WO2013172355A1 - ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法 - Google Patents

ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法 Download PDF

Info

Publication number
WO2013172355A1
WO2013172355A1 PCT/JP2013/063452 JP2013063452W WO2013172355A1 WO 2013172355 A1 WO2013172355 A1 WO 2013172355A1 JP 2013063452 W JP2013063452 W JP 2013063452W WO 2013172355 A1 WO2013172355 A1 WO 2013172355A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
polyimide
substrate
polyimide layer
Prior art date
Application number
PCT/JP2013/063452
Other languages
English (en)
French (fr)
Inventor
公一 服部
平石 克文
拓平 太田
寺嶋 晋一
秀昭 須田
将夫 黒▲崎▼
將元 田中
修司 長▲崎▼
淳 水山
Original Assignee
新日鉄住金化学株式会社
新日鐵住金株式会社
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社, 新日鐵住金株式会社, 新日鉄住金マテリアルズ株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201380025071.0A priority Critical patent/CN104284777B/zh
Priority to US14/400,720 priority patent/US20150136209A1/en
Priority to JP2014515644A priority patent/JP6247206B2/ja
Publication of WO2013172355A1 publication Critical patent/WO2013172355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyimide layer-containing flexible substrate suitable as a solar cell substrate and a printed wiring board, a polyimide layer-containing flexible solar cell substrate, a flexible solar cell using the same, and a method for producing them.
  • the compound When forming the compound semiconductor thin film as the photoelectric conversion layer, the compound is placed on a substrate and sintered at 350 to 600 ° C. depending on the type of the compound.
  • the substrate material requires heat resistance to the temperature. Is done.
  • the substrate material has heat resistance that can withstand 500 ° C. Since tin and zinc have melting points of 232 ° C.
  • Patent Document 1 discloses using an aluminum alloy containing a plurality of metal elements such as Si, Fe, Cu, Mn, Sc, and Zr.
  • Patent Document 2 discloses the use of an aluminum alloy containing 2.0 to 7.0% by mass of magnesium in order to prevent this decrease in insulation resistance.
  • Patent Document 3 uses a resin substrate instead of an aluminum alloy as a substrate, and uses a flexible connector made of an electrolytic copper foil laminated on both sides with a flexible PET resin to provide flexibility.
  • a dye-sensitized solar cell module is disclosed.
  • the drawback of the resin substrate is the lack of heat resistance.
  • an expensive resin is used to ensure heat resistance.
  • the heat removal characteristic is not sufficient and the strength is insufficient with a single resin, it is preferable to have a structure in which a metal foil and a resin layer are laminated in order to ensure heat removal.
  • Patent document 4 discloses the manufacturing method of the flexible laminated substrate which forms a polyimide resin layer on a conductor. However, it is required to improve high heat resistance, smoothness, and metal diffusion prevention properties while maintaining high flexibility.
  • the present invention has, for example, heat resistance that can withstand high temperatures such as during sintering of a photoelectric conversion layer of a thin film solar cell, excellent smoothness, and prevents penetration and diffusion of metal into the photoelectric conversion layer.
  • An object of the present invention is to provide a flexible substrate that can be used for various purposes.
  • Another object of the present invention is to provide a flexible solar cell using the substrate. That is, an object of the present invention is to achieve both high heat resistance and smoothness while maintaining high flexibility in a flexible substrate, and at the same time, preventing metal diffusion.
  • the metal substrate is a metal foil made of ordinary steel or stainless steel having a thermal expansion coefficient of 15 ppm / K or less in the surface direction, or the ordinary steel.
  • a polyimide layer containing a specific physical property is formed on a metal substrate having a metal layer made of copper, nickel, zinc or aluminum or an alloy layer thereof on the surface of a metal foil made of stainless steel.
  • the polyimide layer-containing flexible substrate of the present invention has a layer thickness formed on a metal substrate which is a metal foil made of ordinary steel or stainless steel having a thermal expansion coefficient of 15 ppm / K or less in the plane direction, and the metal substrate. And a polyimide layer having a glass transition temperature of 300 to 450 ° C.
  • the polyimide layer containing flexible substrate of this invention is a metal which consists of 1 type of copper, nickel, zinc, or aluminum on the surface of the metal foil which consists of normal steel or stainless steel whose surface direction thermal expansion coefficient is 15 ppm / K or less.
  • a metal substrate having a layer or an alloy layer thereof, a polyimide layer formed on the metal layer or the alloy layer and having a layer thickness of 1.5 to 100 ⁇ m and a glass transition temperature of 300 to 450 ° C.
  • the metal layer or the alloy layer is an aluminum layer or an aluminum alloy layer.
  • the polyimide layer-containing flexible substrate of the present invention preferably, the polyimide layer has a thermal expansion coefficient of 15 ⁇ 10 ⁇ 6 / K or less from 100 ° C. to 250 ° C. in the plane direction.
  • the polyimide layer-containing flexible substrate of the present invention preferably has a surface roughness of 10 nm or less on the surface of the polyimide layer that does not contact the metal substrate.
  • the above-mentioned polyimide layer-containing flexible substrate of the present invention is preferably a metal content that forms the metal substrate on the surface of the polyimide layer that does not contact the metal substrate after heat treatment at 400 ° C. for 10 minutes. However, it is below the detection limit in the measurement by the emission spectrum detection method.
  • the polyimide layer-containing flexible solar cell substrate of the present invention uses the above polyimide layer-containing flexible substrate.
  • the flexible solar cell of the present invention includes the above polyimide layer-containing flexible solar cell substrate, a lower electrode formed on the polyimide layer, a photoelectric conversion layer formed on the lower electrode, and the photoelectric conversion.
  • the content of the metal forming the metal substrate in the photoelectric conversion layer is preferably below the detection limit in the measurement by the emission spectrum detection method.
  • the content of the metal forming the metal substrate on the surface of the polyimide layer on the side not in contact with the metal substrate is a detection limit in measurement by an emission spectrum detection method. It is as follows.
  • the manufacturing method of the polyimide layer containing flexible substrate of this invention apply
  • the manufacturing method of the polyimide layer containing flexible substrate of this invention is 1 type of copper, nickel, zinc, or aluminum on the surface of the metal foil which consists of normal steel or stainless steel whose surface direction thermal expansion coefficient is 15 ppm / K or less.
  • Forming a metal substrate by forming a metal layer or an alloy layer thereof, forming a metal substrate, applying a polyimide precursor solution on the metal layer or the alloy layer, and heat-treating the polyimide precursor solution And curing by drying and imidization to form a polyimide layer having a layer thickness of 1.5 to 100 ⁇ m and a glass transition temperature of 300 to 450 ° C.
  • the method for producing the polyimide layer-containing flexible substrate of the present invention described above preferably includes the metal layer or the metal layer.
  • An aluminum layer or an aluminum alloy layer is formed as the alloy layer.
  • substrate of this invention is a polyimide layer containing flexible solar cell board
  • substrate of this invention is on the said polyimide layer of the polyimide layer containing flexible solar cell board
  • the emission spectrum detection method means the following method. That is, a glow discharge emission spectrometer GD-PROFILER 2 (manufactured by Horiba, Ltd. (manufactured by JOBIN YVON)) is used to detect the spectrum of each metal forming the metal substrate for the polyimide layer and the photoelectric conversion layer. Measure whether or not. Specifically, (1) a spectrum is measured by changing the concentration of the standard sample of the metal element, and a calibration curve (output voltage (V) ⁇ concentration (mass%)) for metal element concentration conversion is created. A calibration curve is created for each target metal element. (2) About each sample sampled from the polyimide layer and the photoelectric converting layer, the emission spectrum of a target metal element is measured with the said analyzer. (3) Since the peak intensity of the emission spectrum of each metal element is detected by the output voltage (V) of the detector, the concentration of the metal element is read from the calibration curve. (4) When the concentration is less than 0.1% by mass, the detection limit is not exceeded.
  • the polyimide layer-containing flexible substrate of the present invention has heat resistance that can withstand high temperatures such as when the photoelectric conversion layer of a thin film solar cell is sintered, and can prevent penetration and diffusion of metal into the photoelectric conversion layer. . Therefore, it can be applied to various uses such as a solar cell substrate and a printed wiring board. Moreover, the flexible solar cell of this invention can obtain favorable photoelectric efficiency because the metal component in a metal substrate does not osmose
  • the first embodiment of the present invention is formed on a metal substrate made of a metal foil 1 of ordinary steel or stainless steel (hereinafter abbreviated as SUS) having a thermal expansion coefficient in the plane direction of 15 ppm / K or less, and the metal substrate.
  • SUS stainless steel
  • the polyimide layer-containing flexible substrate 10 having the polyimide layer 3 having a layer thickness of 1.5 to 100 ⁇ m and a glass transition temperature of 300 to 450 ° C.
  • polyimide alone cannot ensure barrier properties, especially barrier properties against gas components such as moisture and oxygen, without providing a separate barrier film, the function deteriorates due to intrusion of other external components such as gas components, Insufficient compatibility as a device substrate.
  • the strength of polyimide alone is not always sufficient, and depending on the mechanical load, there is a risk of cutting, etc. even in handling to the extent that it is wound on a roll, etc., and the mechanical load covers a sufficiently wide range. Both durability and flexibility cannot be obtained.
  • the metal alone has sufficient barrier properties and strength, the smoothness is not so good as Ra> 20 nm.
  • the necessary barrier properties and strength can be secured by compensating for the lack of barrier properties and strength of the polyimide layer, and there is no fear of cracking like glass.
  • flexibility can be maintained, and since a polyimide layer is laminated, high smoothness (Ra ⁇ 10 nm) similar to that of a glass substrate can be realized.
  • the polyimide layer does not have heat resistance, the polyimide layer is burnt or deformed under a high-temperature process such as a CIGS manufacturing process.
  • a high-temperature process such as a CIGS manufacturing process.
  • the polyimide layer 3 formed on the metal layer 2 has a glass transition point of 300 ° C. or more and 450 ° C. or less in terms of practicality such as production cost, photoelectric conversion is applied. This is because softening, deformation or decomposition can be suppressed at the sintering temperature of the layer.
  • the heat-resistant polyimide layer and the metal substrate are peeled off.
  • the warp of the heat-resistant polyimide layer is suppressed by making the polyimide layer as thin as 1.5 to 100 ⁇ m, and the thermal expansion coefficient of the metal substrate is about the same as the thermal expansion coefficient of the heat-resistant polyimide layer. Specifically, it is set to 15 ppm / K or less.
  • the thermal expansion coefficient of ordinary steel or SUS In order to control the thermal expansion coefficient of ordinary steel or SUS as described above, it is better to use a cold-rolled steel sheet for ordinary steel, and a ferritic one for SUS, and further, for example, by rolling them. It is preferable to develop a texture of (100) [011] in the plane. Specifically, the rolling reduction from the starting material to the completion of foil rolling is preferably 30% or more. Further, the degree of texture development should be 30% or more in the in-plane integration degree. For the observation, it is easy to use an EBSD (Electron Backscattered Diffraction) because an accurate value can be obtained.
  • the thickness of the metal substrate is preferably 10 to 200 ⁇ m because the flexible substrate can be reduced in weight and the weight of the solar cell can be reduced.
  • a structure in which heat-resistant polyimide is directly laminated on a metal substrate made of ordinary steel metal foil may be used.
  • ordinary steel does not have sufficient corrosion resistance.
  • a structure using SUS foil as the metal substrate is preferable.
  • the SUS foil has corrosion resistance even if the end face is exposed, it is not always necessary to protect the end face with a coating or the like for imparting or improving the corrosion resistance.
  • the heat resistant polyimide is not directly laminated on the ordinary steel or SUS metal foil 1 according to the second embodiment of the present invention, but on the surface of the ordinary steel or SUS metal foil 1.
  • a metal substrate having a metal layer made of one of copper, nickel, zinc or aluminum or an alloy layer thereof hereinafter referred to as metal layer or alloy layer 2), and formed on the metal layer or alloy layer 2.
  • a polyimide layer-containing flexible substrate having a polyimide layer 3 having a layer thickness of 1.5 to 100 ⁇ m and a glass transition temperature of 300 to 450 ° C. may be used. This is because by providing a layer not containing Fe atoms between the metal substrate and the polyimide layer, the diffusion distance of Fe atoms becomes longer and the diffusion of Fe atoms into the power generation layer is suppressed. Except for the above, the configuration is the same as that of the first embodiment.
  • the metal layer needs to be a metal that does not melt when the compound semiconductor is manufactured, and aluminum having a melting point of 660 ° C., copper at 1084 ° C., nickel at 1455 ° C. is preferable, and an inexpensive electroless plating method can be used. Aluminum is more preferred.
  • a CdTe layer is used as a power generation layer of a solar cell, zinc having a melting point of 420 ° C. can be used because the process temperature is low.
  • the formation of the metal layer includes plating, vapor deposition, CVD, etc., but the plating method is most preferable. Since the metal foil 1 (ground iron) is exposed at the end face of the metal substrate having the metal layer or the alloy layer 2, it is preferable to coat the end face with a resin or the like in order to improve the corrosion resistance.
  • the plating may be performed after the formation of the metal foil 1 or may be performed on the metal plate base material before foil rolling. In the latter case, the metal foil with a plating layer is rolled after plating.
  • Mg, Si, Zn, Ca, Sn, and the like can be used as a metal other than aluminum.
  • the content of these metals in the aluminum alloy is preferably 2 to 15% by weight. This is because both high heat resistance and corrosion resistance can be achieved.
  • the metal foil 1 on which the metal layer or alloy layer 2 is formed by plating or the like is hereinafter referred to as a metal substrate 5 with a metal layer or alloy layer.
  • the thickness of the metal layer or alloy layer 2 by plating is preferably 0.1 to 30 ⁇ m. If it is less than 0.1 ⁇ m, a sufficiently suitable corrosion resistance effect cannot be obtained and there is a risk that the metal foil 1 is oxidized. On the other hand, if it exceeds 30 ⁇ m, it is necessary to plate a large amount of plating species, resulting in high production costs. is there.
  • the thickness of the metal layer or alloy layer 2 by plating is 1 to 30 ⁇ m, more preferably the thickness of the metal layer or alloy layer 2 by plating is 3 to 30 ⁇ m, most preferably the metal layer or alloy layer 2 by plating. If the thickness is 8-30 ⁇ m, a sufficient corrosion resistance can be obtained.
  • a metal foil with an aluminum (hereinafter, sometimes abbreviated as “Al”) produced by a conventional technique, a metal foil with a Cu-containing, Ni-containing, or Zn-containing metal layer is used. Flexibility tends to decrease.
  • a metal layer or alloy layer 2 is formed by plating such as aluminum or aluminum mainly on a normal steel layer or a SUS layer, a metal foil 1 made of the normal steel layer or SUS and an Al-containing metal layer are formed.
  • an Fe—Al based alloy layer 4 (for example, an intermetallic compound such as FeAl 3 , Fe 2 Al 8 Si, FeAl 5 Si) is formed in a layer at the interface with the alloy layer 2, and this Fe—Al based alloy layer 4 is very hard and brittle, and if the plated steel or SUS is extremely elastically plastically deformed during handling, the Fe—Al alloy layer 4 cannot follow the deformation of the metal foil layer 1, and finally In addition, peeling of the metal foil 1 from the Al-containing metal layer or alloy layer 2 and cracking of the Al-containing metal layer or alloy layer 2 may be induced.
  • an intermetallic compound such as FeAl 3 , Fe 2 Al 8 Si, FeAl 5 Si
  • a metal substrate 5 having a structure in which an Al-containing metal layer or alloy layer 2 is formed on a metal foil 1 as described below is used.
  • the elastic-plastic deformability of the Al-containing metal layer or the metal substrate 5 with the alloy layer 2 can be evaluated by using a peel test described later as an index. If the metal substrate 5 has a high level of elastic-plastic deformability, Good adhesion between the Al-containing metal layer or alloy layer 2 and the metal foil 1 without peeling of the Al-containing metal layer or alloy layer 2 is obtained.
  • Example 1 After the polyimide layer 3 is laminated, the Fe—Al-based alloy layer 4 formed at the interface between the metal foil 1 and the Al-containing metal layer or alloy layer 2 has a thickness of 0.1 to 8 ⁇ m, and , Al 7 Cu 2 Fe intermetallic compound or FeAl 3 based intermetallic compound is preferable because the above-mentioned higher level of elastoplastic deformability can be satisfied. This effect cannot be obtained sufficiently by merely laminating the polyimide layer 3 or controlling the Fe—Al-based alloy layer 4 as described above, but can be obtained only by applying both simultaneously.
  • the thermal expansion coefficient of the Fe—Al-based alloy layer 4 controlled as described above is such that the thermal expansion coefficient in the plane direction of the polyimide layer 3 and the steel layer 1 as the base material It is expected that the intermediate value of the coefficient of thermal expansion will ease the stress generated in the laminate and prevent peeling and cracking.
  • the Al 7 Cu 2 Fe intermetallic compound or FeAl 3 -based intermetallic compound preferably contains 50% or more in area% in the Fe—Al-based alloy layer 4 and contains 90% or more. More preferably.
  • the FeAl 3 -based intermetallic compound refers to an element constituting the system (for example, an element constituting an Al-containing metal layer such as Si or Cu, or pre-plating such as Ni or Cu in the FeAl 3 intermetallic compound.
  • the FeAl intermetallic compound 3 group, particularly, an intermetallic compound of FeAl 3 groups Cu is solid-solved, or, it is preferable Ni is an intermetallic compound of FeAl 3 groups were dissolved.
  • the Vickers hardness of the Fe—Al-based alloy layer 4 is about 200 to 600 Hv, the element to be dissolved is not limited to Ni or Cu.
  • the method of forming the Fe—Al-based alloy layer 4 containing the Al 7 Cu 2 Fe intermetallic compound or FeAl 3 -based intermetallic compound described above is performed by applying Cu-containing alloy described later when performing Al-containing plating on ordinary steel.
  • the elements constituting the system are diffused from the Ni pre-plated film, the steel layer 1 and the Al-containing metal layer 2 and then alloyed with Fe and Al.
  • the Fe—Al based alloy layer 4 containing this Al 7 Cu 2 Fe intermetallic compound or FeAl 3 based intermetallic compound has a Vickers hardness of 500 to 600 Hv.
  • the conventional hard and brittle Fe—Al alloy layer 4 described above has a Vickers hardness of about 900 Hv.
  • the Fe—Al based alloy layer 4 is less than 0.1 ⁇ m, the above effect as the soft Fe—Al based alloy layer 4 cannot be obtained.
  • the thickness exceeds 8 ⁇ m the diffusion of the elements constituting the system proceeds excessively and Kirkendall voids are likely to occur, which is not preferable.
  • the thickness of the Fe—Al-based alloy layer 4 is preferably 0.1 to 8 ⁇ m. Further, when the thickness is 3 to 8 ⁇ m, the corrosion resistance of the metal substrate 5 with the Al-containing metal layer or alloy layer 2 is further enhanced, which is preferable. Further, it is most preferable that the thickness is 3 to 5 ⁇ m because both advanced effects can be obtained simultaneously.
  • the metal foil 1 and the Fe layer are formed.
  • -Adhesiveness with the Al-based alloy layer 4 is further increased, and elastoplastic deformation is improved, which is preferable.
  • the Fe—Al-based alloy layer 4 does not easily peel off.
  • the effect of the Fe—Al alloy layer 4 is not hindered.
  • the thickness of the Cu layer or Ni layer is less than 2 ⁇ m, the effect of improving the adhesion between the metal foil 1 and the Fe—Al-based alloy layer 4 cannot be obtained.
  • the thickness exceeds 10 ⁇ m, the above effect is saturated and the cost for forming the pre-plated film is increased, which is not preferable.
  • a normal steel (carbon steel) plate of an arbitrary component is rolled to a thickness of 200 to 500 ⁇ m as the first rolling process.
  • This rolling method may be either hot or cold. If the thickness of the steel sheet is less than 200 ⁇ m, it is too thin to handle in the subsequent process. On the other hand, if the thickness of the steel sheet exceeds 500 ⁇ m, it is too thick and a load is applied to the subsequent process. In consideration of productivity in the subsequent process, it is preferable to perform rolling until the thickness reaches 250 to 350 ⁇ m as the first rolling treatment.
  • the steel sheet after the first rolling process is subjected to a pre-plating process for applying Cu or Ni pre-plating, a plating process for applying Al-containing plating, and a second rolling process.
  • the order of these treatments is (1) pre-plating treatment, plating treatment, and second rolling treatment, (2) pre-plating treatment, second rolling treatment, and plating treatment, and (3) second rolling treatment, pre-treatment. Either plating treatment or plating treatment may be used.
  • an electrolytic plating method or an electroless plating method is performed using a Cu or Ni plating bath.
  • the Cu pre-plated film and the Ni pre-plated film have an initial thickness of 0.05 to 4 ⁇ m
  • the Al-containing metal layer or alloy layer 2 is formed by plating, the metal foil 1 and Al
  • the thickness of the Fe—Al-based alloy layer 4 formed between the contained metal layer or the alloy layer 2 is 0.1 to 8 ⁇ m.
  • the initial thickness of the pre-plated film is used. The thickness may be controlled to 1.5 to 2.5 ⁇ m.
  • the component composition of the metal foil 1 and the Al-containing metal layer or alloy layer 2 may be adjusted as appropriate.
  • an electrolytic plating method and an electroless plating method can be used as the plating treatment for forming the Al-containing metal layer or alloy layer 2 by plating.
  • the rolling conditions may be normal rolling conditions. If the thickness of the metal substrate 5 with the Al-containing metal layer or the alloy layer 2 is less than 10 ⁇ m, it is not preferable because the metal substrate 5 is too thin and the strength is insufficient. Further, if the thickness of the metal substrate 5 with the Al-containing metal layer or alloy layer 2 exceeds 250 ⁇ m, it is not preferable because the metal substrate 5 is too thick and too heavy.
  • Example 2 As a result of intensive studies by the present inventors, after the polyimide layer 3 is laminated, the Fe—Al-based alloy layer 4 between the Al-containing metal layer or alloy layer 2 and the metal foil 1 is dispersed in a granular form. Thus, it has been found that conventional cracking and peeling of the Al-containing metal layer or alloy layer 2 can be suppressed and the metal foil 1 and the Al-containing metal layer or alloy layer 2 can be firmly bonded. This effect cannot be obtained sufficiently by merely laminating the polyimide layer 3 or controlling the Fe—Al-based alloy layer 4 as described above, but can be obtained only by applying both simultaneously.
  • the Fe—Al-based alloy layer 4 exists in a form that is granular and bites into the metal foil 1. This is considered to be achieved by relaxing the stress generated in the laminate.
  • the granular Fe—Al alloy at the interface has a maximum equivalent sphere equivalent diameter x ( ⁇ m) of 10 ⁇ m or less, and an Al-containing metal layer or alloy layer 2 on the surface.
  • X and T must be in a relationship represented by the following formula (1), where T is a thickness of T ( ⁇ m). It should be noted that the particle size can be measured with high accuracy while using a value measured while observing a cross-sectionally polished specimen with a scanning electron microscope or an optical microscope.
  • the lower limit value of the maximum particle size x of the granular Fe—Al alloy is preferably 1.5 ⁇ m or more or 0.1 T or more. This is because the effect of firmly bonding the metal foil 1 and the Al-containing metal layer or alloy layer 2 cannot be obtained when the particles are less than 1.5 ⁇ m or less than 0.1 T. However, when there is a granular alloy of 1.5 ⁇ m or more or 0.1 T or more, the effect of the present invention can be obtained, so there is no problem even if granular alloys of less than 1.5 ⁇ m are mixed.
  • the interval between the adjacent granular alloys of the granular Fe—Al alloy having a sphere equivalent diameter larger than 1.5 ⁇ m is 100 ⁇ m or less. If the distance exceeds 100 ⁇ m, the function of firmly bonding the metal foil 1 and the Al-containing metal layer or alloy layer 2 is reduced, leading to peeling or cracking of the Al-containing metal layer or alloy layer 2, This is because the corrosion resistance also decreases.
  • the size of the granular alloy to which the formula (2) is applied is in the range where the equivalent diameter of the sphere is 1.5 ⁇ m or more. Depending on the average particle size of the alloy, there is an optimum range for the interval. Qualitatively, when the average particle size is small, the bite into the metal foil 1 is also small, so it is desirable that the particle interval is small. When the average particle size is large, the particle interval is increased to about 100 ⁇ m. The effect can be expected.
  • the above-described Al-containing metal layer or alloy layer 2 is formed on a normal steel having a thickness of 200 to 500 ⁇ m by hot dipping, and then it takes 3 passes or more. Roll. At this time, based on increasing the rolling reduction of the second pass from the first pass and lowering the rolling reduction of the third pass from the second pass, the granular alloy is rolled by rolling to the final thickness after plating over 3 passes. You can change the size and dispersion state of.
  • the thickness of the metal substrate 5 with the Al-containing metal layer or the alloy layer 2 is preferably 200 ⁇ m or less in terms of flexibility, and more preferably 50 ⁇ m or more in terms of strength.
  • the thickness of the Al-containing metal layer or alloy layer 2 is preferably 15 to 40 ⁇ m in view of smoothness of appearance, oxidation resistance, corrosion resistance, flexibility as a substrate, and the like.
  • the thermal expansion coefficient from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is more preferably 15 ⁇ 10 ⁇ 6 / K or less. This is because the penetration and diffusion of the metal components of the metal foil 1 and the Al-containing metal layer or the alloy layer 2 into the polyimide layer 3 can be more effectively prevented while maintaining flexibility.
  • the metal component penetrates and diffuses through the polyimide layer 3 in the photoelectric conversion layer 7 and the electrodes 6 and 8 that are formed on the polyimide layer 3 at the time of manufacturing a solar cell having a configuration described later. It can be surely prevented from coming.
  • the coefficient of thermal expansion from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is effective for preventing the penetration and diffusion of metal components is not more than 15 ⁇ 10 ⁇ 6 / K is not clear, but is I think so. That is, if the thermal expansion coefficient from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is 15 ⁇ 10 ⁇ 6 / K or less, the orientation of the polyimide molecules in the plane direction is high (high orientation), It is considered that the regularly oriented polymer blocks the metal and prevents the penetration, diffusion and passage of the metal.
  • the smoothness of the metal surface is controlled within the range of 20 to 80 nm for Ra and 150 to 600 nm for Rz, the adhesion between the polyimide molecules and the metal can be sufficiently secured. good.
  • the reason for this is thought to be that polyimide molecules wet well with the uneven portions on the metal surface.
  • the smoothness of the metal surface is less than 20 nm for Ra and less than 150 nm for Rz, the adhesion of polyimide molecules to the metal surface is reduced, resulting in insufficient adhesion.
  • the unevenness of the metal surface will be too severe, so that the polyimide molecules will not sufficiently enter the protrusions on the metal surface, and the polyimide molecules will be uneven. Adhesiveness cannot be sufficiently obtained because the air layer remains between the bottom of the part.
  • the following can be exemplified as the polyimide having such high orientation. That is, a reaction product of a tetracarboxylic acid compound and a diamino compound represented by the following chemical formula (1) can be given.
  • Examples of the tetracarboxylic acid compound containing Ar 1 in the chemical formula (1) include aromatic tetracarboxylic acids and acid anhydrides, esterified products, halides, etc., and aromatic tetracarboxylic acid compounds are preferable.
  • the acid anhydride is preferable in terms of the ease of synthesis of the polyamic acid (polyamic acid) which is a precursor of the polyimide resin.
  • the aromatic tetracarboxylic acid compound O (CO) 2 Ar 1 (CO) compound represented by the 2 O is mentioned as suitable.
  • one type of tetracarboxylic acid compound may be used, or two or more types may be mixed and used.
  • Ar 1 is preferably a tetravalent aromatic group represented by the following chemical formula (2), and the substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but is symmetrical. Position is preferred.
  • Ar 1 may have a substituent, but it is preferably not present or, when present, a lower alkyl group having 1 to 6 carbon atoms.
  • PMDA pyromellitic dianhydride
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • DBDA 4,4′-diphenylsulfonetetracarboxylic dianhydride
  • ODPA 4,4′-oxydiphthalic dianhydride
  • diamino compound examples include aromatic diamino compounds represented by NH 2 —Ar 2 —NH 2 .
  • Ar 2 is preferably selected from the group represented by the following chemical formula (3), and the substitution position of the amino group is arbitrary, but the p, p′-position is preferred.
  • Ar 2 may have a substituent, but it is preferably not present or, when present, a lower alkyl or lower alkoxy group having 1 to 6 carbon atoms.
  • aromatic diamino compounds may be used alone or in combination of two or more.
  • diaminodiphenyl ether DAPE
  • 2′-methoxy-4,4′-diaminobenzanilide MABA
  • 2,2′-dimethyl-4,4′-diaminobiphenyl m-TB
  • P-PDA Paraphenylenediamine
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • APIB 1,3-bis (3-aminophenoxy) benzene
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • part or all of the amino group may be trialkylsilylated or amidated with an aliphatic acid such as acetic acid.
  • a polyimide obtained by a reaction between an aromatic tetracarboxylic acid having Ar 1 represented by the chemical formula (2) and an aromatic diamino compound having Ar 2 represented by the chemical formula (3) is preferable.
  • there is a difference in the potential to develop high orientation depending on the structure of the polyimide and if it has the following structural features, it tends to induce higher orientation in the polyimide.
  • a polyimide having a rigid linear structure is formed.
  • B) Does not have a structure with a high degree of rotational freedom such as an ether bond or a methylene bond.
  • C having an amide group presumed to have a function of reducing the linear thermal expansion coefficient.
  • the surface direction of the polyimide layer 3 can be controlled by controlling the curing temperature.
  • the coefficient of thermal expansion from 100 ° C. to 250 ° C. can be 15 ⁇ 10 ⁇ 6 / K or less.
  • the tetracarboxylic dianhydride and the diamino compound are mixed at an approximately equimolar ratio and reacted in the reaction temperature range of 0 to 200 ° C., preferably in the range of 0 to 100 ° C.
  • a precursor polyamic acid (polyamic acid) is synthesized.
  • a method of obtaining polyimide by imidizing it is exemplified.
  • Solvents include N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, cyclohexanone, Examples include dioxane, tetrahydrofuran, diglyme, and triglyme.
  • the polyamic acid is synthesized in a reaction vessel or the like, and the polyamic acid (or polyamic acid solution) is added to the Al-containing metal layer.
  • the polyimide layer 3 can be formed by imidization after being applied to the alloy layer 2.
  • the polyimide layer 3 may be formed by performing imidization in a reaction vessel, applying the polyimide solution to the Al-containing metal layer or alloy layer 2, and drying and removing the solvent.
  • the thermal expansion coefficient from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is preferably 15 ⁇ 10 ⁇ 6 / K or less. This can be achieved by controlling the orientation of the molecules in the polyimide layer. Specifically, by forming the polyimide layer while controlling the temperature as follows, the thermal expansion coefficient from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is 15 ⁇ 10 ⁇ 6 / K or less, and the orientation High polyimide layer can be formed.
  • the solvent when the solvent is volatilized from the polyamic acid solution containing the solvent applied to the substrate and dried and cured, the solvent is gradually added so that the polyimide molecules are regularly arranged in the temperature range of 100 to 150 ° C. where imidization starts. Control to volatilize.
  • a polyimide layer having a thermal expansion coefficient of 15 ⁇ 10 ⁇ 6 / K or less from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 can be obtained.
  • the initial heat treatment conditions during drying and curing are such that the temperature of 100 to 150 ° C. is 3 minutes or more in terms of integration time, more preferably the temperature of 110 to 140 ° C. is 5 minutes or more in integration time.
  • the polyimide layer 3 formed on the metal substrate 5 in the form of the polyimide layer-containing flexible substrate 10 has an AFM (surface roughness of the polyimide layer surface located on the outer side (the side not in contact with the metal substrate 5)). In the measurement with an atomic force microscope), it is preferably 10 nm or less, more preferably 5 nm or less. If the surface roughness exceeds this value, defects are likely to occur in the lower electrode and the photoelectric conversion layer when the solar cell is configured. In order to make the surface roughness of the polyimide surface 10 nm or less, when forming the polyimide layer 3 on the metal substrate 5, the value is lowered by applying a polyamic acid solution in a solution state, drying and imidizing. Can do.
  • the range of the thermal expansion coefficient from 100 ° C. to 250 ° C. in the plane direction of the polyimide layer 3 is also affected by the structure of the acid and diamine monomer components constituting the polyimide. From such a viewpoint, there is a polyimide having a rigid linear structure without having a structure with a large degree of rotational freedom such as an ether bond or a methylene bond. Such a polyimide has a high glass transition temperature, 300 It also has a feature of having a range of ⁇ 450 ° C.
  • the thickness of the polyimide layer 3 needs to be 1.5 micrometers or more, Preferably it is 2 micrometers or more, More preferably Is 3 ⁇ m or more.
  • the effect of the polyimide layer 3 as a protective film is increased, and the penetration of the metal component forming the metal foil 1 and the Al-containing metal layer or alloy layer 2 into the photoelectric conversion layer formed on the polyimide layer 3 is ensured. This is because it can be prevented.
  • the polyimide layer has a thickness of 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the surface treatment of the metal substrate can be carried out by subjecting the Al-containing metal layer or alloy layer 2 of the metal substrate 5 or the surface thereof to a chemical or physical surface treatment.
  • An arbitrary layer may be interposed between 5 and the polyimide layer 3 as long as the effects of the present invention are not impaired.
  • a metal layer or alloy layer 2 made of copper, nickel, zinc, aluminum, or an alloy thereof is formed on the surface of the metal foil 1 by, for example, plating (S1).
  • S1 plating
  • the metal foil 1 for example, a metal foil made of ordinary steel or SUS is used, and as the plating method, for example, the above-described hot dipping method can be adopted.
  • the process of forming the metal layer or the alloy layer 2 is unnecessary.
  • the polyamic acid solution or the polyimide solution which is the polyimide precursor described above for the synthesis method, is applied on the metal layer or alloy layer 2 (S2).
  • the polyamic acid solution and the polyimide solution are collectively referred to as a pre-polyimide layer.
  • the polyimide layer 3 adhered to the metal layer or the alloy layer 2 is formed by drying [heat removal of the solvent] (S3) and imidization [heat curing treatment] (S4).
  • step 4 (S4) is not performed because it has already been imidized.
  • step 3 the temperature is controlled so that the temperature of 100 to 250 ° C. becomes 1 to 10 minutes in the integrated time, and drying (heat removal of the solvent) is performed.
  • a highly oriented polyimide film is formed in the plane direction.
  • step 4 for example, a temperature of 100 to 150 ° C. is accumulated for 3 to 15 minutes, preferably a temperature of 110 to 140 ° C. is accumulated for 5 to 10 minutes, 320 to A polyimide film highly oriented in the plane direction is formed by imidization by controlling the temperature so that the temperature of 380 ° C. is 5 minutes or more, preferably 5 to 60 minutes in terms of the accumulated time.
  • the polyimide layer-containing flexible substrate 10 in which the highly oriented polyimide layer 3 is formed in the plane direction is manufactured.
  • the polyimide layer 3 is formed by a so-called casting method in which a polyamic acid solution is applied.
  • the formation method of the polyimide layer 3 is It is not limited, The method of heat-pressing the polyimide film formed into a film through the adhesive agent etc. without passing, and the method of forming a polyimide layer by a vapor deposition method are mentioned.
  • the cast method is most suitable for easily controlling the thickness of the polyimide layer 3 and keeping the surface roughness of the polyimide layer 3 low.
  • the flexible solar cell of this embodiment is formed using the polyimide layer containing flexible substrate 10 demonstrated by FIG.
  • a lower electrode (back electrode) 6 is formed on the polyimide layer 3 (insulating layer) of the flexible substrate 10 containing polyimide layer, and a photoelectric conversion layer (light absorption layer) 7 is formed on the lower electrode 6.
  • a transparent electrode (upper electrode) 8 and an extraction electrode 9 connected to the lower electrode 6 and the transparent electrode 8 are provided on the photoelectric conversion layer 7.
  • an antireflection film or the like may be further included.
  • the lower electrode 6 is not particularly limited as long as it is a conductive material.
  • a metal or semiconductor having a volume resistivity of 6 ⁇ 10 6 ⁇ ⁇ cm or less can be used.
  • molybdenum (Mo) can be used.
  • the thickness of the lower electrode 6 is preferably 0.1 to 1 ⁇ m from the viewpoint of flexibility.
  • the photoelectric conversion layer 7 preferably has a good light absorption, that is, a large light absorption coefficient.
  • a compound semiconductor is preferable, and a chalcopyrite-based I-III-VI group compound composed of Cu, In, Ga, Al, Se, S or the like is used.
  • the thickness of the photoelectric conversion layer 7 is preferably 0.1 to 4 ⁇ m from the viewpoint of achieving both power generation efficiency and flexibility.
  • the transparent electrode 8 is an electrode on the light incident side, a material having high transparency is used so that the light can be efficiently collected.
  • a material having high transparency is used so that the light can be efficiently collected.
  • zinc oxide (ZnO) or indium tin oxide (ITO) is used.
  • the thickness of the transparent electrode 8 is 0.1 to 0.3 ⁇ m from the viewpoint of flexibility.
  • an antireflection film may be formed in contact with the transparent electrode 8.
  • the extraction electrode 9 for example, metals and alloys such as Ni, Al, Ag, Au, and NiCr can be used as materials.
  • an electrode material for example, molybdenum is laminated on the polyimide layer 3 of the polyimide layer-containing flexible substrate 10 to form the lower electrode 6 (S11).
  • molybdenum is laminated on the polyimide layer 3 by sputtering or vapor deposition.
  • the compound semiconductor material is laminated on the lower electrode 6 by any method such as sintering, chemical precipitation, sputtering, proximity sublimation, multi-source deposition, and selenization.
  • a method of forming a thin film by sequentially applying a CdS paste and a CdTe paste and sintering at 600 ° C. or lower can be exemplified. Further, instead of this method, a method of forming a CdTe film by proximity sublimation after forming a CdS film by chemical precipitation or sputtering can be employed.
  • zinc (Zn) may be mixed into the compound semiconductor film.
  • a method of applying an aqueous solution such as zinc sulfate, zinc chloride, or zinc iodide to the compound semiconductor film can be used. Or you may immerse the laminated body which formed even the photoelectric converting layer 7 in these aqueous solution. By mixing zinc, the photoelectric conversion efficiency can be improved.
  • a transparent electrode 8 of zinc oxide (ZnO) or indium tin oxide (ITO) doped with aluminum is laminated thereon by a sputtering method or the like (S13). Then, it connects with each of the lower electrode 6 and the transparent electrode 8, and each taking-out electrode 9 is formed (S14).
  • Aluminum or nickel can be used as the material for the extraction electrode.
  • An alkali metal supply layer may be formed between the polyimide layer 3 and the lower electrode 6. The effect of improving the photoelectric conversion efficiency can be expected when a part of the alkali metal permeates and diffuses into the photoelectric conversion layer from the alkali metal supply layer.
  • An aluminum-plated steel foil with a film thickness of 150 ⁇ m was used as an Al-containing metal layer or an alloy layer-attached metal substrate to be a substrate part of an Al-containing metal layer or an alloy layer-containing metal substrate polyimide layer-containing flexible substrate.
  • the aluminum-plated steel foil is produced according to the first embodiment described above, and has a 25 ⁇ m aluminum layer on both surfaces of a 100 ⁇ m steel foil.
  • main components other than iron of the raw material steel used are as shown in Table 1.
  • CTE coefficient of thermal expansion
  • the thermal expansion coefficient in the surface direction of the metal substrate was calculated by the same method as described above except that the metal substrate was used instead of the film-like polyimide.
  • the glass transition temperature of polyimide was measured as follows using a viscoelasticity analyzer RSA-II (manufactured by Rheometric Science Effie Co., Ltd.). After forming a polyimide layer on a metal foil with an Al-containing metal layer, the polyimide formed into a film by removing the metal foil by etching is cut to a width of 10 mm, and 10 Hz from room temperature to 400 ° C. while applying vibration of 1 Hz. The maximum value of loss tangent (Tan ⁇ ) when the temperature was raised at a rate of ° C./min was defined as the glass transition temperature.
  • Detection of metal constituting metal substrate with Al-containing metal layer or alloy layer The presence or absence of mixing (diffusion) of the metal constituting the metal substrate with an Al-containing metal layer or alloy layer into the polyimide layer and the photoelectric conversion layer was measured as follows.
  • a glow discharge emission spectroscopic analyzer GD-PROFILER 2 manufactured by Horiba, Ltd. (manufactured by JOBIN YVON) was used. This device detects the light intensity of each wavelength corresponding to the target metal element (Al, Fe, Si, etc.) for the polyimide layer and the photoelectric conversion layer, creates an emission spectrum, and peaks corresponding to the metal from the spectrum Measure the peak intensity. From the obtained peak intensity, the content (mixing amount) of the target metal element is determined as follows.
  • the solution viscosity of this polyamic acid a resin solution was 20,000 mPa ⁇ s.
  • the solution viscosity is an apparent viscosity value only at 25 ° C. by an E-type viscometer (hereinafter the same).
  • Synthesis example 2 N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was charged into the reaction vessel and dissolved in the vessel with stirring. Next, pyromellitic dianhydride (PMDA) was added. The total amount of monomers charged was 15 wt%. Thereafter, stirring was continued for 3 hours to obtain a resin solution of polyamic acid b. The solution viscosity of this polyamic acid b resin solution was 3,000 mPa ⁇ s.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • PMDA pyromellitic dianhydride
  • Synthesis example 3 N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 4,4-Diaminodiphenyl ether (4,4-DAPE) was charged into the reaction vessel and dissolved in the vessel with stirring. Next, benzophenone tetracarboxylic dianhydride (BTDA) was added. The total amount of monomers charged was 15 wt%. Thereafter, stirring was continued for 3 hours to obtain a resin solution of polyamic acid c. The solution viscosity of this polyamic acid c resin solution was 3,000 mPa ⁇ s.
  • Performance evaluation Example 1 An aluminum-plated steel foil with a film thickness of 150 ⁇ m (a metal substrate formed by plating an aluminum layer on a metal foil of ordinary steel), which is the above-described metal substrate with an Al-containing metal layer, was prepared.
  • the foil is coated with the polyamic acid solution a prepared in Synthesis Example 1, dried, and heated at a temperature of 110 to 140 ° C. for an integrated time of 5 minutes and a temperature of 320 to 380 ° C. for an integrated time of 5 minutes or more. Under the conditions, a polyimide layer having a thickness of 3 ⁇ m was formed after curing.
  • the Tg of the polyimide layer in the polyimide layer-containing flexible substrate provided with the polyimide layer on the surface of the metal substrate with the Al-containing metal layer thus obtained was 360 ° C., and the thermal expansion coefficient in the plane direction was 6 ⁇ 10. -6 / K, the surface roughness of the polyimide layer surface was 2.5 nm.
  • a molybdenum (Mo) film having a thickness of 1 ⁇ m was formed as a lower electrode on the polyimide layer-containing flexible substrate by a vapor deposition method.
  • a Cu (In, Ga) Se 2 film (thickness 2 ⁇ m) is formed as a p-type semiconductor layer on the Mo film by vapor deposition, and a lower electrode (back electrode) is formed on the polyimide layer-containing flexible substrate, and A laminate having a p-type semiconductor layer was formed thereon.
  • a zinc sulfate (ZnSO 4 ) aqueous solution (Zn 2+ concentration was 0.025 mol / L) was prepared, the aqueous solution was kept at 85 ° C. in a thermostatic bath, and the laminate was immersed for about 3 minutes. Thereafter, the laminate was washed with pure water and further heat-treated at 400 ° C. for 10 minutes in a nitrogen atmosphere.
  • ZnSO 4 zinc sulfate
  • a Zn 0.9 .Mg 0.1 O film as an n-type semiconductor layer is formed on the p-type semiconductor of the stacked body by binary sputtering using a zinc oxide (ZnO) target and a magnesium oxide (MgO) target. (Thickness 100 nm) was formed.
  • ZnO zinc oxide
  • MgO magnesium oxide
  • sputtering is performed by applying a high-frequency power of 200 W to the ZnO target and a high-frequency power of 120 W to the MgO target. Went. In this way, a photoelectric conversion layer was formed on the lower electrode.
  • an ITO film (thickness: 100 nm), which is a light-transmitting conductive film, was formed as a transparent electrode (upper electrode) on the photoelectric conversion layer.
  • the ITO film was formed by applying a high frequency power of 400 W to the target in an argon gas atmosphere (gas pressure: 1.07 Pa (8 ⁇ 10 ⁇ 3 Torr)).
  • a NiCr film and an Ag film are stacked on the lower electrode (Mo film) and the transparent electrode (ITO film) by using an electron beam evaporation method, thereby forming a take-out electrode and forming a flexible solar cell.
  • a NiCr film and an Ag film are stacked on the lower electrode (Mo film) and the transparent electrode (ITO film) by using an electron beam evaporation method, thereby forming a take-out electrode and forming a flexible solar cell.
  • Example 2 Using the same metal substrate (aluminum-plated steel foil) with an Al-containing metal layer as in Example 1 and the polyamic acid solution a, the temperature from 110 to 140 ° C. is 3 minutes, and the temperature from 320 to 380 ° C. is the accumulated time. Then, a polyimide layer having a thickness of 3 ⁇ m was formed after curing through heating conditions of 5 minutes or longer. The Tg of the formed polyimide layer was 360 ° C., the thermal expansion coefficient in the plane direction was 15 ⁇ 10 ⁇ 6 / K, and the surface roughness of the polyimide layer surface was 2.1 nm. Then, when the flexible solar cell was formed similarly to Example 1 and the metal content in a polyimide layer and a photoelectric converting layer was analyzed, neither mixing of the metal by diffusion was recognized.
  • Example 3 Using the same metal substrate (aluminum-plated steel foil) with an Al-containing metal layer as in Example 1 and the polyamic acid solution a, the temperature of 110 to 140 ° C. is 1 minute in accumulated time, and the temperature of 320 to 380 ° C. is accumulated time Then, a polyimide layer having a thickness of 3 ⁇ m was formed after curing through heating conditions of 5 minutes or longer.
  • the Tg of the formed polyimide layer was 360 ° C.
  • the thermal expansion coefficient in the plane direction was 33 ⁇ 10 ⁇ 6 / K
  • the surface roughness of the polyimide layer surface was 3.9 nm.
  • Example 2 Thereafter, a flexible solar cell was formed in the same manner as in Example 1, and the metal content in the polyimide layer was analyzed. As a result, mixing of Fe and Al into the polyimide layer due to diffusion was confirmed. However, these contaminations were not confirmed in the photoelectric conversion layer.
  • Example 4 The polyamic acid solution b prepared in Synthesis Example 2 is applied to a metal substrate (aluminum-plated steel foil) with an Al-containing metal layer similar to that in Example 1, dried, and a temperature of 110 to 140 ° C. is an accumulated time.
  • a polyimide layer having a thickness of 3 ⁇ m after curing was formed through heating conditions in which a temperature of 320 to 380 ° C. was accumulated for 5 minutes for 5 minutes.
  • the Tg of the formed polyimide layer was 300 ° C.
  • the thermal expansion coefficient in the plane direction was 50 ⁇ 10 ⁇ 6 / K
  • the surface roughness of the polyimide layer surface was 2.2 nm.
  • Example 2 Thereafter, a flexible solar cell was formed in the same manner as in Example 1, and the metal content in the polyimide layer was analyzed. As a result, mixing of Fe and Al into the polyimide layer due to diffusion was confirmed. However, these contaminations were not confirmed in the photoelectric conversion layer.
  • the coating thickness of the polyamic acid solution a is set so that the film thickness after imidation is the following thickness.
  • the polyimide layer having a thickness of 1 ⁇ m after curing was formed through heating conditions in which the temperature of 110 to 140 ° C. was accumulated for 1 minute and the temperature of 320 to 380 ° C. was accumulated for 5 minutes or more. .
  • the Tg of the formed polyimide layer was 360 ° C.
  • the thermal expansion coefficient in the plane direction was 34 ⁇ 10 ⁇ 6 / K
  • the surface roughness of the polyimide layer surface was 3.2 nm.
  • Example 2 Thereafter, a flexible solar cell was formed in the same manner as in Example 1, and the metal content in the polyimide layer was analyzed. As a result, mixing of Fe and Al into the polyimide layer due to diffusion was confirmed. Further, it was confirmed that Fe and Al passed through the polyimide layer and diffused into the photoelectric conversion layer.
  • Comparative Example 2 The polyamic acid solution b prepared in Synthesis Example 2 was applied to the same metal substrate (aluminum-plated steel foil) with an Al-containing metal layer as in Example 1 so that the film thickness after imidization would be the following thickness. After drying, a polyimide layer having a film thickness of 1 ⁇ m after curing was formed through heating conditions in which the temperature of 110 to 140 ° C. was 5 minutes in cumulative time and the temperature of 320 to 380 ° C. was 5 minutes or longer in cumulative time. The Tg of the formed polyimide layer was 300 ° C., the thermal expansion coefficient in the plane direction was 50 ⁇ 10 ⁇ 6 / K, and the surface roughness of the polyimide layer surface was 4.1 nm.
  • Example 2 Thereafter, a flexible solar cell was formed in the same manner as in Example 1, and the metal content in the polyimide layer was analyzed. As a result, mixing of Fe and Al into the polyimide layer due to diffusion was confirmed. Further, it was confirmed that Fe and Al passed through the polyimide layer and diffused into the photoelectric conversion layer.
  • Comparative Example 3 The polyamic acid solution c prepared in Synthesis Example 3 is applied to a metal substrate (aluminum-plated steel foil) with an Al-containing metal layer similar to that in Example 1, dried, and a temperature of 110 to 140 ° C. is an accumulated time.
  • a polyimide layer having a thickness of 3 ⁇ m after curing was formed through heating conditions in which a temperature of 320 to 380 ° C. was accumulated for 5 minutes for 5 minutes.
  • the Tg of the formed polyimide layer was 280 ° C.
  • the thermal expansion coefficient in the plane direction was 55 ⁇ 10 ⁇ 6 / K
  • the surface roughness of the polyimide layer surface was 2.8 nm.
  • Example 2 Thereafter, a flexible solar cell was formed in the same manner as in Example 1, and the metal content in the polyimide layer was analyzed. As a result, mixing of Fe and Al into the polyimide layer due to diffusion was confirmed. Further, it was confirmed that Fe and Al passed through the polyimide layer and diffused into the photoelectric conversion layer.
  • the metal substrate with an Al-containing metal layer of Embodiment 1 was manufactured as follows.
  • As a first rolling process ultra-low carbon steel is rolled hot and cold to form a rolled steel sheet having a thickness of 300 ⁇ m.
  • As a pre-plating process a pure Cu pre-plated film is formed on the rolled steel sheet by electrolytic plating.
  • a copper sulfate bath is used as a plating bath for electrolytic Cu plating, and as a plating treatment, a rolled steel plate after pre-plating treatment is immersed in an Al-containing metal maintained at 660 ° C. for 20 seconds to obtain molten Al plating.
  • As a second rolling process the rolled steel sheet after the plating process was rolled at a rolling reduction of 10 to 20% for each pass, thereby manufacturing a metal substrate with an Al-containing metal layer having a thickness of 30 ⁇ m. .
  • the metal substrate with an Al-containing metal layer of Embodiment 2 was manufactured as follows. Mild steel with a thickness of 300 ⁇ m is plated with hot aluminum, and then the steel layer thickness is rolled to 30 ⁇ m in 7 passes to form a multi-foil. The reduction rate in the second pass is larger than that in the first pass, and the reduction rate in the third pass. By lowering, the dispersion state of each granular alloy was controlled and manufactured.
  • the metal substrate with an Al-containing metal layer of Embodiment 1 manufactured in this way has a Vickers hardness in the range of 500 to 600 Hv, and the metal substrate with an Al-containing metal layer of Embodiment 2 has the above formula (1 ) To (3) were satisfied.
  • Examples 5-14 As another form example, two types of ordinary steels with different surface smoothness with a thickness of 0.3 mm, two types of SUS430 (SUS) with different surface smoothness, Ni-plated steel with electrolytic Ni plating on ordinary steel, ordinary Two kinds of ordinary steels with different surface smoothness are prepared by producing zinc-plated steel plated with electrolytic zinc on steel and Cu-plated steel plated with electrolytic copper on ordinary steel, and then rolling in 7 passes until the thickness reaches 30 ⁇ m.
  • SUS430 SUS430
  • Example 5 Foil (Examples 5 and 13), two types of SUS foils (Examples 6 and 14) having different surface smoothness, metal substrate with Ni-containing metal layer (Ni-plated steel foil, Example 7), Zn-containing metal layer A metal substrate with a metal plate (Zn-plated steel foil, Example 8) and a metal substrate with a Cu-containing metal layer (Cu-plated steel foil, Example 9) were obtained.
  • Metal substrate with Al-containing metal layer according to Embodiment 1 Al-plated steel foil, Example 10
  • Metal substrate with Al-containing metal layer according to Embodiment 2 Al-plated steel foil, Example 11
  • smoothness (Ra (nm)) of the surface of the metal substrate Al-plated steel foil, Vickers hardness of about 900 Hv, Example 12
  • thermal expansion coefficient of each metal substrate of Examples 5 to 14 was measured under the same conditions as described in the above various physical property measurement and performance test methods, and the results are shown in Table 3.
  • the polyimide layer according to this embodiment was formed on each of the metal substrates of Examples 5 to 14 in accordance with Example 1, and the polyimide layer-containing flexible substrate according to Examples 5 to 14 was produced.
  • the adhesion of the metal layer was confirmed by performing a peel test on the polyimide layer-containing flexible substrates of Examples 5 to 14.
  • a commercially available adhesive tape was attached to the surface of the polyimide layer, and after pressing it from above with a force of 5 kg, the tape was peeled off. When the tape was observed with a microscope, the metal of the plating layer was on the tape. It was evaluated by whether it was transferred to and attached. Perform this test 10 times, when metal adhesion is 0 times, ⁇ 1-2 times, ⁇ 3-5 times ⁇ , 6-8 times ⁇ , 9 times or more Was marked with x. In addition, the same test was continued for the test piece showing ⁇ , and it was shown as ⁇ ⁇ ⁇ ⁇ if the metal adhesion was zero even after 30 times. Table 3 shows the interface where peeling occurs when peeling occurs.
  • the surface smoothness of the metal was out of the above-mentioned preferable range (20 to 80 nm in Ra), so that the adhesion was slightly lowered, whereas the metal substrates according to Examples 5 to 11 In the polyimide layer-containing flexible substrate in which the polyimide layer was formed by the casting method, the adhesion was improved by the anchor effect.
  • the corrosion resistance of the 10 types of polyimide layer-containing flexible substrates of Examples 5 to 14 was evaluated by a salt spray test (SS T).
  • SS T salt spray test
  • the case where the end face was protected with a seal was described as “end face protection”
  • the case where the end face was not particularly protected with a seal or the like and was exposed was described as “no end face protection”.
  • the salt water under test was applied from the surface (back surface) which did not laminate
  • a flexible solar cell was produced by the same method as in Example 1 using the above-described 10 types of polyimide layer-containing flexible substrates, and the metal content (metal contamination) in the polyimide layer and the photoelectric conversion layer was analyzed. What is not mixed in any of the polyimide layer and the photoelectric conversion layer is ⁇ , what is mixed only in the polyimide layer is ⁇ , what is mixed in any of the polyimide layer and the photoelectric conversion layer is ⁇ Table 3 shows.
  • the corrosion resistance of the SUS foil, the metal substrate with the Ni-containing metal layer (Ni-plated steel foil), and the metal substrate with the Zn-containing metal layer (Zn-plated steel foil) is as follows. It was very good. Metal substrates with Cu-containing metal layers (Cu-plated steel foil) and metal substrates with Al-containing metal layers (Al-plated steel foil) have poorer performance than the above, but have corrosion resistance when there is sufficient end face protection. Yes. In particular, the SUS foil showed good corrosion resistance even without end face protection.
  • metal substrate with Ni-containing metal layer Ni-plated steel foil
  • metal substrate with Zn-containing metal layer Zn-plated steel foil
  • metal substrate with Cu-containing metal layer Cu-plated steel foil
  • Al-plated steel foil Al-plated steel foil
  • Metal substrate with Ni-containing metal layer (Ni-plated steel foil), Metal substrate with Zn-containing metal layer (Zn-plated steel foil), Metal substrate with Cu-containing metal layer (Cu-plated steel foil), With Al-containing metal layer In the metal substrate (Al-plated steel foil), no metal contamination was observed in either the polyimide layer or the photoelectric conversion layer.
  • 1 metal foil (steel layer), 2 metal layer or alloy layer, 3 polyimide layer, 4 Fe-Al alloy layer, 5 metal substrate, 6 lower electrode (back electrode), 7 photoelectric conversion layer (light absorption layer), 8 Transparent electrode (upper electrode), 9 extraction electrode, 10 polyimide layer-containing flexible substrate, 20 flexible solar cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

化合物系薄膜太陽電池の光電変換層の焼結時のような高温度に耐え得る耐熱性を有し、かつ、金属の光電変換層への浸透・拡散を防止できる、多用途に展開可能なフレキシブル基板を提供する。面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板、あるいは当該普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を有する金属基板上に、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層が形成されたポリイミド層含有フレキシブル基板とする。

Description

ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法
 本発明は、太陽電池基板およびプリント配線基板として好適なポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、それを用いたフレキシブル太陽電池およびそれらの製造方法に関する。
 太陽電池としては、シリコンを用いた単結晶シリコン太陽電池、多結晶シリコン太陽電池、あるいは化合物半導体太陽電池、色素増感太陽電池、有機薄膜太陽電池等々、種々のものが開発されている。これらの太陽電池において、光電変換効率が高いものが求められることはもちろんのこと、多様な用途への展開に伴って、軽量、高耐久、さらには自由に屈曲可能なフレキシブル性が要求されてきている。
 この高フレキシブル性のニーズの高まりに伴い、可撓性を有する基板を使用した化合物系薄膜太陽電池が注目を集めている。これまで、薄膜系太陽電池用基板としてはガラス基板が主に使用されてきたが、ガラス基板は割れやすく取り扱いに十分な注意が必要であるとともに、フレキシブル性に欠ける欠点があった。一方、太陽電池には大型化・大面積化・軽量化が望まれており、そのため上記の通り、今後ますます、ガラスに代わる軽量かつフレキシブルな基板が求められるようになるものと考えられる。
 化合物系薄膜太陽電池としては、CdS/CdTe、CIS[CuInS]、CIGS[Cu(In,Ga)Se]等の化合物半導体を光電変換層(光吸収層)として使用するものが知られている。これらの化合物系薄膜太陽電池用に、軽量かつフレキシブルの要求を満たす基板として樹脂基板やアルミニウム合金基板などが提案されている。なお、集積型太陽電池の基板として、アルミニウム合金などの金属基板を用いる場合は、基板と光電変換層の間に陽極酸化皮膜などの絶縁層が設けられている。そのため、基板を構成する材料が複層化することになり、各構成材料が有する熱膨張係数の相違によって積層物が潜在的に剥離しやすくなってしまう。したがって、従来は問題とはされてこなかったような高いレベルのフレキシブル変形性が今後要求される場合には、従来の積層基材では変形に伴って生じる歪によって積層物が剥離してしまうことが懸念される。
 光電変換層として上記化合物系半導体の薄膜を形成する場合には、基板上に上記化合物を配置し、化合物の種類に応じて350~600℃で焼結する。例えば、連続生産においてCIGS層(薄膜)を形成するには、350~500℃、4~20m/分のライン速度で焼結することが好ましく、したがって、基板材料には当該温度に対する耐熱性が要求される。CIGSの変換効率を少しでも高めるためには上記成膜温度を高くすることが効果的であることから、基板材料には500℃に耐える耐熱性を有することが望ましいのであるが、汎用的な素材であるすずや亜鉛は融点がそれぞれ232℃、420℃であるため、これら金属を金属基板の材質として使用すると上記CIGS層の成膜時に金属が溶けてしまうので好ましくない。一方、アルミニウム、銅、ニッケルや鋼はそれぞれ融点が660℃、1084℃、1455℃、1200℃超(鋼中の組成による)であるため、本用途にふさわしい。
 なお、アルミニウム単独では高温強度が不足し、当該焼結時の形状保持が困難であるので、高温強度付与のために金属基板としてアルミニウム合金が使用されている。
 例えば、特許文献1は、Si、Fe、Cu、Mn、ScおよびZr等、複数の金属元素を含有するアルミニウム合金を使用することを開示する。
 しかし、これらの金属や合金では高精度圧延をしても金属表面の平滑性がRaで30nm程度しか得られず、基板表面に突起物が残存してしまう。そのためこれら金属や合金を基板として使用すると、不意に応力が印加された際に前記突起物上に応力が集中し、その上に積層した太陽電池の回路が損傷してしまうので好ましくない。即ち、従来の金属や合金から成る基板では平滑性が充分ではない。あるいは、めっき種としてアルミニウムを選択して、めっき後にアルミニウムを陽極酸化したとしても、前記の添加元素が金属間化合物となって、絶縁膜である陽極酸化皮膜の欠陥となり耐絶縁性を低下させるという問題がある。
 特許文献2は、この耐絶縁性の低下防止のために、マグネシウムを2.0~7.0質量%含有するアルミニウム合金を使用することを開示する。
 また、特許文献3は、基板としてアルミニウム合金の代わりに樹脂基板を使用すると共に、可撓性のPET樹脂で両面ラミネートされた電解銅箔からなるフレキシブルコネクタを使用して、フレキシブル性を付与したフレキシブル色素増感太陽電池モジュールを開示する。樹脂基板の欠点は耐熱性の欠如であり、上記特許文献3では耐熱性を確保するために高価な樹脂を使用している。しかしながら、昨今の太陽電池の大幅な低コスト要求を考えると安価なポリイミドを使用するのが好ましいが、一般にポリイミドのガラス転移点は300℃程度にとどまり、上述の高温プロセスには耐えられない。また、樹脂単体では抜熱特性が充分ではなく、強度も足りないので、抜熱性を確保するためには、金属箔と樹脂層とを積層した構造とするのが好ましい。
 化合物系薄膜太陽電池の場合、上述したように、光電変換層形成のために350~600℃の温度での焼結工程を必要とする。この時、基板としてアルミニウム等の金属合金を使用した場合、その金属成分が絶縁層を通過して光電変換層に浸透・拡散し、光電効率に悪影響を与えるという問題があり、特許文献2の技術ではこの問題を解決することができない。また、特許文献3の技術では、フレキシブルコネクタ部分でのフレキシブル性はあるが、基板全体でのフレキシブル性に欠ける。また、光電変換層の焼結時の耐熱性が不十分であるという欠点もある。
 特許文献4は、導体上にポリイミド樹脂層を形成するフレキシブル積層基板の製造方法を開示する。
 しかしながら、高いフレキシブル性を維持しつつ、高耐熱性、平滑性、および金属の拡散防止性を高めることが求められている。
特開2008-81794号公報 特開2011-190466号公報 特開2011-8962号公報 特開2006-62187号公報
 本発明は、例えば、薄膜太陽電池の光電変換層の焼結時のような高温度に耐え得る耐熱性を有し、平滑性に優れ、かつ、金属の光電変換層への浸透・拡散を防止できる、多用途に展開可能なフレキシブル基板を提供することを目的とする。また、当該基板を用いたフレキシブル太陽電池を提供することも目的とする。すなわち、本発明の課題は、フレキシブル基板において、高いフレキシブル性を維持しつつ高耐熱性、平滑性に優れ、および金属の拡散防止の両立を図ることである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板、あるいは当該普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を有する金属基板上に、特定の物性を示すポリイミド層を形成した、ポリイミド層含有フレキシブル基板とすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリイミド層含有フレキシブル基板は、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板と、前記金属基板上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層とを有する。
 また、本発明のポリイミド層含有フレキシブル基板は、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を有する金属基板と、前記金属層または前記合金層上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層とを有する。
 上記の本発明のポリイミド層含有フレキシブル基板は、好適には、前記金属層または前記合金層がアルミニウム層またはアルミニウム合金層である。
 上記の本発明のポリイミド層含有フレキシブル基板は、好適には、前記ポリイミド層は、その面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下である。
 上記の本発明のポリイミド層含有フレキシブル基板は、好適には、前記ポリイミド層の前記金属基板と接触しない側の表面の表面粗度が10nm以下である。
 上記の本発明のポリイミド層含有フレキシブル基板は、好適には、400℃で10分間の熱処理後、前記ポリイミド層の前記金属基板と接触しない側の表面における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である。
 また、本発明のポリイミド層含有フレキシブル太陽電池用基板は、上記のポリイミド層含有フレキシブル基板を用いてなる。
 また、本発明のフレキシブル太陽電池は、上記のポリイミド層含有フレキシブル太陽電池用基板と、前記ポリイミド層上に形成された下部電極と、前記下部電極上に形成された光電変換層と、前記光電変換層上に形成された透明電極とを有する。
 上記の本発明のフレキシブル太陽電池は、好適には、前記光電変換層中における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である。
 上記の本発明のフレキシブル太陽電池は、好適には、前記ポリイミド層の前記金属基板と接触しない側の表面における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である。
 また、本発明のポリイミド層含有フレキシブル基板の製造方法は、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板の上に、ポリイミド前駆体溶液を塗布する工程と、前記ポリイミド前駆体溶液を熱処理して乾燥およびイミド化による硬化をさせ、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層を形成する工程とを有する。
 また、本発明のポリイミド層含有フレキシブル基板の製造方法は、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を形成して金属基板を形成する工程と、前記金属層またはこれらの前記合金層上に、ポリイミド前駆体溶液を塗布する工程と、前記ポリイミド前駆体溶液を熱処理して乾燥およびイミド化による硬化をさせ、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層を形成する工程とを有する。
 上記の本発明のポリイミド層含有フレキシブル基板の製造方法は、好適には、前記金属箔の表面に前記金属層またはこれらの合金層を形成して金属基板を形成する工程において、前記金属層または前記合金層としてアルミニウム層またはアルミニウム合金層を形成する。
 また、本発明のポリイミド層含有フレキシブル太陽電池用基板の製造方法は、上記に記載のポリイミド層含有フレキシブル基板の製造方法により、前記ポリイミド層含有フレキシブル基板を用いてなるポリイミド層含有フレキシブル太陽電池用基板を製造する。
 また、本発明のポリイミド層含有フレキシブル太陽電池用基板の製造方法は、上記に記載のポリイミド層含有フレキシブル太陽電池用基板の製造方法により製造したポリイミド層含有フレキシブル太陽電池用基板の前記ポリイミド層上に下部電極を形成する工程と、前記下部電極上に光電変換層を形成する工程と、前記光電変換層上に透明電極を形成する工程とを有する。
 ここで、発光スペクトル検出法とは、次の方法を意味するものとする。すなわち、グロー放電発光分光分析装置 GD-PROFILER2(株式会社堀場製作所製(JOBIN YVON社製))を使用し、ポリイミド層および光電変換層について、前記金属基板を形成する各金属のスペクトルが検出されるか否かを測定する。具体的には、(1)当該金属元素の標準試料について、濃度を変化させてスペクトル測定し、金属元素濃度換算用の検量線(出力電圧(V)-濃度(質量%))を作成する。検量線は、標的となる金属元素ごとに作成する。(2)ポリイミド層、光電変換層からサンプリングした各試料について、上記分析装置にて標的金属元素の発光スペクトルを測定する。(3)各金属元素の発光スペクトルのピーク強度は検出器の出力電圧(V)で検出されるので、上記検量線から金属元素の濃度を読み取る。(4)当該濃度が0.1質量%未満を検出限界以下とする。
 本発明のポリイミド層含有フレキシブル基板は、薄膜太陽電池の光電変換層の焼結時のような高温度に耐え得る耐熱性を有し、かつ、金属の光電変換層への浸透・拡散を防止できる。したがって、太陽電池用基板およびプリント配線基板等、多用途に適用することができる。また、本発明のフレキシブル太陽電池は、金属基板中の金属成分が光電変換層や電極に浸透・拡散せず、良好な光電効率を得ることができる。
本発明の実施の形態のポリイミド層含有フレキシブル基板の断面図である。 本発明の実施の形態のフレキシブル太陽電池の断面図である。 本発明の実施の形態のポリイミド層含有フレキシブル基板の製造方法を示すフロー図である。 本発明の実施の形態のフレキシブル太陽電池の製造方法を示すフロー図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
第一の実施形態
 本発明の実施の形態について図1を用いて説明する。
 本発明の第一の実施形態は、面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレス(以下、SUSと略す)の金属箔1からなる金属基板と、金属基板の上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層3とを有するポリイミド層含有フレキシブル基板10である。
 ポリイミド単体ではバリア性、特にモイスチャーや酸素などの気体成分に対するバリア性を確保できないので、別途、バリア膜を設ける事なしには、気体成分などその他の外界由来成分の侵入によって機能が低下するため、デバイスの基板としては適合性不足となる。また、ポリイミド単体は強度が必ずしも十分ではなく、力学的負荷の加減によってはロールに巻き取る等の加工を施す程度の取り扱いにおいても切断等の危険があり、充分な広い範囲に及ぶ、力学的負荷への耐久性とフレキシブル性の両立は得られない。一方、金属単体ではバリア性や強度は充分なものの平滑性がRa>20nm程度というように良好ではない。そこで、金属基板とポリイミド層の積層構造とすれば、ポリイミド層のバリア性と強度の不足を金属基板が補うことで必要なバリア性と強度を確保でき、ガラスのように割れる心配が無くなり、金属基板を金属箔層とすることでフレキシブル性を維持できる上、ポリイミド層を積層することからガラス基板並みの高い平滑性(Ra≦10nm)を実現できる。
 しかしながらこの積層体であっても、ポリイミド層が耐熱性を有さないので、CIGSの製造工程のような高温プロセス下ではポリイミド層が焦げたり変形したりしてしまう。そこで、金属基板とガラス転移点温度が300~450℃である高温耐熱性を有するポリイミド層の積層構造とすることで、フレキシブル性、平滑性、及び、耐熱性を具備することができる。金属層2上に形成されるポリイミド層3を、そのガラス転移点が300℃以上とし、製造コスト等実用性の点で450℃以下とすることで、フレキシブル太陽電池に適用する場合において、光電変換層の焼結時温度において軟化、変形あるいは分解等を抑制可能となるからである。
 しかしながら、この積層体であっても耐熱ポリイミド層厚が厚い、もしくは耐熱ポリイミド層の熱膨張係数と金属基板の熱膨張係数が大きく異なる場合は、耐熱ポリイミド層と金属基板とが剥離してしまう。この課題を解決するには、ポリイミド層を1.5~100μmと薄くすることで耐熱ポリイミド層の反りを抑制し、更に、金属基板の熱膨張係数を耐熱ポリイミド層の熱膨張係数と同程度、具体的には15ppm/K以下とする。普通鋼またはSUSの熱膨張係数を上記のように制御するには、普通鋼ならば冷延鋼板、SUSならばフェライト系のものを使用するのが良く、更に、例えばこれらに圧延を施す等によって、面内に(100)[011]の集合組織を発達させるのが良い。具体的には、出発素材から箔圧延完了までの圧下率を30%以上とすると良い。また集合組織の発達の程度は面内集積度を30%以上とすれば良い。その観察は、EBSD(Electron Backscattered Diffraction)を用いるのが簡便ながら正確な値が得られるので良い。
 金属基板の厚さは10~200μmであればフレキシブル基板を軽量化でき、太陽電池の重量を軽減できるので好ましい。
 特段の耐食性が要求されない場合は普通鋼の金属箔からなる金属基板上に耐熱ポリイミドを直接積層する構造で良いが、例えば屋外での使用が求められる場合には普通鋼では耐食性が充分ではないので、金属基板としてSUS箔を用いる構造がよい。
 SUS箔は端面が露出してもSUS自身が耐食性を有するため、必ずしも端面を耐食性の付与または向上のためのコーティング等で保護しなくてもよい。
第二の実施形態
 CIGS太陽電池では、発電層への金属元素、特にFe原子の拡散が生じると、変換効率が低下することが知られており、基材にガラスではなく金属を用いる際は特にFe原子の拡散防止が重要となる。この課題を解決するには、本発明の第二の実施形態である普通鋼もしくはSUSの金属箔1の上に直接耐熱ポリイミドを積層するのではなく、普通鋼もしくはSUSの金属箔1の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層(以下、金属層または合金層2と称する)を有する金属基板と、金属層または合金層2上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層3とを有するポリイミド層含有フレキシブル基板とすればよい。これは、金属基板とポリイミド層との間にFe原子を含まない層が設けられることで、Fe原子の拡散距離が長くなり、発電層へのFe原子の拡散が抑制されることによる。
 上記を除いて、第一の実施形態と同様の構成である。
 金属層は化合物半導体を製造する際に溶融しない金属である必要があり、融点が660℃のアルミニウム、1084℃の銅、1455℃のニッケルが好ましく、安価な無電解めっき法を利用できるという点でアルミニウムがより好ましい。太陽電池の発電層としてCdTe層を使用する場合には、プロセス温度が低いことから融点が420℃の亜鉛も利用できる。金属層の形成はめっき、蒸着、CVD等があるが、めっき法が最も好ましい。
 金属層または合金層2を有する金属基板の端面は、金属箔1(地鉄)が露出するため、耐食性を高めるには端面を樹脂等で被覆する方が好ましい。
 めっきは、金属箔1の形成後に行っても、箔圧延をする前の金属板基材に行ってもよい。後者の場合は、めっき後に圧延してめっき層付き金属箔とする。アルミニウム合金とする場合の、アルミニウム以外の金属としては、Mg、Si、Zn、Ca、およびSnなどを用いることができる。アルミニウム合金中のこれらの金属の含有量は2~15重量%が好ましい。高耐熱性と耐腐食性を両立することができるからである。
 めっきなどにより金属層または合金層2が形成された金属箔1を、以後、金属層または合金層付きの金属基板5と称する。Cu、Ni又はZnのめっきを行う際には、一般的なCu、Ni又はZnのめっき浴を用いて、電解めっき法や無電解めっき法を行うのが実績も豊富で良い。
 めっきによる金属層または合金層2の厚さは、0.1~30μmであることが好ましい。0.1μm未満では充分好適な耐食効果は得られず金属箔1が酸化するリスクがあるためで、一方、30μm超ではめっき種を大量にめっきする必要があることで生産コストが高くなるためである。好ましくはめっきによる金属層または合金層2の厚さを1~30μmと、より好ましくはめっきによる金属層または合金層2の厚さを3~30μmと、最も好ましくはめっきによる金属層または合金層2の厚さを8~30μmとすると耐食効果が充分得られるので良い。
第三の実施形態
 従来技術により製造されたアルミニウム(以下、「Al」と略す場合もある。)含有金属層付き金属箔では、Cu含有、Ni含有、あるいはZn含有金属層付き金属箔と比べてフレキシブル性が低下する傾向にある。これは、一般に、普通鋼層もしくはSUS層の上にアルミニウムあるいはアルミニウムを主とするめっきなどによる金属層または合金層2を形成すると、普通鋼層またはSUSからなる金属箔1とAl含有の金属層または合金層2との界面に、Fe-Al系合金層4(例えば、FeAl,FeAlSi、FeAlSiなどの金属間化合物)が層状に形成され、このFe-Al系合金層4は非常に硬くて脆く、めっきを施した鋼もしくはSUSがハンドリングなどの際に極端に弾塑性変形すると、このFe-Al系合金層4は金属箔層1の変形に追随できず、最終的に、金属箔1とAl含有の金属層または合金層2との剥離、および、Al含有の金属層または合金層2の割れを誘発することがあるためである。
 この課題を解決するため、本発明の第三の実施形態においては、以下に示すような金属箔1にAl含有の金属層または合金層2が形成された構成の金属基板5とする。
 本実施形態に係るAl含有の金属層または合金層2付きの金属基板5を用いることにより、フレキシブル性を満足することができる。
 なお、Al含有の金属層または合金層2付きの金属基板5の弾塑性変形性は、後述するピール試験を指標として評価することでき、高レベルの弾塑性変形性を有する場合は、ピール試験においてAl含有の金属層または合金層2の剥離のない、Al含有の金属層または合金層2と金属箔1との良好な密着性が得られる。
形態例1
 ポリイミド層3を積層させた上で、さらに金属箔1とAl含有の金属層または合金層2との界面に生成するFe-Al系合金層4が、厚さ0.1~8μmであり、かつ、AlCuFe金属間化合物、または、FeAl基の金属間化合物を含めば、前述のより一層高いレベルの弾塑性変形性を満足できるので好ましい。この効果はポリイミド層3を積層したのみ、あるいはFe-Al系合金層4を上述のように制御したのみでは充分には得られず、両者を同時に施して初めて得られる。その理由の詳細は引き続き解明中であるものの、上記のように制御されたFe-Al系合金層4の熱膨張係数が、ポリイミド層3の面方向における熱膨張係数と基材である鋼層1の熱膨張係数の中間的な値となることで、積層体に生じる応力を緩和して剥離や割れを防止するためと予想している。このAlCuFe金属間化合物、または、FeAl基の金属間化合物は、Fe-Al系合金層4中に、面積%で、50%以上を含まれることが好ましく、90%以上を含まれることがより好ましい。
 ここで、FeAl基の金属間化合物とは、FeAl金属間化合物中に、系を構成する元素(例えば、SiやCu等のAl含有金属層を構成する元素、NiやCu等のプレめっき膜を構成する元素、あるいはC、P、Cr、Ni、Mo等の鋼層1を構成する元素)が固溶した金属間化合物や、上記の系を構成する元素と、Feと、Alとから新たな組成比で形成される金属間化合物を指す。このFeAl基の金属間化合物は、特に、Cuが固溶したFeAl基の金属間化合物、または、Niが固溶したFeAl基の金属間化合物であることが好ましい。しかし、後述するように、このFe-Al系合金層4のビッカース硬度が、200~600Hv程度となるならば、固溶する元素は、NiまたはCuに限定されない。
 上記のAlCuFe金属間化合物、または、FeAl基の金属間化合物を含むFe-Al系合金層4を形成させる方法は、普通鋼にAl含有めっきを施す際に、後述するCuまたはNiプレめっき膜と、鋼層1と、Al含有金属層2とから、系を構成する元素が拡散し、そして、FeおよびAlと合金化することで形成させる方法である。このように、上記のAlCuFe金属間化合物、または、FeAl基の金属間化合物を含むFe-Al系合金層4を好適に形成させるためには、Al含有めっきを施す前に、予め、普通鋼にCuまたはNiプレめっきを施すことで、鋼層1上にCuまたはNiのプレめっき膜を形成しておくことが好ましい。ただし、Fe-Al系合金層4は、例えば、金属箔1およびAl含有の金属層または合金層2を構成する元素の拡散によっても形成することができるので、CuまたはNiプレめっき膜が必須な構成ではない。
 このAlCuFe金属間化合物、または、FeAl基の金属間化合物を含むFe-Al系合金層4は、そのビッカース硬度が、500~600Hvとなる。上述した従来の硬くて脆いFe-Al系合金層4は、そのビッカース硬度が、900Hv程度である。このように、Fe-Al系合金層4を比較的軟質である層へ制御することにより、Al含有の金属層または合金層2付きの金属基板5の弾塑性変形性を向上させることが可能となる。また、Fe-Al系合金層4の厚さが0.1μm未満では、軟質Fe-Al系合金層4としての上記効果が得られない。一方、その厚さが8μm超では、系を構成する元素の拡散が進行し過ぎて、カーケンダル(Kirkendall)ボイドが生じ易くなるので、好ましくない。
 Al含有の金属層または合金層2付きの金属基板5の弾塑性変形性をさらに高めるには、Fe-Al系合金層4の厚さを0.1~8μmとすることが好ましい。また、その厚さを3~8μmとすると、Al含有の金属層または合金層2付きの金属基板5の耐食性がさらに高まるので好適である。さらに、その厚さを3~5μmとすると、高度な両効果が同時に得られるので、最も好ましい。
 また、金属箔1と、Fe-Al系合金層4との間に、CuまたはNiプレめっき膜を2~10μmの厚さで残存させて、Cu層またはNi層とすると、金属箔1とFe-Al系合金層4との間の密着性がさらに増して、弾塑性変形性が向上するので好ましい。この結果、プレス成形や深絞り等の際に過酷な加工を行っても、Fe-Al系合金層4の剥離が生じ難くなる。
 金属箔1とFe-Al系合金層4との間に、上記のCu層またはNi層が存在しても、上述したFe-Al系合金層4が有する効果は妨げられない。ただし、Cu層またはNi層の厚さが2μm未満であると、金属箔1とFe-Al系合金層4との間の密着性を向上する効果が得られない。また、その厚さが10μm超では、上記効果は飽和し、そして、プレめっき膜を形成させるコストも上昇するので、好ましくない。
 次に、本実施形態に係る金属箔1、Al含有の金属層または合金層2およびこれらを有するAl含有の金属層または合金層2付きの金属基板5の製造方法について詳細に説明する。
 例えば、任意成分の普通鋼(炭素鋼)板を、第1圧延処理として、200~500μmの厚さになるまで圧延を行う。この圧延方法は、熱間および冷間のどちらであっても良い。鋼板の厚さが200μm未満では、薄すぎて後工程時のハンドリングが困難である。また、鋼板の厚さが500μm超では、厚すぎて後工程に負荷がかかりすぎる。後工程での生産性を考慮すると、第1圧延処理として、250~350μmの厚さになるまで圧延を行うことが好ましい。
 上記第1圧延処理後の鋼板に対して、CuまたはNiプレめっきを施すプレめっき処理、Al含有めっきを施すめっき処理、および、第2圧延処理を行う。これらの処理の順番は、(1)プレめっき処理、めっき処理、そして、第2圧延処理、(2)プレめっき処理、第2圧延処理、そして、めっき処理、(3)第2圧延処理、プレめっき処理、そして、めっき処理、の何れでも良い。
 上記プレめっき処理として、CuまたはNiのめっき浴を用いて、電解めっき法や無電解めっき法を行う。Cuプレめっき膜、および、Niプレめっき膜共に、プレめっき膜の初期厚さを0.05~4μmとすると、Al含有の金属層または合金層2をめっきで形成した際に金属箔1とAl含有の金属層または合金層2との間に形成されるFe-Al系合金層4の厚さが0.1~8μmとなる。例えば、Al含有の金属層または合金層2のめっきの際に形成されるFe-Al系合金層4の厚さを上記した最適な3~5μmに制御したい場合には、プレめっき膜の初期厚さを1.5~2.5μmに制御すればよい。
 また、金属箔1とFe-Al系合金層4との間に、CuまたはNiプレめっき膜を残存させて、Cu層またはNi層を配するためには、プレめっき膜の初期厚さを、4μmを基準として、残存させたい厚さの分だけ厚めに成膜しておけばよい。4μm以下の厚さのCuまたはNiプレめっき膜は、Al含有めっきの際に形成されるFe-Al系合金層4に拡散して消失する。4μmを超えて成膜されたプレめっき膜は、その膜厚から4μmを引いた厚さだけ残存して、Cu層またはNi層となる。例えば、鋼層1とFe-Al系合金層4との間に、厚さ5μmのCu層またはNi層を存在させるには、プレめっき膜の初期厚さを4+5=9μmの厚さとしておけばよい。
 プレめっき処理を行わずに、上記Fe-Al系合金層4を形成させたい場合には、適宜、金属箔1およびAl含有の金属層または合金層2の成分組成を調整すればよい。
 Al含有の金属層または合金層2をめっきで形成するめっき処理として、電解めっき法および無電解めっき法を用いることができる。
 上記第2圧延処理として、10~250μmの厚さになるように、圧延を行う。この圧延条件は、通常の圧延条件でよい。Al含有の金属層または合金層2付きの金属基板5の厚さが10μm未満では、金属基板5として薄すぎて、強度が不足するので好ましくない。また、Al含有の金属層または合金層2付きの金属基板5の厚さが250μm超では、金属基板5として厚すぎて、重すぎるので好ましくない。
形態例2
 本発明者らが鋭意検討したところ、ポリイミド層3を積層させた上で、Al含有の金属層または合金層2と、金属箔1との間のFe-Al系合金層4が粒状に分散することで、従来の割れや、Al含有の金属層または合金層2の剥離を抑制し、強固に金属箔1とAl含有の金属層または合金層2とを結合できることを見出した。この効果はポリイミド層3を積層したのみ、あるいはFe-Al系合金層4を上述のように制御したのみでは充分には得られず、両者を同時に施して初めて得られる。その理由の詳細は引き続き解明中であるものの、従来の層状のFe-Al系合金層4とは異なり、Fe-Al系合金層4が粒状で金属箔1に食い込むような形で存在することで積層体に生じる応力を緩和して達成されているものと考えられる。
 このような効果を得るためには、界面の粒状のFe-Al系合金は、その最大粒径の球相当直径x(μm)が10μm以下で、かつ表面のAl含有の金属層または合金層2の厚さをT(μm)としたときに、xとTが、下記式(1)に示される関係であることが必要である。なお、粒径は断面研磨した試験片を走査型電子顕微鏡や光学顕微鏡で観察しながら測定した値を用いるのが簡便ながら精度よく測定できて良い。
Figure JPOXMLDOC01-appb-M000001
 これは、粒径が10μmまたは0.5Tより大きくなると、表面のAl含有金属層2を突き破る可能性があり、耐食性が低下することによる。また、該粒状のFe-Al系合金の最大粒径xの下限値は、1.5μm以上もしくは0.1T以上であることが好ましい。これは、1.5μm未満もしくは0.1T未満の微細粒ばかりであると、強固に金属箔1とAl含有の金属層または合金層2とを結合する効果が得られないためである。しかし、1.5μm以上もしくは0.1T以上の粒状合金がある場合は本発明効果を得ることができるため、1.5μm未満の粒状合金が混在していても問題はない。
 また、粒径の球相当直径が1.5μmよりも大きな粒状のFe-Al系合金の、隣り合う粒状合金間の間隔は、100μm以下であるとさらに好ましい。これは、間隔が100μmを超えると、金属箔1とAl含有の金属層または合金層2とを強固に結合する機能が低下し、Al含有の金属層または合金層2の剥離や割れを導き、耐食性も低下するからである。
 さらに、Al含有の金属層または合金層2付きの金属基板5の圧下率やAl含有の金属層または合金層2の厚み等を変えて、異なる粒径の粒子状のFe-Al系合金、およびその間隔の異なるAl含有の金属層または合金層2付きの金属基板5を作製して、金属箔1とAl含有の金属層または合金層2との密着性を検討した。その結果、粒状のFe-Al系合金の最大粒径x(μm)と、それらの間隔y(μm)との間の関係が下記式(2)および(3)で表される範囲にあるとき、Al含有の金属層または合金層2と金属箔1との密着性が高い。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ただし、x≦10(μm)、y≦100(μm)である。
 式(2)が適用される粒状合金のサイズは、球相当直径が1.5μm以上の範囲であるが、この範囲におけるAl含有の金属層または合金層2の密着性は、粒状のFe-Al系合金の平均粒径により、その間隔に最適範囲がある。定性的には、平均粒径が小さい場合には、金属箔1への食い込みも小さくなるため、粒子間隔は小さいほうが望ましく、平均粒径が大きい場合には、100μm程度までは粒子間隔を広げても効果が期待できるということである。
 本実施形態に係るポリイミド層含有フレキシブル基板の製造方法の一例では、板厚200~500μmの普通鋼に上述したAl含有の金属層または合金層2を溶融めっきで形成した後、3パス以上かけて圧延を行う。この際、第一パスより第二パスの圧下率を上げ、第二パスより第三パスの圧下率を下げることを基本として、めっき後最終厚までを3パス以上かけて圧延することで粒状合金のサイズや分散状態を変えることができる。
 Al含有の金属層または合金層2付きの金属基板5の厚さは、より好適には、フレキシブル性の点で200μm以下が好ましく、強度の点で50μm以上が好ましい。また、Al含有の金属層または合金層2の厚さは、外観の平滑性、耐酸化、耐腐食性、基板としてのフレキシブル性などの点で15~40μmが好ましい。
 前述のように、CIGS太陽電池では、発電層への金属元素、特にFe原子、の拡散が生じると、変換効率が低下することが知られており、基材にガラスではなく金属を用いる際は特にFe原子の拡散防止が重要となる。より高いレベルのFe原子の拡散防止を達成するには、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数は15×10-6/K以下であることがより好ましい。可撓性を保持しつつ金属箔1およびAl含有の金属層または合金層2の金属成分の、ポリイミド層3中への浸透および拡散を、より効果的に防止することができるからである。このような効果を有することにより、後述の構成の太陽電池製造時にポリイミド層3上に形成する光電変換層7や電極6,8中に上記金属成分がポリイミド層3を通過して浸透・拡散してくることを確実に防止することができる。
 金属成分の浸透・拡散防止に、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下であることが有効な理由は、明確ではないが次のように考えられる。すなわち、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下であれば、ポリイミド分子の面方向の配向性が高く(高配向と)なり、それによって規則的に配向した高分子が金属をブロックし、金属の浸透、拡散および通過を防止できるものと考えられる。本願発明者らが鋭意検討した結果、金属表面の平滑性をRaで20~80nm、Rzで150~600nmの範囲と制御しておくと、ポリイミド分子と金属との密着性が充分に確保できるので良い。この理由は、ポリイミド分子が金属表面の凹凸部によく濡れるためと考えられる。しかしながら、金属表面の平滑性がRaで20nm未満、Rzで150nm未満と超平滑となると、ポリイミド分子が金属表面と接触する面積が少なくなることで密着性が充分には得られず、逆に金属表面の平滑性がRaで80nm超、Rzで600nm超と粗雑となると、金属表面の凹凸が激しすぎることで、ポリイミド分子が金属表面の凸部内に充分には入り込めず、ポリイミド分子と凸部の底部との間に空気層が残存してしまうことで、密着性が充分には得られない。
 このような高配向性を示すポリイミドとしては次のものを例示することができる。すなわち下記化学式(1)で示される、テトラカルボン酸化合物とジアミノ化合物との反応生成物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 化学式(1)中のArを含むテトラカルボン酸化合物としては、芳香族テトラカルボン酸およびその酸無水物、エステル化物、ハロゲン化物などが挙げられるが、芳香族テトラカルボン酸化合物が好適であり、ポリイミド樹脂の前駆体であるポリアミド酸(ポリアミック酸)の合成の容易さの点で、その酸無水物が好ましい。なお、芳香族テトラカルボン酸化合物としては、O(CO)Ar(CO)Oで表される化合物が好適なものとして挙げられる。また、テトラカルボン酸化合物は1種類であってもよく、2種類以上を混合して用いてもよい。
 ここで、Arは、下記化学式(2)で表される4価の芳香族基であることが好ましく、酸無水物基[(CO)O]の置換位置は任意であるが、対称の位置が好ましい。Arは、置換基を有することもできるが、好ましくは有しないか、または有する場合はその炭素数が1~6の低級アルキル基である。
Figure JPOXMLDOC01-appb-C000005
 これらの中でも、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、および4,4’-オキシジフタル酸二無水物(ODPA)から選ばれるものを使用することが特に好ましい。
 ジアミノ化合物としては、NH-Ar-NHで表される芳香族ジアミノ化合物が好適なものとして挙げられる。ここで、Arは下記化学式(3)で表される基から選択されるものが好ましく、アミノ基の置換位置は任意であるが、p,p’-位が好ましい。Arは置換基を有することもできるが、好ましくは有しないか、または有する場合はその炭素数が1~6の低級アルキルまたは低級アルコキシ基である。これらの芳香族ジアミノ化合物は1種類であってもよく、2種類以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000006
 これらの芳香族ジアミノ化合物の中でも、ジアミノジフェニルエーテル(DAPE)、2’-メトキシ-4,4’-ジアミノベンズアニリド(MABA)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、パラフェニレンジアミン(P-PDA)、1、3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、および2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)が好適なものとして例示される。
 なお、芳香族ジアミノ化合物において、そのアミノ基の一部または全てがトリアルキルシリル化されていてもよく、あるいは酢酸のような脂肪族酸によりアミド化されていてもよい。
 化学式(2)で表されるArを有する芳香族テトラカルボン酸と、化学式(3)で表されるArを有する芳香族ジアミノ化合物との反応により得られるポリイミドが好ましい。またポリイミドの構造によって高配向を発現するポテンシャルには差があり、次の様な構造的特徴を有していれば、そのポリイミドに高配向を一層誘導し易い傾向をもたらす。
(a)剛直な直鎖構造のポリイミドを形成する。
(b)エーテル結合やメチレン結合といった回転自由度の大きい構造を有していない。
(c)線熱膨張係数の低減作用を有すると推定されるアミド基を有する。
 以上の特徴を有することによって、ガラス転移点温度が300~450℃のポリイミドを得ることが可能であり、また、ポリイミド層を形成するとき、硬化温度を制御することによって、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数を15×10-6/K以下とすることができる。
 次に、本実施形態に係る上記ポリイミド層3を形成する場合の、その形成方法について説明する。
 溶媒中で、上記のテトラカルボン酸二無水物およびジアミノ化合物をほぼ等モルの割合で混合し、反応温度0~200℃の範囲で、好ましくは0~100℃の範囲で反応させて、ポリイミドの前駆体であるポリアミド酸(ポリアミック酸)を合成する。つづいてこれをイミド化することによりポリイミドを得る方法が例示される。
 溶媒としては、N-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルフォラン、ブチロラクトン、クレゾール、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライムなどが挙げられる。
 なお、Al含有の金属層または合金層2上にポリイミド層3を形成する場合、ポリアミド酸の合成までは反応容器等の中で行い、当該ポリアミド酸(またはポリアミド酸溶液)をAl含有の金属層または合金層2へ塗布した後にイミド化してポリイミド層3を形成することができる。あるいは、反応容器中でイミド化までを行い、ポリイミド溶液をAl含有の金属層または合金層2へ塗布し、溶媒を乾燥除去してポリイミド層3を形成してもよい。
 また、上記説明したように、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数は15×10-6/K以下が好ましい。これは、ポリイミド層中の分子の配向を制御することで実現可能である。具体的には、次のように温度制御しながらポリイミド層を形成することによって、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下で配向性の高いポリイミド層を形成することができる。
 すなわち、基材に塗布した溶剤を含むポリアミド酸溶液から溶剤を揮発させて乾燥硬化させる際に、イミド化が始まる100~150℃の温度領域においてポリイミド分子が極力規則正しく配列するように徐々に溶剤が揮発するように制御する。このようにポリイミドの構造が乱れないようにすることでポリイミド層3の面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下のポリイミド層とすることができる。好ましくは乾燥硬化時の熱処理初期条件を、100~150℃の温度を積算時間で3分間以上、より好ましくは110~140℃の温度を積算時間で5分間以上とすることがよい。
 本発明において金属基板5上に形成されたポリイミド層3は、ポリイミド層含有フレキシブル基板10の形態において、外側(金属基板5と接しない側)に位置するポリイミド層表面の表面粗度は、AFM(原子間力顕微鏡)による測定において10nm以下であることが好ましく、5nm以下であることがより好ましい。表面粗度がこの値を超えると、太陽電池の構成とした場合に下部電極、光電変換層に欠陥が生じやすくなる。ポリイミド表面の表面粗度を10nm以下とするには、金属基板5上にポリイミド層3を形成する際に、ポリアミド酸溶液を溶液状態で塗布し、乾燥、イミド化する方法によって値を低くすることができる。
 また、ポリイミド層3の面方向における100℃から250℃までの熱膨張係数の範囲は、ポリイミドを構成する酸およびジアミンのモノマー成分の構造によっても影響される。このような観点からは、エーテル結合やメチレン結合といった回転自由度の大きい構造を有さず、剛直な直鎖構造を有するポリイミドが挙げられ、このようなポリイミドは、ガラス転移点温度が高く、300~450℃の範囲を有するという特徴も有する。
 以上、実施形態により例示したポリイミド層含有フレキシブル基板10を、フレキシブル太陽電池用の基板に適用する場合、ポリイミド層3の厚さは1.5μm以上である必要があり、好ましくは2μm以上、より好ましくは3μm以上である。ポリイミド層3の防護膜としての効果が高くなり、ポリイミド層3上に形成される光電変換層中への金属箔1およびAl含有の金属層または合金層2を形成する金属成分の浸透を確実に防止できるからである。フレキシブル性を確保する点で、ポリイミド層の厚さは100μm以下であり、50μm以下が好ましい。
 なお、本発明では、金属基板5のAl含有の金属層または合金層2またはその表面を化学的若しくは物理的な表面処理を行なうことで金属基板表面の表面処理を行なうこともできるし、金属基板5とポリイミド層3との間に、本発明の効果を阻害しない範囲で任意の層を介在させてもよい。
 次に、本実施形態のポリイミド層含有フレキシブル基板10の製造方法について、図3を参照して詳細に説明する。まず、金属箔1の表面に、銅、ニッケル、亜鉛もしくはアルミニウムまたはそれらの合金からなる金属層または合金層2を、例えばめっきにより形成する(S1)。金属箔1としては、例えば普通鋼またはSUSからなる金属箔を使用し、めっき方法としては、例えば上述の溶融めっき法を採用し得る。
 ここで、第一の実施形態に係るポリイミド層含有フレキシブル基板10の製造方法においては、金属層または合金層2を形成する工程は不要である。
 つづいて、上記で合成法を説明したポリイミドの前駆体であるポリアミド酸溶液、またはポリイミド溶液を金属層または合金層2上に塗布する(S2)。第一の実施形態に係るポリイミド層含有フレキシブル基板10の製造方法においては、金属箔上に形成する。
 ここで、ポリアミド酸溶液およびポリイミド溶液を総称してプレポリイミド層と称することとする。プレポリイミド層を塗布後、乾燥[溶媒の加熱除去](S3)、およびイミド化[加熱硬化処理](S4)によって、金属層または合金層2に接着したポリイミド層3を形成する。第一の実施形態に係るポリイミド層含有フレキシブル基板10の製造方法においては、金属箔上に接着したポリイミド層3を形成する。
 なお、ポリイミド溶液を塗布した場合は、すでにイミド化されているのでステップ4(S4)は実施しない。
 プレポリイミド層としてポリイミド溶液を使用する場合は、ステップ3(S3)において、例えば100~250℃の温度が積算時間で1~10分間となるように温度制御して乾燥(溶媒の加熱除去)させることにより、面方向に高配向なポリイミド膜が成膜される。ポリアミド酸を使用する場合は、ステップ4(S4)において、例えば100~150℃の温度を積算時間で3~15分間、好ましくは110~140℃の温度が積算時間で5~10分間、320~380℃の温度が積算時間で5分間以上、好ましくは5~60分間となるように温度制御してイミド化させることにより、面方向に高配向なポリイミド膜が成膜される。
 以上の工程により、面方向に高配向なポリイミド層3が形成された、ポリイミド層含有フレキシブル基板10が製造される。上記では、ポリイミド層3の形成は、ポリアミド酸溶液を塗布するいわゆるキャスト法によって形成する方法を説明したが、ポリイミド層3が所定の要件を充足するものであれば、ポリイミド層3の形成方法は限定されるものではなく、フィルム化されたポリイミドフィルムを、接着剤等を介して、若しくは介さずに加熱圧着する方法や、蒸着法によりポリイミド層を形成する方法が挙げられる。但し、ポリイミド層3の厚さを簡易にコントロールし、ポリイミド層3の表面粗度を低く抑えるにはキャスト法が最も適している。
 次に、本発明のフレキシブル太陽電池20の実施の形態について図2を用いて説明する。本実施形態のフレキシブル太陽電池は、図1により説明したポリイミド層含有フレキシブル基板10を使用して形成される。その一例としては図2に示したように、ポリイミド層含有フレキシブル基板10のポリイミド層3(絶縁層)上に下部電極(裏面電極)6、下部電極6上に光電変換層(光吸収層)7、光電変換層7上に透明電極(上部電極)8、ならびに下部電極6および透明電極8に接続する取り出し電極9を有する構造である。なお、図示しないがさらに反射防止膜等を有していてもよい。
 下部電極6としては、導電性を有する材料であれば特に限定されず、例えば、体積抵抗率が6×10Ω・cm以下の金属、半導体などを用いることができる。具体的には、例えばモリブデン(Mo)を使用することができる。なお、下部電極6の厚さは、フレキシブル性の点で、0.1~1μmが好ましい。
 光電変換層7は、高い発電効率を得るために、光の吸収性がよいもの、すなわち光吸収係数の大きいものが好ましい。本発明のフレキシブル太陽電池用の光電変換層としては、化合物半導体が好ましく、Cu、In、Ga、Al、Se、Sなどから成るカルコパイライト系と呼ばれるI-III-VI族化合物を用いる。例えば、CdS/CdTe、CIS[CuInS]、CIGS[Cu(In,Ga)Se]、CIGSS[Cu(In,Ga)(Se,S)]、SiGe、CdSe、GaAs、GaN、およびInP等を挙げることができる。光電変換層7の厚さは、発電効率とフレキシブル性の両立の点で、0.1~4μmが好ましい。
 透明電極8は、光が入射する側の電極であるため、効率よく集光できるように、その材料として透明度が高いものを使用する。例えば、アルミニウムをドープした酸化亜鉛(ZnO)やインジウム・スズ酸化物(ITO)を使用する。透明電極8の厚さは、フレキシブル性の点で、0.1~0.3μmである。なお、反射等による入射光の損失を防ぐため、透明電極8に接して反射防止膜を形成してもよい。
 取り出し電極9としては、例えば、Ni、Al、Ag、AuおよびNiCrなどの金属および合金を材料として使用することができる。
 つづいて、本実施形態に係るフレキシブル太陽電池の、概略製造方法について図4により説明する。まず、ポリイミド層含有フレキシブル基板10のポリイミド層3上に、電極材料、例えばモリブデンを積層して下部電極6を形成する(S11)。具体的には、モリブデンをスパッタリング法または蒸着法によりポリイミド層3上に積層する。
 下部電極6の形成後、その上に上記化合物半導体のいずれかを積層して光電変換層7を形成する(S12)。具体的には、化合物半導体材料を、焼結、化学析出、スパッタ、近接昇華法、多元蒸着法、およびセレン化法等のいずれかの方法によって、下部電極6上に積層させる。
 光電変換層7としてCdS/CdTe膜を形成する場合は、CdSペーストおよびCdTeペーストを順次塗布して600℃以下で焼結して薄膜を形成する方法を例示することができる。また、当該方法の代わりに、化学析出またはスパッタ等によりCdS膜を形成した後、近接昇華法によりCdTe膜を形成する方法を採用することもできる。
 光電変換層7としてCIS[CuInS]膜、CIGS[Cu(In,Ga)Se]膜、またはCIGSS[Cu(In,Ga)(Se,S)]膜を形成する場合は、これら化合物をペースト状にしてポリイミド層3上に塗布し、350~550℃で焼結することにより、これら化合物系の光電変換層7を形成する。
 上記のようにして化合物半導体系の光電変換層7を形成する際、化合物半導体膜中に亜鉛(Zn)を混入させてもよい。混入方法としては、例えば、硫酸亜鉛、塩化亜鉛、またはヨウ化亜鉛等の水溶液を化合物半導体膜に塗布する方法を用いることができる。あるいは、これらの水溶液中に、光電変換層7までを形成した積層体を浸漬させてもよい。亜鉛を混入させることにより、光電変換効率を向上させることができる。
 光電変換層7の形成後、その上にアルミニウムをドープした酸化亜鉛(ZnO)やインジウム・スズ酸化物(ITO)の透明電極8を、スパッタリング法等により積層させる(S13)。その後、下部電極6および透明電極8のそれぞれに接続させて、各々取り出し電極9を形成させる(S14)。取り出し電極の材料としてはアルミニウムやニッケルを使用することができる。
 なお、ポリイミド層3と下部電極6の間にアルカリ金属供給層を形成してもよい。アルカリ金属供給層からアルカリ金属の一部が光電変換層に浸透・拡散することにより、光電変換効率が向上する効果を期待できる。
 以下、実施例により、本発明の実施の形態についてより具体的に説明する。また、比較例を示すことにより、本実施の形態の優位性を明らかにする。
1.Al含有の金属層または合金層付きの金属基板
 ポリイミド層含有フレキシブル基板の基板部となるAl含有の金属層または合金層付きの金属基板として、膜厚が150μmのアルミニウムめっき鋼箔を使用した。当該アルミニウムめっき鋼箔は、上記した形態例1に準拠して作製し、100μmの鋼箔の両面に25μmのアルミニウム層を有している。また、使用した原料鋼の鉄以外の主要成分は表1に示す通りである。
Figure JPOXMLDOC01-appb-T000007
2.各種物性測定および性能試験方法
[熱膨張係数(CTE)]
 Al含有の金属層または合金層付きの金属基板上に形成するポリイミドの面方向における熱膨張係数は、サーモメカニカルアナライザー/SS6100(セイコーインスツル株式会社製)を用いて次のように測定した。Al含有金属層付き金属箔上にポリイミド層を形成した後、当該金属箔をエッチング除去してフィルム状としたポリイミドを、荷重5gで260℃まで昇温速度10℃/分で昇温し、その後5℃/分で室温まで冷却し、降温時のポリイミドフィルムの面方向における寸法変化から100℃から250℃までの熱膨張係数を算出した。
 また、金属基板の面方向における熱膨張係数は、上記フィルム状としたポリイミドの代わりに金属基板を使用する以外は上記と同様の方法で熱膨張係数を算出した。
[ガラス転移点温度の測定]
 ポリイミドのガラス転移点温度は、粘弾性アナライザ RSA-II(レオメトリックサイエンスエフィー株式会社製)を用いて次のように測定した。Al含有金属層付き金属箔上にポリイミド層を形成した後、当該金属箔をエッチング除去してフィルム状としたポリイミドを、10mm幅にカットし、1Hzの振動を与えながら、室温から400℃まで10℃/分の速度で昇温した際の、損失正接(Tanδ)の極大値をガラス転移点温度とした。
[ポリイミド層の表面粗度の測定]
 金属基板上に形成したポリイミド層の外側の表面層をブルカー社製の原子間力顕微鏡(AFM)「Multi Mode8」を用いて表面観察をタッピングモードで行った。10μm角の視野観察を5回行い、その平均値を表面粗度の値とした。表面粗さ(Ra)は、算術平均粗さ(JIS B 0601-1994)を表す。
[Al含有の金属層または合金層付きの金属基板を構成する金属の検出]
 Al含有の金属層または合金層付きの金属基板を構成する金属の、ポリイミド層および光電変換層中への混入(拡散)の有無を次のようにして測定した。検出装置としては、グロー放電発光分光分析装置 GD-PROFILER2(株式会社堀場製作所製(JOBIN YVON社製))を使用した。本装置により、ポリイミド層および光電変換層について、標的金属元素(Al、Fe、Si等)に対応する波長毎の光強度を検出して発光スペクトルを作成し、そのスペクトルから当該金属に対応するピークのピーク強度を測定する。得られたピーク強度から、次のようにして標的金属元素の含有量(混入量)を求める。
(1)各標的金属元素について、数種類の濃度既知の標準試料を作製する。
(2)標的金属元素ごとに、標準試料各濃度の発光スペクトルのピーク強度を測定し、金属元素濃度換算用の検量線(出力電圧(V)-濃度(質量%))を作成する。
(3)ポリイミド層、光電変換層からサンプリングした各試料について、分光分析を行い、発光スペクトルのピーク強度を測定する。
(4)各金属元素の発光スペクトルのピーク強度は検出器の出力電圧(V)で検出されるので、(2)で作成した検量線から金属元素の濃度(質量%)を読み取る。
(5)当該濃度が0.1質量%未満の場合は検出限界以下とする。
3.ポリアミド酸(ポリイミド前駆体)溶液の合成
合成例1
 熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、N,N-ジメチルアセトアミドを入れた。この反応容器に2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)を投入した。次に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)およびピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続け、ポリアミド酸aの樹脂溶液を得た。このポリアミド酸aの樹脂溶液の溶液粘度は20,000mPa・sであった。なお、溶液粘度は、E型粘度計による25℃でのみかけ粘度の値である(以下、同様)。
合成例2
 熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、N,N-ジメチルアセトアミドを入れた。この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を投入し、容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%となるように投入した。その後、3時間撹拌を続け、ポリアミド酸bの樹脂溶液を得た。このポリアミド酸bの樹脂溶液の溶液粘度は3,000mPa・sであった。
合成例3
 熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、N,N-ジメチルアセトアミドを入れた。この反応容器に4,4-ジアミノジフェニルエーテル(4,4-DAPE)を投入し、容器中で撹拌しながら溶解させた。次に、ベンゾフェノンテトラカルボン酸二無水物(BTDA)を加えた。モノマーの投入総量が15wt%となるように投入した。その後、3時間撹拌を続け、ポリアミド酸cの樹脂溶液を得た。このポリアミド酸cの樹脂溶液の溶液粘度は3,000mPa・sであった。
4.性能評価
実施例1
 上記したAl含有金属層付きの金属基板である、膜厚150μmのアルミニウムめっき鋼箔(普通鋼の金属箔にアルミニウム層をめっきにより形成した金属基板)を準備した。この箔に上記合成例1で準備したポリアミド酸溶液aを塗布し、乾燥させ、110~140℃の温度が積算時間で5分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚3μmのポリイミド層を形成した。このようにして得られたAl含有金属層付きの金属基板の表面にポリイミド層を備えた、ポリイミド層含有フレキシブル基板におけるポリイミド層のTgは360℃であり、面方向における熱膨張係数は6×10-6/K、ポリイミド層表面の表面粗度は2.5nmであった。
 このポリイミド層含有フレキシブル基板上に、下部電極として蒸着法によりモリブデン(Mo)膜を厚さ1μmで形成した。次に、蒸着法により、Mo膜上にp型半導体層としてCu(In、Ga)Se膜(厚さ2μm)を形成して、ポリイミド層含有フレキシブル基板上に下部電極(裏面電極)、およびその上にp型半導体層とを有する積層体を形成した。
 次に、硫酸亜鉛(ZnSO)水溶液(Zn2+の濃度は0.025mol/L)を準備し、当該水溶液を恒温槽中において85℃に保持し、上記積層体を約3分間浸漬した。その後、積層体を純水で洗浄し、さらに、窒素雰囲気中において400℃で10分間熱処理した。
 つづいて、酸化亜鉛(ZnO)ターゲットおよび酸化マグネシウム(MgO)ターゲットを用いた二元スパッタリングによって、上記積層体のp型半導体上に、n型半導体層としてZn0.9・Mg0.1O膜(厚さ100nm)を形成した。このとき、アルゴンガス雰囲気中(ガス圧2.66Pa(2×10-2Torr))において、ZnOターゲットにはパワー200Wの高周波を印加して、MgOターゲットにはパワー120Wの高周波を印加してスパッタリングを行った。このようにして、下部電極上に光電変換層を形成した。
 次に、スパッタリング法を用い、光電変換層上に透明電極(上部電極)として透光性を有する導電膜であるITO膜(厚さ100nm)を形成した。ITO膜は、アルゴンガス雰囲気中(ガス圧1.07Pa(8×10-3Torr))において、パワー400Wの高周波をターゲットに印加することによって形成した。
 最後に、NiCr膜とAg膜とを、電子ビーム蒸着法を用いて下部電極(Mo膜)上、および透明電極(ITO膜)上に積層することによって、取り出し電極を形成し、フレキシブル太陽電池を作製した。
 作製したフレキシブル太陽電池について、上記発光スペクトル法によりポリイミド層および光電変換層中の金属分を分析したところ、いずれにも拡散による金属の混入は認められなかった。
実施例2
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)、ポリアミド酸溶液aを用い、110~140℃の温度が積算時間で3分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚3μmのポリイミド層を形成した。形成したポリイミド層のTgは360℃であり、面方向における熱膨張係数は15×10-6/K、ポリイミド層表面の表面粗度は2.1nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層および光電変換層中の金属分を分析したところ、いずれにも拡散による金属の混入は認められなかった。
実施例3
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)、ポリアミド酸溶液aを用い、110~140℃の温度が積算時間で1分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚3μmのポリイミド層を形成した。形成したポリイミド層のTgは360℃であり、面方向における熱膨張係数は33×10-6/K、ポリイミド層表面の表面粗度は3.9nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層中の金属分を分析したところ、拡散によるポリイミド層中へのFe、Alの混入が確認された。しかし、光電変換層中にはこれらの混入は確認されなかった。
実施例4
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)に、上記合成例2で準備したポリアミド酸溶液bを塗布し、乾燥させ、110~140℃の温度が積算時間で5分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚3μmのポリイミド層を形成した。形成したポリイミド層のTgは300℃であり、面方向における熱膨張係数は50×10-6/K、ポリイミド層表面の表面粗度は2.2nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層中の金属分を分析したところ、拡散によるポリイミド層中へのFe、Alの混入が確認された。しかし、光電変換層中にはこれらの混入は確認されなかった。
比較例1
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)、ポリアミド酸溶液aを用い、イミド化後の膜厚が下記厚みとなるように、ポリアミド酸溶液aの塗布厚みを変更して塗布し、110~140℃の温度が積算時間で1分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚1μmのポリイミド層を形成した。形成したポリイミド層のTgは360℃であり、面方向における熱膨張係数は34×10-6/K、ポリイミド層表面の表面粗度は3.2nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層中の金属分を分析したところ、拡散によるポリイミド層中へのFe、Alの混入が確認された。さらに、Fe、Alがポリイミド層を通過し、光電変換層中へも拡散混入していることが確認された。
比較例2
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)に、上記合成例2で準備したポリアミド酸溶液bを、イミド化後の膜厚が下記厚みとなるように塗布し、乾燥させ、110~140℃の温度が積算時間で5分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚1μmのポリイミド層を形成した。形成したポリイミド層のTgは300℃であり、面方向における熱膨張係数は50×10-6/K、ポリイミド層表面の表面粗度は4.1nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層中の金属分を分析したところ、拡散によるポリイミド層中へのFe、Alの混入が確認された。さらに、Fe、Alがポリイミド層を通過し、光電変換層中へも拡散混入していることが確認された。
比較例3
 実施例1と同様のAl含有金属層付きの金属基板(アルミニウムめっき鋼箔)に、上記合成例3で準備したポリアミド酸溶液cを塗布し、乾燥させ、110~140℃の温度が積算時間で5分間、320~380℃の温度が積算時間で5分間以上となる加熱条件を経て、硬化後膜厚3μmのポリイミド層を形成した。形成したポリイミド層のTgは280℃であり、面方向における熱膨張係数は55×10-6/K、ポリイミド層表面の表面粗度は2.8nmであった。その後、実施例1と同様にフレキシブル太陽電池を形成し、ポリイミド層中の金属分を分析したところ、拡散によるポリイミド層中へのFe、Alの混入が確認された。さらに、Fe、Alがポリイミド層を通過し、光電変換層中へも拡散混入していることが確認された。
 表2に示した結果から明らかなように、厚みが1.5μmを超え、Tgが300℃以上のポリイミド層を形成した実施例1~4は、光電変換層中への拡散による金属の混入が認められなかった。また、これに加え、面方向の熱膨張係数が15×10-6/K以下であるポリイミド層としたものは、ポリイミド層中への金属の混入の抑制にも優れていることが確認された。よって、本発明のポリイミド層含有フレキシブル基板を用いた本発明のフレキシブル太陽電池は、良好な特性を与える。
Figure JPOXMLDOC01-appb-T000008
5.Al含有金属層付きの金属基板におけるAl含有の金属層の密着性評価(弾塑性変形性の指標)、耐食性の評価
 上記した各種箔、形態例1および2、ならびに従来技術により製造されたAl含有金属層付きの金属基板について、そのAl含有の金属層と金属箔との密着性を以下の方法により評価した。
 形態例1のAl含有金属層付きの金属基板は、次のようにして製造した。第一圧延処理として、極低炭素鋼を熱間および冷間で圧延し、板厚300μmの圧延鋼板とし、プレめっき処理として、この圧延鋼板上に、電解めっき法により、純Cuプレめっき膜を形成し、電解Cuめっきのめっき浴としては硫酸銅浴を用い、めっき処理として、プレめっき処理後の圧延鋼板を、660℃に保持されたAl含有金属中に20秒間浸漬することで溶融Alめっきしたもので、さらに第2圧延処理として、めっき処理後の圧延鋼板を、各パスあたり10~20%の圧下率で圧延することで、板厚30μmのAl含有金属層付きの金属基板を製造した。
 形態例2のAl含有金属層付きの金属基板は、次のようにして製造した。板厚300μmの軟鋼に溶融Alめっきを行い、その後鋼層厚みを30μmまで7パスで圧延して多箔とし、第一パスよりも第二パスの圧下率を大きくとり、第三パスでは圧下率を下げることで、それぞれ粒状合金の分散状態を制御して製造した。
 このようにして製造した形態例1のAl含有金属層付きの金属基板は、そのビッカース硬度が500~600Hvの範囲にあり、形態例2のAl含有金属層付きの金属基板は、上記数式(1)~(3)を満足するものであった。
実施例5~14
 また別な形態例として、厚さ0.3mmの表面平滑性の異なる2種の普通鋼、表面平滑性の異なる2種のSUS430(SUS)、普通鋼上に電解NiめっきしたNiめっき鋼、普通鋼上に電解亜鉛めっきしたZnめっき鋼、普通鋼上に電解銅めっきしたCuめっき鋼を作製し、その後厚みが30μmとなるまで7パスで圧延して、表面平滑性の異なる2種の普通鋼箔(実施例5,13)、表面平滑性の異なる2種のSUS箔(実施例6,14)、Ni含有金属層付きの金属基板(Niめっき鋼箔、実施例7)、Zn含有金属層付きの金属基板(Znめっき鋼箔、実施例8)、Cu含有金属層付きの金属基板(Cuめっき鋼箔、実施例9)をそれぞれ得た。それら金属基板と、形態例1に係るAl含有金属層付きの金属基板(Alめっき鋼箔、実施例10)、形態例2のAl含有金属層付きの金属基板(Alめっき鋼箔、実施例11)ならびに従来技術で製造した膜厚30μmのAl含有金属層付きの金属基板(Alめっき鋼箔、ビッカース硬度約900Hv、実施例12)の金属基板の表面の平滑性(Ra(nm))を表3に示す。
 また、上記の各種物性測定および性能試験方法の記載と同様の条件で、実施例5~14の各金属基板の熱膨張係数を測定し、その結果を表3に示す。
 実施例5~14の各金属基板に、本実施形態に係るポリイミド層を実施例1に準拠して形成し、実施例5~14に係るポリイミド層含有フレキシブル基板を作製した。
 これら実施例5~14のポリイミド層含有フレキシブル基板についてピール試験をすることで金属層(金属めっき層)の密着性を確認した。なお、ピール試験は、ポリイミド層の表面に市販の粘着テープを付着させ、それを5kgの力で上から押しつけた後にテープを引き剥がし、テープを顕微鏡で観察した際にめっき層の金属がテープ上に移行して付着しているかどうかで評価した。本試験を10回行い、金属付着が0回の場合を◎、1~2回の場合を○、3~5回の場合を△、6~8回の場合を△△、9回以上の場合を×とした。また、◎を示した試験片については引き続き同様の試験を継続し、30回でも金属付着が0回であれば◎○と示した。また、剥離が起きた場合の剥離が生じた界面を表3に示す。
 表3から、普通鋼箔(実施例5)、SUS箔(実施例6)、Niめっき鋼箔(実施例7)、Znめっき鋼箔(実施例8)及びCuめっき鋼箔(実施例9)を用いたポリイミド層含有フレキシブル基板の密着性は、もっとも良好、すなわち高レベルのフレキシブル性を有していることが判る。
 形態例1(実施例10)および形態例2(実施例11)に係るAl含有金属層付きの金属基板は上記よりは性能は劣るが充分な密着性を有している。
 実施例13、14では金属の表面平滑性が前述の好ましい範囲(Raで20~80nm)から外れていたため、密着性がやや低下しているのに対し、実施例5~11に係る金属基板にキャスト法でポリイミド層を成膜したポリイミド層含有フレキシブル基板では、アンカー効果により密着性が向上した。
Figure JPOXMLDOC01-appb-T000009
 また、上記実施例5~14の10種類のポリイミド層含有フレキシブル基板の耐食性を塩水噴霧試験(SS T)によって評価した。尚、端面をシールで保護した場合を「端面保護」と記載し、特に端面をシール等で保護せずむき出しの状態で試験した場合を「端面保護無し」と記載した。尚、試験中の塩水はポリイミド層を積層しなかった面(裏面)からあてた。45℃に保持された3%NaCl水を噴霧し、336時間以上目視で腐食を確認できない場合を◎◎、240時間以上を◎○、168時間以上を◎、100時間以上を○、それ未満を×として表3に記入した。
 また、上記10種類のポリイミド層含有フレキシブル基板を用いて、実施例1と同様の方法でフレキシブル太陽電池を作製し、ポリイミド層および光電変換層中の金属分(金属の混入)を分析した。ポリイミド層中及び光電変換層のいずれの層にも混入しなかったものを◎、ポリイミド層中にのみ混入したものを○、ポリイミド層中及び光電変換層のいずれの層にも混入したものを×で表3に示す。
 表3から明らかなように、SUS箔、Ni含有金属層付きの金属基板(Niめっき鋼箔)、Zn含有金属層付きの金属基板(Znめっき鋼箔)では、端面保護有りの場合の耐食性は極めて良好であった。Cu含有金属層付きの金属基板(Cuめっき鋼箔)、Al含有金属層付きの金属基板(Alめっき鋼箔)は上記よりは性能は劣るが充分な端面保護有りの場合の耐食性を有している。特にSUS箔は端面保護無しの場合でも良好な耐食性を示した。端面保護無しの場合、Ni含有金属層付きの金属基板(Niめっき鋼箔)、Zn含有金属層付きの金属基板(Znめっき鋼箔)、Cu含有金属層付きの金属基板(Cuめっき鋼箔)、Al含有金属層付きの金属基板(Alめっき鋼箔)はSUS箔よりは性能は劣るが、普通鋼箔よりも良好な、実用上充分な性能を示した。
 また、普通鋼箔、SUS箔では、光電変更層中への金属の混入はみられなかった。Ni含有金属層付きの金属基板(Niめっき鋼箔)、Zn含有金属層付きの金属基板(Znめっき鋼箔)、Cu含有金属層付きの金属基板(Cuめっき鋼箔)、Al含有金属層付きの金属基板(Alめっき鋼箔)では、ポリイミド層中及び光電変換層のいずれの層にも金属の混入はみられなかった。
1 金属箔(鋼層)、 2 金属層または合金層、 3 ポリイミド層、 4 Fe-Al系合金層、 5 金属基板、 6 下部電極(裏面電極)、 7 光電変換層(光吸収層)、 8 透明電極(上部電極)、9 取り出し電極、 10 ポリイミド層含有フレキシブル基板、 20 フレキシブル太陽電池

Claims (15)

  1.  面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板と、
     前記金属基板上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層と
     を有するポリイミド層含有フレキシブル基板。
  2.  面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を有する金属基板と、
     前記金属層または前記合金層上に形成された、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層と
     を有するポリイミド層含有フレキシブル基板。
  3.  前記金属層または前記合金層がアルミニウム層またはアルミニウム合金層である
     請求項2に記載のポリイミド層含有フレキシブル基板。
  4.  前記ポリイミド層は、その面方向における100℃から250℃までの熱膨張係数が15×10-6/K以下である
     請求項1~3のいずれかに記載のポリイミド層含有フレキシブル基板。
  5.  前記ポリイミド層の前記金属基板と接触しない側の表面の表面粗度が10nm以下である
     請求項1~4のいずれかに記載のポリイミド層含有フレキシブル基板。
  6.  400℃で10分間の熱処理後、前記ポリイミド層の前記金属基板と接触しない側の表面における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である
     請求項1~5のいずれかに記載のポリイミド層含有フレキシブル基板。
  7.  請求項1~6のいずれかに記載のポリイミド層含有フレキシブル基板を用いてなる
     ポリイミド層含有フレキシブル太陽電池用基板。
  8.  請求項7に記載のポリイミド層含有フレキシブル太陽電池用基板と、
     前記ポリイミド層上に形成された下部電極と、
     前記下部電極上に形成された光電変換層と、
     前記光電変換層上に形成された透明電極と
     を有するフレキシブル太陽電池。
  9.  前記光電変換層中における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である
     請求項8に記載のフレキシブル太陽電池。
  10.  前記ポリイミド層の前記金属基板と接触しない側の表面における、前記金属基板を形成する金属の含有量が、発光スペクトル検出法による測定において検出限界以下である
     請求項8または9に記載のフレキシブル太陽電池。
  11.  面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔である金属基板の上に、ポリイミド前駆体溶液を塗布する工程と、
     前記ポリイミド前駆体溶液を熱処理して乾燥およびイミド化による硬化をさせ、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層を形成する工程と
     を有するポリイミド層含有フレキシブル基板の製造方法。
  12.  面方向の熱膨張係数が15ppm/K以下である普通鋼またはステンレスからなる金属箔の表面に、銅、ニッケル、亜鉛もしくはアルミニウムの1種からなる金属層またはこれらの合金層を形成して金属基板を形成する工程と、
     前記金属層またはこれらの前記合金層上に、ポリイミド前駆体溶液を塗布する工程と、
     前記ポリイミド前駆体溶液を熱処理して乾燥およびイミド化による硬化をさせ、層厚が1.5~100μmで、かつガラス転移点温度が300~450℃であるポリイミド層を形成する工程と
     を有するポリイミド層含有フレキシブル基板の製造方法。
  13.  前記金属箔の表面に前記金属層またはこれらの合金層を形成して金属基板を形成する工程において、前記金属層または前記合金層としてアルミニウム層またはアルミニウム合金層を形成する
     請求項12に記載のポリイミド層含有フレキシブル基板の製造方法。
  14.  請求項11~13のいずれかに記載のポリイミド層含有フレキシブル基板の製造方法により、前記ポリイミド層含有フレキシブル基板を用いてなるポリイミド層含有フレキシブル太陽電池用基板を製造する
     ポリイミド層含有フレキシブル太陽電池用基板の製造方法。
  15.  請求項14に記載のポリイミド層含有フレキシブル太陽電池用基板の製造方法により製造したポリイミド層含有フレキシブル太陽電池用基板の前記ポリイミド層上に下部電極を形成する工程と、
     前記下部電極上に光電変換層を形成する工程と、
     前記光電変換層上に透明電極を形成する工程と
     を有するフレキシブル太陽電池の製造方法。
PCT/JP2013/063452 2012-05-14 2013-05-14 ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法 WO2013172355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380025071.0A CN104284777B (zh) 2012-05-14 2013-05-14 含有聚酰亚胺层的柔性基板、含有聚酰亚胺层的柔性太阳能电池用基板、柔性太阳能电池以及它们的制造方法
US14/400,720 US20150136209A1 (en) 2012-05-14 2013-05-14 Polyimide layer-containing flexible substrate, polyimide layer-containing substrate for flexible solar cell, flexible solar cell, and method for producing same
JP2014515644A JP6247206B2 (ja) 2012-05-14 2013-05-14 ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110841 2012-05-14
JP2012-110841 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172355A1 true WO2013172355A1 (ja) 2013-11-21

Family

ID=49583760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063452 WO2013172355A1 (ja) 2012-05-14 2013-05-14 ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法

Country Status (4)

Country Link
US (1) US20150136209A1 (ja)
JP (2) JP6247206B2 (ja)
CN (1) CN104284777B (ja)
WO (1) WO2013172355A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195162A (ja) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 金属基板
CN109411612A (zh) * 2018-10-19 2019-03-01 武汉大学 一种非真空条件下让可升华材料从本体转移到基底上制备薄膜的方法
JP6960205B1 (ja) * 2020-09-30 2021-11-05 ジンコ ソーラー カンパニー リミテッド 光起電力フレーム、光起電力モジュール及び光起電力フレームの製造方法
KR20230054045A (ko) * 2021-10-15 2023-04-24 주식회사 엔에스테바 유연 동박 적층 기판용 유전층 소재 및 이의 제조방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128396B2 (en) * 2012-10-26 2018-11-13 Stmicroelectronics S.R.L. Photovoltaic cell
JP6657073B2 (ja) * 2014-03-25 2020-03-04 株式会社カネカ 化合物半導体太陽電池の製造方法
EP3424083B1 (en) * 2016-03-02 2021-07-14 Flisom AG Flexible photovoltaic apparatus with multi-layered substrate
CN109690801A (zh) * 2016-09-28 2019-04-26 积水化学工业株式会社 柔性太阳能电池
US10636734B2 (en) 2018-02-02 2020-04-28 Compass Technology Company, Ltd. Formation of fine pitch traces using ultra-thin PAA modified fully additive process
US10468342B2 (en) 2018-02-02 2019-11-05 Compass Technology Company, Ltd. Formation of fine pitch traces using ultra-thin PAA modified fully additive process
DE102018104716B3 (de) * 2018-03-01 2019-03-28 Isabellenhütte Heusler Gmbh & Co. Kg Thermoelektrisches Modul zur Stromerzeugung und zugehöriges Herstellungsverfahren
JP7085419B2 (ja) * 2018-03-14 2022-06-16 東洋鋼鈑株式会社 圧延接合体及びその製造方法
CN109817852A (zh) * 2018-12-29 2019-05-28 武汉依麦德新材料科技有限责任公司 一种锂离子电池外包装材料及其制备方法
DE102019104841A1 (de) 2019-02-26 2020-08-27 Endress+Hauser SE+Co. KG Messgerät mit einem Sensorelement und einer Mess- und Betriebsschaltung
JP7320254B2 (ja) * 2019-08-21 2023-08-03 河村産業株式会社 面状発熱体
JP7327159B2 (ja) * 2019-12-27 2023-08-16 住友電気工業株式会社 回路基板用積層体およびその製造方法
US20210346951A1 (en) * 2020-01-31 2021-11-11 The Regents Of The University Of Michigan Rapid-Induction Sinter Forge for Roll-to-Roll Continuous Manufacturing of Thin Films
US20220181165A1 (en) * 2020-12-08 2022-06-09 Compass Technology Company Limited Fabrication Method of Flexible Cyclo-Olefin Polymer (COP) Substrate for IC Packaging of Communication Devices and Biocompatible Sensors Devices
US11746434B2 (en) 2021-07-21 2023-09-05 Battelle Energy Alliance, Llc Methods of forming a metal coated article
US20230069457A1 (en) * 2021-09-01 2023-03-02 Battelle Energy Alliance, Llc Electrodes comprising a solid solution and methods of forming the electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349311A (ja) * 1999-04-02 2000-12-15 Tdk Corp 太陽電池およびその製造方法
JP2003051606A (ja) * 2001-06-01 2003-02-21 Daido Steel Co Ltd 薄膜形成用基板
JP2011165790A (ja) * 2010-02-08 2011-08-25 Fujifilm Corp 太陽電池およびその製造方法
JP2012059855A (ja) * 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用基板および電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004025060D1 (de) * 2003-06-18 2010-02-25 Shinetsu Polymer Co Leitfähige Zusammensetzung und Herstellungsverfahren dafür
CN102089366B (zh) * 2008-05-20 2013-06-19 宇部兴产株式会社 聚酰亚胺-金属层压制品和太阳电池
WO2011040440A1 (ja) * 2009-09-30 2011-04-07 大日本印刷株式会社 フレキシブルデバイス用基板、フレキシブルデバイス用薄膜トランジスタ基板、フレキシブルデバイス、薄膜素子用基板、薄膜素子、薄膜トランジスタ、薄膜素子用基板の製造方法、薄膜素子の製造方法および薄膜トランジスタの製造方法
CN101872793B (zh) * 2010-07-02 2013-06-05 福建钧石能源有限公司 叠层太阳能电池及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349311A (ja) * 1999-04-02 2000-12-15 Tdk Corp 太陽電池およびその製造方法
JP2003051606A (ja) * 2001-06-01 2003-02-21 Daido Steel Co Ltd 薄膜形成用基板
JP2011165790A (ja) * 2010-02-08 2011-08-25 Fujifilm Corp 太陽電池およびその製造方法
JP2012059855A (ja) * 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用基板および電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195162A (ja) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 金属基板
CN109411612A (zh) * 2018-10-19 2019-03-01 武汉大学 一种非真空条件下让可升华材料从本体转移到基底上制备薄膜的方法
CN109411612B (zh) * 2018-10-19 2021-01-19 武汉大学 一种非真空条件下让可升华材料从本体转移到基底上制备薄膜的方法
JP6960205B1 (ja) * 2020-09-30 2021-11-05 ジンコ ソーラー カンパニー リミテッド 光起電力フレーム、光起電力モジュール及び光起電力フレームの製造方法
JP2022058066A (ja) * 2020-09-30 2022-04-11 ジンコ ソーラー カンパニー リミテッド 光起電力フレーム、光起電力モジュール及び光起電力フレームの製造方法
US11356053B2 (en) 2020-09-30 2022-06-07 Jinko Solar Co., Ltd. Photovoltaic frame, photovoltaic module and method for manufacturing photovoltaic frame
US11545930B2 (en) 2020-09-30 2023-01-03 Jinko Solar Co., Ltd. Photovoltaic frame, photovoltaic module and method for manufacturing photovoltaic frame
US11888437B2 (en) 2020-09-30 2024-01-30 Jinko Solar Co., Ltd. Photovoltaic frame, photovoltaic module and method for manufacturing photovoltaic frame
KR20230054045A (ko) * 2021-10-15 2023-04-24 주식회사 엔에스테바 유연 동박 적층 기판용 유전층 소재 및 이의 제조방법
KR102543589B1 (ko) * 2021-10-15 2023-06-20 주식회사 엔에스테바 유연 동박 적층 기판용 유전층 소재 및 이의 제조방법

Also Published As

Publication number Publication date
CN104284777A (zh) 2015-01-14
CN104284777B (zh) 2017-10-27
JP6529553B2 (ja) 2019-06-12
JP2018027690A (ja) 2018-02-22
US20150136209A1 (en) 2015-05-21
JPWO2013172355A1 (ja) 2016-01-12
JP6247206B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6247206B2 (ja) ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法
JP6445965B2 (ja) 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
JP5304490B2 (ja) 積層体およびその製造方法
JP5152104B2 (ja) 積層体およびその製造方法
JP4957059B2 (ja) ポリイミドフィルム積層体
JP5816615B2 (ja) 基材用金属箔
JP5545032B2 (ja) 積層体、電気回路付加積層板、半導体付加積層体およびその製造方法
JP5932132B2 (ja) 鋼アルミニウム複合箔
JP2008111074A (ja) ポリイミドフィルム及び太陽電池
JP5816617B2 (ja) 基材用金属箔及びその製造方法
JP2008230096A (ja) 金属層付き積層フィルム
JP5545033B2 (ja) 積層体およびその製造方法
KR101606990B1 (ko) 적층체 및 이를 포함하는 박막형 태양전지
JP4821997B2 (ja) フィルム状太陽電池
JP5171690B2 (ja) 銅張積層板及びその製造方法
JP2013171876A (ja) Cis太陽電池およびその製造方法
JP4806982B2 (ja) ポリイミドフィルムおよびその製造方法
KR20230076427A (ko) 블랙 버스바 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791527

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014515644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791527

Country of ref document: EP

Kind code of ref document: A1