WO2013175884A1 - C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法 - Google Patents

C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2013175884A1
WO2013175884A1 PCT/JP2013/060812 JP2013060812W WO2013175884A1 WO 2013175884 A1 WO2013175884 A1 WO 2013175884A1 JP 2013060812 W JP2013060812 W JP 2013060812W WO 2013175884 A1 WO2013175884 A1 WO 2013175884A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sputtering target
sintered
sintered body
density
Prior art date
Application number
PCT/JP2013/060812
Other languages
English (en)
French (fr)
Inventor
佐藤 敦
英生 高見
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49623587&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013175884(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US14/372,849 priority Critical patent/US20140360871A1/en
Priority to SG11201403264SA priority patent/SG11201403264SA/en
Priority to CN201380014650.5A priority patent/CN104169458B/zh
Priority to JP2013533038A priority patent/JP5705993B2/ja
Publication of WO2013175884A1 publication Critical patent/WO2013175884A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a sputtering target used for forming a granular type magnetic thin film on a heat-assisted magnetic recording medium, and relates to an Fe—Pt—Ag—C based sputtering target in which C particles are dispersed and a method for manufacturing the same.
  • materials based on Co, Fe, or Ni which are ferromagnetic metals, are used as materials for magnetic thin films in magnetic recording media.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a magnetic thin film of a hard disk employing an in-plane magnetic recording method.
  • hard magnetic thin films employing perpendicular magnetic recording that have been put into practical use in recent years often use a composite material composed of Co—Cr—Pt-based ferromagnetic alloy mainly composed of Co and non-magnetic inorganic particles. It has been.
  • the above-mentioned magnetic thin film is often produced by sputtering a sputtering target containing the above material as a component with a DC magnetron sputtering apparatus because of its high productivity.
  • FePt phase having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium.
  • FePt phase having an L1 0 structure with a high magnetocrystalline anisotropy, corrosion resistance and excellent oxidation resistance is what is expected as a material suitable for the application as a magnetic recording medium.
  • a granular structure magnetic thin film of FePt magnetic particles are isolated by a non-magnetic material such oxides or carbon having an L1 0 structure, as for a magnetic recording medium of the next generation hard disk employing a thermally assisted magnetic recording method Proposed.
  • This granular structure magnetic thin film has a structure in which magnetic particles are magnetically insulated by interposition of a nonmagnetic substance.
  • Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 can be cited as examples of magnetic recording media having a magnetic thin film having a granular structure and related documents.
  • the granular structure magnetic thin film having a FePt phase with the L1 0 structure, a magnetic thin film containing 10-50% of C as a nonmagnetic material as a volume ratio, have attracted attention particularly because of their high magnetic properties. It is known that such a granular structure magnetic thin film is produced by simultaneously sputtering an Fe target, a Pt target, and a C target, or by simultaneously sputtering an Fe—Pt alloy target and a C target. However, in order to simultaneously sputter these sputtering targets, an expensive simultaneous sputtering apparatus is required.
  • a sputtering target material in which a nonmagnetic material is contained in an alloy is produced by a powder sintering method.
  • C is a difficult-to-sinter material, and in particular, C particles having a relative density of 93% or more. It was not possible to produce a Fe—Pt—Ag—C based sintered sputtering target in which is dispersed.
  • Patent Documents 1 to 7 relating to a sputtering target for a recording medium using an Fe—Pt material are shown below.
  • An object of the present invention is to provide an Fe—Pt—Ag—C-based sputtering target in which C particles are dispersed and a method for manufacturing the same, which enable the production of a granular magnetic thin film without using an expensive simultaneous sputtering apparatus. Furthermore, another object is to provide a high-density sputtering target in which the amount of particles generated during sputtering is reduced.
  • the present inventors have conducted intensive research. As a result, the C particles, which are non-magnetic materials, are finely dispersed uniformly in the base metal, and despite containing Ag, It has been found that a high-density sputtering target can be produced.
  • the sputtering target made in this way can greatly reduce particle generation. That is, it was found that the yield during film formation can be improved.
  • the present invention 1) At the atomic ratio (Fe 100-X -Pt X ) 100-YZ -Ag Y -C Z (where X is 35 ⁇ X ⁇ 55, Y is 0.5 ⁇ Y ⁇ 15, Z is 15
  • An Fe—Pt—Ag—C based sintered sputtering target having a composition satisfying ⁇ Z ⁇ 55) and having a relative density of 93% or more.
  • Fe—Pt—Ag—C-based sintered sputtering target according to 1) above, wherein the Fe—Pt—Ag—C-based sintered sputtering target has a structure in which an Fe—Pt—C phase and an Ag phase in which C is dispersed in an Fe—Pt alloy.
  • -Based sintered sputtering target -Based sintered sputtering target.
  • Fe—Pt—C phase in which C is dispersed in an Fe—Pt alloy, an Ag phase, and an Ag—C phase in which C is dispersed in Ag each have a mixed structure.
  • a Pt—Ag—C based sintered sputtering target is provided.
  • the present invention also provides: 5) A method for producing an Fe—Pt—Ag—C-based sputtering target, in which an Fe—Pt—C sintered body is prepared in advance and pulverized into a pulverized powder, and the pulverized powder and Ag powder are mixed. And a method for producing an Fe—Pt—Ag—C based sintered sputtering target characterized by sintering at a temperature lower than the melting point of Ag. 6) A method for producing an Fe—Pt—Ag—C based sputtering target.
  • a Fe—Pt—C sintered body is prepared in advance, pulverized into a pulverized powder, the pulverized powder and Ag powder are mixed, and sintered at a temperature lower than the melting point of Ag.
  • the Fe—Pt sputtering target in which C particles are dispersed according to the present invention enables the formation of a granular structure magnetic thin film without using an expensive simultaneous sputtering apparatus, and further reduces the amount of particles generated during sputtering. It has the outstanding effect which can provide a high-density sputtering target and its manufacturing method.
  • the Fe—Pt—Ag—C-based sintered sputtering target in which C particles of the present invention are dispersed has an atomic ratio of (Fe 100-X —Pt X ) 100-YZ —Ag Y —C Z (where X is a number satisfying 35 ⁇ X ⁇ 55, Y is a number satisfying 0.5 ⁇ Y ⁇ 15, and Z is a number satisfying 15 ⁇ Z ⁇ 55).
  • the density is 93% or more. This is the basis of the present invention.
  • the content Z of C particles is preferably 15 or more and 55 or less in the sputtering target composition. If the content Z of the C particles in the target composition is less than 15 atomic ratio, good magnetic properties may not be obtained. If the content Z exceeds 55 atomic ratio, the C particles aggregate and generation of particles May increase.
  • the Pt content X is preferably 35 or more and 55 or less in the Fe—Pt composition. When the content X of Pt in the Fe—Pt composition is less than 35 atomic ratio, an FePt phase having an L1 0 structure is not generated, and even when the content ratio exceeds 55 atomic ratio, the structure has an L1 0 structure. FePt phase is not generated.
  • the relative density is 93% or more.
  • the relative density is 95% or more.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculated density is a density when it is assumed that the constituent elements of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • Calculated density Sigma ⁇ (atomic weight of constituent element x atomic ratio of constituent element) / ⁇ (atomic weight of constituent element x atomic ratio of constituent element / document value density of constituent element)
  • means taking the sum of all the constituent elements of the target.
  • the density (reference value) of each element uses the following values. Fe: 7.86 g / cc, Pt: 21.45 g / cc, Ag: 10.49 g / cc, C: 2.26 g / cc
  • the content Y of Ag is preferably 0.5 or more and 15 atomic ratios or less in the composition of the Fe—Pt—Ag—C based sintered body.
  • the content Y of Ag is less than 0.5 atomic ratio, it may not be possible to sufficiently lower the heat treatment temperature when the granular structure magnetic thin film formed L1 0 structure 15 atomic ratio If it is over, good magnetic properties may not be obtained.
  • one of the major features of the Fe—Pt—Ag—C based sintered sputtering target is that it has a structure in which Fe—Pt—C phase and Ag phase in which C is dispersed in the Fe—Pt alloy are mixed with each other. It is.
  • the Fe—Pt—C phase in which C is dispersed in the Fe—Pt alloy and the Ag—C phase in which C is dispersed in Ag have a mixed structure
  • C is further dispersed in the Fe—Pt alloy.
  • the Fe—Pt—C phase, the Ag phase, and the Ag—C phase in which C is dispersed in Ag may each have a mixed structure. Any of the above phase structures can disperse fine C in the target.
  • an Fe—Pt—C sintered body is prepared in advance and pulverized into a pulverized powder.
  • the pulverized powder and the Ag powder are mixed together. It is characterized by sintering at a temperature below the melting point of Ag. That is, the present invention aims to improve density by preparing a dense sintered body in advance using Fe—Pt—C containing no low melting Ag and using this pulverized powder.
  • a mixed powder of Fe powder, Pt powder, Ag powder, and C powder has been sintered at a temperature below the melting point of Ag.
  • the raw material containing Ag powder in order to sinter the raw material containing Ag powder, of course, it must be sintered at a temperature below the melting point of Ag.
  • the melting point of Ag is lower than that of other materials.
  • a high-density sintered body of Fe-Pt-C is prepared in advance by sintering a mixed powder of Fe powder, Pt powder, and C powder excluding Ag at a temperature equal to or higher than the melting point of Ag at which sintering proceeds. Keep it.
  • this sintered body is ground and sieved to an appropriate particle size, and Fe—Pt—C powder and Ag powder are mixed to produce a sintered body. Then, a high-density sintered body having a structure in which Ag is distributed so as to connect the Fe—Pt—C grains can be obtained.
  • the density is likely to increase.
  • a small amount of C powder can be mixed in the Ag powder.
  • the mixing amount in this case is preferably such that the volume ratio of the C addition amount in Ag is about 20% or less.
  • an Fe—Pt—C sintered body is prepared in advance and pulverized to obtain a pulverized powder.
  • the pulverized powder, Ag powder and C powder are mixed and sintered at a temperature lower than the melting point of Ag. can do.
  • the characteristic Fe—Pt—Ag—C based sintered sputtering target can be manufactured.
  • the density of the pulverized powder of the Fe—Pt—C sintered body prepared in advance is high, that is, it has a relative density of 93% or more. This makes it easy to increase the density of the final product Fe—P—Ag—C sintered sputtering target.
  • 1 to 20 mol% of one or more oxides selected from B, Si, Cr, Ti, Ta, W, Al, Mg, Mn, Ca, Zr, and Y can be contained. Therefore, it is necessary to add in such a range that the density is not greatly affected (does not decrease).
  • the sputtering target of the present invention is produced by a powder sintering method.
  • each raw material powder Fe powder, Pt powder, Ag powder, C powder
  • These raw material powders preferably have a particle size of 0.5 ⁇ m or more and 10 ⁇ m or less. If the particle size of the raw material powder is too small, there is a problem that oxidation is promoted and the oxygen concentration in the sputtering target is increased.
  • alloy powder Fe—Pt powder
  • alloy powder containing Pt is effective for reducing the amount of oxygen in the raw material powder, although it depends on its composition.
  • alloy powder it is desirable to use a powder having a particle size of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the mixed powder thus obtained (mixed powder of Fe powder, Pt powder, C powder) is molded and sintered by hot pressing.
  • a plasma discharge sintering method or a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering depends on the composition of Fe—Pt—C, but in many cases, it is in a temperature range of 1200 to 1400 ° C.
  • isotropic hot pressing is performed on the Fe—Pt—C sintered body taken out from the hot press.
  • Isotropic hot pressing is effective in improving the density of the sintered body.
  • the holding temperature during the isotropic hot pressing depends on the composition of the sintered body, but is in the temperature range of 1200 to 1400 ° C.
  • the applied pressure is set to 100 Mpa or more and 200 Mpa or less.
  • the particle diameter of the Fe—Pt—C powder is desirably 20 ⁇ m or more and 300 ⁇ m or less.
  • the Fe—Pt—C powder thus obtained is weighed together with the Ag powder so as to obtain a desired target composition. If C powder is small here, you may add. Then, the weighed powder is mixed using a mixing device such as a mixer. This mixed powder is molded and sintered with a hot press. In addition to hot pressing, a plasma discharge sintering method or a hot isostatic pressing method can also be used. The holding temperature at the time of sintering is set to a temperature lower than the melting point of Ag. In many cases, the temperature range is 900 to 950 ° C.
  • the Fe—Pt—Ag—C sintered body taken out from the hot press is subjected to isotropic hot pressing.
  • Isotropic hot pressing is effective in improving the density of the sintered body.
  • the holding temperature during the isotropic hot pressing process is lower than the melting point of Ag. In many cases, the temperature range is 900 to 950 ° C.
  • the applied pressure is set to 100 Mpa or more and 200 Mpa or less.
  • an Fe—Pt—Ag—C based sputtering target in which C particles are uniformly and finely dispersed in an alloy and high density C particles are dispersed can be produced.
  • the sputtering target of the present invention produced as described above is useful as a sputtering target used for forming a granular structure magnetic thin film.
  • Example 1 Fe powder having an average particle size of 3 ⁇ m, Pt powder having an average particle size of 3 ⁇ m, Ag powder having an average particle size of 2 ⁇ m, and C powder having an average particle size of 1 ⁇ m were prepared as raw material powders. First, Fe powder, Pt powder, and C powder were weighed in a total weight of 3000 g so as to have the following atomic ratio. Atomic ratio: (Fe 50 -Pt 50 ) 52.94 -C 47.06
  • the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 4 hours.
  • the powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 1250 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 1250 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the density of the Fe—Pt—C sintered body thus obtained was 95.2%. This was pulverized using a jaw crusher and a brown mill. Further, the pulverized powder was sieved using a sieve having an opening of 150 ⁇ m to remove coarse particles on the sieve.
  • Atomic ratio (Fe 50 -Pt 50 ) 45 -Ag 15 -C 40
  • the weighed powder was mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • the mixed powder taken out was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., and a holding time of 2 hours, and the pressure was increased from 30 MPa to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 950 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the sintered body thus produced was cut using a lathe to obtain a sputtering target.
  • the density of this target was measured by the Archimedes method and divided by the calculated density, the relative density was 94.6%.
  • FIG. 1 a secondary electron image and an element distribution image when the polished surface of the sputtering target of Example 1 is observed with EPMA are shown in FIG. 1 (the secondary electron image is shown as SL in the figure).
  • the secondary electron image is shown as SL in the figure.
  • the Fe—Pt—C phase that is finely dispersed as a matrix.
  • the Ag phase is dispersed as a relatively large particle in a Fe—Pt—C phase matrix like a broken cloud. Further, it can be confirmed from FIG.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target.
  • This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
  • the sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa.
  • a film was formed on a 4-inch diameter Si substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 27.
  • Example 2 Fe powder having an average particle size of 3 ⁇ m, Pt powder having an average particle size of 3 ⁇ m, Ag powder having an average particle size of 2 ⁇ m, and C powder having an average particle size of 1 ⁇ m were prepared as raw material powders. First, Fe powder, Pt powder, and C powder were weighed in a total weight of 3000 g so as to have the following atomic ratio. Atomic ratio: (Fe 50 -Pt 50 ) 56.25 -C 43.75
  • the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 4 hours.
  • the powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 1250 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 1250 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the density of the Fe—Pt—C sintered body thus obtained was 95.9%. This was pulverized using a jaw crusher and a brown mill. Further, the pulverized powder was sieved using a sieve having an opening of 150 ⁇ m to remove coarse particles on the sieve.
  • Atomic ratio (Fe 50 -Pt 50 ) 45 -Ag 15 -C 40
  • the weighed powder was mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • the mixed powder taken out was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., and a holding time of 2 hours, and pressure was applied at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 950 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the sintered body thus produced was cut using a lathe to obtain a sputtering target.
  • the density of this target was measured by the Archimedes method and divided by the calculated density, the relative density was 93.4%.
  • the structure was a mixture of Fe—Pt—C phase and Ag—C phase.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. As a result, the number of particles was 36.
  • the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 4 hours.
  • the powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., and a holding time of 2 hours, and pressure was applied at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 950 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 950 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the sintered body thus obtained was cut using a lathe to obtain a sputtering target.
  • the density of this target was measured by the Archimedes method and divided by the calculated density, the relative density was 92.7%, which was lower than those of Examples 1 and 2.
  • the polished surface of the sputtering target of Comparative Example 1 was observed with EPMA, it was a structure in which C and Ag were dispersed in the Fe—Pt alloy.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. As a result, the number of particles was 73, and the number of particles increased from Examples 1 and 2.
  • Example 3 Fe powder having an average particle size of 3 ⁇ m, Pt powder having an average particle size of 3 ⁇ m, Ag powder having an average particle size of 2 ⁇ m, and C powder having an average particle size of 1 ⁇ m were prepared as raw material powders. First, Fe powder, Pt powder, and C powder were weighed in a total weight of 3000 g so as to have the following atomic ratio. Atomic ratio: (Fe 65 -Pt 35 ) 42.11 -C 57.89
  • the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 4 hours.
  • the powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 1350 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of heating to 1350 ° During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the density of the Fe—Pt—C sintered body thus obtained was 95.1%. This was pulverized using a jaw crusher and a brown mill. Further, the pulverized powder was sieved using a sieve having an opening of 106 ⁇ m to remove coarse particles on the sieve.
  • the weighed powder was mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • the mixed powder taken out was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 900 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 900 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of the heating to 900 ° C. During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the sintered body thus produced was cut using a lathe to obtain a sputtering target.
  • the density of this target was measured by the Archimedes method and divided by the calculated density, the relative density was 93.8%.
  • the structure was a mixture of Fe—Pt—C phase and Ag phase.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus, and sputtering was performed. As a result, the number of particles was 38.
  • the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 4 hours.
  • the powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus.
  • the hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 900 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
  • hot isostatic pressing was performed on the sintered body taken out from the carbon mold.
  • the conditions for hot isostatic pressing were a heating rate of 300 ° C./hour, a holding temperature of 900 ° C., a holding time of 2 hours, and gradually increasing the Ar gas pressure from the start of the heating to 900 ° C. During C holding, the pressure was increased to 150 MPa. After completion of the holding, it was naturally cooled in the furnace.
  • the sintered body thus obtained was cut using a lathe to obtain a sputtering target.
  • the density of this target was measured by the Archimedes method and divided by the calculated density, the relative density was 88.9%, which was lower than that of Example 3.
  • the polished surface of the sputtering target of Comparative Example 2 was observed with EPMA, it was found that C and Ag were dispersed in the Fe—Pt alloy.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 3. As a result, the number of particles was 92, increased from Example 3.
  • the present invention makes it possible to form a granular magnetic thin film without using an expensive co-sputtering apparatus, and further, a high-density Fe-Pt system in which C particles are dispersed with a reduced amount of particles generated during sputtering. It has the outstanding effect which can provide a sputtering target. Therefore, it is useful as a sputtering target for forming a magnetic thin film having a granular structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

原子数比で(Fe100-X-Pt100-Y-Z-Ag-C(但し、Xは35≦X≦55、Yは0.5≦Y≦15、Zは15≦Z≦55を満たす数)の組成を有するFe-Pt-Ag-C系焼結体スパッタリングターゲットであって、相対密度が93%以上である焼結体スパッタリングターゲット。Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することを特徴とするFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法。高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にし、さらには、スパッタリング時に発生するパーティクル量を低減した高密度なスパッタリングターゲットを提供することを課題とする。

Description

C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法
 本発明は、熱アシスト磁気記録媒体におけるグラニュラー型の磁性薄膜の成膜に使用されるスパッタリングターゲットに関し、C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法に関する。
 ハードディスクドライブに代表される磁気記録の分野では、磁気記録媒体中の磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの磁性薄膜にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの磁性薄膜には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物粒子からなる複合材料が多く用いられている。そして上記の磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをDCマグネトロンスパッタ装置でスパッタして作製されることが多い。
 一方、ハードディスクの記録密度は年々急速に増大しており、現状の600Gbit/inの面密度から将来は1 Tbit/inに達すると考えられている。1Tbit/inに記録密度が達すると記録bitのサイズが10nmを下回るようになり、その場合、熱揺らぎによる超常磁性化が問題となってくると予想され、現在、使用されている磁気記録媒体の材料、例えばCo-Cr基合金にPtを添加して結晶磁気異方性を高めた材料では十分ではないことが予想される。10nm以下のサイズで安定的に強磁性として振る舞う磁性粒子は、より高い結晶磁気異方性を持っている必要があるからである。
 上記のような理由から、L1構造を持つFePt相が超高密度記録媒体用材料として注目されている。L1構造を持つFePt相は高い結晶磁気異方性とともに、耐食性、耐酸化性に優れているため、磁気記録媒体としての応用に適した材料と期待されているものである。
 そしてFePt相を超高密度記録媒体用材料として使用する場合には、規則化したFePt磁性粒子を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。
 このようなことから、L1構造を有するFePt磁性粒子を酸化物や炭素といった非磁性材料で孤立させたグラニュラー構造磁性薄膜が、熱アシスト磁気記録方式を採用した次世代ハードディスクの磁気記録媒体用として提案されている。このグラニュラー構造磁性薄膜は、磁性粒子同士が非磁性物質の介在により磁気的に絶縁される構造となっている。
 グラニュラー構造の磁性薄膜を有する磁気記録媒体及びこれに関連する公知文献としては、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5を挙げることができる。
 上記L1構造を持つFePt相を有するグラニュラー構造磁性薄膜としては、非磁性物質としてCを体積比率として10~50%含有する磁性薄膜が、特にその磁気特性の高さから注目されている。このようなグラニュラー構造磁性薄膜は、Feターゲット、Ptターゲット、Cターゲットを同時にスパッタリングするか、あるいは、Fe-Pt合金ターゲット、Cターゲットを同時にスパッタリングすることで作製されることが知られている。しかしながら、これらのスパッタリングターゲットを同時スパッタするためには、高価な同時スパッタ装置が必要となる。
 また、一般に、スパッタ装置で合金に非磁性材料の含まれるスパッタリングターゲットをスパッタしようとすると、スパッタ時に非磁性材料の不用意な脱離やスパッタリングターゲットに内包される空孔を起点として異常放電が生じパーティクル(基板上に付着したゴミ)が発生するという問題がある。この問題を解決するには、非磁性材料と母材合金との密着性を高め、スパッタリングターゲットを高密度化させる必要がある。
 一般に、合金に非磁性材料が含まれるスパッタリングターゲットの素材は粉末焼結法により作製される。ところが、Fe-Pt系材料に、Cが大量に含まれる場合、Cが難焼結材料であるため高密度な焼結体を得ることが困難であり、特に相対密度93%以上を有するC粒子が分散したFe-Pt-Ag-C系の焼結体スパッタリングターゲットを製造することはできなかった。
 参考までに、Fe-Pt系材を用いた記録媒体用のスパッタリングターゲットに関する特許文献1~7を下記に示す。
特開2000-306228号公報 特開2000-311329号公報 特開2008-59733号公報 特開2008-169464号公報 特開2004-152471号公報 特開2003-313659号公報 特開2011-210291号公報
 本発明の課題は、高価な同時スパッタ装置を用いることなくグラニュラー構造磁性薄膜の作製を可能にする、C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法を提供することであり、さらには、スパッタリング時に発生するパーティクル量を低減した高密度なスパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、非磁性材料であるC粒子を微細に母材金属に均一に分散させると共に、Agを含有するにもかかわらず、高密度なスパッタリングターゲットを作製できることを見出した。このようにして作られたスパッタリングターゲットは、パーティクル発生を非常に少なくすることが可能になる。すなわち、成膜時の歩留まりを向上できることを見出した。
  このような知見に基づき、本発明は、
 1)原子数比で(Fe100-X-Pt100-Y-Z-Ag-C(但し、Xは35≦X≦55、Yは0.5≦Y≦15、Zは15≦Z≦55を満たす数)の組成を有するFe-Pt-Ag-C系焼結体スパッタリングターゲットであって、相対密度が93%以上である焼結体スパッタリングターゲット。
 2)CがFe-Pt合金中に分散したFe-Pt-C相とAg相が互いに混在した組織を有する上記1)に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット。
 3)CがFe-Pt合金中に分散したFe-Pt-C相とCがAg中に分散したAg-C相が互いに混在した組織を有する上記1)に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット。
 4)CがFe-Pt合金中に分散したFe-Pt-C相、Ag相、CがAg中に分散したAg-C相が、それぞれ互いに混在した組織を有する上記1)に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット、を提供する。
 また、本発明は、
 5)Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することを特徴とするFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法
 6)Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することを特徴とする上記1)、2)のいずれか一項に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法
 7)Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉とC粉とを混合して、Agの融点未満の温度で焼結することを特徴とするFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法
 8)Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉とC粉とを混合して、Agの融点未満の温度で焼結することを特徴とする上記1)、3)、4)のいずれか一項に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法
 9)93%以上の相対密度を有するFe-Pt-C焼結体の粉砕粉を混合して焼結することを特徴とする上記5)~8)のいずれか一項に記載のFe-P-Ag-C系焼結体スパッタリングターゲットの製造方法、を提供する。
 本発明のC粒子が分散したFe-Pt系スパッタリングターゲットは、高価な同時スパッタ装置を用いることなく、グラニュラー構造磁性薄膜の成膜を可能にし、さらには、スパッタリング時に発生するパーティクル量を低減した高密度なスパッタリングターゲットとその製造方法を提供できる優れた効果を有する。
実施例1のスパッタリングターゲットの研磨面(以下、「スパッタ面の垂直断面」のことを示す。)をEPMAで観察したときの二次電子画像及び元素分布画像である。白く見えている箇所が、当該元素が多く存在している箇所である。
 本発明のC粒子が分散したFe-Pt-Ag-C系焼結体スパッタリングターゲットは、原子数比で(Fe100-X-Pt100-Y-Z-Ag-C(但し、Xは35≦X≦55、Yは0.5≦Y≦15、Zは15≦Z≦55を満たす数)の組成を有するFe-Pt-Ag-C系焼結体スパッタリングターゲットであり、相対密度が93%以上である。これが、本発明の基本となるものである。
 本発明では、C粒子の含有量Zは、スパッタリングターゲット組成中、好ましくは15以上55原子数比以下である。C粒子のターゲット組成中における含有量Zが、15原子数比未満であると、良好な磁気特性が得られない場合があり、55原子数比を超えると、C粒子が凝集し、パーティクルの発生が多くなる場合がある。
 また本発明では、Ptの含有量Xは、Fe-Pt組成中、好ましくは35以上55原子数比以下である。PtのFe-Pt組成中における含有量Xが、35原子数比未満であると、L1構造を持つFePt相が生じなくなり、55原子数比を超えても、同様に、L1構造を持つFePt相が生じなくなる。
 相対密度が93%以上であることは本発明の重要な要件の一つである。相対密度が高いと、スパッタ時にスパッタリングターゲットからの脱ガスによる問題が少なく、また、合金とC粒子の密着性が向上するため、パーティクル発生を効果的に抑制できる。望ましくは相対密度で95%以上である。
 本発明において相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成元素が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
 式:計算密度=シグマΣ(構成元素の原子量×構成元素の原子数比)/Σ(構成元素の原子量×構成元素の原子数比/構成元素の文献値密度)
 ここで、Σは、ターゲットの構成元素の全てについて、和をとることを意味する。
 各元素の密度(文献値)は、以下の値を用いている。
 Fe:7.86g/cc、Pt:21.45g/cc、Ag:10.49g/cc、C:2.26g/cc
 また、Agの含有量Yは、Fe-Pt-Ag-C系焼結体組成中、好ましくは0.5以上15原子数比以下である。Agの含有量Yが、0.5原子数比未満であると、成膜したグラニュラー構造磁性薄膜をL1構造にするときの熱処理温度を十分に下げることができない場合があり、15原子数比超であると、良好な磁気特性が得られない場合がある。
 また、Fe-Pt-Ag-C系焼結体スパッタリングターゲットの大きな特徴の一つは、CがFe-Pt合金中に分散したFe-Pt-C相とAg相が互いに混在した組織を有することである。この場合、CがFe-Pt合金中に分散したFe-Pt-C相とCがAg中に分散したAg-C相が互いに混在した組織を有する場合、さらにCがFe-Pt合金中に分散したFe-Pt-C相、Ag相、CがAg中に分散したAg-C相が、それぞれ互いに混在した組織を有することであっても良い。以上の相構造は、いずれも微細なCをターゲットに分散させることができる。
 Fe-Pt-Ag-C系焼結体スパッタリングターゲットの製造に際しては、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することに特徴を有する。
 すなわち、本願発明は、低融点のAgを含まないFe-Pt-Cで予め緻密な焼結体を作製し、この粉砕粉を用いることにより、密度向上を狙うものである。
 従来は、Fe粉とPt粉とAg粉とC粉との混合粉をAgの融点以下の温度で焼結させていた。しかし、Ag粉を含有する原料を焼結するためには、当然ながらAgの融点以下の温度で焼結せざるを得ないのであるが、Agの融点が他の材料に比べて低いので、Ag以外の原料粉は、殆ど焼結しないという問題がある。
 そこでAgを除く、Fe粉とPt粉とC粉との混合粉を焼結が進行するAgの融点以上の温度で焼結させて、Fe-Pt-Cの高密度焼結体を予め作製しておく。次に、この焼結体を適当な粒径に粉砕・篩別したFe-Pt-C粉とAg粉を混合し、焼結体を作製する。そうするとFe-Pt-C粒の粒同士をつなぐようにAgが分布した組織を有する高密度焼結体を得ることができる。
 ここでFe-Pt-C粉とAg粉の粒径は、Fe-Pt-C粉>Ag粉となるように調整すると、より密度が上がり易い。また、Fe-Pt-Ag-Cターゲット中に、均一にCを分布させるために、Ag粉中に少量のC粉を混合させることもできる。
 この場合の混合量は、Ag中におけるC添加量の体積比率が20%以下程度となるようにするのが良い。このように、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉とC粉とを混合して、Agの融点未満の温度で焼結することができる。
 以上によって、上記の特徴的なFe-Pt-Ag-C系焼結体スパッタリングターゲットを製造することができる。上記の場合、予め作製するFe-Pt-C焼結体の粉砕粉の密度が高いこと、すなわち93%以上の相対密度を有することが望ましい。これによって、最終製品となるFe-P-Ag-C系焼結体スパッタリングターゲットの密度を、高密度化することが容易となる。
 なお、B、Si、Cr、Ti、Ta、W、Al、Mg、Mn、Ca、Zr、Yから選択した1成分以上の酸化物を1~20mol%含有させることができる。これらによって、密度が大きく影響を受けない(低下しない)範囲の添加とすることが必要である。
 本発明のスパッタリングターゲットは粉末焼結法によって作製するが、作製にあたり、各原料粉(Fe粉、Pt粉、Ag粉、C粉)を用意する。これらの原料粉は、粒径が0.5μm以上10μm以下のものを用いることが望ましい。原料粉の粒径が小さ過ぎると、酸化が促進されてスパッタリングターゲット中の酸素濃度が上昇するなどの問題があるため、0.5μm以上とすることが望ましい。
 一方、原料粉の粒径が大きいと、C粒子を合金中に微細分散することが難しくなるため10μm以下のものを用いることがさらに望ましい。
 さらに原料粉として、合金粉(Fe-Pt粉)を用いてもよい。特にPtを含む合金粉はその組成にもよるが、原料粉末中の酸素量を少なくするために有効である。合金粉を用いる場合も、粒径が0.5μm以上10μm以下のものを用いることが望ましい。
 そして、上記の原料粉からAg粉を除く粉末を秤量し、ボールミル等を用いて混合する。こうして得られた混合粉(Fe粉、Pt粉、C粉の混合粉)をホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度は、Fe-Pt-Cの組成にもよるが、多くの場合、1200~1400°Cの温度範囲とする。
 次に、ホットプレスから取り出したFe-Pt-C焼結体に等方熱間加圧加工を施す。等方熱間加圧加工は焼結体の密度向上に有効である。等方熱間加圧加工時の保持温度は焼結体の組成にもよるが、多くの場合、1200~1400°Cの温度範囲である。また加圧力は100Mpa以上、200Mpa以下に設定する。
 このようにして得られたFe-Pt-C焼結体から表層部を旋盤などで除去した後、ジョークラッシャー、ロールクラッシャー、ブラウンミル、ハンマーミルなどの粉砕装置を用いて粉砕し、Fe-Pt-C粉を作製する。Fe-Pt-C粉の粒子径は20μm以上300μm以下にすることが望ましい。
 このようにして得られたFe-Pt-C粉をAg粉とともに、所望のターゲット組成になるように秤量する。ここでC粉を少量であれば添加してもよい。そして、秤量した粉をミキサーなどの混合装置を用いて混合する。
 この混合粉を、ホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度は、Agの融点より低い温度とする。多くの場合、900~950°Cの温度範囲である。
 次に、ホットプレスから取り出したFe-Pt-Ag-C焼結体に等方熱間加圧加工を施す。等方熱間加圧加工は焼結体の密度向上に有効である。等方熱間加圧加工時の保持温度は、Agの融点より低い温度とする。多くの場合、900~950°Cの温度範囲である。また加圧力は100Mpa以上、200Mpa以下に設定する。
 このようにして得られた焼結体を旋盤で所望の形状に加工することにより、本発明のスパッタリングターゲットは作製できる。
 以上により、合金中にC粒子が均一に微細分散し、且つ高密度なC粒子が分散したFe-Pt-Ag-C系スパッタリングターゲットを作製することができる。このようにして製造した本発明のスパッタリングターゲットは、グラニュラー構造磁性薄膜の成膜に使用するスパッタリングターゲットとして有用である。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径2μmのAg粉、平均粒径1μmのC粉を用意した。初めにFe粉とPt粉とC粉を以下の原子数比となるように、合計重量で3000g秤量した。
 原子数比:(Fe50-Pt5052.94-C47.06
 次に秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、4時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1250°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1250°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして得られたFe-Pt-C焼結体の密度は95.2%であった。これをジョークラッシャーとブラウンミルを用いて粉砕した。さらに粉砕粉を目開きが150μmの篩を用いて篩別し、篩上の粗粒を除去した。
 こうした得られたFe-Pt-C粉をAg粉とともに、以下の原子数比のスパッタリングターゲットを作製するために、合計重量で2400g秤量した。
原子数比:(Fe50-Pt5045-Ag15-C40
 次に、秤量した粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。そして取り出した混合粉をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして作製された焼結体を、旋盤を用いて切削加工しスパッタリングターゲットを得た。このターゲットの密度をアルキメデス法で測定し、計算密度で割り返したところ、相対密度は94.6%であった。
 実施例1のスパッタリングターゲットの研磨面をEPMAで観察したときの二次電子画像および元素分布画像を参考までに図1に示す(二次電子画像は図中にSLと表記してある)。図1で、マトリックスとして細かく分散しているのは、Fe-Pt-C相である。そして、Fe-Pt-C相のマトリックス中に、比較的大きな粒子としてAg相が、千切れ雲のように分散しているのが観察できる。また、図1から、微細なCがターゲットの組織中に分散しているのが確認できる。
 次に、焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のSi基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は27個であった。
(実施例2)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径2μmのAg粉、平均粒径1μmのC粉を用意した。初めにFe粉とPt粉とC粉を以下の原子数比となるように、合計重量で3000g秤量した。
 原子数比:(Fe50-Pt5056.25-C43.75
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、4時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1250°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1250°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして得られたFe-Pt-C焼結体の密度は95.9%であった。これをジョークラッシャーとブラウンミルを用いて粉砕した。さらに粉砕粉を目開きが150μmの篩を用いて篩別し、篩上の粗粒を除去した。
 こうした得られたFe-Pt-C粉をAg粉、C粉とともに、以下の原子数比のスパッタリングターゲットを作製するために、合計重量で2400g秤量した。
 原子数比:(Fe50-Pt5045-Ag15-C40
 次に、秤量した粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。そして取り出した混合粉をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして作製された焼結体を、旋盤を用いて切削加工しスパッタリングターゲットを得た。このターゲットの密度をアルキメデス法で測定し、計算密度で割り返したところ、相対密度は93.4%であった。また実施例2のスパッタリングターゲットの研磨面をEPMAで観察したところ、Fe-Pt-C相とAg-C相が互いに混在した組織になっていた。
 次に、焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置に取り付け、実施例1と同じ条件で、スパッタリングを行った。その結果、パーティクル個数は36個であった。
(比較例1)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径2μmのAg粉、平均粒径1μmのC粉を用意した。そして用意した粉末を以下の原子数比となるように、合計重量で2400g秤量した。
 原子数比:(Fe50-Pt5045-Ag15-C40
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、4時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして得られた焼結体を、旋盤を用いて切削加工しスパッタリングターゲットを得た。このターゲットの密度をアルキメデス法で測定し、計算密度で割り返したところ、相対密度は92.7%で実施例1、2より低い密度であった。また比較例1のスパッタリングターゲットの研磨面をEPMAで観察したところ、Fe-Pt合金中にCとAgが分散した組織になっていた。
 次に、焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置に取り付け、実施例1と同じ条件で、スパッタリングを行った。その結果、パーティクル個数は73個で、実施例1、2よりパーティクル個数は増加した。
(実施例3)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径2μmのAg粉、平均粒径1μmのC粉を用意した。初めにFe粉とPt粉とC粉を以下の原子数比となるように、合計重量で3000g秤量した。
 原子数比:(Fe65-Pt3542.11-C57.89
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、4時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1350°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1350°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして得られたFe-Pt-C焼結体の密度は95.1%であった。これをジョークラッシャーとブラウンミルを用いて粉砕した。さらに粉砕粉を目開きが106μmの篩を用いて篩別し、篩上の粗粒を除去した。
 こうした得られたFe-Pt-C粉をAg粉、C粉とともに、以下の原子数比のスパッタリングターゲットを作製するために、合計重量で2100g秤量した。
 原子数比:(Fe65-Pt3540-Ag-C55
 次に、秤量した粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。そして取り出した混合粉をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度900°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度900°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、900°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして作製された焼結体を、旋盤を用いて切削加工しスパッタリングターゲットを得た。このターゲットの密度をアルキメデス法で測定し、計算密度で割り返したところ、相対密度は93.8%であった。また実施例3のスパッタリングターゲットの研磨面をEPMAで観察したところ、Fe-Pt-C相とAg相が互いに混在した組織になっていた。
 次に、焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置に取り付け、スパッタリングを行った。その結果、パーティクル個数は38であった。
(比較例2)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径2μmのAg粉、平均粒径1μmのC粉を用意した。そして用意した粉末を以下の原子数比となるように、合計重量で2100g秤量した。
 原子数比:(Fe65-Pt3540-Ag-C55
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、4時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度900°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
 次に、カーボン製の型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度900°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、900°C保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
 こうして得られた焼結体を、旋盤を用いて切削加工しスパッタリングターゲットを得た。このターゲットの密度をアルキメデス法で測定し、計算密度で割り返したところ、相対密度は88.9%で実施例3より低い密度であった。また比較例2のスパッタリングターゲットの研磨面をEPMAで観察したところ、Fe-Pt合金中にCとAgが分散した組織になっていた。
 次に、焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置に取り付け、実施例3と同じ条件で、スパッタリングを行った。その結果、パーティクル個数は92個で、実施例3より増加した。
 本発明は、高価な同時スパッタ装置を用いることなく、グラニュラー構造磁性薄膜の成膜を可能にし、さらには、スパッタリング時に発生するパーティクル量を低減した高密度な、C粒子が分散したFe-Pt系スパッタリングターゲットを提供できる優れた効果を有する。したがってグラニュラー構造の磁性薄膜の成膜用スパッタリングターゲットとして有用である。

Claims (9)

  1.  原子数比で(Fe100-X-Pt100-Y-Z-Ag-C(但し、Xは35≦X≦55、Yは0.5≦Y≦15、Zは15≦Z≦55を満たす数)の組成を有するFe-Pt-Ag-C系焼結体スパッタリングターゲットであって、相対密度が93%以上である焼結体スパッタリングターゲット。
  2.  CがFe-Pt合金中に分散したFe-Pt-C相とAg相が互いに混在した組織を有する請求項1に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット。
  3.  CがFe-Pt合金中に分散したFe-Pt-C相とCがAg中に分散したAg-C相が互いに混在した組織を有する請求項1に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット。
  4.  CがFe-Pt合金中に分散したFe-Pt-C相、Ag相、CがAg中に分散したAg-C相が、それぞれ互いに混在した組織を有する請求項1に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲット。
  5.  Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することを特徴とするFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法。
  6.  Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉を混合して、Agの融点未満の温度で焼結することを特徴とする請求項1、2のいずれか一項に記載のFe-Pt-Ag-C系焼結体スパッタリングターゲットの製造方法。
  7.  Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉とC粉とを混合して、Agの融点未満の温度で焼結することを特徴とするFe-P-Ag-C系焼結体スパッタリングターゲットの製造方法。
  8.  Fe-Pt-Ag-C系スパッタリングターゲットの製造方法であって、予めFe-Pt-C焼結体を作製し、これを粉砕して粉砕粉とし、この粉砕粉とAg粉とC粉とを混合して、Agの融点未満の温度で焼結することを特徴とする請求項1、3、4のいずれか一項に記載のFe-P-Ag-C系焼結体スパッタリングターゲットの製造方法。
  9.  93%以上の相対密度を有するFe-Pt-C焼結体の粉砕粉を混合して焼結することを特徴とする請求項5~8のいずれか一項に記載のFe-P-Ag-C系焼結体スパッタリングターゲットの製造方法。
PCT/JP2013/060812 2012-05-22 2013-04-10 C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法 WO2013175884A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/372,849 US20140360871A1 (en) 2012-05-22 2013-04-10 Fe-Pt-Ag-C-Based Sputtering Target Having C Grains Dispersed Therein, and Method for Producing Same
SG11201403264SA SG11201403264SA (en) 2012-05-22 2013-04-10 Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
CN201380014650.5A CN104169458B (zh) 2012-05-22 2013-04-10 分散有C颗粒的Fe‑Pt‑Ag‑C基溅射靶及其制造方法
JP2013533038A JP5705993B2 (ja) 2012-05-22 2013-04-10 C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116813 2012-05-22
JP2012-116813 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013175884A1 true WO2013175884A1 (ja) 2013-11-28

Family

ID=49623587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060812 WO2013175884A1 (ja) 2012-05-22 2013-04-10 C粒子が分散したFe-Pt-Ag-C系スパッタリングターゲット及びその製造方法

Country Status (7)

Country Link
US (1) US20140360871A1 (ja)
JP (1) JP5705993B2 (ja)
CN (1) CN104169458B (ja)
MY (1) MY167671A (ja)
SG (1) SG11201403264SA (ja)
TW (1) TW201402850A (ja)
WO (1) WO2013175884A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052380A1 (ja) * 2014-09-30 2016-04-07 Jx金属株式会社 タングステンスパッタリングターゲット及びその製造方法
WO2016056441A1 (ja) * 2014-10-08 2016-04-14 三菱マテリアル株式会社 W-Tiスパッタリングターゲット
JP2016166404A (ja) * 2015-03-04 2016-09-15 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081009B (zh) 2010-08-31 2016-05-18 吉坤日矿日石金属株式会社 Fe-Pt型强磁性材料溅射靶
US9945026B2 (en) 2010-12-20 2018-04-17 Jx Nippon Mining & Metals Corporation Fe-Pt-based sputtering target with dispersed C grains
JP5497904B2 (ja) 2011-03-30 2014-05-21 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
CN104221085B (zh) 2012-07-20 2017-05-24 吉坤日矿日石金属株式会社 磁记录膜形成用溅射靶及其制造方法
JP2014034730A (ja) * 2012-08-10 2014-02-24 Mitsui Mining & Smelting Co Ltd 焼結体およびスパッタリングターゲット
JP6285043B2 (ja) 2014-09-22 2018-03-07 Jx金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法
WO2017141558A1 (ja) 2016-02-19 2017-08-24 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット及び磁性薄膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2004152471A (ja) * 2002-10-29 2004-05-27 Korea Advanced Inst Of Sci Technol FePtC薄膜を利用した高密度磁気記録媒体及びその製造方法
JP2011210291A (ja) * 2010-03-28 2011-10-20 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2012073882A1 (ja) * 2010-11-29 2012-06-07 三井金属鉱業株式会社 スパッタリングターゲット
WO2012105201A1 (ja) * 2011-01-31 2012-08-09 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2012133166A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
WO2012132939A1 (ja) * 2011-03-30 2012-10-04 田中貴金属工業株式会社 FePt-C系スパッタリングターゲット及びその製造方法
WO2013046882A1 (ja) * 2011-09-26 2013-04-04 Jx日鉱日石金属株式会社 Fe-Pt-C系スパッタリングターゲット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007623A (en) * 1997-08-29 1999-12-28 International Business Machines Corporation Method for making horizontal magnetic recording media having grains of chemically-ordered FePt or CoPt
US6692619B1 (en) * 2001-08-14 2004-02-17 Seagate Technology Llc Sputtering target and method for making composite soft magnetic films
US7175925B2 (en) * 2003-06-03 2007-02-13 Seagate Technology Llc Perpendicular magnetic recording media with improved crystallographic orientations and method of manufacturing same
JP4846872B2 (ja) * 2009-03-03 2011-12-28 Jx日鉱日石金属株式会社 スパッタリングターゲット及びその製造方法
CN101717922A (zh) * 2009-12-23 2010-06-02 天津大学 掺氮细化薄膜中有序化面心四方结构铁铂颗粒尺寸的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2004152471A (ja) * 2002-10-29 2004-05-27 Korea Advanced Inst Of Sci Technol FePtC薄膜を利用した高密度磁気記録媒体及びその製造方法
JP2011210291A (ja) * 2010-03-28 2011-10-20 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2012073882A1 (ja) * 2010-11-29 2012-06-07 三井金属鉱業株式会社 スパッタリングターゲット
WO2012105201A1 (ja) * 2011-01-31 2012-08-09 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2012133166A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
WO2012132939A1 (ja) * 2011-03-30 2012-10-04 田中貴金属工業株式会社 FePt-C系スパッタリングターゲット及びその製造方法
WO2013046882A1 (ja) * 2011-09-26 2013-04-04 Jx日鉱日石金属株式会社 Fe-Pt-C系スパッタリングターゲット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052380A1 (ja) * 2014-09-30 2016-04-07 Jx金属株式会社 タングステンスパッタリングターゲット及びその製造方法
JPWO2016052380A1 (ja) * 2014-09-30 2017-04-27 Jx金属株式会社 タングステンスパッタリングターゲット及びその製造方法
WO2016056441A1 (ja) * 2014-10-08 2016-04-14 三菱マテリアル株式会社 W-Tiスパッタリングターゲット
JP2016074962A (ja) * 2014-10-08 2016-05-12 三菱マテリアル株式会社 W−Tiスパッタリングターゲット
TWI572722B (zh) * 2014-10-08 2017-03-01 三菱綜合材料股份有限公司 W-Ti濺鍍靶
JP2016166404A (ja) * 2015-03-04 2016-09-15 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット

Also Published As

Publication number Publication date
TW201402850A (zh) 2014-01-16
MY167671A (en) 2018-09-21
CN104169458B (zh) 2017-02-22
JPWO2013175884A1 (ja) 2016-01-12
TWI563108B (ja) 2016-12-21
US20140360871A1 (en) 2014-12-11
JP5705993B2 (ja) 2015-04-22
CN104169458A (zh) 2014-11-26
SG11201403264SA (en) 2014-09-26

Similar Documents

Publication Publication Date Title
JP5290468B2 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
JP5497904B2 (ja) 磁気記録膜用スパッタリングターゲット
JP5457615B1 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
JP5226155B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット
JP5587495B2 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JP5623552B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット及びその製造方法
US20140083847A1 (en) Fe-Pt-C Based Sputtering Target
WO2012105201A1 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2014065201A1 (ja) Fe-Pt系焼結体スパッタリングターゲット及びその製造方法
WO2012105205A1 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP6437427B2 (ja) 磁気記録媒体用スパッタリングターゲット
JPWO2014141737A1 (ja) スパッタリングターゲット
JP6037206B2 (ja) 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2014171161A1 (ja) スパッタリングターゲット
JP5946922B2 (ja) 磁性記録媒体用スパッタリングターゲット
JP5826945B2 (ja) 磁性記録媒体用スパッタリングターゲット
JP6062586B2 (ja) 磁気記録膜形成用スパッタリングターゲット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013533038

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793170

Country of ref document: EP

Kind code of ref document: A1