WO2013161984A1 - ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2013161984A1
WO2013161984A1 PCT/JP2013/062339 JP2013062339W WO2013161984A1 WO 2013161984 A1 WO2013161984 A1 WO 2013161984A1 JP 2013062339 W JP2013062339 W JP 2013062339W WO 2013161984 A1 WO2013161984 A1 WO 2013161984A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
acid
diamine
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2013/062339
Other languages
English (en)
French (fr)
Inventor
淳彦 萬代
悟志 南
達哉 名木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020147033091A priority Critical patent/KR102169221B1/ko
Priority to CN201380033556.4A priority patent/CN104395282A/zh
Publication of WO2013161984A1 publication Critical patent/WO2013161984A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/34Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/32Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a novel diamine, polyimide precursor, polyimide and polyamide, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment films that are used industrially are polyimide precursors such as polyamic acid (also called polyamic acid), polyamic acid esters, and polyimide-based liquid crystal aligning agents composed of polyimide solutions. It is manufactured by applying and forming a film. Further, when the liquid crystal is horizontally aligned, parallel aligned, or inclinedly aligned with respect to the substrate surface, after the film formation, a surface stretching process by rubbing is further performed. As an alternative to the rubbing treatment, a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed, and in recent years, studies for industrialization have been performed.
  • An object of the present invention is to solve the above-described problems of the prior art, and an object of the present invention is to provide a liquid crystal display element having a good afterimage characteristic by reducing a change in liquid crystal alignment performance of a liquid crystal alignment film by AC driving.
  • a polyimide precursor that constitutes a liquid crystal display element having such characteristics a novel diamine capable of obtaining a liquid crystal alignment film having polyimide or polyamide, and a liquid crystal alignment agent and a liquid crystal display element using the same are provided. The purpose is to provide.
  • the present inventors have achieved the above object by a polyimide precursor using a specific diamine represented by the following formula (1) as a diamine component, a liquid crystal aligning agent containing polyimide or polyamide. Therefore, the present invention has been found to be extremely effective, and the present invention has been completed.
  • the diamine represented by the following formula (1) is a novel compound not yet described in the literature.
  • X 1 is a single bond or an alkylene group having 1 to 6 carbon atoms, provided that —CH 2 — which is not adjacent to the alkylene group may be replaced by an ether bond, an ester bond or an amide bond.
  • X 2 is —OCO—CH ⁇ CH— or —CH ⁇ CH—COO—
  • X 3 is a single bond, an alkylene group having 1 to 10 carbon atoms or a divalent benzene ring
  • 4 is a single bond, —OCO—CH ⁇ CH— or —CH ⁇ CH—COO—
  • X 5 is a single bond or an alkylene group having 1 to 6 carbon atoms (provided that —CH 2 which is not adjacent to the alkylene group) -May be replaced by an ether bond, an ester bond or an amide bond, provided that the formula (1) has one or more cinnamoyl groups.)
  • a liquid crystal aligning agent comprising the polymer described in 2.
  • a liquid crystal display element comprising the liquid crystal alignment film according to 4.
  • the present invention it is possible to provide a novel diamine capable of obtaining a liquid crystal alignment film in which changes in liquid crystal alignment performance due to AC driving are reduced. And since the liquid crystal aligning film obtained by using this diamine is hard to change the liquid crystal aligning performance by AC drive, the liquid crystal display element which has this liquid crystal aligning film has an effect that an afterimage is hard to generate
  • the diamine of the present invention is a diamine represented by the above formula (1).
  • the cinnamoyl group is a structure represented by the following formula.
  • the position of the amino group (—NH 2 ) of the benzene ring is not particularly limited. From the viewpoint of liquid crystal alignment performance and ease of synthesis, for example, —X 1 —X 2 — It is preferably present in the para position or the meta position with respect to X 3 —X 4 —X 5 —.
  • Examples of the diamine represented by the formula (1) include the following diamines.
  • X is independently a single bond or a linking group selected from ether (—O—), ester (—COO— or —OCO—) and amide (—CONH— or —NHCO—);
  • diamine represented by the formula (1) include the following diamines.
  • a liquid crystal alignment film formed using a liquid crystal aligning agent containing a polyimide precursor such as polyamic acid and polyamic acid ester, polyimide and polyamide using the diamine of the present invention represented by the above formula (1) as a raw material Is a change in liquid crystal alignment performance due to AC (alternating current) driving, for example, a change in liquid crystal alignment orientation. Therefore, the liquid crystal display element having this liquid crystal alignment film has a stable liquid crystal alignment performance of the liquid crystal alignment film in AC driving, so that an afterimage is hardly generated by AC driving, that is, an afterimage characteristic by AC driving is very good. There is an effect. Moreover, the liquid crystal aligning film formed using the diamine represented by the said Formula (1) is excellent also in liquid crystal aligning performance itself, and can be made into a thing without an alignment defect substantially.
  • the structure derived from the diamine represented by the formula (1) introduced into the main chain of the polyimide precursor, polyimide or polyamide is a side chain instead of the main chain of the polyimide precursor, polyimide or polyamide.
  • the side chain since the side chain is hung from the main chain, when the AC drive is performed, the side chain moves by being pressed against the liquid crystal moved by the AC drive, and the formula (1 This is because the structure derived from the diamine represented by) moves, and the orientation direction is greatly shifted by AC driving, and an afterimage is likely to be generated by AC driving.
  • the method for synthesizing the diamine represented by the above formula (1) is not particularly limited and can be produced, for example, according to the synthesis examples described later.
  • it is diamine represented by Formula (a)
  • it is compoundable by the method shown below.
  • the diamine represented by the above formula (a) can be obtained by synthesizing a corresponding dinitro compound represented by the following formula (a ′), further reducing the nitro group and converting it to an amino group.
  • a ′ dinitro compound represented by the following formula (a ′)
  • palladium-carbon, platinum oxide, Raney nickel, iron, tin chloride, platinum black, rhodium-alumina, platinum carbon sulfide and the like can be used as a catalyst. From the viewpoint of selectively reducing only the nitro group with high yield while leaving the olefin unreduced, it is effective to use a chemical reduction method using iron or tin chloride.
  • the solvent examples include a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, and alcohol
  • examples of the reducing agent include a reaction using hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, and the like.
  • the method for synthesizing the dinitro compound represented by the formula (a ′) is not particularly limited, and can be synthesized by any method, and specific examples thereof include, for example, the method shown in the following reaction. can do.
  • the nitrobenzene compound A and the compound B having a carboxylic acid are reacted with each other in a direct condensation method using, for example, DMAP / DCC or DMAP / EDC in an organic solvent, or the carboxylic acid is converted to thionyl chloride or chloride. It can be synthesized by reacting it as an acid chloride using oxalyl, phosphoryl chloride, sulfuryl chloride, phosphorus trichloride and the like.
  • DMAP is 4-N, N-dimethylaminopyridine
  • DCC is dicyclohexylcarbodiimide
  • EDC is 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
  • X and Y are the same as X and Y in the formula (a), respectively, and examples thereof include 4-nitrophenol, 3-nitrophenol, 2-nitrophenol, 4-nitrobenzyl alcohol, 3-nitro Examples include benzyl alcohol, 2-nitrobenzyl alcohol, 4-nitrophenethyl alcohol, 3-nitrophenethyl alcohol, 2-nitrophenethyl alcohol, and a linking group Y is inserted between the benzene ring and the hydroxyl group as necessary. May be. Further, other substituents may be bonded on the benzene ring, and the substitution position of the nitro group on the benzene ring is appropriately selected from those at which the target diamine is obtained. In addition, the compound shown here is an example and is not specifically limited.
  • organic solvent examples include solvents that do not affect the reaction, specifically, aromatic solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as hexane and heptane, halogens such as dichloromethane and 1,2-dichloroethane.
  • diamines can also be synthesized by using the same technique as the diamine represented by the above formula (a).
  • Polyimide precursors such as polyamic acid and polyamic acid ester of the present invention are obtained by reacting a diamine component containing a diamine represented by the above formula (1) with a tetracarboxylic acid component.
  • polyamic acid ester is obtained also by the method of converting the carboxyl group of polyamic acid into ester.
  • the polyimide of this invention is obtained by imidating polyimide precursors, such as these polyamic acid or polyamic acid ester.
  • the polyamide of this invention reacts the diamine component containing the diamine represented by the said Formula (1), and the halide of dicarboxylic acid in presence of a base, or contains the diamine represented by the said Formula (1).
  • diamine component can be obtained by reacting a diamine component with a dicarboxylic acid in the presence of a suitable condensing agent and base.
  • a suitable condensing agent and base Any of polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, and polyamide are useful as a polymer for obtaining a liquid crystal alignment film.
  • the diamine represented by the formula (1) contained in the diamine component may be one kind or two or more kinds, and the diamine component is one kind of diamine other than the diamine represented by the formula (1). Or two or more types may be included.
  • the diamine represented by the formula (1) can exhibit the effects of the present invention at 10 mol% or more with respect to the total amount of the diamine component, but is preferably 30 to 100 mol%, and more preferably 50 mol%. ⁇ 100 mol%. In the present specification, unless otherwise specified, the ratio is based on the number of moles.
  • diamines other than the diamine represented by the above formula (1) that may be contained in the diamine component include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2 , 5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4 -Diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4 , 4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3 ' Dihydroxy-4,4′
  • the above-mentioned other diamines can be used alone or in combination of two or more depending on properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when the liquid crystal alignment film is formed.
  • the tetracarboxylic acid component is at least one selected from tetracarboxylic acids and tetracarboxylic acid derivatives.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
  • a polyamic acid can be obtained by reacting a diamine component with a tetracarboxylic acid dihalide, tetracarboxylic dianhydride, or the like.
  • a polyamic acid ester can be obtained by reacting a tetracarboxylic acid diester dichloride with a diamine component or reacting a tetracarboxylic acid diester with a diamine component in the presence of a suitable condensing agent or base.
  • the tetracarboxylic acid component may be one type or two or more types.
  • tetracarboxylic acid component examples include a tetracarboxylic dianhydride represented by the following formula (3).
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms containing a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • Z 1 examples include tetravalent organic groups represented by the following formulas (3a) to (3j).
  • Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are hydrogen atoms or methyl groups, which may be the same or different.
  • formula (3) particularly preferred structure of Z 1 is represented by formula (3a), formula (3c), formula (3d), formula (3e), formula (3f) or formula because of polymerization reactivity and ease of synthesis. (3g).
  • the formula (3a), the formula (3e), the formula (3f), or the formula (3g) is preferable.
  • the ratio of the tetracarboxylic dianhydride shown by Formula (3) with respect to the tetracarboxylic acid component whole quantity is not specifically limited,
  • the tetracarboxylic dianhydride whose tetracarboxylic acid component is shown by the said Formula (3) It may be only.
  • the tetracarboxylic acid component may contain a tetracarboxylic acid or a tetracarboxylic acid derivative other than the tetracarboxylic dianhydride represented by the formula (3) as long as the effects of the present invention are not impaired.
  • 1 mol% or more of the total amount of the tetracarboxylic acid component is a tetracarboxylic dianhydride represented by the above formula (3), more preferably 5 mol% or more, and still more preferably 10 mol%. That's it.
  • tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the above formula (3) include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6 -Naphthalene tetracarboxylic acid, 1,4,5,8-naphthalene tetracarboxylic acid, 2,3,6,7-anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid Bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl)
  • Tetracarboxylic acid diesters are not particularly limited. Specific examples are given below. Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl
  • the dicarboxylic acid to be reacted with the diamine component to obtain the polyamide of the present invention is not particularly limited.
  • Specific examples of the dicarboxylic acid or its derivative aliphatic dicarboxylic acid to be reacted with a diamine component to obtain a polyamide include malonic acid, succinic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2 -Dicarboxylic acids such as methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylene dicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid,
  • dicarboxylic acid containing a heterocyclic ring examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazole dicarboxylic acid, 2-phenyl-4,5-thiazole dicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • dicarboxylic acids may be acid dihalides or anhydrous structures. These dicarboxylic acids are preferably dicarboxylic acids that can give a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid or these acid dihalides, etc.
  • dicarboxylic acids used in the present invention are exemplified in the above exemplified compounds. It is not limited.
  • tetracarboxylic dianhydride represented by the above formula (3) other tetracarboxylic acids and tetracarboxylic acid derivatives, dicarboxylic acids, and the like are liquid crystal alignment properties, voltage holding ratios, accumulated charges, etc. when used as liquid crystal alignment films. Depending on the desired characteristics, one kind or a mixture of two or more kinds may be used.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the generated polyimide precursor such as polyamic acid dissolves. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ - Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethy
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor (and thus polyimide), and if the concentration is too high, the viscosity of the reaction solution becomes too high. Uniform stirring becomes difficult.
  • the concentration of the total amount of the diamine component and the tetracarboxylic acid component is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and a diamine component in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1
  • a polyamic acid ester By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above.
  • N-methyl-2-pyrrolidone, ⁇ -Butyrolactone is preferred, and these may be used alone or in combination of two or more.
  • the concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyimide precursor thus polymerized is, for example, a polymer having a repeating unit represented by the following formula [a].
  • R 11 is a tetravalent organic group derived from the raw material tetracarboxylic acid component
  • R 12 is a divalent organic group derived from the raw material diamine component
  • a 11 and A 12 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different
  • j represents a positive integer.
  • each of R 11 and R 12 may be one type and a polymer having the same repeating unit, or R 11 and R 12 may be a plurality of types and a polymer having a repeating unit having a different structure. But you can.
  • R 11 is a group derived from a tetracarboxylic acid component represented by the following formula [c] or the like which is a raw material.
  • R 12 is a group derived from a diamine component represented by the following formula [b] or the like as a raw material, for example, R 12 is a group derived from a diamine represented by the above formula (1), —C 6 H 4 -X 1 -X 2 -X 3 -X 4 -X 5 -C 6 H 4 - is.
  • polyimide is obtained by dehydrating and ring-closing such a polyimide precursor.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the polyimide precursor or polyimide that has been deposited in a solvent and collected can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. Further, by repeating the steps of re-dissolving and recovering the precipitated and recovered polyimide precursor and polyimide in an organic solvent 2 to 10 times, impurities in the polyimide precursor and polyimide can be reduced.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the dehydration cyclization rate (imidation rate) of the amic acid group of the polyimide does not necessarily need to be 100%, and can be arbitrarily selected in the range of 0% to 100% depending on the application and purpose. % Is preferred.
  • Polyamide can be synthesized in the same manner as the polyamic acid ester.
  • the molecular weight of the polyimide precursor, polyimide or polyamide of the present invention is determined by GPC (Gel) in consideration of the strength of the resulting polymer film (liquid crystal alignment film), workability when forming the polymer film, and uniformity of the polymer film.
  • the weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention contains a polyimide precursor such as the polyamic acid or polyamic acid ester, polyimide or polyamide.
  • a liquid crystal aligning agent is a solution for forming a liquid crystal aligning film, and is a solution in which a polymer component for forming a liquid crystal aligning film is dispersed or dissolved in an organic solvent.
  • the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
  • the said polymer component contains at least 1 type selected from polyimide precursors, such as the said polyamic acid of this invention, polyamic acid ester, a polyimide, and polyamide.
  • all of the polymer components contained may be polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimide or polyamide, and the polyamic acid of the present invention.
  • Other polymers may be mixed with a polyimide precursor such as polyamic acid ester, polyimide or polyamide.
  • the content of the other polymer in the total amount of the polymer component is 0.5% by mass to 50% by mass, preferably 1% by mass to 30% by mass.
  • a diamine other than the diamine represented by the above formula (1) of the present invention is used as a diamine component to be reacted with a tetracarboxylic dianhydride component or a dicarboxylic acid.
  • polyimide precursor, polyimide, polyamide and the like obtained.
  • polymers other than a polyimide precursor, polyimide, and polyamide, specifically, an acrylic polymer, a methacrylic polymer, or polystyrene are also included.
  • the liquid crystal aligning agent of the present invention at least one selected from polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimide and polyamide, and the content of other polymers to be mixed as required are
  • the total amount of the polymer components is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • the solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves a polymer component such as the polyimide precursor, polyimide, or polyamide of the present invention.
  • a polymer component such as the polyimide precursor, polyimide, or polyamide of the present invention.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropane Amides
  • an organic solvent also called a poor solvent
  • a compound may be contained. Furthermore, you may contain the compound etc. which improve the adhesiveness of a liquid crystal aligning film and a board
  • poor solvents that improve film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Thor, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoa Tate, Diethylene glycol dimethyl ether, Dipropylene glycol monoacetate monomethyl ether, Dipropylene glycol monomethyl ether, Dipropylene glycol mono
  • These poor solvents may be used alone or in combination.
  • the above solvent it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard Examples include AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. .
  • Examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltriethoxysilane, Aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3- Ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl
  • the amount used is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. Is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal aligning agent of the present invention may be a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal aligning film after being applied and fired on a substrate and then subjected to an alignment treatment by rubbing treatment or light irradiation (radiation irradiation) as necessary.
  • a liquid crystal alignment film of the present invention is formed of a polyimide precursor, polyimide, or polyamide using the diamine represented by the above formula (1) as a raw material, so that the liquid crystal alignment performance by AC driving is difficult to change. is there.
  • the substrate is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • ITO Indium Tin Oxide
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the liquid crystal alignment is performed by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • a film polymer film
  • the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the liquid crystal When the liquid crystal is aligned horizontally or tilted, the liquid crystal can be aligned by treating the baked liquid crystal alignment film with rubbing or irradiation with polarized ultraviolet rays. For example, by irradiating light such as polarized ultraviolet rays, the photoreactive group derived from the diamine represented by the formula (1) undergoes a dimerization reaction, and the liquid crystal can be aligned with the anisotropy generated thereby.
  • polarized ultraviolet rays For example, by irradiating light such as polarized ultraviolet rays, the photoreactive group derived from the diamine represented by the formula (1) undergoes a dimerization reaction, and the liquid crystal can be aligned with the anisotropy generated thereby.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
  • the two substrates disposed so as to face each other, the liquid crystal layer provided between the substrates, and the liquid crystal aligning agent of the present invention provided between the substrate and the liquid crystal layer.
  • a liquid crystal display device comprising a liquid crystal cell having a liquid crystal alignment film.
  • liquid crystal display element of the present invention horizontal alignment (IPS: In-Plane Switching) method, twisted nematic (TN) method, OCB alignment (OCB: Optically Compensated Bend), vertical alignment (VA: There are various types such as a vertical alignment method. Note that the liquid crystal alignment film only needs to be provided on at least one of the two substrates.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed.
  • substrate described with the said liquid crystal aligning film can be mentioned.
  • the liquid crystal alignment film is formed by applying the liquid crystal aligning agent of the present invention on this substrate and baking it, and irradiating with radiation such as rubbing treatment or polarized ultraviolet rays as necessary. As described above.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a positive liquid crystal having positive dielectric anisotropy or a negative liquid crystal having negative dielectric anisotropy can be used.
  • a liquid crystal material used in a conventional horizontal alignment method for example, MLC-2041 manufactured by Merck Ltd. can be used.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed and then the substrate is bonded and sealed.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a polarizing plate is disposed outside the substrate.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has a liquid crystal alignment film in which the change in the liquid crystal alignment performance due to AC driving is suppressed, and thus has excellent afterimage characteristics and image sticking.
  • the liquid crystal display element is less likely to cause display defects and contrast deterioration.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • BODA bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • NMP N-methyl-2 -Pyrrolidone
  • BCS Butyl cellosolv DA-1: Diamine represented by the following formula
  • Standard sample for preparing a calibration curve TSK standard polyethylene oxide (molecular weight of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
  • terephthalaldehyde [A] (40.00 g, 298 mmol), pyridine (46 g) and piperidine (7.0 g) were added, and the reaction solution was heated to 100 ° C. with stirring.
  • a pyridine solution (500 g) of malonic acid [B] (140.0 g, 1.34 mol) was added dropwise thereto.
  • HPLC high performance liquid chromatography
  • compound [C] (30.00 g, 138 mmol), 4-nitrophenol [D] (42.08 g, 303 mmol), 1-ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride (hereinafter abbreviated as EDC) (68.53 g, 358 mmol), 4-N, N-dimethylaminopyridine (hereinafter abbreviated as DMAP) (3.56 g, 27.5 mmol), tetrahydrofuran (hereinafter referred to as THF) (Omitted) (600 g) was added and stirred at 23 ° C.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride
  • DMAP 4-N, N-dimethylaminopyridine
  • THF tetrahydrofuran
  • the starting material was changed to compound [S] and 3-nitrophenol [R], and the same operation as in Synthesis Example 7 was performed to obtain dinitro compound [T].
  • the obtained dinitro compound [T] was used as a starting compound, and the same operation as in Synthesis Example 7 was performed to obtain diamine [10] (yield: 22 g).
  • the 1 H-NMR measurement result of the obtained diamine [10] is shown below.
  • the starting material was changed to compound [S] and 4-nitrophenol [D], and the same operation as in Synthesis Example 7 was performed to obtain dinitro compound [U].
  • the same operation as in Synthesis Example 7 was performed to obtain diamine [11] (yield: 22 g).
  • the 1 H-NMR measurement result of the obtained diamine [11] is shown below.
  • NMP (32.3 g) was added to diamine [5] (7.06 g, 25.0 mmol), and the mixture was stirred at room temperature for complete dissolution, and then CBDA (4.51 g, 23.0 mmol) and NMP (33. 2 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution.
  • NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A5.
  • the number average molecular weight of this polyamic acid was 10500, and the weight average molecular weight was 57000.
  • NMP (4.9 g) was added to diamine [6] (1.18 g, 3.0 mmol), and after stirring at room temperature for complete dissolution, CBDA (0.53 g, 2.7 mmol) and NMP (4. 9 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution.
  • the number average molecular weight of this polyamic acid was 8800, and the weight average molecular weight was 35000.
  • NMP (5.6 g) was added to diamine [7] (1.14 g, 4.5 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.83 g, 4.2 mmol) and NMP (5. 6 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution.
  • the number average molecular weight of this polyamic acid was 13800, and the weight average molecular weight was 35500.
  • NMP (33.3 g) was added to diamine [8] (4.00 g, 10.0 mmol), stirred at room temperature for complete dissolution, and then CBDA (1.86 g, 9.5 mmol) was added at room temperature. The mixture was reacted for 10 hours to obtain a polyamic acid solution. NMP (10.0 g) and BCS (5.0 g) were added to this polyamic acid solution (10 g), and the mixture was stirred at room temperature for 5 hours to obtain liquid crystal aligning agent A8. The number average molecular weight of this polyamic acid was 8000, and the weight average molecular weight was 21,200.
  • NMP (25.0 g) was added to diamine [11] (2.54 g, 10.0 mmol), stirred at room temperature for complete dissolution, and then CBDA (1.86 g, 9.5 mmol) was added at room temperature. The mixture was reacted for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A11. The number average molecular weight of this polyamic acid was 7600, and the weight average molecular weight was 18,600.
  • NMP (13.9 g) was added to diamine [9] (2.54 g, 10.0 mmol), and after stirring at room temperature for complete dissolution, BODA (2.38 g, 9.5 mmol) and NMP (13. 9 g) was added and reacted at 80 ° C. for 10 hours to obtain a polyamic acid solution.
  • NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A13.
  • the number average molecular weight of this polyamic acid was 6200, and the weight average molecular weight was 14900.
  • NMP (14.2 g) was added to diamine [10] (2.54 g, 10.0 mmol), and after stirring at room temperature for complete dissolution, BODA (2.45 g, 9.8 mmol) and NMP (14. 2 g) was added and reacted at 80 ° C. for 10 hours to obtain a polyamic acid solution.
  • NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A14.
  • the number average molecular weight of this polyamic acid was 4200, and the weight average molecular weight was 8,000.
  • NMP (14.2 g) was added to diamine [11] (2.54 g, 10.0 mmol) and stirred at room temperature for complete dissolution, and then BODA (2.45 g, 9.8 mmol) and NMP (14. 2 g) was added and reacted at 80 ° C. for 10 hours to obtain a polyamic acid solution.
  • NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A15.
  • the number average molecular weight of this polyamic acid was 5700, and the weight average molecular weight was 12100.
  • Example 1 Using the liquid crystal aligning agent A1, a liquid crystal cell was produced according to the procedure shown below.
  • the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
  • the pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrode forming each pixel is configured by arranging a plurality of dog-shaped electrode elements whose central part is bent, so that the shape of each pixel is not rectangular, and is similar to the electrode element in the central part. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (counterclockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent A1 was spin-coated on the prepared substrate with electrodes. Subsequently, after drying for 60 seconds with a 90 degreeC hotplate, it baked for 30 minutes with a 200 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the substrate was placed on a hot plate at 240 ° C., and the surface of the liquid crystal alignment film was irradiated with 313 nm ultraviolet rays at 20 mJ / cm 2 via a polarizing plate to obtain a substrate with a liquid crystal alignment film. In addition, a liquid crystal alignment film was formed using a liquid crystal aligning agent A1 on a glass substrate having a columnar spacer with a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and subjected to alignment treatment.
  • a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, the injection port was sealed, and a liquid crystal cell having an IPS (In-Plane Switching) mode liquid crystal display element configuration (IPS mode liquid crystal cell) was obtained.
  • IPS In-Plane Switching
  • the IPS mode liquid crystal cell obtained above is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the light source is turned on with no voltage applied, and the transmitted light has the highest luminance.
  • the arrangement angle of the liquid crystal cell was adjusted so as to be small.
  • the rotation angle (alignment azimuth angle) when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial alignment azimuth.
  • an AC voltage of 8 V PP was applied for 24 hours at a frequency of 30 Hz in a room temperature environment.
  • Example 2 Except for using the liquid crystal aligning agent A2 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal alignment performance and the afterimage evaluation.
  • Example 3 Except for using the liquid crystal aligning agent A3 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • Example 4 Except for using the liquid crystal aligning agent A4 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage evaluation.
  • Example 5 Except for using the liquid crystal aligning agent A5 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to perform the liquid crystal alignment performance evaluation and the afterimage evaluation.
  • Example 6 Except for using the liquid crystal aligning agent A7 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage evaluation.
  • Example 7 Except for using the liquid crystal aligning agent A8 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • Example 8 Except for using the liquid crystal aligning agent A9 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed, and the liquid crystal alignment performance evaluation and the afterimage evaluation were performed.
  • Example 9 Except for using the liquid crystal aligning agent A10 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • Example 10 Except for using the liquid crystal aligning agent A11 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • Example 11 Except for using the liquid crystal aligning agent A12 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • Example 12 Except for using the liquid crystal aligning agent A13 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed, and the liquid crystal alignment performance evaluation and the afterimage evaluation were performed.
  • Example 13 Except for using the liquid crystal aligning agent A14 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed, and the liquid crystal alignment performance evaluation and the afterimage evaluation were performed.
  • Example 14 Except for using the liquid crystal aligning agent A15 in place of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage evaluation.
  • Example 1 Except for using the liquid crystal aligning agent B1 instead of the liquid crystal aligning agent A1, the same operations as in Example 1 were performed to evaluate the liquid crystal aligning performance and the afterimage.
  • the diamine represented by the above formula (1) is used as a raw material in the main chain skeleton of the polyimide polymer, regardless of the low temperature and short time measurement conditions of 24 hours at room temperature. It can be seen that in Examples 1 to 6 in which the photoreactive group is introduced, the difference in orientation azimuth before and after AC driving is small and the afterimage characteristics are remarkably improved as compared with Comparative Example 1. Also. In Examples 1 to 6, the liquid crystal orientation was also good. In Examples 7 to 11 using various diamines and Examples 12 to 14 using BODA as the acid dianhydride, the afterimage characteristics are significantly higher than those of Comparative Example 1 using a side chain diamine. It was found that the liquid crystal alignment performance was improved.
  • the photoreactive material using the main chain type diamine is superior to the liquid crystal alignment regulating ability than the side chain type diamine. Therefore, by using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film excellent in liquid crystal alignment and afterimage characteristics can be obtained. And since the liquid crystal display element which has the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention is excellent in liquid crystal aligning property and an afterimage characteristic, it is set as a liquid crystal display device which a display defect, a contrast fall, and a burning hardly occur. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

下記式(1)で表されることを特徴とするジアミンとする。 (式(1)中、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)であり、Xは-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合、炭素数1~10のアルキレン基または2価のベンゼン環であり、Xは単結合、-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)である。但し、式(1)中には、1つ以上のシンナモイル基を有する。)

Description

ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、新規のジアミン、ポリイミド前駆体、ポリイミド及びポリアミド、液晶配向剤及び液晶配向膜並びに液晶表示素子に関する。
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミック酸(ポリアミド酸ともいわれる。)、ポリアミック酸エステルや、ポリイミドの溶液からなるポリイミド系の液晶配向剤を、基板に塗布し成膜することで作製される。また、基板面に対して液晶を水平配向、平行配向又は傾斜配向等させる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。そして、ラビング処理に代わるものとして、偏光紫外線照射等による異方性光化学反応を利用する方法が提案されており、近年では工業化に向けた検討が行われている。
 このような液晶表示素子の表示特性の向上のために、ポリアミック酸、ポリアミック酸エステルやポリイミドの構造の変更、特性の異なるポリアミック酸、ポリアミック酸エステルやポリイミドのブレンドや、添加剤を加える等の手法により、液晶配向性や電気特性等の改善、プレチルト角のコントロール等が行われている。例えば、特定の構造の基を側鎖として有する重合体を用いることが提案されている(特許文献1参照)。
特表2001-517719号公報
 しかしながら、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化などが進み、液晶配向膜に求められる特性も厳しいものになってきており、特許文献1等の従来の液晶配向剤を用いると、焼き付き特性が不十分であり、AC(交流)駆動によって液晶配向性能が変化して残像が生じてしまうことが依然として問題である。
 本発明の目的は、上述の従来技術の問題点を解決することにあり、AC駆動による液晶配向膜の液晶配向性能の変化が低減され残像特性が良好な液晶表示素子を提供することを目的とする。すなわち、このような特性を有する液晶表示素子を構成するポリイミド前駆体、ポリイミドやポリアミドを有する液晶配向膜を得ることができる新規ジアミンを提供し、さらにそれを用いた液晶配向剤及び液晶表示素子を提供することを目的とする。
 本発明者は、鋭意研究を行った結果、ジアミン成分として下記式(1)で表される特定のジアミンを使用したポリイミド前駆体、ポリイミドやポリアミドを含む液晶配向剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。なお、下記式(1)で表されるジアミンは、文献未載の新規化合物である。
 すなわち、本発明は以下の要旨を有するものである。
1. 下記式(1)で表されることを特徴とするジアミン。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)であり、Xは-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合、炭素数1~10のアルキレン基または2価のベンゼン環であり、Xは単結合、-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)である。但し、式(1)中には、1つ以上のシンナモイル基を有する。)
2. 1に記載のジアミンを用いて得られるポリイミド前駆体、このポリイミド前駆体をイミド化して得られるポリイミド及びポリアミドから選択される少なくとも一種であることを特徴とする重合体。
3. 2に記載の重合体を含有することを特徴とする液晶配向剤。
4. 3に記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。
5. 4に記載の液晶配向膜を具備することを特徴とする液晶表示素子。
 本発明によれば、AC駆動による液晶配向性能の変化が低減された液晶配向膜を得ることができる新規なジアミンを提供することができる。そして、このジアミンを用いて得られる液晶配向膜はAC駆動による液晶配向性能が変化し難いため、該液晶配向膜を有する液晶表示素子は、残像が発生し難いものという効果を奏する。
 以下に、本発明について詳細に説明する。
 本発明のジアミンは、上記式(1)で表されるジアミンである。なお、式(1)において、シンナモイル基とは、下記式で表される構造である。
Figure JPOXMLDOC01-appb-C000003
 また、式(1)において、ベンゼン環が有するアミノ基(-NH)の位置は特に限定されないが、液晶配向性能や合成のし易さの観点から、例えば、それぞれ-X-X-X-X-X-に対してパラ位またはメタ位に存在することが好ましい。
 式(1)で表されるジアミンとしては、下記ジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式中、Xは独立して単結合もしくはエーテル(-O-)、エステル(-COO-または-OCO-)及びアミド(-CONH-または-NHCO-)から選択される結合基であり、Yは独立して単結合または炭素数1~5のアルキレン基であり、Zは独立して炭素数1~10のアルキレン基もしくはフェニレン基である。ベンゼン環上のアミノ基の結合位置や、中央のベンゼン環に対する結合基の位置は特に限定されない。)
 式(1)で表されるジアミンの具体例としては、下記ジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
 このような上記式(1)で表される本発明のジアミンを原料とするポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミドやポリアミドを含有する液晶配向剤を用いて形成される液晶配向膜は、AC(交流)駆動による液晶配向性能の変化、例えば、液晶の配向方位の変化が低減されたものである。したがって、この液晶配向膜を有する液晶表示素子は、AC駆動での液晶配向膜の液晶配向性能が安定なため、AC駆動により残像が生じ難い、すなわち、AC駆動による残像特性が非常に良好であるという効果を奏する。また、上記式(1)で表されるジアミンを用いて形成された液晶配向膜は、液晶配向性能自体にも優れており、配向欠陥が実質的に無いものとすることができる。
 このように、本発明の上記式(1)で表されるジアミンを用いることにより、AC駆動による液晶配向性能の変化が低減された液晶配向膜となり、AC駆動により残像が生じ難い液晶表示素子となる理由は、必ずしも明らかではないが、式(1)で表されるジアミンを用いてポリイミド前駆体、ポリイミドやポリアミドの主鎖に、液晶に配向性を付与することができる式(1)で表されるジアミン由来の特定の光反応性基(すなわち-HN-C-X-X-X-X-X-C-NH-)を導入することにより、AC駆動によって液晶が動いても、式(1)で表されるジアミン由来の特定の光反応性基が動かされ難くなり、配向方位がずれ難くなるためであると推測される。
 一方、例えば、本発明においてポリイミド前駆体、ポリイミドやポリアミドの主鎖に導入される式(1)で表されるジアミンに由来する構造を、ポリイミド前駆体、ポリイミドやポリアミドの主鎖ではなく側鎖に導入した場合は、側鎖は主鎖にぶら下がっているため、AC駆動するとAC駆動によって動いた液晶に押し付けられて側鎖が動き、この側鎖が有する液晶に配向性を付与する式(1)で表されるジアミンに由来する構造が動くためか、AC駆動によって、配向方位が大きくずれ、AC駆動によって残像が生じやすい。
 このような上記式(1)で表されるジアミンの合成方法は、特に限定されず、例えば後述する合成例に従って製造することができる。例えば、式(a)で表されるジアミンであれば、以下に示す方法によって合成することができる。
 上記式(a)で表されるジアミンは、対応する下記式(a’)で表されるジニトロ化合物を合成し、さらにニトロ基を還元しアミノ基に変換することで得られる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、鉄、塩化スズ、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用いることができるが、オレフィンを還元せずに残したままニトロ基のみを高収率で選択的に還元するという観点からは、鉄や塩化スズを用いた化学還元法を用いることが有効である。溶媒としては、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒、還元剤としては、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどを用いた反応によって行う方法がある。
(式中、X及びYは、それぞれ式(a)におけるX及びYと同じである。)
 式(a’)で表されるジニトロ化合物の合成方法は特に限定されず、任意の方法により合成することができるが、その具体例としては、例えば、以下の反応に示されるような方法で合成することができる。
Figure JPOXMLDOC01-appb-C000009
 この反応において、ニトロベンゼン化合物Aとカルボン酸を有する化合物Bとを反応させるには、有機溶媒中、例えば、DMAP/DCC、もしくはDMAP/EDCを用いた直接縮合法や、カルボン酸を塩化チオニルや塩化オキサリル、塩化ホスホリル、塩化スルフリル、三塩化リン等を用いて酸塩化物としてから反応させることにより、合成することができる。なお、DMAPとは4-N,N-ジメチルアミノピリジンであり、DCCとはジシクロヘキシルカルボジイミドであり、EDCとは1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩である。
 上記ニトロベンゼン化合物Aにおいて、XおよびYはそれぞれ式(a)におけるX及びYと同じであり、例えば、4-ニトロフェノール、3-ニトロフェノール、2-ニトロフェノール、4-ニトロベンジルアルコール、3-ニトロベンジルアルコール、2-ニトロベンジルアルコール、4-ニトロフェネチルアルコール、3-ニトロフェネチルアルコール、2-ニトロフェネチルアルコール等が挙げられ、必要に応じてベンゼン環と水酸基との間に連結基Yが挿入されていても良い。また、ベンゼン環上には、その他の置換基が結合していても良く、ベンゼン環上のニトロ基の置換位置は、目的とするジアミンが得られる置換位置のものが適宜選択される。なお、ここに示した化合物は一例であり、特に限定されるものではない。
 有機溶媒としては、反応に影響を及ぼさない溶媒、具体的には、トルエンやキシレン等の芳香族系溶媒、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒、ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒、テトラヒドロフランや1,4-ジオキサンなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒を単独、あるいは複数混合して用いることもできる。またこれらの使用量は任意である。
 その他のジアミンも上記式(a)で表されるジアミンと同様な手法を用いることで合成することができる。
 本発明のポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体は、上記式(1)で表されるジアミンを含むジアミン成分と、テトラカルボン酸成分と反応させることにより、得られるものである。なお、ポリアミック酸エステルは、ポリアミック酸のカルボキシル基をエステルに変換する方法でも得られる。そして、これらポリアミック酸またはポリアミック酸エステル等のポリイミド前駆体をイミド化することで、本発明のポリイミドが得られる。また、本発明のポリアミドは、上記式(1)で表されるジアミンを含むジアミン成分とジカルボン酸のハライドとを塩基存在下で反応させる、または、上記式(1)で表されるジアミンを含むジアミン成分とジカルボン酸とを適当な縮合剤、塩基の存在下にて反応させることによって得られる。かかるポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドのいずれも液晶配向膜を得るための重合体として有用である。なお、ジアミン成分に含まれる式(1)で表されるジアミンは、1種類でも2種類以上でもよく、また、ジアミン成分は、式(1)で表されるジアミン以外のその他のジアミンを1種類または2種類以上含んでいてもよい。
 上記式(1)で表されるジアミンは、ジアミン成分全量に対して10モル%以上で本発明の効果を発現することができるが、30~100モル%であることが好ましく、さらに好ましくは50~100モル%である。なお、本明細書において、特に記載がなければ、割合は、モル数を基準とするものである。
 また、ジアミン成分が含有していてもよい上記式(1)で表されるジアミン以外のその他のジアミンとして、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、4-(アミノメチル)アニリン、3-(アミノメチル)アニリン、3-((アミノメチル)メチル)アニリン、4-(2-アミノエチル)アニリンまたは3-(2-アミノエチルアニリン)などの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタンまたはビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどの脂肪族ジアミンも挙げられる。
 上記のその他のジアミンは、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 テトラカルボン酸成分とは、テトラカルボン酸及びテトラカルボン酸誘導体から選択される少なくとも一種である。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。例えば、テトラカルボン酸ジハライド、テトラカルボン酸二無水物などとジアミン成分とを反応させることで、ポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分とを適当な縮合剤や塩基の存在下等にて反応させることにより、ポリアミック酸エステルを得ることができる。なお、テトラカルボン酸成分は、1種類でも2種類以上でもよい。
 テトラカルボン酸成分として、下記式(3)で示されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式(3)中、Zは炭素数4~6の非芳香族環状炭化水素基を含有する炭素数4~13の4価の有機基である。)
 式(3)中、Zの具体例としては、下記式(3a)~式(3j)で表される4価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式(3a)中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環であり、それぞれ、同じであっても異なってもよく、式(3g)中、ZおよびZは水素原子またはメチル基であり、それぞれ、同じであっても異なってもよい。)
 式(3)中、Zの特に好ましい構造は、重合反応性や合成の容易性から、式(3a)、式(3c)、式(3d)、式(3e)、式(3f)または式(3g)である。なかでも、式(3a)、式(3e)、式(3f)または式(3g)が好ましい。
 また、テトラカルボン酸成分全量に対する式(3)で示されるテトラカルボン酸二無水物の割合は特に限定されず、例えば、テトラカルボン酸成分が上記式(3)で示されるテトラカルボン酸二無水物のみでもよい。勿論、テトラカルボン酸成分は、本発明の効果を損なわない限りにおいて、式(3)で示されるテトラカルボン酸二無水物以外のテトラカルボン酸やテトラカルボン酸誘導体を含んでいてもよい。その際、テトラカルボン酸成分全量の1モル%以上が上記式(3)で示されるテトラカルボン酸二無水物であることが好ましく、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上である。
 上記式(3)で示されるテトラカルボン酸二無水物以外のその他テトラカルボン酸二無水物としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。
 テトラカルボン酸ジエステルも特に限定されない。その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
 本発明のポリアミドを得るためにジアミン成分と反応させるジカルボン酸等は特に限定されない。ポリアミドを得るためにジアミン成分と反応させるジカルボン酸またはその誘導体の脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファ-酸等を挙げることができる。
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4"-タ-フェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
 上記の各種ジカルボン酸は酸ジハライドあるいは無水の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4,4"-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。
 上記式(3)で示されるテトラカルボン酸二無水物や、その他のテトラカルボン酸及びテトラカルボン酸誘導体、ジカルボン酸等は、液晶配向膜とした際の液晶配向性、電圧保持率および蓄積電荷などの所望の特性に応じて、1種類または2種類以上を混合して使用することもできる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリアミック酸等のポリイミド前駆体が溶解するものであれば特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライムまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量のポリイミド前駆体(ひいてはポリイミド)を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、ジアミン成分及びテトラカルボン酸成分の総量の濃度は、反応液中で好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリアミック酸等のポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 なお、ポリアミック酸エステルは、上記のようにテトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることにより得ることができる。または、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してポリアミック酸のカルボキシル基をエステル化することでも得ることができる。
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンが使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)4-メトキシモルホリウムクロリド n-水和物などが使用できる。
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は反応させるジアミンまたはテトラカルボン酸ジエステルに対して0.1~1.0倍モル量であることが好ましい。
 上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行うことができるが、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
 このようにして重合されたポリイミド前駆体は、例えば、下記式[a]で示される繰り返し単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000012
(式[a]中、R11は、原料のテトラカルボン酸成分に由来する4価の有機基であり、R12は、原料のジアミン成分に由来する2価の有機基であり、A11およびA12は、水素原子または炭素数1~4のアルキル基であり、それぞれ同じであっても異なってもよく、jは正の整数を示す。)
 上記式[a]において、R11およびR12がそれぞれ1種類であり同一の繰り返し単位を有する重合体でもよく、また、R11やR12が複数種であり異なる構造の繰り返し単位を有する重合体でもよい。
 上記式[a]において、R11は原料である下記式[c]等で示されるテトラカルボン酸成分に由来する基である。また、R12は原料である下記式[b]等で示されるジアミン成分に由来する基、例えば、R12が上記式(1)で表されるジアミン由来の基であれば、-C-X-X-X-X-X-C-である。なお、上記式[a]に示すように、上記式(1)で表されるジアミンを原料とすることにより、主鎖に-HN-C-X-X-X-X-X-C-NH-が導入されたポリイミド前駆体となる。
Figure JPOXMLDOC01-appb-C000013
(式[b]および式[c]中、R11およびR12は、式[a]で定義したものと同じである。)
 そして、このようなポリイミド前駆体を脱水閉環させることにより、ポリイミドが得られる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 なお、ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体や、ポリイミドの反応溶液から、生成したポリイミド前駆体やポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンまたは水などを挙げることができる。溶媒に投入して沈殿させたポリイミド前駆体やポリイミドは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収したポリイミド前駆体やポリイミドを、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、ポリイミド前駆体やポリイミド中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層、精製の効率が上がるので好ましい。
 ポリイミドのアミド酸基の脱水閉環率(イミド化率)は必ずしも100%である必要はなく、0%から100%の範囲で用途や目的に応じて任意に選ぶことができるが、50%~100%が好ましい。
 ポリアミドもポリアミック酸エステル同様にして合成することができる。
 本発明のポリイミド前駆体、ポリイミドやポリアミドの分子量は、得られる重合体被膜(液晶配向膜)の強度、重合体被膜形成時の作業性、重合体被膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
 本発明の液晶配向剤は、上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミドやポリアミドを含有するものである。液晶配向剤とは液晶配向膜を形成するための溶液であり、液晶配向膜を形成するための重合体成分を有機溶媒に分散または溶解した溶液である。なお、液晶配向膜とは液晶を所定の方向に配向させるための膜である。そして、本発明においては、上記重合体成分として、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドから選択される少なくとも一種を含有する。
 本発明の液晶配向剤において、含有する重合体成分は、全てが本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミドやポリアミドであってもよく、また、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミドやポリアミドに、その他の重合体が混合されていてもよい。重合体成分としてその他の重合体を含有する場合、重合体成分全量におけるその他の重合体の含有量は0.5質量%~50質量%、好ましくは1質量%~30質量%である。
 このようなその他の重合体としては、例えば、テトラカルボン酸ニ無水物成分やジカルボン酸等と反応させるジアミン成分として、本発明の上記式(1)で表されるジアミン以外のジアミンのみを使用して得られるポリイミド前駆体、ポリイミドやポリアミドなどが挙げられる。さらには、ポリイミド前駆体、ポリイミド及びポリアミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマーまたはポリスチレンなども挙げられる。
 本発明の液晶配向剤において、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドから選択される少なくとも一種、及び、必要に応じて混合するその他の重合体の含有割合は、重合体成分全量で1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
 本発明の液晶配向剤が含有する溶媒は、本発明のポリイミド前駆体、ポリイミドやポリアミド等の重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の重合体被膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(貧溶媒ともいわれる)または化合物を含有してもよい。さらに、液晶配向膜と基板との密着性を向上させる化合物などを含有してもよい。
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステルまたは乳酸イソアミルエステルなどの低表面張力を有する有機溶媒などが挙げられる。
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ製)、メガファックF171、F173、R-30(大日本インキ製)、フロラードFC430、FC431(住友スリーエム製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される重合体成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどが挙げられる。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向剤に含有される重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
 本発明の液晶配向剤は、基板上に塗布、焼成した後、必要に応じてラビング処理や光照射(放射線照射)による配向処理をして、液晶配向膜として用いることができる。このような本発明の液晶配向膜は、上記式(1)で表されるジアミンを原料とするポリイミド前駆体、ポリイミドやポリアミドで形成されるため、AC駆動による液晶配向性能が変化し難いものである。
 基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて液晶配向膜(重合体被膜)とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビングまたは偏光紫外線照射などで処理することにより、液晶を配向させることができる。例えば偏光紫外線等の光を照射することにより、式(1)で表されるジアミン由来等の光反応基が二量化反応して、それにより生じた異方性で液晶を配向させることができる。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、水平配向(IPS:In-Plane Switching)方式、ツイストネマティック(TN:Twisted Nematic)方式、OCB配向(OCB:Optically Compensated Bend)や、垂直配向(VA:Vertical Alignment)方式等、種々のものが挙げられる。なお、液晶配向膜は、2枚の基板のうち、少なくとも一方に設けられていればよい。
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。
 また、液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後焼成し、必要に応じてラビング処理や偏光紫外線等の放射線を照射することにより形成されるものであり、詳しくは上述したとおりである。
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、正の誘電異方性を有するポジ型液晶や負の誘電異方性を有するネガ型液晶を用いることができる。具体例としては、従来の水平配向方式で使用される液晶材料、例えばメルク社製のMLC-2041などを用いることができる。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。そして、水平配向方式の液晶表示素子の場合は、このように液晶を封止した後に、基板の外側に偏光板を配置する。
 以上のようにして、本発明の液晶配向剤を用いて作製された液晶表示素子は、AC駆動による液晶配向性能の変化が抑制された液晶配向膜を有するため、残像特性に非常に優れ、焼き付きが生じにくく、表示不良やコントラストの低下も生じ難い液晶表示素子となる。
 以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。
 本実施例で用いた略号は以下のとおりである。
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
DA-1:下記式で表されるジアミン
Figure JPOXMLDOC01-appb-C000014
 下記式で表されるジアミン[1]~[7]
Figure JPOXMLDOC01-appb-C000015
 下記式で表されるジアミン[8]~[12]
Figure JPOXMLDOC01-appb-C000016
 <H-NMRの測定>
 合成例におけるH-NMRの測定条件は、以下の通りである。
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d)、重水素化クロロホルム(CDCl
標準物質:テトラメチルシラン(TMS)
 <ポリマー分子量測定>
 また、ポリマー(ポリアミック酸等)の分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、
カラム:Shodex社製カラム(KD-803、KD-805)
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
 <ジアミンの合成>
 (合成例1)ジアミン[1]((E,E)-Bis-(4’-aminophenyl) 1,4-benzenediacrylate)の合成
Figure JPOXMLDOC01-appb-C000017
 2L四つ口フラスコに、テレフタルアルデヒド[A](40.00g、298mmol)、ピリジン(46g)、ピペリジン(7.0g)を加え、撹拌しながら反応溶液を100℃に加熱した。そこに、マロン酸[B](140.0g、1.34mol)のピリジン溶液(500g)を滴下した。反応終了をHPLC(高速液体クロマトグラフィー)で確認後、反応溶液を40℃まで冷却し、蒸留水(1L)に反応溶液を注いだ。次いで、この反応溶液が酸性になるまで濃塩酸を加えた後、固体をろ過、水洗、メタノール洗浄し、減圧乾燥することで、化合物[C]を得た(収量:60.3g、収率:93%)。得られた化合物[C]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):12.4(2H, brs), 7.74(4H, s), 7.60(2H, d), 6.61(2H, d).
 次に、1L四つ口フラスコに、化合物[C](30.00g、138mmol)、4-ニトロフェノール[D](42.08g、303mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(以下、EDCと省略)(68.53g、358mmol)、4-N,N-ジメチルアミノピリジン(以下、DMAPと省略)(3.56g、27.5mmol)、テトラヒドロフラン(以下、THFと省略)(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(500mL)/蒸留水(1L)混合溶液に注ぎ、固体をろ過、酢酸エチル/メタノール1:1混合溶液で洗浄し、減圧乾燥することで化合物[E]を得た(収量:60.6g、収率:96%)。得られた化合物[E]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.36-8.31(4H, m), 7.92(2H, d), 7.68(4H, s), 7.40-7.37(4H, m), 6.70(2H, d).
 次に、2L四つ口フラスコに、化合物[E](63.30g、138mmol)、塩化スズ(182.5g、962mmol)、THF(630g)、蒸留水(440g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、N,N-ジメチルアセトアミド(1L)を加えた後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、ブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温(23℃)下30分間撹拌した後、再度ろ過、メタノール洗浄を行い、減圧乾燥を行いジアミン[1]を得た(収量:24.0g、収率:44%)。得られたジアミン[1]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.83(4H, s), 7.79(2H, d), 6.89(2H, d), 6.81-6.78(4H, m), 6.56-6.53(4H, m), 5.04(4H, brs).
 (合成例2)ジアミン[2]((E,E)-Bis-(4’-aminophenylethyl) 1,4-benzenediacrylate)の合成
Figure JPOXMLDOC01-appb-C000018
 1L四つ口フラスコに、化合物[C](30.21g、138mmol)、2-(4-ニトロフェニル)エタノール[F](50.91g、305mmol)、EDC(68.98g、360mmol)、DMAP(3.38g、27.9mmol)、THF(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(1L)/蒸留水(1L)混合溶液に注ぎ、固体をろ過、酢酸エチル/メタノール1:1混合溶液で洗浄し、減圧乾燥することで化合物[G]を得た(収量:70.9g、収率:99%)。
 次に、2L四つ口フラスコに、化合物[G](71.48g、138mmol)、塩化スズ(183.4g、969mmol)、THF(715g)、蒸留水(500g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、N,N-ジメチルアセトアミド(1L)を加えた後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、ブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下30分間撹拌した後、再度ろ過、メタノール洗浄を行い、減圧乾燥を行いジアミン[2]を得た(収量:30.6g、収率:48%)。得られたジアミン[2]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.66(2H, d), 7.73(4H, s), 7.60(2H, d), 6.90-6.88(4H, m), 6.66(2H, d), 6.45-6.46(4H, m), 4.88(4H, brs), 4.21(4H, t), 2.75(4H, t).
 (合成例3)ジアミン[3]((E,E)-Bis-(4’-aminophenyl) 1,3-benzenediacrylate)の合成
Figure JPOXMLDOC01-appb-C000019
 2L四つ口フラスコに、イソフタルアルデヒド[H](50.00g、373mol)、ピリジン(78g)、ピペリジン(9.5g)を加え、撹拌しながら反応溶液を100℃に加熱した。そこに、マロン酸[B](169.5g、1.68mol)のピリジン溶液(600g)を滴下した。反応終了をHPLCで確認後、反応溶液を40℃まで冷却し、蒸留水(1L)に反応溶液を注いだ。次いで、この反応溶液が酸性になるまで濃塩酸を加えた後、固体をろ過、水洗し、化合物[I]の粗物を得た。この粗物を酢酸エチル/メタノール1:1混合溶液で室温下、30分間撹拌し、ろ過、酢酸エチルで洗浄後、減圧乾燥することで、化合物[I]を得た(収量:80.2g、収率:99%)。得られた化合物[I]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):12.4(2H, brs), 8.07(1H, s), 7.72(2H, dd), 7.61(2H, d), 7.46(1H, t).
 次に、1L四つ口フラスコに、化合物[I](30.00g、138mmol)、4-ニトロフェノール[D](40.17g、289mmol)、EDC(63.26g、330mmol)、DMAP(3.36g、27.5mmol)、THF(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(500mL)/蒸留水(1L)混合溶液に注ぎ、固体をろ過、酢酸エチルで洗浄し、減圧乾燥することで化合物[J]を得た(収量:62.1g、収率:98%)。得られた化合物[J]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.37(1H, s), 8.32-8.29(4H, m), 7.92(2H, d), 7.88(2H, dd), 7.56-7.51(5H, m), 7.08(2H, d).
 次に、2L四つ口フラスコに、化合物[J](62.1g、135mmol)、塩化スズ(182.5g、962mmol)、THF(630g)、蒸留水(630g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(2L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、ブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下30分間撹拌した後、再度ろ過、メタノール洗浄を行い、減圧乾燥を行うことでジアミン[3]を得た(収量:34.1g、収率:54%)。得られたジアミン[3]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(1H, s), 7.82-7.77(4H, m), 7.49(1H, t), 6.96(2H, d), 6.82-6.78(4H, m), 6.56-6.53(4H, m), 5.04(4H, brs).
 (合成例4)ジアミン[4]((E,E)-Bis-(4’-aminophenylethyl) 1,3-benzenediacrylate)の合成
Figure JPOXMLDOC01-appb-C000020
 1L四つ口フラスコに、化合物[I](54.92g、252mmol)、2-(4-ニトロフェニル)エタノール[F](92.58g、554mmol)、EDC(125.4g、654mmol)、DMAP(6.15g、50.3mmol)、THF(1.1Kg)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液に酢酸エチル(1L)/ヘキサン(500mL)/蒸留水(1L)を加え、分液操作により、水層を除去した。その後、有機層をブライン(1L)で3回洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、化合物[K]の粗物を得た。この粗物にメタノール(300g)を加え、室温で30分間撹拌した後、ろ過、減圧乾燥することで化合物[K]を得た(収量:82.2g、収率:63%)。得られた化合物[K]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.17-8.14(4H, m), 8.11(1H, s), 7.70(2H, dd), 7.62(1H, s), 7.59-7.56(5H, m), 7.42(1H, t), 6.71(2H, d), 4.41(4H, t), 3.10(4H, t).
 次に、2L四つ口フラスコに、化合物[K](82.21g、139mmol)、塩化スズ(211.3g、1.11mol)、THF(820g)、蒸留水(820g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、ブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下30分間撹拌した後、再度ろ過、メタノール洗浄を行い、減圧乾燥を行うことでジアミン[4]を得た(収量:46.1g、収率:73%)。得られたジアミン[4]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, CDCl3, δppm):7.66(2H, d), 7.63(1H, s), 7.54-7.39(1H, m), 7.07-7.04(4H, m), 6.68-6.65(4H, m), 6.45(2H, d), 5.04(4H, brs), 4.37(4H, t), 2.91(4H, t).
 (合成例5)ジアミン[5]((E)-4-aminophenethyl 3-(4-aminophenyl)acrylate)の合成
Figure JPOXMLDOC01-appb-C000021
 500mLの反応容器に化合物[M](12.7g、65.8mmol)、2-(4-ニトロフェニル)エタノール[F](10g、59.8mmol)、EDC(15g、77.7mmol)、DMAP(365mg、3mmol)、THF200gを加え、窒素置換をした後、室温にて撹拌した。反応終了後、蒸留水(2L)に反応液を注ぎ、得られた結晶をイソプロピルアルコール(100g)にて縣濁洗浄し、化合物[N]を得た(収量:18.4g、収率:90%)。
 500mLの反応容器に、上記で得られた化合物[N](22.4g、65.5mmol)、塩化すず(II)(80g、458.7mmol)、THF200g、蒸留水100gを加え、60℃にて加熱撹拌した。反応終了後、反応液に炭酸水素ナトリウムを加え中和し、酢酸エチルで抽出した。溶媒を留去後、黄色結晶を乾燥させ、ジアミン[5]を得た(収量:14.0g、収率:76%)。得られたジアミン[5]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.46(1H, d), 7.37 (2H, d), 6.92(2H, d), 6.56-6.47(4H, m), 6.20(1H, d), 5.78(2H,s), 4.89(2H,s), 4.18(2H,t), 2.74(2H, t).
 (合成例6)ジアミン[6]((2E,2'E)-pentane-1,5-diyl bis(3-(4-aminophenyl)acrylate))の合成
Figure JPOXMLDOC01-appb-C000022
 500mLの反応容器に化合物[M](37.5g、160.2mmol)、化合物[O](6.4g、61.6mmol)、EDC(41.6g、172.5mmol)、DMAP(828mg、6.8mmol)、THF300gを加え室温にて撹拌した。反応終了後、蒸留水(2L)に反応液を注ぎ、結晶を得た。析出した結晶を減圧乾燥し、化合物[P]を得た(30g)。
 500mLの反応容器に上記で得られた化合物[P](15g、33.0mmol)、塩化すず(II)(43.8g、231.0mmol)、THF150g、蒸留水150gを加え、60℃にて加熱撹拌した。反応終了後、反応液に炭酸水素ナトリウムを加え中和し、酢酸エチルで抽出した。溶媒を留去後、黄色結晶を酢酸エチル、ヘキサンにて縣濁洗浄し、ジアミン[6]を得た(収量:11.9g、収率:91%)。得られたジアミン[6]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.47(2H,d), 7.36(4H,d), 6.55(4H,d), 6.22(2H,d), 5.76(4H,s), 4.10(4H,t), 1.99-1.63(4H, m), 1.46-1.40(2H,m).
 (合成例7)ジアミン[7]((E)-4-aminophenyl 3-(4-aminophenyl)acrylate)の合成
Figure JPOXMLDOC01-appb-C000023
 500mLの反応容器に化合物[M](34g、193.2mmol)、4-ニトロフェノール[D](25.0g、179.7mmol)、EDC(40.4g、191.7mmol)、DMAP(2.2g、18mmol)、THF300gを加え室温にて撹拌した。反応終了後、蒸留水(3L)に反応液を注ぎ、析出した白色結晶を濾別した。得られた粗結晶を、イソプロピルアルコール(200g)にて縣濁洗浄後、化合物[Q]を得た(52g、165.7mmol)。
 2Lの反応容器に、上記で得られた化合物[Q](30g、95.5mmol)、還元鉄(21.0g、382mmol)、塩化アンモニウムクロライド(40.8g、762.8mmol)、N,N-ジメチルホルムアルデヒド200g、酢酸エチル200g、蒸留水400gを加え、70℃で加熱撹拌した。反応終了後、酢酸エチルにて抽出し、活性炭処理後、溶媒を留去することで粗結晶を得た。得られた粗結晶をメタノール、ヘキサンにて縣濁洗浄にて精製し、ジアミン[7]を得た(収量:19.4g、収率:80%)。得られたジアミン[7]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.60(1H,d), 7.43(2H,d), 6.78(2H,d), 6.77-6.36(4H,m), 6.10(1H,d), 5.85(2H,s), 5.02(2H,s).
 (合成例8)ジアミン[8]((E,E)-Bis-(3'-aminophenyl)1,3-benzenediacrylate)の合成
Figure JPOXMLDOC01-appb-C000024
 2L四つ口フラスコに、化合物[I](40.00g、183mmol)、3-ニトロフェノール[R](53.56g、385mmol)、EDC(84.33g、440mmol)、DMAP(4.48g、36.7mmol)、THF(800g)を加え、23℃で撹拌を行なった。反応終了をHPLCで確認後、反応溶液を酢酸エチル(100mL)/蒸留水(1L)溶液に注ぎ、固体をろ過、蒸留水、酢酸エチル、THF/ヘキサン混合溶媒で順に洗浄し、減圧乾燥することで化合物[S]を得た(83.5g、収率99%)。得られた化合物[S]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.37(1H, s), 8.15-8.13(4H, m), 7.94-7.87(4H, m), 7.74-7.72(4H, m), 7.54(1H, t), 7.07(2H, d).
 次に、2L四つ口フラスコに、化合物[S](83.5g、181mmol)、鉄粉(61.4g、1.1mol)、塩化アンモニウム(29.4g、550mmol)、酢酸エチル(760g)、DMF(500g)、蒸留水(260g)を加え、70℃で加熱撹拌を行なった。反応終了をHPLCで確認後、セライトろ過を行ない、ろ液に酢酸エチル(1L)を加え分液を行なった。有機層を飽和食塩水(1L)で3回洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去、減圧乾燥を行い、ジアミン[8]を得た(48.2g、収率66%)。得られたジアミン[8]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.32(1H, s), 7.83-7.79(4H, m), 7.50(1H, t), 7.03-6.97(4H, m), 6.44-6.41(2H, m), 6.33-6.32(2H, m), 6.28-6.25(2H, m), 5.27(4H, brs).
 (合成例9)ジアミン[9]((E)-3-aminophenyl 3-(4-aminophenyl)acrylate)の合成
Figure JPOXMLDOC01-appb-C000025
 出発物質を3-ニトロフェノール[R]に変更し、合成例7と同様の操作を行いジアミン[9]を得た(収量:38g、収率:85%)。得られたジアミン[9]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.62(1H,d), 7.45(2H,d), 7.01(1H, t), 6.58(1H,d), 6.44(1H,s), 6.42(1H,d), 6.31(1H,d), 6.25(1H,d), 5.86(2H,s), 5.25(2H,s)
 (合成例10)ジアミン[10]((E)-3-aminophenyl 3-(3-aminophenyl)acrylate)の合成
Figure JPOXMLDOC01-appb-C000026
 出発物質を化合物[S]及び3-ニトロフェノール[R]に変更し、合成例7と同様の操作を行いジニトロ化合物[T]を得た。得られたジニトロ化合物[T]を出発化合物とし、合成例7と同様の操作を行いジアミン[10]を得た(収量:22g)。得られたジアミン[10]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.60(1H,d), 7.10(1H,t), 6.90(1H,d),6.88(1H,s),6.83(2H,dt),6.68(1H,d), 6.63(1H,d), 6.59(2H,dt), 5.23(2H,s), 5.06(2H,s)
 (合成例11)ジアミン[11]((E)-4-aminophenyl 3-(3-aminophenyl)acrylate)の合成
Figure JPOXMLDOC01-appb-C000027
 出発物質を化合物[S]及び4-ニトロフェノール[D]に変更し、合成例7と同様の操作を行いジニトロ化合物[U]を得た。得られた化合物[U]を出発化合物とし、合成例7と同様の操作を行いジアミン[11]を得た(収量:22g)。得られたジアミン[11]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.64(1H,d), 7.10(1H,t),7.04(1H,t), 6.92-6.88(2H,m), 6.67(1H,d),6.60(1H,d),6.46(1H,d),6.44-6.34(1H,m),6.30-6.27(1H,m),5.25(2H,s),5.23(2H,s)
 (合成例12)ジアミン[12]((2E,2'E)-ethane-1,2-diyl bis(3-(4-aminophenyl)acrylate))の合成
Figure JPOXMLDOC01-appb-C000028
 出発物質を化合物[M]及びエチレングリコール[V]に変更し、合成例6と同様の操作を行いジニトロ化合物[W]を得た。得られたジニトロ化合物[W]を出発化合物とし、合成例6と同様の操作を行いジアミン[12]を得た(収量:10.2g)。得られたジアミン[12]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm) 8.25-8.23(4H,d),8.05-8.02(4H,d), 7.80(2H,d), 6.92(2H,d), 5.76(4H,s), 4.40(4H,s)
 (比較合成例1)ジアミンD-1の合成
 特表2001-517719号公報の実施例1に従って、ジアミンDA-1を合成した。
 <液晶配向剤の調製>
 (液晶配向剤A1の作製)
 ジアミン[1](1.20g、3.0mmol)にNMP(5.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.53g、2.8mmol)とNMP(5.0g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A1を得た。このポリアミック酸の数平均分子量は6000、重量平均分子量は10500であった。
 (液晶配向剤A2の作製)
 ジアミン[2](1.37g、3.0mmol)にNMP(5.4g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.55g、2.8mmol)とNMP(5.4g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A2を得た。このポリアミック酸の数平均分子量は3800、重量平均分子量は5000であった。
 (液晶配向剤A3の作製)
 ジアミン[3](1.20g、3.0mmol)にNMP(5.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.55g、2.8mmol)とNMP(5.0g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより液晶配向剤A3を得た。このポリアミック酸の数平均分子量は8100、重量平均分子量は16000であった。
 (液晶配向剤A4の作製)
 ジアミン[4](1.37g、3.0mmol)にNMP(5.4g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.55g、2.8mmol)とNMP(5.4g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A4を得た。このポリアミック酸の数平均分子量は5200、重量平均分子量は7600であった。
 (液晶配向剤A5の作製)
 ジアミン[5](7.06g、25.0mmol)にNMP(32.3g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(4.51g、23.0mmol)とNMP(33.2g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)およびBCS(20.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A5を得た。このポリアミック酸の数平均分子量は10500、重量平均分子量は57000であった。
 (液晶配向剤A6の作製)
 ジアミン[6](1.18g、3.0mmol)にNMP(4.9g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.53g、2.7mmol)とNMP(4.9g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A6を得た。このポリアミック酸の数平均分子量は8800、重量平均分子量は35000であった。
 (液晶配向剤A7の作製)
 ジアミン[7](1.14g、4.5mmol)にNMP(5.6g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(0.83g、4.2mmol)とNMP(5.6g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A7を得た。このポリアミック酸の数平均分子量は13800、重量平均分子量は35500であった。
 (液晶配向剤A8の作製)
 ジアミン[8](4.00g、10.0mmol)にNMP(33.3g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(1.86g、9.5mmol)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A8を得た。このポリアミック酸の数平均分子量は8000、重量平均分子量は21200であった。
 (液晶配向剤A9の作製)
 ジアミン[9](2.54g、10.0mmol)にNMP(24.6g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(1.80g、9.2mmol)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A9を得た。このポリアミック酸の数平均分子量は15900、重量平均分子量は43400であった。
 (液晶配向剤A10の作製)
 ジアミン[10](2.54g、10.0mmol)にNMP(25.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(1.86g、9.5mmol)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A10を得た。このポリアミック酸の数平均分子量は4300、重量平均分子量は7800であった。
 (液晶配向剤A11の作製)
 ジアミン[11](2.54g、10.0mmol)にNMP(25.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(1.86g、9.5mmol)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A11を得た。このポリアミック酸の数平均分子量は7600、重量平均分子量は18600であった。
 (液晶配向剤A12の作製)
 ジアミン[12](3.52g、10.0mmol)にNMP(30.5g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(1.86g、9.5mmol)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A12を得た。このポリアミック酸の数平均分子量は12100、重量平均分子量は32300であった。
 (液晶配向剤A13の作製)
 ジアミン[9](2.54g、10.0mmol)にNMP(13.9g)を加え、室温で撹拌して完全に溶解させたのち、BODA(2.38g、9.5mmol)とNMP(13.9g)を加え、80℃で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A13を得た。このポリアミック酸の数平均分子量は6200、重量平均分子量は14900であった。
 (液晶配向剤A14の作製)
 ジアミン[10](2.54g、10.0mmol)にNMP(14.2g)を加え、室温で撹拌して完全に溶解させたのち、BODA(2.45g、9.8mmol)とNMP(14.2g)を加え、80℃で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A14を得た。このポリアミック酸の数平均分子量は4200、重量平均分子量は8000であった。
 (液晶配向剤A15の作製)
 ジアミン[11](2.54g、10.0mmol)にNMP(14.2g)を加え、室温で撹拌して完全に溶解させたのち、BODA(2.45g、9.8mmol)とNMP(14.2g)を加え、80℃で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)およびBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤A15を得た。このポリアミック酸の数平均分子量は5700、重量平均分子量は12100であった。
 (液晶配向剤B1の作製)
 DA-1(5.10g、14.0mmol)にNMP(22.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(2.66g、13.6mmol)とNMP(22.0g)を加え、室温で5時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)およびBCS(20.0g)を加え、室温にて5時間攪拌することにより、液晶配向剤B1を得た。このポリアミック酸の数平均分子量は6500、重量平均分子量は26000であった。
 <液晶セルの作製>
 (実施例1)
 液晶配向剤A1を用いて、下記に示す手順で液晶セルの作製を行った。
 基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(反時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 液晶配向剤A1を、準備された上記電極付き基板にスピンコートした。次いで、90℃のホットプレートで60秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、基板を240℃のホットプレートに乗せ、液晶配向膜面に偏光板を介して313nmの紫外線を20mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にして、液晶配向剤A1を用いて液晶配向膜を形成し、配向処理を施した。
 一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In-Plane Switching)モード液晶表示素子の構成を備えた液晶セル(IPSモード用液晶セル)を得た。
 (液晶配向性能評価)
 上記で得られたIPSモード用液晶セルの配向状態を偏光顕微鏡にて観察し、配向欠陥がないものを「良好」、配向欠陥があるものは「不良」とした。結果を表1に示す。
 (残像評価)
 上記で得られたIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態で光源を点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度(配向方位角)を初期配向方位角として算出した。次いで、室温環境下、周波数30Hzで8VPPの交流電圧を24時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差、すなわち、交流駆動前の配向方位角-交流駆動後の配向方位角を、Δ配向方位角(°)として算出した。結果を表1に示す。
 (実施例2)
 液晶配向剤A1のかわりに液晶配向剤A2を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例3)
 液晶配向剤A1のかわりに液晶配向剤A3を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例4)
 液晶配向剤A1のかわりに液晶配向剤A4を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例5)
 液晶配向剤A1のかわりに液晶配向剤A5を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例6)
 液晶配向剤A1のかわりに液晶配向剤A7を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例7)
 液晶配向剤A1のかわりに液晶配向剤A8を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例8)
 液晶配向剤A1のかわりに液晶配向剤A9を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例9)
 液晶配向剤A1のかわりに液晶配向剤A10を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例10)
 液晶配向剤A1のかわりに液晶配向剤A11を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例11)
 液晶配向剤A1のかわりに液晶配向剤A12を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例12)
 液晶配向剤A1のかわりに液晶配向剤A13を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例13)
 液晶配向剤A1のかわりに液晶配向剤A14を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例14)
 液晶配向剤A1のかわりに液晶配向剤A15を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (比較例1)
 液晶配向剤A1のかわりに液晶配向剤B1を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
Figure JPOXMLDOC01-appb-T000029
 この結果、表1に示すように、室温で24時間という低温且つ短時間の測定条件にも関わらず、上記式(1)で表されるジアミンを原料としてポリイミド系ポリマーの主鎖骨格中に特定の光反応性基を導入した実施例1~6は、比較例1と比べて、交流駆動前後の配向方位角の差が小さく、残像特性が顕著に向上していることがわかる。また。実施例1~6は液晶配向性も良好であった。そして、種々のジアミンを用いた実施例7~11、酸二無水物としてBODAを用いた実施例12~14においても、いずれも側鎖型ジアミンを用いた比較例1よりも残像特性が顕著に向上し、良好な液晶配向性能を示すことが分かった。これらのことから側鎖型のジアミンよりも主鎖型のジアミンを用いた光反応性材料の方が液晶配向規制力にすぐれることが分かった。したがって、本発明の液晶配向剤を用いることにより、液晶配向性及び残像特性に優れた液晶配向膜を得ることができる。そして、本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、液晶配向性及び残像特性に優れているため、表示不良、コントラストの低下や焼き付きの起こり難い液晶表示デバイスとすることができる。

Claims (5)

  1.  下記式(1)で表されることを特徴とするジアミン。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)であり、Xは-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合、炭素数1~10のアルキレン基または2価のベンゼン環であり、Xは単結合、-OCO-CH=CH-または-CH=CH-COO-であり、Xは単結合または炭素数1~6のアルキレン基(但し、該アルキレン基の隣り合わない-CH-は、エーテル結合、エステル結合またはアミド結合に置き換わっていてもよい)である。但し、式(1)中には、1つ以上のシンナモイル基を有する。)
  2.  請求項1に記載のジアミンを用いて得られるポリイミド前駆体、このポリイミド前駆体をイミド化して得られるポリイミド及びポリアミドから選択される少なくとも一種であることを特徴とする重合体。
  3.  請求項2に記載の重合体を含有することを特徴とする液晶配向剤。
  4.  請求項3に記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。
  5.  請求項4に記載の液晶配向膜を具備することを特徴とする液晶表示素子。
PCT/JP2013/062339 2012-04-26 2013-04-26 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子 WO2013161984A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147033091A KR102169221B1 (ko) 2012-04-26 2013-04-26 디아민, 중합체, 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201380033556.4A CN104395282A (zh) 2012-04-26 2013-04-26 二胺、聚合物、液晶取向剂、液晶取向膜及液晶显示元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012101709 2012-04-26
JP2012-101709 2012-04-26
JP2012-145650 2012-06-28
JP2012145650 2012-06-28

Publications (1)

Publication Number Publication Date
WO2013161984A1 true WO2013161984A1 (ja) 2013-10-31

Family

ID=49483281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062339 WO2013161984A1 (ja) 2012-04-26 2013-04-26 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2013161984A1 (ja)
KR (1) KR102169221B1 (ja)
CN (1) CN104395282A (ja)
TW (1) TWI586639B (ja)
WO (1) WO2013161984A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132326A (ja) * 2012-12-03 2014-07-17 Jsr Corp 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム、位相差フィルムの製造方法、重合体及び化合物
WO2014208609A1 (ja) * 2013-06-25 2014-12-31 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子
CN105093687A (zh) * 2014-05-09 2015-11-25 Jsr株式会社 液晶显示元件及其制造方法
KR20160095610A (ko) 2015-02-03 2016-08-11 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 소자, 중합체, 디아민 및 산 2무수물
KR20170086502A (ko) 2014-11-19 2017-07-26 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 표시 소자, 중합체 및 화합물
WO2019146320A1 (ja) * 2018-01-25 2019-08-01 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989587B1 (ko) * 2016-03-28 2019-06-14 주식회사 엘지화학 액정 배향제, 이를 포함하는 액정배향막 및 액정배향막의 제조 방법
CN109716223B (zh) * 2016-09-16 2022-04-15 日产化学株式会社 具有液晶取向膜的基板的制造方法以及液晶表示元件
TWI725236B (zh) * 2016-09-28 2021-04-21 日產化學工業股份有限公司 二胺及其之利用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051662A1 (fr) * 1998-04-01 1999-10-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Compositions de polyimides
WO2001032749A1 (fr) * 1999-11-01 2001-05-10 Kaneka Corporation Nouvelle diamine, nouveau dianhydride acide et nouvelle composition polyimide obtenue
JP2002069182A (ja) * 2000-09-01 2002-03-08 Kanegafuchi Chem Ind Co Ltd 新規ジアミン及びそれからなるポリイミド、ポリイソイミドならびにその製造方法
JP2003167139A (ja) * 2001-11-30 2003-06-13 Kanegafuchi Chem Ind Co Ltd 光導波路、それに用いる桂皮酸構造を有するポリイミド前駆体およびポリイミド
JP2003306491A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003306490A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2009517716A (ja) * 2005-12-01 2009-04-30 エルジー・ケム・リミテッド 液晶配向膜の製造方法、これによって製造された液晶配向膜、およびこれを含む液晶ディスプレイ
WO2013002345A1 (ja) * 2011-06-28 2013-01-03 日産化学工業株式会社 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8881298A (en) 1997-09-25 1999-04-12 Rolic Ag Photocrosslinkable polyimides
KR100583857B1 (ko) * 1998-04-01 2006-05-26 가부시키가이샤 가네카 폴리이미드화합물
US20100060834A1 (en) * 2007-01-09 2010-03-11 Xing-Zhong Fang Copolyimide, liquid crystal aligning layer comprising the same , and liquid crystal display comprising the same
KR100882586B1 (ko) * 2007-10-10 2009-02-13 제일모직주식회사 액정 광배향제, 이를 포함하는 액정 광배향막, 및 이를포함하는 액정 표시 장치
JP5556482B2 (ja) * 2009-09-15 2014-07-23 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2011209505A (ja) * 2010-03-30 2011-10-20 Jnc Corp 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051662A1 (fr) * 1998-04-01 1999-10-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Compositions de polyimides
WO2001032749A1 (fr) * 1999-11-01 2001-05-10 Kaneka Corporation Nouvelle diamine, nouveau dianhydride acide et nouvelle composition polyimide obtenue
JP2002069182A (ja) * 2000-09-01 2002-03-08 Kanegafuchi Chem Ind Co Ltd 新規ジアミン及びそれからなるポリイミド、ポリイソイミドならびにその製造方法
JP2003167139A (ja) * 2001-11-30 2003-06-13 Kanegafuchi Chem Ind Co Ltd 光導波路、それに用いる桂皮酸構造を有するポリイミド前駆体およびポリイミド
JP2003306491A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003306490A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2009517716A (ja) * 2005-12-01 2009-04-30 エルジー・ケム・リミテッド 液晶配向膜の製造方法、これによって製造された液晶配向膜、およびこれを含む液晶ディスプレイ
WO2013002345A1 (ja) * 2011-06-28 2013-01-03 日産化学工業株式会社 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132326A (ja) * 2012-12-03 2014-07-17 Jsr Corp 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム、位相差フィルムの製造方法、重合体及び化合物
JPWO2014208609A1 (ja) * 2013-06-25 2017-02-23 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子
WO2014208609A1 (ja) * 2013-06-25 2014-12-31 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子
KR102303303B1 (ko) 2013-06-25 2021-09-16 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 액정 표시 소자
KR20160024949A (ko) * 2013-06-25 2016-03-07 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막, 액정 표시 소자
JP2015215462A (ja) * 2014-05-09 2015-12-03 Jsr株式会社 液晶表示素子及びその製造方法
CN105093687A (zh) * 2014-05-09 2015-11-25 Jsr株式会社 液晶显示元件及其制造方法
KR20170086502A (ko) 2014-11-19 2017-07-26 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 표시 소자, 중합체 및 화합물
KR20160095610A (ko) 2015-02-03 2016-08-11 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 소자, 중합체, 디아민 및 산 2무수물
WO2019146320A1 (ja) * 2018-01-25 2019-08-01 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
CN111448510A (zh) * 2018-01-25 2020-07-24 Jsr株式会社 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法
CN111448510B (zh) * 2018-01-25 2023-03-14 Jsr株式会社 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法
TWI805674B (zh) * 2018-01-25 2023-06-21 日商Jsr股份有限公司 液晶配向劑、液晶配向膜、液晶元件及液晶元件的製造方法

Also Published As

Publication number Publication date
KR20150013609A (ko) 2015-02-05
TWI586639B (zh) 2017-06-11
CN104395282A (zh) 2015-03-04
TW201410642A (zh) 2014-03-16
KR102169221B1 (ko) 2020-10-23
JPWO2013161984A1 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5729299B2 (ja) ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤
JP5651953B2 (ja) 液晶配向剤、及び液晶表示素子
KR102169221B1 (ko) 디아민, 중합체, 액정 배향제, 액정 배향막 및 액정 표시 소자
JP6233309B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6070958B2 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6249197B2 (ja) ジアミン化合物
WO2013002345A1 (ja) 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子
JP6478052B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子
JP6249182B2 (ja) ポリイミド前駆体、ポリイミド、液晶配向剤、液晶配向膜及び液晶表示素子
WO2014104015A1 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP5842581B2 (ja) 新規ジカルボン酸無水物及び製造法、液晶配向処理剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6183616B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6569872B2 (ja) 液晶配向剤、液晶配向膜およびそれを用いた液晶表示素子
JP6057895B2 (ja) 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子
JP6143014B2 (ja) 重合体、液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン
JP2013125065A (ja) エステル基含有ジカルボン酸無水物、製造法及びその用途
TW202130704A (zh) 液晶配向劑、自由基產生膜、及橫電場液晶胞之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147033091

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13781576

Country of ref document: EP

Kind code of ref document: A1