WO2013175832A1 - 回転電機の回転子、回転電機、回転電機の回転子の製造方法 - Google Patents

回転電機の回転子、回転電機、回転電機の回転子の製造方法 Download PDF

Info

Publication number
WO2013175832A1
WO2013175832A1 PCT/JP2013/056938 JP2013056938W WO2013175832A1 WO 2013175832 A1 WO2013175832 A1 WO 2013175832A1 JP 2013056938 W JP2013056938 W JP 2013056938W WO 2013175832 A1 WO2013175832 A1 WO 2013175832A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated core
pole
rotor
laminated
pole integrated
Prior art date
Application number
PCT/JP2013/056938
Other languages
English (en)
French (fr)
Inventor
啓一郎 岡
秋田 裕之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112013002622.8T priority Critical patent/DE112013002622T5/de
Priority to CN201380027153.9A priority patent/CN104335454B/zh
Priority to KR1020147032672A priority patent/KR101671606B1/ko
Priority to JP2014516692A priority patent/JP5901754B2/ja
Priority to US14/378,787 priority patent/US20150028710A1/en
Priority to TW102117850A priority patent/TWI500237B/zh
Publication of WO2013175832A1 publication Critical patent/WO2013175832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a rotor of a rotating electrical machine, a rotating electrical machine, and a method of manufacturing a rotor of the rotating electrical machine.
  • the laminated core member is formed by using a laminated body of substantially sector-shaped thin plate core pieces made of a magnetic material such as a silicon steel plate and integrally joined by caulking work of a press machine.
  • each permanent magnet is tightly sandwiched between the side surfaces of each adjacent laminated core member, and generally protrudes from the side surface along the shape of the permanent magnet at the outer peripheral portion and inner peripheral portion of each laminated core member.
  • the outer and inner hooks are positioned and fixed in the radial direction.
  • each laminated core member and the permanent magnet is inserted with a tie rod penetrating in the axial direction at a substantially central portion of each laminated core member, and each tie rod is disposed at both axial ends of each laminated core member, and is connected to the rotating shaft.
  • each permanent magnet and each laminated core member In this assembly process, there is a problem that the positioning and fixing work of each permanent magnet and each laminated core member becomes complicated and the working time increases. In addition, the skill of the operator is required, and there is a problem that hinders labor saving and productivity improvement.
  • the positioning accuracy of each permanent magnet and each laminated core member depends only on the mechanical strength and processing accuracy of the tie rods and end plates. In particular, when used for a high-speed motor or a high-torque motor, it is necessary to further improve the mechanical strength of the entire rotor for holding a plurality of laminated core members and permanent magnets at predetermined positions.
  • the laminated core members are connected to each other by at least one integral thin plate core interposed and bonded to a predetermined position of the laminated body of the thin plate core pieces constituting each laminated core member.
  • the integral thin plate core has the same shape as the thin plate core piece and the same number of thin plate core piece portions as the number of magnetic poles interposed and coupled to the laminated structure of the thin plate core pieces, and the adjacent thin plate core pieces extended from the thin plate core piece portions.
  • An electric motor having a configuration in which a permanent magnet installation space is provided between adjacent laminated core members by providing a connecting portion for annularly connecting all thin plate core piece portions in a relative arrangement having a permanent magnet installation space between the portions. Rotors have been proposed. (For example, Patent Document 1)
  • JP-A-6-245451 (FIGS. 1, 16, and 19)
  • Patent Document 1 discloses a configuration in which a magnetic path connecting the N pole and the S pole is not directly formed as another embodiment, but the area fitted to the rotating shaft is small. As described above, the rigidity of the annular connecting portion of the integrated thin plate core is remarkably lowered, so the deterioration of assemblability cannot be denied, and the productivity is poor because of the combination of thin plate cores with complicated shapes. There was a problem.
  • the present invention has been made in order to solve the above-described problems, and the laminated teeth can be made highly rigid and simple without forming a magnetic path connecting the N pole and the S pole of the permanent magnet. It is an object of the present invention to provide a rotor of a rotating electrical machine that is excellent in assembling property and productivity by adopting a shape configuration and a configuration in which coaxiality can be secured by fitting assembly of a laminated tooth group and a rotating shaft.
  • the rotor of the rotating electrical machine is: A plurality of first permanent magnets arranged at equal intervals around the rotation axis and alternately magnetized in the circumferential direction;
  • a rotor of a rotating electrical machine provided with a laminated core having a plurality of laminated teeth portions that are arranged around a rotation shaft so as to sandwich each first permanent magnet from the circumferential direction, and each of which forms a magnetic pole
  • the laminated core An N-pole integrated laminated core that is integrally provided with a laminated tooth portion that abuts on the N-pole side of the adjacent first permanent magnet, and has the same shape as the N-pole integrated laminated core, on the S-pole side of the adjacent first permanent magnet It consists of an S pole integrated laminated core that is integrally provided with laminated teeth portions that come into contact with each other.
  • N pole integrated laminated core and S pole integrated laminated core are respectively An annular connecting portion that surrounds the periphery of the rotating shaft and positions the respective integral laminated cores on the rotating shaft, and first teeth portions that are arranged at equal intervals and project from the annular connecting portion toward the outer side in the circumferential direction of the rotating shaft;
  • a connected teeth piece having magnetism comprising: A first tooth piece having magnetism, which has a shape obtained by cutting an end portion of the first tooth portion on the rotating shaft side with a predetermined width in the circumferential direction of the rotating shaft, and is laminated in alignment with the outer periphery of the first tooth portion.
  • N pole integrated laminated core and S pole integrated laminated core are respectively
  • the first teeth pieces are laminated with the same thickness on each first tooth portion of the connecting teeth pieces laminated with the same thickness of 1/2 or less of the axial length of the laminated core
  • the N-pole integrated laminated core and the S-pole integrated laminated core have an outer peripheral surface that is a non-magnetic rotating shaft and an annular connecting portion on the outside, and the laminated teeth portions of the N-pole integrated laminated core and the S-pole integrated laminated core are respectively It arrange
  • the rotating electrical machine is A plurality of first permanent magnets arranged at equal intervals around the rotation axis and alternately magnetized in the circumferential direction;
  • a rotating electrical machine including a rotor that is disposed around a rotation shaft so as to sandwich each first permanent magnet from the circumferential direction and has a laminated core composed of a plurality of laminated tooth portions each forming a magnetic pole,
  • the laminated core An N-pole integrated laminated core that is integrally provided with a laminated tooth portion that abuts on the N-pole side of the adjacent first permanent magnet, and has the same shape as the N-pole integrated laminated core, on the S-pole side of the adjacent first permanent magnet It consists of an S pole integrated laminated core that is integrally provided with laminated teeth portions that come into contact with each other.
  • N pole integrated laminated core and S pole integrated laminated core are respectively An annular connecting portion that surrounds the periphery of the rotating shaft and positions the respective integral laminated cores on the rotating shaft, and first teeth portions that are arranged at equal intervals and project from the annular connecting portion toward the outer side in the circumferential direction of the rotating shaft;
  • a connected teeth piece having magnetism comprising: A first tooth piece having magnetism, which has a shape obtained by cutting an end portion of the first tooth portion on the rotating shaft side with a predetermined width in the circumferential direction of the rotating shaft, and is laminated in alignment with the outer periphery of the first tooth portion.
  • N pole integrated laminated core and S pole integrated laminated core are respectively The first teeth pieces are laminated with the same thickness on each first tooth portion of the connecting teeth pieces laminated with the same thickness of 1/2 or less of the axial length of the laminated core,
  • the N-pole integrated laminated core and the S-pole integrated laminated core have an outer peripheral surface that is a non-magnetic rotating shaft and an annular connecting portion on the outside, and the laminated teeth portions of the N-pole integrated laminated core and the S-pole integrated laminated core are respectively Rotors arranged so as to alternately face each other and sandwiching the first permanent magnet therebetween, It is equipped with a stator.
  • a method for manufacturing a rotor for a rotating electrical machine includes: A plurality of first permanent magnets arranged at equal intervals around the rotation axis and alternately magnetized in the circumferential direction; A method of manufacturing a rotor of a rotating electrical machine comprising: a laminated core having a plurality of laminated teeth portions, each of which is arranged around a rotating shaft so as to sandwich each first permanent magnet from the circumferential direction, and each of which forms a magnetic pole.
  • the laminated core An N-pole integrated laminated core that is integrally provided with a laminated tooth portion that abuts on the N-pole side of the adjacent first permanent magnet, and has the same shape as the N-pole integrated laminated core, on the S-pole side of the adjacent first permanent magnet It consists of an S pole integrated laminated core that is integrally provided with laminated teeth portions that come into contact with each other.
  • the manufacturing process of the N pole integrated laminated core and the S pole integrated laminated core is as follows.
  • An annular connecting portion that surrounds the periphery of the non-magnetic rotating shaft and positions each integral laminated core on the rotating shaft, and a first that is arranged at equal intervals protruding from the annular connecting portion toward the outer side in the circumferential direction of the rotating shaft.
  • Each first tooth portion of the connecting tooth piece has a shape in which the end portion on the annular connecting portion side of the first tooth portion is cut out in the circumferential direction of the rotating shaft with a predetermined width, and is aligned with the outer periphery of the first tooth portion.
  • a first teeth piece laminating step of laminating the first tooth pieces having magnetism to be laminated with the same thickness to constitute a laminated tooth portion After positioning and fitting and inserting either one of the N-pole integrated laminated core and the S-pole integrated laminated core with the rotary shaft on the outer side of the rotary shaft, With the other integral laminated core as the rotation axis, the annular connecting portion is outside the rotation axis, and the laminated teeth portions of the N-pole integral laminate core and the S-pole integral laminate core are alternately opposed at equal intervals in the circumferential direction of the rotor.
  • the first permanent magnet from the axial direction of the rotary shaft into the space formed between the laminated core fitting step of positioning and fitting and inserting the laminated teeth of the N-pole integrated laminated core and the S-pole integrated laminated core from the axial direction of the rotary shaft, N And a permanent magnet insertion step in which the north pole of the first permanent magnet is in contact with the pole-integrated laminated core and the south pole of the first permanent magnet is in contact with the south pole-integrated laminated core.
  • a permanent magnet, a gap, or a rotating shaft of a nonmagnetic material is interposed between the N-pole integral laminated core and the S-pole integral laminated core, and the permanent magnet is made of a magnetic material such as an iron core piece constituting the laminate. N pole and S pole of this are not short-circuited.
  • the N-pole integrated laminated core and the S-pole integrated laminated core are positioned and fixed by fitting assembly of the respective annular coupling portions and the rotating shaft, for example, the N-pole integrated laminated core and the S-pole integrated laminated core,
  • the end plate arranged on each axial end face is fitted and fixed to the rotating shaft through tie rods or the like, or the N-pole integrated laminated core and the S-pole integrated laminated core are integrally formed by molding resin or the like.
  • the positioning accuracy and the man-hours for assembling work are excellent, and the rotor can be manufactured while improving the coaxiality of the rotor, improving the assembling property, and shortening the lead time.
  • FIG. 4 is a perspective sectional view of the rotor cut along line AA in FIG. 3.
  • FIG. 4 is a cross-sectional view of the rotor cut along line BB in FIG. 3.
  • FIG. 4 is a cross-sectional view of the rotor cut along line CC in FIG. 3.
  • It is sectional drawing of the rotor of the rotary electric machine which concerns on Embodiment 3 of this invention.
  • FIG. 31 is a cross-sectional view of the rotor cut along line AA in FIG. 30.
  • FIG. 31 is a cross-sectional view of the rotor taken along line BB in FIG. 30.
  • FIG. 1 is a perspective view of the rotor 100.
  • FIG. 2 is an exploded perspective view of the rotor 100.
  • FIG. 3 is a plan view of the rotor 100.
  • FIG. 39 is a cross-sectional view of the electric motor 50 (rotary electric machine). As shown in FIG.
  • a rotor 100 used in an electric motor 50 includes a plurality of permanent magnets 4 (first permanent magnets) alternately magnetized in the circumferential direction around the rotary shaft 1;
  • the N-pole integrated laminated core 3n, the S-pole integrated laminated core 3s, and the nonmagnetic rotating shaft 1 are combined.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s are used with individual names, but the respective configurations are the same.
  • a member in which the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s are combined is referred to as a laminated core 2.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s are distinguished by the polarities of the permanent magnets 4 that are in close contact with the circumferential side surfaces of each laminated tooth portion.
  • the integral laminated core in which the N pole of the permanent magnet 4 is in close contact with both side surfaces of the laminated tooth portion is referred to as an N pole integrated laminated core 3n
  • the integral laminated core in which the S pole of the permanent magnet 4 is in close contact with both side surfaces of the laminated tooth portion is S pole. It is set as the integral laminated core 3s.
  • the rotor 100 includes an N-pole integrated laminated core in which four laminated teeth portions 31n are integrated from both sides of the nonmagnetic rotating shaft 1 having a flange portion 11 (interference member) in the middle. 3n and four laminated tooth portions 31s are integrated into the S pole integrated laminated core 3s by press fitting or shrink fitting so that the laminated tooth portions 31n and the laminated tooth portions 31s are alternately combined. It is configured.
  • FIG. 4 is a perspective view of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s. As described above, since both are the same, only one figure will be described.
  • FIG. 5A is a plan view of the connecting tooth piece 34 that constitutes the lamination of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s.
  • FIG. 5B is a plan view of the first tooth piece 35 that constitutes a laminate of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s.
  • FIG. 5C is a plan view showing a state in which the first tooth piece 35 is laminated on the connection tooth piece 34.
  • Each of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s is composed of two types of core pieces made of a magnetic material such as a silicon steel plate.
  • the first iron core piece is a connecting tooth piece 34 shown in FIG.
  • the connecting tooth piece 34 is configured to form a part of the laminated tooth portions 31n and 31s at an equal interval from the outer periphery of the annular connecting portion 34a toward the outside from the outer periphery of the annular connecting portion 34a.
  • the substantially fan-shaped first teeth portion 34b is integrally formed.
  • the second iron core piece is a first tooth piece 35 that is laminated on the first tooth portion 34 b of the connecting tooth piece 34 so as to be aligned with the outer periphery of the first tooth portion 34 b.
  • the first tooth piece 35 has substantially the same shape as the first tooth portion 34 b of the connecting tooth piece 34. The difference between the two is that the first tooth piece 35 has a shape in which the end of the first tooth portion 34b on the annular coupling portion 34a side (rotating shaft side) is cut out with a predetermined width in the circumferential direction of the rotor 100. It is that you are.
  • the laminated tooth portion 31n and the laminated tooth portion 31s laminate a predetermined number of connected teeth pieces 34 to a length of 1 ⁇ 2 or less of the total axial length of the laminated core 2 (connected teeth piece lamination step).
  • a predetermined number of first teeth pieces 35 are further laminated in the axial direction of the rotor 100 on the first teeth portion 34b (first teeth piece lamination step).
  • the portions where the annular connecting portion 34a of the connecting tooth piece 34 is laminated are designated as the laminated annular connecting portions 36n, 36s, and the portions where the first tooth portion 34b of the connecting tooth piece 34 and the first tooth piece 35 are laminated are laminated.
  • the teeth are 31n and 31s.
  • the laminated annular coupling portions 36n and 36s of the N-pole integral laminated core 3n and the S-pole integral laminated core 3s are arranged so that the laminated annular coupling portions 36n and 36s are outside. Further, the laminated teeth portions 31n and 31s are fitted and inserted at equal intervals until they abut against the flange portion 11 (laminated core fitting step).
  • Each of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s is laminated as a substantially cylindrical laminated annular connecting portion 36n, 36s, and a part of the laminated annular connecting portions 36n, 36s coaxially therearound.
  • the laminated teeth portions 31n and 31s are formed.
  • the center hole of the connecting tooth piece 34 constituting the annular laminated connecting portions 63n, 36s is provided with high accuracy in advance in the die pressing process for punching the laminated teeth.
  • each permanent magnet 4 is inserted from the direction of the rotation axis so that both side surfaces are in close contact with the side surfaces of the laminated tooth portions 31n and 31s (permanent magnet insertion step).
  • the permanent magnet 4 is sandwiched between the laminated tooth portions 31n and 31s and fixed with an adhesive, varnish, or the like.
  • a permanent magnet that is divided into two in the rotational axis direction may be used.
  • each permanent magnet 4 has n poles on both side surfaces of the laminated tooth portion 31n of the N pole integrated laminated core 3n, and both side surfaces of the laminated tooth portion 31s of the S pole integrated laminated core 3s. Are arranged in such a polarity that the S poles are in close contact with each other. That is, the polarities of the adjacent permanent magnets 4 are alternately opposite in the circumferential direction of the rotor 100.
  • each permanent magnet 4 includes an outer hook 32 projecting in the circumferential direction of the rotor from the outer peripheral portion and the inner peripheral portion of the laminated tooth portions 31 n and 31 s according to the shape of the permanent magnet 4, and
  • the inner hook 33 is positioned and fixed in the radial direction of the laminated core 2.
  • FIG. 6 is a perspective sectional view of the rotor 100 taken along the line AA in FIG.
  • FIG. 7 is a cross-sectional view of the rotor 100 taken along line BB in FIG.
  • FIG. 8 is a cross-sectional view of the rotor 100 taken along the line CC of FIG.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s are assembled in a positional relationship with each other via the permanent magnet 4 or the gap 6 and the rotating shaft 1 made of a nonmagnetic material. As a result, the N and S poles of the permanent magnet 4 are not short-circuited by the magnetic material constituting the laminated core 2.
  • FIG. 9 is a plan view when the permanent magnet 41 is used for the rotor 100. As shown in the figure, the magnetic flux density may be increased by using a large permanent magnet 41 whose cross section extends toward the outside in the radial direction of the rotor.
  • the permanent magnet 4 or the gap 6 and the rotating shaft of the nonmagnetic material are provided between the N pole integrated laminated core 3n and the S pole integrated laminated core 3s. 1 is interposed, and the N pole and the S pole of the permanent magnet 4 are not short-circuited by a magnetic material such as an iron core piece constituting the laminate.
  • annular connecting portion 34 a of the connecting tooth piece 34 constituting the N-pole integrated laminated core 3 n and the S-pole integrated laminated core 3 s and the joint portion of the first tooth portion 34 b are provided.
  • the annular teeth and the rotary shaft fit and fixed by press-fitting or shrink fitting, etc., with the same width as the circumferential width of the laminated teeth 31n and 31s the positioning accuracy with respect to the rotary shaft 1 and the rigidity are improved. Can be secured. Accordingly, the rigidity of the N-pole integrated laminated core 3n, the S-pole integrated laminated core 3s, and the laminated core 2 that is a combination thereof can be greatly improved.
  • the positional relationship between the outer periphery of the rotor 100 and a stator (not shown) can be accurately positioned.
  • the rotating shaft 1 of the nonmagnetic member is provided with a flange portion, the N-pole integrated laminated core and the S-pole integrated laminated core can be reliably positioned and fixed in the axial direction. In addition, it is possible to reliably prevent the N pole and the S pole from being directly short-circuited.
  • the assembly property of the permanent magnet 4 can also be improved by improving the rigidity of the laminated core 2.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s have high rigidity, it is possible to easily handle the workpiece such as component transportation and positioning during assembly.
  • the configuration of the punching die can be used together by making the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s have the same configuration. Thereby, productivity can be further improved.
  • FIG. 10 is a cross-sectional view of the rotor 200.
  • the rotor 200 constitutes a member having the same shape as the rotary shaft 1 of the first embodiment by inserting a nonmagnetic collar 211 as a separate member into the nonmagnetic rotary shaft 201. With such a configuration, the amount of expensive nonmagnetic material used can be reduced as compared with the first embodiment.
  • FIG. 11 is a cross-sectional view of the rotor 300.
  • FIG. 12 is an enlarged view of a main part of FIG.
  • the rotor 300 constitutes a rotor having the same shape as the rotating shaft 1 of the first embodiment by inserting a cylindrical permanent magnet 311 (second permanent magnet) through a nonmagnetic rotating shaft 201.
  • the permanent magnet 311 has an N pole on the side contacting the laminated annular connecting portion 36n of the N pole integrated laminated core 3n, and an S pole on the side contacting the laminated annular connecting portion 36s of the S pole integrated laminated core 3s. It is magnetized to be arranged.
  • a cylindrical permanent magnet 311 is further interposed between the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s, thereby constituting the magnetic material.
  • the magnetic flux passing through the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s can be increased. Thereby, the magnetic flux density in the opposing surface of the lamination
  • an N-pole integral laminated core and an S-pole integral laminated core are also provided.
  • the magnetic flux that passes through can be increased.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s can be arranged even at a position radially outside the cylindrical permanent magnet 311, the axis of the laminated core 2 of the rotor 100 can be reduced.
  • the magnetic flux can be passed between the inner peripheral surface of the stator over the entire length in the direction.
  • FIG. 13 is a cross-sectional view of the rotor 400.
  • the rotor 400 employs a configuration in which a cylindrical permanent magnet 411b (second permanent magnet) is disposed on the outer periphery of a flange portion 411a provided on a nonmagnetic rotating shaft 401.
  • the length of the flange portion 411a in the direction of the rotating shaft 401 is slightly longer than the length of the permanent magnet 411b in the same direction. According to such a configuration, in addition to the effects described in the first to third embodiments, the positioning effect of the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s is borne by the flange portion 411a. With respect to the effect of increasing the magnetic flux passing through 3n and the S pole integrated laminated core 3s, the cylindrical permanent magnet 411b can bear the load, and the permanent magnet 411b can be configured not to be loaded during assembly. As a result, the permanent magnet 411b can be prevented from being damaged in the assembly process, and precise load control is not required, and the assembly of the rotor 400 can be improved.
  • FIG. 14 is a cross-sectional view of the rotor 500.
  • Each of the N-pole integrated laminated core 503n and the S-pole integrated laminated core 503s has a predetermined number of second tooth pieces 37 laminated between the connecting tooth piece 34 and the first tooth piece 35.
  • the end of the second teeth piece 37 on the rotating shaft 201 side is fitted to the outer periphery of the cylindrical permanent magnet 311 and fits less than half the axial length of the cylindrical permanent magnet 311.
  • a joint portion 38 is formed.
  • the periphery of the permanent magnet 311 is fitted into the fitting portion 38.
  • the fitting portion 38 has the same shape as the first tooth portion 34b of the connecting tooth piece 34 between the connecting tooth piece 34 and the first tooth piece 35 constituting the N pole integrated laminated core 503n and the S pole integrated laminated core 503s.
  • the second teeth pieces 37 can be formed by laminating a predetermined number.
  • the magnetic flux density in the vicinity of the end surface and the outer peripheral portion of the cylindrical permanent magnet 311 in the rotation axis direction of the cylindrical permanent magnet 311 where the magnetic flux density tends to be high can be relaxed, and magnetic flux leakage can be further suppressed.
  • FIG. 15 is a perspective view of the rotor 600.
  • FIG. 16 is a perspective view of an N-pole integrated laminated core 603 n and an S-pole integrated laminated core 603 s that constitute the rotor 600. Since both have the same configuration, one figure is shared.
  • FIG. 17 is a plan view of the rotor 600.
  • FIG. 18 is an enlarged view of a main part of FIG.
  • FIG. 19 is a cross-sectional view taken along the line DD of FIG. 17, and
  • FIG. 20 is an enlarged view of a main part of FIG.
  • a permanent magnet 645 (third permanent magnet) is separately sandwiched between the laminated teeth 631n of the integral laminated core 603n. According to such a configuration, the magnetic flux passing through each of the N-pole integrated laminated core 603n and the S-pole integrated laminated core 603s can be increased, and the magnetic flux density at the facing surface between the laminated core 602 and a laminated stator core (not shown) can be reduced. Can be improved.
  • FIG. 21 is a perspective view of the rotor 700.
  • FIG. 22 is a perspective view of an N-pole integrated laminated core 703n and an S-pole integrated laminated core 703s constituting the rotor 700.
  • the circumferential length of the outer hook portion is changed at least at one or more axial positions of the laminated core 702. .
  • the outer hook 732a is longer than the outer hook 732b.
  • the outer peripheral surface of the rotor 700 (the outer peripheral portion of the laminated tooth portion) is skewed in one circumferential direction of the rotor 700.
  • the laminated teeth portions 731n and 731s of the N pole integrated laminated core 703n and the S pole integrated laminated core 703s are alternately assembled.
  • the N-pole integrated laminated core 703n and the S-pole integrated laminated core 703s are not in contact with each other.
  • intermittent switching such as the laminated teeth 31n and 31s of the first embodiment can be performed continuously.
  • the torque ripple component of the rotor 700 can be reduced.
  • FIG. 23 is a perspective view of the rotor 800.
  • FIG. 24 is a perspective view of the N-pole integrated laminated core 803n and the S-pole integrated laminated core 803s constituting the rotor 800.
  • the circumference of the outer hooks of the laminated tooth portions 831n and 831s is at least one of the laminated tooth portion 831n of the N pole integrated laminated core 803n and the laminated tooth portion 831s of the S pole integrated laminated core 803s in the axial direction of the laminated core 802.
  • the length protruding in the direction is configured to be reduced stepwise from the end side with the laminated annular coupling portion toward the end portion without the laminated coupling annular portion. That is, the protruding amount in the circumferential direction of the outer hook 832b shown in FIG. 24 is larger than the protruding amount in the circumferential direction of the outer hook 832a.
  • Other shapes are the same as those of the first embodiment.
  • the laminated tooth portions 831n and 831s are configured to have outer hooks that are shortened in three stages, when the rotor 800 is viewed from the axial direction, the outer hooks of the two adjacent laminated tooth portions 831n and 831s A configuration can be realized in which the ends overlap in the circumferential direction.
  • the intermittent switching of the laminated tooth portions 31n and 31s as in the first embodiment can be completely continuous.
  • the torque ripple component of the rotor 800 can be reduced.
  • FIG. 25 is a perspective view of the rotor 900.
  • FIG. 26 is a cross-sectional view of the rotor 900.
  • a rotating shaft 901 is configured by inserting a magnetic iron-based shaft 913 into a non-magnetic pipe 912.
  • the non-magnetic pipe 912 may be provided with a flange portion 911 as shown in FIG. 26, or a non-magnetic pipe and a non-magnetic collar may be combined.
  • the rotor 900 can be configured without interposing a magnetic material between each of the N-pole integrated laminated core 903n, the S-pole integrated laminated core 903s, and the iron shaft 913. Further, by using the iron-based shaft 913, the yield of expensive non-magnetic materials can be improved and the productivity can be improved, and the strength of the rotor 900 can be increased because various quenching materials can be used. Can be improved.
  • FIG. 27 is a perspective view of the rotor 1000.
  • FIG. 28 is a perspective view in which the end face plate of the rotor 1000 is removed.
  • FIG. 29 is a perspective sectional view of the rotor 1000.
  • FIG. 30 is a plan view of the rotor 1000.
  • 31 is a cross-sectional view taken along line AA in FIG. 32 is a cross-sectional view taken along line BB in FIG.
  • a non-magnetic end face plate 5 is arranged on the end face in the axial direction of the laminated core 1002, and the non-magnetic end face plate 5 is provided with a center hole 51 to be fitted with the non-magnetic rotating shaft 1.
  • the configuration is such that positioning is possible.
  • a hole 7 is formed in one end face of the laminated tooth portion of the N-pole integrated laminated core 1003n and the S-pole integrated laminated core 1003s, and the end face plate 5 is aligned with this.
  • the holes 57 are also formed, and the end face plate 5 can be fixed to the end face of the laminated core 1002 by inserting and fitting positioning pins into these holes 7 or inserting bolts and tightening the screws. It is said.
  • the hole 7 formed in the N-pole integrated laminated core 1003n and the S-pole integrated laminated core 1003s may have a depth up to the middle of the entire length of the laminated core 1002 in the axial direction. It is good also as a hole penetrating into. In that case, it can also be set as the structure fixed with a nut through a volt
  • the nonmagnetic end face plate 5 and positioning and fixing the laminated core 1002 can further improve rigidity and assembly accuracy. Since the N-pole integrated laminated core 1003n and the S-pole integrated laminated core 1003s are fitted and positioned with the non-magnetic rotating shaft 1 at the laminated annular connecting portions 1036n and 1036s, they have a high rigidity. Note that when the rigidity is improved by using the hole portion 7, it is not always necessary to penetrate the laminated core 1002. Assembling can be improved by suppressing the insertion reaction force by inserting and fixing with a positioning pin having a short shaft length.
  • FIG. 33 is a perspective view of the rotor 1100.
  • FIG. 34 is a plan view of the rotor 1100.
  • the mold resin 6a is filled and applied.
  • the fixing force of the permanent magnet 4 is further improved by the mold resin 6a, and the rigidity of the laminated core 1102 is improved. Can be improved. If the fixing force of the permanent magnet 4 by the mold resin 6a is sufficient, the step of bonding and fixing the permanent magnet 4 in the assembly step may be omitted.
  • FIG. 35 is a perspective view of the rotor 1200.
  • FIG. 36 is a cross-sectional view of the rotor 1200.
  • the configuration of the laminated core 1202 according to the present embodiment is such that the N-pole integrated laminated core 3n, the S-pole integrated laminated core 3s, and the permanent magnet 4 are a set of modules, and a multi-stage module with respect to the nonmagnetic rotating shaft 1201. Are combined.
  • a non-magnetic intermediate plate 1205 is interposed for positioning the permanent magnet 4, but this may be omitted.
  • FIG. 37 is a cross-sectional view of the rotor 1300.
  • the rotor 1300 is made of a non-magnetic rotating shaft, and is obtained by removing the flange portion from the rotating shaft 1 of the first embodiment.
  • the amount of expensive nonmagnetic material used can be reduced as compared with the first and second embodiments.
  • FIG. 38 is a cross-sectional view of the rotor 1300 with the end face plate attached.
  • the end face plates 5 are respectively provided on both end surfaces in the axial direction of the N pole integrated laminated core 3n and the S pole integrated molded core 3s.
  • the N-pole integrated laminated core 3n and the S-pole integrated molded core 3s can be fixed to each other in the axial direction.
  • the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s can be positioned and fixed with respect to the rotating shaft 1301 more reliably.
  • the N-pole integrated laminated core 3 n and the S-pole integrated laminated core 3 s can be assembled to the rotary shaft 1301 by fitting press-fit fixing, fitting shrink-fit fixing, and other adhesive fixing methods. It may not be used. Positioning and fixing indirectly with respect to the rotating shaft by fixing the N pole integrated laminated core 3n and the S pole integrated laminated core 3s with pins or the like to the end face plate 5 positioned and fixed with respect to the rotating shaft 1301. Can do. As a result, the assembly process is simplified, and the assembly workability and productivity of the rotor 1300 can be improved.
  • the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
  • the same effect can be obtained regardless of whether the number of laminated teeth constituting the N-pole integrated laminated core 3n and the S-pole integrated laminated core 3s is four or three. Needless to say.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

隣り合う第1永久磁石(4)のN極側に当接する複数の積層ティース部(31n)を一体として備えるN極一体積層コア(3n)と、隣り合う第1永久磁石(4)のS極側に当接する複数の積層ティース部(31s)を一体として備えるS極一体積層コア(3s)とを有し、N極一体積層コア(3n)とS極一体積層コア(3s)は、それぞれ、外周面が非磁性の回転軸(1)に配置されて、互いの間に第1永久磁石(4)と空隙(6)を有する回転電機の回転子(100)を提供する。

Description

回転電機の回転子、回転電機、回転電機の回転子の製造方法
 この発明は、回転電機の回転子と、回転電機、及び回転電機の回転子の製造方法に関するものである。
 従来、電動機の回転子を小型化・高性能化する方法の1つとして、回転軸の周囲に周方向へ交互的に着磁される複数の永久磁石と、それら永久磁石の間でそれぞれが磁極を形成する複数の積層コア部材とを交互に配設してなる回転子を用いることにより永久磁石界磁を効率的に利用する技術が提案されている。
 この種の回転子においては、積層コア部材は、珪素鋼板等の磁性材料からなる略扇形薄板コア片の積層体を用い、プレス機械のかしめ作業により一体に結合して形成されている。
 この場合、各永久磁石は、隣接する各積層コア部材の側面に密接して挟持され、一般に、各積層コア部材の外周部および内周部にて側面から永久磁石の形状に倣って突設された外フックおよび内フックによって、径方向へ位置決めされ、固定されている。
 さらに、各積層コア部材および永久磁石は、各積層コア部材の略中心部に軸線方向へ貫通するタイロッドを挿入し、各タイロッドを各積層コア部材の軸方向両端に配置され、かつ、回転軸に固定される環状端板に締結することにより、遠心力や回転トルク、回転トルクの反力に対して、相互に保持固定されている。
 この組立工程においては、各永久磁石および各積層コア部材の位置決めや固定作業が煩雑になり作業時間が増加する課題がある。
 また、作業者の熟練が要求され、省人化および生産性向上の妨げとなる課題がある。
 各永久磁石および各積層コア部材の位置決め精度は、タイロッドおよび端板の機械的強度および加工精度のみに依存している。
 特に高速電動機や、高トルク電動機に使用する場合、複数の積層コア部材および永久磁石を所定位置に保持するための回転子全体の機械的強度をさらに向上させる必要がある。
 この目的を達成するために、各々の積層コア部材を構成する薄板コア片の積層体の所定位置に介在・結合される少なくとも1つの一体形薄板コアにより、相互の積層コア部材が連結され、またその一体形薄板コアは、薄板コア片と同一形状で薄板コア片の積層構造に介在・結合される磁極数に等しい個数の薄板コア片部分と、薄板コア片部分から延長され隣り合う薄板コア片部分間に永久磁石の設置空間を有する相対配置で全ての薄板コア片部分を環状に連結する連結部とを備えることで、隣り合う積層コア部材間に永久磁石の設置空間を有する構成とした電動機の回転子が提案されている。(例えば特許文献1)
 回転子をこのような構成とすることで、各々の永久磁石の磁束漏洩を最小限に抑制しつつ各々の積層コア部材を位置決めでき、組立性改善ができるとしている。
特開平6-245451号公報(図1、図16、図19)
 特許文献1に記載の電動機の回転子にあっては、各々の積層コア部材が一体形薄板コアにより連結されていることにより組立性の改善は図れるものの、永久磁石のN極とS極を結ぶ磁路を形成してしまう一体形薄板コアにより永久磁石の磁束漏洩が依然として避けられず、電動機の特性低下は否めないという課題があった。
 また、特許文献1には、別の実施の形態としてN極とS極を結ぶ磁路を直接的には形成しない構成も開示されているが、回転軸に嵌合される面積が小さく、文献中にも記載のとおり一体形薄板コアの環状連結部の剛性が著しく低下する構成であるため組立性の悪化が否めず、また複雑な形状の薄板コアを組み合わせた構成であるため生産性が悪いという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、環状連結部が永久磁石のN極とS極を結ぶ磁路を形成することなく、積層ティースを高剛性かつ簡易な形状の構成とし、また、積層ティース群と回転軸との嵌合組立によって同軸度を確保できる構成とすることで組立性と生産性に優れる回転電機の回転子を提供することを目的とする。
 この発明に係る回転電機の回転子は、
回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
各々の第1永久磁石を周方向から挟持するように回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部を有する積層コアとを備えた回転電機の回転子において、
積層コアは、
隣り合う第1永久磁石のN極側に当接する積層ティース部を一体として備えるN極一体積層コアと、N極一体積層コアと同形状を有し、隣り合う第1永久磁石のS極側に当接する積層ティース部を一体として備えるS極一体積層コアからなり、
N極一体積層コアとS極一体積層コアは、それぞれ、
回転軸の周囲を取り囲んでそれぞれの一体積層コアを回転軸に位置決めする環状連結部及びこの環状連結部から回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片と、
第1ティース部の回転軸側の端部を所定の幅で回転軸の周方向に切除した形状を有し、第1ティース部の外周に揃えて積層する、磁性を有する第1ティース片とで構成され、
N極一体積層コアとS極一体積層コアは、それぞれ、
積層コアの軸方向の長さの1/2以下の同じ厚みで積層された連結ティース片のそれぞれの第1ティース部に、同じ厚みで第1ティース片を積層して構成され、
N極一体積層コア及びS極一体積層コアは、外周面が非磁性の回転軸に、環状連結部が外側になり、N極一体積層コアとS極一体積層コアのそれぞれの積層ティース部が、交互に対向するように配置されて第1永久磁石を間に挟持しているものである。
 また、この発明に係る回転電機は、
回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
各々の第1永久磁石を周方向から挟持するように回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部からなる積層コアとを有する回転子を備えた回転電機において、
積層コアは、
隣り合う第1永久磁石のN極側に当接する積層ティース部を一体として備えるN極一体積層コアと、N極一体積層コアと同形状を有し、隣り合う第1永久磁石のS極側に当接する積層ティース部を一体として備えるS極一体積層コアからなり、
N極一体積層コアとS極一体積層コアは、それぞれ、
回転軸の周囲を取り囲んでそれぞれの一体積層コアを回転軸に位置決めする環状連結部及びこの環状連結部から回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片と、
第1ティース部の回転軸側の端部を所定の幅で回転軸の周方向に切除した形状を有し、第1ティース部の外周に揃えて積層する、磁性を有する第1ティース片とで構成され、
N極一体積層コアとS極一体積層コアは、それぞれ、
積層コアの軸方向の長さの1/2以下の同じ厚みで積層された連結ティース片のそれぞれの第1ティース部に、同じ厚みで第1ティース片を積層して構成され、
N極一体積層コア及びS極一体積層コアは、外周面が非磁性の回転軸に、環状連結部が外側になり、N極一体積層コアとS極一体積層コアのそれぞれの積層ティース部が、交互に対向するように配置されて第1永久磁石を間に挟持している回転子と、
固定子とを備えたものである。
 また、この発明に係る回転電機の回転子の製造方法は、
回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
各々の第1永久磁石を周方向から挟持するように回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部を有する積層コアとを備えた回転電機の回転子の製造方法において、
積層コアは、
隣り合う第1永久磁石のN極側に当接する積層ティース部を一体として備えるN極一体積層コアと、N極一体積層コアと同形状を有し、隣り合う第1永久磁石のS極側に当接する積層ティース部を一体として備えるS極一体積層コアからなり、
N極一体積層コアとS極一体積層コアの製造工程は、それぞれ、
非磁性の回転軸の周囲を取り囲んでそれぞれの一体積層コアを回転軸に位置決めする環状連結部及びこの環状連結部から回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片を、積層コアの軸方向の長さの1/2以下の同じ厚みで積層する連結ティース片積層工程と、
連結ティース片のそれぞれの第1ティース部に、第1ティース部の環状連結部側の端部を所定の幅で回転軸の周方向に切除した形状を有し、第1ティース部の外周に揃えて積層する磁性を有する第1ティース片を同じ厚みで積層して積層ティース部を構成する第1ティース片積層工程を有し、
N極一体積層コアとS極一体積層コアのいずれか一方を回転軸に環状連結部が回転軸の外側となるように位置決めして嵌合挿入した後、
他方の一体積層コアを回転軸に環状連結部が回転軸の外側となり、N極一体積層コアとS極一体積層コアの各積層ティース部が、回転子の周方向に交互に等間隔に対向するように位置決めして嵌合挿入する積層コア嵌合工程と
N極一体積層コアおよびS極一体積層コアの積層ティース部間に構成されるスペースに第1永久磁石を回転軸の軸方向から、N極一体積層コアには第1永久磁石のN極が接触し、S極一体積層コアには第1永久磁石のS極が接触するように挿入する永久磁石挿入工程とを有するものである。
 この発明に係る回転電機の回転子、回転電機、回転電機の回転子の製造方法によれば、
 N極一体積層コアとS極一体積層コアの間には、永久磁石もしくは空隙、非磁性材料の回転軸のいずれかが介在することになり、積層を構成する鉄心片等の磁性材料によって永久磁石のN極とS極が短絡することがない。
 また、N極一体積層コアおよびS極一体積層コアは、それぞれの環状連結部と回転軸とを嵌合組立によって位置決め固定されるため、例えば、N極一体積層コアおよびS極一体積層コアと、それぞれの軸方向端面に配されて回転軸と嵌合固定される端面プレートとをタイロッド等により挿通組立固定する場合や、N極一体積層コアおよびS極一体積層コアをモールド樹脂等による一体成形により回転軸と固定する場合に比べて、位置決め精度や組立作業工数の点で優れており、回転子の同軸度の向上や組立性の向上およびリードタイムの短縮を図って製造できる。
この発明の実施の形態1に係る回転電機の回転子の斜視図である。 この発明の実施の形態1に係る回転電機の回転子の分解斜視図である。 この発明の実施の形態1に係る回転電機の回転子の平面図である。 この発明の実施の形態1に係る回転電機の回転子のN極一体積層コアとS極一体積層コアの斜視図である。 この発明の実施の形態1に係る回転電機の回転子を構成するティース片の平面図である。 図3のA-A線で切断した回転子の斜視断面図である。 図3のB-B線で切断した回転子の断面図である。 図3のC-C線で切断した回転子の断面図である。 この発明の実施の形態1に係る回転電機の回転子に使用する第1永久磁石の他の例を示す図である。 この発明の実施の形態2に係る回転電機の回転子の断面図である。 この発明の実施の形態3に係る回転電機の回転子の断面図である。 図11の要部拡大図である。 この発明の実施の形態4に係る回転電機の回転子の断面図である。 この発明の実施の形態5に係る回転電機の回転子の断面図である。 この発明の実施の形態6に係る回転電機の回転子の斜視図である。 この発明の実施の形態6に係るN極一体積層コアとS極一体積層コアの斜視図である。 この発明の実施の形態6に係る回転電機の回転子の平面図である。 図17の要部拡大図である。 図17のD-D線で切断した回転子の断面図である。 図19の回転子の要部拡大図である。 本発明の実施の形態7に係る回転子の斜視図である。 この発明の実施の形態7に係るN極一体積層コアとS極一体積層コアの斜視図である。 この発明の実施の形態8に係る回転電機の回転子の斜視図である。 この発明の実施の形態8に係るN極一体積層コアおよびS極一体積層コアの斜視図である。 この発明の実施の形態9に係る回転電機の回転子の斜視図である。 この発明の実施の形態9に係る回転電機の回転子の断面図である。 この発明の実施の形態10に係る回転電機の回転子の斜視図である。 この発明の実施の形態10に係る回転電機の回転子の端面プレートを取り除いた斜視図である。 この発明の実施の形態10に係る回転電機の回転子の斜視断面図である。 この発明の実施の形態10に係る回転電機の回転子の平面図である。 図30のA-A線で切断した回転子の断面図である。 図30のB-B線で切断した回転子の断面図である。 この発明の実施の形態11に係る回転電機の回転子の斜視図である。 この発明の実施の形態11に係る回転電機の回転子の平面図である。 この発明の実施の形態12に係る回転電機の回転子の斜視図である。 この発明の実施の形態12に係る回転電機の回転子の断面図である。 この発明の実施の形態13に係る回転電機の回転子の断面図である。 この発明の実施の形態13に係る回転電機の回転子の断面図である。 この発明の実施の形態1に係る回転電機の断面図である。
実施の形態1.
 以下、本願発明の実施の形態1に係る回転電機の回転子を図を用いて説明する。
 図1は、回転子100の斜視図である。
 図2は、回転子100の分解斜視図である。
 図3は、回転子100の平面図である。
 図39は、電動機50(回転電機)の断面図である。
 図39に示すような、電動機50(回転電機)に使用する回転子100は、回転軸1の周囲に周方向へ交互的に着磁される複数の永久磁石4(第1永久磁石)と、N極一体積層コア3nとS極一体積層コア3s、非磁性の回転軸1を組み合わせて構成されている。
 以下、この明細書において、N極一体積層コア3nとS極一体積層コア3sについて、個別の名称を付して使用するが、それぞれの構成は同一である。
 また、本明細書では、N極一体積層コア3nとS極一体積層コア3sを組み合わせた部材を、積層コア2と称する。
 N極一体積層コア3nとS極一体積層コア3sは、それぞれの積層ティース部の周方向の両側面に密着する永久磁石4の極性によって区別される。
 積層ティース部の両側面に永久磁石4のN極が密着する一体積層コアをN極一体積層コア3nとし、積層ティース部の両側面に永久磁石4のS極が密着する一体積層コアをS極一体積層コア3sとする。
 図2に示すように、回転子100は、中間にフランジ部11(干渉部材)を有する非磁性の回転軸1の両側から、4個の積層ティース部31nが一体となったN極一体積層コア3nと、4個の積層ティース部31sが一体となったS極一体積層コア3sを、積層ティース部31nと積層ティース部31sが交互に組み合わされるように圧入や焼嵌め等により嵌合固定して構成されている。
 図4は、N極一体積層コア3n、S極一体積層コア3sの斜視図である。
 先述のように、いずれも同じものであるので、図は1つで説明する。
 図5(a)は、N極一体積層コア3n、S極一体積層コア3sの積層を構成する連結ティース片34の平面図である。
 図5(b)は、N極一体積層コア3n、S極一体積層コア3sの積層を構成する第1ティース片35の平面図である。
 図5(c)は、連結ティース片34の上に、第1ティース片35を積層した状態を示す平面図である。
 N極一体積層コア3nとS極一体積層コア3sは、それぞれ珪素鋼板等の磁性材料からなる2種類の鉄心片で構成される。
 1つ目の鉄心片は、図5(a)に示す、連結ティース片34である。
 連結ティース片34は、中央に環状に形成された環状連結部34aと、この環状連結部34aの外周から、外側に向かって等間隔に、積層ティース部31n,31sの一部を構成することとなる略扇形の第1ティース部34bとが一体となって構成されている。
 2つ目の鉄心片は、連結ティース片34の第1ティース部34bの上に、第1ティース部34bの外周に揃えて積層される第1ティース片35である。
 第1ティース片35は、連結ティース片34の第1ティース部34bと概略同形状をしている。
 双方の違いは、第1ティース片35は、第1ティース部34bの環状連結部34a側(回転軸側)の端部を、回転子100の周方向に所定の幅で切除した形状をしていることである。
 積層ティース部31n、積層ティース部31sは、積層コア2の軸方向の全長の1/2以下の長さまで、所定の枚数の連結ティース片34を積層し(連結ティース片積層工程)、その4つの第1ティース部34bの上に更に所定の枚数の第1ティース片35を回転子100の軸方向にそれぞれ積層して(第1ティース片積層工程)構成する。
 連結ティース片34の環状連結部34aが積層されている部分を積層環状連結部36n、36sとし、連結ティース片34の第1ティース部34bと、第1ティース片35が積層されている部分を積層ティース部31n、31sとする。
 次に、回転子100の組み立て方法について詳細に説明する。
 図2に示すように、回転軸1の両端から、N極一体積層コア3nとS極一体積層コア3sの積層環状連結部36n、36sを、積層環状連結部36n、36sが外側となるように、また、それぞれの積層ティース部31n、31sが交互に対向するように等間隔に、フランジ部11に突き当たるまで嵌合挿入する(積層コア嵌合工程)。
 N極一体積層コア3nとS極一体積層コア3sは、いずれも略円筒形状の積層環状連結部36n、36sと、それらの周囲に、積層環状連結部36n、36sと同軸に一部一体として積層された積層ティース部31n、31sとで構成されている。
 環状積層連結部63n、36sを構成する連結ティース片34の中心穴は、積層ティースを打抜く金型プレス工程において予め精度良く設けられている。
 したがって、回転軸1にN極一体積層コア3nとS極一体積層コア3sを嵌合挿入するだけで、N極一体積層コア3nとS極一体積層コア3sの外周面が、回転軸1の軸心と同軸に位置決めされ、N極一体積層コアとS極一体積層コアと回転軸1の同軸度に優れた嵌合組立を実現することができる。
 その後、各永久磁石4を、両側面が隣接する積層ティース部31n、31sの側面に密着するように回転軸方向から挿入する(永久磁石挿入工程)。
 永久磁石4は、積層ティース部31n、31sによって挟持され、接着剤やワニス等で固定される。
 積層コア2の軸方向の全長が長い場合は、回転軸方向に二分割された永久磁石を用いても良い。
 図1、図3に示すように、各永久磁石4は、N極一体積層コア3nの積層ティース部31nの両側面にはn極が、S極一体積層コア3sの積層ティース部31sの両側面にはS極が密着するような極性で配置される。
 すなわち、隣り合う永久磁石4の極性は、回転子100の周方向に、交互に反対になる。
 図3に示すように、各永久磁石4は、積層ティース部31n、31sの外周部および内周部から永久磁石4の形状に倣って回転子の周方向に突設された外フック32、および内フック33によって、積層コア2の径方向へ位置決めされて固定される。
 図6は、図3のA-A線で切断した回転子100の斜視断面図である。
 図7は、図3のB-B線で切断した回転子100の断面図である。
 図8は、図3のC-C線で切断した回転子100の断面図である。
 N極一体積層コア3nとS極一体積層コア3sは、相互に永久磁石4もしくは空隙6、非磁性材料からなる回転軸1を介した位置関係で組み立てられる。
 これにより、積層コア2を構成する磁性材料によって永久磁石4のN極とS極が短絡しない構成となる。
 図9は、回転子100に、永久磁石41を使用した場合の平面図である。
 図に示すように、断面が回転子の径方向外側に向かって広がる大型の永久磁石41を使用して磁束密度を上げても良い。
 また、本実施の形態では、回転軸1にフランジ部11を設けた例を示したが、フランジ部11を省略して、積層環状連結部36n、36sを単に圧入もしくは焼嵌め等により嵌合固定する構成としても良い。
 本発明の実施の形態1に係る回転電機の回転子100によれば、N極一体積層コア3nとS極一体積層コア3sの間には、永久磁石4もしくは空隙6、非磁性材料の回転軸1のいずれかが介在することになり、積層を構成する鉄心片等の磁性材料によって永久磁石4のN極とS極が短絡することがない。
 たとえ短絡する鉄心片が1枚であったり、またその1枚の厚みが数mm幅の微小鉄心片であっても、磁性材料によって永久磁石4のN極とS極同士が直接短絡すると、当該部分にその鉄心片の磁束密度が飽和するまで磁束が集中するため磁束漏洩の影響は大きい。
 本発明では、N極一体積層コア3nとS極一体積層コア3sの間に磁性材料による短絡磁路を一切形成しないため、従来の構成では問題になっていた磁束漏洩の影響を無視し得るほどに小さく抑制することができる。
 また、回転軸1に非磁性部材を用いることにより、N極一体積層コア3nとS極一体積層コア3sを構成する連結ティース片34の環状連結部34aと、第1ティース部34bの接合部を積層ティース部31n、31sの周方向の幅と同一幅にして、環状連結部と回転軸とを圧入もしくは焼嵌め等により嵌合固定することで、回転軸1に対する位置決め精度の向上および剛性の向上を確保できる。
 これにより、N極一体積層コア3n、S極一体積層コア3s、さらにこれらの組み合わせである積層コア2の剛性を大幅に向上させることができる。
 また、回転子100の外周と、図示しない固定子の位置関係も精度良く位置決めできる。
 また、例えば、N極一体積層コアおよびS極一体積層コアと、それぞれの軸方向端面に配されて回転軸と嵌合固定される端面プレートとをタイロッド等により挿通組立固定する場合や、N極一体積層コアおよびS極一体積層コアをモールド樹脂等による一体成形により回転軸と固定する場合に比べて、位置決めに直接関連する部品点数が少なく、位置決め精度や組立作業工数の点で優れており、回転子100の同軸度の向上や組立性の向上およびリードタイムの短縮を図ることができる。
 また、非磁性部材の回転軸1にフランジ部を備えることで、N極一体積層コアおよびS極一体積層コアを、軸方向に確実に位置決めして固定することができるので、積層コア2の剛性の向上を図るとともに、N極とS極が直接短絡することを確実に防ぐことができる。
 また、積層コア2の剛性が向上することにより、永久磁石4の組立性をも向上させることができる。
 また、N極一体積層コア3nとS極一体積層コア3sの剛性が高いので、組立時の部品搬送や位置決めといったワークのハンドリングを容易にできる。
 また、N極一体積層コア3nとS極一体積層コア3sを同じ構成とすることにより打ち抜き金型の構成を1つで併用できる。
 これにより生産性を更に向上させることができる。
実施の形態2.
 以下、本願発明の実施の形態2に係る回転電機の回転子を図を用いて実施の形態1と異なる部分を中心に説明する。
 実施の形態1で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図10は、回転子200の断面図である。
 回転子200は、非磁性の回転軸201に、別体として非磁性のカラー211を挿通して実施の形態1の回転軸1と同形状の部材を構成している。
 このような構成にすることにより、実施の形態1に比較して、高価な非磁性材料の使用量を減らすことができる。
 また、非磁性の回転軸201に対して、N極一体積層コア3n、非磁性のカラー211、S極一体積層コア3sと順次勘合挿入する組立手順を採用することが可能となり、一方向組み立てにより、作業性、生産性を向上させることができる。
実施の形態3.
 以下、本願発明の実施の形態3に係る回転電機の回転子を、図を用いて実施の形態2と異なる部分を中心に説明する。
 実施の形態1又は2で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図11は、回転子300の断面図である。
 図12は、図11の要部拡大図である。
 回転子300は、非磁性の回転軸201に円筒形状の永久磁石311(第2永久磁石)を挿通して実施の形態1の回転軸1と同形状の回転子を構成している。
 図12に示すように、永久磁石311はN極一体積層コア3nの積層環状連結部36nと接する側にN極を、S極一体積層コア3sの積層環状連結部36sと接する側にS極が配設されるよう着磁されている。
 実施の形態2で述べた効果に加えて、さらに、円筒形状の永久磁石311をN極一体積層コア3nとS極一体積層コア3sの間に介在させて配設することにより、磁性材料で構成されるN極一体積層コア3nとS極一体積層コア3sを通る磁束を増大させることができる。これにより、積層コア2と図示しない積層ステータコアとの対向面での磁束密度を向上させることができる。
 従来の回転子の構成のように、例えば、回転軸方向に積層コアを複数段組み合わせ、その積層コア間に円筒形状の永久磁石を配することでもN極一体積層コアおよびS極一体積層コアを通る磁束を増大させることはできる。
 しかし、その場合は、円筒形状の永久磁石の径方向の外側に積層コアを配することが難しく、円筒形状の永久磁石の径方向外側の位置では固定子の内周面と対向する回転子の外周面で磁束を通すことができなかった。
 本構成によれば、円筒形状の永久磁石311の径方向外側の位置においてもN極一体積層コア3nおよびS極一体積層コア3sを配することができるため、回転子100の積層コア2の軸方向全長に渡って、固定子の内周面との間で磁束を通すことが可能となる。
実施の形態4.
 以下、本願発明の実施の形態4に係る回転電機の回転子を、図を用いて実施の形態1乃至3と異なる部分を中心に説明する。
 実施の形態1乃至3で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図13は、回転子400の断面図である。
 回転子400は、非磁性の回転軸401に設けられたフランジ部411aの外周に円筒形状の永久磁石411b(第2永久磁石)を配設した構成を採用している。
 フランジ部411aの回転軸401方向の長さは、永久磁石411bの同方向の長さより僅かに長い構成としている。
 このような構成によれば、実施の形態1乃至3で述べた効果に加えてN極一体積層コア3nとS極一体積層コア3sの位置決め効果についてはフランジ部411aが担い、N極一体積層コア3nとS極一体積層コア3sを通る磁束の増大効果については、円筒形状の永久磁石411bが担うことができ、永久磁石411bに対して組立時に荷重が掛からない構成とすることができる。
 これにより組立工程における永久磁石411bの破損を防止でき、精密な荷重制御が不要となり回転子400の組立性を向上させることができる。
実施の形態5.
 以下、本願発明の実施の形態5に係る回転電機の回転子を、図を用いて実施の形態1乃至4と異なる部分を中心に説明する。
 実施の形態1乃至4で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図14は、回転子500の断面図である。
 N極一体積層コア503nとS極一体積層コア503sのそれぞれは、連結ティース片34と第1ティース片35の間に、所定の枚数の第2ティース片37を積層している。
 この第2ティース片37の回転軸201側の端部は、円筒形状の永久磁石311の外周と嵌合する形状で、円筒形状の永久磁石311の軸方向の長さの1/2以下の嵌合部38を形成している。
 そして永久磁石311の周囲は、この嵌合部38に勘合している。
 この嵌合部38は、N極一体積層コア503n、S極一体積層コア503sを構成する連結ティース片34と第1ティース片35の間に、連結ティース片34の第1ティース部34bと同形状の第2ティース片37を所定の枚数積層することによって形成できる。
 このような構成によれば、磁束密度が高くなりやすい円筒形状の永久磁石311の回転軸方向の端面、外周部近傍の磁束密度を緩和することができ、磁束漏洩をさらに抑制することができる。
実施の形態6.
 以下、本願発明の実施の形態6に係る回転電機の回転子を、図を用いて実施の形態1乃至5と異なる部分を中心に説明する。
 実施の形態1乃至5で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図15は、回転子600の斜視図である。
 図16は、回転子600を構成する、N極一体積層コア603nとS極一体積層コア603sの斜視図である。いずれも同じ構成なので、図は1つで共用する。
 図17は、回転子600の平面図である。
 図18は、図17の要部拡大図である。
 また、図19は、図17のD-D線での断面図であり、図20は、図19の要部拡大図である。
 本実施の形態では、N極一体積層コア603nの積層環状連結部636nとS極一体積層コア603sの積層ティース部631sとの間及び、S極一体積層コア603sの積層環状連結部636sとN極一体積層コア603nの積層ティース部631nとの間に永久磁石645(第3永久磁石)を別に挟持させた構成としている。
 このような構成によれば、N極一体積層コア603nとS極一体積層コア603sのそれぞれを通る磁束を増大させることができ、積層コア602と図示しない積層ステータコアとの対向面での磁束密度を向上させることができる。
実施の形態7.
 以下、本願発明の実施の形態7に係る回転電機の回転子を、図を用いて実施の形態1乃至6と異なる部分を中心に説明する。
 図21は、回転子700の斜視図である。
 図22は、回転子700を構成する、N極一体積層コア703nおよびS極一体積層コア703sの斜視図である。いずれも同じ構成なので、図は1つで共用する。
 N極一体積層コア703nとS極一体積層コア703sのそれぞれの積層ティース部731n、731sにおいて、積層コア702の軸方向の少なくとも1箇所以上で外フック部分の周方向の長さを変更している。
 図に示すように外フック732aを外フック732bより長くしている。
 これにより、回転子700の外周面(積層ティース部の外周部)は、回転子700の周方向の一方向にスキューした構成となる。
 外フックをスキューさせる幅は、隣接する外フック間の周方向の隙間の大きさ未満にすれば、N極一体積層コア703nおよびS極一体積層コア703sの積層ティース部731n、731sを交互に組み立てることができ、N極一体積層コア703n及びS極一体積層コア703sが接触することもない。
 このような構成によれば、積層コア702と図示しない積層ステータコアとの対向面において、実施の形態1の積層ティース31n、31sのような断続的な切り替えを、連続的な切り替えにすることができ、回転子700のトルクリップル成分を低減させることができる。
実施の形態8.
 以下、本願発明の実施の形態8に係る回転電機の回転子を、図を用いて実施の形態1乃至7と異なる部分を中心に説明する。
 図23は、回転子800の斜視図である。
 図24は、回転子800を構成する、N極一体積層コア803nおよびS極一体積層コア803sの斜視図である。いずれも同じ構成なので、図は1つで共用する。
 N極一体積層コア803nの積層ティース部831nおよびS極一体積層コア803sの積層ティース部831sの、積層コア802の軸方向の少なくとも1箇所以上において、積層ティース部831n、831sの外フックの、周方向に突出する長さが、積層環状連結部のある端部側から、積層連結環状部の無い端部側に向かって、段階的に小さくなるように構成している。
 すなわち、図24に示す外フック832bの周方向への突出量が、外フック832aの周方向への突出量より大きい。
 その他の形状は実施の形態1と同じである。
 例えば、積層ティース部831n、831sを、3段階に短くなる外フックを有する構成にすれば、回転子800を軸方向から見たときに、隣り合う2つの積層ティース部831n、831sの外フックの端部同士が、周方向にオーバーラップする構成を実現できる。
 これにより、積層コア802と図示しない積層ステータコアとの対向面において、実施の形態1のような、積層ティース部31n、31sの断続的な切り替えを、完全に連続的な切り替えにすることができ、回転子800のトルクリップル成分を低減させることができる。
実施の形態9.
 以下、本願発明の実施の形態9に係る回転電機の回転子を、図を用いて実施の形態1と異なる部分を中心に説明する。
 図25は、回転子900の斜視図である。
 図26は、回転子900の断面図である。
 図に示すように、非磁性のパイプ912に磁性の鉄系シャフト913を挿入して回転軸901を構成している。
 非磁性のパイプ912には、図26に示すようにフランジ部911を設けても良く、また非磁性のパイプと非磁性のカラーを組み合わせた構成としても良い。
 このような構成によれば、N極一体積層コア903nとS極一体積層コア903s、鉄系シャフト913のそれぞれの間において磁性材料を介在させることなく回転子900を構成することができる。
 また、鉄系シャフト913を用いることで、高価な非磁性材料の歩留まりを向上して生産性を向上させることができ、また、多様な焼き入れ材料を使用することができるため回転子900の強度を向上させることができる。
実施の形態10.
 以下、本願発明の実施の形態10に係る回転電機の回転子を、図を用いて実施の形態1と異なる部分を中心に説明する。
 図27は、回転子1000の斜視図である。
 図28は、回転子1000の端面プレートを取り除いた斜視図である。
 図29は、回転子1000の斜視断面図である。
 図30は、回転子1000の平面図である。
 図31は、図30のA-A線での断面図である。
 図32は、図30のB-B線での断面図である。
 図27に示すように、積層コア1002の軸方向端面に非磁性の端面プレート5を配し、その非磁性の端面プレート5には中心穴51が設けられており非磁性の回転軸1と勘合位置決めできる構成としている。
 図28に示すように、N極一体積層コア1003nとS極一体積層コア1003sの積層ティース部の一方の端面には穴部7が形成されており、またこれと位置を合わせて端面プレート5にも穴部57が形成されており、これらの穴部7に位置決めピンを挿入嵌合したり、ボルトを挿入してネジ締めしたりして、端面プレート5を積層コア1002の端面に固定できる構成としている。
 N極一体積層コア1003nとS極一体積層コア1003sに形成された穴部7は積層コア1002の軸方向の全長の途中までの深さでも良いし、必要に応じて積層コア1002を回転軸方向に貫通する穴としても良い。その場合はボルトを通してナットで固定する構成やリベットで固定する構成にすることもできる。
 このような構成によれば、N極一体積層コア1003nとS極一体積層コア1003sの積層環状連結部1036n、1036sから、回転軸方向に突出した積層ティース部1031n、1031sにおいて、非磁性の端面プレート5と、積層コア1002を位置決め固定することでさらに剛性と組み立て精度を向上させることができる。
 N極一体積層コア1003nとS極一体積層コア1003sはその積層環状連結部1036n、1036sにおいて非磁性の回転軸1と勘合位置決めされているため剛性が高い構成となる。
 なお、穴部7を利用して剛性の向上を図る際には、必ずしも積層コア1002を貫通させなくても良い。軸長の短い位置決めピンによって挿入固定することにより挿入反力を小さく抑えることで組立性を向上させることができる。
実施の形態11.
 以下、本願発明の実施の形態11に係る回転電機の回転子を、図を用いて実施の形態1と異なる部分を中心に説明する。
 実施の形態1乃至10で説明した部材と同じ符号の部材は、基本的に同じものを表すものとする。
 図33は、回転子1100の斜視図である。
 図34は、回転子1100の平面図である。
 積層コア1102を構成する永久磁石4とN極一体積層コア3nとS極一体積層コア3s、非磁性の回転軸1の、それぞれの部品間にある空隙6の中及び回転子1100の外周面にモールド樹脂6aを充填、塗布した構成としている。
このような構成によれば、実施の形態1で述べた接着剤等での永久磁石4の固定に加えてモールド樹脂6aによっても、さらに永久磁石4の固着力を向上させ、積層コア1102の剛性を向上させることができる。
 なお、モールド樹脂6aによる永久磁石4の固着力が十分であれば組立工程における永久磁石4の接着固定工程を省略しても良い。
実施の形態12.
 以下、本願発明の実施の形態12に係る回転電機の回転子を、図を用いて実施の形態1と異なる部分を中心に説明する。
 図35は、回転子1200の斜視図である。
 図36は、回転子1200の断面図である。
 本実施の形態に係る積層コア1202の構成は、N極一体積層コア3nとS極一体積層コア3s、永久磁石4を一組のモジュールとし、非磁性の回転軸1201に対して複数段のモジュールを組み合わせて構成している。
 図では、永久磁石4の位置決めのため非磁性の中間プレート1205を介在させているが、これは省略しても良い。
 このような構成によれば、非磁性の回転軸の長さのみを変更し、積層コア1202のみを多段式に組み合わせることで生産ラインを共通としつつ出力の異なる電動機の回転子1200を製造することができ、生産性を向上させることができる。
実施の形態13.
 以下、本願発明の実施の形態13に係る回転電機の回転子1300を、図を用いて実施の形態1と異なる部分を中心に説明する。
 図37は、回転子1300の断面図である。
 回転子1300は、非磁性の回転軸よりなり、実施の形態1の回転軸1からフランジ部を除去したものである。
 このような構成にすることにより、実施の形態1および実施の形態2に比較して、高価な非磁性材料の使用量を減らすことができる。
 本構成では、N極一体積層コア3nとS極一体積層コア間3sが回転軸1301に嵌合している間に隙間がある。
 このため、N極一体積層コア3nおよびS極一体積層コア3s間に発生する磁気吸引力によって、N極一体積層コア3nとS極一体積層コア3sが軸方向に移動する懸念がある。
 そこで、N極一体積層コア3nおよびS極一体積層コア3sを回転軸1301とを嵌合圧入固定や嵌合焼嵌め固定し、或いは、接着固定等により軸方向への位置ズレを抑制する組立工法と組合せることで上記懸念を解消する。
 これにより非磁性のカラー部材を削減することで更なるコストの低減を図ることができる。
 図38は、回転子1300に端面プレートを取り付けた状態の断面図である。
 図37を用いて上述した回転子1300の構成および組立工法に加えて、図38に示すように、N極一体積層コア3nおよびS極一体成形コア3sの軸方向両端面にそれぞれ端面プレート5を付加することにより、N極一体積層コア3nおよびS極一体成形コア3s同士を、相互に軸方向に固定することができる。
 これにより、より確実にN極一体積層コア3nおよびS極一体積層コア3sを回転軸1301に対して位置決め固定することができる。
 さらには、端面プレート5を付加することによりN極一体積層コア3nおよびS極一体積層コア3sは回転軸1301に対して嵌合圧入固定や嵌合焼嵌め固定、その他接着固定等の組立工法を用いなくてもよい。
 回転軸1301に対して位置決め固定された端面プレート5に対し、N極一体積層コア3nおよびS極一体積層コア3sをピン等で位置決め固定することで間接的に回転軸に対して位置決め固定することができる。これにより、組立工程が簡易になり、回転子1300の組み立て作業性、生産性を向上させることができる。
 尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 例えば、N極一体積層コア3nとS極一体積層コア3sを構成する積層ティース数をそれぞれ4個とするのではなく、3個であっても5個であっても同様の効果が得られることは言うまでもない。

Claims (18)

  1. 回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
    各々の前記第1永久磁石を周方向から挟持するように前記回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部を有する積層コアとを備えた回転電機の回転子において、
    前記積層コアは、
    隣り合う前記第1永久磁石のN極側に当接する前記積層ティース部を一体として備えるN極一体積層コアと、前記N極一体積層コアと同形状を有し、隣り合う前記第1永久磁石のS極側に当接する前記積層ティース部を一体として備えるS極一体積層コアからなり、
    前記N極一体積層コアと前記S極一体積層コアは、それぞれ、
    前記回転軸の周囲を取り囲んでそれぞれの一体積層コアを前記回転軸に位置決めする環状連結部及びこの環状連結部から前記回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片と、
    前記第1ティース部の前記環状連結部側の端部を所定の幅で前記回転軸の周方向に切除した形状を有し、前記第1ティース部の外周に揃えて積層する、磁性を有する第1ティース片とで構成され、
    前記N極一体積層コアと前記S極一体積層コアは、それぞれ、
    前記積層コアの軸方向の長さの1/2以下の同じ厚みで積層された前記連結ティース片のそれぞれの前記第1ティース部に、同じ厚みで前記第1ティース片を積層して構成され、
    前記N極一体積層コア及び前記S極一体積層コアは、外周面が非磁性の前記回転軸に、前記環状連結部が外側になり、前記N極一体積層コアと前記S極一体積層コアのそれぞれの前記積層ティース部が、交互に対向するように配置されて前記第1永久磁石を間に挟持している回転電機の回転子。
  2. 前記回転軸は、前記N極一体積層コア及び前記S極一体積層コアの前記環状連結部が、前記回転軸の軸方向に両側から当接する干渉部材を備えた請求項1に記載の回転電機の回転子。
  3. 前記干渉部材は、前記回転軸と一体として成形されたフランジ部である請求項2に記載の回転電機の回転子。
  4. 前記干渉部材は、前記回転軸に挿通された、前記回転軸から独立した、円筒形状を有する非磁性のカラーである請求項2に記載の回転電機の回転子。
  5. 前記干渉部材は、前記回転軸に挿通された円筒形状を有する第2永久磁石である請求項2に記載の回転電機の回転子。
  6. 前記干渉部材は、前記回転軸と一体として成形されたフランジ部と、前記フランジ部の周囲に挿通する円筒形状を有する第2永久磁石で構成されている請求項2に記載の回転電機の回転子。
  7. 前記連結ティース片と前記第1ティース片の間に、径方向の回転軸側端部が前記干渉部材の外周面に沿って嵌合する第2ティース片を有する請求項2に記載に回転電機の回転子。
  8. 前記N極一体積層コアの積層環状連結部と前記S極一体積層コアの前記積層ティース部の間、もしくは、前記S極一体積層コアの環状連結部と前記N極一体積層コアの前記積層ティース部の間の少なくとも1箇所以上に第3永久磁石を挟持する請求項1に記載の回転電機の回転子。
  9. 前記積層ティース部の外周部は、周方向にスキューしている請求項1に記載の回転電機の回転子。
  10. 前記積層ティース部の外周部に形成された前記第1永久磁石を保持する外フックと、前記外フックに対向する、隣り合う前記積層ティース部の外フックは、前記回転軸の周方向の長さが異なる請求項9に記載の回転電機の回転子。
  11. 前記積層ティース部の外周部は、前記環状連結部に接続されている側から、前記環状連結部に接続されていない側に向かって周方向の幅が段階的に小さくなる請求項1に記載の回転電機の回転子。
  12. 前記積層ティース部の外周部に形成された前記第1永久磁石を保持する外フックの周方向の長さが、前記環状連結部に接続されている一端から、前記環状連結部に接続されていない他端に向かって段階的に小さくなる請求項11項に記載の回転電機の回転子。
  13. 前記回転軸は、非磁性のパイプの内側に鉄系シャフトを嵌合して形成する請求項1に記載の回転電機の回転子。
  14. 前記積層コアの回転軸方向端面に前記回転軸に勘合して位置決めされる非磁性の端面プレートが配設され、
    前記端面プレートは、前記積層ティース部に接合されている請求項1に記載の回転電機の回転子。
  15. 前記積層コアは、外周面と、前記積層コアを構成する前記N極一体積層コアと前記S極一体積層コアと前記第1永久磁石と前記回転軸の、それぞれの間に存在する空隙部をモールド樹脂で封止されている請求項1に記載の回転電機の回転子。
  16. 請求項1に記載の複数の前記積層コアを、前記回転軸に備えた回転電機の回転子。
  17. 回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
    各々の前記第1永久磁石を周方向から挟持するように前記回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部からなる積層コアとを有する回転子を備えた回転電機において、
    前記積層コアは、
    隣り合う前記第1永久磁石のN極側に当接する前記積層ティース部を一体として備えるN極一体積層コアと、前記N極一体積層コアと同形状を有し、隣り合う前記第1永久磁石のS極側に当接する前記積層ティース部を一体として備えるS極一体積層コアからなり、
    前記N極一体積層コアと前記S極一体積層コアは、それぞれ、
    前記回転軸の周囲を取り囲んでそれぞれの一体積層コアを前記回転軸に位置決めする環状連結部及びこの環状連結部から前記回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片と、
    前記第1ティース部の前記環状連結部側の端部を所定の幅で前記回転軸の周方向に切除した形状を有し、前記第1ティース部の外周に揃えて積層する、磁性を有する第1ティース片とで構成され、
    前記N極一体積層コアと前記S極一体積層コアは、それぞれ、
    前記積層コアの軸方向の長さの1/2以下の同じ厚みで積層された前記連結ティース片のそれぞれの前記第1ティース部に、同じ厚みで前記第1ティース片を積層して構成され、
    前記N極一体積層コア及び前記S極一体積層コアは、外周面が非磁性の前記回転軸に、前記環状連結部が外側になり、前記N極一体積層コアと前記S極一体積層コアのそれぞれの前記積層ティース部が、交互に対向するように配置されて前記第1永久磁石を間に挟持している回転子と、
    固定子とを備えた回転電機。
  18. 回転軸の周囲に等間隔に配置され、周方向へ交互に着磁されている複数の第1永久磁石と、
    各々の前記第1永久磁石を周方向から挟持するように前記回転軸の周囲に配設され、それぞれが磁極を形成する複数の積層ティース部を有する積層コアとを備えた回転電機の回転子の製造方法において、
    前記積層コアは、
    隣り合う前記第1永久磁石のN極側に当接する前記積層ティース部を一体として備えるN極一体積層コアと、前記N極一体積層コアと同形状を有し、隣り合う前記第1永久磁石のS極側に当接する前記積層ティース部を一体として備えるS極一体積層コアからなり、
    前記N極一体積層コアと前記S極一体積層コアの製造工程は、それぞれ、
    非磁性の前記回転軸の周囲を取り囲んでそれぞれの一体積層コアを前記回転軸に位置決めする環状連結部及びこの環状連結部から前記回転軸の周方向外側に向かって突出する、等間隔に配置された第1ティース部とからなる、磁性を有する連結ティース片を、前記積層コアの軸方向の長さの1/2以下の同じ厚みで積層する連結ティース片積層工程と、
    前記連結ティース片のそれぞれの前記第1ティース部に、前記第1ティース部の前記環状連結部側の端部を所定の幅で前記回転軸の周方向に切除した形状を有し、前記第1ティース部の外周に揃えて積層する磁性を有する第1ティース片を同じ厚みで積層して積層ティース部を構成する第1ティース片積層工程を有し、
    前記N極一体積層コアと前記S極一体積層コアのいずれか一方を前記回転軸に前記環状連結部が前記回転軸の外側となるように位置決めして嵌合挿入した後、
    他方の一体積層コアを前記回転軸に前記環状連結部が前記回転軸の外側となり、前記N極一体積層コアと前記S極一体積層コアの各前記積層ティース部が、前記回転子の周方向に交互に等間隔に対向するように位置決めして嵌合挿入する積層コア嵌合工程と
    前記N極一体積層コアおよび前記S極一体積層コアの前記積層ティース部間に構成されるスペースに前記第1永久磁石を前記回転軸の軸方向から、前記N極一体積層コアには前記第1永久磁石のN極が接触し、前記S極一体積層コアには前記第1永久磁石のS極が接触するように挿入する永久磁石挿入工程とを有する回転電機の回転子の製造方法。
PCT/JP2013/056938 2012-05-24 2013-03-13 回転電機の回転子、回転電機、回転電機の回転子の製造方法 WO2013175832A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112013002622.8T DE112013002622T5 (de) 2012-05-24 2013-03-13 Rotor für eine elektrische Rotationsmaschine, elektrische Rotationsmaschine, und Verfahren zum Herstellen eines Rotors für eine elektrische Rotationsmaschine
CN201380027153.9A CN104335454B (zh) 2012-05-24 2013-03-13 旋转电机的转子、旋转电机、旋转电机的转子的制造方法
KR1020147032672A KR101671606B1 (ko) 2012-05-24 2013-03-13 회전 전기 기기의 회전자, 회전 전기 기기, 회전 전기 기기의 회전자의 제조 방법
JP2014516692A JP5901754B2 (ja) 2012-05-24 2013-03-13 回転電機の回転子、回転電機、回転電機の回転子の製造方法
US14/378,787 US20150028710A1 (en) 2012-05-24 2013-03-13 Rotor for rotating electric machine, rotating electric machine, and method for manufacturing rotor for rotating electric machine
TW102117850A TWI500237B (zh) 2012-05-24 2013-05-21 旋轉電動機之轉子、旋轉電動機、旋轉電動機之轉子的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012118194 2012-05-24
JP2012-118194 2012-05-24

Publications (1)

Publication Number Publication Date
WO2013175832A1 true WO2013175832A1 (ja) 2013-11-28

Family

ID=49623536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056938 WO2013175832A1 (ja) 2012-05-24 2013-03-13 回転電機の回転子、回転電機、回転電機の回転子の製造方法

Country Status (7)

Country Link
US (1) US20150028710A1 (ja)
JP (1) JP5901754B2 (ja)
KR (1) KR101671606B1 (ja)
CN (1) CN104335454B (ja)
DE (1) DE112013002622T5 (ja)
TW (1) TWI500237B (ja)
WO (1) WO2013175832A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103836031A (zh) * 2014-03-03 2014-06-04 哈尔滨工业大学 环形永磁铁装配机构
WO2015005045A1 (ja) * 2013-07-09 2015-01-15 株式会社ミツバ ロータ、及び電動モータ
WO2020017189A1 (ja) * 2018-07-18 2020-01-23 ミネベアミツミ株式会社 モータおよびモータの製造方法
WO2022009774A1 (ja) * 2020-07-09 2022-01-13 三菱電機株式会社 回転電機および回転電機の製造方法
US20230155435A1 (en) * 2020-01-15 2023-05-18 East West Manufacturing, Llc Rotor for Electronically Commutated DC Motor

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417665B2 (ja) * 2013-03-21 2018-11-07 株式会社ジェイテクト 磁石埋込型ロータ、磁石埋込型ロータの製造方法、及び配向着磁装置
GB2522021B (en) * 2014-01-08 2018-02-07 Protean Electric Ltd A rotor for an electric motor or generator
JP6403982B2 (ja) * 2014-04-30 2018-10-10 マブチモーター株式会社 ブラシレスモータ
US9800107B2 (en) * 2014-10-20 2017-10-24 Hyundai Mobis Co., Ltd. Rotor
DE112015006260T5 (de) * 2015-03-06 2017-11-23 Mitsubishi Electric Corporation Rotor für eine elektrische Rotationsmaschine und Herstellungsverfahren für einen Rotor einer elektrischen Rotationsmaschine
US9742225B2 (en) * 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US10389196B2 (en) * 2016-03-31 2019-08-20 Nidec Motor Corporation Spoked rotor with tapered pole segments and tapered ear recesses
KR102268571B1 (ko) * 2016-04-29 2021-06-24 삼성전자주식회사 공기조화기용 팬 모터
EP3288161B1 (de) * 2016-08-23 2023-04-26 maxon international ag Elektronisch kommutierter motor mit zwei verschiedenen rotorkernen
JP7021472B2 (ja) 2016-11-02 2022-02-17 日本電産株式会社 モータ
JPWO2018180448A1 (ja) * 2017-03-31 2020-02-06 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
DE102017217282B3 (de) * 2017-09-28 2019-03-28 Bühler Motor GmbH Permanentmagnetrotor, Verfahren zu seiner Herstellung und Magnetisierungsvorrichtung
KR101945739B1 (ko) * 2017-11-07 2019-02-08 현대모비스 주식회사 모터장치의 회전자
DE102018218251A1 (de) * 2018-01-10 2019-07-11 Bühler Motor GmbH Permanentmagnetrotor
CN108418324B (zh) * 2018-02-26 2020-06-30 美的威灵电机技术(上海)有限公司 永磁电机转子、充磁设备、制备方法和永磁电机
CN108599420A (zh) * 2018-05-31 2018-09-28 广东威灵电机制造有限公司 转子和电机
CN109067041B (zh) * 2018-09-19 2024-05-28 深圳市武迪电子科技有限公司 一种转子
KR102138339B1 (ko) * 2018-10-24 2020-07-27 주식회사 엠플러스 사운드 진동 액츄에이터
WO2020105479A1 (ja) * 2018-11-21 2020-05-28 株式会社ミツバ ロータ、モータ、及び、ロータの製造方法
CN109546775A (zh) * 2018-12-26 2019-03-29 河南森源重工有限公司 内嵌式无磁桥转子及永磁电机
US11289985B2 (en) * 2019-08-09 2022-03-29 Hamilton Sundstrand Corporation Dual stator machine with a rotor magnet set configured to minimize flux leakage
JPWO2021039016A1 (ja) * 2019-08-26 2021-03-04
CN111716104A (zh) * 2020-07-10 2020-09-29 精进百思特电动(上海)有限公司 一种铁芯上装配磁钢的生产线
DE102021200683A1 (de) 2021-01-26 2022-07-28 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Rotor eines Elektromotors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998556A (ja) * 1995-10-03 1997-04-08 Hitachi Ltd 車両用交流発電機
JPH10201149A (ja) * 1997-01-14 1998-07-31 Denso Corp ランデルコア型回転電機
JP2004336966A (ja) * 2003-05-12 2004-11-25 Mitsubishi Electric Corp 回転電機
JP2010213455A (ja) * 2009-03-10 2010-09-24 Denso Corp クローポール型モータ
JP2012115085A (ja) * 2010-11-26 2012-06-14 Asmo Co Ltd ロータ及びモータ

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579235A (en) * 1980-06-18 1982-01-18 Hitachi Ltd Cylindrical rotor for rotary electric machine
JPS6464548A (en) * 1987-09-03 1989-03-10 Fanuc Ltd Rotor construction of synchronous motor
GB2217924B (en) * 1988-04-25 1992-10-07 Matsushita Electric Works Ltd Permanent magnet rotor
US4873462A (en) * 1988-09-16 1989-10-10 Eastern Air Devices, Inc. Stepping motor with low detent torque
FR2655214B1 (fr) * 1989-11-27 1992-02-07 Alsthom Gec Rotor de moteur a aimants.
FR2655784B1 (fr) * 1989-12-08 1992-01-24 Alsthom Gec Moteur a aimants a concentration de flux.
JP2748694B2 (ja) * 1992-08-12 1998-05-13 セイコーエプソン株式会社 ブラシレスモータの永久磁石回転子及びその製造方法
JPH0644382U (ja) * 1992-11-12 1994-06-10 株式会社明電舎 永久磁石電動機の回転子
JP3224890B2 (ja) * 1993-02-15 2001-11-05 ファナック株式会社 同期電動機のロータ
JPH08168222A (ja) * 1994-12-16 1996-06-25 Fanuc Ltd 同期電動機のロータ
JP3601757B2 (ja) * 1998-08-03 2004-12-15 オークマ株式会社 永久磁石モータ
JP4495802B2 (ja) * 1999-08-19 2010-07-07 日本電産シバウラ株式会社 永久磁石形回転子
TW200701595A (en) * 2005-06-28 2007-01-01 Delta Electronics Inc Motor rotor
TWM289928U (en) * 2005-10-24 2006-04-21 Kan Liou Positioning structure of magnetic stripe in rotor of motor
DE112007000201T5 (de) * 2006-01-24 2008-11-13 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Geschlitzte Kerne für einen Motorstator, Motorstator, Synchronmotor des Permanentmagnetentyps, und Stanzverfahren durch Stanzstempel für geschlitzte Kerne
TWM323161U (en) * 2007-04-24 2007-12-01 Nat Chin Yi Inst Technology Line-start permanent magnet synchronous motor
JP2009254130A (ja) * 2008-04-07 2009-10-29 Denso Corp 車両用ブラシレス交流発電機
US20100117473A1 (en) * 2008-11-12 2010-05-13 Masoudipour Mike M Robust permanent magnet rotor assembly
WO2011076740A1 (en) * 2009-12-21 2011-06-30 Höganäs Ab (Publ) Rotor for modulated pole machine
CN201910723U (zh) * 2010-11-22 2011-07-27 重庆红宇精密工业有限责任公司 一种伺服永磁同步电机转子冲片
DE102012011444B4 (de) * 2011-06-17 2020-11-05 Denso Corporation Läufer und Motor
DE102012021048A1 (de) * 2011-10-31 2013-05-02 Asmo Co., Ltd. Rotor und Motor
DE102012021049A1 (de) * 2011-10-31 2013-05-02 Asmo Co., Ltd. Rotor und Motor
DE102012021109B4 (de) * 2011-10-31 2023-04-27 Denso Corporation Rotor und Motor
DE102012021042A1 (de) * 2011-10-31 2013-05-02 Asmo Co., Ltd. Rotor und Motor
DE102012021041A1 (de) * 2011-10-31 2013-05-02 Asmo Co., Ltd. Rotor und Motor
JP5382156B2 (ja) * 2012-03-06 2014-01-08 三菱電機株式会社 回転電機
JP5943995B2 (ja) * 2012-04-16 2016-07-05 三菱電機株式会社 回転電機の電機子
DE102014113744A1 (de) * 2013-09-26 2015-03-26 Asmo Co., Ltd. Rotor und Motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998556A (ja) * 1995-10-03 1997-04-08 Hitachi Ltd 車両用交流発電機
JPH10201149A (ja) * 1997-01-14 1998-07-31 Denso Corp ランデルコア型回転電機
JP2004336966A (ja) * 2003-05-12 2004-11-25 Mitsubishi Electric Corp 回転電機
JP2010213455A (ja) * 2009-03-10 2010-09-24 Denso Corp クローポール型モータ
JP2012115085A (ja) * 2010-11-26 2012-06-14 Asmo Co Ltd ロータ及びモータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005045A1 (ja) * 2013-07-09 2015-01-15 株式会社ミツバ ロータ、及び電動モータ
CN103836031A (zh) * 2014-03-03 2014-06-04 哈尔滨工业大学 环形永磁铁装配机构
WO2020017189A1 (ja) * 2018-07-18 2020-01-23 ミネベアミツミ株式会社 モータおよびモータの製造方法
US20230155435A1 (en) * 2020-01-15 2023-05-18 East West Manufacturing, Llc Rotor for Electronically Commutated DC Motor
US11942843B2 (en) * 2020-01-15 2024-03-26 East West Manufacturing, Llc Rotor for electronically commutated DC motor
WO2022009774A1 (ja) * 2020-07-09 2022-01-13 三菱電機株式会社 回転電機および回転電機の製造方法
JPWO2022009774A1 (ja) * 2020-07-09 2022-01-13
JP7325645B2 (ja) 2020-07-09 2023-08-14 三菱電機株式会社 回転電機および回転電機の製造方法

Also Published As

Publication number Publication date
DE112013002622T5 (de) 2015-03-19
US20150028710A1 (en) 2015-01-29
JPWO2013175832A1 (ja) 2016-01-12
KR20150009552A (ko) 2015-01-26
TWI500237B (zh) 2015-09-11
TW201414141A (zh) 2014-04-01
JP5901754B2 (ja) 2016-04-13
KR101671606B1 (ko) 2016-11-01
CN104335454B (zh) 2017-12-19
CN104335454A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5901754B2 (ja) 回転電機の回転子、回転電機、回転電機の回転子の製造方法
KR100225193B1 (ko) 동기 전동기 로터
US5829120A (en) Method for manufacturing a rotor for synchronous motor
US8890386B2 (en) Rotor and motor
US20080018196A1 (en) Claw Teeth Type Electric Rotary Machine and Manufacturing Method for Stators
EP2485368A1 (en) Lundell type rotating machine
US20130119808A1 (en) Motor
KR101834967B1 (ko) 회전 전기기기 및 회전 전기기기의 스테이터
EP2680403B1 (en) Electric motor and production method for the electric motor
WO2017090571A1 (ja) モータおよびモータの製造方法
JP2010220288A (ja) コアブロック及び該コアブロックを用いたモータ用の磁極コア
US20110037329A1 (en) Integrated rotor pole pieces
JP2012023900A (ja) 永久磁石形回転機の回転子
US10720805B2 (en) Embedded permanent magnet type rotating electric machine with permanent magnet rotor having magnet holes and central bridge
KR20140039057A (ko) 적층 철심의 제조 방법 및 그것에 의해 제조된 적층 철심
CN202309273U (zh) 永磁铁型旋转电机的转子
JP2014155415A (ja) 磁石埋込型ロータ及び磁石埋込型ロータの製造方法
JP5595135B2 (ja) 2相ハイブリッド型回転電機
JP2008289286A (ja) 永久磁石式回転電機、その回転子及び回転子の製造方法
JP5453933B2 (ja) 電磁ユニット
KR20120025827A (ko) 세그먼트형 스테이터의 제조방법 및 그를 이용한 스테이터
JP2011254616A (ja) 固定子積層鉄心
JP2012044864A (ja) 永久磁石式回転電機及びその回転子
CN108292871B (zh) 旋转电机
JP6022962B2 (ja) ロータ及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516692

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14378787

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147032672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013002622

Country of ref document: DE

Ref document number: 1120130026228

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793079

Country of ref document: EP

Kind code of ref document: A1