WO2019146320A1 - 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法 - Google Patents

液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法 Download PDF

Info

Publication number
WO2019146320A1
WO2019146320A1 PCT/JP2018/046724 JP2018046724W WO2019146320A1 WO 2019146320 A1 WO2019146320 A1 WO 2019146320A1 JP 2018046724 W JP2018046724 W JP 2018046724W WO 2019146320 A1 WO2019146320 A1 WO 2019146320A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
carbon atoms
aligning agent
Prior art date
Application number
PCT/JP2018/046724
Other languages
English (en)
French (fr)
Inventor
岡田 敬
嘉崇 村上
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020207015908A priority Critical patent/KR102337423B1/ko
Priority to JP2019567918A priority patent/JP6962388B2/ja
Priority to CN201880078277.2A priority patent/CN111448510B/zh
Publication of WO2019146320A1 publication Critical patent/WO2019146320A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a method of manufacturing the liquid crystal element.
  • liquid crystal element As a liquid crystal element, a liquid crystal element of a horizontal alignment mode using a nematic liquid crystal having positive dielectric anisotropy represented by TN (Twisted Nematic) type, STN (Super Twisted Nematic) type or the like, or negative dielectric anisotropy
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • Various liquid crystal elements such as a VA (Vertical Alignment) liquid crystal element of a (homeotropic) alignment mode using a nematic liquid crystal having properties are known. These liquid crystal elements have a liquid crystal alignment film having a function of aligning liquid crystal molecules in a predetermined direction.
  • a liquid crystal aligning film is formed by apply
  • polymer components of liquid crystal aligning agents polyamic acids, soluble polyimides, polyamides, polyesters, polyorganosiloxanes and the like are known, and in particular polyamic acids and soluble polyimides have heat resistance, mechanical strength, and affinity with liquid crystal molecules. It has been used for a long time because it has excellent properties and the like (see Patent Documents 1 to 3).
  • Polyamic acids and soluble polyimides have relatively low solubility in organic solvents, and high boiling point solvents such as N-methyl-2-pyrrolidone (NMP), which is an aprotic polar solvent, are generally used as the solvent component of liquid crystal aligning agents. It is done.
  • NMP N-methyl-2-pyrrolidone
  • problems such as restriction of the material of the substrate occur, and for example, the application of a film substrate as a substrate of a liquid crystal element is limited.
  • dyes used as colorants for color filters are relatively weak to heat, and the use of dyes may be limited when heating at the time of film formation needs to be performed at high temperature .
  • the solubility of the liquid crystal aligning agent in the polymer component is sufficiently high, and the solvent having a sufficiently low boiling point is limited, and the selection range is narrow.
  • the polymer component is not uniformly dissolved in the solvent, coating unevenness (film thickness unevenness) or pinholes may occur in the liquid crystal alignment film formed on the substrate, or linearity can not be ensured at the end of the coating region.
  • the surface may not be flat. In this case, there is a concern that the product yield may decrease or the display performance such as the liquid crystal alignment and the electrical characteristics may be affected.
  • polyamic acid is better in solubility than polyimide, in order to cyclize polyamic acid to polyimide to ensure good electrical characteristics, heating during element production is relatively made. It needs to be done at high temperature.
  • the polymer component of the liquid crystal aligning agent exhibits high solubility even in a low boiling point solvent, so that when it is used as a liquid crystal aligning agent, it exhibits good coatability on the substrate, and There is a need for new materials with excellent electrical properties.
  • a liquid crystal television with a large screen and high definition is mainly used, and a small display terminal such as a smartphone and a tablet PC is in widespread use, and a demand for high quality liquid crystal panels is further increasing. Therefore, it is important to secure excellent display quality.
  • the present disclosure has been made in view of the above-described circumstances, and one object thereof is a liquid crystal aligning agent capable of obtaining a liquid crystal element having good coatability on a substrate and excellent liquid crystal alignment and voltage holding ratio. To provide.
  • X 1 represents any one of the groups represented by the following formulas (2-1) to (2-5): A 1 represents a divalent organic group; And a plurality of A 1 and X 1 in one molecule each independently has the above-mentioned definition).
  • R 1 to R 7 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having one or more carbon atoms.
  • "*" in Formula (2-5) shows that it is a bond with the oxygen atom in Formula (1).
  • [4] A process of forming a coating on each of the conductive films of a pair of substrates having a conductive film using the liquid crystal aligning agent according to the above [1], a pair of substrates on which the coating is formed, liquid crystal Forming a liquid crystal cell by opposingly arranging the coated films facing each other through a layer, and irradiating the liquid crystal cell in a state where a voltage is applied between the conductive films of the pair of substrates; And a method of manufacturing a liquid crystal element.
  • liquid crystal aligning agent containing polyamide [P] as a polymer component, it is possible to obtain a liquid crystal element excellent in liquid crystal alignment and voltage holding ratio. Moreover, the said liquid crystal aligning agent is excellent in the coating property with respect to a board
  • hydrocarbon group is meant to include a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • chain hydrocarbon group means a straight chain hydrocarbon group and a branched hydrocarbon group which do not contain a cyclic structure in the main chain and are composed only of a chain structure. However, it may be saturated or unsaturated.
  • alicyclic hydrocarbon group means a hydrocarbon group containing only an alicyclic hydrocarbon structure as a ring structure and not including an aromatic ring structure.
  • aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • aromatic hydrocarbon group it is not necessary to be composed of only an aromatic ring structure, and a part thereof may contain a chain structure or an alicyclic hydrocarbon structure.
  • the liquid crystal aligning agent of the present disclosure has, as a polymer component, a heterocyclic ring having two or more partial structures in one molecule excluding n (n is an integer) hydrogen atoms from the structure represented by the above formula (1). It contains polyamide [P] which is a reaction product of a containing compound (hereinafter, also referred to as “heterocycle-containing compound [A]”) and a diamine compound.
  • the polyamide is a polymer having an amide bond (—NH—CO—) generated by the reaction of monomers in the main skeleton of the polymer.
  • polyamic acid widely used as a polymer component of a liquid crystal aligning agent is a precursor of a polyimide, and it is ring-closed by heating at the time of post-baking to become a polyimide, while polyamide is heated at the time of post-baking. It is distinguished from polyamic acid in that it does not become polyimide.
  • the heterocycle-containing compound [A] is an endocyclic enol ester, an exocyclic enol ester, an endocyclic acylamide ester, an exocyclic acylamide ester or an oxime ester.
  • the divalent organic group of A 1 has, for example, a hydrocarbon group having 2 to 20 carbon atoms, and —O— between carbon-carbon bonds of the hydrocarbon group. And the like.
  • a 1 is preferably a hydrocarbon group having 2 to 20 carbon atoms.
  • Examples of the monovalent organic group of R 1 to R 7 in the above formulas (2-1) to (2-5) include a monovalent hydrocarbon group having 1 to 10 carbon atoms, and carbon of the hydrocarbon group. Examples include a group having —O— between carbon bonds.
  • the monovalent organic group of R 1 to R 7 is preferably a monovalent hydrocarbon group.
  • the heterocycle-containing compound [A] has, for example, a partial structure obtained by removing any n hydrogen atoms (n is preferably 1 or 2) from the structure represented by the above formula (1), either directly or It is a compound bound in plural via a linking group.
  • the linking group is, for example, a hydrocarbon group having a carbon number of 1 to 30, and a group having —O—, —S—, —NH— or —CO— between carbon-carbon bonds of the hydrocarbon group.
  • X 1 is preferably a group represented by each of the above formulas (2-3) to (2-5).
  • partial structure represented by the formula (1) include partial structures represented by the following formulas (3-1) to (3-9).
  • the following equation (3-3) corresponds to the case where X 1 in the above equation (1) is the above equation (2-1), and the following equation (3-3) is
  • the formula (3-4), the formula (3-5) and the formula (3-6) below correspond to the case where X 1 in the formula (1) is the formula (2-2). This corresponds to the case where X 1 in (1) is the above equation (2-3).
  • the following formula (3-9) and formula (3-8) correspond to the case where X 1 in the above formula (1) is the above formula (2-4), and the following formula (3-9) , Corresponding to the case of the above formula (2-5).
  • R 51 to R 71 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 24 carbon atoms, provided that R is Any one of 51 to R 54 , any one of R 55 to R 57 , any one of R 60 to R 62 , any one of R 63 and R 64 , any of R 66 to R 68 Or one of R 69 and R 70 is a bond, and a plurality of R 51 to R 71 in one molecule each independently have the above definition. Indicates that there is a)
  • the monovalent organic group represented by R 51 to R 71 is preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, and one carbon atom. More preferably, it is an alkyl group or phenyl group of -10.
  • heterocycle-containing compound [A] examples include, for example, compounds represented by the following formulas (b-1) to (b-11).
  • the heterocycle-containing compound [A] may be used alone or in combination of two or more. (Wherein, "Ph” is a phenyl group)
  • the diamine compound used for the synthesis of the polyamide [P] is not particularly limited, and known diamine compounds can be used.
  • polyamide [P] can be a compound represented by each of the following formulas (d-1) to (d-4) because it can make the liquid crystal alignment property of the liquid crystal element obtained excellent.
  • a partial structure derived from at least one diamine compound selected from the group consisting of (In formula (d-1), X 11 and X 12 each independently represent a single bond, —O—, —S—, —OCO— or —COO—, and Y 11 is an oxygen atom or a sulfur atom
  • X 14 and X 15 are each independently represent a single bond, -O -, - COO- or a -OCO-, R 17 is an alkanediyl group having 1 to 3 carbon atoms There, A 11 is a single bond or an alkanediyl group having a carbon number of 1 ⁇ 3 .
  • a is 0 or 1
  • b is an integer of 0 ⁇ 2
  • c is an integer of 1 ⁇ 20
  • a and b are not simultaneously 0.
  • a 12 is a single bond, an alkanediyl group having 1 to 12 carbon atoms, or 1 to 6 carbon atoms
  • a 13 represents -O-, -COO-, -OCO-, -NHCO-, -CONH- or -CO-, and
  • a 14 represents a monovalent organic compound having a steroid skeleton. Group
  • examples of the alkanediyl group having 1 to 3 carbon atoms of R 11 and R 12 include, for example, methylene group, ethylene group, propane-1,2-diyl group, propane-1,3-diyl group And propane-2,3-diyl group. Among these, preferred is a methylene group, an ethylene group or a propane-1,3-diyl group.
  • X 11 and X 12 are preferably a single bond, -O- or -S-.
  • Y 11 is an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • the bonding position of the primary amino group on the benzene ring is not particularly limited. For example, when there is one primary amino group on the benzene ring, the bonding position may be any of 2-position, 3-position and 4-position with respect to other groups, in 3-position or 4-position. It is preferably present, and more preferred is 4-position. In addition, in the case where there are two primary amino groups on the benzene ring, the bonding position may be, for example, the 2,4-position or the 2,5-position relative to other groups, and in particular, the 2,4-position Is preferred.
  • the hydrogen atom on the benzene ring to which the primary amino group is bonded is a monovalent hydrocarbon group having 1 to 10 carbon atoms, or a monovalent atom in which at least one hydrogen atom on the hydrocarbon group is substituted with a fluorine atom It may be substituted by a group or a fluorine atom.
  • examples of the monovalent hydrocarbon group include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and an aryl group having 5 to 10 carbon atoms Examples thereof include phenyl group and tolyl group), aralkyl group having 5 to 10 carbon atoms (such as benzyl group) and the like.
  • the compound include 1,3-bis (4-aminobenzyl) urea, 1,3-bis (4-aminophenethyl) urea, 1,3-bis (3-aminobenzyl) urea, 1- (4-aminobenzyl) ) -3- (4-aminophenethyl) urea, 1,3-bis (2- (4-aminophenoxy) ethyl) urea, 1,3-bis (3- (4-aminophenoxy) propyl) urea, 1, 3-Bis (4-aminobenzyl) thiourea, 1,3-bis (2-aminobenzyl) urea, 1,3-bis (2-aminophenethyl) urea,
  • X 13 is a single bond, -O- or -S-, preferably a single bond or -O-.
  • m 2 is preferably 1 to 10, more preferably 1 to 8.
  • each primary amino group on the benzene ring is not particularly limited, it is preferable that each primary amino group be in the 3- or 4-position relative to the other group, and more preferably in the 4-position.
  • the hydrogen atom on the benzene ring to which the primary amino group is bonded is a monovalent hydrocarbon group having 1 to 10 carbon atoms, or at least one hydrogen atom on the hydrocarbon group is substituted with a fluorine atom. It may be substituted by a valent group or a fluorine atom.
  • Preferred specific examples of the compound represented by the above formula (d-2) include, for example, bis (4-aminophenoxy) methane, bis (4-aminophenoxy) ethane, bis (4-aminophenoxy) propane, bis (4) -Aminophenoxy) butane, bis (4-aminophenoxy) pentane, bis (4-aminophenoxy) hexane, bis (4-aminophenoxy) heptane, bis (4-aminophenoxy) octane, bis (4-aminophenoxy) nonane
  • the group “—C c H 2c + 1 ” is preferably linear, and specific examples thereof include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group Group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl Groups, n-octadecyl group, n-nonadecyl group and the like.
  • the two primary amino groups in the diaminophenyl group are preferably in the 2,4- or 3,5-position relative to the group "X 4 ", and more preferably in the 2,4-position.
  • the hydrogen atom on the benzene ring to which the primary amino group is bonded is a monovalent hydrocarbon group having 1 to 10 carbon atoms, or a monovalent atom in which at least one hydrogen atom on the hydrocarbon group is substituted by a fluorine atom. Or a fluorine atom.
  • Preferred specific examples of the compound represented by the above formula (d-3) include, for example, compounds represented by each of the following formulas (d-3-1) to (d-3-12) it can.
  • fluoroalkanediyl group having 1 to 6 carbon atoms a perfluoroalkanediyl group having 1 to 4 carbon atoms is preferable, and -CF 2- , perfluoroethylene group, 1,3-perfluoropropanediyl group, 1,4 Perfluorobutanediyl is more preferred.
  • a 13 is preferably -O-.
  • the steroid skeleton in the A 14, Shikuropentano - perhydro phenanthridine consisting Ren core structure or a carbon - one or more than one carbon bond refers to a structure in which a double bond.
  • the monovalent organic group having such a steroid skeleton is preferably one having 17 to 40 carbon atoms.
  • Preferred specific examples of the compound represented by the above formula (d-4) include 1-cholesteryloxymethyl-2,4-diaminobenzene, from the viewpoint of giving a high pretilt angle to a coating film in the use of a liquid crystal alignment film.
  • the use ratio of the specific diamine can be arbitrarily set according to the diamine compound to be used.
  • the amount thereof used is preferably 1 mol% or more, and more preferably 3 mol% or more, based on all diamines.
  • the amount used is 10 mol% or more with respect to all the diamines. It is preferable to set it as 30 mol% or more, and more preferable to set it as 50 mol% or more.
  • the use thereof from the viewpoint of imparting good orientation When using at least one selected from the group consisting of a compound represented by the above formula (d-3) and a compound represented by the above formula (d-4), the use thereof from the viewpoint of imparting good orientation.
  • the proportion (the total amount of two or more compounds used) is preferably 5 mol% or more, more preferably 10 mol% or more, based on all diamines.
  • 1 type of the compounds illustrated above can be used individually or in combination of 2 or more types.
  • diamine compounds other than the above-mentioned specific diamines (hereinafter, also referred to as "other diamines”) can be used.
  • specific examples of the other diamine include the compounds shown below.
  • polyamide [P] which has a structural unit originating in the said diamine compound can be obtained by using each diamine compound shown below in the case of synthesis
  • the diamine compound having a carboxyl group (hereinafter, also referred to as “carboxyl group-containing diamine”) can be used for the purpose of improving the electrical characteristics (in particular, the relaxation effect of accumulated charge) of the liquid crystal element obtained.
  • the carboxyl group-containing diamine is preferably used in combination with a diamine compound having a nitrogen-containing aromatic heterocycle, which will be described later, in that the effect of improving the electrical characteristics of the liquid crystal device to be obtained is further enhanced.
  • the carboxyl group-containing diamine used is preferably an aromatic diamine, and specific examples thereof include compounds represented by the following formulas (d-5-1) and (d-5-2), respectively.
  • R 20 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms
  • Z 1 represents , A single bond, an oxygen atom, or an alkanediyl group having 1 to 3 carbon atoms
  • r 2, r 5 and r 6 each independently represents an integer of 1 or 2
  • r 1, r 3 and r 4 each independently represent 0 to 2
  • examples of the alkyl group having 1 to 10 carbon atoms for R 20 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group. Groups, heptyl groups, octyl groups, nonyl groups, decyl groups and the like, and these may be linear or branched.
  • Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a hexyloxy group.
  • Examples of the C 1-3 alkanediyl group as Z 1 include a methylene group, an ethylene group and a trimethylene group. r1, r3 and r4 are preferably 0 or 1, more preferably 0.
  • examples of the compound represented by the above formula (d-5-1) include 3,5-diaminobenzoic acid, 2,4-diaminobenzoic acid and 2,5-diaminobenzoic acid And the like; as a compound represented by the above formula (d-5-2), for example, 4,4′-diaminobiphenyl-3,3′-dicarboxylic acid, 4,4′-diaminobiphenyl-2,2′-dicarboxylic acid Acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4'-Diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-Diaminobiphenyl-3-carbox
  • a carboxyl group-containing diamine When a carboxyl group-containing diamine is used, its use ratio is preferably 2 mol% or more, more preferably 3 to 90 mol%, and still more preferably 5 to 70 mol% with respect to the total diamine.
  • the diamine compound having a nitrogen-containing aromatic heterocyclic ring can be used for the purpose of improving the electrical characteristics (in particular, the effect of reducing burn-in due to a direct current voltage) of the liquid crystal element to be obtained.
  • the nitrogen-containing aromatic heterocycle possessed by the diamine compound include pyrrole, imidazole, pyrazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine, benzimidazole, purine, quinoline, naphthyridine, carbazole, acridine and the like.
  • diamine compound having a nitrogen-containing aromatic heterocycle examples include, for example, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, and N-methyl-3. , 6-diaminocarbazole, N-ethyl-3, 6-diaminocarbazole, N-phenyl-3, 6-diaminocarbazole, 3, 6-diaminoacridine, following formula (d-6-1) to formula (d-6) And the compounds represented by each of -8) and the like.
  • these 1 type can be used individually or in combination of 2 or more types.
  • the proportion of the diamine compound having a nitrogen-containing aromatic heterocyclic ring is preferably 2 mol% or more, more preferably 3 to 50 mol%, and still more preferably 5 to 40 mol%, based on all diamines. Is more preferred.
  • the diamine compound having a protective group improves the solubility of polyamide [P] in a solvent, and when polyamide [P] is used in combination with another polymer Can be used to improve the affinity to other polymers.
  • the protecting group-containing diamine preferably has a partial structure in which a protecting group is bonded to a nitrogen atom, and specifically, a diamine having a group represented by the following formula (7-1) or formula (7-2) Compounds are mentioned.
  • a 21 is a single bond or a divalent organic group having 1 or more carbon atoms
  • Y 1 is a protecting group
  • R 21 to R 23 are And each independently represents a hydrogen atom or a monovalent organic group having a carbon number of 1 or more
  • m is an integer of 0 to 6.
  • "*" represents a bond.
  • the protective group of Y 1 is preferably a group which is released by heat, and for example, a carbamate type protective group, an amide type protective group, an imide type protective group And sulfonamide protecting groups.
  • a carbamate protective group is particularly preferable.
  • tert-butoxycarbonyl group examples thereof include a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group and a 1,1-dimethyl- Examples thereof include 2-cyanoethyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, 2- (trimethylsilyl) ethoxycarbonyl group and the like.
  • tert-butoxycarbonyl group is particularly preferable in that it is highly removable by heat and the amount of remaining of the deprotected portion in the membrane can be further reduced.
  • the monovalent organic group of R 21 and R 22 is preferably a monovalent hydrocarbon group of 1 to 10 carbon atoms, and more preferably an alkyl group or cycloalkyl group of 1 to 10 carbon atoms.
  • the monovalent organic group of R 23 is preferably a monovalent alkyl group of 1 to 10 carbon atoms or a protecting group.
  • Examples of the divalent organic group of A 21 include a divalent hydrocarbon group, and a group having —O—, —CO—, —COO—, —NH— or the like between carbon-carbon bonds of the hydrocarbon group. It can be mentioned.
  • a 21 is preferably bonded to an aromatic ring, and particularly preferably to a benzene ring.
  • Examples of the protective group-containing diamine include compounds represented by the following formulas (d-7-1) to (d-7-12), and the like.
  • the protective group-containing diamines may be used alone or in combination of two or more. (Wherein, TMS represents a trimethylsilyl group)
  • a protective group-containing diamine When a protective group-containing diamine is used, its use ratio is preferably 2 mol% or more, more preferably 3 to 80 mol%, and preferably 5 to 70 mol%, based on all diamines. Is more preferred.
  • a diamine compound having at least one selected from the group consisting of a secondary or tertiary amine structure represented by the following formula (9) and a nitrogen-containing heterocyclic structure (hereinafter referred to as “secondary Or a tertiary amine structure / a nitrogen-containing heterocyclic structure-containing diamine) may be used.
  • Use of a secondary or tertiary amine structure / nitrogen-containing heterocyclic structure-containing diamine is preferable in that the improvement effect of the reduction in sticking due to a DC voltage can be enhanced.
  • R 51 and R 52 each independently represent a divalent aromatic ring group
  • R 53 represents a hydrogen atom or a monovalent organic group having one or more carbon atoms. Indicates that it is a bond.
  • the divalent aromatic ring group R 51 and R 52 an aromatic hydrocarbon group, a nitrogen-containing aromatic heterocyclic group and the like.
  • Preferred is an aromatic hydrocarbon group, and examples thereof include a phenylene group and a naphthylene group.
  • R 51 and R 52 are particularly preferably phenylene groups.
  • Examples of the monovalent organic group represented by R 53 include alkyl groups such as methyl, ethyl and propyl; cycloalkyl groups such as cyclohexyl; aryl groups such as phenyl and methylphenyl, tert-butoxycarbonyl and the like And the like.
  • R 53 is preferably a hydrogen atom or a methyl group.
  • nitrogen-containing heterocycle examples include nitrogen-containing heteroalicyclic structures such as piperidine, piperazine, pyrrolidine and hexamethyleneimine, and the nitrogen-containing aromatic heterocycles exemplified above.
  • secondary or tertiary amine structure / nitrogen-containing heterocyclic structure-containing diamine include, for example, bis (4-aminophenyl) amine, 2,4-diaminopyrimidine, 1,4-bis- (4-aminophenyl) -Piperazine, N, N'-bis (4-aminophenyl) -benzidine, N, N'-bis (4-aminophenyl) -N, N'-dimethylbenzidine, a diamine compound having a nitrogen-containing aromatic heterocyclic ring Examples thereof include compounds exemplified in the description, compounds represented by the following formulas (d-9-1) to (d-9-8), and the like.
  • secondary or tertiary amine structure / nitrogen-containing heterocyclic structure containing diamine may be used individually by 1 type, and may be used combining 2 or more types.
  • a secondary or tertiary amine structure / nitrogen-containing heterocyclic structure-containing diamine When a secondary or tertiary amine structure / nitrogen-containing heterocyclic structure-containing diamine is used, its use ratio is preferably 2 mol% or more, preferably 3 to 60 mol%, based on all diamines. More preferably, 5 to 50 mol% is more preferable.
  • a diamine compound represented by the following formula (8) (hereinafter, also referred to as "secondary amino group-containing diamine compound”) may be used as another diamine.
  • the phase separation with other polymers can be controlled It is preferable at the point which can be done.
  • a 31 represents a divalent aromatic ring group
  • R 31 represents an alkanediyl group having 1 to 5 carbon atoms
  • R 32 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms is there.
  • examples of the divalent aromatic ring group of A 31 include groups in which two hydrogen atoms have been removed from the ring portion of an aromatic ring such as a benzene ring, a naphthalene ring or an anthracene ring.
  • a 31 is preferably a phenylene group.
  • the alkanediyl group of R 31 may be linear or branched, and examples thereof include a methylene group, ethylene group, propanediyl group, butanediyl group and pentanediyl group.
  • the monovalent hydrocarbon group represented by R 32 includes alkyl groups such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl and tert-butyl; and alkylene groups such as vinyl and propenyl , Etc.
  • R 32 is preferably a methyl group or an ethyl group.
  • secondary amino group-containing diamine compound examples include, for example, compounds represented by the following formulas (d-8-1) to (d-8-4).
  • a secondary amino group containing diamine compound may be used individually by 1 type, and may be used combining 2 or more types.
  • the use ratio thereof is preferably 2 mol% or more, more preferably 3 to 90 mol%, and more preferably 5 to 70 mol% with respect to all diamines. It is further preferable to
  • aliphatic diamines such as 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like; 1,4-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine), the following formula (d-11-1) to the formula (d-11-6)
  • a cycloaliphatic diamine such as a compound represented by each of p-phenylenediamine, 4,4'-diaminodiphenyl sulfide, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2 , 2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 4,4 '-(p-phenylenediisopropylidene
  • tetracarboxylic acid dianhydrides include aliphatic tetracarboxylic acid dianhydrides such as butanetetracarboxylic acid dianhydride and ethylenediaminetetraacetic acid dianhydride; 1,2,3,4-Cyclobutanetetracarboxylic acid dianhydride, 1,3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentylacetic acid dianhydride , 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5- Dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione,
  • the tetracarboxylic acid diester can be obtained by ring-opening the above-mentioned tetracarboxylic acid dianhydride using an alcohol such as methanol, ethanol or propanol.
  • the tetracarboxylic acid diester dihalide can be obtained, for example, by reacting the tetracarboxylic acid diester obtained above with a suitable chlorinating agent such as thionyl chloride.
  • the “reaction product of the heterocycle-containing compound [A] and the diamine compound” refers to the heterocycle-containing compound [A] and diamine as monomers used for synthesis, as long as the effects of the present disclosure are not impaired. It is acceptable to use together with the compound, the hetero ring-containing compound [A] and another monomer other than the diamine compound.
  • the proportion of the other monomer (preferably tetracarboxylic acid dianhydride) to be used is preferably 40 mol% or less, preferably 30 mol% or less, based on the total amount of monomers used for synthesis of the polyamide [P]. It is more preferable to do.
  • the polyamide [P] can be synthesized by the ring-opening polyaddition reaction of the heterocycle-containing compound [A] with a diamine compound.
  • the synthesis reaction is preferably carried out in an organic solvent.
  • the organic solvent used for the reaction include aprotic polar solvents (N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, etc.), phenolic solvents (phenol, cresol etc.), Alcohol, ketone, ester, ether, halogenated hydrocarbon, hydrocarbon and the like can be mentioned.
  • the proportion of the organic solvent used is preferably such that the total amount of the heterocycle-containing compound [A] and the diamine compound is 0.1 to 50% by mass with respect to the total amount of the reaction solution.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • the reaction solution obtained by dissolving the polyamide [P] When the reaction solution obtained by dissolving the polyamide [P] is obtained by the above reaction, the reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or it may be obtained by pouring the reaction solution into a large amount of poor solvent.
  • Liquid crystal aligning agent after isolating polyamide [P] contained in the reaction solution using a known isolation method such as a method of drying the precipitate under It may be subjected to the preparation of
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the obtained polyamide [P] is preferably 1,000 to 300,000, more preferably 2,000 to 100, It is 000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 5 or less, more preferably 3 or less.
  • polyamide [P] used for preparation of a liquid crystal aligning agent may be only 1 type, and may combine 2 or more types.
  • the polymer contained in the liquid crystal aligning agent from the viewpoint of sufficiently increasing the coatability to the substrate and improving the liquid crystal alignment property and the voltage holding ratio of the liquid crystal element in the content ratio of polyamide [P] in the liquid crystal aligning agent It is preferable to set it as 20 mass% or more with respect to the whole quantity of a component, it is more preferable to set it as 30 mass% or more, and it is more preferable to set it as 40 mass% or more. Further, the content ratio of polyamide [P] is preferably 90% by mass or less, more preferably 80% by mass or less, and more preferably 70% by mass or less based on the total polymer contained in the liquid crystal aligning agent. It is further preferable to do.
  • the heterocycle-containing compound [A] in any case where X 1 in the above formula ( 1 ) is any of the above formulas (2-1) to (2-5)
  • the compound [A] is opened at the bonding site of the carbonyl group and the oxygen atom to form polyamide [P].
  • a polyamide [P] is obtained by reacting a heterocycle-containing compound [A] (an endocyclic enol ester, an exocyclic enol ester, an endocyclic acylamide ester, an exocyclic acylamide ester or an oxime ester) with a diamine compound.
  • An example of a reaction scheme for obtaining is shown below.
  • Z 0 ⁇ Z 7 are each independently a divalent organic group
  • Y 2 is
  • .A 1 is a divalent organic radical from a diamine compound by removing two primary amino groups
  • R 1 to R 4 and R 7 each have the same meaning as in the above formula (1).
  • the liquid crystal aligning agent of this indication may contain other components other than polyamide [P] as needed.
  • Other components are not particularly limited as long as the effects of the present disclosure are not impaired.
  • Specific examples of the other components include a polymer different from polyamide [P] (hereinafter also referred to as “other polymer”), a compound having a crosslinkable group (hereinafter referred to as “crosslinkable group-containing compound”) , Functional silane compounds, antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, photosensitizers, solvents and the like.
  • the blend ratio of the other components can be appropriately selected according to each compound, as long as the effects of the present disclosure are not impaired.
  • polymers can be used for the purpose of improving the solubility in solvents and electrical properties.
  • Other polymers include, for example, polyamic acids, polyamic acid esters, polyimides, polyorganosiloxanes, polyesters, polyamides having no partial structure derived from the heterocycle-containing compound [A], polyenamines, polybenzoxazole precursors, Examples of such polymers include polybenzoxazole, cellulose derivatives, polyacetals, polystyrene derivatives, (styrene-maleimide) polymers, and polymers having a poly (meth) acrylate as a main skeleton.
  • (meth) acrylate is meant to include acrylate and methacrylate.
  • another polymer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid crystal aligning agent of the present disclosure includes polyamic acid, polyamic acid ester and polyimide as other polymers.
  • the liquid crystal alignment agent of the present disclosure includes polyorganosiloxane and (styrene-maleimide) based on other polymers. It is more preferable to contain at least one selected from the group consisting of polymers.
  • the (styrene-maleimide) polymer is preferably a (styrene-phenylmaleimide) polymer.
  • the blending ratio of the other polymer is 10 to 1000 parts by mass with respect to 100 parts by mass of the total amount of polyamide [P] contained in the liquid crystal aligning agent It is preferable to set it as 30 to 500 parts by mass.
  • the polymer component of the liquid crystal aligning agent As preferred embodiments of the polymer component of the liquid crystal aligning agent, the following (I) to (IV) can be mentioned.
  • the polymer component comprises polyamide [P] and a poly (styrene-phenylmaleimide) derivative.
  • (I) is particularly preferable in that it is possible to obtain a liquid crystal element having more excellent balance of coating property, liquid crystal alignment property and electrical property.
  • the liquid crystal aligning agent of the present disclosure includes at least one crosslinkable group selected from the group consisting of a cyclocarbonate group, an epoxy group, an isocyanate group, a blocked isocyanate group, an oxetanyl group, a trialkoxysilyl group, and a polymerizable unsaturated bond group. You may contain the compound which it has (Hereafter, it is also mentioned a "crosslinkable group containing compound.”). The inclusion of the crosslinkable group-containing compound is preferable in that the adhesion of the liquid crystal alignment film to the substrate and the electrical characteristics and reliability of the liquid crystal element can be improved.
  • the crosslinkable group-containing compound has a polymerizable unsaturated bond group
  • examples of the polymerizable unsaturated bond group include (meth) acryloyl group, ethylenic carbon-carbon double bond, vinylphenyl group, vinyloxy group (CH 2 CHCH—O—), a vinylidene group, a maleimide group and the like are mentioned, and a cyclocarbonate group, an epoxy group or a (meth) acryloyl group is preferable from the viewpoint of high reactivity with light or heat.
  • the molecular weight of the crosslinkable group-containing compound is preferably 3,000 or less, more preferably 2,000 or less in terms of storage stability.
  • crosslinkable group-containing compound examples include, as a cyclocarbonate group-containing compound, for example, a compound represented by the following formula (11-1), a compound represented by the following formula (11-2), etc.
  • the compound having an epoxy group examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, triglycidyl isocyanurate, 1,6-hexanediol diglycidyl ether, glycerin di Glycidyl ether, trimethylolpropane triglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, N, N, N ', N'-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N -Diglycidylaminomethyl) cyclohexane
  • Examples of the compound having a blocked isocyanate group include a compound represented by the following formula (11-5), a compound represented by the following formula (11-6), etc.
  • Examples of the compound having a (meth) acryloyl group include ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and the following formula (11-7)
  • Examples of the compound having an oxetanyl group include a compound represented by the following formula (11-9), a compound represented by the following formula (11-10), and the like.
  • an epoxy-group containing compound the epoxy-group-containing polyorganosiloxane of WO2009 / 096598 can be used.
  • the blending ratio is preferably 40 parts by mass or less with respect to a total of 100 parts by mass of the polymer contained in the liquid crystal aligning agent. It is more preferable to set it to 30 parts by mass.
  • a crosslinkable group containing compound can be used individually by 1 type or in combination of 2 or more types.
  • the liquid crystal aligning agent of the present disclosure is prepared as a composition in the form of a solution in which the polymer component, and the component that is optionally blended, is preferably dissolved in an organic solvent.
  • organic solvent include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • the solvent component may be one of these or a mixed solvent of two or more.
  • the solvent component of the liquid crystal aligning agent of the present disclosure is at least one member selected from the group consisting of compounds represented by the following formulas (E-1) to (E-5), and at 1 atm.
  • a solvent having a boiling point of 180 ° C. or less (hereinafter, also referred to as “specific solvent”) may be used.
  • a specific solvent as at least a part of the solvent component, it is possible to obtain a liquid crystal element excellent in liquid crystal alignment and electrical characteristics even when heating at the time of film formation is performed at a low temperature (for example, 200 ° C. or less). Preferred.
  • polyamide [P] is excellent in solubility in solvents, and therefore coating properties on substrates (suppression of film thickness unevenness and pinholes, even when a low boiling point solvent such as a specific solvent is used as the solvent component) It is preferable in that the liquid crystal element is excellent in securing the linearity and flatness of the end portion of the coating region, and in both of the liquid crystal alignment property and the electrical property.
  • R 41 is an alkyl group having 1 to 4 carbon atoms or R 40 -CO- (wherein R 40 is an alkyl group having 1 to 3 carbon atoms), and R 42 is a carbon atom
  • R 44 is an alkanediyl group having 1 to 4 carbon atoms.
  • R 45 and R 46 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 49 is a hydrogen atom or a hydroxyl group
  • R 50 is a divalent hydrocarbon group having 1 to 9 carbon atoms, or R 3 if the R 49 is a hydrogen atom;
  • R 49 is a hydroxyl group, it is a divalent hydrocarbon group having 1 to 9 carbon atoms, or a carbon number of 2 carbon atoms when R 49 is a hydroxyl group.
  • R 51 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, a monovalent group having a hydrogen atom of the hydrocarbon group having 1 to 6 carbon atoms substituted with a hydroxyl group, Or a monovalent group having —CO— between carbon-carbon bonds of a hydrocarbon group having 2 to 6 carbon atoms
  • R 52 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • the specific solvent examples include propylene glycol monomethyl ether, diethylene glycol methyl ethyl ether, 3-methoxy-1-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether as a compound represented by the above formula (E-1) Partial ethers of polyhydric alcohols such as ethylene glycol monopropyl ether, ethylene glycol n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc .: ethylene glycol ethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene Glycol monomethyl ether acetate, propylene glycol Polyhydric partial ester of an alcohol, such as glycol monomethyl ether acetate and the like; As a compound represented by the said Formula (E-2), cyclobutanone, cyclopentanone,
  • the solvent component of the liquid crystal alignment agent may be composed only of the specific solvent, but may be a mixed solvent of another solvent other than the specific solvent and the specific solvent.
  • Other solvents include, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, N, N-dimethylformamide, Besides highly polar solvents such as N, N-dimethylacetamide; 4-hydroxy-4-methyl-2-pentanone, butyl lactate, methyl methoxypropionate, ethyl ethoxy propionate, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isoamyl isobutyrate, diisopentyl Ether, ethylene carbonate, propylene carbonate, cyclohexane, octanol,
  • a highly polar solvent can be used for the purpose of further improving the solubility and the leveling property.
  • hydrocarbon solvents that do not contain an amide structure can be used for the purpose of enabling application to plastic substrates and low temperature firing.
  • the content ratio of the specific solvent is preferably 20% by mass or more and 40% by mass or more based on the total amount of the solvent contained in the liquid crystal aligning agent. Is more preferable, 50 mass% or more is further preferable, and 80 mass% or more is particularly preferable.
  • the liquid crystal aligning agent of the present disclosure is preferable in that a liquid crystal element having excellent liquid crystal alignment property and electrical property can be obtained even when the solvent component in the liquid crystal aligning agent is only a specific solvent.
  • the liquid crystal aligning agent of the present disclosure is preferable in that a liquid crystal element having excellent liquid crystal alignment properties and electrical properties can be obtained even when it does not substantially contain N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • substantially free of NMP means that the content of NMP is preferably 5% by mass or less, more preferably 3% or less, based on the total amount of the solvent contained in the liquid crystal aligning agent. The content is at most mass%, more preferably at most 0.5 mass%.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coatability decreases. There is a tendency.
  • the liquid crystal aligning film of this indication is formed of the liquid crystal aligning agent prepared as mentioned above.
  • the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal alignment agent described above.
  • the operation mode of the liquid crystal in the liquid crystal element is not particularly limited.
  • TN type, STN type, VA type (including VA-MVA type, VA-PVA type, etc.), IPS (In-Plane Switching) type, FFS (Fringe) It can be applied to various modes such as Field Switching type, OCB (Optically Compensated Bend) type, and PSA type (Polymer Sustained Alignment).
  • the liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. Step 1 differs in the substrate used according to the desired operation mode. Steps 2 and 3 are common to each operation mode.
  • a liquid crystal aligning agent is coated on a substrate, and preferably a coated surface is formed to form a coating film on the substrate.
  • the substrate for example, glass such as float glass and soda glass; transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate and poly (alicyclic olefin) can be used.
  • a transparent conductive film provided on one surface of the substrate a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc.
  • a TN type, STN type or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with electrodes patterned in a comb shape and an opposite substrate provided with no electrodes are used.
  • the application of the liquid crystal alignment agent to the substrate is carried out preferably by offset printing, flexo printing, spin coating, roll coater method or ink jet printing on the electrode formation surface.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal alignment agent.
  • the prebake temperature is preferably 30 to 200 ° C.
  • the prebake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermally imidizing the amic acid structure in the polymer component.
  • the baking temperature (post-baking temperature) at this time is preferably 80 to 250 ° C., more preferably 80 to 200 ° C.
  • the post bake time is preferably 5 to 200 minutes.
  • polyamide [P] has good solubility in a specific solvent, and the liquid crystal alignment and electrical properties are obtained even when the post-baking temperature is, for example, 200 ° C. or less, preferably 180 ° C. or less, more preferably 160 ° C. or less.
  • Liquid crystal element can be obtained.
  • the film thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • ⁇ Step 2 Alignment treatment>
  • a treatment (alignment treatment) for imparting liquid crystal alignment ability to the coating film formed in the above step 1 is carried out.
  • the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • the orientation treatment the coating formed on the substrate is rubbed in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon or cotton, or the coating formed on the substrate is irradiated with light. It is possible to use a photoalignment treatment or the like which imparts the liquid crystal alignment ability to the coating film.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but in order to further enhance the liquid crystal alignment ability
  • the film may be subjected to orientation treatment.
  • a liquid crystal alignment film suitable for a vertical alignment type liquid crystal element can also be suitably used for a PSA type liquid crystal element.
  • the light irradiation for photo-alignment is a method of irradiating the coating film after the post-baking step, a method of irradiating the coating film after the pre-baking step but before the post-baking step, a pre-baking step and a post-baking step At least one of them can be performed by a method of irradiating the coating film while heating the coating film, or the like.
  • the radiation to be applied to the coating film it is possible to use, for example, ultraviolet light and visible light including light of a wavelength of 150 to 800 nm. Preferably, it is ultraviolet light containing light of a wavelength of 200 to 400 nm. If the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or these may be performed in combination.
  • the irradiation direction in the case of non-polarized radiation is oblique.
  • a low pressure mercury lamp for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser and the like can be mentioned.
  • the radiation dose is preferably 400 to 50,000 J / m 2 , more preferably 1,000 to 20,000 J / m 2 .
  • an organic solvent eg, methanol, isopropyl alcohol, 1-methoxy-2-propanol acetate etc.
  • Step 3 Construction of Liquid Crystal Cell> Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal is disposed between two substrates disposed opposite to each other to manufacture a liquid crystal cell.
  • a liquid crystal is disposed between two substrates disposed opposite to each other to manufacture a liquid crystal cell.
  • two substrates are disposed opposite to each other with a gap so that the liquid crystal alignment film faces each other, and peripheral portions of the two substrates are bonded using a sealing agent.
  • a liquid crystal is injected and filled in a cell gap surrounded by a sealing agent to seal the injection hole, a method by an ODF method, and the like.
  • the sealing agent for example, an epoxy resin containing a hardening agent and aluminum oxide spheres as a spacer can be used.
  • liquid crystals examples include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • the liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates.
  • a liquid crystal cell is constructed in the same manner as described above except that a photopolymerizable compound is injected or dropped together with the liquid crystal. After that, light is irradiated to the liquid crystal cell in a state where a voltage is applied between the conductive films of the pair of substrates.
  • the voltage applied here may be, for example, 5 to 50 V direct current or alternating current.
  • the light to be irradiated for example, ultraviolet light and visible light containing light of a wavelength of 150 to 800 nm can be used, but ultraviolet light containing light of a wavelength of 300 to 400 nm is preferable.
  • a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser etc. can be used, for example.
  • the light irradiation amount is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
  • a polarizing plate is attached to the outer surface of the liquid crystal cell to form a liquid crystal element.
  • the polarizing plate include a polarizing plate in which a polarizing film called “H film” obtained by absorbing iodine while stretching and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film or a polarizing plate consisting of the H film itself.
  • the substrate In the manufacturing process of the liquid crystal element, the substrate may be left as it is (drawn) after forming the liquid crystal alignment film on the substrate due to mechanical trouble or tact adjustment. At that time, moisture in the air may be adsorbed or absorbed by the liquid crystal alignment film, and the electric characteristics of the constructed liquid crystal element may be deteriorated, which may cause display unevenness and the like.
  • the liquid crystal alignment film obtained by using the above-mentioned liquid crystal alignment agent is a liquid crystal having good electric characteristics (a good resistance to placing) even when the substrate is left with the liquid crystal alignment film formed. It is excellent in the point which can obtain an element.
  • the liquid crystal element of the present disclosure can be effectively applied to various applications.
  • the present invention can be applied to various display devices such as liquid crystal televisions and information displays, light control films, retardation films and the like.
  • the liquid crystal device of the present disclosure is also suitably used for a liquid crystal device using a dye as a colorant for the color filter layer.
  • a dye a known dye that can be used for a liquid crystal element can be used.
  • the contents of this indication are not limited to the following examples.
  • the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polymer were measured by the following methods. ⁇ Weight average molecular weight, number average molecular weight and molecular weight distribution> Mw and Mn were measured by gel permeation chromatography (GPC) under the following conditions. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained Mw and Mn.
  • GPC column Tosoh Corp.
  • TSKgel GRC XLII Mobile phase: lithium bromide and phosphoric acid containing N, N-dimethylformamide solution column temperature: 40 ° C. Flow rate: 1.0 mL / min Pressure: 68 kgf / cm 2
  • Synthesis Examples 2-14 to 2-19 The same operation as in Synthesis Example 2-1 is carried out except that the type and amount of monomers to be used are changed as shown in Table 1 below, to obtain polyamic acids (polymers (C-1) to (C-6), respectively. ) Was obtained.
  • Synthesis Example 3-2 By performing the same operation as in Synthesis Example 3-1 except that the side chain carboxylic acid (ca-2) shown below is used instead of the side chain carboxylic acid (ca-1) in Synthesis Example 3-1 An NMP solution containing the polymer (C-8) was obtained.
  • Synthesis Example 3-3 By performing the same operation as in Synthesis Example 3-1 except that the side chain carboxylic acid (ca-3) shown below is used instead of the side chain carboxylic acid (ca-1) in Synthesis Example 3-1 An NMP solution containing the polymer (C-9) was obtained.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC was 30,000, and the molecular weight distribution Mw / Mn was 2.
  • Example 1 Preparation of Liquid Crystal Alignment Agent (AL-1)
  • the solution was filtered through a filter with a pore size of 1 ⁇ m to prepare a liquid crystal aligning agent (AL-1).
  • the liquid crystal aligning agent (AL-1) prepared above is coated on a glass substrate using a spinner and heated at 80 ° C. with a hot plate After prebaking for 1 minute, the interior of the chamber was heated (post-baked) for 30 minutes in a nitrogen-replaced oven at 230 ° C. to form a coating film having an average film thickness of 0.1 ⁇ m.
  • the coatability on the edge portion was evaluated.
  • the liquid crystal aligning agent (AL-1) prepared above was applied on a transparent electrode-coated glass substrate made of an ITO film using a printing machine for applying a liquid crystal alignment film, and dried as described above. .
  • Observing the shape and flatness of the edge portion “Good (A)” when the linearity is high and a flat surface, “Good (B)” when the linearity is high but there are irregularities, and there are irregularities, And when there was liquid return from the edge (the linearity is low), it was regarded as “defect (C)". As a result, in this example, it was judged as "good (A)".
  • the evaluation is “good (A)” when the measured values at four points are within ⁇ 25 ⁇ with respect to the average film thickness ⁇ and a uniform film thickness is obtained, ⁇ 25 ⁇ with respect to the average film thickness ⁇ If all the measured values at four points were within the range of ⁇ 50 ⁇ with respect to the average film thickness ⁇ although there were measured values outside the range of “good (B)”, with respect to the average film thickness ⁇ When there was a measured value out of the range of ⁇ 50 ⁇ and the variation of the measured value was large, it was regarded as “defect (C)”. As a result, in this Example, it was evaluation of "good (A)."
  • the liquid crystal aligning agent (AL-1) prepared above was applied on a transparent electrode surface of a glass substrate with a transparent electrode made of ITO film using a spinner, and a hot plate at 80 ° C. Pre-baked for 1 minute. Thereafter, the inside of the chamber was heated at 230 ° C. for 1 hour in an oven purged with nitrogen to form a coating having a thickness of 0.1 ⁇ m.
  • the coating film was rubbed at a roll rotational speed of 400 rpm, a stage moving speed of 3 cm / sec, and a hair-foot push-in length of 0.1 mm by a rubbing machine having a roll wound with rayon cloth.
  • ultrasonic cleaning was performed in ultrapure water for 1 minute, and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a substrate having a liquid crystal alignment film.
  • a pair (two sheets) of substrates having a liquid crystal alignment film was formed.
  • An epoxy resin adhesive containing aluminum oxide spheres with a diameter of 3.5 ⁇ m is applied by screen printing to the outer periphery of the surface of one of the above substrates having a liquid crystal alignment film, and then the liquid crystal alignment film surfaces are superimposed to face each other. It was pressure-bonded together and the adhesive was cured.
  • liquid crystal injection port After filling a nematic liquid crystal (manufactured by Merck, MLC-6221) between a pair of substrates from the liquid crystal injection port, the liquid crystal injection port is sealed with an acrylic photo-curing adhesive, and both sides of the substrate are polarized.
  • a horizontal alignment type liquid crystal display element was manufactured by bonding the plates together.
  • VHR voltage holding ratio
  • a liquid crystal display element (referred to as "element A”) was produced by the same method as in "3. Production of rubbing horizontal type liquid crystal display element” described above.
  • the liquid crystal display element (“element” is referred to as “element” in the same manner as the “3. manufacture of a rubbing horizontal type liquid crystal display element” above) without exposing another pair of substrates (two sheets) to the NMP atmosphere. B.) was manufactured. Subsequently, the pretilt angles of the two liquid crystal display elements are determined according to the method described in Non-patent document (TJ Scheffer et. Al. J. Appl. Phys. Vo. 19. p2013 (1980)), He-Ne.
  • (( ⁇ 1 ⁇ 2) / ⁇ 1) ⁇ 100 (2)
  • ⁇ 1 is the pretilt angle of the element B
  • ⁇ 2 is the pretilt angle of the element A.
  • Examples 5 to 7 and 14 to 20 and Comparative Example 1 Preparation was carried out at the same solid concentration as in Example 1 except that the composition was changed as shown in Table 2 below, to obtain liquid crystal aligning agents. Moreover, while evaluating the coating property of a liquid crystal aligning agent similarly to Example 1 using each liquid crystal aligning agent, manufacturing a rubbing horizontal type liquid crystal display element similarly to Example 1 and performing various evaluations The The results are shown in Table 3 below. In Table 3 below, the observation results of film thickness unevenness and pinholes are shown in the column of "coating properties", the observation results of edge portions are shown in the column of "edge shape", and evaluation results based on film thickness variations are shown. It is shown in the column of "film thickness uniformity”. In Examples 6 and 7, a crosslinking agent was blended together with the polymer component. In Table 2, "-" means that the polymer in the corresponding column was not used.
  • Example 2 ⁇ Manufacture and evaluation of optical FFS liquid crystal display device>
  • Example 2 Preparation of Liquid Crystal Alignment Agent (AL-2) The same solvent composition as in Example 1 except that the polymer to be used was changed to 100 parts by mass of the polymer (P-2) and 50 parts by mass of the polymer (C-9) And liquid crystal aligning agent (AL-2) was prepared by solid content concentration.
  • A-2 Liquid Crystal Alignment Agent
  • the coating property was evaluated in the same manner as in Example 1 except that (AL-2) was used instead of (AL-1) as the liquid crystal aligning agent.
  • the evaluation results of film thickness unevenness / pinhole, edge shape and film thickness uniformity were all “A”.
  • the coating film surface is irradiated with ultraviolet light of 1,000 J / m 2 including a linearly polarized light emission line of 254 nm from the normal direction of the substrate using an Hg-Xe lamp to perform photoalignment treatment, and liquid crystal alignment on the substrate A film was formed.
  • a pair of substrates having a liquid crystal alignment film is screen-printed with an epoxy resin adhesive containing an aluminum oxide sphere having a diameter of 5.5 ⁇ m, leaving a liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film is formed.
  • the substrates were superposed and pressure-bonded so that the projection directions of the polarization axes on the substrate surface at this time were antiparallel, and the adhesive was thermally cured at 150 ° C. for 1 hour.
  • nematic liquid crystal manufactured by Merck, MLC-7028
  • a liquid crystal injection port between a pair of substrates, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment at the time of liquid crystal injection, this was heated at 120 ° C. and then gradually cooled to room temperature to manufacture a liquid crystal cell.
  • the polarizing plates are attached to both outer surfaces of the substrate so that the polarization directions thereof are orthogonal to each other and at an angle of 90 ° with the projection direction of the optical axis of the liquid crystal alignment film to the substrate surface.
  • the liquid crystal display element was manufactured by this.
  • one pair of substrates is exposed to an NMP atmosphere in the same manner as in Example 1, and thereafter, using this pair of substrates, it is the same as the above-mentioned "3.
  • Production of optical FFS liquid crystal display element A liquid crystal display device (referred to as “device A”) was manufactured by the method of In addition, the liquid crystal display element (the “element” is selected by the same method as the above “3. manufacture of the optical FFS liquid crystal display element” without exposing the other pair of substrates (two sheets) to the NMP atmosphere. B.) was manufactured. Using the element A and the element B, evaluation of the pull-through resistance was performed in the same manner as in Example 1 above. As a result, in this example, the withdrawal resistance was an evaluation of "A".
  • Comparative Example 2 Preparation was carried out at the same solid concentration as in Example 1 except that the composition was changed as shown in Table 2 below, to obtain a liquid crystal aligning agent (BL-2). Moreover, while evaluating the coating property of a liquid crystal aligning agent similarly to Example 1 using a liquid crystal aligning agent (BL-2), it manufactures an optical FFS type liquid crystal display element similarly to Example 2, and variously I made an evaluation. The results are shown in Table 3 below.
  • Example 3 ⁇ Manufacture and evaluation of VA type liquid crystal display device> [Example 3] 1. Preparation of Liquid Crystal Alignment Agent (AL-3) The same solvent composition as in Example 1 except that the polymer used was changed to 100 parts by mass of polymer (P-3) and 300 parts by mass of polymer (C-6). And liquid crystal aligning agent (AL-3) was prepared by solid content concentration. 2. Evaluation of Coating Properties Coating properties were evaluated in the same manner as in Example 1 except that (AL-3) was used instead of (AL-1) as the liquid crystal aligning agent. As a result, in this example, the evaluation results of film thickness unevenness / pinhole, edge shape and film thickness uniformity were all “A”.
  • VA-Type Liquid Crystal Display Device The liquid crystal aligning agent (AL-3) prepared above is applied on a transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a spinner, and the hot plate is used at 80 ° C. Pre-baking was performed for 1 minute. Thereafter, the inside of the chamber was heated at 230 ° C. for 1 hour in an oven purged with nitrogen to form a coating having a thickness of 0.1 ⁇ m. By repeating this operation, a pair of substrates (two sheets) having a liquid crystal alignment film was formed.
  • An epoxy resin adhesive containing aluminum oxide spheres with a diameter of 3.5 ⁇ m is applied by screen printing to the outer periphery of the surface of one of the above substrates having a liquid crystal alignment film, and then the liquid crystal alignment film surfaces are superimposed to face each other. It was pressure-bonded together and the adhesive was cured. Next, after filling a negative type liquid crystal (MLC-6608, manufactured by Merck Ltd.) between a pair of substrates from the liquid crystal injection port, the liquid crystal injection port is sealed with an acrylic photo-curing adhesive, and both sides of the substrate are sealed.
  • MLC-6608 negative type liquid crystal
  • one pair of substrates is exposed to an NMP atmosphere in the same manner as in Example 1, and thereafter, using this pair of substrates, it is the same as the above-mentioned “3.
  • a liquid crystal display element (referred to as "element A”) was manufactured by a method.
  • a liquid crystal display element (“element B”) is formed by the same method as “3.
  • production of a VA type liquid crystal display element” without exposing the other pair of substrates (two sheets) to the NMP atmosphere. ”) was manufactured.
  • evaluation of the pull-through resistance was performed in the same manner as in Example 1 above.
  • the withdrawal resistance was an evaluation of "A”.
  • Example 4 and Comparative Example 3 Preparation was carried out at the same solid concentration as in Example 1 except that the composition was changed as shown in Table 2 below, to obtain liquid crystal aligning agents. Moreover, while evaluating coating property of a liquid crystal aligning agent similarly to Example 1 using each liquid crystal aligning agent, manufacturing a VA type liquid crystal display element similarly to Example 3 and performing various evaluations . The results are shown in Table 3 below.
  • Example 9 ⁇ Manufacture and evaluation of PSA type liquid crystal display device> [Example 9] 1. Preparation of Liquid Crystal Alignment Agent (AL-9) Same solvent composition as Example 1 except that the polymer used was changed to 200 parts by mass of Polymer (P-6) and 50 parts by mass of Polymer (C-7) A liquid crystal aligning agent (AL-9) was prepared at a solid content concentration. 2. Evaluation of Coating Property The coating property was evaluated in the same manner as in Example 1 except that (AL-9) was used instead of (AL-1) as the liquid crystal aligning agent. As a result, in this example, the evaluation results of film thickness unevenness / pinhole, edge shape and film thickness uniformity were all “A”.
  • liquid crystal compound represented by the following formula (L1-1) was represented by 5% by mass with respect to 10 g of nematic liquid crystal (MLC-6608 manufactured by Merck Ltd.), and by the following formula (L2-1)
  • the liquid crystal composition LC1 was obtained by adding 0.3 mass% of the photopolymerizable compounds and mixing them.
  • a liquid crystal alignment film printing machine (Nippon Photography printing) on each electrode surface of two glass substrates each having a conductive film consisting of an ITO electrode, the liquid crystal alignment agent (AL-9) prepared above (Presto) for 2 minutes on a hot plate at 80 ° C. to remove the solvent, and then for 10 minutes on a hot plate at 230 ° C. (post bake).
  • a coating having a thickness of 0.06 ⁇ m was formed.
  • the coated films were subjected to ultrasonic cleaning in ultrapure water for 1 minute and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a pair (two sheets) of substrates having a liquid crystal alignment film.
  • the pattern of the used electrode is the same pattern as the electrode pattern in the PSA mode.
  • an aluminum oxide sphere-containing epoxy resin adhesive having a diameter of 5.5 ⁇ m is applied to the outer edge of the surface of the one of the pair of substrates having the liquid crystal alignment film, and then the liquid crystal alignment film faces one another. It was pressure-bonded together and the adhesive was cured.
  • the liquid crystal composition LC1 prepared above was filled between a pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an acrylic photo-curing adhesive to manufacture a liquid crystal cell.
  • an AC 10V frequency 60Hz was applied between the conductive film of the liquid crystal cell, in a state where the liquid crystal is driven, using an ultraviolet irradiation apparatus using a metal halide lamp as a light source, the irradiation amount of 100,000J / m 2 It irradiated ultraviolet rays at.
  • this irradiation amount is the value measured using the actinometer measured by wavelength 365 nm reference
  • polarizing plates are attached to both outer sides of the substrate so that the polarization directions thereof are orthogonal to each other and at an angle of 45 ° with the projection direction of the optical axis of the liquid crystal alignment film to the substrate surface.
  • a liquid crystal display device was manufactured.
  • one pair of substrates is exposed to an NMP atmosphere in the same manner as in Example 1, and thereafter, using this pair of substrates, the same as the above-mentioned "4.
  • Production of PSA type liquid crystal display element" A liquid crystal display element (referred to as "element A”) was manufactured by a method. Further, a liquid crystal display element (“element B”) is prepared by the same method as the “4. PSA type liquid crystal display element” described above without exposing another pair of substrates (two sheets) to the NMP atmosphere. ”) was manufactured. Using the element A and the element B, evaluation of the pull-through resistance was performed in the same manner as in Example 1 above. As a result, in this example, the withdrawal resistance was an evaluation of "A".
  • Examples 10 and 11 and Comparative Example 5 Preparation was carried out at the same solid concentration as in Example 1 except that the composition was changed as shown in Table 2 below, to obtain liquid crystal aligning agents. Further, using the obtained liquid crystal aligning agent, the coating property of the liquid crystal aligning agent is evaluated in the same manner as in Example 1, and in the same manner as in Example 9, a PSA type liquid crystal display element is produced. Various evaluations were performed in the same manner. The evaluation results are shown in Table 3 below. In Examples 10 and 11, a crosslinking agent was blended with the polymer component.
  • Example 8 ⁇ Manufacture and evaluation of vertical light type liquid crystal display element> [Example 8] 1. Preparation of Liquid Crystal Alignment Agent (AL-8) The same solvent composition as in Example 1 except that the polymer used was changed to 200 parts by mass of polymer (P-7) and 50 parts by mass of polymer (C-8) And liquid crystal aligning agent (AL-8) was prepared at solid content concentration. 2. Evaluation of Coatability The coatability was evaluated in the same manner as in Example 1 except that (AL-8) was used instead of (AL-1) as the liquid crystal aligning agent. As a result, in this example, the evaluation results of film thickness unevenness / pinhole, edge shape and film thickness uniformity were all “A”.
  • liquid crystal aligning agent (AL-8) prepared above is applied on a transparent electrode surface of a glass substrate with a transparent electrode made of ITO film using a spinner, and a hot plate at 80 ° C. Pre-baked for 1 minute. Thereafter, the inside of the chamber was heated at 230 ° C. for 1 hour in an oven purged with nitrogen to form a coating having a thickness of 0.1 ⁇ m.
  • this coated film surface is irradiated with polarized ultraviolet light of 1,000 J / m 2 containing an emission line of 313 nm from a direction inclined 40 ° from the substrate normal to obtain liquid crystal alignment ability. Granted. The same operation was repeated to form a pair (two sheets) of substrates having a liquid crystal alignment film.
  • An epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 ⁇ m is applied by screen printing to the outer periphery of the surface having a liquid crystal alignment film of one of the above substrates, and then the liquid crystal alignment film surfaces of a pair of substrates are made to face each other.
  • the polarizing plates are bonded to both outer surfaces of the substrate so that the polarization directions are orthogonal to each other and at an angle of 45 ° with the projection direction of the optical axis of the liquid crystal alignment film to the substrate surface.
  • the liquid crystal display element was manufactured by this.
  • one pair of substrates is exposed to an NMP atmosphere in the same manner as in Example 1, and thereafter, using this pair of substrates, it is the same as the above "3.
  • a liquid crystal display device (referred to as “device A”) was manufactured by the method of
  • the liquid crystal display element (the “element” is formed by the same method as the “3. manufacture of the vertical light type liquid crystal display element” described above without exposing another pair of substrates (two sheets) to the NMP atmosphere. B.) was manufactured. Using the element A and the element B, evaluation of the pull-through resistance was performed in the same manner as in Example 1 above. As a result, in this example, the withdrawal resistance was an evaluation of "A".
  • Examples 12, 13 and Comparative Examples 4, 6 Preparation was carried out at the same solid concentration as in Example 1 except that the composition was changed as shown in Table 2 below, to obtain liquid crystal aligning agents. Moreover, while evaluating the coating property of a liquid crystal aligning agent similarly to Example 1 using each liquid crystal aligning agent, manufacturing an optical perpendicular type liquid crystal display element similarly to Example 8 and performing various evaluations The The results are shown in Table 3 below. In Examples 12 and 13, a crosslinking agent was blended together with the polymer component.
  • Example 21 to 23 a liquid crystal aligning agent (BL-) was prepared in the same manner as in Examples 21 to 23 except that 300 parts by mass of polymer (C-5) was used instead of 200 parts by mass of polymer (P-6). 7) to (BL-9) were prepared respectively (see Table 4 below). Moreover, while evaluating the coating property of a liquid crystal aligning agent like Example 1 except the point which changed the liquid crystal aligning agent to be used, and the point which changed post-baking temperature from 230 degreeC to 200 degreeC, Example 9 In the same manner as in the above, a PSA type liquid crystal display device was manufactured and various evaluations were performed. The results are shown in Table 5 below. In Table 5, insufficient solubility of the polymer in the solvent was observed, and the items which could not be evaluated by this were indicated as “ ⁇ ” (the same applies to Comparative Examples 10 and 11).
  • Comparative Example 10 A liquid crystal aligning agent (BL-10) was prepared in the same manner as in Example 24 except that the polymer composition was changed as shown in Table 4 below. Further, the coating property of the liquid crystal aligning agent is evaluated in the same manner as in Example 1 except that the obtained liquid crystal aligning agent is used and the post-baking temperature is changed from 230 ° C. to 200 ° C. In the same manner as in No. 1, a rubbing horizontal liquid crystal display element was manufactured and various evaluations were performed. The results are shown in Table 5 below.
  • Comparative Example 11 A liquid crystal aligning agent (BL-11) was prepared in the same manner as in Example 25 except that the polymer composition in Example 25 was changed as shown in Table 4 below. Further, the coating property of the liquid crystal aligning agent is evaluated in the same manner as in Example 1 except that the obtained liquid crystal aligning agent is used and the post-baking temperature is changed from 230 ° C. to 200 ° C. In the same manner as in No. 8, an optical vertical liquid crystal display device was manufactured and various evaluations were performed. The results are shown in Table 5 below.
  • the numerical value of the solvent composition represents the mass ratio (mass%) to the total amount of the solvent used for preparation of the liquid crystal aligning agent.
  • the abbreviation of the solvent has the following meaning.
  • CHN cyclohexanone DIBK: diisobutyl ketone
  • BC butyl cellosolve
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether acetate
  • EDM diethylene glycol methyl ethyl ether
  • Example 3 in Examples 1 to 20 using a liquid crystal aligning agent containing polyamide [P], the coating properties (including the edge shape and the film thickness uniformity) were all evaluated as "A". there were. Further, in Examples 1 to 20, the liquid crystal alignment and the voltage holding ratio of the obtained liquid crystal display element were also good, and the evaluation of “A” was made in all the examples. Furthermore, as shown in Table 4, the polyamide [P] has a sufficiently high solubility even in a solvent composition not containing an amide-based polar solvent (NMP), and the coatability (including edge shape and film thickness uniformity). The liquid crystal alignment and the voltage holding ratio were evaluated as “A” or “B”, and good results were obtained (Examples 21 to 25).
  • NMP amide-based polar solvent

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polyamides (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

式(1)で表される構造からn個(nは1以上の整数)の水素原子を除いた部分構造を一分子内に2個以上有する複素環含有化合物と、ジアミン化合物との反応生成物であるポリアミド[P]を液晶配向剤に含有させる。式(1)中、Xは-CR=CR-等である。Aは2価の有機基であり、他の環構造に結合して当該他の環構造とともに縮合環を形成していてもよい。一分子内の複数のA及びXは、それぞれ独立して上記定義を有する。

Description

液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法 関連出願の相互参照
 本出願は、2018年1月25日に出願された日本出願番号2018-10895号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法に関する。
 液晶素子としては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型などに代表される、正の誘電異方性を有するネマチック液晶を用いる水平配向モードの液晶素子や、負の誘電異方性を有するネマチック液晶を用いる垂直(ホメオトロピック)配向モードのVA(Vertical Alignment)型の液晶素子など、各種液晶素子が知られている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。
 一般に、液晶配向膜は、重合体成分が有機溶媒に溶解されてなる液晶配向剤を基板に塗布し、加熱することにより形成される。液晶配向剤の重合体成分としては、ポリアミック酸、可溶性ポリイミド、ポリアミド、ポリエステル、ポリオルガノシロキサン等が知られており、特にポリアミック酸及び可溶性ポリイミドは、耐熱性、機械的強度、液晶分子との親和性に優れること等から、古くから好ましく使用されている(特許文献1~3参照)。
特開平4-153622号公報 特開昭56-91277号公報 特開平11-258605号公報
 ポリアミック酸及び可溶性ポリイミドは有機溶媒に対する溶解性が比較的低く、液晶配向剤の溶剤成分としては、非プロトン性極性溶媒であるN-メチル-2-ピロリドン(NMP)等の高沸点溶剤が一般に使用されている。ここで、良好な電気特性及び信頼性を有する液晶素子を得るためには、液晶配向膜中の残存溶剤を極力少なくする必要がある。しかしながら、液晶配向膜を形成する際に高温での加熱が必要になると、基板の材料が制約される等の不都合が生じ、例えば液晶素子の基板としてフィルム基材を適用することが制限されることがある。また、カラー液晶表示素子において、カラーフィルタ用の着色剤として用いられる染料は熱に比較的弱く、膜形成時の加熱を高温で行う必要がある場合には染料の使用が制限されることがある。
 こうした問題を解消するための方法として、液晶配向剤の調製に際し高沸点溶剤の使用量を減らしたり、高沸点溶剤の代わりに低沸点溶剤を使用したりすることが考えられる。しかしながら、液晶配向剤の重合体成分に対する溶解性が十分に高く、かつ沸点が十分に低い溶剤は限られており、選択の幅が狭いという実情がある。また、重合体成分が溶剤に均一に溶解されないと、基板上に形成した液晶配向膜に塗布ムラ(膜厚ムラ)やピンホールが生じたり、塗布領域の端部において直線性を確保できなかったり平坦面とならなかったりすることが懸念される。この場合、製品歩留まりが低下したり、液晶配向性や電気特性等の表示性能に影響が及んだりすることが懸念される。
 また、ポリアミック酸については、ポリイミドよりも溶解性の面では良好であるものの、ポリアミック酸をポリイミドへ環化して良好な電気特性を確保するようにするためには、素子製造時の加熱を比較的高温で行う必要がある。
 そこで、液晶配向剤の重合体成分としては、低沸点溶剤に対しても高溶解性を示すことにより、液晶配向剤とした場合に基板に対して良好な塗布性を示し、かつ液晶配向性及び電気特性に優れた新たな材料が求められている。特に近年では、大画面で高精細な液晶テレビが主体となり、またスマートフォンやタブレットPC等といった小型の表示端末の普及が進み、液晶パネルに対する高品質化の要求は更に高まりつつある。そのため、優れた表示品位を確保することが重要である。
 本開示は上記事情に鑑みてなされたものであり、その一つの目的は、基板に対する塗布性が良好であり、かつ液晶配向性及び電圧保持率に優れた液晶素子を得ることができる液晶配向剤を提供することにある。
 本開示によれば、以下の手段が提供される。
[1] 下記式(1)で表される構造からn個(nは1以上の整数)の水素原子を除いた部分構造を一分子内に2個以上有する複素環含有化合物と、ジアミン化合物との反応生成物であるポリアミド[P]を含有する、液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Xは、下記式(2-1)~式(2-5)のそれぞれで表される基のいずれかである。Aは2価の有機基であり、他の環構造に結合して当該他の環構造とともに縮合環を形成していてもよい。一分子内の複数のA及びXは、それぞれ独立して上記定義を有する。)
Figure JPOXMLDOC01-appb-C000014
(式(2-1)~式(2-5)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1以上の1価の有機基である。式(2-3)及び式(2-5)中の「*」は、式(1)中の酸素原子との結合手であることを示す。)
[2] 上記[1]の液晶配向剤を用いて形成された液晶配向膜。
[3] 上記[2]の液晶配向膜を具備する液晶素子。
[4] 上記[1]の液晶配向剤を用いて、導電膜を有する一対の基板のそれぞれの前記導電膜上に塗膜を形成する工程と、前記塗膜を形成した一対の基板を、液晶層を介して前記塗膜が相対するように対向配置して液晶セルを構築する工程と、前記一対の基板が有する前記導電膜間に電圧を印加した状態で前記液晶セルに光照射する工程と、を含む、液晶素子の製造方法。
 重合体成分としてポリアミド[P]を含有する液晶配向剤を用いることにより、液晶配向性及び電圧保持率に優れた液晶素子を得ることができる。また、当該液晶配向剤は、基板に対する塗布性に優れている。
 以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
 なお、本明細書において「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
≪液晶配向剤≫
 本開示の液晶配向剤は、重合体成分として、上記式(1)で表される構造からn個(nは整数)の水素原子を除いた部分構造を一分子内に2個以上有する複素環含有化合物(以下、「複素環含有化合物[A]」ともいう。)と、ジアミン化合物との反応生成物であるポリアミド[P]を含有する。ここで、ポリアミドは、モノマー同士の反応により生じたアミド結合(-NH-CO-)を重合体の主骨格中に有する重合体である。なお、液晶配向剤の重合体成分として広く使用されているポリアミック酸はポリイミドの前駆体であり、ポストベーク時の加熱により閉環してポリイミドとなるのに対し、ポリアミドはポストベーク時の加熱によってはポリイミドにならない点でポリアミック酸とは区別される。
(複素環含有化合物[A])
 複素環含有化合物[A]は、環内エノールエステル類、環外エノールエステル類、環内アシルアミドエステル類、環外アシルアミドエステル類又はオキシムエステル類である。具体的には、上記式(1)において、Aの2価の有機基としては、例えば炭素数2~20の炭化水素基、当該炭化水素基の炭素-炭素結合間に-O-を有する基等が挙げられる。Aは、好ましくは炭素数2~20の炭化水素基である。
 上記式(2-1)~式(2-5)におけるR~Rの1価の有機基としては、例えば炭素数1~10の1価の炭化水素基、当該炭化水素基の炭素-炭素結合間に-O-を有する基等が挙げられる。R~Rの1価の有機基は、好ましくは1価の炭化水素基である。
 複素環含有化合物[A]は、例えば、上記式(1)で表される構造から任意の水素原子をn個(nは、好ましくは1又は2である。)取り除いた部分構造が、直接又は連結基を介して複数個結合した化合物である。当該連結基は、例えば炭素数1~30の炭化水素基、当該炭化水素基の炭素-炭素結合間に-O-、-S-、-NH-、-CO-を有する基である。モノマー合成及び重合反応性の観点から、Xは上記式(2-3)~式(2-5)のそれぞれで表される基であることが好ましい。
 上記式(1)で表される部分構造の具体例としては、下記式(3-1)~式(3-9)のそれぞれで表される部分構造等が挙げられる。なお、下記式(3-1)及び式(3-2)が、上記式(1)中のXが上記式(2-1)である場合に対応し、下記式(3-3)が、上記式(1)中のXが上記式(2-2)である場合に対応し、下記式(3-4)、式(3-5)及び式(3-6)が、上記式(1)中のXが上記式(2-3)である場合に対応する。また、下記式(3-7)及び式(3-8)が、上記式(1)中のXが上記式(2-4)である場合に対応し、下記式(3-9)が、上記式(2-5)である場合に対応している。
Figure JPOXMLDOC01-appb-C000015
(式(3-1)~式(3-9)中、R51~R71は、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1~24の1価の有機基である。ただし、R51~R54のいずれか1個、R55~R57のいずれか1個、R60~R62のいずれか1個、R63及びR64のいずれか1個、R66~R68のいずれか1個、並びにR69及びR70のいずれか1個は結合手である。一分子内の複数のR51~R71は、それぞれ独立して上記定義を有する。「*」は結合手であることを示す。)
 上記式(3-1)~式(3-9)において、R51~R71の1価の有機基は、炭素数1~10の1価の炭化水素基であることが好ましく、炭素数1~10のアルキル基又はフェニル基であることがより好ましい。
 複素環含有化合物[A]の具体例としては、例えば下記式(b-1)~式(b-11)のそれぞれで表される化合物等が挙げられる。ポリアミド[P]の合成に際し、複素環含有化合物[A]は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000016
(式中、「Ph」はフェニル基である。)
(ジアミン化合物)
 ポリアミド[P]の合成に使用するジアミン化合物は特に限定されず、公知のジアミン化合物を使用することができる。ポリアミド[P]は、これらのうち、得られる液晶素子の液晶配向性を優れたものとすることができることから、下記式(d-1)~式(d-4)のそれぞれで表される化合物よりなる群から選ばれる少なくとも一種のジアミン化合物(以下、「特定ジアミン」ともいう。)に由来する部分構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000017
(式(d-1)中、X11及びX12は、それぞれ独立に、単結合、-O-、-S-、-OCO-又は-COO-であり、Y11は、酸素原子又は硫黄原子であり、R11及びR12は、それぞれ独立に、炭素数1~3のアルカンジイル基である。n1は0又は1であり、n2及びn3は、n1=0の場合、n2+n3=2を満たす整数であり、n1=1の場合、n2=n3=1である。式(d-2)中、X13は、単結合、-O-又は-S-であり、m1は0~3の整数である。m2は、m1=0の場合に1~12の整数であり、m1が1~3の整数の場合にm2=2である。式(d-3)中、X14及びX15は、それぞれ独立に、単結合、-O-、-COO-又は-OCO-であり、R17は、炭素数1~3のアルカンジイル基であり、A11は、単結合又は炭素数1~3のアルカンジイル基である。aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、kは0又は1である。但し、a及びbが同時に0になることはない。式(d-4)中、A12は単結合、炭素数1~12のアルカンジイル基又は炭素数1~6のフルオロアルカンジイル基を示し、A13は、-O-、-COO-、-OCO-、-NHCO-、-CONH-又は-CO-を示し、A14は、ステロイド骨格を有する1価の有機基を示す。)
(式(d-1)で表される化合物)
 上記式(d-1)において、R11及びR12の炭素数1~3のアルカンジイル基としては、例えばメチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,3-ジイル基等が挙げられる。これらのうち、好ましくは、メチレン基、エチレン基又はプロパン-1,3-ジイル基である。
 X11及びX12は、単結合、-O-又は-S-であることが好ましい。
 Y11は、酸素原子又は硫黄原子であり、好ましくは酸素原子である。
 式(d-1)で表される化合物が有する2つの一級アミノ基は、n1=0の場合、同一のベンゼン環に結合されていてもよいし、2つの異なるベンゼン環に1つずつ結合されていてもよい。n1=1の場合には、2つの一級アミノ基は異なるベンゼン環にそれぞれ1つずつ結合されている。
 ベンゼン環上の1級アミノ基の結合位置は特に限定しない。例えば、ベンゼン環上の一級アミノ基が1つの場合、その結合位置は、他の基に対して、2-位、3-位、4-位のいずれでもよく、3-位又は4-位であることが好ましく、4-位であることがより好ましい。また、ベンゼン環上の1級アミノ基が2つの場合、その結合位置は、他の基に対して、例えば2,4-位、2,5-位等が挙げられ、中でも2,4-位が好ましい。
 1級アミノ基が結合するベンゼン環上の水素原子は、炭素数1~10の1価の炭化水素基、若しくは該炭化水素基上の少なくとも1つの水素原子がフッ素原子で置換された1価の基、又はフッ素原子で置換されていてもよい。この場合の1価の炭化水素基としては、例えば炭素数1~10のアルキル基、炭素数1~10のアルケニル基、炭素数3~10のシクロアルキル基、炭素数5~10のアリール基(フェニル基、トリル基など)、炭素数5~10のアラルキル基(ベンジル基など)等が挙げられる。
 上記式(d-1)で表される化合物の好ましい具体例としては、n1=0である化合物として、例えば4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン等を;n1=1である化合物として、例えば1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレア、1,3-ビス(3-アミノベンジル)ウレア、1-(4-アミノベンジル)-3-(4-アミノフェネチル)ウレア、1,3-ビス(2-(4-アミノフェノキシ)エチル)ウレア、1,3-ビス(3-(4-アミノフェノキシ)プロピル)ウレア、1,3-ビス(4-アミノベンジル)チオウレア、1,3-ビス(2-アミノベンジル)ウレア、1,3-ビス(2-アミノフェネチル)ウレア、1,3-ビス(2-(2-アミノベンゾイルオキシ)エチル)ウレア、1,3-ビス(3-(2-アミノベンゾイルオキシ)プロピル)ウレア等を;それぞれ挙げることができる。なお、上記式(d-1)で表される化合物としては、これらの化合物を1種単独で又は2種以上を組み合わせて使用することができる。
(式(d-2)で表される化合物)
 上記式(d-2)において、X13は、単結合、-O-又は-S-であり、好ましくは単結合又は-O-である。
 m1=0の場合、m2は1~12の整数である。この場合、得られる重合体の耐熱性を良好にする観点からすると、好ましくはm2が1~10であり、より好ましくは1~8である。また、液晶配向膜の用途において、良好な液晶配向性を保持しつつラビング耐性を良好にする観点では、m1=0であることが好ましく、液晶分子のプレチルト角を小さくする観点では、m1は1~3の整数であることが好ましい。
 ベンゼン環上の1級アミノ基の結合位置は特に限定しないが、各々の1級アミノ基が、他の基に対して3-位又は4-位であることが好ましく、4-位がより好ましい。なお、1級アミノ基が結合するベンゼン環上の水素原子は、炭素数1~10の1価の炭化水素基、若しくは該炭化水素基上の少なくとも1つの水素原子がフッ素原子で置換された1価の基、又はフッ素原子で置換されていてもよい。
 上記式(d-2)で表される化合物の好ましい具体例としては、例えばビス(4-アミノフェノキシ)メタン、ビス(4-アミノフェノキシ)エタン、ビス(4-アミノフェノキシ)プロパン、ビス(4-アミノフェノキシ)ブタン、ビス(4-アミノフェノキシ)ペンタン、ビス(4-アミノフェノキシ)ヘキサン、ビス(4-アミノフェノキシ)ヘプタン、ビス(4-アミノフェノキシ)オクタン、ビス(4-アミノフェノキシ)ノナン、ビス(4-アミノフェノキシ)デカン、ビス(4-アミノフェニル)メタン、ビス(4-アミノフェニル)エタン、ビス(4-アミノフェニル)プロパン、ビス(4-アミノフェニル)ブタン、ビス(4-アミノフェニル)ペンタン、ビス(4-アミノフェニル)ヘキサン、ビス(4-アミノフェニル)ヘプタン、ビス(4-アミノフェニル)オクタン、ビス(4-アミノフェニル)ノナン、ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェニルスルファニル)プロパン、1,4-ビス(4-アミノフェニルスルファニル)ブタン等を挙げることができる。なお、上記式(d-2)で表される化合物としては、これら例示の化合物を1種単独で又は2種以上を混合して使用することができる。
(式(d-3)で表される化合物)
 式(d-3)において、「-X14-(R17-X15-」で表される二価の基としては、炭素数1~3のアルカンジイル基、*-O-、*-COO-又は*-O-C-O-(但し、「*」を付した結合手がジアミノフェニル基と結合する。)であることが好ましい。
 基「-C2c+1」は、直鎖状であることが好ましく、その具体例としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基等が挙げられる。
 ジアミノフェニル基における2つの一級アミノ基は、基「X」に対して2,4-位又は3,5-位であることが好ましく、2,4-位であることがより好ましい。なお、一級アミノ基が結合するベンゼン環上の水素原子は、炭素数1~10の1価の炭化水素基、若しくは該炭化水素基上の少なくとも1つの水素原子がフッ素原子で置換された1価の基、又はフッ素原子で置換されていてもよい。
 上記式(d-3)で表される化合物の好ましい具体例としては、例えば下記式(d-3-1)~式(d-3-12)のそれぞれで表される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式(d-4)で表される化合物)
 上記式(d-4)のA12における炭素数1~12のアルカンジイル基としては、炭素数1~4のアルカンジイル基が好ましく、メチレン基、エチレン基、1,3-プロパンジイル基、1,4-ブタンジイル基がより好ましい。炭素数1~6のフルオロアルカンジイル基としては、炭素数1~4のパーフルオロアルカンジイル基が好ましく、-CF-、パーフルオロエチレン基、1,3-パーフルオロプロパンジイル基、1,4-パーフルオロブタンジイル基がより好ましい。
 A13は-O-が好ましい。
 A14におけるステロイド骨格とは、シクロペンタノ-ペルヒドロフェナントレン核からなる構造又はその炭素-炭素結合の一つもしくは二つ以上が二重結合となった構造をいう。かかるステロイド骨格を有する1価の有機基としては、炭素数17~40のものが好ましい。
 上記式(d-4)で表される化合物の好ましい具体例としては、液晶配向膜の用途において塗膜に高いプレチルト角を与える点から、1-コレステリルオキシメチル-2,4-ジアミノベンゼン、1-(1-コレステリルオキシ-1,1-ジフルオロメチル)-2,4-ジアミノベンゼン、1-(1-コレスタニルオキシ-1,1-ジフルオロメチル)-3,5-ジアミノベンゼン、3-(2,4-ジアミノフェニルメトキシ)-4,4-ジメチルコレスタン、3-(3,5-ジアミノフェニルメトキシ)-4,4-ジメチルコレスタン、3-(1-(3,5-ジアミノフェニル)-1,1-ジフルオロメトキシ)-4,4-ジメチルコレスタン、3-((2,4-ジアミノフェニル)メトキシ)コラン-24-酸 ヘキサデシル、3-(2,4-ジアミノフェニルメトキシ)コラン-24-酸 ステアリル、3-(1-(2,4-ジアミノフェニル)-1,1-ジフルオロメトキシ)コラン-24-酸 ステアリル、3-(3,5-ジアミノフェニルメトキシ)コラン-24-酸 ステアリル、1-コレステリルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレステリル、1-コレスタニルオキシ-2,4-ジアミノベンゼン及び3,5-ジアミノ安息香酸コレスタニルよりなる群から選択される1種以上を使用することが好ましく、さらにこれらのうち、少ない使用割合で高いプレチルト角を与える点から、1-コレステリルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレステリル、1-コレスタニルオキシ-2,4-ジアミノベンゼン及び3,5-ジアミノ安息香酸コレスタニルよりなる群から選択される1種以上を使用することが特に好ましい。
 ポリアミド[P]の合成に際し、特定ジアミンの使用割合は、使用するジアミン化合物に応じて任意に設定することができる。上記式(d-1)で表される化合物を使用する場合、その使用量は、全ジアミンに対して、1モル%以上とすることが好ましく、3モル%以上とすることがより好ましい。また、上記式(d-2)で表される化合物を使用する場合、液晶分子に対して低い傾斜配向角を付与する観点から、その使用量は、全ジアミンに対して、10モル%以上とすることが好ましく、30モル%以上とすることがより好ましく、50モル%以上とすることが更に好ましい。
 上記式(d-3)で表される化合物及び上記式(d-4)で表される化合物よりなる群から選ばれる少なくとも一種を使用する場合、良好な配向性を付与する観点から、その使用割合(2種以上の化合物を使用する場合にはその合計量)は、全ジアミンに対して、5モル%以上とすることが好ましく、10モル%以上とすることがより好ましい。なお、特定ジアミンとしては、上記で例示した化合物のうちの1種を単独で又は2種以上を組み合わせて使用することができる。
 ポリアミド[P]の合成に使用するジアミン化合物として、上記の特定ジアミン以外のジアミン化合物(以下、「他のジアミン」ともいう。)を用いることもできる。他のジアミンとして具体的には、例えば以下に示す化合物等が挙げられる。なお、ポリアミド[P]の合成に際して、以下に示す各ジアミン化合物を用いることにより、当該ジアミン化合物に由来する構造単位を有するポリアミド[P]を得ることができる。
(カルボキシル基を有するジアミン化合物)
 カルボキシル基を有するジアミン化合物(以下、「カルボキシル基含有ジアミン」ともいう。)は、得られる液晶素子の電気特性(特に蓄積電荷の緩和効果)を改善することを目的として使用することができる。カルボキシル基含有ジアミンは、得られる液晶素子の電気特性を改善する効果がさらに高くなる点で、後述する窒素含有芳香族複素環を有するジアミン化合物と併用することが好ましい。使用するカルボキシル基含有ジアミンは芳香族ジアミンであることが好ましく、具体的には、例えば下記式(d-5-1)及び式(d-5-2)のそれぞれで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
(式(d-5-1)及び式(d-5-2)中、R20は、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基であり、Zは、単結合、酸素原子又は炭素数1~3のアルカンジイル基である。r2、r5及びr6は、それぞれ独立に1又は2の整数であり、r1、r3及びr4は、それぞれ独立に0~2の整数であり、r7及びr8は、それぞれ独立に、r7+r8=2を満たす0~2の整数である。但し、r3+r5+r7≦5であり、r4+r6+r8≦5である。式中、複数のR20が存在する場合、それらR20は独立して上記定義を有する。)
 式(d-5-1)及び式(d-5-2)について、R20における炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられ、これらは直鎖状であっても分岐状であってもよい。炭素数1~10のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基などが挙げられる。
 Zにおける炭素数1~3のアルカンジイル基としては、例えばメチレン基、エチレン基、トリメチレン基などを挙げることができる。
 r1、r3及びr4は、好ましくは0又は1であり、より好ましくは0である。
 カルボキシル基含有ジアミンの具体例としては、上記式(d-5-1)で表される化合物として、例えば3,5-ジアミノ安息香酸、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸などを;上記式(d-5-2)で表される化合物として、例えば4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3-カルボン酸などを;挙げることができる。なお、カルボキシル基含有ジアミンとしては、これらのうちの1種を単独で又は2種以上を使用することができる。
 カルボキシル基含有ジアミンを使用する場合、その使用割合は、全ジアミンに対して、2モル%以上とすることが好ましく、3~90モル%がより好ましく、5~70モル%が更に好ましい。
(窒素含有芳香族複素環を有するジアミン化合物)
 窒素含有芳香族複素環を有するジアミン化合物は、得られる液晶素子の電気特性(特に、直流電圧による焼き付き低減の効果)を改善することを目的として使用することができる。当該ジアミン化合物が有する窒素含有芳香族複素環としては、例えばピロール、イミダゾール、ピラゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン、ベンゾイミダゾール、プリン、キノリン、ナフチリジン、カルバゾール、アクリジン等が挙げられる。中でも、ピロール、ピリジン、ピリミジン、ピラジン及びイミダゾールよりなる群から選ばれる少なくとも一種を有することが好ましい。
 窒素含有芳香族複素環を有するジアミン化合物の具体例としては、例えば2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、3,6-ジアミノアクリジン、下記式(d-6-1)~式(d-6-8)のそれぞれで表される化合物等が挙げられる。なお、窒素含有芳香族複素環を有するジアミン化合物としては、これらの1種を単独で又は2種以上を組み合わせて使用することができる。
Figure JPOXMLDOC01-appb-C000021
 窒素含有芳香族複素環を有するジアミン化合物の使用割合は、全ジアミンに対して、2モル%以上とすることが好ましく、3~50モル%とすることがより好ましく、5~40モル%とすることが更に好ましい。
(保護基を有するジアミン化合物)
 保護基を有するジアミン化合物(以下、「保護基含有ジアミン」ともいう。)は、ポリアミド[P]の溶剤に対する溶解性を改善すること、及びポリアミド[P]と他の重合体とを併用する場合に他の重合体との親和性を改善することを目的として使用することができる。保護基含有ジアミンは、窒素原子に保護基が結合された部分構造を有することが好ましく、具体的には、下記式(7-1)又は式(7-2)で表される基を有するジアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
(式(7-1)及び式(7-2)中、A21は、単結合又は炭素数1以上の2価の有機基であり、Yは保護基であり、R21~R23は、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。mは0~6の整数である。「*」は結合手であることを示す。)
 上記式(7-1)及び式(7-2)において、Yの保護基は、熱により脱離する基であることが好ましく、例えばカルバメート系保護基、アミド系保護基、イミド系保護基、スルホンアミド系保護基等が挙げられる。保護基としては、中でもカルバメート系保護基が好ましく、その具体例としては、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、1,1-ジメチル-2-ハロエチルオキシカルボニル基、1,1-ジメチル-2-シアノエチルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2-(トリメチルシリル)エトキシカルボニル基等が挙げられる。これらのうち、熱による脱離性が高い点、及び脱保護された部分の膜中での残存量をより少なくできる点で、tert-ブトキシカルボニル基が特に好ましい。
 R21及びR22の1価の有機基は、炭素数1~10の1価の炭化水素基であることが好ましく、炭素数1~10のアルキル基又はシクロアルキル基であることがより好ましい。
 R23の1価の有機基は、炭素数1~10の1価のアルキル基又は保護基であることが好ましい。
 A21の2価の有機基としては、例えば2価の炭化水素基、当該炭化水素基の炭素-炭素結合間に-O-、-CO-、-COO-、-NH-を有する基等が挙げられる。A21は、芳香環に結合していることが好ましく、ベンゼン環に結合していることが特に好ましい。
 保護基含有ジアミンとしては、例えば下記式(d-7-1)~式(d-7-12)のそれぞれで表される化合物等が挙げられる。なお、保護基含有ジアミンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式中、TMSはトリメチルシリル基を示す。)
 保護基含有ジアミンを使用する場合、その使用割合は、全ジアミンに対して、2モル%以上とすることが好ましく、3~80モル%とすることがより好ましく、5~70モル%とすることが更に好ましい。
(2級又は3級アミン構造/窒素含有複素環構造含有ジアミン)
 ポリアミド[P]の合成に際しては、下記式(9)で表される2級又は3級アミン構造、及び窒素含有複素環構造よりなる群から選ばれる少なくとも一種を有するジアミン化合物(以下、「2級又は3級アミン構造/窒素含有複素環構造含有ジアミン」ともいう。)を用いてもよい。2級又は3級アミン構造/窒素含有複素環構造含有ジアミンを用いることにより、直流電圧による焼き付き低減の改善効果を高めることができる点で好ましい。
Figure JPOXMLDOC01-appb-C000025
(式(9)中、R51及びR52は、それぞれ独立に2価の芳香環基であり、R53は、水素原子又は炭素数1以上の1価の有機基である。「*」は結合手であることを示す。)
 上記式(9)において、R51及びR52の2価の芳香環基としては、芳香族炭化水素基、窒素含有芳香族複素環基等が挙げられる。好ましくは芳香族炭化水素基であり、例えば、フェニレン基、ナフチレン基等が挙げられる。R51及びR52は、フェニレン基であることが特に好ましい。
 R53の1価の有機基としては、例えばメチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル基等のアリール基、tert-ブトキシカルボニル基等の保護基、等が挙げられる。R53は、好ましくは水素原子又はメチル基である。
 窒素含有複素環としては、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン等の窒素含有複素脂環式構造、上記で例示した窒素含有芳香族複素環等が挙げられる。これらのうち、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン及びカルバゾールよりなる群から選ばれる少なくとも一種を有することが好ましい。
 2級又は3級アミン構造/窒素含有複素環構造含有ジアミンの具体例としては、例えばビス(4-アミノフェニル)アミン、2,4-ジアミノピリミジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、窒素含有芳香族複素環を有するジアミン化合物の説明で例示した化合物、下記式(d-9-1)~式(d-9-8)のそれぞれで表される化合物等が挙げられる。なお、2級又は3級アミン構造/窒素含有複素環構造含有ジアミンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000026
 2級又は3級アミン構造/窒素含有複素環構造含有ジアミンを使用する場合、その使用割合は、全ジアミンに対して、2モル%以上とすることが好ましく、3~60モル%とすることがより好ましく、5~50モル%とすることが更に好ましい。
(2級アミノ基含有ジアミン化合物)
 ポリアミド[P]の合成に際し、他のジアミンとして、下記式(8)で表されるジアミン化合物(以下、「2級アミノ基含有ジアミン化合物」ともいう。)を用いてもよい。2級アミノ基含有ジアミン化合物を用いることにより、液晶配向剤の重合体成分としてポリアミド[P]と他の重合体とを併用する場合に、他の重合体との相分離性を制御することができる点で好ましい。
Figure JPOXMLDOC01-appb-C000027
(式(8)中、A31は2価の芳香環基であり、R31は炭素数1~5のアルカンジイル基であり、R32は炭素数1~4の1価の炭化水素基である。)
 上記式(8)において、A31の2価の芳香環基としては、例えばベンゼン環、ナフタレン環、アントラセン環等の芳香環の環部分から2個の水素原子を取り除いた基が挙げられる。A31は、好ましくはフェニレン基である。
 R31のアルカンジイル基は、直鎖状でも分岐状でもよく、例えばメチレン基、エチレン基、プロパンジイル基、ブタンジイル基、ペンタンジイル基が挙げられる。
 R32の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等のアルキル基;ビニル基、プロペニル基等のアルキレン基、等が挙げられる。R32は、好ましくはメチル基又はエチル基である。
 2級アミノ基含有ジアミン化合物の具体例としては、例えば下記式(d-8-1)~式(d-8-4)のそれぞれで表される化合物等が挙げられる。なお、2級アミノ基含有ジアミン化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000028
 2級アミノ基含有ジアミン化合物を使用する場合、その使用割合は、全ジアミンに対して、2モル%以上とすることが好ましく、3~90モル%とすることがより好ましく、5~70モル%とすることが更に好ましい。
 他のジアミンとしては、上記のほか、例えば、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン;
1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、下記式(d-11-1)~式(d-11-6)
Figure JPOXMLDOC01-appb-C000029
のそれぞれで表される化合物等の脂環式ジアミン;
p-フェニレンジアミン、4,4’-ジアミノジフェニルスルフィド、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-(p-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,4-ジアミノ-N,N-ジアリルアニリン、2,5-ジアミノ-N,N-ジアリルアニリン、下記式(d-10-1)~式(d-10-5)
Figure JPOXMLDOC01-appb-C000030
のそれぞれで表される化合物等の芳香族ジアミン;
 1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、などをそれぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。なお、他のジアミンは、1種を単独で又は2種以上組み合わせて使用することができる。
(その他の単量体)
 ポリアミド[P]の合成に際しては、複素環含有化合物[A]及びジアミン化合物以外のその他の単量体を用いてもよい。その他の単量体としては、テトラカルボン酸二無水物、テトラカルボン酸ジエステル、テトラカルボン酸ジエステルジハロゲン化物等が挙げられる。これらのうち、テトラカルボン酸二無水物を好ましく使用することができる。
 テトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、エチレンジアミン四酢酸二無水物等の脂肪族テトラカルボン酸二無水物;
1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;
ピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)等の芳香族テトラカルボン酸二無水物、等を挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、テトラカルボン酸二無水物は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 テトラカルボン酸ジエステルとしては、上記のテトラカルボン酸二無水物を、メタノール、エタノール、プロパノール等のアルコール類を用いて開環することにより得ることができる。テトラカルボン酸ジエステルジハロゲン化物は、例えば上記で得たテトラカルボン酸ジエステルを、塩化チオニル等の適当な塩素化剤と反応させることにより得ることができる。
 なお、本明細書において「複素環含有化合物[A]とジアミン化合物との反応生成物」とは、本開示の効果を損なわない限り、合成に使用するモノマーとして複素環含有化合物[A]及びジアミン化合物と共に、複素環含有化合物[A]及びジアミン化合物以外の他のモノマーを併用することを許容するものである。他のモノマー(好ましくはテトラカルボン酸二無水物)の使用割合は、ポリアミド[P]の合成に使用するモノマーの合計量に対して、40モル%以下とすることが好ましく、30モル%以下とすることがより好ましい。
(ポリアミド[P]の合成反応)
 ポリアミド[P]は、複素環含有化合物[A]とジアミン化合物との開環重付加反応により合成することができる。この合成反応は、好ましくは有機溶媒中において行われる。反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒(N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、フェノール系溶媒(フェノール、クレゾール等)、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素等が挙げられる。有機溶媒の使用割合は、複素環含有化合物[A]及びジアミン化合物の合計量が、反応溶液の全量に対して、0.1~50質量%になる量とすることが好ましい。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。
 上記反応によりポリアミド[P]を溶解してなる反応溶液を得た場合、その反応溶液は、そのまま液晶配向剤の調製に用いてもよく、あるいは、反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて、反応溶液中に含まれるポリアミド[P]を単離したうえで液晶配向剤の調製に供してもよい。
 得られるポリアミド[P]のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~300,000であり、より好ましくは2,000~100,000である。Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは5以下であり、より好ましくは3以下である。なお、液晶配向剤の調製に使用するポリアミド[P]は、1種のみでもよく、2種以上を組み合わせてもよい。
 液晶配向剤中におけるポリアミド[P]の含有割合は、基板に対する塗布性を十分に高くし、かつ液晶素子の液晶配向性及び電圧保持率を良好にする観点から、液晶配向剤に含まれる重合体成分の全量に対して、20質量%以上とすることが好ましく、30質量%以上とすることがより好ましく、40質量%以上とすることがさらに好ましい。また、ポリアミド[P]の含有割合は、液晶配向剤に含まれる全重合体に対して、90質量%以下とすることが好ましく、80質量%以下とすることがより好ましく、70質量%以下とすることがさらに好ましい。
 複素環含有化合物[A]とジアミン化合物との反応によれば、上記式(1)中のXが上記式(2-1)~式(2-5)のいずれの場合にも複素環含有化合物[A]がカルボニル基と酸素原子との結合部分で開環してポリアミド[P]が生成される。複素環含有化合物[A](環内エノールエステル類、環外エノールエステル類、環内アシルアミドエステル類、環外アシルアミドエステル類又はオキシムエステル類)とジアミン化合物との反応によりポリアミド[P]を得るための反応スキームの一例を以下に示す。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(上記スキーム中、Z~Zは、それぞれ独立に2価の有機基であり、Yは、ジアミン化合物から2個の1級アミノ基を取り除いた2価の有機基である。A、R~R及びRは、それぞれ上記式(1)と同義である。)
<その他の成分>
 本開示の液晶配向剤は、必要に応じてポリアミド[P]以外のその他の成分を含有していてもよい。その他の成分は、本開示の効果を損なわない限り特に限定されない。その他の成分の具体例としては、ポリアミド[P]とは異なる重合体(以下、「その他の重合体」ともいう。)、架橋性基を有する化合物(以下、「架橋性基含有化合物」ともいう。)、官能性シラン化合物、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤、溶剤等が挙げられる。その他の成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
(その他の重合体)
 その他の重合体は、溶剤に対する溶解性や電気特性を改善すること等を目的として使用することができる。その他の重合体としては、例えば、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、複素環含有化合物[A]に由来する部分構造を有さないポリアミド、ポリエナミン、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、(スチレン-マレイミド)系重合体、ポリ(メタ)アクリレート等を主骨格とする重合体が挙げられる。なお、(メタ)アクリレートは、アクリレート及びメタクリレートを含むことを意味する。液晶配向剤の調製に際し、その他の重合体は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 その他の重合体は、ポリアミド[P]との親和性が良好であり、かつ得られる液晶素子の液晶配向性及び電気特性を高くできる点で、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン及び(スチレン-マレイミド)系重合体よりなる群から選ばれる少なくとも一種であることがより好ましい。これらのうち、液晶配向剤を用いて形成された有機膜に対しラビング処理により液晶配向能を付与する場合、本開示の液晶配向剤は、その他の重合体として、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種を含有することがより好ましい。当該有機膜に対し光配向処理により液晶配向能を付与する場合又はPSA処理により液晶素子を得る場合、本開示の液晶配向剤は、その他の重合体として、ポリオルガノシロキサン及び(スチレン-マレイミド)系重合体よりなる群から選ばれる少なくとも一種を含有することがより好ましい。(スチレン-マレイミド)系重合体は、好ましくは(スチレン-フェニルマレイミド)系重合体である。
 液晶配向剤中にその他の重合体を含有させる場合、その他の重合体の配合割合は、液晶配向剤中に含有されるポリアミド[P]の合計量100質量部に対して、10~1000質量部とすることが好ましく、30~500質量部とすることがより好ましい。
 液晶配向剤の重合体成分の好ましい態様としては、以下の(I)~(IV)が挙げられる。
(I)重合体成分が、ポリアミド[P]と、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種とからなる態様。
(II)重合体成分が、ポリアミド[P]と、ポリオルガノシロキサンとからなる態様。
(III)重合体成分が、ポリアミド[P]と、ポリ(スチレン-フェニルマレイミド)誘導体とからなる態様。
(IV)重合体成分がポリアミド[P]からなる態様。
 これらのうち、塗布性、液晶配向性及び電気特性のバランスがより優れた液晶素子を得ることができる点で(I)が特に好ましい。
(架橋性基含有化合物)
 本開示の液晶配向剤は、シクロカーボネート基、エポキシ基、イソシアネート基、ブロックイソシアネート基、オキセタニル基、トリアルコキシシリル基、及び重合性不飽和結合基よりなる群から選ばれる少なくとも一種の架橋性基を有する化合物(以下、「架橋性基含有化合物」ともいう。)を含有していてもよい。架橋性基含有化合物を含むことにより、液晶配向膜の基板との接着性、液晶素子の電気特性及び信頼性を向上させることができる点で好ましい。
 架橋性基含有化合物が重合性不飽和結合基を有する場合において、当該重合性不飽和結合基としては、(メタ)アクリロイル基、エチレン性炭素-炭素二重結合、ビニルフェニル基、ビニルオキシ基(CH=CH-O-)、ビニリデン基、マレイミド基等が挙げられ、光又は熱による反応性が高い点で、シクロカーボネート基、エポキシ基又は(メタ)アクリロイル基が好ましい。架橋性基含有化合物の分子量は、保存安定性の点で、好ましくは3,000以下、より好ましくは2,000以下である。
 架橋性基含有化合物の具体例としては、シクロカーボネート基含有化合物として、例えば下記式(11-1)で表される化合物、下記式(11-2)で表される化合物等を;
エポキシ基を有する化合物として、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、トリグリシジルイソシアヌレート、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン、N,N-ジグリシジル-シクロヘキシルアミン等を;
トリアルコキシシリル基を有する化合物として、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、下記式(11-3)で表される化合物、下記式(11-4)で表される化合物等を;
ブロックイソシアネート基を有する化合物として、例えば下記式(11-5)で表される化合物、下記式(11-6)で表される化合物等を;
(メタ)アクリロイル基を有する化合物として、例えばエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、下記式(11-7)で表される化合物、下記式(11-8)で表される化合物等を;
 オキセタニル基を有する化合物として、例えば下記式(11-9)で表される化合物、下記式(11-10)で表される化合物等を、それぞれ挙げることができる。その他、エポキシ基含有化合物の例としては、国際公開第2009/096598号記載のエポキシ基含有ポリオルガノシロキサンを用いることができる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 架橋性基含有化合物を液晶配向剤に配合する場合、その配合割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、40質量部以下とすることが好ましく、0.1~30質量部とすることがより好ましい。なお、架橋性基含有化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
(溶剤)
 本開示の液晶配向剤は、重合体成分、及び必要に応じて任意に配合される成分が、好ましくは有機溶媒に溶解された溶液状の組成物として調製される。当該有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素等が挙げられる。溶剤成分は、これらの1種でもよく、2種以上の混合溶媒であってもよい。
 本開示の液晶配向剤の溶剤成分としては、下記式(E-1)~式(E-5)のそれぞれで表される化合物よりなる群から選ばれる少なくとも一種であって、かつ1気圧での沸点が180℃以下である溶剤(以下、「特定溶剤」ともいう。)を使用してもよい。溶剤成分の少なくとも一部として特定溶剤を用いることにより、膜形成時の加熱を低温(例えば200℃以下)で行った場合にも液晶配向性及び電気特性に優れた液晶素子を得ることができる点で好ましい。また、ポリアミド[P]は、溶剤に対する溶解性に優れており、よって溶剤成分として特定溶剤のような低沸点溶剤を用いた場合にも、基板に対する塗布性(膜厚ムラやピンホールの抑制、塗布領域の端部の直線性や平坦性の確保)に優れ、かつ液晶配向性及び電気特性のいずれも良好な液晶素子を得ることができる点で好適である。
Figure JPOXMLDOC01-appb-C000039
(式(E-1)中、R41は、炭素数1~4のアルキル基又はR40-CO-(ただし、R40は炭素数1~3のアルキル基)であり、R42は、炭素数1~4のアルカンジイル基又は-(R47-O)r-R48-(ただし、R47及びR48は、それぞれ独立に炭素数2又は3のアルカンジイル基であり、rは1~4の整数である。)であり、R43は、水素原子又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000040
(式(E-2)中、R44は、炭素数1~4のアルカンジイル基である。)
Figure JPOXMLDOC01-appb-C000041
(式(E-3)中、R45及びR46は、それぞれ独立に炭素数1~8のアルキル基である。)
Figure JPOXMLDOC01-appb-C000042
(式(E-4)中、R49は、水素原子又は水酸基であり、R50は、R49が水素原子の場合、炭素数1~9の2価の炭化水素基、又は炭素数3~9の鎖状炭化水素基の炭素-炭素結合間に-CO-を有する2価の基であり、R49が水酸基の場合、炭素数1~9の2価の炭化水素基、又は炭素数2~9の炭化水素基の炭素-炭素結合間に酸素原子を有する2価の基である。)
Figure JPOXMLDOC01-appb-C000043
(式(E-5)中、R51は、炭素数1~6の1価の炭化水素基、炭素数1~6の炭化水素基が有する水素原子が水酸基で置換された1価の基、又は炭素数2~6の炭化水素基の炭素-炭素結合間に-CO-を有する1価の基であり、R52は、炭素数1~6の1価の炭化水素基である。)
 特定溶剤の具体例としては、上記式(E-1)で表される化合物として、プロピレングリコールモノメチルエーテル、ジエチレングリコールメチルエチルエーテル、3-メトキシ-1-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等の多価アルコールの部分エーテル:エチレングリコールエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の多価アルコールの部分エステルなどを;
上記式(E-2)で表される化合物として、シクロブタノン、シクロペンタノン、シクロヘキサノンを;
上記式(E-3)で表される化合物として、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン等を;
上記式(E-4)で表される化合物として、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、シクロヘキサノール、メチルシクロヘキサノール、ジアセトンアルコール等を;
上記式(E-5)で表される化合物として、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸t-ブチル、酢酸3-メトキシブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、乳酸メチル、乳酸エチル等を、それぞれ挙げることができる。なお、特定溶剤としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 液晶配向剤の溶剤成分は、特定溶剤のみからなるものであってもよいが、特定溶剤以外のその他の溶剤と特定溶剤との混合溶媒であってもよい。その他の溶剤としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の高極性溶剤;のほか、
4-ヒドロキシ-4-メチル-2-ペンタノン、乳酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート、シクロヘキサン、オクタノール、テトラヒドロフラン等が挙げられる。これらは、1種を単独で又は2種以上を混合して使用することができる。なお、上記その他の溶剤のうち、高極性溶剤は、溶解性及びレベリング性の更なる向上を目的として使用することができる。また、アミド構造を含まない炭化水素系の溶剤は、プラスチック基材への適用や低温焼成を可能にする目的で使用することができる。
 液晶配向剤中に含まれる溶剤成分につき、特定溶剤の含有割合は、液晶配向剤中に含まれる溶剤の全体量に対して、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。本開示の液晶配向剤は、液晶配向剤中の溶剤成分を特定溶剤のみとした場合にも、液晶配向性及び電気特性に優れた液晶素子が得られる点で好適である。
 本開示の液晶配向剤は、N-メチル-2-ピロリドン(NMP)を実質的に含んでいない場合にも、液晶配向性及び電気特性に優れた液晶素子が得られる点で好適である。なお、本明細書において「NMPを実質的に含んでいない」とは、NMPの含有割合が、液晶配向剤に含まれる溶剤の全体量に対して、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは0.5質量%以下である。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
≪液晶配向膜及び液晶素子≫
 本開示の液晶配向膜は、上記のように調製された液晶配向剤により形成される。また、本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子における液晶の動作モードは特に限定されず、例えばTN型、STN型、VA型(VA-MVA型、VA-PVA型などを含む。)、IPS(In-Plane Switching)型、FFS(Fringe Field Switching)型、OCB(Optically Compensated Bend)型、PSA型(Polymer Sustained Alignment)など種々のモードに適用することができる。液晶素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
<工程1:塗膜の形成>
 先ず基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた電極が設けられている基板と、電極が設けられていない対向基板とを用いる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、フレキソ印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法により行う。
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体成分中のアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~250℃であり、より好ましくは80~200℃である。ポストベーク時間は、好ましくは5~200分である。特に、ポリアミド[P]は特定溶剤に対する溶解性が良好であり、ポストベーク温度を例えば200℃以下、好ましくは180℃以下、より好ましくは160℃以下にした場合にも、液晶配向性及び電気特性に優れた液晶素子を得ることができる。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。
<工程2:配向処理>
 TN型、STN型、IPS型又はFFS型の液晶素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、基板上に形成した塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理や、基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等を用いることができる。一方、垂直配向(VA)型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、液晶配向能を更に高めるために、該塗膜に対し配向処理を施してもよい。垂直配向型の液晶素子に好適な液晶配向膜は、PSA型の液晶素子にも好適に用いることができる。
 光配向のための光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて塗膜の加熱中に塗膜に対して照射する方法、等により行うことができる。塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200~400nmの波長の光を含む紫外線である。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線の場合の照射方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザー等が挙げられる。放射線の照射量は、好ましくは400~50,000J/mであり、より好ましくは1,000~20,000J/mである。配向能付与のための光照射後において、基板表面を例えば水、有機溶媒(例えば、メタノール、イソプロピルアルコール、1-メトキシ-2-プロパノールアセテート等)又はこれらの混合物を用いて洗浄する処理や、基板を加熱する処理を行ってもよい。
<工程3:液晶セルの構築>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、液晶配向膜が対向するように間隙を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面とシール剤で囲まれたセルギャップ内に液晶を注入充填し注入孔を封止する方法、ODF方式による方法等が挙げられる。シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。PSAモードでは、液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行う。
 PSA型の液晶素子を製造する場合には、液晶と共に光重合性化合物を注入又は滴下する点以外は上記と同様にして液晶セルを構築する。その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせ、液晶素子とする。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。
 液晶素子の製造プロセスでは、機械トラブルやタクト調整等により、基板上に液晶配向膜を形成した後に基板がそのまま放置される(引き置きされる)ことがある。その際、空気中の水分が液晶配向膜に吸着又は吸収されることがあり、構築された液晶素子において電気特性が低下し、表示ムラ等を招くことがある。この点、上記液晶配向剤を用いて得られる液晶配向膜は、液晶配向膜が形成された状態のまま基板が放置された場合にも、電気特性が良好な(引き置き耐性が良好な)液晶素子を得ることができる点で優れている。
 本開示の液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等に適用することができる。また、本開示の液晶素子は、カラーフィルタ層の着色剤として染料を用いた液晶素子にも好適に用いられる。ここで染料としては、液晶素子に使用されうる公知の染料を用いることができる。
 以下、実施例により具体的に説明するが、本開示の内容は以下の実施例に限定されるものではない。
 以下の例において、重合体の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は以下の方法により測定した。
<重量平均分子量、数平均分子量及び分子量分布>
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記条件でMw及びMnを測定した。また、分子量分布(Mw/Mn)は、得られたMw及びMnより算出した。
GPCカラム:東ソー(株)製、TSKgelGRCXLII
移動相:リチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液
カラム温度:40℃
流速:1.0mL/分
圧力:68kgf/cm
 下記の例で使用した化合物の略称を以下に示す。なお、以下では便宜上、「式(X)で表される化合物」を単に「化合物(X)」と示す場合がある。
(複素環含有化合物[A])
Figure JPOXMLDOC01-appb-C000044
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000045
(ジアミン化合物)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
(架橋剤)
Figure JPOXMLDOC01-appb-C000048
<複素環含有化合物[A]の合成>
[合成例1-1~1-8]
 化合物(BL-1)~(BL-8)を下記文献に記載の方法に従ってそれぞれ合成した。
・化合物(BL-1):Endo-enol ester;M. Ueda, M. Yabuuchi, Y. Imai, J. Polym. Sci., Polym. Chem. Ed,, 15, 323 (1977) 
・化合物(BL-2):Endo-acyl imidate;M. Ueda, Y. Imai, J. Polym. Sci., Polym. Chem. Ed,, 17, 1163 (1979)
・化合物(BL-3):Endo-acyl imidate;M. Ueda, K. Kino, Y. Imai, J. Polym. Sci., Polym. Chem. Ed., 13, 659 (1975)
・化合物(BL-4):Endo-enol ester;M. Ueda, T. Takahashi, Y. Imai, J. Polym. Sci., Polym. Chem. Ed,, 15, 2641 (1977)
・化合物(BL-5):Exo-enol ester;M. Ueda, T. Takahashi, Y. Imai, J. Polym. Sci., Polym. Chem. Ed,, 14 591 (1976)
・化合物(BL-6):Endo-acyl imidate;M. Ueda, K. Kino, K. Yamaki, Y. Imai, J. Polym. Sci., Polym. Chem. Ed,, 16, 155 (1978)
・化合物(BL-7):Oxime ester;M. Ueda, H. Hazome, Y. Imai, J. Polym. Sci., Polym. Chem. Ed., 14, 1127 (1976)
・化合物(BL-8):Exo-acyl omidate;M. Ueda, S.Kanno, Y. Imai, J. Polym. Sci., Polvm.
<ポリアミド[P]の合成>
[合成例2-1]
 窒素下、100mL二口フラスコに、化合物(BL-1)3.34g(10mmol)、ピロメリット酸二無水物2.18(10mmol)をN-メチル-2-ピロリドン(NMP)60gに溶解し、ジアミン化合物として化合物(DA-1)1.19g(4mmol)、及び化合物(DA-2)4.39g(18mmol)を加えて、60℃で4時間反応を行った。得られたポリアミド(これを重合体(P-1)とする。)をNMPにて10質量%となるように調製した。この溶液の粘度を測定したところ1030mPa・sであった。
[合成例2-2~2-13、2-20、2-21]
 使用するモノマーの種類及び量を下記表1に示すように変更した以外は合成例2-1と同様の操作を行い、ポリアミド(それぞれ重合体(P-2)~(P-15)とする。)を含有する溶液を得た。なお、重合時において、モノマーの溶解性が不足している場合は、NMP又はm-クレゾールにより希釈し、重合速度が遅い場合はオイルバスで60℃以上に加熱することにより目的の重合体を合成した。
<ポリアミック酸の合成>
[合成例2-14~2-19]
 使用するモノマーの種類及び量を下記表1に示すように変更した以外は合成例2-1と同様の操作を行い、ポリアミック酸(それぞれ重合体(C-1)~(C-6)とする。)を含有する溶液を得た。
 なお、合成例2-1~2-21では、複素環含有化合物及びテトラカルボン酸無水物を「単量体群A」、ジアミン化合物を「単量体群B」とし、単量体群Aとして2種類以上のモノマーを用いる場合には、単量体群Aのモノマーの合計が20mmolとなるように用い、単量体群Bとして2種類以上のジアミン化合物を用いる場合には、ジアミン化合物の合計が20mmolとなるように用いた。また表1には、単量体群Aにおけるα,β-不飽和化合物及びテトラカルボン酸ニ無水物のモル比を示し、単量体群Bにおけるジアミン化合物のモル比を示した。
Figure JPOXMLDOC01-appb-T000049
 表1において、液晶配向剤の固形分濃度はいずれの例も同じ(4.0質量%)とした。「-」は、該当する欄の化合物を使用しなかったことを意味する。
<ポリオルガノシロキサンの合成>
[合成例3-1]
 下記スキーム1に従って重合体(C-7)を合成した。
Figure JPOXMLDOC01-appb-C000050
 1000ml三口フラスコに2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン90.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗から30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、これを0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去した。メチルイソブチルケトンを適量添加し、エポキシ基を有するポリオルガノシロキサン(E-1)の50質量%溶液を得た。
 500ml三口フラスコに、下記に示す側鎖カルボン酸(ca-1)26.69g(0.3mol当量)、テトラブチルアンモニウムブロミド2.00g、ポリオルガノシロキサン(E-1)含有溶液80g、及びメチルイソブチルケトン239gを加え、110℃で4時間撹拌した。室温まで冷却した後、蒸留水で分液洗浄操作を10回繰り返した。その後、有機層を回収し、ロータリーエバポレータにより濃縮とNMP希釈を2回繰り返し、重合体(C-7)中間体の15質量%NMP溶液を得た。この中間体溶液50gに、トリメリット酸無水物0.45g(0.1mol当量)を加えた後、NMPを用いて固形分濃度が10質量%になるように調製した後、室温で4時間撹拌することで、重合体(C-7)のNMP溶液を得た。
Figure JPOXMLDOC01-appb-C000051
[合成例3-2]
 合成例3-1において、側鎖カルボン酸(ca-1)の代わりに、下記に示す側鎖カルボン酸(ca-2)を用いた以外は合成例3-1と同様の操作を行うことにより、重合体(C-8)を含有するNMP溶液を得た。
Figure JPOXMLDOC01-appb-C000052
[合成例3-3]
 合成例3-1において、側鎖カルボン酸(ca-1)の代わりに、下記に示す側鎖カルボン酸(ca-3)を用いた以外は合成例3-1と同様の操作を行うことにより、重合体(C-9)を含有するNMP溶液を得た。
Figure JPOXMLDOC01-appb-C000053
<スチレン-マレイミド共重合体の合成>
[合成例3-4]
1.化合物(MI-1)の合成
 下記スキーム2に従って化合物(MI-1)を合成した。
Figure JPOXMLDOC01-appb-C000054
 攪拌子を入れた100mLナスフラスコに(E)-3-(4-((4-(4,4,4-トリフルオロブトキシ)ベンゾイル)オキシ)フェニル)アクリル酸11.8g、塩化チオニル20g、N,N-ジメチルホルムアミド0.01gを加え,80℃で1時間攪拌した。その後、過剰の塩化チオニルをダイヤフラムポンプで除去し、テトラヒドロフランを100g加え、溶液Aとした。新たに、攪拌子を入れた500mL三口フラスコに4-ヒドロキシフェニルマレイミドを5.67g、テトラヒドロフラン200g、トリエチルアミン12.1gを加え、氷浴した。そこに溶液Aを滴下し、室温で3時間撹拌した。反応液を水800mLで再沈殿し、得られた白色固体を真空乾燥することで化合物(MI-1)を13.3g得た。
2.重合体の合成
 窒素下、100mL二口フラスコに、重合モノマーとして、上記で得られた化合物(MI-1)5.00g(8.6mmol)、4-ビニル安息香酸0.64g(4.3mmol)、4-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸2.82g(13.0mmol)、及び4-(グリシジルオキシメチル)スチレン3.29g(17.2mmol)、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.31g(1.3mmol)、連鎖移動剤として2,4-ジフェニル-4-メチル-1-ペンテン0.52g(2.2mmol)、並びに溶媒としてテトラヒドロフラン25mlを加え、70℃で5時間重合した。n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することで目的の重合体(C-10)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは30000、分子量分布Mw/Mnは2であった。
<ラビング水平型液晶表示素子の製造及び評価>
[実施例1]
1.液晶配向剤(AL-1)の調製
 上記合成例2-1で得た重合体(P-1)100質量部を含む溶液に、重合体(C-4)200質量部、並びに溶剤としてNMP及びブチルセロソルブ(BC)を加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-1)を調製した。
2.塗布性(膜厚ムラ・ピンホール、エッジ形状及び膜厚均一性の評価
 上記で調製した液晶配向剤(AL-1)を、ガラス基板上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した230℃のオーブンで30分間加熱(ポストベーク)することにより、平均膜厚0.1μmの塗膜を形成した。この塗膜を倍率100倍及び10倍の顕微鏡で観察して膜厚ムラ及びピンホールの有無を調べた。評価は、100倍の顕微鏡で観察しても膜厚ムラ及びピンホールの双方とも観察されなかった場合に「良好(A)」、100倍の顕微鏡では膜厚ムラ及びピンホールの少なくともいずれかが観察されたが、10倍の顕微鏡では膜厚ムラ及びピンホールの双方とも観察されなかった場合に「可(B)」、10倍の顕微鏡で膜厚ムラ及びピンホールの少なくともいずれかが明確に観察された場合に「不良(C)」とした。この実施例では、100倍の顕微鏡でも膜厚ムラ及びピンホールの双方とも観察されず、塗布性は「良好(A)」の評価であった。
 更に詳細な塗布性の評価として、エッジ部分(形成された塗膜の外縁部分)での塗布性の評価を実施した。上記で調製した液晶配向剤(AL-1)を、液晶配向膜塗布用印刷機を用いて、ITO膜からなる透明電極付きガラス基板の上に透明電極面に塗布し、上記の要領で乾燥した。エッジ部分の形状及び平坦性を観察し、直線性が高くかつ平坦面である場合に「良好(A)」、直線性は高いが凸凹がある場合に「可(B)」、凸凹があり、かつエッジからの液戻りがある(直線性が低い)場合に「不良(C)」とした。その結果、この実施例では「良好(A)」と判断された。
 また更に、触針式膜厚計を用いて、塗膜の面内の4点において膜厚を測定し、測定値のバラツキ(平均膜厚δ(実施例1はδ=0.1μm)との差)により膜厚均一性を評価した。評価は、4点の測定値が平均膜厚δに対して±25Åの範囲内にあり、均一な膜厚が得られた場合に「良好(A)」、平均膜厚δに対して±25Åの範囲から外れた測定値があったものの、4点の測定値全てが平均膜厚δに対して±50Åの範囲内にあった場合に「可(B)」、平均膜厚δに対して±50Åの範囲から外れた測定値があり、測定値のバラツキが大きかった場合に「不良(C)」とした。その結果、この実施例では、「良好(A)」の評価であった。
3.ラビング水平型液晶表示素子の製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-1)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.1mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。この一連の操作を繰り返すことにより、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうち1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、それぞれの液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より、一対の基板間にネマチック液晶(メルク社製、MLC-6221)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止し、基板の外側の両面に偏光板を貼り合わせることにより、水平配向型の液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造したラビング水平型液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を光学顕微鏡により観察し、異常ドメインがない場合を「A」、一部に異常ドメインがある場合を「B」、全体的に異常ドメインがある場合を「C」として液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
5.電圧保持率(VHR)の評価
 上記で製造したラビング水平型液晶表示素子につき、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。測定装置は(株)東陽テクニカ製VHR-1を使用した。このとき、電圧保持率が95%以上の場合に「A」、80%以上95%未満の場合に「B」、50%以上80%未満の場合に「C」、50%未満の場合に「D」とした。その結果、この実施例では電圧保持率は「A」の評価であった。
6.引き置き耐性の評価
 上記の「3.ラビング水平型液晶表示素子の製造」と同様の操作を行うことにより、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。
 ステンレス製バット(約20cm×約30cm)の中に、上記で作成した基板のうち一対の基板(2枚)と、NMPを入れたシャーレとを入れ、基板及びシャーレを入れたステンレス製バットをアルミホイルで覆い、25℃で2時間静置した後に基板を取り出した。このような操作により、一対の基板(2枚)をNMP雰囲気に暴露した。その後、この一対の基板を用い、上記の「3.ラビング水平型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。
 また、もう1組の一対の基板(2枚)についてはNMP雰囲気に暴露することなく、上記の「3.ラビング水平型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子B」とする。)を製造した。
 続いて、2個の液晶表示素子のプレチルト角を、非特許文献(T. J. Scheffer et. al. J. Appl. Phys. vo. 19. p2013(1980))に記載の方法に準拠し、He-Neレーザー光を用いる結晶回転法によりそれぞれ測定し、下記数式(2)によりチルト差Δθ[%]を求めた。
 Δθ=((θ1-θ2)/θ1)×100 …(2)
(数式(2)中、θ1は素子Bのプレチルト角であり、θ2は素子Aのプレチルト角である。)
 Δθが5%以下の場合に「A」、5%以上10%未満の場合に「B」、10%以上の場合に「C」とした。その結果、この実施例では引き置き耐性は「A」の評価であった。
[実施例5~7,14~20及び比較例1]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤をそれぞれ得た。また、それぞれの液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例1と同様にしてラビング水平型液晶表示素子を製造して各種評価を行った。それらの結果を下記表3に示した。なお、下記表3では、膜厚ムラ及びピンホールの観察結果を「塗布性」の欄に示し、エッジ部分の観察結果を「エッジ形状」の欄に示し、膜厚のバラツキに基づく評価結果を「膜厚均一性」の欄に示している。実施例6、7では、重合体成分とともに架橋剤を配合した。なお、表2中、「-」は、該当する欄の重合体を使用しなかったことを意味する。
<光FFS型液晶表示素子の製造及び評価>
[実施例2]
1.液晶配向剤(AL-2)の調製
 使用する重合体を、重合体(P-2)100質量部及び重合体(C-9)50質量部に変更した以外は上記実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-2)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-2)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では、膜厚ムラ・ピンホール、エッジ形状及び膜厚均一性の評価結果は全て「A」であった。
3.光FFS型液晶表示素子の製造
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記で調製した液晶配向剤(AL-2)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間加熱(プレベーク)した。その後、庫内を窒素置換した230℃のオーブンで30分間乾燥(ポストベーク)を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に、Hg-Xeランプを用いて、直線偏光された254nmの輝線を含む紫外線1,000J/mを基板法線方向から照射して光配向処理を行い、基板上に液晶配向膜を形成した。
 次いで、液晶配向膜を有する一対の基板につき、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、光照射時の偏光軸の基板面への投影方向が逆平行となるように基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷し、液晶セルを製造した。次に、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と90°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造した光FFS型液晶表示素子につき、上記実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
5.電圧保持率(VHR)の評価
 上記で製造した光FFS型液晶表示素子につき、上記実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
6.引き置き耐性の評価
 上記の「3.光FFS型液晶表示素子の製造」と同様の操作を行うことにより、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。これらのうち1組の一対の基板については、実施例1と同様にしてNMP雰囲気に暴露し、その後、この一対の基板を用いて上記の「3.光FFS型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。また、もう1組の一対の基板(2枚)についてはNMP雰囲気に暴露することなく、上記の「3.光FFS型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子B」とする。)を製造した。これら素子A及び素子Bを用いて、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[比較例2]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤(BL-2)を得た。また、液晶配向剤(BL-2)を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例2と同様にして光FFS型液晶表示素子を製造して各種評価を行った。それらの結果を下記表3に示した。
<VA型液晶表示素子の製造及び評価>
[実施例3]
1.液晶配向剤(AL-3)の調製
 使用する重合体を、重合体(P-3)100質量部及び重合体(C-6)300質量部に変更した以外は上記実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-3)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-3)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では、膜厚ムラ・ピンホール、エッジ形状及び膜厚均一性の評価結果は全て「A」であった。
3.VA型液晶表示素子の製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-3)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。この操作を繰り返すことにより、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうち1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、それぞれの液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より、一対の基板間にネガ型液晶(メルク社製、MLC-6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止し、基板の外側の両面に偏光板を貼り合わせることによりVA型液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造したVA型液晶表示素子につき、上記実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
5.電圧保持率(VHR)の評価
 上記で製造したVA型液晶表示素子につき、上記実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
6.引き置き耐性の評価
 上記の「3.VA型液晶表示素子の製造」と同様の操作を行うことにより、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。これらのうち1組の一対の基板については、実施例1と同様にしてNMP雰囲気に暴露し、その後、この一対の基板を用いて上記の「3.VA型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。また、もう1組の一対の基板(2枚)についてはNMP雰囲気に暴露することなく、上記の「3.VA型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子B」とする。)を製造した。これら素子A及び素子Bを用いて、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[実施例4及び比較例3]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤をそれぞれ得た。また、それぞれの液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例3と同様にしてVA型液晶表示素子を製造して各種評価を行った。それらの結果を下記表3に示した。
<PSA型液晶表示素子の製造及び評価>
[実施例9]
1.液晶配向剤(AL-9)の調製
 使用する重合体を、重合体(P-6)200質量部及び重合体(C-7)50質量部に変更した以外は実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-9)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-9)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では、膜厚ムラ・ピンホール、エッジ形状及び膜厚均一性の評価結果は全て「A」であった。
3.液晶組成物の調製
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、下記式(L1-1) で表される液晶性化合物を5質量%、及び下記式(L2-1)で表される光重合性化合物 を0.3質量%添加して混合することにより液晶組成物LC1を得た。
Figure JPOXMLDOC01-appb-C000055
4.PSA型液晶表示素子の製造
 上記で調製した液晶配向剤(AL-9)を、ITO電極からなる導電膜をそれぞれ有するガラス基板2枚の各電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で2分間加熱(プレベーク)して溶媒を除去した後、230℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.06μmの塗膜を形成した。これら塗膜につき、超純水中で1分間超音波洗浄を行った後、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を一対(2枚)得た。なお、使用した電極のパターンは、PSAモードにおける電極パターンと同種のパターンである。
 次いで、上記一対の基板のうち一方の基板の液晶配向膜を有する面の外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、上記で調製した液晶組成物LC1を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。その後、液晶セルの導電膜間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、100,000J/mの照射量にて紫外線を照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて測定した値である。その後、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と45°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
5.液晶配向性の評価
 上記で製造したPSA型液晶表示素子につき、実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
6.電圧保持率(VHR)の評価
 上記で製造したPSA型液晶表示素子につき、実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
7.引き置き耐性の評価
 上記の「3.PSA型液晶表示素子の製造」と同様の操作を行うことにより、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。これらのうち1組の一対の基板については、実施例1と同様にしてNMP雰囲気に暴露し、その後、この一対の基板を用いて上記の「4.PSA型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。また、もう1組の一対の基板(2枚)についてはNMP雰囲気に暴露することなく、上記の「4.PSA型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子B」とする。)を製造した。これら素子A及び素子Bを用いて、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[実施例10、11及び比較例5]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤をそれぞれ得た。また、得られた液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例9と同様にしてPSA型液晶表示素子を製造し、実施例1と同様にして各種評価を行った。評価結果を下記表3に示した。実施例10、11では、重合体成分とともに架橋剤を配合した。
<光垂直型液晶表示素子の製造及び評価>
[実施例8]
1.液晶配向剤(AL-8)の調製
 使用する重合体を、重合体(P-7)200質量部及び重合体(C-8)50質量部に変更した点以外は実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-8)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-8)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では、膜厚ムラ・ピンホール、エッジ形状及び膜厚均一性の評価結果は全て「A」であった。
3.光垂直型液晶表示素子の製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-8)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線1,000J/mを、基板法線から40°傾いた方向から照射して液晶配向能を付与した。同じ操作を繰り返して、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうちの1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、各基板の紫外線の光軸の基板面への投影方向が逆平行となるように圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、液晶注入口より基板間の間隙にネガ型液晶(メルク社製、MLC-6608)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを130℃で加熱してから室温まで徐冷した。次に、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と45°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造した光垂直型液晶表示素子につき、上記実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
5.電圧保持率(VHR)の評価
 上記で製造した光垂直型液晶表示素子につき、上記実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
6.引き置き耐性の評価
 上記の「3.光垂直型液晶表示素子の製造」と同様の操作を行うことにより、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。これらのうち1組の一対の基板については、実施例1と同様にしてNMP雰囲気に暴露し、その後、この一対の基板を用いて上記の「3.光垂直型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。また、もう1組の一対の基板(2枚)についてはNMP雰囲気に暴露することなく、上記の「3.光垂直型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子B」とする。)を製造した。これら素子A及び素子Bを用いて、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[実施例12、13及び比較例4、6]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤をそれぞれ得た。また、それぞれの液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例8と同様にして光垂直型液晶表示素子を製造して各種評価を行った。それらの結果を下記表3に示した。実施例12、13では、重合体成分とともに架橋剤を配合した。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
[実施例21~23]
 実施例9において、溶剤組成をNMP/BC=50/50(質量比)の代わりに下記表4に示す通り変更した以外は実施例9と同様にして液晶配向剤(AL-21)~(AL-23)をそれぞれ調製した。また、使用する液晶配向剤を変更した点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例9と同様にしてPSA型液晶表示素子を製造して各種評価を行った。それらの結果を下記表5に示した。
[比較例7~9]
 実施例21~23において、重合体(P-6)200質量部の代わりに重合体(C-5)300質量部を用いた以外は実施例21~23と同様にして液晶配向剤(BL-7)~(BL-9)をそれぞれ調製した(下記表4参照)。また、使用する液晶配向剤を変更した点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例9と同様にしてPSA型液晶表示素子を製造して各種評価を行った。それらの結果を下記表5に示した。なお、表5では、溶剤に対する重合体の溶解性不足が見られ、これにより評価できなかった項目に「-」と示した(比較例10、11についても同じ)。
[実施例24]
 実施例1において、溶剤組成をNMP/BC=50/50(質量比)の代わりに下記表4に示す通り変更した以外は実施例1と同様にして液晶配向剤(AL-24)を調製した。また、得られた液晶配向剤を用いた点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例1と同様にしてラビング水平型液晶表示素子を製造して各種評価を行った。その結果を下記表5に示した。
[比較例10]
 実施例24において、重合体組成を下記表4に示す通り変更した以外は実施例24と同様にして液晶配向剤(BL-10)を調製した。また、得られた液晶配向剤を用いた点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例1と同様にしてラビング水平型液晶表示素子を製造して各種評価を行った。その結果を下記表5に示した。
[実施例25]
 実施例8において、溶剤組成をNMP/BC=50/50(質量比)の代わりに下記表4に示す通り変更した以外は実施例8と同様にして液晶配向剤(AL-25)を調製した。また、得られた液晶配向剤を用いた点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例8と同様にして光垂直型液晶表示素子を製造して各種評価を行った。その結果を下記表5に示した。
[比較例11]
 実施例25において、重合体組成を下記表4に示す通り変更した以外は実施例25と同様にして液晶配向剤(BL-11)を調製した。また、得られた液晶配向剤を用いた点及びポストベーク温度を230℃から200℃に変更した点以外は、実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例8と同様にして光垂直型液晶表示素子を製造して各種評価を行った。その結果を下記表5に示した。
Figure JPOXMLDOC01-appb-T000058
 表4中、溶剤組成の数値は、液晶配向剤の調製に使用した溶剤の全体量に対する質量比(質量%)を表す。溶剤の略称は以下の意味である。
CHN:シクロヘキサノン
DIBK:ジイソブチルケトン
BC:ブチルセロソルブ
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EDM:ジエチレングリコールメチルエチルエーテル
Figure JPOXMLDOC01-appb-T000059
 表3に示すように、ポリアミド[P]を含有する液晶配向剤を用いた実施例1~20では、塗布性(エッジ形状及び膜厚均一性を含む。)はいずれも「A」の評価であった。また、実施例1~20では、得られた液晶表示素子の液晶配向性及び電圧保持率についても良好であり、全ての実施例で「A」の評価であった。
 さらに表4に示すように、ポリアミド[P]はアミド系極性溶媒(NMP)を含まない溶剤組成に対しても溶解性が十分に高く、塗布性(エッジ形状及び膜厚均一性を含む。)、液晶配向性及び電圧保持率では「A」又は「B」の評価であり、良好な結果が得られた(実施例21~25)。この結果から、耐熱性の劣る染料を着色剤として用いて液晶素子のカラーフィルタ層を作成した場合にも、好適に用いることができるものであるといえる。
 これに対し、重合体成分としてポリアミド[P]を含有しない液晶配向剤を用いた比較例では、アミド系極性溶媒(NMP)を用いた例のうち比較例1~4,6では、エッジ形状の評価が「B」であり、実施例よりも劣っていた。さらに比較例1については、膜厚均一性の評価も「B」であった。また、比較例2では、電圧保持率の評価が「C」であった。また、表5に示すように、アミド系極性溶媒(NMP)を含まない溶剤組成に対しては溶解性が不足し、良好な結果が得られなかった(比較例7~11)。
 これらの結果から、ポリアミド[P]を含む液晶配向剤は、塗布性、液晶配向性及び電圧保持率に優れていることが分かった。加えて、ポリアミド[P]を含む液晶配向剤は引き置き耐性も優れていた。

Claims (14)

  1.  下記式(1)で表される構造からn個(nは1以上の整数)の水素原子を除いた部分構造を一分子内に2個以上有する複素環含有化合物と、ジアミン化合物との反応生成物であるポリアミド[P]を含有する、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、下記式(2-1)~式(2-5)のそれぞれで表される基のいずれかである。Aは2価の有機基であり、他の環構造に結合して当該他の環構造とともに縮合環を形成していてもよい。一分子内の複数のA及びXは、それぞれ独立して上記定義を有する。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)~式(2-5)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1以上の1価の有機基である。式(2-3)及び式(2-5)中の「*」は、式(1)中の酸素原子との結合手であることを示す。)
  2.  前記複素環含有化合物は、下記式(3-1)~式(3-9)のそれぞれで表される部分構造のいずれかを一分子内に2個以上有する化合物である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(3-1)~式(3-9)中、R51~R71は、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1~24の1価の有機基である。ただし、R51~R54のいずれか1個、R55~R57のいずれか1個、R60~R62のいずれか1個、R63及びR64のいずれか1個、R66~R68のいずれか1個、並びにR69及びR70のいずれか1個は結合手である。一分子内の複数のR51~R71は、それぞれ独立して上記定義を有する。「*」は結合手であることを示す。)
  3.  前記ポリアミド[P]は、下記式(d-1)~式(d-4)のそれぞれで表される化合物よりなる群から選ばれる少なくとも一種のジアミン化合物に由来する部分構造を有する、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(d-1)中、X11及びX12は、それぞれ独立に、単結合、-O-、-S-、-OCO-又は-COO-であり、Y11は、酸素原子又は硫黄原子であり、R11及びR12は、それぞれ独立に、炭素数1~3のアルカンジイル基である。n1は0又は1であり、n2及びn3は、n1=0の場合、n2+n3=2を満たす整数であり、n1=1の場合、n2=n3=1である。式(d-2)中、X13は、単結合、-O-又は-S-であり、m1は0~3の整数である。m2は、m1=0の場合に1~12の整数であり、m1が1~3の整数の場合にm2=2である。式(d-3)中、X14及びX15は、それぞれ独立に、単結合、-O-、-COO-又は-OCO-であり、R17は、炭素数1~3のアルカンジイル基であり、A11は、単結合又は炭素数1~3のアルカンジイル基である。aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、kは0又は1である。但し、a及びbが同時に0になることはない。式(d-4)中、A12は単結合、炭素数1~12のアルカンジイル基又は炭素数1~6のフルオロアルカンジイル基を示し、A13は、-O-、-COO-、-OCO-、-NHCO-、-CONH-又は-CO-を示し、A14は、ステロイド骨格を有する1価の有機基を示す。)
  4.  前記ポリアミド[P]は、下記式(9)で表される2級又は3級アミン構造、及び窒素含有複素環構造よりなる群から選ばれる少なくとも一種を有するジアミン化合物に由来する部分構造を有する、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (式(9)中、R51及びR52は、それぞれ独立に2価の芳香環基であり、R53は、水素原子又は炭素数1以上の1価の有機基である。「*」は結合手であることを示す。)
  5.  前記ポリアミド[P]は、カルボキシル基を有するジアミン化合物に由来する部分構造と、窒素含有芳香族複素環を有するジアミン化合物に由来する部分構造と、を有する、請求項1~4のいずれか一項に記載の液晶配向剤。
  6.  前記ポリアミド[P]は、下記式(7-1)又は式(7-2)で表される基を有するジアミン化合物に由来する部分構造を有する、請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式(7-1)及び式(7-2)中、A21は、単結合又は炭素数1以上の2価の有機基であり、Yは保護基であり、R21~R23は、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。mは0~6の整数である。「*」は結合手であることを示す。)
  7.  前記ポリアミド[P]は、下記式(8)で表されるジアミン化合物に由来する部分構造を有する、請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (式(8)中、A31は2価の芳香環基であり、R31は炭素数1~5のアルカンジイル基であり、R32は炭素数1~4の1価の炭化水素基である。)
  8.  前記ポリアミド[P]は、シクロカーボネート基、エポキシ基、イソシアネート基、ブロックイソシアネート基、オキセタニル基、トリアルコキシシリル基、及び重合性不飽和結合基よりなる群から選ばれる少なくとも一種の架橋性基を有する化合物を更に含有する、請求項1~7のいずれか一項に記載の液晶配向剤。
  9.  下記式(E-1)~式(E-5)のそれぞれで表される化合物よりなる群から選ばれる少なくとも一種であって、かつ1気圧での沸点が180℃以下である有機溶剤を含有する、請求項1~8のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式(E-1)中、R41は、炭素数1~4のアルキル基又はR40-CO-(ただし、R40は炭素数1~3のアルキル基)であり、R42は、炭素数1~4のアルカンジイル基又は-(R47-O)r-R48-(ただし、R47及びR48は、それぞれ独立に炭素数2又は3のアルカンジイル基であり、rは1~4の整数である。)であり、R43は、水素原子又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000009
    (式(E-2)中、R44は、炭素数1~4のアルカンジイル基である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(E-3)中、R45及びR46は、それぞれ独立に炭素数1~8のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000011
    (式(E-4)中、R49は、水素原子又は水酸基であり、R50は、R49が水素原子の場合、炭素数1~9の2価の炭化水素基、又は炭素数3~9の鎖状炭化水素基の炭素-炭素結合間に-CO-を有する2価の基であり、R49が水酸基の場合、炭素数1~9の2価の炭化水素基、又は炭素数2~9の炭化水素基の炭素-炭素結合間に酸素原子を有する2価の基である。)
    Figure JPOXMLDOC01-appb-C000012
    (式(E-5)中、R51は、炭素数1~6の1価の炭化水素基、炭素数1~6の炭化水素基が有する水素原子が水酸基で置換された1価の基、又は炭素数2~6の炭化水素基の炭素-炭素結合間に-CO-を有する1価の基であり、R52は、炭素数1~6の1価の炭化水素基である。)
  10.  前記ポリアミド[P]とは異なる重合体を更に含有する、請求項1~9のいずれか一項に記載の液晶配向剤。
  11.  請求項1~10のいずれか一項に記載の液晶配向剤から形成された液晶配向膜。
  12.  請求項11に記載の液晶配向膜を具備する液晶素子。
  13.  染料を含有するカラーフィルタ層を備える、請求項12に記載の液晶素子。
  14.  請求項1~10のいずれか一項に記載の液晶配向剤を用いて、導電膜を有する一対の基板のそれぞれの前記導電膜上に塗膜を形成する工程と、
     前記塗膜を形成した一対の基板を、液晶層を介して前記塗膜が相対するように対向配置して液晶セルを構築する工程と、
     前記一対の基板が有する前記導電膜間に電圧を印加した状態で前記液晶セルに光照射する工程と、
    を含む、液晶素子の製造方法。
PCT/JP2018/046724 2018-01-25 2018-12-19 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法 WO2019146320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207015908A KR102337423B1 (ko) 2018-01-25 2018-12-19 액정 배향제, 액정 배향막, 액정 소자 및 액정 소자의 제조 방법
JP2019567918A JP6962388B2 (ja) 2018-01-25 2018-12-19 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
CN201880078277.2A CN111448510B (zh) 2018-01-25 2018-12-19 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-010895 2018-01-25
JP2018010895 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019146320A1 true WO2019146320A1 (ja) 2019-08-01

Family

ID=67395387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046724 WO2019146320A1 (ja) 2018-01-25 2018-12-19 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Country Status (5)

Country Link
JP (1) JP6962388B2 (ja)
KR (1) KR102337423B1 (ja)
CN (1) CN111448510B (ja)
TW (1) TWI805674B (ja)
WO (1) WO2019146320A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193855A1 (ja) * 2018-04-05 2019-10-10 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
JP2022027466A (ja) * 2020-07-29 2022-02-10 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
CN117328154B (zh) * 2023-11-24 2024-03-05 烟台泰和新材高分子新材料研究院有限公司 一种用于连续生产液晶聚酯纤维的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527245A (ja) * 1991-07-22 1993-02-05 Hitachi Chem Co Ltd 液晶配向膜用組成物、これを用いた液晶配向膜、液晶挾持基板及び液晶表示素子
JP2001097969A (ja) * 1999-09-29 2001-04-10 Chisso Corp ジアミノ化合物およびこれを用いた樹脂組成物、液晶配向膜、液晶表示素子
WO2013161984A1 (ja) * 2012-04-26 2013-10-31 日産化学工業株式会社 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子
WO2018173648A1 (ja) * 2017-03-23 2018-09-27 Jsr株式会社 液晶配向膜の製造方法および液晶素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691277A (en) 1979-12-25 1981-07-24 Citizen Watch Co Ltd Liquiddcrystal display panel
JPH01115930A (ja) * 1987-10-29 1989-05-09 Nippon Steel Corp ポリイミディンイミドコポリマー
JP2869511B2 (ja) 1990-10-17 1999-03-10 日本航空電子工業株式会社 Tn型液晶表示素子
TWI269250B (en) 1997-06-12 2006-12-21 Sharp Kk Liquid crystal display device
WO2013115228A1 (ja) * 2012-02-01 2013-08-08 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6369014B2 (ja) * 2013-02-25 2018-08-08 Jsr株式会社 液晶表示素子用組成物、並びに液晶表示素子及びその製造方法
JP6269098B2 (ja) * 2013-04-26 2018-01-31 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP6372200B2 (ja) * 2013-10-07 2018-08-15 Jsr株式会社 液晶配向膜の製造方法、光配向剤及び液晶表示素子
JP6492564B2 (ja) * 2014-02-13 2019-04-03 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム、位相差フィルムの製造方法、重合体及び化合物
TWI529242B (zh) * 2014-06-12 2016-04-11 奇美實業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
JP6701635B2 (ja) * 2014-10-08 2020-05-27 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2016080033A1 (ja) * 2014-11-19 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子、重合体及び化合物
JP6701661B2 (ja) * 2014-12-25 2020-05-27 Jsr株式会社 液晶配向剤、液晶素子の製造方法、液晶配向膜及び液晶素子
JP6888241B2 (ja) * 2015-04-08 2021-06-16 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶素子及び液晶素子の製造方法
JP6672815B2 (ja) * 2015-04-14 2020-03-25 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
JP6672821B2 (ja) * 2015-04-16 2020-03-25 Jsr株式会社 液晶配向剤及び液晶配向膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527245A (ja) * 1991-07-22 1993-02-05 Hitachi Chem Co Ltd 液晶配向膜用組成物、これを用いた液晶配向膜、液晶挾持基板及び液晶表示素子
JP2001097969A (ja) * 1999-09-29 2001-04-10 Chisso Corp ジアミノ化合物およびこれを用いた樹脂組成物、液晶配向膜、液晶表示素子
WO2013161984A1 (ja) * 2012-04-26 2013-10-31 日産化学工業株式会社 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子
WO2018173648A1 (ja) * 2017-03-23 2018-09-27 Jsr株式会社 液晶配向膜の製造方法および液晶素子

Also Published As

Publication number Publication date
CN111448510B (zh) 2023-03-14
TWI805674B (zh) 2023-06-21
CN111448510A (zh) 2020-07-24
JP6962388B2 (ja) 2021-11-05
KR102337423B1 (ko) 2021-12-08
KR20200077584A (ko) 2020-06-30
TW201932944A (zh) 2019-08-16
JPWO2019146320A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6911885B2 (ja) 液晶配向膜の製造方法及び液晶素子の製造方法
TWI720012B (zh) 液晶配向劑、液晶配向膜及液晶元件、及它們的製造方法
CN106047372B (zh) 液晶取向剂、液晶取向膜及其制造方法、以及液晶元件及其制造方法
CN109913241B (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
WO2016080033A1 (ja) 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子、重合体及び化合物
JP2017198975A (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物
JP2017138575A (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及びジアミン
JP6962388B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
WO2018074547A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP6981542B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
WO2018074548A1 (ja) 液晶配向剤、液晶配向膜、液晶素子及び重合体
JP6962387B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
JP2013246405A (ja) 液晶配向剤
TWI746668B (zh) 液晶配向劑、液晶配向膜及液晶元件
JP7517208B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
CN111542779B (zh) 液晶取向剂、液晶取向膜及液晶元件
JP2017126060A (ja) 液晶配向剤、液晶配向膜、液晶素子、並びに液晶配向膜及び液晶素子の製造方法
JP6981541B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
JP2023109149A (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
JP2022087021A (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2023107736A (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567918

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015908

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901825

Country of ref document: EP

Kind code of ref document: A1