명세서에서는 편의상 젤리-롤 방식으로 제조된 단위셀을 젤리-롤형 단위셀로, 스택 방식으로 제조된 단위셀을 스택형 단위셀로, 스택 앤 폴딩 방식으로 제조된 단위셀을 스택 앤 폴딩형 단위셀로 지칭하기로 한다.
본 발명의 전극 조립체는 전장(L)의 길이가 동일하고, 전폭(W)의 길이가 상이한 두 종류 이상의 전극 유닛을 단차가 형성되도록 적층함으로써, 종래에 비해 다양한 형상의 전지를 구현할 수 있도록 한다. 본 발명에 있어서, 상기 전폭(W)의 길이의 차이는, 전극 유닛들이 적층되었을 때, 단차를 형성할 수 있는 정도이면 되고, 특별히 한정되는 것은 아니며, 원하는 전지의 디자인 등을 고려하여 자유롭게 조절될 수 있다. 예를 들면, 본 발명의 일 구현예에서, 전극 조립체에 포함되는 두 개의 전극 유닛을 비교할 때, 상대적으로 전폭(W)의 길이가 짧은 전극 유닛은 상대적으로 전폭(W)의 길이가 긴 전극 유닛의 전폭(W)의 길이를 100%라 할 때, 20% 내지 95%의 범위, 바람직하게는 30 내지 90%의 범위의 길이를 가질 수 있다.
한편, 본 발명의 전극 조립체에 있어서, 각각의 전극 유닛의 두께는 서로 동일하거나 상이할 수 있으며, 특별히 한정되지 않는다. 예를 들면, 본 발명에 있어서, 상대적으로 전폭(W)의 길이가 긴 전극 유닛이 상대적으로 전폭(W)의 길이가 짧은 전극 유닛보다 얇은 두께를 가질 수도 있고, 두꺼운 두께를 가질 수도 있다.
한편, 본 발명의 전극 조립체는 서로 전폭(W)의 길이가 상이한 전극 유닛들 사이의 경계면에서 서로 다른 극성의 전극이 대향되도록 배치함으로써, 전극 유닛 간의 경계면에서도 전기를 저장할 수 있게 되고, 그 결과 전기 용량이 증가하는 효과를 가져온다. 이때, 상기 '대향'이라는 용어는 서로 마주 보는 방향에 배치되어 있는 것을 의미하는 것으로, 대향되는 두 전극이 서로 접촉하고 있을 필요는 없으며, 두 전극 사이에 다른 구성요소들, 예를 들면, 분리막 및/또는 시트형 분리 필름이 개재되어 있는 경우를 포괄하는 개념이다.
한편, 바람직하게는, 본 발명의 전극 조립체는 전장(L)의 길이가 동일하고 전폭(W)의 길이가 상이한 두 종류 이상의 전극 유닛 사이의 경계면에서 전폭(W)의 길이가 긴 전극 유닛의 음극과 전폭(W)의 길이가 짧은 전극의 양극이 대향되도록 형성되는 것이 좋다. 전폭(W)의 길이가 상이한 전극 유닛 간의 경계면에 전폭(W)의 길이가 긴 전극 유닛의 양극이 배치될 경우, 상기 전극 유닛의 양극으로부터 리튬 금속이 석출되어 전지 수명을 단축시키거나, 전지의 안정성이 저하되는 문제점이 발생할 수 있기 때문이다.
본 발명의 전극 조립체는 서로 다른 전폭 길이를 갖는 전극 유닛들을 포함하며, 필요에 따라, 각각의 전극 유닛의 두께 역시 상이하게 구성함으로써 매우 다양한 디자인을 구현할 수 있다는 장점이 있다. 다만, 상기한 바와 같이, 단순히 전폭 길이가 다른 전극 유닛들을 제조하여 적층하는 것만으로는 상용화할 수 있는 수준의 용량 및 내구성 특성을 갖는 전극 조립체를 제조하기 힘들 뿐 아니라, 전극 유닛의 두께가 단위셀의 두께나 단위 전극의 두께의 배수로 한정되기 때문에 두께 방향의 디자인 자유도가 매우 제약된다는 문제점이 있다. 이에 본 발명자들은 디자인 자유도, 특히 두께 방향의 디자인 자유도가 종래보다 월등하게 우수하면서도, 상용화가 가능한 정도의 출력 효율 및 구조적 안정성을 갖는 전극 조립체를 제조하기 위해 연구를 거듭한 결과, 전폭 길이가 상이한 전극 유닛들 간의 경계면에서의 밸런스를 조절함으로써, 용량, 내구성 및 두께 방향의 디자인 자유도가 모두 우수한 전극 조립체를 생산해낼 수 있음을 알아내었다.
이때, 상기 전폭 길이가 상이한 전극 유닛들 간의 경계면에서의 밸런스(balance)가 맞도록 조절된다는 것은, 일정한 사이클 내에서 안정적으로 출력 효율 및 전지 안정성이 유지되도록 전극 유닛들 간의 경계면에서 대향되는 양극과 음극을 설계하는 것을 의미하는 것으로, 예를 들면, 경계면에서의 양극과 음극의 용량이나 두께 등을 적절하게 조절함으로써 달성될 수 있다. 보다 구체적으로는, 본 발명의 전극 조립체는, 25℃에서 500회의 충방전을 실시하였을 때의 전기 용량이 1회 충방전 후의 전기용량 대비 60% 이상이고, 전극 조립체 전체의 두께 변화율이 15% 이하가 되도록, 서로 다른 전폭 길이를 갖는 전극 유닛들 간의 경계면에서 대향되는 양극과 음극을 설계하는 것이 바람직하다.
이때, 상기 전기 용량은 하기와 같은 충전 조건(A) 및 방전 조건(B) 하에서 측정된 전기 용량을 의미한다. 한편, 충전과 방전 사이에는 10분의 휴지 시간을 두었다.
충전 조건 (A): 1C으로 정전류(constant Current)모드에서 4.25V 또는 4.35V까지 충전한 후, 정전압(constant Voltage) 모드로 전환하여 충전 전류의 양이 전지의 최소 용량의 1/20이 될 때까지 전류를 흘려 보낸 후 충전을 종료하였다.
방전 조건(B): 정전류(constant Current)모드로 1C의 방전 전류를 흘려보내고, 전압이 3V에 도달하면 방전을 종료하였다.
한편, 상기 전극 조립체의 두께 변화율은 (500회 충방전 실시 후의 전극 조립체 전체의 두께 / 1회 충방전 실시 후의 전극 조립체 전체의 두께)×100을 의미한다.
한편, 본 발명자들은 오랜 연구 끝에 전폭 길이가 상이한 전극 유닛 간의 경계면에서 대향되는 음극과 양극의 단위 면적당 가역 용량을 특정한 조건을 만족하도록 설계함으로써, 전극 유닛 간의 경계면에서의 밸런스를 맞출 수 있음을 알아내었다.
보다 구체적으로는, n번째 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역 용량을 Nn, n+1번째 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역용량을 Nn+1, n번째 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역 용량을 Pn, n+1번째 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량을 Pn+1 이라 할 때, 본 발명의 전극 조립체는 Pn에 대한 Nn의 비율(즉, Nn/Pn)이 Pn+1에 대한 Nn의 비율(즉, Nn/Pn+1)보다 크지 않게 형성될 수 있으며, 보다 구체적으로는, 하기 식 1을 만족하도록 구성되는 것이 바람직하다.
식 1: Nn/Pn ≤ Nn/Pn+1
이때, 상기 n은 1 이상의 정수이다.
이때, 상기 음극의 단위 면적당 가역 용량은 단위 면적당 음극 충전 용량[mAh/cm2] × 음극 효율[%]로 정의된 값을 의미하는 것이고, 상기 단위 면적당 음극 충전 용량은 단위 면적당 음극 활물질의 로딩량 [g/cm2] × 단위 무게당 음극 충전 용량 [mAh/g]로 정의되는 값을 말하며, 상기 음극 효율은 음극의 충전 용량에 대한 음극의 방전 용량의 비 × 100으로 정의된 값을 말한다. 또한, 상기 양극의 단위 면적당 가역용량은, 양극 활물질의 로딩량[g/cm2] × 단위 무게당 양극 충전 용량 [mAh/g] - 음극의 단위 면적당 비가역용량[mAh]으로 정의되는 값을 의미한다.
한편, 음극 활물질 로딩량은 음극 집전체에 코팅되는 음극 활물질의 단위 면적당 무게를 의미하며, 양극 활물질 로딩량은 양극 집전체에 코팅되는 양극 활물질의 단위 면적당 무게를 의미한다. 또한, 상기 단위 무게당 양극 및 음극의 충전 용량, 방전 용량 및 비가역용량은 각각 하기와 같은 방법을 통해 측정될 수 있다.
1) 단위 무게당 양극의 충전 용량
평가하고자 하는 양극을 반전지(half Cell)로 만든 후, 상대 전극을 리튬 금속으로 구성하고, 0.1C의 정전류 하에서 충전하여 작용 전극 전위가 4.25V에 도달했을 때 전기 용량을 측정하였다. 그런 다음, 측정된 전기 용량을 양극 반전지의 활물질 무게로 나눈 값을 단위 무게당 양극의 충전용량으로 한다.
2) 단위 무게당 음극의 충전 용량
평가하고자 하는 음극을 반전지(half Cell)로 만든 후, 상대 전극을 리튬 금속으로 구성하고, 0.1C의 정전류 하에서 충전하여 작용 전극 전위가 1.6V에 도달하였을 때의 전기 용량을 측정하였다. 그런 다음, 측정된 전기 용량을 음극 반전지의 활물질 무게로 나눈 값을 단위 무게당 음극의 충전용량으로 한다.
3) 단위 무게당 음극의 방전 용량
평가하고자 하는 음극을 반전지(half Cell)로 만든 후, 상대 전극을 리튬 금속으로 구성하고, 0.1C의 정전류 하에서 충전하여 작용 전극 전위가 1.6V에 도달 후 0.1C의 정전류 하에서 방전하여 작용 전극 전위가 0V 때의 전기 용량을 측정하였다. 그런 다음, 측정된 전기 용량을 음극 반전지의 활물질 무게로 나눈 값을 단위 무게당 음극의 충전용량으로 한다.
4) 단위 무게당 음극의 비가역 용량:
상기와 같은 방식으로 측정된 음극의 충전 용량과 방전 용량의 차이를 음극 반전지의 활무질의 무게로 나눈 값이다.
한편, 본 발명자들의 연구에 따르면, 전폭 길이가 상이한 전극 유닛들로 이루어진 전극 조립체의 경우, 각각의 전극 유닛들이 제대로 작동하게 설계되더라도, 전극 유닛들의 계면에서의 용량 비율이 상기 식 1을 만족하지 않는 경우, 상용화할 수 있는 수준의 용량 및 내구성 특성을 갖기 어려운 것으로 나타났다. 이러한 결과는 종래의 크기의 전극 유닛들로 이루어진 전극 조립체들에서는 전혀 예측되지 않는 것으로, 전폭 길이가 상이한 전극 유닛들로 이루어진 전극 조립체를 제조하기 위해서는 종래의 전극 조립체 제조 과정에서는 고려되지 않았던 새로운 요소들을 고려하여야 함을 보여주는 것이라고 할 수 있다. 또한, 상기 식 1을 만족할 경우, 그 범위 내에서 개별 전극 유닛의 두께를 비교적 자유롭게 조절할 수 있기 때문에 두께 방향의 디자인 자유도를 획기적으로 향상시킬 수 있다는 효과가 있다.
한편, 이로써 제한되는 것은 아니나, 경제성 및 부피당 에너지 밀도 등을 고려하였을 때, 본 발명의 전극 조립체에 있어서, 상기 Nn/Pn 및 Nn/Pn+1은 1 이상인 것이 바람직하며, 보다 바람직하게는 1 내지 1.2 정도일 수 있다. 즉, 본 발명의 전극 조립체는 하기 식 1-1을 만족하도록 구성될 수 있으며, 보다 바람직하게는, 하기 식 1-2를 만족하도록 구성될 수 있다.
식 1-1: 1 ≤ Nn/Pn ≤ Nn/Pn+1
식 1-2: 1 ≤ Nn/Pn ≤ Nn/Pn+1≤ 1.2
상기 식 1-1 및 식 1-2에서, n, Nn, Pn Pn+1의 정의는 식 1과 동일하다.
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 n+2개(n은 1 이상의 정수)이상의 전극 유닛을 포함하는 경우에, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역 용량을 Nn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역 용량을 Pn, n+1번째로 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역용량 Nn+1, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량 Pn+1, n+2번째로 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량 Pn+2이라 할 때, 본 발명의 전극 조립체에 있어서, Pn+1에 대한 Nn의 비율(즉, Nn/Pn+1)은, Pn에 대한 Nn의 비율(즉, Nn/Pn)보다 작지 않고, Pn+1에 대한 Nn+1의 비율(즉, Nn+1/Pn+1)보다 크지 않도록 형성되는 것이 바람직하다. 또한, 상기 Pn+1에 대한 Nn+1의 비율(즉, Nn+1/Pn+1)은 Pn+2에 대한 Nn+1의 비율(즉, Nn+1/Pn+2)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛의 조합을 포함하는 경우에는, 하기 식 2를 만족하도록 구성되는 것이 바람직하다.
식 2: Nn/Pn≤Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2
상기 식 2에서, n은 1 이상의 정수이다.
한편, 경제성 및 부피당 에너지 밀도 등을 고려하였을 때, 본 발명의 전극 조립체에 있어서, 상기 Nn/Pn, Nn/Pn+1 Nn+1/Pn+1 Nn+1/Pn+2는 1 이상인 것이 바람직하며, 보다 바람직하게는 1 내지 1.2정도일 수 있다. 즉, 본 발명의 전극 조립체는 하기 식 2-1을 만족하도록 구성되는 것이 보다 바람직하다.
식 2-1: 1 ≤ Nn/Pn≤Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2
식 2-2: 1 ≤ Nn/Pn≤Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2 ≤ 1.2
상기 식 2-1 및 식 2-2에서, n, Nn, Nn+1, Pn Pn+1의 정의는 상기와 동일하다.
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 n+2개 이상의 전극 유닛을 포함하고, n+2번째 긴 전폭을 갖는 전극 유닛이 n번째 긴 전폭을 갖는 전극 유닛과 n+1번째 긴 전폭을 갖는 전극 유닛 사이에 개재되는 경우, 상기 Pn+2에 대한 Nn+1에 대한 비율(즉, Nn+1/Pn+2)은 Pn+2에 대한 Nn의 비율(Nn/Pn+2)보다 작지 않게 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛의 조합을 포함하는 경우에는, 식 2와 하기 식 3을 동시에 만족하도록 구성되는 것이 보다 바람직하다.
식 3: Nn/Pn+2 ≤ Nn+1/Pn+2
상기 식 3에서, n은 1 이상의 정수이며, Nn은 n번째 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역 용량, Nn+1은 n+1번째 긴 전폭을 갖는 전극 유닛의 음극의 단위 면적당 가역용량, Pn+1은 n+1번째 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량 및 Pn+2는 n+2번째 긴 전폭을 갖는 전극 유닛의 양극의 단위 면적당 가역용량이다.
본 발명자들의 연구에 따르면, 전극 조립체에 포함되는 양극 및 음극의 가역 용량을 상기와 같은 조건들을 만족하도록 설계할 경우, 각 전극 유닛들의 전폭 길이 및 두께를 다양하게 변화시키면서, 우수한 출력 효율 및 구조적 안정성, 즉, 25℃에서 500회의 충방전을 실시하였을 때의 전기 용량이 1회 충방전 후의 전기용량 대비 60% 이상이고, 전극 조립체 전체의 두께 변화율이 15% 이하인 전극 조립체를 얻을 수 있는 것으로 나타났다.
한편, 본 발명의 전극 조립체는, 상기 전폭 길이가 상이한 전극 유닛들 간의 경계면에서 대향되는 양극의 단위 면적당 가역 용량에 대한 음극의 단위 면적당 가역 용량의 비율이 1 이상, 바람직하게는, 1 ~ 2, 1 ~ 1.5, 1 ~ 1.1, 1 ~ 1.09, 1. 5 ~ 2, 1.02 ~ 1.09, 1.05 ~1.09 1.05, 1.06, 1.07, 1.08 또는 1.09이 되도록 설계될 수 있다. 본 발명자들의 연구에 따르면, 경계면에서 대향되는 양극에 대한 음극의 단위 면적당 가용 용량 비율이 1 이상인 조건을 만족하는 범위 내에서는 전극 유닛의 면적이나 두께 등을 비교적 자유롭게 변경시켜도 상용 가능한 수준의 전지 용량 및 내구성을 얻을 수 있는 것으로 나타났다. 그러나, 경계면에서 대향되는 양극과 음극의 단위 면적당 가역 용량의 비율이 1 미만인 경우에는, 스웰링이 발생하여 전지 안정성 및 전극 효율이 급격하게 저하되는 것으로 나타났다.
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛들의 조합을 포함하는 경우라면, 상기 전극 유닛들 간의 경계면에서의 단위 면적당 양극의 가역 용량에 대한 단위 면적당 음극의 가역 용량의 비율은 서로 동일하거나, 또는 전극 유닛들 간의 접촉 면적이 작을수록 커지도록 설계되는 것이 바람직하다. 즉, 전폭 길이가 가장 긴 전극 유닛(편의상, 제1전극 유닛이라 함), 전폭 길이가 중간인 전극 유닛(편의상, 제2전극 유닛이라 함) 및 전폭 길이가 가장 짧은 전극 유닛(편의상, 제3전극 유닛이라 함)을 포함할 경우, 상기 제2전극 유닛과 제3전극 유닛의 경계면에 배치된 양극과 음극의 단위 면적당 가역 용량의 비율은 상기 제1전극 유닛과 제2전극 유닛의 경계면에 배치된 양극과 음극의 단위 면적당 가역 용량의 비율과 동일하거나, 그보다 큰 것이 바람직하다. 전폭 길이가 다른 전극 유닛들의 수가 많아질 경우, 전극 유닛들 간의 경계면이 2 이상 발생하며, 이들 상기 2 이상의 경계면에서의 밸런스들이 조절되지 않을 경우, 구조적 변형에 따른 전지 안정성 및 성능의 저하될 수 있다. 본 발명자들의 연구에 따르면, 전폭 길이가 상이한 3 종류 이상의 전극 유닛들의 조합을 포함하는 경우, 전극 유닛들 간의 경계면에 배치된 양극과 음극의 단위 면적당 가역 용량의 비율이 상기와 같이 구성될 때, 구조적 변형에 따른 전지 안정성 및 성능의 저하를 최대한 억제할 수 있다.
한편, 서로 다른 전폭 길이를 갖는 전극 유닛 간의 경계면에서의 양극과 음극의 밸런스를 맞추는 또 다른 방법으로는, 전폭 길이가 상이한 전극 유닛들 간의 경계면에서 대향되는 양극의 두께와 음극의 두께의 비율이 특정한 범위를 만족하도록 설계하는 방법이 있다. 예를 들면, 본 발명의 전극 조립체에 있어서, 전폭 길이가 상이한 전극 유닛들 간의 경계면에서 대향되는 양극의 두께에 대한 음극의 두께의 비율(즉, 음극 두께/양극 두께)은 0.5 내지 2 정도일 수 있으며, 바람직하게는 0.7 내지 1.8, 보다 바람직하게는 1.0 내지 1.4 정도일 수 있다. 전극 유닛들 간의 경계면에서 대향되는 양극과 음극의 두께 비율이 0.5 미만인 경우에는 양극의 리튬 이온을 받을 수 있는 음극의 자리가 부족하여 리튬이온이 석출되어 성능 및 설계한 용량 대비 낮은 용량을 보일 수 있고, 2를 초과할 경우에는 초기 충전 시 리튬 이온을 받을 수 있는 음극의 사이트가 많아져 비가역 용량이 커지고 설계한 용량 대비 실제 용량이 낮으며 과도한 량의 음극이 사용되어 전지 밀도 대비 용량의 효율인 에너지 밀도가 낮아질 뿐 아니라, 코팅력이 저하되어 음극 활물질이 탈리되는 등의 문제점이 발생할 수 있다.
한편, 상기 양극 및 음극의 두께는, 이온 밀링 방지(CP, cross section polisher)를 이용하여 전극 조립체를 절단하여 단면을 노출시킨 다음, SEM 장비를 이용하여 단면을 스캔함으로써 측정될 수 있다. 이때, 상기 양극 및 음극의 두께는 전극 집전체와 전극 활물질층을 모두 포함하는 두께를 말하며, 예를 들면, 전극 활물질층이 단면에 코팅되어 있는 단면 전극의 경우에는 활물질층과 집전체를 합한 두께를 의미하고, 전극 활물질층이 양면에 코팅되어 있는 양면 전극의 경우, 즉 활물질층/집전체/활물질층로 이루어진 전극의 경우에는 2개의 활물질층과 집전체를 합한 두께를 의미한다.
보다 구체적으로는, 본 발명의 전극 조립체에 있어서, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+1라 할 때, dPn에 대한 dNn의 비율(즉, dNn/dPn)이 dPn+1대한 dNn의 비율(즉, dNn/dPn+1)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체는 하기 식 4를 만족하도록 구성되는 것이 바람직하다.
식 4: dNn/dPn≤ dNn/dPn+1
상기 식 4에서, n은 1 이상의 정수이다.
한편, 이로써 제한되는 것은 아니나, 경제성 및 단위 부피당 에너지 밀도를 고려하였을 때, 본 발명의 전극 조립체에 있어서, 상기 dNn/dPn 및 dNn/dPn+1은 바람직하게는 0.5 내지 2 정도, 더 바람직하게는 0.6 내지 1.9 정도, 보다 더 바람직하게는 1.0 내지 1.5 정도일 수 있다. 즉, 본 발명의 전극 조립체는, 하기 식 4-1을 만족하도록 구성되는 것이 바람직하며, 더 바람직하게는 하기 식 4-2를 만족하도록 구성될 수 있고, 가장 바람직하게는 하기 식 4-3을 만족하도록 구성될 수 있다.
식 4-1: 0.5 ≤ dNn/dPn≤ dNn/dPn+1≤ 2
식 4-2: 0.6 ≤ dNn/dPn≤ dNn/dPn+1≤ 1.9
식 4-3: 1.0 ≤ dNn/dPn≤ dNn/dPn+1≤1.5
이때, 상기 식 4-1. 4-2 및 4-3에서, dNn, dPn dPn+1의 정의는 상기와 동일하다.
한편, 본 발명의 전극 조립체가 전폭 길이가 상이한 n+2개 이상의 전극 유닛을 포함하는 경우에는, 본 발명의 전극 조립체는, n번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn, n번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn, n+1번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께를 dNn+1, n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+1, n+2번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께를 dPn+2이라 할 때, dPn+1에 대한 dNn의 비율(즉, dNn/dPn+1)이 dPn에 대한 dNn의 비율(즉, dNn/dPn)보다 작지 않고, dPn+1에 대한 dNn+1의 비율(즉, dNn+1/dPn+1)보다 크지 않도록 형성되는 것이 바람직하다. 또한, 상기 dPn+1에 대한 dNn+1의 비율(즉, dNn+1/dPn+1)은 dPn+2에 대한 dNn+1의 비율(즉, dNn+1/dPn+2)보다 크지 않도록 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛을 포함할 경우, 하기 식 5를 만족하도록 구성될 수 있다.
식 5: dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2
상기 식 5에서, n은 1 이상의 정수임.
한편, 이로써 제한되는 것은 아니나, 경제성 및 단위 부피당 에너지 밀도를 고려하였을 때, 본 발명의 전극 조립체에 있어서, 상기 dNn/dPn, dNn/dPn+1, dNn+1/dPn+1 및 dNn+1/dPn+2은 바람직하게는 0.5 내지 2 정도, 더 바람직하게는 0.6 내지 1.9 정도, 보다 더 바람직하게는 1.0 내지 1.5 정도일 수 있다. 즉, 본 발명의 전극 조립체는 하기 식 5-1을 만족하도록 구성될 수 있으며, 더 바람직하게는 하기 식 5-2를 만족하도록 구성될 수 있고, 가장 바람직하게는 하기 식 5-3을 만족하도록 구성될 수 있다.
식 5-1: 0.5 ≤ dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2 ≤ 2
식 5-2: 0.6 ≤ dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2 ≤ 1.9
식 5-3: 1.0 ≤ dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2 ≤ 1.5
이때, 상기 식 5-1, 5-2 및 5-3에서, dNn, dNn+1, dPn dPn+1의 정의는 식 5와 동일하다.
또한, 본 발명의 전극 조립체가 전폭 길이가 상이한 세 종류 이상의 전극 유닛을 포함하고, n+2번째로 긴 전폭을 갖는 전극 유닛이 n번째로 긴 전폭을 갖는 전극 유닛과 n+1번째로 긴 전폭을 갖는 전극 유닛 사이에 개재되는 경우에는, 상기 dPn+2에 대한 dNn+1의 비율(즉, dNn+1/dPn+2)은 dPn+2에 대한 dNn의 비율(즉, dNn/dPn+2)보다 작지 않게 형성되는 것이 바람직하다. 즉, 본 발명의 전극 조립체는 식 5와 하기 식 6을 동시에 만족하도록 구성되는 것이 보다 바람직하다.
식 6: dNn/dPn+2 ≤ dNn+1/dPn+2
상기 식 6에서, n은 1 이상의 정수이며, dNn은 n번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께, dNn+1은 n+1번째로 긴 전폭을 갖는 전극 유닛의 음극의 두께, dPn+1은 n+1번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께 및 dPn+2는 n+2번째로 긴 전폭을 갖는 전극 유닛의 양극의 두께이다.
상기와 같이, 전극 유닛들간의 경계면에서의 양극과 음극의 두께를 조절하는 방법을 사용할 경우, 가역 용량의 비율을 조절하는 방법에 비해 설계가 간단하다는 장점이 있다. 다만, 사용되는 전극의 스펙이 전극 유닛에 따라 달라지는 경우에는 두께 비율만으로는 밸런스가 맞춰지지 않는 경우가 있을 수 있다. 따라서, 이러한 경우에는 경계면에서의 양극과 음극의 가역 용량의 비율을 조절하는 방법에 따라 전극 조립체를 설계하는 것이 바람직하다. 그러나, 각각의 전극 유닛에서 사용되는 전극의 스펙이 동일한 경우 또는 전극의 스펙이 달라지더라도, 사용되는 음극 활물질의 충전 용량이 양극 활물질의 충전용량의 1.5배 내지 3배 정도, 바람직하게는 1.8배 내지 2.5배 정도인 경우라면, 전극 유닛들간의 경계면에서의 양극과 음극의 두께를 상기와 같은 범위로 설계함으로써, 경계면에서의 밸런스를 용이하게 맞출 수 있다.
한편, 본 발명의 전극 조립체에 포함되는 각각의 양극 및 음극은 전극 유닛 간의 경계면에서의 밸런스가 맞도록 설계되면 되고, 각각의 전극 두께, 공극율, 로딩량 등이 특별히 한정되는 것은 아니다.
예를 들면, 본 발명의 전극 조립체에 포함되는 양극 및 음극의 두께는, 사용되는 전극 활물질의 종류, 구현하고자 하는 전지 용량 등을 고려하여 적절하게 선택될 수 있다. 예를 들면, 본 발명의 전극 조립체에 있어서, 양극의 두께는 50 ~ 150㎛, 80 ~ 140㎛ 또는 100 ~ 150㎛ 정도일 수 있고, 상기 음극의 두께는 80 ~ 200㎛, 100 ~ 200㎛ 또는 100 ~ 150㎛ 정도일 수 있다.
또한, 본 발명의 전극 조립체에 포함되는 양극 및 음극에 있어서, 전극 활물질의 단위 면적당 코팅량(로딩량이라고도 함)은 특별히 한정되는 것은 아니며, 사용되는 전극 활물질의 종류, 구현하고자 하는 전지 용량 등을 고려하여 적절하게 선택될 수 있다. 예를 들면, 본 발명에 있어서, 양극 활물질의 단위 면적당 코팅량은, 10mg/cm2 내지 30 mg/cm2 정도, 10mg/cm2 내지 25 mg/cm2 정도, 또는 15mg/cm2 내지 30 mg/cm2 정도일 수 있으며, 음극 활물질의 단위 면적당 코팅량은 5mg/cm2 내지 20 mg/cm2 정도, 5 mg/cm2 내지 15 mg/cm2 정도, 또는 10mg/cm2 내지 20 mg/cm2정도일 수 있다.
또한, 상기 양극 및 음극에 있어서, 공극율(porosity)은 특별히 한정되는 것은 아니며, 사용되는 전극 활물질의 종류, 구현하고자 하는 전지 용량 등을 고려하여 적절하게 선택될 수 있다. 예를 들면, 본 발명에 있어서, 양극의 공극율은 10 ~ 30% 정도, 15 내지 30% 정도, 또는 10 ~ 25% 정도일 수 있으며, 음극의 공극율은 15 내지 50% 정도, 20 ~ 50% 정도 또는 15 내지 40% 정도일 수 있다.
본 발명자들의 연구에 따르면, 전극 조립체에 포함되는 양극 및 음극의 두께를 상기와 같은 조건들을 만족하도록 설계할 경우, 각 전극 유닛들의 전폭 길이 및/또는 두께를 다양하게 변화시키면서도, 우수한 출력 효율 및 구조적 안정성, 즉, 25℃에서 500회의 충방전을 실시하였을 때의 전기 용량이 1회 충방전 후의 전기용량 대비 60% 이상이고, 전극 조립체 전체의 두께 변화율이 15% 이하인 전극 조립체를 얻을 수 있는 것으로 나타났다.
한편, 본 발명의 전극 조립체에 포함되는 전극 유닛들은 매우 다양한 조합으로 형성될 수 있다. 이하에서는 도면을 참조하여 본 발명의 전극 유닛의 구성을 보다 구체적으로 설명하기로 한다. 도 2 내지 도 5에는 본 발명에 따른 전극 조립체에 있어서의 전극 유닛의 구성을 보여주는 다양한 실시예들이 도시되어 있다.
도 2에는 본 발명의 일 실시예로서, 도 1과 같은 형태로 적층된 스택형 단위셀로 이루어진 전극 유닛을 포함하는 전극 조립체의 A-A' 절단 단면도를 개시하고 있다. 도 2에 도시된 바와 같이, 본 발명의 전극 조립체는, 전폭(W)의 길이가 상이한 3종의 전극 유닛들(110, 120, 130)로 이루어질 수 있으며, 이때 상기 전극 유닛들은 양극(40), 음극(50)이 분리막(60)을 개재하여 적층된 스택형 단위셀들을 포함하여 구성될 수 있다. 이때, 상기 각각의 전극 유닛들은, 전극 유닛 130과 같이 하나의 단위셀(105)로 이루어질 수도 있고, 전극 유닛 110 또는 120과 같이 전장(L)의 길이 및 전폭(W)의 길이가 동일한 2개 이상의 단위셀들(101, 102, 103, 104)의 조합으로 이루어질 수도 있다. 한편, 도 2에는 전극 유닛을 구성하는 단위셀이 모두 스택형 단위셀인 경우가 예시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. 즉, 본 발명에 있어서, 전극 유닛은 스택형 단위셀 이외에도 젤리롤형 단위셀, 스택 앤 폴딩형 단위셀로 구성될 수도 있고, 이들 단위셀과 단일 전극의 조합으로 이루어질 수도 있고, 서로 다른 종류의 단위셀의 조합으로 이루어질 수도 있다.
예를 들면, 도 3에는 젤리-롤형 단위셀과 단일 전극의 조합으로 이루어진 전극 유닛을 포함하는 전극 조립체의 단면도가 개시되어 있다. 도 3에 도시된 바와 같이, 본 발명의 전극 조립체는, 예를 들면, 전폭(W)의 길이가 상이한 2종의 전극 유닛들(210, 220)로 이루어질 수 있으며, 이때, 상대적으로 전폭(W)의 길이가 짧은 전극 유닛(210)은 젤리-롤형 단위셀(201)과 단일 전극(202)의 조합으로 이루어지고, 상대적으로 전폭(W)의 길이가 긴 전극 유닛(220)은 젤리-롤형 단위셀(203)로 이루어질 수 있다. 이때, 젤리-롤형 단위셀(201, 203)은 음극 시트(50')와 양극 시트(40')가 분리막(60')이 개재된 상태로 권취되며, 전지의 안정성을 고려할 때, 음극 시트가 바깥쪽으로 나오도록 권취되는 것이 바람직하고, 상기 단일 전극(202)은 양극인 것이 바람직하다. 다만, 본 발명이 이에 한정되는 것은 아니며, 양극 시트가 바깥쪽으로 나오도록 권취된 젤리롤형 단위셀을 사용하는 것도 가능하며, 이 경우, 외부로 노출되는 부분에 양극 활물질을 코팅하지 않는 무지부를 형성하는 것이 바람직하다.
한편, 도 3에는 젤리-롤형 단위셀과 단일 전극의 조합으로 이루어진 전극 유닛과, 하나의 젤리-롤형 단위셀로 이루어진 전극 유닛을 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니며, 스택형 단위셀 및/또는 스택 앤 폴딩형 단위셀과 단일 전극을 조합하여 하나의 전극 유닛을 구성하거나, 서로 다른 종류의 2종 이상의 단위셀들을 조합하여 하나의 전극 유닛을 구성하는 것도 가능하다.
예를 들면, 도 4에 도시된 바와 같이, 스택형 단위셀과 스택 앤 폴딩형 단위셀들을 조합하여 본 발명의 전극 조립체를 구현할 수도 있다. 도 4에 도시된 바와 같이, 본 발명의 전극 조립체는 전폭(W)의 길이가 상이한 3종의 전극 유닛들(310, 320, 330)으로 이루어질 수 있으며, 이때 가장 전폭(W)의 길이가 짧은 전극 유닛(310)과 가장 전폭(W)의 길이가 긴 전극 유닛(330)은 스택형 단위셀로 이루어져 있고, 전폭(W)의 길이가 중간인 전극 유닛(320)은 스택 앤 폴딩형 단위셀로 이루어질 수 있다. 이 중 가장 전폭(W)의 길이가 짧은 전극 유닛(310)은 음극(50)/분리막(60)/양극(40)/분리막(60)/음극(50)/분리막(60)/양극(40)의 구조로 이루어진 스택형 단위셀로 이루질 수 있고, 가장 전폭(W)의 길이가 긴 전극 유닛(330)은 음극(50)/분리막(60)/양극(40)/분리막(60)/음극(50)/분리막(60)/양극(40)/분리막(60)/음극(50)의 구조로 이루어진 스택형 단위셀로 이루어질 수 있다. 이와 같이, 본 발명의 단위셀은 최외각 양면에 배치되는 전극의 극성이 상이할 수도 있고, 동일할 수도 있으며, 하나의 단위셀에 하나 이상의 양극 및/또는 하나 이상의 음극을 포함할 수도 있다. 한편, 전폭(W)의 길이가 중간인 전극 유닛(320)은 시트형 분리 필름(70)에 의해 음극, 양극 및 분리막을 포함하는 전극 적층체들이 감겨져 적층된 스택 앤 폴딩형 단위셀로 이루어져 있다.
한편, 도 5에는 단일 전극으로 이루어진 전극 유닛의 예가 도시되어 있다. 도 5에 도시된 바와 같이, 본 발명의 전극 조립체는 단일 전극으로 이루어진 전극 유닛(420)과 하나 이상의 단위셀(401, 402)으로 이루어진 전극 유닛(410)을 포함하여 이루어질 수도 있다.
이상에서 살펴본 바와 같이, 본 발명의 전극 조립체에 있어서, 하나의 전극 유닛은 단일 전극, 적어도 하나 이상의 단위셀 또는 이들의 조합으로 이루어질 수 있으며, 이때 상기 단위셀로는 당해 기술 분야에서 일반적으로 사용되는 다양한 단위셀들, 예를 들면, 스택형, 젤리-롤형, 스택 앤 폴딩형 단위셀 및/또는 이들의 조합이 제한없이 사용될 수 있다. 한편, 상기 도 2 ~ 5에 개시된 것 이외에도 다양한 전극 유닛들의 조합이 존재할 수 있으며, 이러한 변형예들은 모두 본 발명의 범주에 포함되는 것으로 이해되어야 할 것이다.
한편, 본 발명의 전극 조립체는, 전극 유닛들을 구성하는 단일 전극 및 단위셀들의 일부 또는 전부가 적어도 하나의 시트형 분리 필름에 의해 감싸 있는 구조로 이루어질 수도 있다. 도 6은 시트형 분리 필름에 의해 전극 유닛을 구성하는 단일 전극 및 단위셀들의 일부 또는 전부가 감싸있는 구조로 형성된 본 발명의 전극 조립체의 일 구현예를 보여준다. 도 6에 도시된 바와 같이, 전극 유닛들(510, 520, 530)을 구성하는 단위셀들(501, 502, 503, 504, 505, 506, 507)들을 시트형 분리 필름(70)을 이용하여 감싸는 경우, 시트형 분리 필름(70)에 의해 전지 팽창이 억제되는 효과가 있어, 전지 안정성을 보다 향상시킬 수 있다. 한편, 도 6에서, 점선으로 표시된 부분에는 시트형 분리 필름이 없어도 무방하다.
한편, 도 6에는 시트형 분리 필름(70)이 단위셀들(501, 502, 503, 504, 505, 506, 507)을 지그재그 방식으로 감싸고 있는 것으로 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니며, 시트형 분리 필름으로 단일 전극 및/또는 단위셀들을 감는 방식은 다양하게 구현될 수 있다.
예를 들면, 도 7에 개시된 바와 같이, 시트형 분리 필름(670) 상에 전장(L)의 길이가 동일하고 전폭(W)의 길이가 상이한 단위셀(601, 602, 603, 604, 605, 606, 607)을 적절한 간격으로 배열한 다음, 시트형 분리 필름을 말아서 본 발명의 전극 조립체를 제조할 수 있다.
또한, 도시되지는 않았으나, 시트형 분리 필름의 일면에 양극을 소정의 간격으로 배열하고, 그 반대면에 음극을 소정의 간격으로 배열한 다음, 시트형 분리 필름을 마는 방식으로 본 발명의 전극 조립체를 제조하거나, 2장의 시트형 분리 필름을 준비하고, 이 중 하나의 시트형 분리 필름에는 음극을 소정의 배열로 적층하고, 다른 하나의 시트형 분리 필름에는 양극을 소정의 배열로 적층한 다음, 2장의 시트형 분리 필름을 함께 마는 방식으로 제조될 수도 있다. 이외에도 시트형 분리 필름을 이용하여 전극 유닛의 일부 또는 전부를 감싸는 방법은 제조하고자 하는 전극 조립체의 형상 등에 따라 다양하게 존재할 수 있으며, 이러한 다양한 변형예들은 모두 본 발명의 범주에 속하는 것으로 해석되어야 할 것이다.
한편, 본 발명의 상기 전극 조립체에 포함되는 양극, 음극 및 분리막의 재질은 특별히 한정되지 않으며, 당해 기술 분야에 알려져 있는 양극, 음극 및 분리막들을 제한 없이 사용할 수 있다. 예를 들면, 상기 음극은 구리, 니켈, 알루미늄 또는 이들 중 적어도 1종 이상이 포함된 합금에 의해 제조된 음극 전류 집전체에 리튬금속, 리튬합금, 카본, 석유코크, 활성화 카본, 그래파이트, 실리콘 화합물, 주석 화합물, 티타늄 화합물 또는 이들의 합금 등과 같은 음극 활물질을 코팅하여 형성된 것일 수 있다. 또한, 상기 양극은, 예를 들면, 알루미늄, 니켈, 구리 또는 이들 중 적어도 1종 이상이 포함된 합금에 의해 제조된 양극 전류 집전체에 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬인산철, 또는 이들 중 1종 이상이 포함된 화합물 및 혼합물 등과 같은 양극 활물질을 코팅하여 형성된 것일 수 있다. 이때, 하나의 단위셀을 구성하는 양극과 음극에서 전극 활물질이 코팅되는 면적은 동일할 수도 있고, 상이할 수도 있다. 예를 들면, 도 2의 단위셀들은 음극과 양극에 코팅된 전극 활물질의 코팅 면적이 동일한 경우를 보여주며, 도 4의 단위셀들은 음극과 양극에 코팅된 전극 활물질의 코팅 면적이 상이한 경우를 보여준다. 또한, 상기 전극 활물질들은 전류 집전체의 양면에 코팅될 수도 있고, 무지부 등의 형성을 위해 전류 집전체의 일면에만 전극 활물질을 코팅할 수도 있다.
한편, 상기 분리막은, 예를 들면, 미세 다공 구조를 가지는 폴리에틸렌, 폴리프로필렌 또는 이들의 조합에 의해 제조되는 다층 필름이나, 폴리비닐리덴 플루오라이드, 폴리에틸렌 옥사이드, 폴리아크릴로니트릴 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름일 수 있다.
또한, 본 발명의 전극 조립체에 있어서, 상기 전극 유닛들은 적어도 하나 이상의 전극탭을 구비할 수 있다. 전극 유닛이 단일 전극으로 구성될 경우(예를 들면, 도 5의 520)에는 하나의 전극탭만 구비하며, 단위셀을 포함하여 구성될 경우에는 음극 전극탭과 양극 전극탭을 모두 구비하는 것이 일반적이다. 상기 전극탭들은 케이스 삽입 후 동일한 극성의 전극끼리 전기적으로 연결된다. 한편, 본 발명에 있어서, 상기 전극탭들의 면적이나 배열 위치 등은 특별히 한정되지 않으나, 전극 유닛의 네 변 중 동일한 변에 위치하는 것이 바람직하다. 예를 들면, 상기 전극 탭들은 전극 유닛의 전폭 방향의 변 또는 전장 방향의 변에 형성될 수 있으며, 특히 전폭 방향의 변에 전극탭이 형성될 경우에는, 전폭 길이가 가장 작은 전극 유닛의 전폭 길이 내에 전극탭이 위치하도록 배치하는 것이 바람직하다.
또한, 본 발명에 있어서, 상기 전극탭들은 전극 유닛의 다양한 위치에 배치될 수 있으며, 예를 들면, 동일한 극성의 전극탭들의 일부 또는 전부가 중첩되도록 배치될 수 있다. 종래의 전극 조립체들의 경우, 전지 케이스 삽입 후 전극 탭들의 전기적 연결을 용이하게 하기 위해서는, 동일한 극성의 전극탭들이 전부 중첩되도록 배치하는 것이 일반적이었다. 다만 이 경우, 전극 적층수가 많아질 경우 전극탭의 두께가 두꺼워지면서 전극탭간의 접합성이 떨어지는 문제점이 발생할 수 있다. 전극탭들이 전부 중첩되게 배치하지 않고 일부만 중첩되게 배치할 경우, 상기와 같은 문제점을 상당 부분 감소시킬 수 있을 것이다.
본 발명에서는 면적이 상이한 전극탭을 사용하고, 이들 전극탭들이 일부만 중첩되도록 배열함으로써, 전기 용량을 극대화하면서, 전극탭의 접합성도 향상시킬 수 있다. 도 8에는 본 발명의 전극 조립체에 적용될 수 있는 전극탭의 일 구현예가 도시되어 있다. 도 8에 도시된 바와 같이, 본 발명의 전극 조립체는, 전극 유닛에 따라 면적이 상이한 전극탭(10, 20, 30)들을 사용하고, 이 중의 일부 전극탭들만 중첩되도록 전극탭들을 배열할 수 있다.
다음으로, 본 발명의 전극 유닛들은 마주보는 두 개의 변의 길이가 각각 동일한 네 개의 변으로 구성될 수 있다. 예를 들면, 본 발명의 전극 유닛들은 직사각형, 정사각형, 평행사변형, 마름모꼴 등과 같은 사각 형상으로 형성될 수도 있고, 하나 이상의 모서리가 모따기되거나, 곡선으로 이루어진 사각 형상일 수도 있으며, 하나 이상의 변이 곡선으로 이루어진 형상일 수도 있다. 이외에도 다양한 형태의 전극 유닛들이 존재할 수 있으며, 이러한 변형예들은 모두 본 발명의 범주에 속하는 것으로 이해되어야 할 것이다.
한편, 본 발명의 전극 조립체는, 동일한 형상의 전극 유닛들을 적층하여 이루어질 수도 있고, 도 11에 도시된 바와 같이, 상이한 형상의 전극 유닛들을 조합하여 사용할 수도 있다. 이와 같이 전극 유닛의 형상을 다양하게 형성함으로써, 다양한 형태의 배터리 디자인을 구현할 수 있을 뿐 아니라, 공간 활용도도 향상시킬 수 있다.
한편, 본 발명의 전극 조립체는, 도 9에 도시된 바와 같이, 본 발명의 전극 조립체에 있어서, 상기 전장(L)의 길이가 동일하고 전폭(W)의 길이가 상이한 2 이상의 전극 유닛들을 다양한 배열로 적층할 수 있다. 전극 유닛의 적층 방법은 특별히 한정되는 것은 아니며, 예를 들면, 도 9의 (a)에 도시된 것처럼, 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭(W)의 길이가 작아지는 배열로 전극 유닛들을 적층할 수 있고, 반대로 도 9의 (b)에 도시된 것처럼, 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭(W)의 길이가 커지는 배열로 전극 유닛 들을 적층할 수도 있으며, 또는 도 9의 (c)에 도시된 것처럼, 전극 유닛들 중 가장 전폭(W)의 길이가 긴 전극 유닛이 상기 전극 조립체의 중간층에 배치되는 배열로 적층할 수도 있다.
또한, 본 발명의 전극 조립체에 있어서, 예를 들면, 도 9의 (a)에 도시된 것처럼, 상기 전극 유닛 들은 각각의 전극 유닛의 평면 방향의 중심점이 일치되는 배열로 적층되거나, 도 9의 (d)에 도시된 것처럼, 각각의 전극 유닛의 평면 방향의 중심점이 소정의 간격으로 이격되어 있는 배열로 적층되면서 각각의 전극 유닛의 전장(L)의 일 변이 일치되는 배열로 적층될 수도 있다.
이외에도 매우 다양한 적층 배열의 변형이 가능하며, 이러한 다양한 변형예들은 본 발명의 범주에 속하는 것으로 이해되어야 할 것이다.
다음으로, 본 발명의 전지셀에 대해 설명한다. 도 10 및 도 11에는 본 발명의 전지셀의 일 실시예가 도시되어 있다. 도 10 및 도 11에 도시된 바와 같이, 본 발명의 전지셀(900)은 전지 케이스(910) 내부에 본 발명의 전극 조립체(100)이 내장되어 있는 것을 특징으로 한다.
이때, 상기 전지 케이스(910)는 파우치형 케이스일 수 있으며, 전극 조립체의 형상에 대응되는 형상일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 파우치형 케이스는 라미네이트 시트로 이루어질 수 있으며, 이때 상기 라미네이트 시트는 최외각을 이루는 외측 수지층, 물질의 관통을 방지하는 차단성 금속층, 밀봉을 위한 내측 수지층으로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 전지 케이스는 전극 조립체의 전극 유닛들의 전기 단자들을 전기적으로 연결하기 위한 전극 리드(920, 930)가 외부로 노출된 구조로 형성되는 것이 바람직하며, 도시되지는 않았으나, 상기 전극 리드의 상하면에는 전극 리드를 보호하기 위한 절연 필름이 부착될 수 있다.
또한, 상기 전지 케이스는, 본 발명의 전극 조립체의 형상에 대응하는 형상으로 형성될 수 있으며, 이러한 전지케이스의 형상은 전지케이스 자체를 변형하여 형성하는 방식으로 형성될 수 있다. 이때, 전지케이스의 형상 및 크기가 전극 조립체의 형상 및 크기와 완전히 일치해야 하는 것은 아니며, 전극 조립체의 밀림현상으로 인한 내부 단락을 방지할 수 있는 정도의 형상 및 크기이면 무방하다. 한편, 본 발명의 전지 케이스의 형상이 이에 한정되는 것은 아니며, 필요에 따라 다양한 형상 및 크기의 전지 케이스가 사용될 수 있다.
한편, 상기 전지셀은 바람직하게는 리튬이온 전지 또는 리튬이온 폴리머 전지일 수 있지만, 이들만으로 한정되는 것은 아니다.
상기와 같은 본 발명의 전지셀은 단독으로 사용될 수도 있고, 전지셀을 적어도 하나 이상 포함하는 전지팩의 형태로 사용될 수도 있다. 이러한 본 발명의 전지셀 및/또는 전지팩은 다양한 디바이스, 예를 들면, 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치 등에 유용하게 사용될 수 있다. 이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
한편, 본 발명의 전지셀 또는 전지팩이 상기와 같은 디바이스에 장착될 경우, 본 발명의 전지셀 또는 전지팩의 구조로 인해 형성된 잉여 공간에 디바이스의 시스템 부품이 위치하도록 할 수 있다. 본 발명의 전지셀 또는 전지팩은 크기가 상이한 전극 조립체로 형성되기 때문에 전극 조립체 자체가 단차가 있는 형태로 형성되며, 전지 케이스를 전극 형상에 맞춰 형성하고, 이를 디바이스 장착할 경우, 종래의 각형 또는 타원형 전지셀 또는 전지팩에는 없었던 잉여의 공간이 발생하게 된다. 이와 같은 잉여 공간에 디바이스의 시스템 부품을 장착할 경우, 디바이스의 시스템 부품과 전지셀 또는 전지팩을 유연하게 배치할 수 있으므로 공간 활용도를 향상시킬 수 있을 뿐 아니라, 전제 디바이스의 두께나 부피를 감소시켜 슬림한 디자인을 구현할 수 있다.
이하에서는 구체적인 실시예를 통해 본 발명을 보다 자세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 구현예들을 설명하기 위한 것일 뿐, 본 발명이 하기 실시예의 범위로 제한되거나 한정되는 것은 아니다.
제조예 1: 양극 A
양극 활물질로 LiCoO2, 바인더로 PVDF(PolyVinyliDene Fluoride)를 사용하였으며, 상기 양극 활물질과 바인더를 N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone, NMP)에 녹인 후, 믹싱하여 양극 페이스트를 제조하였다. 상기 양극 페이스트를 15㎛두께의 알루미늄 호일 집전체 양면에 도포한 후, 150도 오븐에서 건조한 다음 프레스하여 양극 A를 제조하였다. 제조된 양극 A는 두께가 100㎛, 공극율이 21%였으며, 가역 용량은 335mAh였다.
제조예 2: 양극 B
양극의 두께가 110㎛가 되도록 한 점을 제외하고는, 제조예 1과 동일한 방법으로 양극 B를 제조하였다. 제조된 양극 B는 두께가 110㎛, 공극율이 21%였으며, 가역 용량은 375mAh였다.
제조예 3: 음극 A
음극 활물질로 천연 흑연과 인조 흑연을 블렌드 재료, 바인더로 스티렌-부타디엔 고무(Styrene-Butadiene Rubber, SBR) 및 카르복시메틸 셀룰로오스(Carboxymethyl Cellulose, CMC)을 사용하였으며, 상기 음극 활물질과 바인더를 증류수에 녹인 후, 혼합하여 음극 페이스트를 제작하였다. 이와 같이 얻어진 페이스트를 10㎛두께의 구리 호일 집전체 양면에 도포한 후, 100도 오븐에서 열처리한 후 프레스하여 음극 A를 제조하였다. 제조된 음극 A은 두께가 105㎛, 공극율이 27%였으며, 가역 용량은 348mAh였다.
제조예 4: 음극 B
음극의 두께가 108㎛가 되도록 한 점을 제외하고는, 제조예 3과 동일한 방법으로 음극 B를 제조하였다. 제조된 음극 B는, 두께가 105㎛, 공극율이 27%였으며, 가역 용량은 359mAh였다.
제조예 5: 음극 C
음극의 두께가 118.8㎛가 되도록 한 점을 제외하고는, 제조예 3과 동일한 방법으로 음극 C를 제조하였다. 제조된 음극 C는, 두께가 118.8㎛, 공극율이 27% 였으며, 가역 용량은 400mAh였다.
제조예 6: 음극 D
음극의 두께가 90㎛가 되도록 한 점을 제외하고는, 제조예 3과 동일한 방법으로 음극 D를 제조하였다. 제조된 음극 D는, 두께가 90㎛, 공극율 27%였으며, 가역 용량은 294mAh였다.
제조예 7: 음극 E
음극의 두께가 140㎛가 되도록 한 점을 제외하고는, 제조예 3과 동일한 방법으로 음극 E를 제조하였다. 제조된 음극 E는, 두께가 140㎛, 공극율이 27% 였으며, 가역 용량은 465mAh였다.
실시예 1 양극 A 및 음극 A를 100mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 대면적 전극 유닛 상에 양극 A 및 음극 A를 80mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 소면적 전극 유닛을 적층하여 전극 조립체를 제조하였다.
실시예 2
양극 A 및 음극 A를 100mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 대면적 전극 유닛 상에 양극 A 및 음극 B를 80mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 소면적 전극 유닛을 적층하여 전극 조립체를 제조하였다.
비교예 1
양극 A 및 음극 B를 100mm×150mm 로 재단한 후, 분리막을 개재하여 적층하여 제조된 대면적 전극 유닛상에 양극 B 및 음극 C를 80mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 소면적 전극 유닛을 적층하여 전극 조립체를 제조하였다.
비교예 2
양극 A 및 음극 D를 100mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 전극 유닛 상에 양극 A 및 음극 A를 80mm×150mm로 재단한 후, 분리막을 개재하여 적층하여 제조된 전극 유닛을 적층하여 전극 조립체를 제조하였다.
한편, 하기 표 2, 표 3 및 실험예 1, 2에서 '대면적 전극 유닛'이라는 용어는 전폭 길이가 긴 전극 유닛을 지칭하며, '소면적 전극 유닛'이라는 용어는 전폭 길이가 짧은 전극 유닛을 지칭한다.
표 1
 구분 대면적 전극 유닛 소면적 전극 유닛 경계면에서의 N/P 두께 비율 경계면에서의 N/P 가역용량비
양극 음극 N/P 두께 비율 양극 음극 N/P 두께 비율
실시예 1 A A 1.05 A A 1.05 1.05 1.03 
실시예 2 A A 1.05 A B 1.08 1.05 1.03  
비교예 1 A B 1.08 B D 1.08 0.98 0.957 
비교예 2 A D 0.90 A A 1.05 0.90 0.878 
실험예 1
상기 실시예 1 ~ 2 및 비교예 1~2에 의해 제조된 전극 조립체를 500회 충방전 시켰을 때의 전기 용량 및 두께 변화를 측정하였다.
이때, 상기 전기 용량은 하기와 같은 충전 조건 및 방전 조건 하에서 측정되었으며, 충전과 방전 사이에는 10분의 휴지 시간을 두었다.
(1) 충전 조건: 1C으로 CC(constant Current)모드에서 4.2V 또는 4.35V까지 충전한 후, CV(constant Voltage) 모드로 전환하여 충전 전류의 양이 전지의 최소 용량의 1/20이 될 때까지 전류를 흘려 보낸 후 충전을 종료하였다.
(2) 방전 조건: CC(constant Current)모드로 1C의 방전 전류를 흘려보내고, 전압이 3V에 도달하면 방전을 종료하였다.
또한, 상기 전극 조립체의 두께 변화율은 충방전이 1회 완료되었을 때마다 전극 조립체의 전체 두께를 측정하여 계산하였다.
측정 결과는 도 12에 도시하였다. 도 12에 도시된 바와 같이, 본 발명에 따라 제조된 실시예 1 및 2의 전극 조립체의 경우 500사이클 이후에도 전기 용량이 1회 충방전 이후의 전기 용량 대비 80% 이상으로 매우 우수하고, 두께 변화율도 10% 이하인데 반해, 비교예 1 및 2의 전극 조립체는 400 사이클과 500사이클 사이에서 급격한 전기 용량 변화 및 두께 변화가 발생함을 알 수 있다.
실험예 2
양극 A와 음극 E를 80mm×150mm로 각각 재단한 후 분리막을 개재하여 적층하여 소면적 전극 유닛을 제조하였다.
그런 다음, 음극의 두께를 하기 [표 2]에 개시된 바와 같이 변화시킨 점을 제외하고는, 제조예 3과 동일한 방법으로 음극 1 ~ 8을 제조하였다. 제조된 음극 1 ~ 8의 가역용량은 하기 [표 2]에 개시된 바와 같다. 그런 다음, 양극 A와 음극 1 ~ 8을 100mm×150mm로 각각 재단한 후 분리막을 개재하여 적층하여 대면적 전극 유닛 1 ~ 8을 제조하였다.
그런 다음, 대면적 전극 유닛 1 ~ 8 상에 소면적 전극 유닛을 각각 적층하여, 전극 조립체 1 ~ 8을 제조하였다.
표 2
구분 대면적 음극 종류 대면적 음극 두께(㎛) 공극율(%) 가역 용량(mAh) 경계면에서의 N/P 가역 용량 비율 경계면에서의 N/P 두께 비율
전극 조립체 1 음극1 40 27 105 0.31 0.4
전극 조립체 2 음극2 50 27 141 0.42 0.5
전극 조립체 3 음극3 80 27 251 0.75 0.8
전극 조립체 4 음극4 110 27 360 1.07 1.1
전극 조립체 5 음극5 140 27 465 1.39 1.4
전극 조립체 6 음극6 170 27 574 1.71 1.7
전극 조립체 7 음극7 200 27 682 2.04 2.0
전극 조립체 8 음극8 220 27 753 2.25 2.2
상기와 같이 제조된 전극 조립체 1 ~ 8를 하기와 같은 충전 조건 및 방전 조건으로 1회 충방전시킨 다음, 전기 용량 및 전압을 측정하고, 측정된 전기 용량과 전압을 곱하여 전기 에너지를 산출하였다. 그런 다음, 산출된 전기 에너지값을 전극 조립체의 부피로 나누어 단위 부피당 에너지 밀도를 계산하였다.
(1) 충전 조건: 1C으로 CC(constant Current)모드에서 4.2V 또는 4.35V까지 충전한 후, CV(constant Voltage) 모드로 전환하여 충전 전류의 양이 전지의 최소 용량의 1/20이 될 때까지 전류를 흘려 보낸 후 충전을 종료하였다.
(2) 방전 조건: CC(constant Current)모드로 1C의 방전 전류를 흘려보내고, 전압이 3V에 도달하면 방전을 종료하였다.
(3) 충전과 방전 사이에는 10분의 휴지 시간을 두었다.
도 13은 상기 측정값을 근거로 전극 유닛 간의 경계면에서의 양극에 대한 음극의 단위 면적당 가역 용량 비율에 따른 에너지 밀도를 나타낸 그래프이며, 도 14은 상기 측정값을 근거로 전극 유닛 간의 경계면에서의 양극에 대한 음극의 두께 비율에 따른 에너지 밀도를 나타낸 그래프이다.
도 13에 따르면, 전극 유닛 간 경계면에서의 양극에 대한 음극의 단위 면적당 가역 용량 비율이 1 내지 1.5 정도, 특히 1 내지 1.2 정도일 때 단위 부피당 에너지 밀도가 매우 높게 나타남을 알 수 있다. 한편, 도 12에 도시된 바와 같이, 경계면에서의 단위 면적당 가역 용량 비율이 1 이하인 경우에도 상용화 가능한 정도의 에너지 밀도를 얻을 수 있기는 하지만, 상기 실험예 1에서 살펴본 바와 같이, 이러한 경우, 충방전 사이클이 반복됨에 따라 급격한 전기 용량 저하 및 두께 변화가 일어나기 때문에, 상용화하기 어렵다는 문제점이 있다.
또한, 도 14에 따르면, 전극 유닛 간의 경계면에서의 양극에 대한 음극의 두께 비율이 0.5 내지 2 이내일 때, 단위 부피당 에너지 밀도가 300Wh/l 이상으로 상용화 가능한 수준이며, 전극의 두께 비율이 0.6 내지 1.9 정도일 때, 단위 부피당 에너지 밀도가 350Wh/l 이상으로 상당히 우수한 에너지 밀도를 나타내며, 전극의 두께 비율이 0.8 내지 1.5 정도, 특히, 1.0 내지 1.5 정도일 때 단위 부피당 에너지 밀도가 400Wh/l 이상으로 매우 우수한 에너지 밀도를 나타냄을 알 수 있다.
<부호의 설명>
10, 20, 30 : 전극탭
40, 40': 양극
50, 50': 음극
60, 60': 분리막
70, 670: 시트형 분리필름
100: 전극 조립체
110, 120, 130, 310, 320, 330, 410, 420, 510, 520, 530 : 전극 유닛
900: 전지셀
910: 전지 케이스
920, 930: 전극 리드

Claims (35)

  1. 전장의 길이가 동일하고 전폭의 길이가 상이한 2 이상의 전극 유닛들의 조합을 포함하고, 상기 전극 유닛들간에 단차가 형성되도록 적층된 전극 조립체이며,
    상기 전폭의 길이가 상이한 전극 유닛들 간의 경계면에서 양극과 음극이 대향되도록 형성되고,
    하기 식 1-1을 만족하는 전극 조립체.
    식 1-1: 1 ≤ Nn/Pn ≤ Nn/Pn+1
    상기 식 1-1에서,
    n은 1 이상의 정수이며,
    Nn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역 용량,
    Pn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역 용량,
    Pn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량임.
  2. 제1항에 있어서,
    상기 전극 조립체는 하기 식 1-2를 만족하는 전극 조립체.
    식 1-1: 1 ≤ Nn/Pn ≤ Nn/Pn+1≤1.2
    상기 식 1-1에서,
    n은 1 이상의 정수이며,
    Nn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역 용량,
    Pn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역 용량,
    Pn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량임.
  3. 제1항에 있어서,
    상기 전장의 길이가 동일하고 상기 전폭의 길이가 상이한 2 이상의 전극 유닛 들간의 경계면에서, 상대적으로 전폭의 길이가 긴 전극 유닛의 음극과 상대적으로 전폭의 길이가 짧은 전극 유닛의 양극이 대향되도록 형성된 전극 조립체.
  4. 제1항에 있어서,
    상기 전극 조립체는 25℃에서 하기 충전 조건 (A) 및 방전 조건 (B)으로 500회의 충방전을 실시하였을 때의 전기 용량이 1회 충방전 후의 전기 용량 대비 60% 이상이고, 전극 조립체 전체의 두께 변화율이 15% 이하인 전극 조립체.
    충전 조건 (A): 1C으로 정전류(constant Current)모드에서 4.2V 또는 4.35V까지 충전한 후, 정전압(constant Voltage) 모드로 전환하여 충전 전류의 양이 전지의 최소 용량의 1/20이 될 때까지 전류를 흘려 보낸 후 충전을 종료함.
    방전 조건 (B): 정전류(constant Current)모드로 1C의 방전 전류를 흘려보내고, 전압이 3V에 도달하면 방전을 종료함.
  5. 제1항에 있어서,
    하기 식 2를 만족하는 전극 조립체.
    식 2: Nn/Pn≤Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2
    상기 식 2에서,
    n은 1 이상의 정수이며,
    Nn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역 용량,
    Nn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역용량,
    Pn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역 용량,
    Pn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량,
    Pn+2는 n+2번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량임.
  6. 제5항에 있어서,
    하기 식 2-1을 만족하는 전극 조립체.
    식 2-1: 1 ≤ Nn/Pn≤Nn/Pn+1≤ Nn+1/Pn+1≤ Nn+1/Pn+2
    상기 식 2-1에서,
    n은 1 이상의 정수이며,
    Nn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역 용량,
    Nn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역용량,
    Pn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역 용량,
    Pn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량,
    Pn+2는 n+2번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량임.
  7. 제5항에 있어서,
    상기 전극 조립체는 n+2번째 긴 전폭 길이를 갖는 전극 유닛이 n번째 긴 전폭 길이를 갖는 전극 유닛과 n+1번째 긴 전폭 길이를 갖는 전극 유닛 사이에 개재되며,
    하기 식 3을 만족하는 전극 조립체.
    식 3: Nn/Pn+2 ≤ Nn+1/Pn+2
    상기 식 3에서,
    n은 1 이상의 정수이며,
    Nn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역 용량,
    Nn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 단위 면적당 가역용량,
    Pn+2는 n+2번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 단위 면적당 가역용량임.
  8. 제1항에 있어서,
    하기 식 4를 만족하는 전극 조립체.
    식 4: dNn/dPn≤ dNn/dPn+1
    상기 식 4에서,
    n은 1 이상의 정수이며,
    dNn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dPn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께임.
  9. 제1항에 있어서,
    하기 식 4-1을 만족하는 전극 조립체.
    식 4-1: 0.5 ≤ dNn/dPn≤ dNn/dPn+1≤ 2
    상기 식 4-1에서,
    n은 1 이상의 정수이며,
    dNn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dPn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께임.
  10. 제1항에 있어서,
    하기 식 5를 만족하는 전극 조립체.
    식 5: dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2
    상기 식 5에서,
    n은 1 이상의 정수이며,
    dNn은 n번째 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dNn+1은 n+1번째 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dPn은 n번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+1은 n+1번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+2는 n+2번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께임.
  11. 제1항에 있어서,
    하기 식 5-1을 만족하는 전극 조립체.
    식 5-1: 0.5 ≤ dNn/dPn≤dNn/dPn+1≤ dNn+1/dPn+1≤ dNn+1/dPn+2 ≤ 2
    상기 식 5-1에서,
    n은 1 이상의 정수이며,
    dNn은 n번째 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dNn+1은 n+1번째 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dPn은 n번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+1은 n+1번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께,
    dPn+2는 n+2번째 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께임.
  12. 제10항에 있어서,
    상기 전극 조립체는, n+2번째로 긴 전폭 길이를 갖는 전극 유닛이 n번째로 긴 전폭 길이를 갖는 전극 유닛과 n+1번째 긴 전폭 길이를 갖는 전극 유닛 사이에 개재되고,
    하기 식 6을 만족하는 전극 조립체.
    식 6: dNn/dPn+2 ≤ dNn+1/dPn+2
    상기 식 6에서,
    n은 1 이상의 정수이며,
    dNn은 n번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dNn+1은 n+1번째로 긴 전폭 길이를 갖는 전극 유닛의 음극의 두께,
    dPn+2는 n+2번째로 긴 전폭 길이를 갖는 전극 유닛의 양극의 두께임.
  13. 제1항에 있어서,
    전폭 길이가 상이한 세 종류 이상의 전극 유닛들의 조합을 포함하며,
    상기 전극 유닛들 간의 경계면에서 대향되는 양극의 단위 면적당 가용 용량에 대한 음극의 단위 면적당 가역 용량의 비율은 서로 동일하거나, 상기 전극 유닛들 간의 접촉 면적이 작아질수록 증가하는 전극 조립체.
  14. 제1항에 있어서,
    상기 전극 유닛은 단일 전극; 적어도 하나의 양극, 적어도 하나의 음극 및 적어도 하나의 분리막을 포함하는 적어도 하나 이상의 단위셀; 또는 이들의 조합으로 이루어지는 것인 전극 조립체.
  15. 제14항에 있어서,
    상기 단위셀은 젤리-롤 형, 스택형, 라미네이션 앤 스택형 및 스택 앤 폴딩형 단위셀로 이루어지는 군으로부터 선택되는 것인 전극 조립체.
  16. 제1항에 있어서,
    상기 전극 유닛들을 구성하는 단일 전극 및 단위셀의 일부 또는 전부가 적어도 하나의 길이가 긴 시트형 분리필름에 의해 감싸져 있는 구조로 이루어지는 전극 조립체.
  17. 제14항에 있어서,
    상기 단위셀은 최외각 양면에 배치되는 전극의 극성이 동일한 것인 전극 조립체.
  18. 제14항에 있어서,
    상기 단위셀은 최외각 양면에 배치되는 전극의 극성이 상이한 것인 전극 조립체.
  19. 제1항에 있어서,
    상기 각각의 전극 유닛은 그 단면 형상이 사각형, 적어도 하나의 모서리가 곡선 형태의 사각형 또는 적어도 하나 이상의 변이 곡선 형태인 전극 조립체.
  20. 제1항에 있어서,
    상기 전극 조립체는 단면 형상이 동일한 전극 유닛들의 조합으로 이루어지는 것인 전극 조립체.
  21. 제1항에 있어서,
    상기 전극 유닛들은 적어도 하나 이상의 전극탭을 가지며,
    상기 전극탭들은 동일한 극성의 전극끼리 중첩되도록 적층되는 것인 전극 조립체.
  22. 제21항에 있어서,
    상기 전극탭들은 서로 상이한 크기를 갖는 것인 전극 조립체.
  23. 제1항에 있어서,
    상기 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭의 길이가 짧아지는 배열로 적층된 전극 조립체.
  24. 제1항에 있어서,
    상기 전극 조립체의 하부 방향에서 상부 방향으로 갈수록 전극 유닛의 전폭의 길이가 길어지는 배열로 적층된 전극 조립체.
  25. 제1항에 있어서,
    상기 전극 유닛 들 중 가장 전폭의 길이가 긴 전극 유닛이 상기 전극 조립체의 중간층에 배치되는 배열로 적층된 전극 조립체.
  26. 제1항에 있어서,
    상기 전극 유닛들은 각각의 전극 유닛의 평면 방향의 중심점이 일치되는 배열로 적층되어 있는 전극 조립체.
  27. 제1항에 있어서,
    상기 전극 유닛들은 각각의 전극 유닛의 평면 방향의 중심점이 소정의 간격으로 이격되어 있는 배열로 적층되어 있는 전극 조립체.
  28. 제1항에 있어서,
    상기 전극 유닛들은 각각의 전극 유닛의 전장의 일 변이 일치되는 배열로 적층되어 있는 전극 조립체.
  29. 청구항 1의 전극 조립체가 전지케이스에 내장되어 있는 전지셀.
  30. 제29항에 있어서,
    상기 전지케이스는 파우치형 케이스인 전지셀.
  31. 제29항에 있어서,
    상기 전지케이스는 전극 조립체의 형상에 대응하는 형상으로 이루어진 전지셀.
  32. 제29항에 있어서,
    상기 전지셀은 리튬 이온 이차 전지 또는 리튬 이온 폴리머 이차 전지인 전지셀.
  33. 청구항 29의 전지셀을 하나 이상 포함하는 디바이스.
  34. 제33항에 있어서,
    상기 전지셀의 잉여 공간에 디바이스의 시스템 부품이 위치하는 디바이스.
  35. 제34항에 있어서,
    상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치인 디바이스.
PCT/KR2013/010472 2012-11-22 2013-11-18 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스 WO2014081164A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/354,251 US9231279B2 (en) 2012-11-22 2013-11-18 Electrode assembly including electrode units having the same length and different widths, and battery cell and device including the electrode assembly
CN201380003653.9A CN104081575B (zh) 2012-11-22 2013-11-18 包括具有相同长度且不同宽度的电极单元的电极组件和包括该电极组件的电池单元和装置
EP13840124.5A EP2924794B1 (en) 2012-11-22 2013-11-18 Electrode assembly comprising electrode units with equal lengths and different widths, and battery cell and device comprising same
JP2014548708A JP5889435B2 (ja) 2012-11-22 2013-11-18 全長の長さが同一であり全幅の長さが相違する電極ユニットからなる電極組立体、これを含む電池セル及びデバイス

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0133155 2012-11-22
KR20120133155 2012-11-22
KR10-2013-0028289 2013-03-15
KR1020130028289A KR20130118769A (ko) 2012-04-20 2013-03-15 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR1020130137843A KR101385732B1 (ko) 2012-11-22 2013-11-13 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR10-2013-0137843 2013-11-13

Publications (1)

Publication Number Publication Date
WO2014081164A1 true WO2014081164A1 (ko) 2014-05-30

Family

ID=50657810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010472 WO2014081164A1 (ko) 2012-11-22 2013-11-18 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스

Country Status (6)

Country Link
US (1) US9231279B2 (ko)
EP (1) EP2924794B1 (ko)
JP (1) JP5889435B2 (ko)
KR (1) KR101385732B1 (ko)
CN (1) CN104081575B (ko)
WO (1) WO2014081164A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577494B1 (ko) 2013-01-07 2015-12-15 주식회사 엘지화학 다수의 전극조립체를 포함하는 이차전지
KR101995288B1 (ko) 2016-02-19 2019-07-03 주식회사 엘지화학 전극 조립체
CN108701867B (zh) * 2016-02-29 2021-07-09 松下知识产权经营株式会社 层叠型非水电解质二次电池
JP6547906B2 (ja) * 2016-05-31 2019-07-24 株式会社村田製作所 蓄電デバイス
JP6828751B2 (ja) * 2017-01-12 2021-02-10 株式会社村田製作所 二次電池
WO2018131377A1 (ja) * 2017-01-13 2018-07-19 株式会社村田製作所 二次電池
WO2018154989A1 (ja) * 2017-02-22 2018-08-30 株式会社村田製作所 二次電池およびその製造方法
KR102301720B1 (ko) 2018-07-10 2021-09-10 주식회사 엘지에너지솔루션 전기화학 커패시터 및 이의 제조 방법
KR20210150924A (ko) * 2020-06-04 2021-12-13 주식회사 엘지에너지솔루션 에너지 밀도가 증가된 파우치형 이차전지 및 이의 제조방법
CN112103470B (zh) 2020-09-29 2022-02-22 宁德新能源科技有限公司 二次电池及电池模块
JP7416738B2 (ja) * 2021-06-01 2024-01-17 プライムアースEvエナジー株式会社 非水電解液二次電池
CN116826280A (zh) * 2022-12-30 2023-09-29 奥动新能源汽车科技有限公司 电池包及电动车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066870A (ko) * 1999-04-21 2000-11-15 김순택 리튬 이차전지
KR100274884B1 (ko) * 1998-01-22 2000-12-15 김순택 양.음극의 용량비를 보상한 2차 전지
US20010005561A1 (en) * 1999-12-09 2001-06-28 Kazuo Yamada Secondary battery and electronic instrument using it
KR20080087686A (ko) * 2007-03-26 2008-10-01 주식회사 엘지화학 로딩량이 다른 활물질층을 포함하고 있는 젤리-롤
US20120015236A1 (en) * 2010-07-16 2012-01-19 Apple Inc. Design and construction of non-rectangular batteries

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274895B1 (ko) * 1998-09-03 2000-12-15 김순택 이차전지의 제조방법
JP4193267B2 (ja) * 1999-02-23 2008-12-10 ソニー株式会社 固体電解質電池
JP2001028275A (ja) * 1999-06-25 2001-01-30 Mitsubishi Chemicals Corp 立体自由形状バッテリー装置
US6635381B2 (en) 2000-05-11 2003-10-21 Wilson Greatbatch Ltd. Electrochemical lithium ion secondary cell having a scalloped electrode assembly
KR100440934B1 (ko) * 2002-02-06 2004-07-21 삼성에스디아이 주식회사 이차전지
JP3680797B2 (ja) 2002-02-08 2005-08-10 日本電池株式会社 非水電解質電池
JP2004111219A (ja) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
TWI291778B (en) * 2004-11-08 2007-12-21 Sony Corp Secondary battery
KR100906253B1 (ko) 2006-05-01 2009-07-07 주식회사 엘지화학 과전류의 인가시 파괴되는 파단부가 형성되어 있는전극단자를 포함하고 있는 이차전지
JP2010176996A (ja) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011081931A (ja) * 2009-10-05 2011-04-21 Hitachi Maxell Ltd リチウムイオン二次電池
JP2013518394A (ja) * 2010-01-26 2013-05-20 シンベット・コーポレイション 電池アレイ、構造及び方法
JP2011181438A (ja) * 2010-03-03 2011-09-15 Sanyo Electric Co Ltd 非水電解質二次電池
CN102576901A (zh) * 2010-05-18 2012-07-11 松下电器产业株式会社 锂二次电池
US8592065B2 (en) * 2010-11-02 2013-11-26 Apple Inc. Rechargeable battery with a jelly roll having multiple thicknesses
KR20130118716A (ko) * 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274884B1 (ko) * 1998-01-22 2000-12-15 김순택 양.음극의 용량비를 보상한 2차 전지
KR20000066870A (ko) * 1999-04-21 2000-11-15 김순택 리튬 이차전지
US20010005561A1 (en) * 1999-12-09 2001-06-28 Kazuo Yamada Secondary battery and electronic instrument using it
KR20080087686A (ko) * 2007-03-26 2008-10-01 주식회사 엘지화학 로딩량이 다른 활물질층을 포함하고 있는 젤리-롤
US20120015236A1 (en) * 2010-07-16 2012-01-19 Apple Inc. Design and construction of non-rectangular batteries

Also Published As

Publication number Publication date
JP2015501076A (ja) 2015-01-08
EP2924794A1 (en) 2015-09-30
US9231279B2 (en) 2016-01-05
CN104081575A (zh) 2014-10-01
CN104081575B (zh) 2016-08-24
US20150221988A1 (en) 2015-08-06
KR101385732B1 (ko) 2014-04-17
JP5889435B2 (ja) 2016-03-22
EP2924794A4 (en) 2016-09-21
EP2924794B1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2013157874A1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2014081163A1 (ko) 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2014081164A1 (ko) 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2013180541A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2016013860A1 (ko) 실리콘 이차전지 유닛 및 이를 이용한 전기 자동차용 전지모듈
WO2013176534A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2021235794A1 (ko) 이차전지
WO2020242138A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
WO2013176533A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2022108027A1 (ko) 이차전지용 복합고체 전해질, 이를 포함하는 이차전지 및 그 제조방법
WO2023008821A1 (ko) 전고체 이차전지, 전고체 이차전지 구조체 및 전고체 이차전지 제조방법
WO2014104479A1 (ko) 계단 구조의 전극 조립체
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2023121247A1 (ko) 음극 및 이를 포함하는 이차전지
WO2023090847A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020017923A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2021060674A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2021125916A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 전기화학소자를 제조하는 방법
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차
WO2019050356A1 (ko) 전기화학 소자 및 그 제조 방법
WO2021158027A1 (ko) 박형 리튬 전지 및 이의 제조방법
WO2021075621A1 (ko) 음극, 이를 포함하는 이차 전지, 및 이의 제조 방법
WO2023136559A1 (ko) 이차 전지 제조 장치 및 이차 전지 제조 방법
WO2023136560A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013840124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14354251

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014548708

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE