WO2013172366A1 - 弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法 - Google Patents

弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法 Download PDF

Info

Publication number
WO2013172366A1
WO2013172366A1 PCT/JP2013/063502 JP2013063502W WO2013172366A1 WO 2013172366 A1 WO2013172366 A1 WO 2013172366A1 JP 2013063502 W JP2013063502 W JP 2013063502W WO 2013172366 A1 WO2013172366 A1 WO 2013172366A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
liquefied gas
pressure
fuel
liquid phase
Prior art date
Application number
PCT/JP2013/063502
Other languages
English (en)
French (fr)
Inventor
徳丸 武志
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201380025033.5A priority Critical patent/CN104285089B/zh
Priority to US14/396,760 priority patent/US20150075623A1/en
Priority to EP13790027.0A priority patent/EP2851594B1/en
Publication of WO2013172366A1 publication Critical patent/WO2013172366A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/01Arrangement of fuel conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0236Multi-way valves; Multiple valves forming a multi-way valve system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • B60K2015/03019Filling of gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • B60K2015/03026Gas tanks comprising a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03118Multiple tanks, i.e. two or more separate tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03118Multiple tanks, i.e. two or more separate tanks
    • B60K2015/03144Fluid connections between the tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/6855Vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface

Definitions

  • the present invention is equipped with a valve device that prevents liquefied gas fuel from leaking out when using liquefied gas fuel such as dimethyl ether (hereinafter referred to as DME), a liquefied gas fuel storage system including the valve device, and a storage system thereof.
  • DME dimethyl ether
  • the present invention relates to a vehicle for storing a liquefied gas fuel.
  • liquefied gas fuels such as dimethyl ether (DME)
  • DME dimethyl ether
  • the DME fuel is similar to LP gas and liquefies at about 5 atm at room temperature, so a push-filling method in which DME is pressurized on the filling stand side is adopted. It was.
  • a storage system 3X that supplies DME to the engine 2 of the vehicle 1X includes a main tank (fuel tank) 4, a sub tank (fuel tank) 5, and a coupling (filling device) 6.
  • the coupling 6 has a liquid phase filling port. 6a and a gas phase filling port 6b are provided.
  • the liquid phase line 7 branches off from the liquid phase filling port 6 a and is connected to the first liquid phase valve (liquid phase on-off valve) 20 a of the main tank 4 and the second liquid phase valve 20 b of the sub tank 5.
  • a return pipe 24 for returning excess fuel from the engine 2 to the main tank 4, and a connection from the second pump 25 to the main tank 4.
  • the refilling pipe 26 is provided with check valves (check valves) 27a and 27b on the refilling pipe 21 and the refilling pipe 26, respectively.
  • the vapor phase line 8 branches off from the vapor phase filling port 6 b and is connected to the first vapor phase valve 10 Xa of the main tank 4 and the second vapor phase valve 10 Xb of the sub tank 5.
  • a nozzle 33 having a liquid-phase filling port 33a and a gas-phase filling port 33b connected to a measuring device 32 connected to a storage tank 31 of the filling stand 30 is connected to the coupling 6, and the first gas The phase valve 10Xa, the second gas phase valve 10Xb, the first liquid phase valve 20a, and the second liquid phase valve 20b are filled in an open state.
  • the coupling 6 at this time is gas-liquid integrated, the gas phase portions Ga and Gb of the main tank 4 and the sub tank 5 and the gas phase portion Gs of the storage tank 31 communicate with each other at the same time as DME is filled.
  • the pressures of the gas phase portions Ga, Gb, and Gs become uniform, and the DME filling rate can be increased.
  • the first pump 22 supplies the engine 2 via the supply pipe 23, and surplus fuel is returned from the engine 2 via the return pipe 24.
  • the third liquid phase valve 20c and the fourth liquid phase valve 20d provided in the supply pipe 23 and the return pipe 24 are opened.
  • the first gas phase valve 10Xa and the second gas phase valve 10Xb are opened to replenish DME, and at the same time, the gas phase part Ga of the main tank 4 and the gas phase part Gb of the sub tank 5 are connected. By communicating, each pressure becomes equal and the replenishment speed of DME can be increased.
  • an overflow prevention valve is provided that shuts off the flow path when fuel or gas flows in the on / off valve of the fuel tank above a specified flow rate.
  • the first gas-phase valve 10Xa includes a flow passage 12 in a housing 11X, the first opening 13 of the flow passage 12 serves as a communication port of the main tank 4, and the second opening 14 serves as a gas-phase line. 8 communication port.
  • a main valve 15 ⁇ / b> X that opens or blocks the flow passage 12 and an overflow prevention valve 17 that blocks the first opening 13 are provided.
  • the main valve 15X and the housing 11X are sealed with an O-ring Or.
  • the overflow prevention valve 17 and the fixed shaft (separation member) 19 are joined.
  • the overflow prevention valve 17 exceeds the set pressure of the spring 18 when the gas phase of DME flows above a specified flow rate.
  • the flow path 12 is closed.
  • the overflow prevention valve 17 closes upward in the figure and closes the first opening 13, the fixed shaft 19 also moves upward.
  • the handle 16 When returning the overflow prevention valve 17, the handle 16 is operated to close the main valve 15 ⁇ / b> X and move downward to move the fixed shaft 19 downward and open the overflow prevention valve 17. It has a structure to do.
  • the internal pressure of the main tank 4 and the sub tank 5 may be higher than the internal pressure of the storage tank 31. Yes, the vapor phase of DME in the vapor phase line 8 flows from the storage system 3X to the storage tank 31 instantaneously.
  • the gas phase flow of DME to the storage tank 31 at the start of the filling is larger than the specified flow rate, and the overflow prevention valve 17 is closed, so that the pressure cannot be equalized and the filling speed is reduced.
  • the flow rate at this time is too different from the specified flow rate to prevent leakage due to a piping accident. If this specified flow rate is set to the required flow rate during travel, the specified flow rate will be smaller than the flow rate at the time of filling. Since the flow prevention valve 17 is operated and the flow passage 12 is shut off, pressure equalization cannot be performed and the filling flow rate is reduced. On the contrary, if this specified flow rate is matched with the flow rate at the time of filling, this specified flow rate becomes larger than the flow rate due to a piping accident or the like, so that it becomes impossible to prevent piping leakage due to an accident during traveling.
  • ⁇ Pipes and overflow prevention valves can be installed for each purpose, but the equipment becomes complicated and the cost is high.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a valve device that can forcibly open an overflow prevention valve that prevents a fluid from flowing out beyond a specified flow rate, and the valve device.
  • a liquefied gas fuel storage system, a vehicle equipped with the storage system, and a liquefied gas fuel filling method are provided.
  • a valve device of the present invention includes a flow passage through which a fluid gas phase flows, and a main valve that blocks or opens the flow passage, and the fluid gas phase passes through the flow passage.
  • a valve device including an overflow prevention valve that shuts off the flow passage when flowing from one side to the other at a predetermined flow rate or more, a pressure chamber into which a liquid phase of the fluid flows, and the pressure chamber that has flowed into the pressure chamber
  • a separation member that holds the overflow prevention valve in an open state by the pressure of the liquid phase of the fluid is provided.
  • the fluid liquid phase when it is not desired to block the flow path through which the fluid gas phase circulates, the fluid liquid phase is forced into the pressure chamber by causing the fluid liquid phase to flow into the pressure chamber.
  • the overflow prevention valve can be opened to prevent the flow passage from being blocked by the overflow prevention valve.
  • the overflow prevention valve here can prevent the gas phase of the fluid from flowing out of the flow path from one side to the other at a specified flow rate or more, and the fluid gas phase from the other to the other side. It is a device that makes it possible. As a result, it is possible to prevent a large amount of the vapor phase of the fluid from leaking due to damage to the piping in the system provided with the valve device.
  • the valve device when the valve device includes a pressure release path for releasing the pressure of the pressure chamber from the pressure chamber to the flow passage, and a pressure release valve for blocking or opening the pressure release path, the overflow prevention valve is forced. After being kept open, the pressure in the pressure chamber is released to the flow passage, whereby the overflow prevention valve can be operated as usual to block the flow passage. As a result, it is possible to easily solve the problem that the overflow prevention valve that occurs when pressure remains in the pressure chamber does not operate.
  • the liquefied gas fuel storage system of the present invention for solving the above-mentioned object is a liquefied gas fuel storage system comprising the valve device described above, and is at least one fuel for storing the liquefied gas fuel.
  • a tank a gas phase line through which the gas phase of the liquefied gas fuel flows between the fuel tank and the filling source via the flow passage of the valve device, and a liquid phase of the liquefied gas fuel from the filling source to the fuel
  • a liquid phase line to be transferred to the tank, and when the liquid phase of the liquefied gas fuel is charged into the fuel tank from a filling source, the liquid phase of the liquefied gas fuel is transferred from the liquid phase line to the valve device.
  • a branch pressure line leading to the pressure chamber is provided.
  • the liquid phase of the liquefied gas fuel is guided from the branch pressure line to the pressure chamber in the valve device, and the excess pressure is increased.
  • the flow prevention valve can be forcibly opened.
  • the liquefied gas fuel storage system further includes a control device that opens the pressure release valve until a predetermined determination condition is satisfied after filling the liquid phase of the liquefied gas fuel from the filling source into the fuel tank. Is preferred.
  • a vehicle for solving the above problem is configured by mounting the liquefied gas fuel storage system described above. According to this configuration, it is possible to prevent a large amount of fuel from leaking out due to the function of the overflow prevention valve, and it is possible to prevent the overflow prevention valve from operating during the fuel filling operation, thereby increasing the filling speed. it can.
  • the storage method of the liquefied gas fuel for solving the above problem is a liquefied gas fuel filling method using the valve device described above, and in at least one fuel tank for storing the liquefied gas fuel,
  • the liquid phase of the liquefied gas fuel is filled from the filling source, and the gas phase of the liquefied gas fuel is circulated between the fuel tank and the filling source via the flow passage of the valve device, While equalizing the internal pressure of the fuel tank, the liquid phase of the liquefied gas fuel flows into the pressure chamber of the valve device, and the overflow prevention valve is operated by the separation member by the liquid phase pressure of the liquefied gas fuel that has flowed in. It is a method characterized by holding in an open state.
  • the overflow prevention valve of the valve device when the liquid phase of the liquefied gas fuel flows into the pressure chamber of the valve device, the overflow prevention valve of the valve device is held open, and the pressure in the gas phase portion of the liquefied gas fuel is equalized.
  • the overflow prevention valve since the overflow prevention valve does not close, the filling time of the liquefied gas fuel can be shortened by an easy method.
  • the pressure release valve is opened until a predetermined determination condition is satisfied, and the pressure in the pressure chamber is reduced. It is preferable to reduce.
  • the present invention it is possible to prevent the fluid from leaking beyond the specified flow rate by the overflow prevention valve and forcibly open the overflow prevention valve.
  • the overflow prevention valve when the liquefied gas fuel is filled, by forcibly opening the overflow prevention valve, it is possible to suppress a decrease in the filling speed and to shorten the filling time. .
  • FIG. 1 is a schematic diagram showing a liquefied gas fuel storage system according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the valve device of FIG. 1 and shows a state in which the overflow prevention valve is forcibly opened.
  • FIG. 3 is an enlarged cross-sectional view showing the valve device of FIG. 1 and shows a state in which the pressure in the pressure chamber is released.
  • FIG. 4 is a flowchart showing a method for controlling the electromagnetic valve when the pressure in the pressure chamber of the valve device shown in FIG. 3 is released.
  • FIG. 5 is an enlarged cross-sectional view showing the valve device of FIG. 1 and shows a state in which the overflow prevention valve is closed.
  • FIG. 1 is a schematic diagram showing a liquefied gas fuel storage system according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the valve device of FIG. 1 and shows a state in which the overflow prevention valve is forcibly
  • FIG. 6 is an enlarged cross-sectional view showing the valve device of FIG. 1 and shows a state where the main valve is closed.
  • FIG. 7 shows a state in which liquefied gas fuel is filled from a storage tank outside the liquefied gas fuel storage system according to the first embodiment of the present invention.
  • FIG. 8 shows a state in which liquefied gas fuel is replenished from one fuel tank to the other fuel tank of the liquefied gas fuel storage system according to the first embodiment of the present invention.
  • FIG. 9 is a schematic view showing a liquefied gas fuel storage system according to a second embodiment of the present invention.
  • FIG. 10 is a schematic view showing a conventional liquefied gas fuel storage system.
  • FIG. 11 is an enlarged cross-sectional view showing the valve device of FIG.
  • a valve device according to an embodiment of the present invention, a liquefied gas fuel storage system including the valve device, a vehicle equipped with the storage system, and a control method of the storage system will be described with reference to the drawings.
  • a vehicle using dimethyl ether hereinafter referred to as DME
  • DME dimethyl ether
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • LBG liquefied butane gas
  • it can be applied to liquefied hydrogen fuel.
  • the storage system 3 includes a first gas phase valve (valve device) as shown in FIG. 1, instead of the first gas phase valve 10Xa and the second gas phase valve 10Xb of the conventional storage system 3X in FIG. ) 10a and a second gas-phase valve (valve device) 10b, a first branch pressure line 28a for guiding the DME liquid phase from the filling pipe 21 to the first gas-phase valve 10a, and a filling pipe 21 To the second branch pressure line 28b for guiding the liquid phase of DME to the second gas-phase valve 10b.
  • a first gas phase valve valve device
  • the first gas-phase valve 10a (the second gas-phase valve 10b has the same configuration and the description thereof is omitted) in addition to the configuration of the conventional first gas-phase valve 10Xa in FIG. As shown, a pressure chamber 40, a pressure opening 41, a pressure release path 42, and an electromagnetic valve (pressure release valve) 43 are provided.
  • the first gas phase valve 10 a includes the liquid phase line 7 for transferring the liquid phase of DME, the gas phases Ga of the tanks 4 and 5, and the storage tank 31. , Gb, and Gs are provided in a so-called pressure equalization type storage system 3 that equalizes the pressures of the gas phase portions Ga, Gb, and Gs when filling DME. And has the following configuration.
  • the first gas phase valve 10a communicates the gas phase portion Ga of the main tank 4 and the gas phase line 8, and the flow path 12 through which the gas phase of DME flows and the main path that blocks or opens the flow path 12. And an overflow prevention valve 17 that shuts off the flow passage 12 when the gas phase of DME flows from the first opening portion 13 of the flow passage 12 to the second opening portion 14 at a specified flow rate or higher.
  • the pressure chamber 40 communicates with the first branch pressure line 28 a branched from the liquid phase line 7, the pressure chamber 40 into which the liquid phase of DME flows, and the pressure of the liquid phase of DME that flows into the pressure chamber 40. Is provided with a fixed shaft (separating member) 19 for holding the overflow prevention valve 17 in an open state.
  • the pressure chamber 40 is disposed on the axis of a fixed shaft (separation member) 19 connected to the overflow prevention valve 17 in the main valve 15.
  • the fixed shaft 19 is moved up and down in the figure, and one end is joined to the overflow prevention valve 17 and the other end is arranged in the pressure chamber 40 so that the pressure of the pressure chamber 40 acts.
  • the pressure release path 42 is a flow path that connects the pressure chamber 40 and the flow path 12, specifically, the pressure chamber 40 and the gas-phase line 8 via a gap between the O-rings Or between the main valve 15 and the housing 11. Is a flow path that communicates with each other. Further, an electromagnetic valve 43 is interposed in the middle of the pressure release path 42.
  • the electromagnetic valve 43 is composed of a plunger 44 and an electromagnet 45, and the pressure release path 42 is opened when the power is turned on by the ECU (control device) 9 as normal close.
  • the white arrow in the figure indicates the DME vapor phase flow
  • the solid arrow indicates the operation of the fixed shaft 19
  • the dotted arrow indicates the DME liquid phase flow.
  • the DME liquid phase passes from the liquid phase line 7 through the first branch pressure line 28a.
  • the overflow prevention valve 17 can be kept open.
  • the electromagnetic valve 43 is operated to open the pressure release path 42, and the pressure chamber 40. And the gas phase line 8 are communicated, and the pressure in the pressure chamber 40 can be released to the gas phase line 8.
  • step S1 when the engine key is turned on (hereinafter referred to as key ON) step S1 when the engine 2 is started, the ECU 9 next determines whether the DME is filled or refilled. Do. If it is determined in this step S2 that DME has been filled or replenished, the ECU 9 then causes the current to flow through the electromagnetic valve 43 and performs step S3 to open the electromagnetic valve 43. When step S3 is performed, the electromagnetic valve 43 is opened, and the pressure in the pressure chamber 40 is released to the gas phase line 8.
  • step S4 for determining whether or not the electromagnetic valve 43 is kept open.
  • step S4 it is determined whether or not a predetermined determination condition is satisfied, and it is determined whether or not the open state of the electromagnetic valve 43 is maintained.
  • the predetermined determination condition is that the pressure in the pressure chamber 40 is such that the overflow prevention valve 17 can block the flow passage 12 when the gas phase of DME flows through the flow passage 12 to a specified flow rate or higher. Indicates that it has declined.
  • a method for determining that the solenoid valve 43 is closed after elapse of the predetermined energization time more specifically, when the pressure chamber 40 is closed after 3 to 5 seconds elapse after the key is turned on. It is determined that the solenoid valve 43 is closed when the pressure is sufficiently released, or that the solenoid valve 43 is closed when the pressure in the pipe of the liquid phase line 7 becomes equal to the pressure in the main tank 4. Use the method.
  • step S4 If it is determined in this step S4 that the open state of the solenoid valve 43 is not maintained, that is, the solenoid valve 43 is to be closed, the ECU 9 next cuts off the current to the solenoid valve 43 and closes the solenoid valve 43 in step S5. The control method is completed.
  • the pressure accumulated in the pressure chamber 40 can be released, so that the overflow prevention valve 17 can be operated while the vehicle is running, and the gas phase of DME is reduced.
  • the flow path 12 can be blocked to prevent the DME from flowing out.
  • the electromagnetic valve 43 may be controlled by reducing the pressure in the pressure chamber 40 and operating the overflow prevention valve 17. For example, step S2 is omitted, and the electromagnetic valve 43 is turned on simultaneously with the key being turned on. You may do it. Further, in step S4, it is sufficient to determine in detail whether the pressure at which the overflow prevention valve 17 can be operated until the pressure in the pressure chamber 40 is sufficiently reduced, and is not limited to the above method.
  • the key ON is used as a trigger for operating the electromagnetic valve 43.
  • the electromagnetic valve 43 may be configured to operate when the pressure in the pressure chamber 40 is high. After the DME is replenished from the sub tank 5 to the main tank 4, the pressure in the pressure chamber 40 can be released during traveling.
  • the overflow prevention valve 17 When the pressure is released from the pressure chamber 40, the overflow prevention valve 17 can be operated as shown in FIG. In cases other than the case where the main tank 4 is filled with DME from the storage tank 31 or DME is replenished from the sub-tank 5, the liquid phase of DME does not flow into the liquid phase line 7, so the first tank pressure line 28 a is used. Thus, the liquid phase of DME does not flow into the pressure chamber 40, and thus the pressure in the pressure chamber 40 does not increase. Therefore, when a gas phase of DME that exceeds the specified flow rate flows, the overflow prevention valve 17 is closed and the flow passage 12 is blocked. As a result, it is possible to prevent a large amount of DME from leaking due to pipe breakage or the like.
  • the overflow prevention valve 17 can be returned to the normal position, and the gas phase of DME can be prevented from flowing during maintenance of the vehicle.
  • this invention can be used for the valve apparatus provided with the conventional overflow prevention valve, for example, can also be applied to the on-off valve which has arrange
  • the first gas phase valve 10a that manually rotates the handle 16 to close the main valve 15 has been described as an example.
  • the main valve 15 is configured to be opened and closed by an electromagnetic valve. Also good.
  • the first to fifth liquid phase valves 20a to 20e have a structure without the overflow prevention valve 17 of the conventional first gas phase valve 10Xa shown in FIG.
  • the invention is not limited to this, and any valve device that can be opened and closed may be used.
  • the white arrow indicates the gas phase flow of DME
  • the solid arrow indicates the liquid phase flow of DME.
  • the nozzle 33 When filling the main tank 4 from the storage tank 31 with DME, the nozzle 33 is first connected to the coupling 6 as shown in FIG.
  • the coupling 6 is configured to open the flow path when connected to the nozzle 33, and to be blocked when not connected.
  • the coupling 6 is configured such that when the nozzle 33 is connected, the liquid phase line 7 and the gas phase line 8 are simultaneously connected to the filling stand 30 side.
  • the valves 10a, 10b, 20a to 20e are normally open except when the overflow prevention valve 17 is closed and the storage system 3 needs to be repaired or when the vehicle is serviced. 33, the gas phase portions Ga, Gb, and Gs communicate with each other via the first gas phase valve 10a of the main tank 4 and the second gas phase valve 10b of the sub tank 5, and the main tank 4 The liquid phase portions Fa, Fb, and Fs communicate with each other through the first liquid phase valve 20a and the second liquid phase valve 20b of the sub tank 5.
  • a filling pressure is applied from the first branch pressure line 28a to the pressure chamber 40 of the first gas phase valve 10a and from the second branch pressure line 28b to the pressure chamber 40 of the second gas phase valve 10b.
  • the overflow prevention valve 17 of the first gas phase valve 10a and the overflow prevention valve 17 of the second gas phase valve 10b are each fixed in an open state.
  • each overflow prevention valve 17 While filling DME from the filling stand 30, each overflow prevention valve 17 is fixed in an open state, so that the overflow prevention valve 17 is closed during DME filling, which has been a problem in the past, and the filling flow rate is increased. It can be prevented that the DME filling speed is lowered and the DME filling time can be shortened.
  • each overflow prevention valve 17 is made operable.
  • DME is supplied from the main tank 4 to the engine 2 by the first pump 22 during traveling. At this time, surplus fuel is returned from the engine 2 to the main tank 4.
  • the DME in the main tank 4 When the DME in the main tank 4 is consumed, the DME is replenished from the sub tank 5 to the main tank 4 by the second pump 25. At this time, since the first gas-phase valve 10a and the second gas-phase valve 10b are opened, the internal pressures of the main tank 4 and the sub-tank 5 are made equal, that is, the pressures of the gas-phase portions Ga and Gb are made equal. To.
  • the pressure chamber 40 of the first gas phase valve 10a is charged with the filling pressure from the first branch pressure line 28a as described above, and the overflow prevention valve 17 of the first gas phase valve 10a is opened. Hold.
  • the second gas-phase valve 10b the DME gas-phase flows from the gas-phase line 8 to the sub-tank 5, that is, from the second opening 14 to the first opening 13, so the overflow prevention valve 17 is closed. There is no.
  • DME can be replenished from the sub tank 5 to the main tank 4 without decreasing the replenishment speed.
  • the electromagnetic valve 43 may be opened so that the pressure in the pressure chamber 40 of the first gas phase valve 10a is released after replenishment.
  • the DME when the DME is filled from the storage tank 31 or when the DME is replenished from the sub-tank 5, the DME is filled or replenished (in the case of filling, the main tank 4 and the sub-tank 5, In the case of refilling, the overflow prevention valve 17 of the main tank 4) is forcibly opened due to the filling pressure, so even if the tank internal pressure becomes higher than the supply side pressure during filling, the overflow prevention valve 17 Since the flow path 12 is not shielded by 17, the filling time or the replenishing time can be shortened without lowering the filling speed or the replenishing speed.
  • the solenoid valve 43 is turned on when the key is turned ON, and the solenoid valve 43 is turned off after the pressure in the pressure chamber 40 is released. Therefore, after the DME is filled or replenished, the overflow prevention valve 17 can be operated as usual, so that it is possible to prevent a large amount of DME from leaking due to pipe breakage.
  • the storage system 50 is configured only by the main tank 4 of the storage system 3 of the first embodiment, and includes a fuel tank 51, a coupling 52, a liquid phase line 53, and a gas phase line 54, and includes a fuel tank. 51 is provided with a third gas phase valve 10c and liquid phase valves 55a to 55c having the same configuration as the first gas phase valve 10a described above, and from the liquid phase line 53 to the third gas phase valve. A third branch pressure line 56 branching to 10c is provided.
  • the operation of the storage system 50 is the same as that of the above-described storage system 3 except that the replenishment during traveling cannot be performed.
  • the vehicle 1 equipped with the liquefied gas fuel storage system 3 or 50 according to the first or second embodiment of the present invention prevents a large amount of DME from leaking out due to the function of the overflow prevention valve 17, and also DME. It is possible to prevent the overflow prevention valve 17 from operating during the filling operation, and to increase the filling speed. In particular, it is suitable for filling a large-capacity fuel tank provided in a large and long-distance truck.
  • the valve device of the present invention can prevent the fluid from leaking beyond the specified flow rate by the overflow prevention valve, and can forcibly open the overflow prevention valve when the action is not necessary.
  • the liquefied gas fuel storage system when the liquefied gas fuel is filled, by forcibly opening the overflow prevention valve, it is possible to suppress a decrease in the filling speed and to shorten the time required for filling. It can be used for a vehicle equipped with an engine using liquefied gas fuel such as DME.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

 ハウジング11と、ハウジング11内の流通路12と、流通路12を遮断又は開放する主弁15と、DMEの気相が流通路12を流通するときに、流通路12を遮断する過流防止弁17と、を備える第1気相用バルブ10aにおいて、ハウジング11の圧力用開口部41と連通する圧力室40と、過流防止弁17と接続され、圧力用開口部41から圧力室40に流入したDMEの液相の圧力により過流防止弁17を開放状態に保持する固定軸19とを備えて構成されるので、流体が規定流量以上に流出することを防ぐ過流防止弁を強制的に開放することができる。

Description

弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法
 本発明は、ジメチルエーテル(以下、DMEという)などの液化ガス燃料を用いるときに、液化ガス燃料が漏れ出ることを防ぐ弁装置、その弁装置を備える液化ガス燃料の貯蔵システム、その貯蔵システムを搭載する車両、及び液化ガス燃料の貯蔵方法に関する。
 現在、ディーゼルエンジンに使用される軽油の代替燃料として、ジメチルエーテル(DME)などの液化ガス燃料を用いることが注目されている。充填スタンドから車両に充填する際には、DMEの燃料の性状がLPガスに似て、常温では5気圧程度で液化することから、充填スタンド側にてDMEを加圧する、押し込み充填方式が採用されていた。
 しかし、トラックなどの燃料を多く積む必要のある車両では、その押し込み充填方式による充填中に燃料タンク内の圧力と充填設備の充填圧の差圧が少ない場合には、充填速度が遅く、充填時間が長くかかっていた。特に夏場などの気温の高い条件では、燃料タンク内の圧力が高くなり、さらに充填速度が遅くなる場合があった。
 そこで、車両の燃料タンクの気相部と、充填スタンドの貯槽の気相部とを配管でつなぎ、燃料タンクの内圧と貯槽の内圧を均等にする、均圧方式と呼ばれている充填方法がある(例えば、特許文献1参照)。
 ここで、その均圧方式の充填方法について、図10を参照しながら説明する。車両1Xのエンジン2にDMEを供給する貯蔵システム3Xは、メインタンク(燃料タンク)4、サブタンク(燃料タンク)5、及びカップリング(充填装置)6を備え、カップリング6に液相用充填口6aと、気相用充填口6bを設ける。
 液相用ライン7は、液相用充填口6aから途中で分岐し、メインタンク4の第1液相用バルブ(液相用開閉弁)20aとサブタンク5の第2液相用バルブ20bに接続される充填用配管21、第1ポンプ22からエンジン2に接続される供給用配管23、エンジン2から余剰燃料をメインタンク4に戻す戻り用配管24、及び第2ポンプ25からメインタンク4に接続される補充用配管26を備え、充填用配管21と補充用配管26にはそれぞれチェックバルブ(逆止弁)27aと27bを設ける。
 気相用ライン8は、気相用充填口6bから途中で分岐し、メインタンク4の第1気相用バルブ10Xaとサブタンク5の第2気相用バルブ10Xbに接続される。
 充填時は、充填スタンド30の貯槽31と接続された計量器32に接続されている液相用充填口33aと気相用充填口33bを有するノズル33をカップリング6に接続し、第1気相用バルブ10Xa、第2気相用バルブ10Xb、第1液相用バルブ20a、及び第2液相用バルブ20bを開いた状態で充填する。
 このときのカップリング6は気液一体となっているので、DMEを充填するのと同時にメインタンク4とサブタンク5のそれぞれの気相部Ga及びGbと、貯槽31の気相部Gsが連通することで、それぞれの気相部Ga、Gb、及びGsの圧力が均等になり、DMEの充填速度を高めることができる。
 エンジン2への供給時は、第1ポンプ22から供給用配管23を介してエンジン2へ供給し、エンジン2から戻り用配管24を介して余剰燃料を戻す。このとき、供給用配管23と戻り用配管24に備えた第3液相用バルブ20cと第4液相用バルブ20dを開く。
 メインタンク4のDMEが消費され、サブタンク5からメインタンク4へDMEを補充するときは、サブタンク5の第5液相用バルブ20eとメインタンク4の第1液相用バルブ20aを開き、第2ポンプ25から補充用配管26を介してメインタンク4に補充する。
 このとき、第1気相用バルブ10Xaと第2気相用バルブ10Xbを開放して、DMEを補充するのと同時に、メインタンク4の気相部Gaと、サブタンク5の気相部Gbとを連通することで、それぞれの圧力が均等となり、DMEの補充速度を高めることができる。
 一方、LPガスやDMEなどの液化ガス燃料の配管には、事故などによる燃料配管破損により燃料が大量に漏れ出ることを防ぐ装置を設ける必要がある。そこで、燃料タンクの開閉弁に規定流量以上に燃料あるいはガスが流れた場合に、流路を遮断する過流防止弁が備わっている。
 ここで、この過流防止弁を備えた開閉弁の一例について、図11を参照しながら説明する。この第1気相用バルブ10Xaは、ハウジング11X内に流通路12を備え、流通路12の第1開口部13をメインタンク4の連通口とし、また、第2開口部14を気相用ライン8との連通口とする。また、その流通路12を開放又は遮断する主弁15Xと、第1開口部13を遮断する過流防止弁17とを備える。この主弁15Xとハウジング11Xの間をオーリングOrによりシールする。加えて、過流防止弁17と固定軸(離隔部材)19とを接合する。
 過流防止弁17は、流通路12内に配置したスプリング18と流通路12を流れるDMEの気相の通過抵抗の関係により、DMEの気相が規定流量以上流通するとスプリング18のセット圧以上となり流通路12を塞ぐ構造となっている。過流防止弁17が図中の上方に閉じて第1開口部13を塞ぐと、固定軸19も上方に移動する。
 この過流防止弁17を復帰するときには、ハンドル16を操作して主弁15Xを閉弁し、下方に移動することで、固定軸19を下方に移動して、過流防止弁17を開弁する構造となっている。
 しかし、上記の均圧式の貯蔵システム3Xの場合は、ノズル33を車両側のカップリング6に接続し、充填を開始すると、メインタンク4とサブタンク5の内圧が、貯槽31の内圧より高いことがあり、瞬間的に気相用ライン8のDMEの気相が貯蔵システム3Xから貯槽31へ流れることになる。
 この充填開始時の貯槽31へのDMEの気相の流れは規定流量よりも大きく、過流防止弁17が閉じるので、均圧することができずに、充填速度が低下してしまう。
 このときの流量と、配管事故による漏れを防ぐ為の規定流量が違いすぎ、この規定流量を走行時に必要な流量に設定した場合、この規定流量が充填時の流量より小さくなるため、充填時に過流防止弁17が作動し、流通路12を遮断するので、均圧することができず、充填流量が低下する。また、その逆にこの規定流量を充填時の流量に合せると、この規定流量が配管事故などの流量よりも大きくなるため、走行時の事故などによる配管漏れを防ぐことができなくなる。
 それぞれ目的別の配管や過流防止弁の設置も考えられるが、装置が複雑になりコストも高額となる。
特開2007-262903号公報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、流体が規定流量以上に流出することを防ぐ過流防止弁を強制的に開放することができる弁装置、その弁装置を備える液化ガス燃料の貯蔵システム、その貯蔵システムを搭載した車両、及び液化ガス燃料の充填方法を提供することである。
 上記の目的を解決するための本発明の弁装置は流体の気相が流通する流通路と、前記流通路を遮断又は開放する主弁とを備えると共に、前記流体の気相が前記流通路の一方から他方に予め定めた流量以上に流通するときに、前記流通路を遮断する過流防止弁を備える弁装置において、前記流体の液相が流入する圧力室と、前記圧力室に流入した前記流体の液相の圧力により前記過流防止弁を開放状態に保持する離隔部材を備えて構成される。
 この構成によれば、流体の気相が流通する流通路を塞ぎたくないときに、圧力室に流体の液相を流入することで、流体の液相の圧力を離隔部材に作用させて強制的に過流防止弁を開放状態にして、過流防止弁で流通路を遮断しないようにすることができる。
 なお、ここでいう過流防止弁とは、流体の気相が流通路の一方から他方へ規定流量以上に流出することを防ぐことができ、流体の気相が他方から一方へ流出することを可能にする装置である。これにより、弁装置が設けられたシステム内で配管の破損などにより流体の気相が大量に漏れ出ることを防ぐことができる。
 また、上記の弁装置において前記圧力室から前記流通路へ前記圧力室の圧力を開放する圧力開放路と、前記圧力開放路を遮断又は開放する圧力開放弁を備えると、過流防止弁を強制的に開放状態に保持した後に、圧力室内の圧力を流通路に逃がすことにより、過流防止弁を通常通りに作動させて流通路を遮断することができる。これにより、圧力室に圧力が残った場合に発生する過流防止弁が作動しなくなる問題を容易に解決することができる。
 加えて、上記の目的を解決するための本発明の液化ガス燃料の貯蔵システムは、上記に記載の弁装置を備える液化ガス燃料の貯蔵システムであって、液化ガス燃料を貯蔵する少なくとも一つの燃料タンクと、液化ガス燃料の気相を前記弁装置の前記流通路を介して前記燃料タンクと充填元との間で流通する気相用ラインと、液化ガス燃料の液相を充填元から前記燃料タンクに移送する液相用ラインとを備えると共に、充填元から液化ガス燃料の液相を前記燃料タンクに充填するときに、前記液相用ラインから液化ガス燃料の液相を前記弁装置の前記圧力室に導く分岐圧力ラインを備えて構成される。
 この構成によれば、所謂均圧方式を用いて液化ガス燃料を、充填元から燃料タンクに充填する時に、分岐圧力ラインから弁装置内の圧力室に液化ガス燃料の液相を導いて、過流防止弁を強制的に開放することができる。
 これにより、充填開始時や充填中に燃料タンクの内圧が充填元の圧力より高くなり液化ガス燃料の気相が燃料タンクから充填元に大量に流れても、流通路を過流防止弁で遮蔽することがないので、充填速度の低下を防ぎ、短時間に液化ガス燃料を充填することができる。
 さらに、上記の液化ガス燃料の貯蔵システムにおいて、充填元から液化ガス燃料の液相を前記燃料タンクに充填した後に、予め定めた判定条件を満たすまで前記圧力開放弁を開放する制御装置を備えることが好ましい。
 加えて、上記の問題を解決するための車両は、上記に記載の液化ガス燃料の貯蔵システムを搭載して構成される。この構成によれば、過流防止弁の働きによって燃料が大量に漏れ出ることを防ぐと共に、燃料の充填作業中に過流防止弁が作動することを防ぐことができ、充填速度を高めることができる。
 さらに、上記の問題を解決するための液化ガス燃料の貯蔵方法は、上記に記載の弁装置を用いた液化ガス燃料の充填方法であって、液化ガス燃料を貯蔵する少なくとも一つの燃料タンクに、充填元から液化ガス燃料の液相を充填すると共に、液化ガス燃料の気相を前記弁装置の前記流通路を介して前記燃料タンクと充填元との間で流通して、充填元の内圧と前記燃料タンクの内圧を均圧する間に、前記弁装置の前記圧力室に液化ガス燃料の液相を流入し、流入した液化ガス燃料の液相の圧力により前記離隔部材で前記過流防止弁を開放状態に保持させることを特徴とする方法である。
 この方法によれば、液化ガス燃料の液相を弁装置の圧力室に流入して、弁装置の過流防止弁を開放状態に保持し、液化ガス燃料の気相部分の圧力を均圧する際に、過流防止弁が閉じることがないので、液化ガス燃料の充填時間を容易な方法で短縮することができる。
 その上、上記の液化ガス燃料の貯蔵方法において、充填元から前記燃料タンクに液化ガス燃料を充填した後に、予め定めた判定条件を満たすまで前記圧力開放弁を開放し、前記圧力室の圧力を低減することが好ましい。
 本発明によれば、過流防止弁によって規定流量以上に流体が漏れ出ることを防ぐと共に、その過流防止弁を強制的に開放することができる。特に、液化ガス燃料の貯蔵システムにおいて、液化ガス燃料の充填時に、過流防止弁を強制的に開放することによって、充填速度が低下することを抑制し、充填にかかる時間を短縮することができる。
図1は、本発明に係る第1の実施の形態の液化ガス燃料の貯蔵システムを示す概略図である。 図2は、図1の弁装置を示す拡大断面図であり、過流防止弁が強制的に開弁された状態を示す。 図3は、図1の弁装置を示す拡大断面図であり、圧力室の圧力が開放される状態を示す。 図4は、図3に示す弁装置の圧力室の圧力を開放するときの、電磁弁の制御方法を示すフローチャートである。 図5は、図1の弁装置を示す拡大断面図であり、過流防止弁が閉弁された状態を示す。 図6は、図1の弁装置を示す拡大断面図であり、主弁が閉弁された状態を示す。 図7は、本発明に係る第1の実施の形態の液化ガス燃料の貯蔵システムの外部の貯槽から液化ガス燃料を充填する状態を示す。 図8は、本発明に係る第1の実施の形態の液化ガス燃料の貯蔵システムの一方の燃料タンクから他方の燃料タンクへ液化ガス燃料を補充する状態を示す。 図9は、本発明に係る第2の実施の形態の液化ガス燃料の貯蔵システムを示す概略図である。 図10は、従来の液化ガス燃料の貯蔵システムを示す概略図である。 図11は、図10の弁装置を示す拡大断面図である。
 以下、本発明に係る実施の形態の弁装置、その弁装置を備える液化ガス燃料の貯蔵システム、その貯蔵システムを搭載する車両、及びその貯蔵システムの制御方法について、図面を参照しながら説明する。この実施の形態は、液化ガス燃料として、ジメチルエーテル(以下、DMEとする)を用いた車両について説明するが、例えば、液化石油ガス(LPG)、液化天然ガス(LNG)、液化ブタンガス(LBG)、又は液化水素燃料などにも適用することができる。
 まず、本発明に係る第1の実施の形態の液化ガス燃料の貯蔵システムを搭載した車両について、図1を参照しながら説明する。この貯蔵システム3は、図10の従来の貯蔵システム3Xの第1気相用バルブ10Xaと第2気相用バルブ10Xbに換えて、図1に示すように、第1気相用バルブ(弁装置)10aと第2気相用バルブ(弁装置)10bを備え、また、充填用配管21からDMEの液相を第1気相用バルブ10aに導く第1分岐圧力ライン28aと、充填用配管21からDMEの液相を第2気相用バルブ10bに導く第2分岐圧力ライン28bを備える。
 第1気相用バルブ10a(第2気相用バルブ10bも同様の構成のため、説明は省略する)は、図11の従来の第1気相用バルブ10Xaの構成に加えて、図2に示すように、圧力室40、圧力用開口部41、圧力開放路42、及び電磁弁(圧力開放弁)43を備える。
 よって、本発明に係る第1の実施の形態の第1気相用バルブ10aは、DMEの液相を移送する液相用ライン7と、各タンク4、5、及び貯槽31の気相部Ga、Gb、及びGsを連通する気相用ライン8とを備えて、DMEを充填する際に、各気相部Ga、Gb、及びGsの圧力を均圧する所謂均圧方式の貯蔵システム3に設けられ、以下の構成を有する。
 この第1気相用バルブ10aは、メインタンク4の気相部Gaと気相用ライン8とを連通し、DMEの気相が流通する流通路12と、流通路12を遮断又は開放する主弁15とを備えると共に、DMEの気相が流通路12の第1開口部13から第2開口部14に規定流量以上に流通するときに、流通路12を遮断する過流防止弁17を備える。そして、その構成に加えて、液相用ライン7から分岐した第1分岐圧力ライン28aと連通し、DMEの液相が流入する圧力室40と、圧力室40に流入したDMEの液相の圧力により過流防止弁17を開放状態に保持する固定軸(離隔部材)19を備える。
 圧力室40は、主弁15内の、過流防止弁17と接続された固定軸(離隔部材)19の軸上に配置される。固定軸19は図中の上下に動作し、一端を過流防止弁17と接合し、もう一端を圧力室40の圧力が作用するように、圧力室40内に配置される。
 この構成により、貯槽31からDMEの液相を充填、又はサブタンク5からDMEの液相を補充するときに、充填用配管21にDMEの液相が流通すると第1分岐圧力ライン28aから圧力室40にDMEの液相が流入するようになり、圧力室40内のDMEの液相の圧力が固定軸19に作用して、固定軸19に図中の下方の力をかけることができる。
 これにより、DMEの気相が過流防止弁17を遮断する規定流量以上流れても、固定軸19が圧力によって押されるため、過流防止弁17は作動せず、開放した状態を保持することができる。
 圧力開放路42は、圧力室40と流通路12とを連通する流路、詳しくは主弁15とハウジング11との間のオーリングOr間の隙間を介して圧力室40と気相用ライン8とを連通する流路である。また、この圧力開放路42の途中に電磁弁43を介設する。この電磁弁43はプランジャ44と電磁石45とからなり、ECU(制御装置)9によりノーマルクローズとして電源ONのときに圧力開放路42を開放するようにする。
 この構成により、圧力室40に圧力が溜まったときに、電磁弁43を開放して、圧力室40の圧力を逃がして、過流防止弁17を開放状態から作動状態にすることができる。
 次に、この第1気相用バルブ10aの動作について、図2~6を参照しながら説明する。ここで、図中の白抜き矢印はDMEの気相の流れを示し、塗り潰し矢印は固定軸19の動作を示し、点線の矢印はDMEの液相の流れを示す。
 図2に示すように、メインタンク4に貯槽31からDMEを充填する、又はサブタンク5からDMEを補充する場合には、DMEの液相が液相用ライン7から第1分岐圧力ライン28aを通って圧力室40に流入する。流入したDMEの液相の圧力が、固定軸19に作用するので、過流防止弁17を開放状態に保持することができる。
 これにより、DMEを充填又は補充するときに過流防止弁17が閉じることがなくなるので、充填又は補充速度を高めて、充填又は補充時間を短縮することができる。
 図3に示すように、メインタンク4に貯槽31からDMEを充填した後、又はサブタンク5からDMEを補充した後には、電磁弁43を作動して、圧力開放路42を開放し、圧力室40と気相用ライン8とを連通し、圧力室40の圧力を気相用ライン8に逃がすことができる。
 このとき、圧力室40の圧力の方が気相用ライン8の圧力よりも高いため、圧力室40と気相用ライン8とを連通すると、その圧力差によってDMEの液相はDMEの気相となり、圧力室40から気相用ライン8へ圧力が開放される。これにより、圧力室40に圧力が残っている場合に発生する走行時に過流防止弁17が作動しなくなることを抑制することができる。
 この電磁弁43の制御について、図4に示すフローチャートを参照しながら、一例を説明する。エンジン2の始動時に、エンジンキーをONにする(以下、キーONとする)ステップS1を行うと、次に、ECU9が、DMEが充填された、又は補充されたか否かを判断するステップS2を行う。このステップS2でDMEが充填された、又は補充されたと判断されると、次に、ECU9が電磁弁43に電流を流して、電磁弁43を開くステップS3を行う。ステップS3を行うと、電磁弁43が開弁し、圧力室40の圧力が気相用ライン8に開放される。
 次に、ECU9が、電磁弁43の開弁状態を保持するか否かを判断するステップS4を行う。このステップS4では、予め定めた判定条件を満たすか否かを判断し、電磁弁43の開放状態を保持するか否かを判定している。この予め定めた判定条件とは、圧力室40の圧力が、DMEの気相が流通路12を規定流量以上に流通するときに過流防止弁17が流通路12を遮断することができる状態まで低下したことを示す。
 例えば、予め定めた通電時間が経過することを条件として、予め定めた通電時間が経過後に電磁弁43を閉じると判断する方法、詳しくはキーON後から3~5秒間が経過すると圧力室40の圧力が十分に開放されたとして、電磁弁43を閉じると判断する方法や、液相用ライン7の配管内圧力がメインタンク4内の圧力と等しくなったときに電磁弁43を閉じると判断する方法を用いる。
 このステップS4で電磁弁43の開弁状態を保持しない、つまり電磁弁43を閉じると判断されると、次に、ECU9が電磁弁43への電流を切って、電磁弁43を閉じるステップS5を行って、この制御方法は完了する。
 この制御方法によれば、キーON時に、圧力室40に溜まっていた圧力を逃がすことができるので、車両の走行中には、過流防止弁17を作動させることができ、DMEの気相が大量に流れる場合に流通路12を遮断して、DMEの流出を防ぐことができる。
 この電磁弁43の制御方法は、圧力室40の圧力を低減し、過流防止弁17を作動させることができればよく、例えば、ステップS2を省略し、キーONと同時に電磁弁43に電源が入るようにしてもよい。また、ステップS4では、圧力室40の圧力が十分に低減するまで、詳しくは過流防止弁17が作動できる圧力になるかを判断できればよく、上記の方法に限定しない。
 加えて、電磁弁43を動作させるトリガーとしてキーONを用いたが、圧力室40の圧力が高い場合に電磁弁43を動作させるように構成してもよく、その場合は、例えば、走行中にサブタンク5からメインタンク4にDMEを補充した後に、圧力室40の圧力を走行中に開放することができる。
 圧力室40から圧力が開放されると、図5に示すように、過流防止弁17の動作が可能になる。メインタンク4に貯槽31からDMEを充填する、又はサブタンク5からDMEを補充する場合以外の場合には、液相用ライン7にDMEの液相が流れないため、第1分岐圧力ライン28aを介して圧力室40には、DMEの液相が流入せず、よって圧力室40の圧力も高くならない。そのため、規定流量以上のDMEの気相が流れると、過流防止弁17が閉じ、流通路12を遮断する。これにより、DMEが配管破損などにより大量に漏れ出ることを防止することができる。
 図6に示すように、過流防止弁17が閉じて、貯蔵システム3の修理が必要な場合や、車両1の整備を行う場合には、ハンドル16を回転させて、主弁15を作動して、流通路12を遮断する。このとき、固定軸19は、主弁15により押され、過流防止弁17を開放状態にする。過流防止弁17が開放状態であっても主弁15自体が流通路12を遮断しているため、DMEの気相は流れることがない。
 これにより、過流防止弁17を通常の位置に戻すことができ、また、車両の整備時などにDMEの気相が流れてしまうことを防ぐことができる。
 なお、本発明は、従来の過流防止弁を備える弁装置に用いることができ、例えば、過流防止弁17を内部に配置した開閉弁にも適用することができる。また、この実施の形態ではハンドル16を手動で回転させて主弁15を閉じる第1気相用バルブ10aを例に説明したが、例えば、電磁弁で主弁15を開閉するように構成してもよい。
 加えて、この実施の形態では、第1~第5液相用バルブ20a~20eについて、図11に示す従来の第1気相用バルブ10Xaの過流防止弁17がない構造を用いるが、本発明はこれに限定せず開閉可能な弁装置であればよい。
 次に、上記の第1気相用バルブ10aを備える貯蔵システム3の動作について、図7と図8を参照しながら説明する。ここで、白抜き矢印はDMEの気相の流れを示し、塗り潰し矢印はDMEの液相の流れを示す。
 貯槽31からメインタンク4にDMEを充填する場合は、図7に示すように、まずカップリング6にノズル33を接続する。カップリング6はノズル33と接続されると、流路が開放となるようになっていて、接続されていないと遮断となるよう構成される。また、このカップリング6はノズル33を接続すると液相用ライン7と気相用ライン8とが同時に充填スタンド30側と接続されるよう構成される。
 各バルブ10a、10b、20a~20eは過流防止弁17が閉じて、貯蔵システム3の修理が必要な場合や、車両の整備を行う場合以外は通常開いた状態であり、カップリング6とノズル33とが接続すると、メインタンク4の第1気相用バルブ10aとサブタンク5の第2気相用バルブ10bを介して、気相部Ga、Gb、及びGsが連通し、また、メインタンク4の第1液相用バルブ20aとサブタンク5の第2液相用バルブ20bを介して、液相部Fa、Fb、及びFsが連通する。
 図示しないポンプによりDMEの液相が加圧されて、充填スタンド30からメインタンク4及びサブタンク5に充填が開始されると、液相用ライン7を介してメインタンク4とサブタンク5にDMEの液相が充填され、このとき、気相用ライン8によって、各気相部Ga、Gb、及びGsが均圧される。
 このとき、第1気相用バルブ10aの圧力室40に第1分岐圧力ライン28aから、また第2気相用バルブ10bの圧力室40に第2分岐圧力ライン28bからそれぞれ充填圧がかかり、図2で説明したとおりに、第1気相用バルブ10aの過流防止弁17と、第2気相用バルブ10bの過流防止弁17はそれぞれ開放状態に固定される。
 充填スタンド30からDMEを充填する間は、各過流防止弁17が開放状態に固定されることにより、従来問題となっていたDMEの充填中に過流防止弁17が閉じて、充填流量が低下し、DMEの充填速度が遅くなることを防ぐことができ、DMEの充填時間を短縮することができる。
 充填スタンド30からDMEの充填が完了した後に、車両を始動するためにキーONすると、図3で説明した通り電磁弁43が作動して、DMEの充填時に第1気相用バルブ10aと第2気相用バルブ10bのそれぞれの圧力室40に溜まった圧力を開放し、各過流防止弁17を作動可能な状態にする。
 図8に示すように、走行時に、メインタンク4から第1ポンプ22によりDMEをエンジン2に供給する。このとき、余剰燃料はエンジン2からメインタンク4に戻される。
 メインタンク4のDMEが消費されると、第2ポンプ25によりサブタンク5からメインタンク4にDMEを補充する。このとき、第1気相用バルブ10aと第2気相用バルブ10bが開いているので、メインタンク4とサブタンク5の内圧を均等にする、つまりそれぞれの気相部GaとGbの圧力を均等にする。
 このとき、第1気相用バルブ10aの圧力室40には前述と同様に、第1分岐圧力ライン28aから充填圧がかかり、第1気相用バルブ10aの過流防止弁17を開放状態に保持する。一方、第2気相用バルブ10bでは、気相用ライン8からサブタンク5に、つまり第2開口部14から第1開口部13にDMEの気相が流れるため、過流防止弁17は閉じることがない。
 これにより、サブタンク5からメインタンク4にDMEを補充するときも、補充速度が低下することなく、サブタンク5からメインタンク4にDMEを補充することができる。また、サブタンク5からメインタンク4にDMEを補充する場合には、補充後に第1気相用バルブ10aの圧力室40の圧力を逃すように、電磁弁43を開放するとよい。
 上記の動作によれば、貯槽31からDMEを充填する時に、又はサブタンク5からDMEを補充するときに、DMEが充填される、又は補充されるタンク(充填の場合はメインタンク4とサブタンク5、補充の場合はメインタンク4)の過流防止弁17は、充填圧がかかって強制的に開放されるので、充填中にタンクの内圧が供給側の圧力より高くなっても、過流防止弁17で流通路12を遮蔽することがないので、充填速度、又は補充速度を低下することなく、充填時間又は補充時間を短縮することができる。
 また、簡易な構成で、簡易な方法により上記の作用効果を得ることができるので、DMEを車両の燃料として用いるときに発生する問題を安価に解決することができる。
 加えて、DMEを充填した後、又は補充した後に、キーONで電磁弁43に電源が入るように、また、圧力室40の圧力を開放した後に、電磁弁43の電源を切るように構成するので、DMEを充填した後、又は補充した後は、過流防止弁17を通常通りに作動させることができるので、配管破損によるDMEが大量に漏れ出ることを防ぐことができる。
 次に、本発明に係る第2の実施の形態の液化ガス燃料の貯蔵システムについて、図9を参照しながら説明する。この貯蔵システム50は、第1の実施の形態の貯蔵システム3のメインタンク4のみの構成であり、燃料タンク51、カップリング52、液相用ライン53、気相用ライン54を備え、燃料タンク51に上記で説明した第1気相用バルブ10aと同様の構成の第3気相用バルブ10cと液相用バルブ55a~55cを備え、また、液相用ライン53から第3気相用バルブ10cに分岐する第3分岐圧力ライン56を備える。この貯蔵システム50の動作は、走行中の補充ができないことを除いて、前述の貯蔵システム3と同様に動作する。
 本発明にかかる第1又は第2の実施の形態の液化ガス燃料の貯蔵システム3又は50を搭載した車両1は、過流防止弁17の働きによってDMEが大量に漏れ出ることを防ぐと共に、DMEの充填作業中に過流防止弁17が作動することを防ぐことができ、充填速度を高めることができる。特に、大型、且つ長距離走行可能なトラックに備えられる大容量の燃料タンクに充填する場合に好適である。
 本発明の弁装置は、過流防止弁によって規定流量以上に流体が漏れ出ることを防ぐと共に、その作用の必要のないときに、過流防止弁を強制的に開放することができ、特に、液化ガス燃料の貯蔵システムにおいて、液化ガス燃料の充填時に、過流防止弁を強制的に開放することによって、充填速度が低下することを抑制し、充填にかかる時間を短縮することができるので、DMEなどの液化ガス燃料を用いるエンジンを搭載した車両に利用することができる。
1 車両
2 エンジン(内燃機関)
3 貯蔵システム
4 メインタンク(燃料タンク)
5 サブタンク(燃料タンク、又は充填元)
6 カップリング(充填口)
7 液相用ライン
8 気相用ライン
9 ECU(制御装置)
10a 第1気相用バルブ(弁装置)
10b 第2気相用バルブ(弁装置)
11 ハウジング
12 流通路
13 第1開口部
14 第2開口部
15 主弁
16 ハンドル
17 過流防止弁
18 スプリング(付勢部材)
19 固定軸(離隔部材)
20a~20e 第1液相用バルブ~第5液相用バルブ
21 充填用配管
22 第1ポンプ
23 供給用配管
24 戻り用配管
25 第2ポンプ
26 補充用配管
27a、27b チェックバルブ(逆止弁)
28a 第1分岐圧力ライン
28b 第2分岐圧力ライン
30 充填スタンド
31 貯槽(充填元)
32 計量器
33 ノズル
40 圧力室
41 圧力用開口部
42 圧力開放路
43 電磁弁(圧力開放弁)

Claims (7)

  1.  流体の気相が流通する流通路と、前記流通路を遮断又は開放する主弁とを備えると共に、前記流体の気相が前記流通路の一方から他方に予め定めた流量以上に流通するときに、前記流通路を遮断する過流防止弁を備える弁装置において、
     前記流体の液相が流入する圧力室と、
     前記圧力室に流入した前記流体の液相の圧力により前記過流防止弁を開放状態に保持する離隔部材を備えることを特徴とする弁装置。
  2.  前記圧力室から前記流通路へ前記圧力室の圧力を開放する圧力開放路と、前記圧力開放路を遮断又は開放する圧力開放弁を備えることを特徴とする請求項1に記載の弁装置。
  3.  請求項1又は2に記載の弁装置を備える液化ガス燃料の貯蔵システムであって、
     液化ガス燃料を貯蔵する少なくとも一つの燃料タンクと、液化ガス燃料の気相を前記弁装置の前記流通路を介して前記燃料タンクと充填元との間で流通する気相用ラインと、液化ガス燃料の液相を充填元から前記燃料タンクに移送する液相用ラインとを備えると共に、
     充填元から液化ガス燃料の液相を前記燃料タンクに充填するときに、前記液相用ラインから液化ガス燃料の液相を前記弁装置の前記圧力室に導く分岐圧力ラインを備えることを特徴とする液化ガス燃料の貯蔵システム。
  4.  充填元から液化ガス燃料の液相を前記燃料タンクに充填した後に、予め定めた判定条件を満たすまで前記圧力開放弁を開放する制御装置を備えることを特徴とする請求項3に記載の液化ガス燃料の貯蔵システム。
  5.  請求項3又は4に記載の液化ガス燃料の貯蔵システムを搭載する車両。
  6.  請求項1又は2に記載の弁装置を用いた液化ガス燃料の貯蔵方法であって、
     液化ガス燃料を貯蔵する少なくとも一つの燃料タンクに、充填元から液化ガス燃料の液相を充填すると共に、液化ガス燃料の気相を前記弁装置の前記流通路を介して前記燃料タンクと充填元との間で流通して、充填元の内圧と前記燃料タンクの内圧を均圧する間に、
     前記弁装置の前記圧力室に液化ガス燃料の液相を流入し、流入した液化ガス燃料の液相の圧力により前記離隔部材で前記過流防止弁を開放状態に保持させることを特徴とする液化ガス燃料の貯蔵方法。
  7.  充填元から前記燃料タンクに液化ガス燃料を充填した後に、予め定めた判定条件を満たすまで前記圧力開放弁を開放し、前記圧力室の圧力を低減することを特徴とする請求項6に記載の液化ガス燃料の貯蔵方法。
PCT/JP2013/063502 2012-05-17 2013-05-15 弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法 WO2013172366A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380025033.5A CN104285089B (zh) 2012-05-17 2013-05-15 阀装置、液化气燃料的储存系统、车辆以及液化气燃料的储存方法
US14/396,760 US20150075623A1 (en) 2012-05-17 2013-05-15 Valve device, storage system for liquefied gas fuel, vehicle, and storage method for liquefied gas fuel
EP13790027.0A EP2851594B1 (en) 2012-05-17 2013-05-15 Valve device, storage system for liquefied gas fuel, vehicle, and storage method for liquefied gas fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-113643 2012-05-17
JP2012113643A JP6019741B2 (ja) 2012-05-17 2012-05-17 弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法

Publications (1)

Publication Number Publication Date
WO2013172366A1 true WO2013172366A1 (ja) 2013-11-21

Family

ID=49583770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063502 WO2013172366A1 (ja) 2012-05-17 2013-05-15 弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法

Country Status (5)

Country Link
US (1) US20150075623A1 (ja)
EP (1) EP2851594B1 (ja)
JP (1) JP6019741B2 (ja)
CN (1) CN104285089B (ja)
WO (1) WO2013172366A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982233B2 (ja) * 2012-09-07 2016-08-31 いすゞ自動車株式会社 液化ガス燃料充填システム
JP5966793B2 (ja) * 2012-09-14 2016-08-10 いすゞ自動車株式会社 液化ガス燃料の充填システムと、その充填方法。
JP6261771B2 (ja) * 2014-05-30 2018-01-17 ワルトシラ フィンランド オサケユキチュア 船舶の燃料タンク構成及び船舶のタンクコンテナの動作方法
BE1022425B1 (nl) * 2014-07-18 2016-03-29 INEOS Chlorotoluenes Belgium NV Mobiele inrichting voor het lossen van vloeistofcontainers
JP6435912B2 (ja) * 2015-02-23 2018-12-12 株式会社デンソー 燃料タンクシステム
US10877498B2 (en) 2017-10-27 2020-12-29 Brasscraft Manufacturing Company Excess flow and thermal valve
CN113154176A (zh) * 2021-04-27 2021-07-23 山东口天环保设备科技有限责任公司 一种复合式排气阀及阀底开关方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928736U (ja) * 1972-06-15 1974-03-12
JP2003314798A (ja) * 2002-04-19 2003-11-06 Neriki:Kk 過流防止弁
JP2007262903A (ja) 2006-03-27 2007-10-11 Isuzu Motors Ltd ジメチルエーテルエンジン搭載車両
JP2012017774A (ja) * 2010-07-06 2012-01-26 Tokiko Techno Kk 背圧弁

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT333091B (de) * 1974-06-21 1976-11-10 Hoerbiger Fluidtechnik Kg Druckregler fur stromende medien
US4223692A (en) * 1977-10-19 1980-09-23 Perry Landis H Recreational vehicle safety system
US4257448A (en) * 1978-12-15 1981-03-24 Shiu Chan K Flow cut-off device for insertion in a gas duct
US4986318A (en) * 1981-11-27 1991-01-22 Crown Cork & Seal Company, Inc. Filling valve for counterpressure filling of cans
US5474113A (en) * 1994-08-01 1995-12-12 H & K Machine, Inc. Can filling machine having a mechanism to prevent overfill
DE19518036C1 (de) * 1995-05-17 1996-12-05 Daimler Benz Ag Vorrichtung zum Betanken von Gasflaschen eines gasbetriebenen Omnibusses
CN2262147Y (zh) * 1995-12-09 1997-09-10 中外合资浙江新益空压机有限公司 减压阀
US6131624A (en) * 1999-01-19 2000-10-17 Crown Simplimatic Incorporated Filling valve assembly
KR100515120B1 (ko) * 2003-02-04 2005-09-15 장준혁 가스연료용기의 과압안전장치
KR100506689B1 (ko) * 2003-07-04 2005-08-08 화 현 손 자동절환밸브장치
KR100756651B1 (ko) * 2005-07-29 2007-09-07 신일환 액화석유가스용기용 과류차단밸브
JP5087356B2 (ja) * 2007-09-27 2012-12-05 トキコテクノ株式会社 液化ガス充填システム
WO2010146968A1 (ja) * 2009-06-19 2010-12-23 中央精機株式会社 液化ガス燃料供給装置
JP5416676B2 (ja) * 2010-10-19 2014-02-12 川崎重工業株式会社 ガスエンジンの燃料ガス供給システム
JP5427158B2 (ja) * 2010-10-19 2014-02-26 川崎重工業株式会社 燃料ガス供給充填システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928736U (ja) * 1972-06-15 1974-03-12
JP2003314798A (ja) * 2002-04-19 2003-11-06 Neriki:Kk 過流防止弁
JP2007262903A (ja) 2006-03-27 2007-10-11 Isuzu Motors Ltd ジメチルエーテルエンジン搭載車両
JP2012017774A (ja) * 2010-07-06 2012-01-26 Tokiko Techno Kk 背圧弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2851594A4

Also Published As

Publication number Publication date
CN104285089A (zh) 2015-01-14
CN104285089B (zh) 2016-06-01
US20150075623A1 (en) 2015-03-19
EP2851594A4 (en) 2016-03-09
JP6019741B2 (ja) 2016-11-02
JP2013241950A (ja) 2013-12-05
EP2851594B1 (en) 2017-07-12
EP2851594A1 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2013172366A1 (ja) 弁装置、液化ガス燃料の貯蔵システム、車両、及び液化ガス燃料の貯蔵方法
JP5427158B2 (ja) 燃料ガス供給充填システム
US7426935B2 (en) Method of discharging high pressure storage vessels
CN102400799A (zh) 经由液体燃料和燃料蒸气的选择性提取的燃料箱温度与压力管理
US9732706B2 (en) System and methods for regulating fuel vapor flow in a fuel vapor recirculation line
CN107735613B (zh) 多容器流体储存和输送系统
CN111989634B (zh) 用于燃料电池车辆的移动式氢分配器
US10443546B2 (en) Fuel storage system
KR100999620B1 (ko) 엘앤지 연료 공급 시스템
JP5982233B2 (ja) 液化ガス燃料充填システム
JP2014141930A (ja) 液化ガス燃料の供給システム、車両、及び車両の始動方法
FR3101930A1 (fr) Système de gestion d’un réservoir de Gaz Naturel Liquéfié (GNL) pour véhicule ou unité mobile.
US7484540B2 (en) Liquid hydrogen storage tank with reduced tanking losses
JP5966793B2 (ja) 液化ガス燃料の充填システムと、その充填方法。
JP2012233493A (ja) 液化燃料貯留装置
JP4936750B2 (ja) 燃料供給システム
JP5396076B2 (ja) 液化天然ガス車両の燃料系システム
KR102526253B1 (ko) 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR102573651B1 (ko) 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
JP2019145526A (ja) 燃料ガス貯蔵供給システム
JP3865359B2 (ja) 自動車への液化石油ガス燃料の供給方法
WO2022218704A1 (fr) Dispositif de stockage et de fourniture de fluide et véhicule, véhicule et procédé comportant un tel dispositif
JP3673891B2 (ja) 車両用燃料タンク装置
KR20220156527A (ko) 암모니아 저장 및 전달 시스템
CN116194695A (zh) 具有阀装置的罐装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396760

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013790027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013790027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE