WO2018074548A1 - 液晶配向剤、液晶配向膜、液晶素子及び重合体 - Google Patents

液晶配向剤、液晶配向膜、液晶素子及び重合体 Download PDF

Info

Publication number
WO2018074548A1
WO2018074548A1 PCT/JP2017/037834 JP2017037834W WO2018074548A1 WO 2018074548 A1 WO2018074548 A1 WO 2018074548A1 JP 2017037834 W JP2017037834 W JP 2017037834W WO 2018074548 A1 WO2018074548 A1 WO 2018074548A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
polymer
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2017/037834
Other languages
English (en)
French (fr)
Inventor
岡田 敬
嘉崇 村上
伊藤 賢一
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2018546399A priority Critical patent/JP6593546B2/ja
Priority to KR1020197007873A priority patent/KR102196239B1/ko
Priority to CN201780063851.2A priority patent/CN109844629B/zh
Priority to US16/342,981 priority patent/US11193067B2/en
Publication of WO2018074548A1 publication Critical patent/WO2018074548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/38Amides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor

Definitions

  • the present disclosure relates to a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a polymer.
  • liquid crystal element As the liquid crystal element, a horizontal alignment mode liquid crystal element using a nematic liquid crystal having a positive dielectric anisotropy represented by a TN (Twisted Nematic) type, a STN (Super Twisted Nematic) type, or a negative dielectric anisotropic
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • Various liquid crystal elements such as a VA (Vertical Alignment) type liquid crystal element in a vertical (homeotropic) alignment mode using a nematic liquid crystal having properties are known.
  • These liquid crystal elements include a liquid crystal alignment film having a function of aligning liquid crystal molecules in a certain direction.
  • the liquid crystal alignment film is formed by applying a liquid crystal aligning agent in which a polymer component is dissolved in an organic solvent to a substrate and heating.
  • a liquid crystal aligning agent in which a polymer component is dissolved in an organic solvent
  • polyamic acid and soluble polyimide are generally used because of excellent mechanical strength, liquid crystal alignment, and affinity with liquid crystal.
  • the photo-alignment method is a method in which anisotropy is imparted to a film by irradiating a radiation-sensitive organic thin film formed on a substrate with polarized or non-polarized radiation, thereby controlling the alignment of liquid crystal. According to this method, compared to the conventional rubbing method, the generation of dust and static electricity in the process can be suppressed, and the occurrence of display defects and the reduction in yield can be suppressed. Further, there is an advantage that the liquid crystal alignment ability can be uniformly imparted to the organic thin film formed on the substrate.
  • Patent Document 1 discloses a first polymer having poly (maleimide) and poly (maleimide-styrene) as a main chain and having a photosensitive group introduced in the side chain, and a second polymer having a long chain alkyl group in the side chain.
  • a photoalignable composition comprising molecules is disclosed.
  • Patent Document 2 includes a copolymer having a structural unit having a styrene skeleton as a main chain and having a cinnamic acid structure in a side chain, and a structural unit having a maleimide skeleton as a main chain and having a cinnamic acid structure in a side chain.
  • a liquid crystal aligning agent is disclosed.
  • the material of the substrate is restricted, and for example, application of a film base material as a substrate of a liquid crystal element may be restricted.
  • dyes used as colorants for color filters are relatively weak against heat, and the use of dyes may be limited when heating during film formation needs to be performed at a high temperature. is there.
  • solvents in which the solubility of the liquid crystal aligning agent in the polymer component is sufficiently high and the boiling point is sufficiently low.
  • the polymer component is not uniformly dissolved in the solvent, uneven coating (film thickness unevenness) and pinholes may occur in the liquid crystal alignment film formed on the substrate, or linearity may not be secured at the end of the coating region. There is concern that it may not be flat. In this case, there is a risk that the product yield may be reduced, or the display performance such as liquid crystal orientation and electrical characteristics may be affected.
  • the present disclosure has been made in view of the above circumstances, and one object thereof is a liquid crystal aligning agent that can provide a liquid crystal element that has good coating properties on a substrate and that has excellent liquid crystal alignment and voltage holding ratio. Is to provide.
  • a liquid crystal aligning agent comprising a polymer [P] having a partial structure represented by the following formula (1) and having a photoalignable group.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or a monovalent organic group having 1 or more carbon atoms
  • X 1 and X 2 are each independently —OH, —NH 2 or a monovalent organic group having 1 or more carbon atoms, provided that at least one of X 1 and X 2 is “—OR 3 ” or “—NR 3 R 4 ” (provided that R 3 and R 4 Are each independently a hydrogen atom or a monovalent organic group having 1 or more carbon atoms.)
  • [2] A liquid crystal alignment film formed using the liquid crystal aligning agent of [1].
  • a liquid crystal device comprising the liquid crystal alignment film of [2].
  • [4] A polymer having a partial structure represented by the above formula (1) and having a photoalignment group.
  • the liquid crystal aligning agent containing the polymer [P] According to the liquid crystal aligning agent containing the polymer [P], a liquid crystal element excellent in liquid crystal alignment and voltage holding ratio can be obtained. Moreover, the liquid crystal aligning agent containing the said polymer [P] is excellent in the applicability
  • liquid crystal aligning agent of this indication contains the following polymer [P]. Below, each component contained in the liquid crystal aligning agent of this indication and the other component arbitrarily mix
  • the polymer [P] is a polymer having a partial structure represented by the above formula (1) (hereinafter also referred to as “structural unit U1”) and having a photoalignment group.
  • structural unit U1 a polymer having a partial structure represented by the above formula (1)
  • the said Formula (1) does not limit an isomer structure.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a boron atom, an iodine atom and the like, and a fluorine atom is preferable.
  • examples of the monovalent organic group having 1 or more carbon atoms include monovalent hydrocarbon groups having 1 to 10 carbon atoms.
  • R 1 and R 2 are preferably a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
  • the “hydrocarbon group” means a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “chain hydrocarbon group” means a linear hydrocarbon group and a branched hydrocarbon group that are composed only of a chain structure without including a cyclic structure in the main chain. However, it may be saturated or unsaturated.
  • the “alicyclic hydrocarbon group” means a hydrocarbon group that includes only an alicyclic hydrocarbon structure as a ring structure and does not include an aromatic ring structure. However, it is not necessary to be comprised only by the structure of an alicyclic hydrocarbon, The thing which has a chain structure in the part is also included.
  • “Aromatic hydrocarbon group” means a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic hydrocarbon structure.
  • examples of the monovalent organic group having 1 or more carbon atoms include a monovalent hydrocarbon group having 1 to 30 carbon atoms, and at least one methylene group of the hydrocarbon group is —O—, A group (hereinafter also referred to as “group ⁇ ”) substituted with —CO—, —COO— or —NR 16 — (wherein R 16 is a hydrogen atom or a monovalent hydrocarbon group; the same shall apply hereinafter); A monovalent hydrocarbon group having 1 to 30 carbon atoms, a group in which at least one hydrogen atom of the group ⁇ is substituted with a fluorine atom or a cyano group, a monovalent group having a photoalignment group, and a crosslinkable group Group and the like.
  • X 1 and X 2 are such that at least one of X 1 and X 2 is “—OR 3 ” or “—NR 3 R 4 ” (where R 3 and R 4 are each independently a hydrogen atom or a carbon number of 1 or more. And the same shall apply hereinafter).
  • Examples of the monovalent organic group represented by R 3 and R 4 include a monovalent hydrocarbon group, and at least one methylene group of the hydrocarbon group is —O—, —CO—, —COO—, or —NR 16 —.
  • a group (hereinafter also referred to as “group ⁇ ”), a monovalent hydrocarbon group having 1 to 30 carbon atoms, or a group in which at least one hydrogen atom of group ⁇ is substituted with a fluorine atom or a cyano group, Examples thereof include a monovalent group having a photoalignable group and a group having a crosslinkable group.
  • X 1 and X 2 are each independently “—OR 3 ” or “—NR 3 R” in that the coating property of the liquid crystal aligning agent and the effect of improving the liquid crystal orientation and electrical properties of the liquid crystal element are sufficiently high. 4 "is particularly preferred.
  • the photo-alignment group of the polymer [P] is preferably a functional group that imparts anisotropy to the film by photo-isomerization reaction, photo-dimerization reaction, photo-fleece rearrangement reaction, or photo-decomposition reaction by light irradiation.
  • the photo-alignment group include, for example, an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof (cinnamic acid structure) as a basic skeleton, chalcone, or the like
  • a chalcone-containing group containing a derivative as a basic skeleton a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton, a coumarin-containing group containing coumarin or a derivative thereof as a basic skeleton, a cyclobutane-containing structure containing cyclobutane or a derivative thereof as a basic skeleton, etc.
  • the photoalignable group is preferably a cinnamic acid structure-containing group because it is highly sensitive to light and easily introduced into a polymer side chain.
  • the photoalignable group is represented by the following formula (6).
  • a group containing a cinnamic acid structure as a basic skeleton R represents an alkyl group having 1 to 10 carbon atoms which may have a fluorine atom or a cyano group, and an alkoxy group having 1 to 10 carbon atoms which may have a fluorine atom or a cyano group.
  • A, a fluorine atom, or a cyano group, a is an integer of 0 to 4.
  • a is 2 or more, a plurality of Rs may be the same or different, and “*” represents a bond.
  • R 11 is a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group, and in the ring portion, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, at least An alkyl group having 1 to 10 carbon atoms in which one hydrogen atom is substituted with a fluorine atom or a cyano group, an alkoxy group having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom or a cyano group, fluorine
  • R 12 is a single bond
  • R 11 preferably has a fluorinated alkyl group or a cyano group-containing alkyl group.
  • the fluorinated alkyl group and the cyano group-containing alkyl group preferably have 2 to 20 carbon atoms, and more preferably 3 to 18 carbon atoms.
  • the photoalignable group may be contained in the structural unit U1 or a structural unit different from the structural unit U1 (hereinafter also referred to as “other structural unit”). May be. It is preferable that the structural unit U1 has a photoalignment group in that the effect of improving the applicability to the substrate is high while sufficiently improving the alignment characteristics and electrical characteristics of the liquid crystal element. In addition, only 1 type in the structural unit U1 and another structural unit may have a photo-alignment group, and 2 or more types of structural units may have a photo-alignment group.
  • one of X 1 and X 2 in the above formula (1) is preferably a monovalent group having a photoalignment group, and in the above formula (1)
  • One of X 1 and X 2 in the formula is a monovalent group having a photoalignable group, and the other is —OH, —OR 6 , —NH 2 , —NHR 6 or —NR 6 R 7 (where R More preferably, 6 and R 7 are each independently a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • the content ratio of the photoalignable group is preferably 1 to 70 mol%, more preferably 3 to 60 mol%, based on the total amount of monomers used for the synthesis of the polymer [P]. preferable.
  • the polymer [P] preferably has at least one of the following (x1) and (x2) in the side chain, and (x1) and (x It is particularly preferred to have x2).
  • (X1) At least one ring structure selected from the group consisting of a ring represented by the following formula (2) and a cyclic carbonate (hereinafter also referred to as “ring structure A”).
  • (X2) A functional group that reacts with at least one of an oxetanyl group and an oxiranyl group by heating (hereinafter also referred to as “reactive functional group”).
  • Y 1 is an oxygen atom, a sulfur atom, or —NR 3 — (wherein R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and R 5 is a single atom. A bond or a methylene group.)
  • the polymer [P] preferably has a ring structure A in the side chain in that a liquid crystal alignment film having high liquid crystal alignment properties can be obtained.
  • the ring represented by the formula (2) include an oxetane ring, an oxirane ring, a thiirane ring, a thietane ring, an aziridine ring, an azetidine ring, and an N-methylethyleneimine ring.
  • an oxetane ring or an oxirane ring is preferable.
  • the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • the ring structure A may be contained in any of the structural unit U1 and other structural units.
  • Other structural units have the ring structure A in that the alignment characteristics of the liquid crystal element can be improved, the amount of introduction of the ring structure A can be easily adjusted, and the degree of freedom in monomer selection is high. It is preferable.
  • only 1 type in the structural unit U1 and other structural units may have the ring structure A, and 2 or more types of structural units may have the ring structure A.
  • the content of the ring structure A is preferably 1 to 90 mol%, more preferably 2 to 80 mol%, based on the total amount of monomers used for the synthesis of the polymer [P]. .
  • the polymer [P] preferably has a reactive functional group.
  • the reactive functional group include a carboxyl group, a hydroxyl group, an isocyanate group, an amino group, a group in which each of these groups is protected with a protective group, and an alkoxymethyl group.
  • the reactive functional group has good storage stability and high reactivity by heating, and among them, from the group consisting of a carboxyl group and a protected carboxyl group (hereinafter also referred to as “protected carboxyl group”). It is preferably at least one selected.
  • the protective carboxyl group is not particularly limited as long as it is eliminated by heat to generate a carboxyl group.
  • the protected carboxyl group include a structure represented by the following formula (3), an acetal ester structure of carboxylic acid, a ketal ester structure of carboxylic acid, and the like.
  • R 31 , R 32 and R 33 are each independently an alkyl group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or R 31 and R 32 are bonded to each other to form a divalent alicyclic hydrocarbon group or cyclic ether group having 4 to 20 carbon atoms together with the carbon atom to which R 31 and R 32 are bonded; 33 is an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. “*” Represents a bond.
  • the reactive functional group may be included in any of the structural unit U1 and other structural units.
  • the structural unit U1 has a reactive functional group
  • examples of the case where the structural unit U1 has a reactive functional group include a case where at least one of X 1 and X 2 is a hydroxyl group, a case where at least one of X 1 and X 2 has a carboxyl group, and the like.
  • Other structural units react due to the high degree of freedom in monomer selection, easy adjustment of the amount of reactive functional groups introduced, and improved applicability (printability) by introducing flexible or polar structures. It preferably has a functional functional group.
  • only 1 type in structural unit U1 and another structural unit may have a reactive functional group, and 2 or more types of structural units may have a reactive functional group.
  • the content of the reactive functional group is preferably 1 to 95 mol%, more preferably 5 to 90 mol%, based on the total amount of monomers used for the synthesis of the polymer [P]. preferable.
  • the polymer [P] may be a polymer composed only of the structural unit U1, but it can sufficiently ensure the reliability of the liquid crystal element and can further enhance the stability of the alignment film during glass polishing. And a structure derived from at least one monomer selected from the group consisting of the structural unit U1 and a styrene-based monomer and a (meth) acrylic monomer in that the applicability to the substrate can be further improved.
  • a copolymer having the unit U2 is preferable.
  • the styrene monomer is a compound having a group obtained by removing at least one hydrogen atom from a benzene ring of substituted or unsubstituted styrene, and has a group represented by the following formula (z-5-1). Is preferred.
  • the (meth) acryloyl group possessed by the (meth) acrylic monomer is meant to include “acryloyl group” and “methacryloyl group”. (In the formula, “*” indicates a bond.)
  • a copolymer having a structural unit derived from a styrene monomer and a structural unit U1 is preferable.
  • the content of the structural unit U2 in the polymer [P] is preferably 1 to 95 mol% with respect to the total amount of structural units derived from the monomers constituting the polymer [P], and preferably 2 to 90 mol. % Is more preferable.
  • the content ratio of the structural unit derived from the styrene monomer is preferably 1 to 70 mol% with respect to the total amount of the structural unit derived from the monomer constituting the polymer [P]. More preferably, it is 60 mol%.
  • the polymer [P] may further have a structural unit different from the structural unit U1 and the structural unit U2 (hereinafter also referred to as “structural unit U3”).
  • the structural unit U3 is not particularly limited, and examples thereof include a structural unit derived from a conjugated diene compound, a structural unit derived from a monomer having a maleimide ring, and a structural unit derived from a maleic anhydride.
  • the content of the structural unit U3 in the polymer [P] is preferably 70 mol% or less, and 60 mol% or less with respect to the total amount of structural units derived from the monomers constituting the polymer [P]. More preferably.
  • the method for synthesizing the polymer [P] is not particularly limited, and can be performed by appropriately combining organic chemistry methods.
  • Examples of the method for synthesizing the polymer [P] include the following methods 1 to 4. Among these, it is preferable to use Method 1 or Method 4 in that the number of steps can be reduced in the production of the polymer [P].
  • Method 1 A method of polymerizing using a monomer having a group represented by the following formula (z-4-1).
  • R 9 is a hydrogen atom or a monovalent organic group having 1 or more carbon atoms.
  • “*” Represents a bond.
  • a broken line in the formula represents an isomer. Indicates that the structure is arbitrary.
  • Method 2 According to the following scheme, a polymer having a partial structure represented by the following formula (1-A) is obtained by polymerization using a monomer represented by the following formula (m-1), and then A method of reacting a polymer having a partial structure represented by the following formula (1-A) with a compound represented by the following formula (g-1).
  • Y 2 is a monovalent organic group
  • X 3 is an oxygen atom or —NR 17 — (R 17 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 5 carbon atoms).
  • R 1 , R 2 , X 1 and X 2 are as defined in the above formula (1).
  • Method 3 A polymer (half ester) having a partial structure represented by the following formula (1-B) is obtained by the following scheme, and then having a partial structure represented by the following formula (1-B) A method of reacting a polymer with a compound represented by the following formula (g-1).
  • Y 2 and X 3 are respectively synonymous with the above method 2
  • R 20 is a monovalent hydrocarbon group.
  • R 1 , R 2 and X 1 are respectively synonymous with the above formula (1). .
  • Method 4 A polymer having a partial structure represented by the following formula (1-C) is obtained by the following scheme, and then an acid anhydride group having a partial structure represented by the following formula (1-C) And a compound represented by the following formula (g-1). (Wherein, Y 2 and X 3 are each .R 1, R 2 and X 1 as defined in the above method 2 are each the above formula (1) synonymous.)
  • Method 1 a compound represented by the following formula (2A) is used, and at least one selected from the group consisting of one or more of these compounds and a styrene monomer and a (meth) acrylic monomer. It is preferable to polymerize a monomer containing.
  • R 8 is a monovalent organic group having 1 or more carbon atoms
  • R 9 is a hydrogen atom or a monovalent organic group having 1 or more carbon atoms.
  • the wavy line indicates that the isomer structure is arbitrary.
  • R 8 is preferably a monovalent organic group having a photoalignment group, and more preferably a group containing a cinnamic acid structure represented by the above formula (6) as a basic skeleton.
  • R 9 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, in terms of a high effect of improving coatability. A hydrogen atom is particularly preferred.
  • the monomer (m1) having the ring structure A is preferably a monomer having an epoxy group (including an oxetanyl group and an oxiranyl group) or a protected epoxy group.
  • Specific examples thereof include maleimide ring-containing compounds such as N- (4-glycidyloxyphenyl) maleimide and N-glycidylmaleimide.
  • Examples of (meth) acrylic monomers include glycidyl (meth) acrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, glycidyl ⁇ -n-butyl acrylate, and (meth) acrylic acid 3, 4-epoxybutyl, ⁇ -ethyl acrylate 3,4-epoxybutyl, (meth) acrylate 3,4-epoxycyclohexylmethyl, (meth) acrylate 6,7-epoxyheptyl, ⁇ -ethyl acrylate 6,7 -Epoxyheptyl, 4-hydroxybutyl glycidyl ether acrylate, (meth) acrylic acid (3-ethyloxetane-3-yl) methyl, (meth) acrylic acid (2-oxo-1,3-dioxolan-4-yl) methyl Etc.
  • styrene monomer examples include 3- (glycidyloxymethyl) styrene, 4- (glycidyloxymethyl) styrene, 4-glycidyl- ⁇ -methylstyrene, and the like.
  • these 1 type may be used individually and may be used in combination of 2 or more type.
  • the monomer (m2) having a reactive functional group include maleimide ring-containing compounds such as 3-maleimidobenzoic acid, 3-maleimidopropionic acid, 3- (2,5-dioxo-3-pyrroline- 1-yl) benzoic acid, 4- (2,5-dioxo-3-pyrrolin-1-yl) benzoic acid, methyl 4- (2,5-dioxo-3-pyrrolin-1-yl) benzoate, etc.
  • maleimide ring-containing compounds such as 3-maleimidobenzoic acid, 3-maleimidopropionic acid, 3- (2,5-dioxo-3-pyrroline- 1-yl) benzoic acid, 4- (2,5-dioxo-3-pyrrolin-1-yl) benzoic acid, methyl 4- (2,5-dioxo-3-pyrrolin-1-yl) benzoate, etc.
  • Examples of (meth) acrylic monomers include carboxyl group-containing compounds such as (meth) acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, crotonic acid, citraconic acid, mesaconic acid and itaconic acid; maleic anhydride Unsaturated polyvalent carboxylic acid anhydrides such as the following formulas (m2-1) to (m2-12) (In the formulas (m2-1) to (m2-12), R 15 represents a hydrogen atom or a methyl group.)
  • a protected carbonyl group-containing compound represented by each of Examples of the styrene monomer include 3-vinyl benzoic acid and 4-vinyl benzoic acid.
  • these 1 type can be used individually or in combination of 2 or more types.
  • the monomer (m3) having a photo-alignment group for example, the following formula (5) (In Formula (5), Z 1 is a monovalent organic group having a polymerizable unsaturated bond. R and a have the same meanings as in Formula (6), and R 11 and R 12 are in Formula (4). Is synonymous with The compound represented by these is mentioned.
  • Z 1 in the above formula (5) include groups represented by the following formulas (z-1) to (z-5).
  • the following formula (z ⁇ ) is effective in improving the coatability to the substrate (specifically, the flatness of the coating film, the wettability of the edge portion) and the layer separation property when the blend system is used.
  • the group represented by 4) is particularly preferable.
  • L 1 is a divalent linking group
  • R 13 is a hydrogen atom or a methyl group
  • R 9 is a hydrogen atom or a monovalent organic group having 1 or more carbon atoms. “*”.
  • the wavy line in formula (z-4) represents that the isomer structure is arbitrary.
  • the divalent linking group of L 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, or at least one methylene group of the hydrocarbon group The group is preferably a group substituted with —O—, —CO— or —COO—.
  • Specific examples of the hydrocarbon group for L 1 include a divalent chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • R 9 has the same meaning as in the above formula (2A).
  • the monomer (m3) having a photoalignable group include compounds represented by the above formula (2A), for example, represented by the following formulas (m3-4) to (m3-8), respectively.
  • Compound etc. examples of maleimide ring-containing compounds include compounds represented by the following formulas (m3-1) to (m3-3), (m3-14) to (m3-16), etc.
  • Examples of (meth) acrylic monomers include compounds represented by the following formulas (m3-9) to (m3-11) and (m3-13),
  • Examples of the styrenic monomer include compounds represented by the following formula (m3-12).
  • these 1 type can be used individually or in combination of 2 or more types.
  • the following formulas (m3-4) to (m3-8) do not limit the isomer structure, but include a trans isomer and a cis isomer.
  • a monomer (m3-f1) having a fluorine atom and a monomer (m3-n1) having no fluorine atom may be used.
  • the proportion of the monomer (m1) having the ring structure A is 1 to 80 mol% with respect to the total amount of the monomers used for the synthesis of the polymer [P]. It is preferably 3 to 70 mol%, more preferably 5 to 60 mol%.
  • the use ratio of the monomer (m2) having a reactive functional group is preferably 1 to 90 mol% with respect to the total amount of monomers used for the synthesis of the polymer [P]. More preferably, it is set to ⁇ 90 mol%, more preferably 10 to 80 mol%.
  • the content ratio of the monomer (m3) having a photo-alignment group is preferably 1 to 80 mol% with respect to the total amount of monomers used for the synthesis of the polymer [P]. More preferably, the molar percentage is more preferably 5 to 60 molar%.
  • a monomer having no photo-alignment group, epoxy group or reactive functional group (hereinafter, also referred to as “other monomer”) may be used in combination.
  • the other monomer include (meth) acrylic compounds such as alkyl (meth) acrylate, cycloalkyl (meth) acrylate, benzyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Aromatic vinyl compounds such as styrene, methylstyrene and divinylbenzene; Conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and the like Maleic acid compounds, maleic acid such as maleic acid and maleic anhydride, or derivatives thereof.
  • another monomer can be used individually by 1 type or in combination of 2 or more types.
  • the proportion of other monomers used is preferably 50 mol% or less, more preferably 40 mol% or less, based on the total amount of monomers used for the synthesis of the polymer [P].
  • the proportion of the compound represented by the formula (2A) is preferably 5 to 90 mol% with respect to the total amount of monomers used for the polymerization of the polymer [P]. If it is less than 5 mol%, it is difficult to sufficiently improve the solubility in the solvent for the obtained polymer. On the other hand, if it exceeds 90 mol%, the liquid crystal orientation and voltage holding ratio of the obtained liquid crystal element are low. There is a tendency to decrease.
  • the use ratio of the compound represented by the above formula (2A) is more preferably 5 to 85 mol%, further preferably 10 to 10% with respect to the total amount of monomers used for the polymerization of the polymer [P]. 80 mol%.
  • the proportion of the styrene monomer and (meth) acrylic monomer used is a polymer from the viewpoint of sufficiently ensuring the liquid crystal orientation and electrical characteristics of the liquid crystal element. It is preferably 5 to 90 mol%, more preferably 10 to 90 mol%, based on the total amount of monomers used for the polymerization of [P].
  • the polymerization reaction is preferably performed in an organic solvent in the presence of a polymerization initiator.
  • a polymerization initiator examples include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobis (4-methoxy-2). , 4-dimethylvaleronitrile) and the like are preferred.
  • the use ratio of the polymerization initiator is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all monomers used in the reaction.
  • the organic solvent to be used examples include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like.
  • the reaction temperature is preferably 30 ° C. to 120 ° C., and the reaction time is preferably 1 to 36 hours.
  • the amount of organic solvent used (a) should be such that the total amount of monomers (b) used in the reaction is 0.1 to 60% by mass relative to the total amount of reaction solution (a + b). Is preferred.
  • the reaction solution obtained by dissolving the polymer is, for example, a known simple method such as a method of pouring the reaction solution into a large amount of a poor solvent and drying the precipitate obtained under reduced pressure, or a method of distilling the reaction solution under reduced pressure with an evaporator. It is good to use for the preparation of a liquid crystal aligning agent, after isolating the polymer [P] contained in the reaction solution using a separation method.
  • the above method 1 instead of the monomer (m3) having a photoalignable group, the above formula ( The explanation of Method 1 above applies except that the compound represented by m-1) is used.
  • the proportion of the compound represented by the formula (m-1) is preferably 1 to 70 mol% based on the total amount of monomers used for the synthesis of the polymer [P]. It is more preferably 3 to 60 mol%, and further preferably 5 to 50 mol%.
  • the reaction between the [P] precursor and the compound represented by the above formula (g-1) is preferably carried out in an organic solvent.
  • the use ratio of the compound represented by the formula (g-1) is preferably 1 to 60 mol% with respect to the total amount of the compound represented by the formula (m-1). More preferably, it is 3 to 40 mol%.
  • the organic solvent to be used include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like.
  • the reaction temperature is preferably 30 ° C. to 120 ° C.
  • the reaction time is preferably 1 to 24 hours.
  • the reaction solution obtained by dissolving the polymer is, for example, a known simple method such as a method of pouring the reaction solution into a large amount of a poor solvent and drying the precipitate obtained under reduced pressure, or a method of distilling the reaction solution under reduced pressure with an evaporator. It is good to use for the preparation of a liquid crystal aligning agent, after isolating the polymer [P] contained in the reaction solution using a separation method.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polymer [P] is preferably 1,000 to 300,000, more preferably 2,000 to 100,000. It is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the number average molecular weight (Mn) in terms of polystyrene measured by GPC is preferably 10 or less, more preferably 8 or less.
  • polymer [P] used for preparation of a liquid crystal aligning agent may be only 1 type, and may combine 2 or more types.
  • the content ratio of the polymer [P] in the liquid crystal aligning agent is all that is contained in the liquid crystal aligning agent from the viewpoint of sufficiently increasing the coating property to the substrate and improving the liquid crystal aligning property and voltage holding ratio of the liquid crystal element. It is preferable to set it as 0.1 mass% or more with respect to a polymer, It is more preferable to set it as 0.5 mass% or more, It is further more preferable to set it as 1 mass% or more.
  • the upper limit of the content ratio of the polymer [P] is not particularly limited, but is preferably 90% by mass or less, and preferably 70% by mass or less with respect to the total polymer contained in the liquid crystal aligning agent. More preferably, it is more preferable to set it as 50 mass% or less.
  • liquid crystal aligning agent of this indication contains the above polymers [P], it may contain other components other than polymer [P] as needed.
  • the liquid crystal aligning agent of the present disclosure preferably further contains a polymer [Q] different from the polymer [P] from the viewpoint of further improving electrical characteristics and reliability.
  • polymers [Q] examples include polyamic acid, polyimide, polyamic acid ester, polyamide, polyorganosiloxane, and a polymer of a monomer having an unsaturated bond.
  • the polymer [Q] is a polymer having a functional group that reacts with at least one ring structure selected from the group consisting of the ring represented by the formula (2) and a cyclic carbonate
  • the polymer [P] This is preferable in that the interaction with the polymer [Q] is enhanced and the liquid crystal orientation of the obtained liquid crystal element can be further increased.
  • polymer [Q] is, among others, polyamic acid, polyamic acid ester, polyimide, and unsaturated bond It is preferably at least one selected from the group consisting of monomers having a polymer, and is at least selected from the group consisting of polyamic acid, polyamic acid ester and polyimide in that the effect of improving the voltage holding ratio is high. It is especially preferable that it is 1 type.
  • the blending ratio of the polymer [Q] is the polymer [Q] used for the preparation of the liquid crystal aligning agent from the viewpoint of expressing the effect of the blending of the polymer [Q] and the effect of the blending of the polymer [P] in a balanced manner.
  • P] 100 parts by mass or more is preferable with respect to 100 parts by mass, more preferably 100 to 2000 parts by mass, and still more preferably 200 to 1500 parts by mass.
  • polyamic acid can be obtained by reacting tetracarboxylic dianhydride and diamine.
  • the polyamic acid ester can be obtained by, for example, a method of reacting the polyamic acid obtained above with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, or the like).
  • the polyimide can be obtained, for example, by dehydrating and ring-closing the polyamic acid obtained above to imidize.
  • the imidation ratio of polyimide is preferably 20 to 95%, and more preferably 30 to 90%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage.
  • the tetracarboxylic dianhydride used for the polymerization is not particularly limited, and various tetracarboxylic dianhydrides can be used. Specific examples thereof include aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride and ethylenediaminetetraacetic acid dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1, 3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl)- 3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5 , 9b
  • the tetracarboxylic dianhydride used in the polymerization is an alicyclic tetracarboxylic acid in terms of improving the solubility of the polymer [Q] in the solvent and controlling the phase separation from the polymer [P]. It preferably contains an acid dianhydride, and more preferably contains a tetracarboxylic dianhydride having a cyclobutane ring, a cyclopentane ring or a cyclohexane ring.
  • the proportion of the alicyclic tetracarboxylic dianhydride used is preferably 5 mol% or more, more preferably 10 mol% or more, based on the total amount of tetracarboxylic dianhydride used for the polymerization. More preferably, it is 20 mol% or more.
  • diamine used in the polymerization examples include aliphatic diamines such as ethylenediamine and tetramethylenediamine; alicyclic diamines such as p-cyclohexanediamine and 4,4′-methylenebis (cyclohexylamine); hexadecanoxy Diaminobenzene, cholestanyloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, lanostannyl diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 2,5-diamino-N, N-diallylaniline, the following formulas (2-1) to (2-3) )
  • a side chain type aromatic diamine such as a compound represented by each of the following: p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylamine, 4-aminophenyl-4′-aminobenzoate, 4 , 4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,5-bis (4-aminophenoxy) pentane, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, bis (4-aminophenyl) ) Amine, N, N-bis (4-aminophenyl) methylamine, N, N′-bis (4-aminophenyl) -benzidine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2 '-Bis (trifluoromethyl) -4,4'-diaminobiphenyl,
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is preferably 1,000 to 500,000, more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw / Mn) is preferably 7 or less, more preferably 5 or less.
  • the polyamic acid, polyamic acid ester, and polyimide which are contained in the liquid crystal aligning agent may be only one kind, or may be a combination of two or more kinds.
  • the polymer of a monomer having an unsaturated bond as the polymer [Q] is, for example, a (meth) acrylic polymer, a styrene polymer, or a maleimide polymer. Etc.
  • the polymer [Q] is different from the polymer [P] in that it does not have at least one of the partial structure represented by the above formula (1) and the photo-alignment group.
  • the said polymer [Q] can be obtained according to the method similar to the said polymer [P].
  • the liquid crystal aligning agent of the present disclosure is prepared as a solution composition in which a polymer component and a component arbitrarily blended as necessary are preferably dissolved in an organic solvent.
  • organic solvent include aprotic polar solvents, phenol solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons, and the like.
  • the solvent component may be one of these or a mixed solvent of two or more.
  • organic solvent to be used include, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, N, N -Highly polar solvents such as dimethylformamide, N, N-dimethylacetamide, ethylene carbonate, propylene carbonate; 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether
  • the solvent component of the liquid crystal aligning agent generally a highly polar solvent having high solubility and leveling properties (for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, etc.) and a solvent having good wettability (such as N-methyl-2-pyrrolidone).
  • a mixed solvent with butyl cellosolve or the like is used.
  • the solvent component comprises an ether / alcohol solvent, an ester solvent, and a ketone solvent having a boiling point at 1 atm of 180 ° C. or less.
  • At least one solvent selected from the group (hereinafter also referred to as “specific solvent”) can be preferably used.
  • Specific examples of the specific solvent include ether / alcohol solvents such as propylene glycol monomethyl ether, diethylene glycol methyl ethyl ether, 3-methoxy-1-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether.
  • ether / alcohol solvents such as propylene glycol monomethyl ether, diethylene glycol methyl ethyl ether, 3-methoxy-1-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether.
  • Ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc .
  • ester solvents include propylene glycol monomethyl ether acetate and ethylene glycol ethyl ether acetate
  • ketone solvent examples include cyclobutanone, cyclopentanone, cyclohexanone, diisobutyl ketone, and the like.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • the content ratio of the specific solvent is preferably 20% by mass or more, and 40% by mass or more with respect to the total amount of the solvent contained in the liquid crystal aligning agent. Is more preferably 50% by mass or more, and particularly preferably 80% by mass or more.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
  • Other components include, for example, low molecular weight compounds having a molecular weight of 1000 or less having at least one epoxy group in the molecule (for example, ethylene glycol diglycidyl ether, N, N, N ′, N′-tetraglycidyl- m-xylenediamine, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, etc.), functional silane compounds, polyfunctional (meth) acrylates, antioxidants, metal chelate compounds, curing acceleration Agents, surfactants, fillers, dispersants, photosensitizers and the like.
  • the blending ratio of the other components can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
  • the liquid crystal alignment film of the present disclosure is formed by the liquid crystal aligning agent prepared as described above.
  • the liquid crystal element of this indication comprises the liquid crystal aligning film formed using the liquid crystal aligning agent demonstrated above.
  • the operation mode of the liquid crystal in the liquid crystal element is not particularly limited, and for example, TN type, STN type, VA type (including VA-MVA type, VA-PVA type, etc.), IPS (In-Plane Switching) type, FFS (Fringe). It can be applied to various modes such as Field Switching (OCB) type, OCB (Optically Compensated Bend) type, and PSA type (Polymer Sustained Alignment).
  • the liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. In step 1, the substrate to be used varies depending on the desired operation mode. Step 2 and step 3 are common to each operation mode.
  • a liquid crystal aligning agent is applied on a substrate, and a coating film is preferably formed on the substrate by heating the coated surface.
  • a substrate for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used.
  • a NESA film registered trademark of US PPG
  • tin oxide SnO 2
  • ITO film indium oxide-tin oxide
  • a TN type, STN type, or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode patterned in a comb shape and a counter substrate provided with no electrode are used.
  • Application of the liquid crystal aligning agent to the substrate is preferably performed on the electrode forming surface by an offset printing method, a spin coating method, a roll coater method or an ink jet printing method.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the pre-bake temperature is preferably 30 to 200 ° C.
  • the pre-bake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is performed for the purpose of thermally imidizing the amic acid structure present in the polymer.
  • the firing temperature (post-bake temperature) at this time is preferably 80 to 250 ° C., more preferably 80 to 200 ° C.
  • the post-bake time is preferably 5 to 200 minutes.
  • the polymer [P] has good solubility in a low-boiling solvent, and the liquid crystal orientation is good even when the post-baking temperature is, for example, 200 ° C. or less, preferably 180 ° C. or less, more preferably 160 ° C. or less.
  • the post-baking temperature is, for example, 200 ° C. or less, preferably 180 ° C. or less, more preferably 160 ° C. or less.
  • a liquid crystal element having excellent electrical characteristics can be obtained.
  • the thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • ⁇ Step 2 Orientation treatment>
  • a treatment (orientation treatment) for imparting liquid crystal alignment ability to the coating film formed in Step 1 is performed.
  • the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film.
  • the alignment treatment it is preferable to use a photo-alignment treatment in which the coating film formed on the substrate is irradiated with light to impart liquid crystal alignment ability to the coating film.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but in order to further enhance the liquid crystal alignment ability, An alignment treatment may be performed.
  • Light irradiation for photo-alignment is a method of irradiating the coating film after the post-baking process, a method of irradiating the coating film after the pre-baking process and before the post-baking process, a pre-baking process and a post-baking process. At least one of the methods can be performed by a method of irradiating the coating film while the coating film is heated.
  • the radiation applied to the coating film for example, ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used. Preferably, it is an ultraviolet ray containing light having a wavelength of 200 to 400 nm.
  • the radiation When the radiation is polarized light, it may be linearly polarized light or partially polarized light.
  • irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or a combination thereof.
  • the irradiation direction in the case of non-polarized radiation is an oblique direction.
  • Examples of the light source used include a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, and an excimer laser.
  • the radiation dose is preferably 400 to 50,000 J / m 2 , more preferably 1,000 to 20,000 J / m 2 .
  • the substrate surface is washed with, for example, water, an organic solvent (for example, methanol, isopropyl alcohol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, or the like) or a mixture thereof. You may perform the process to heat and the process to heat a board
  • an organic solvent for example, methanol, isopropyl alcohol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, or the like
  • ⁇ Process 3 Construction of liquid crystal cell> Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal cell is manufactured by disposing a liquid crystal between the two substrates disposed to face each other.
  • a liquid crystal cell for example, two substrates are arranged to face each other with a gap so that the liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded together using a sealant, Examples thereof include a method of injecting and filling liquid crystal in a cell gap surrounded by a sealing agent to seal the injection hole, a method using an ODF method, and the like.
  • an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • the liquid crystal include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable.
  • the PSA mode after the liquid crystal cell is constructed, a process of irradiating the liquid crystal cell with light while applying a voltage between the conductive films of the pair of substrates is performed.
  • a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary to obtain a liquid crystal element.
  • the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself.
  • the liquid crystal element of the present disclosure can be effectively applied to various applications, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors. It can be applied to various display devices such as liquid crystal televisions and information displays, light control films, retardation films and the like.
  • the content of this indication is not limited to a following example.
  • the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polymer were measured by the following methods. ⁇ Weight average molecular weight, number average molecular weight and molecular weight distribution> Mw and Mn were measured by gel permeation chromatography (GPC) under the following conditions. The molecular weight distribution (Mw / Mn) was calculated from the obtained Mw and Mn.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 30000, and the molecular weight distribution Mw / Mn was 3.
  • Example 1 ⁇ Manufacture and evaluation of vertical optical liquid crystal display element> [Example 1] 1.
  • a liquid crystal aligning agent (AL-1) was prepared by filtering this solution through a filter having a pore diameter of 1 ⁇ m.
  • the liquid crystal aligning agent (AL-1) prepared above was coated on a glass substrate using a spinner, prebaked on a hot plate at 80 ° C. for 1 minute, and then the interior was purged with nitrogen 230 By heating (post-baking) for 30 minutes in an oven at 0 ° C., a coating film was formed so that the average film thickness was 0.1 ⁇ m.
  • This coating film was observed with a microscope having a magnification of 100 times and 10 times to examine the presence or absence of film thickness unevenness and pinholes. Evaluation is “good (A)” when neither film thickness unevenness nor pinhole is observed even when observed with a 100 ⁇ microscope, and at least one of film thickness unevenness and pinhole is observed with a 100 ⁇ microscope.
  • the liquid crystal aligning agent (AL-1) prepared above was applied onto a transparent electrode surface on a glass substrate with a transparent electrode made of an ITO film using a liquid crystal alignment film coating printer, and dried as described above. .
  • the edge part “good (A)” when the linearity is high and a flat surface, “good (B)” when the linearity is high but uneven, there are unevenness, And when there was a liquid return from the edge (low linearity), it was set as “defect (C)”. As a result, it was judged as “good (A)” in this example.
  • liquid crystal aligning agent (AL-1) prepared above was applied to the transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a spinner, and a hot plate at 80 ° C. And pre-baked for 1 minute. Then, it heated at 230 degreeC for 1 hour in the oven which substituted the inside with nitrogen, and formed the coating film with a film thickness of 0.1 micrometer. Next, the surface of the coating film was irradiated with polarized ultraviolet rays of 1,000 J / m 2 containing a 313 nm emission line from a direction inclined by 40 ° from the substrate normal using a Hg—Xe lamp and a Grand Taylor prism. Was granted.
  • the same operation was repeated to prepare a pair (two) of substrates having a liquid crystal alignment film.
  • an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 ⁇ m was applied to the outer periphery of the surface having one liquid crystal alignment film of the above substrates by screen printing, the liquid crystal alignment film surfaces of the pair of substrates are made to face each other.
  • the adhesive was pressure-bonded so that the projection direction of the optical axis of the ultraviolet ray of each substrate onto the substrate surface was antiparallel, and the adhesive was thermally cured at 150 ° C. for 1 hour.
  • a negative liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was filled into the gap between the substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment at the time of liquid crystal injection, this was heated at 130 ° C. and then gradually cooled to room temperature. Next, the polarizing plates are bonded to both outer surfaces of the substrate so that the polarization directions thereof are orthogonal to each other and form an angle of 45 ° with the projection direction of the optical axis of the liquid crystal alignment film onto the substrate surface. Thus, a liquid crystal display element was manufactured.
  • MLC-6608 manufactured by Merck & Co., Inc.
  • VHR voltage holding ratio
  • the liquid crystal aligning agent (AL-1) prepared above was applied to the transparent electrode surface of the glass substrate with a transparent electrode made of an ITO film using a spinner, and the hot plate at 80 ° C. for 1 minute. Pre-baked. Then, it heated at 230 degreeC for 1 hour in the oven which substituted the inside with nitrogen, and formed the coating film with a film thickness of 0.1 micrometer. Next, the surface of the coating film was irradiated with polarized ultraviolet rays of 1,000 J / m 2 containing a 313 nm emission line from a direction inclined by 40 ° from the substrate normal using a Hg—Xe lamp and a Grand Taylor prism. It was.
  • a liquid crystal display element (this was obtained by performing the same operation as described above except that the NMP-containing petri dish and the substrate were not allowed to stand in a stainless steel bat. "Element B”) was manufactured. Subsequently, the pretilt angles of the two liquid crystal display elements are determined in accordance with a method described in non-patent literature (TJ Scheffer et. Al. J. Appl. Phys. Vo. 19. p2013 (1980)). Each measurement was performed by a crystal rotation method using laser light, and a tilt difference ⁇ was obtained by the following mathematical formula (2).
  • (( ⁇ 1 ⁇ 2) / ⁇ 1) ⁇ 100 (2)
  • ⁇ 1 is the pretilt angle of element B
  • ⁇ 2 is the pretilt angle of element A.
  • Examples 2-6, 9-12 and Comparative Examples 1, 2, 5 Except having changed the composition as shown in Table 2 below, preparation was performed at the same solid content concentration as in Example 1 to obtain liquid crystal aligning agents.
  • each liquid crystal aligning agent was used to evaluate the applicability of the liquid crystal aligning agent in the same manner as in Example 1, and in the same manner as in Example 1, an optical vertical liquid crystal display element was manufactured and subjected to various evaluations. It was.
  • the results are shown in Table 4 below.
  • Table 4 below the observation results of film thickness unevenness and pinholes are shown in the “applicability” column, the observation results of edge portions are shown in the “edge shape” column, and the evaluation results based on the variations in film thickness are shown.
  • Examples 13 to 15 and Comparative Example 6 The solid content concentration (4.0) was the same as in Example 1 except that the type and amount of the polymer blended in the liquid crystal aligning agent were changed as shown in Table 3 below, and the solvent composition was changed as shown in Table 3 below.
  • the liquid crystal aligning agent was obtained respectively.
  • each liquid crystal aligning agent was used to evaluate the applicability of the liquid crystal aligning agent in the same manner as in Example 1, and in the same manner as in Example 1, an optical vertical liquid crystal display element was manufactured and subjected to various evaluations. It was. The results are shown in Table 4 below. In Comparative Example 6, since the solubility of the polymer was low, and the liquid crystal aligning agent could not be prepared with the target solvent composition, the evaluation was poor.
  • Example 7 ⁇ Manufacture and evaluation of PSA type liquid crystal display element> [Example 7] 1. Preparation of Liquid Crystal Alignment Agent (AL-7) 100 parts by mass of the polymer (P-5) obtained in Synthesis Example 2-5 and the polymer obtained in Synthesis Example 2-11 (the polymer used) PAA) A liquid crystal aligning agent (AL-7) was prepared with the same solvent composition and solid content concentration as in Example 1 except that the amount was changed to 1000 parts by mass. 2. Evaluation of coatability The coatability was evaluated in the same manner as in Example 1 except that (AL-7) was used instead of (AL-1) as the liquid crystal aligning agent. As a result, in this example, the applicability was evaluated as “B”. The evaluation of the edge shape was “A”, and the evaluation of the film thickness uniformity was “B”.
  • Liquid Crystal Composition 5% by mass of a liquid crystal compound represented by the following formula (L1-1) and 10% of nematic liquid crystal (MLC-6608, manufactured by Merck) and represented by the following formula (L2-1)
  • L1-1 a liquid crystal compound represented by the following formula (L1-1)
  • MLC-6608, manufactured by Merck nematic liquid crystal
  • L2-1 nematic liquid crystal
  • the liquid crystal alignment agent (AL-7) prepared above is applied to each electrode surface of two glass substrates each having a conductive film made of ITO electrodes. After the solvent was removed by heating (prebaking) for 2 minutes on an 80 ° C. hot plate, heating (post baking) was performed for 10 minutes on a 150 ° C. hot plate to obtain an average. A coating film having a thickness of 0.06 ⁇ m was formed. These coating films were subjected to ultrasonic cleaning for 1 minute in ultrapure water, and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a pair (two) of substrates having a liquid crystal alignment film. The used electrode pattern is the same type as the electrode pattern in the PSA mode.
  • an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 ⁇ m is applied to the outer edge of the surface having the liquid crystal alignment film of one of the pair of substrates, and then the liquid crystal alignment film surfaces are overlapped with each other.
  • the adhesive was cured by pressing together.
  • the liquid crystal composition LC1 prepared above was filled between the pair of substrates from the liquid crystal inlet, and then the liquid crystal inlet was sealed with an acrylic photo-curing adhesive to produce a liquid crystal cell.
  • an alternating current of 10 Hz is applied between the conductive films of the liquid crystal cell, and the liquid crystal is driven, and an ultraviolet irradiation device using a metal halide lamp as the light source is used, and the irradiation amount is 100,000 J / m 2 . And irradiated with ultraviolet rays. In addition, this irradiation amount is the value measured using the light meter measured on the basis of wavelength 365nm.
  • the polarizing plates are bonded to both outer surfaces of the substrate so that the polarization directions thereof are orthogonal to each other and form an angle of 45 ° with the projection direction of the optical axis of the liquid crystal alignment film onto the substrate surface.
  • a liquid crystal display device was manufactured.
  • Example 3 A liquid crystal aligning agent (BL-3) was obtained in the same manner as in Example 1 except that the formulation was changed as shown in Table 2 below. In addition, the liquid crystal aligning agent (BL-3) was used to evaluate the applicability of the liquid crystal aligning agent in the same manner as in Example 1, and a PSA type liquid crystal display device was manufactured in the same manner as in Example 7. Various evaluations were performed in the same manner as in Example 1. The evaluation results are shown in Table 4 below.
  • Example 8 ⁇ Manufacture and evaluation of optical horizontal liquid crystal display element> [Example 8] 1. Preparation of Liquid Crystal Alignment Agent (AL-8) 100 parts by mass of the polymer (P-6) obtained in Synthesis Example 2-6 and the polymer obtained in Synthesis Example 2-11 (the polymer used) PAA) A liquid crystal aligning agent (AL-8) was prepared with the same solvent composition and solid content concentration as in Example 1 except that the amount was changed to 1000 parts by mass.
  • liquid crystal aligning agent (AL-8) prepared above was applied to the transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a spinner, and a hot plate at 80 ° C. And pre-baked for 1 minute. Then, it heated at 230 degreeC for 1 hour in the oven which substituted the inside with nitrogen, and formed the coating film with a film thickness of 0.1 micrometer. Next, the surface of the coating film was irradiated with polarized ultraviolet light 1,000 J / m 2 containing a 313 nm emission line from a direction inclined by 90 ° from the substrate normal line using a Hg—Xe lamp and a Grand Taylor prism, and polarized ultraviolet light.
  • liquid crystal MLC-7028-100, manufactured by Merck & Co., Inc.
  • MLC-7028-100 positive liquid crystal
  • this was heated at 130 ° C. and then gradually cooled to room temperature.
  • the polarizing plates are bonded to both outer surfaces of the substrate so that the polarization directions thereof are orthogonal to each other and form an angle of 90 ° with the projection direction of the optical axis of the liquid crystal alignment film onto the substrate surface.
  • a liquid crystal display element was manufactured.
  • a liquid crystal aligning agent (BL-4) was obtained in the same manner as in Example 1 except that the formulation was changed as shown in Table 2 below.
  • the liquid crystal aligning agent (BL-4) was used to evaluate the applicability of the liquid crystal aligning agent in the same manner as in Example 1, and an optical horizontal liquid crystal display device was manufactured and implemented in the same manner as in Example 8.
  • Various evaluations were performed in the same manner as in Example 1. The evaluation results are shown in Table 4 below.
  • the values in the polymer column indicate the blending ratio (parts by mass) of the polymer (PAA) with respect to 100 parts by mass of the polymer [P] used in the preparation of the liquid crystal aligning agent for Examples 2 to 12.
  • Comparative Example 5 shows the blending ratio (parts by mass) of the polymer (PAA) with respect to 100 parts by mass of the polymer (R-5) used for preparing the liquid crystal aligning agent.
  • the solid content concentration of the liquid crystal aligning agent is the same (4.0% by mass) in all examples. “-” Means that the polymer in the corresponding column was not used.
  • the solid content concentration of the liquid crystal aligning agent is the same in all examples (4.0% by mass). “-” Means that the polymer in the corresponding column was not used.
  • the numerical values of the solvent 1 and the solvent 2 indicate the use ratio (% by mass) of each compound with respect to the total amount of the solvent used for preparing the liquid crystal aligning agent. Abbreviations for solvents have the following meanings.
  • PGME Propylene glycol monomethyl ether
  • PGMEA Propylene glycol monomethyl ether acetate
  • EDM Diethylene glycol methyl ethyl ether
  • CHN Cyclohexanone
  • BC Butyl cellosolve
  • Comparative Example 1 in which a polymer using a maleimide ring-containing compound as a monomer instead of the polymer [P] was used as a polymer component, the coating was evaluated based on the presence or absence of film thickness unevenness and pinholes. Property was “C”, edge shape was “B”, and film thickness uniformity was “C”.
  • Comparative Example 4 the applicability evaluated based on the film thickness unevenness and the presence or absence of pinholes was “B”, but the film thickness uniformity was “C”, the liquid crystal alignment was “C”, and the voltage holding ratio. Was “D”.
  • the edge shape and the lay-off resistance in the applicability were inferior to those in Example 7.
  • Comparative Example 5 the edge shape, film thickness uniformity, liquid crystal orientation, and voltage holding ratio were evaluated as “C”.
  • Comparative Example 6 is an example in which the solvent composition of Comparative Example 1 was changed to a low boiling point solvent, but in Comparative Example 6, the polymer was not sufficiently dissolved and was inferior to Examples 13-15. From these results, according to the liquid crystal aligning agent containing the polymer [P], it is excellent in coating property (film thickness unevenness and presence / absence of pinholes, edge shape, film thickness uniformity), liquid crystal alignment property, and voltage holding ratio. It was found that a liquid crystal alignment film can be formed. In addition, the liquid crystal aligning agent containing the polymer [P] was also excellent in holding resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Emergency Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

式(1)で表される部分構造を有し、かつ光配向性基を有する重合体[P]を液晶配向剤に含有させる。式(1)中、R及びRは、それぞれ独立に水素原子、ハロゲン原子又は炭素数1以上の1価の有機基であり、X及びXは、それぞれ独立に、-OH、-NH、又は炭素数1以上の1価の有機基である。ただし、X及びXの少なくとも一方は、「-OR」又は「-NR」(R及びRは、それぞれ独立に水素原子又は炭素数1以上の1価の有機基)である。

Description

液晶配向剤、液晶配向膜、液晶素子及び重合体 関連出願の相互参照
 本出願は、2016年10月20日に出願された日本出願番号2016-206306号、及び2017年5月1日に出願された日本出願番号2017-091428号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶配向剤、液晶配向膜、液晶素子及び重合体に関する。
 液晶素子としては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型などに代表される、正の誘電異方性を有するネマチック液晶を用いる水平配向モードの液晶素子や、負の誘電異方性を有するネマチック液晶を用いる垂直(ホメオトロピック)配向モードのVA(Vertical Alignment)型の液晶素子など、各種液晶素子が知られている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。
 一般に、液晶配向膜は、重合体成分が有機溶媒に溶解されてなる液晶配向剤を基板に塗布し、加熱することにより形成される。液晶配向剤の重合体成分としては、機械的強度や液晶配向性、液晶との親和性に優れていることから、ポリアミック酸や可溶性ポリイミドが一般に使用されている。
 液晶配向剤によって形成された高分子薄膜に液晶配向能を付与する方法としては、ラビング法に代わる技術として光配向法が提案されている。光配向法は、基板上に形成した感放射線性の有機薄膜に対し、偏光又は非偏光の放射線を照射することによって膜に異方性を与え、これにより液晶の配向を制御する方法である。この方法によれば、従来のラビング法に比べて、工程内での埃や静電気の発生を抑制することができ、表示不良の発生や歩留まりの低下を抑制することが可能である。また、基板上に形成された有機薄膜に対して、液晶配向能を均一に付与できるといったメリットもある。
 光配向法によって液晶配向膜を形成するための液晶配向剤としては、従来、種々の重合体組成物が提案されている。例えば、重合体成分として、ポリアミック酸や可溶性ポリイミドとは異なる主骨格からなる重合体を用いた光配向用の液晶配向剤が提案されている(例えば、特許文献1や特許文献2参照)。特許文献1には、ポリ(マレイミド)、ポリ(マレイミド-スチレン)を主鎖とし、側鎖に感光性基が導入された第1高分子と、側鎖に長鎖アルキル基を有する第2高分子とを含む光配向性組成物が開示されている。また、特許文献2には、スチレン骨格を主鎖とし桂皮酸構造を側鎖に有する構造単位と、マレイミド骨格を主鎖とし桂皮酸構造を側鎖に有する構造単位とを有する共重合体を含む液晶配向剤が開示されている。
特許第2962473号公報 特許第3612308号公報
 液晶配向膜を形成する際に高温での加熱が必要になると基板の材料が制約され、例えば液晶素子の基板としてフィルム基材を適用することが制限されることがある。また、カラー液晶表示素子において、カラーフィルタ用の着色剤として用いられる染料は熱に比較的弱く、膜形成時の加熱を高温で行う必要がある場合には、染料の使用が制限されることがある。こうした問題に対し近年では、液晶配向剤の溶剤成分として低沸点溶剤を使用することが求められることがある。しかしながら、液晶配向剤の重合体成分に対する溶解性が十分に高く、かつ沸点が十分に低い溶剤は限られているのが実情である。また、重合体成分が溶剤に均一に溶解されないと、基板上に形成した液晶配向膜に塗布ムラ(膜厚ムラ)やピンホールが生じたり、塗布領域の端部において直線性を確保できなかったり平坦面とならなかったりすることが懸念される。この場合、製品歩留まりが低下したり、液晶配向性や電気特性等の表示性能に影響が及んだりするおそれがある。
 液晶配向剤中の重合体成分の溶剤に対する溶解性を改善する方法としては、例えばマレイミド系ポリマーのように、ポリアミック酸や可溶性ポリイミドとは異なる重合体成分を用いることが考えられる。しかしながら、特許文献1や特許文献2に記載のマレイミド系ポリマーは比較的剛直な構造であり、溶剤に対する溶解性の点で未だ改善の余地がある。
 特に近年では、大画面で高精細な液晶テレビが主体となり、またスマートフォンやタブレットPC等といった小型の表示端末の普及が進み、液晶パネルに対する高品質化の要求は更に高まりつつある。そのため、液晶配向性及び電気特性を更に改善し、優れた表示品位を確保することが重要である。
 本開示は上記事情に鑑みてなされたものであり、その一つの目的は、基板に対する塗布性が良好であり、かつ液晶配向性及び電圧保持率に優れた液晶素子を得ることができる液晶配向剤を提供することにある。
 本開示によれば、以下の手段が提供される。
[1] 下記式(1)で表される部分構造を有し、かつ光配向性基を有する重合体[P]を含有する、液晶配向剤。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びRは、それぞれ独立に水素原子、ハロゲン原子又は炭素数1以上の1価の有機基であり、X及びXは、それぞれ独立に、-OH、-NH又は炭素数1以上の1価の有機基である。ただし、X及びXの少なくとも一方は、「-OR」又は「-NR」(ただし、R及びRは、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。)である。)
[2] 上記[1]の液晶配向剤を用いて形成された液晶配向膜。
[3] 上記[2]の液晶配向膜を具備する液晶素子。
[4] 上記式(1)で表される部分構造を有し、かつ光配向性基を有する重合体。
 上記重合体[P]を含有する液晶配向剤によれば、液晶配向性及び電圧保持率に優れた液晶素子を得ることができる。また、上記重合体[P]を含有する液晶配向剤は、基板に対する塗布性に優れており、よって製品歩留まりの低下を抑制することができる。また、溶剤成分として低沸点溶剤を用いた場合にも、基板に対する塗布性(膜厚ムラやピンホールの抑制、塗布領域の端部の直線性や平坦性の確保)に優れ、かつ液晶配向性及び電気特性が良好な液晶素子を得ることができる。
≪液晶配向剤≫
 本開示の液晶配向剤は、下記の重合体[P]を含有する。以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
<重合体[P]>
 重合体[P]は、上記式(1)で表される部分構造(以下、「構造単位U1」ともいう。)を有し、かつ光配向性基を有する重合体である。なお、上記式(1)は異性体構造を限定するものでない。
(構造単位U1)
 上記式(1)中のR及びRについて、ハロゲン原子としては、例えばフッ素原子、塩素原子、ホウ素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。炭素数1以上の1価の有機基としては、炭素数1~10の1価の炭化水素基などが挙げられる。R及びRは、好ましくは水素原子、フッ素原子又は炭素数1~3のアルキル基である。
 ここで、本明細書において「炭化水素基」は、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
 X及びXについて、炭素数1以上の1価の有機基としては、例えば炭素数1~30の1価の炭化水素基、当該炭化水素基の少なくとも1個のメチレン基が-O-、-CO-、-COO-又は-NR16-(ただし、R16は水素原子又は1価の炭化水素基。以下についても同じ。)で置換された基(以下「基α」ともいう。)、炭素数1~30の1価の炭化水素基又は基αの少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された基、光配向性基を有する1価の基、架橋性基を有する基などが挙げられる。
 X及びXは、X及びXのうち少なくとも一方が「-OR」又は「-NR」(ただし、R及びRは、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。以下同じ。)である。R及びRの1価の有機基としては、例えば1価の炭化水素基、当該炭化水素基の少なくとも1個のメチレン基が-O-、-CO-、-COO-又は-NR16-で置換された基(以下「基β」ともいう。)、炭素数1~30の1価の炭化水素基又は基βの少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された基、光配向性基を有する1価の基、架橋性基を有する基などが挙げられる。液晶配向剤の塗布性や、液晶素子の液晶配向性及び電気特性の改善効果が十分に高い点で、X及びXの両方が、それぞれ独立に「-OR」又は「-NR」であることが特に好ましい。
(光配向性基)
 重合体[P]が有する光配向性基は、光照射による光異性化反応、光二量化反応、光フリース転位反応又は光分解反応によって膜に異方性を付与する官能基であることが好ましい。当該光配向性基の具体例としては、例えば、アゾベンゼン又はその誘導体を基本骨格として含むアゾベンゼン含有基、桂皮酸又はその誘導体(桂皮酸構造)を基本骨格として含む桂皮酸構造含有基、カルコン又はその誘導体を基本骨格として含むカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含むベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として含むクマリン含有基、シクロブタン又はその誘導体を基本骨格として含むシクロブタン含有構造等が挙げられる。光に対する感度が高い点や、重合体側鎖に導入しやすい点で、光配向性基は、中でも、桂皮酸構造含有基であることが好ましく、具体的には、下記式(6)で表される桂皮酸構造を基本骨格として含む基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式(6)中、Rは、フッ素原子若しくはシアノ基を有していてもよい炭素数1~10のアルキル基、フッ素原子若しくはシアノ基を有していてもよい炭素数1~10のアルコキシ基、フッ素原子、又はシアノ基である。aは0~4の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。「*」は結合手を示す。)
 上記式(6)で表される構造において、2つの結合手「*」の一方は、下記式(4)で表される基に結合していることが好ましい。この場合、得られる液晶素子の液晶配向性をより高めることができ好適である。
Figure JPOXMLDOC01-appb-C000006
(式(4)中、R11は、フェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基であり、環部分に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、少なくとも1個の水素原子がフッ素原子若しくはシアノ基で置換された炭素数1~10のアルキル基、少なくとも1個の水素原子がフッ素原子若しくはシアノ基で置換された炭素数1~10のアルコキシ基、フッ素原子、又はシアノ基を有していてもよい。R12は、式(6)中のフェニル基に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-であり、式(6)中のカルボニル基に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。「*」は結合手を示す。)
 上記式(4)で表される基は、R11が、フッ素化アルキル基又はシアノ基含有アルキル基を有していることが好ましい。フッ素化アルキル基及びシアノ基含有アルキル基は、炭素数2~20が好ましく、炭素数3~18がより好ましい。
 重合体[P]において、光配向性基は、構造単位U1が有していてもよいし、構造単位U1とは異なる構造単位(以下、「その他の構造単位」ともいう。)が有していてもよい。液晶素子の配向特性と電気特性の改善効果を十分に得つつ、基板に対する塗布性の改善効果が高い点で、構造単位U1が光配向性基を有していることが好ましい。なお、構造単位U1及びその他の構造単位のうちの1種のみが光配向性基を有していてもよく、2種以上の構造単位が光配向性基を有していてもよい。
 重合体[P]としては、これらのうち、上記式(1)中のX及びXのうち一方が光配向性基を有する1価の基であることが好ましく、上記式(1)中のX及びXのうち一方が光配向性基を有する1価の基であって、他方が-OH、-OR、-NH、-NHR又は-NR(ただし、R及びRはそれぞれ独立に炭素数1~6の1価の炭化水素基)であることがより好ましい。特に、X及びXのいずれかが水酸基である場合、塗布性の改善効果が高く好適である。
 光配向性基の含有割合は、重合体[P]の合成に使用する単量体の合計量に対して、1~70モル%であることが好ましく、3~60モル%であることがより好ましい。
 重合体[P]は、本開示の効果を十分に得るために、以下に示す(x1)及び(x2)のうち少なくともいずれかを側鎖に有していることが好ましく、(x1)及び(x2)を有していることが特に好ましい。
 (x1)下記式(2)で表される環及び環状カーボネートよりなる群から選ばれる少なくとも一種の環構造(以下、「環構造A」ともいう。)
 (x2)加熱によりオキセタニル基及びオキシラニル基の少なくとも一方と反応する官能基(以下、「反応性官能基」ともいう。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Yは、酸素原子、硫黄原子又は-NR-(ただし、Rは水素原子又は炭素数1~6のアルキル基である。)であり、Rは、単結合又はメチレン基である。)
(環構造A)
 重合体[P]は、高い液晶配向性を示す液晶配向膜を得ることができる点で環構造Aを側鎖に有することが好ましい。
 上記式(2)で表される環としては、例えばオキセタン環、オキシラン環、チイラン環、チエタン環、アジリジン環、アゼチジン環、N-メチルエチレンイミン環等が挙げられる。これらのうち、オキセタン環又はオキシラン環であることが好ましい。環状カーボネートとしては、例えばエチレンカーボネート、プロピレンカーボネート等が挙げられる。
 重合体[P]において、環構造Aは、構造単位U1及びその他の構造単位のいずれが有していてもよい。液晶素子の配向特性をより良好にすることができる点や、環構造Aの導入量を調整しやすい点、モノマーの選択の自由度が高い点で、その他の構造単位が環構造Aを有していることが好ましい。なお、構造単位U1及びその他の構造単位のうちの1種のみが環構造Aを有していてもよく、2種以上の構造単位が環構造Aを有していてもよい。環構造Aの含有割合は、重合体[P]の合成に使用する単量体の合計量に対して、1~90モル%であることが好ましく、2~80モル%であることがより好ましい。
(反応性官能基)
 液晶配向性の改善効果を十分に得る観点から、重合体[P]は反応性官能基を有していることが好ましい。反応性官能基としては、例えばカルボキシル基、水酸基、イソシアネート基及びアミノ基、並びにこれら各基が保護基で保護された基、アルコキシメチル基等が挙げられる。反応性官能基は、保存安定性が良好であり、かつ加熱による反応性が高い点で、中でも、カルボキシル基及び保護されたカルボキシル基(以下、「保護カルボキシル基」ともいう。)よりなる群から選ばれる少なくとも一種であることが好ましい。
 保護カルボキシル基は、熱によって脱離してカルボキシル基を生成するものであれば特に限定されない。保護カルボキシル基の好ましい具体例としては、下記式(3)で表される構造、カルボン酸のアセタールエステル構造、カルボン酸のケタールエステル構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式(3)中、R31,R32及びR33は、それぞれ独立に炭素数1~10のアルキル基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又は、R31とR32とが相互に結合してR31及びR32が結合している炭素原子とともに炭素数4~20の2価の脂環式炭化水素基又は環状エーテル基を形成し、かつR33が炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数6~20のアリール基である。「*」は結合手であることを示す。)
 重合体[P]において、反応性官能基は、構造単位U1及びその他の構造単位のいずれが有していてもよい。構造単位U1が反応性官能基を有する場合としては、X及びXの少なくとも一方が水酸基である場合、X及びXの少なくとも一方がカルボキシル基を有する場合等が挙げられる。モノマーの選択の自由度が高い点や、反応性官能基の導入量を調整しやすい点、柔軟あるいは極性構造の導入により塗布性(印刷性)が改良される点で、その他の構造単位が反応性官能基を有していることが好ましい。なお、構造単位U1及びその他の構造単位のうちの1種のみが反応性官能基を有していてもよく、2種以上の構造単位が反応性官能基を有していてもよい。反応性官能基の含有割合は、重合体[P]の合成に使用する単量体の合計量に対して、1~95モル%であることが好ましく、5~90モル%であることがより好ましい。
(その他の構造単位)
 重合体[P]は、構造単位U1のみからなる重合体であってもよいが、液晶素子の信頼性を十分に確保できる点、ガラス研磨時の配向膜の安定性をより高めることができる点、及び基板に対する塗布性をより高めることができる点で、構造単位U1と、スチレン系単量体及び(メタ)アクリル系単量体よりなる群から選ばれる少なくとも一種の単量体に由来する構造単位U2と、を有する共重合体であることが好ましい。
・構造単位U2
 スチレン系単量体は、置換又は無置換のスチレンのベンゼン環から少なくとも1個の水素原子を取り除いた基を有する化合物であり、下記式(z-5-1)で表される基を有することが好ましい。(メタ)アクリル系単量体が有する(メタ)アクリロイル基は、「アクリロイル基」及び「メタクリロイル基」を含む意味である。
Figure JPOXMLDOC01-appb-C000009
(式中、「*」は結合手であることを示す。)
 重合体[P]としては、これらのうち、基板に対する塗布性により優れ、かつ電圧保持率がより改善された液晶素子を得ることができる点、更に側鎖の熱的安定性を確保できる点で、スチレン系単量体に由来する構造単位と構造単位U1とを有する共重合体であることが好ましい。
 重合体[P]中における構造単位U2の含有割合は、重合体[P]を構成するモノマーに由来する構造単位の全量に対して、1~95モル%であることが好ましく、2~90モル%であることがより好ましい。また、スチレン系単量体に由来する構造単位の含有割合は、重合体[P]を構成するモノマーに由来する構造単位の全量に対して、1~70モル%であることが好ましく、3~60モル%であることがより好ましい。
・構造単位U3
 重合体[P]は、構造単位U1及び構造単位U2とは異なる構造単位(以下、「構造単位U3」ともいう。)をさらに有していてもよい。構造単位U3としては特に限定されないが、例えば共役ジエン化合物に由来する構造単位、マレイミド環を有する単量体に由来する構造単位、マレイン酸無水物に由来する構造単位等が挙げられる。重合体[P]中における構造単位U3の含有割合は、重合体[P]を構成するモノマーに由来する構造単位の全量に対して、70モル%以下とすることが好ましく、60モル%以下とすることがより好ましい。
(重合体[P]の合成)
 重合体[P]を合成する方法は特に限定されず、有機化学の定法を適宜組み合わせることによって行うことができる。重合体[P]の合成方法としては、例えば、以下の方法1~4が挙げられる。これらのうち、重合体[P]の製造に際して工程数を少なくできる点で、方法1又は方法4を用いることが好ましい。
・方法1;下記式(z-4-1)で表される基を有する単量体を用いて重合する方法。
Figure JPOXMLDOC01-appb-C000010
(式(z-4-1)中、Rは、水素原子又は炭素数1以上の1価の有機基である。「*」は結合手であることを示す。式中の破線は異性体構造が任意であることを表す。)
・方法2;下記スキームに従い、下記式(m-1)で表される単量体を用いた重合により、下記式(1-A)で表される部分構造を有する重合体を得て、次いで、下記式(1-A)で表される部分構造を有する重合体と、下記式(g-1)で表される化合物と反応させる方法。
Figure JPOXMLDOC01-appb-C000011
(式中、Yは1価の有機基であり、Xは、酸素原子又は-NR17-(R17は水素原子又は炭素数1~5の1価の炭化水素基である。)である。R、R、X及びXは、それぞれ上記式(1)と同義である。)
・方法3;下記スキームにより、下記式(1-B)で表される部分構造を有する重合体(ハーフエステル)を得て、次いで、下記式(1-B)で表される部分構造を有する重合体と、下記式(g-1)で表される化合物と反応させる方法。
Figure JPOXMLDOC01-appb-C000012
(式中、Y及びXは、それぞれ上記方法2と同義であり、R20は1価の炭化水素基である。R、R及びXは、それぞれ上記式(1)と同義である。)
・方法4;下記スキームにより、下記式(1-C)で表される部分構造を有する重合体を得て、次いで、下記式(1-C)で表される部分構造が有する酸無水物基と、下記式(g-1)で表される化合物と反応させる方法。
Figure JPOXMLDOC01-appb-C000013
(式中、Y及びXは、それぞれ上記方法2と同義である。R、R及びXは、それぞれ上記式(1)と同義である。)
(方法1について)
 方法1では、下記式(2A)で表される化合物を用い、この化合物の一種又は二種以上と、スチレン系単量体及び(メタ)アクリル系単量体よりなる群から選ばれる少なくとも一種と、を含むモノマーを重合することが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(2A)中、Rは、炭素数1以上の1価の有機基であり、Rは、水素原子又は炭素数1以上の1価の有機基である。式(2A)中の波線は異性体構造が任意であることを表す。)
 上記式(2A)において、R及びRの1価の有機基としては、上記式(1)におけるR及びRの1価の有機基の説明が適用される。Rは、好ましくは光配向性基を有する1価の有機基であり、上記式(6)で表される桂皮酸構造を基本骨格として含む基であることがより好ましい。Rは、塗布性の改善効果が高い点で、水素原子又は炭素数1~6の1価の炭化水素基であることが好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子が特に好ましい。
 方法1により、重合体[P]として光配向性基、環構造A及び反応性官能基を有する重合体を得る場合、光配向性基、環構造A及び反応性官能基の導入効率が高い点で、重合モノマーとして、環構造Aを有する単量体(m1)、反応性官能基を有する単量体(m2)、及び光配向性基を有する単量体(m3)を用いた重合とすることが好ましい。
 環構造Aを有する単量体(m1)は、エポキシ基(オキセタニル基及びオキシラニル基を含む。)又は保護されたエポキシ基を有する単量体が好ましい。その具体例としては、マレイミド環含有化合物として、例えばN-(4-グリシジルオキシフェニル)マレイミド、N-グリシジルマレイミド等を、
(メタ)アクリル系単量体として、例えば(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル、α-エチルアクリル酸3,4-エポキシブチル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸6,7-エポキシヘプチル、α-エチルアクリル酸6,7-エポキシヘプチル、アクリル酸4-ヒドロキシブチルグリシジルエーテル、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、(メタ)アクリル酸(2-オキソー1,3-ジオキソラン-4-イル)メチル等を、
スチレン系単量体として、例えば、3-(グリシジルオキシメチル)スチレン、4-(グリシジルオキシメチル)スチレン、4-グリシジル-α-メチルスチレン等を、それぞれ挙げることができる。なお、単量体(m1)としては、これらの1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 反応性官能基を有する単量体(m2)の具体例としては、マレイミド環含有化合物として、例えば3-マレイミド安息香酸、3-マレイミドプロピオン酸、3-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸、4-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸、4-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸メチル等等を、
(メタ)アクリル系単量体として、例えば(メタ)アクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、クロトン酸、シトラコン酸、メサコン酸、イタコン酸等のカルボキシル基含有化合物;無水マレイン酸等の不飽和多価カルボン酸無水物;下記式(m2-1)~式(m2-12)
Figure JPOXMLDOC01-appb-C000015
(式(m2-1)~式(m2-12)中、R15は水素原子又はメチル基である。)
のそれぞれで表される保護カルボニル基含有化合物等を、
スチレン系単量体として、例えば3-ビニル安息香酸、4-ビニル安息香酸等を、それぞれ挙げることができる。なお、単量体(m2)としては、これらの1種を単独で又は2種以上を組み合わせて使用することができる。
 光配向性基を有する単量体(m3)としては、例えば下記式(5)
Figure JPOXMLDOC01-appb-C000016
(式(5)中、Zは、重合性不飽和結合を有する1価の有機基である。R及びaは上記式(6)と同義であり、R11及びR12は上記式(4)と同義である。)
で表される化合物が挙げられる。
 上記式(5)のZの具体例としては、下記式(z-1)~式(z-5)のそれぞれで表される基が挙げられる。これらのうち、基板に対する塗布性(具体的には、塗膜の平坦性、エッジ部の濡れ性)や、ブレンド系とした場合の層分離性の改善効果が高い点で、下記式(z-4)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000017
(式中、Lは2価の連結基である。R13は、水素原子又はメチル基であり、Rは、水素原子又は炭素数1以上の1価の有機基である。「*」は結合手を示す。式(z-4)中の波線は異性体構造が任意であることを表す。)
 上記式(z-1)~式(z-5)において、Lの2価の連結基は、炭素数1~20の2価の炭化水素基、又は当該炭化水素基の少なくとも1個のメチレン基が-O-、-CO-、-COO-で置換された基であることが好ましい。Lの炭化水素基として具体的には、例えば2価の鎖状炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられる。Rは上記式(2A)と同義である。
 光配向性基を有する単量体(m3)の具体例としては、上記式(2A)で表される化合物として、例えば下記式(m3-4)~(m3-8)のそれぞれで表される化合物等を、
マレイミド環含有化合物として、例えば下記式(m3-1)~(m3-3)、(m3-14)~(m3-16)のそれぞれで表される化合物等を、
(メタ)アクリル系単量体として、例えば下記式(m3-9)~(m3-11)、(m3-13)のそれぞれで表される化合物等を、
スチレン系単量体として、例えば下記式(m3-12)で表される化合物等を、挙げることができる。単量体(m3)としては、これらの1種を単独で又は2種以上を組み合わせて使用することができる。なお、下記式(m3-4)~式(m3-8)は異性体構造を限定するものではなく、トランス体及びシス体を含む。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 光配向性基を有する単量体(m3)としては、フッ素原子を有する単量体(m3-f1)と、フッ素原子を有さない単量体(m3-n1)とを用いてもよい。
 重合体[P]の合成に際し、環構造Aを有する単量体(m1)の使用割合は、重合体[P]の合成に使用する単量体の全量に対して、1~80モル%とすることが好ましく、3~70モル%とすることがより好ましく、5~60モル%とすることが更に好ましい。
 また、反応性官能基を有する単量体(m2)の使用割合は、重合体[P]の合成に使用する単量体の全量に対して、1~90モル%とすることが好ましく、5~90モル%とすることがより好ましく、10~80モル%とすることが更に好ましい。
 光配向性基を有する単量体(m3)の含有割合は、重合体[P]の合成に使用する単量体の全量に対して、1~80モル%とすることが好ましく、3~70モル%とすることがより好ましく、5~60モル%とすることが更に好ましい。
 上記重合に際しては、光配向性基、エポキシ基及び反応性官能基のいずれも有さない単量体(以下、「その他の単量体」ともいう。)を併用してもよい。その他の単量体としては、例えば、(メタ)アクリル酸アルキル、(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-エチルヘキシル等の(メタ)アクリル系化合物;スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン化合物;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド系化合物、マレイン酸、マレイン酸無水物等のマレイン酸又はその誘導体等が挙げられる。なお、その他の単量体は、1種を単独で又は2種以上を組み合わせて使用することができる。その他の単量体の使用割合は、重合体[P]の合成に使用する単量体の全量に対して、50モル%以下とすることが好ましく、40モル%以下とすることがより好ましい。
 上記重合において、上記式(2A)で表される化合物の使用割合は、重合体[P]の重合に使用する単量体の全量に対して、5~90モル%とすることが好ましい。5モル%未満とすると、得られる重合体につき、溶剤に対する溶解性の改善効果が十分に得られにくく、一方、90モル%を超えると、得られる液晶素子につき、液晶配向性及び電圧保持率が低下する傾向がある。上記式(2A)で表される化合物の使用割合は、重合体[P]の重合に使用する単量体の全量に対して、より好ましくは5~85モル%であり、さらに好ましくは10~80モル%である。
 スチレン系単量体及び(メタ)アクリル系単量体の使用割合(2種以上使用する場合はその合計量)は、液晶素子の液晶配向性及び電気特性を十分に確保する観点から、重合体[P]の重合に使用する単量体の全量に対して、5~90モル%とすることが好ましく、10~90モル%とすることがより好ましい。
 上記重合反応は、好ましくは重合開始剤の存在下、有機溶媒中で行われる。使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物が好ましい。重合開始剤の使用割合は、反応に使用する全モノマー100質量部に対して、0.01~30質量部とすることが好ましい。使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物等が挙げられる。
 上記重合反応において、反応温度は30℃~120℃とすることが好ましく、反応時間は1~36時間とすることが好ましい。有機溶媒の使用量(a)は、反応に使用するモノマーの合計量(b)が、反応溶液の全体量(a+b)に対して、0.1~60質量%になるような量にすることが好ましい。重合体を溶解してなる反応溶液は、例えば、反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて、反応溶液中に含まれる重合体[P]を単離したうえで液晶配向剤の調製に供するとよい。
(方法2~4について)
 方法2~4では、上記式(m-1)で表される化合物を用い、この化合物の一種又は二種以上と、スチレン系単量体及び(メタ)アクリル系単量体よりなる群から選ばれる少なくとも一種と、を含むモノマーを重合することが好ましい。
 方法2~4により、重合体[P]として光配向性基、環構造A及び反応性官能基を有する重合体を得る場合、光配向性基、環構造A及び反応性官能基の導入効率を高くする観点から、まず、環構造Aを有する単量体(m1)と、反応性官能基を有する単量体(m2)と、上記式(m-1)で表される化合物とを用いた重合により、上記式(1-C)で表される部分構造を有する重合体を得て、方法2及び方法3の場合には無水マレイン酸を開環させた後、次いで、得られた重合体(以下、「[P]前駆体」ともいう。)と、上記式(g-1)においてYが光配向性基を有する基である化合物と、を反応させる方法によることが好ましい。
 上記式(1-C)で表される部分構造を有する重合体を得るための重合反応については、上記方法1において、光配向性基を有する単量体(m3)に代えて、上記式(m-1)で表される化合物を使用する以外は上記方法1の説明が適用される。重合に際し、上記式(m-1)で表される化合物の使用割合は、重合体[P]の合成に使用する単量体の全量に対して、1~70モル%とすることが好ましく、3~60モル%とすることがより好ましく、5~50モル%とすることが更に好ましい。
 [P]前駆体と、上記式(g-1)で表される化合物との反応は、好ましくは有機溶媒中で行われる。上記式(g-1)で表される化合物の使用割合は、上記式(m-1)で表される化合物の使用量の合計量に対して、1~60モル%とすることが好ましく、3~40モル%とすることがより好ましい。
 使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物等が挙げられる。上記反応において、反応温度は30℃~120℃とすることが好ましく、反応時間は1~24時間とすることが好ましい。
 重合体を溶解してなる反応溶液は、例えば、反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて、反応溶液中に含まれる重合体[P]を単離したうえで液晶配向剤の調製に供するとよい。
 なお、重合体[P]を含有する液晶配向剤を用いることによって基板に対する塗布性、液晶配向性及び電気特性の改善効果を高くできる理由は定かではないが、重合体の主鎖周りに極性基が比較的多く存在していることで重合体の溶剤に対する溶解性が向上し、これにより基板に対する塗布性が向上するとともに、液晶配向性及び電気特性に優れた液晶素子が得られたことが一つの理由として推察される。特に、重合体の主鎖周りにカルボキシル基やアミノ基が残存する場合には、架橋点間の分子量が低下したことによって液晶配向性及び電気特性に優れた液晶素子が得られたものと推察される。ただし、これはあくまでも推測であり、本開示の内容を限定するものではない。
 重合体[P]のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~300,000であり、より好ましくは2,000~100,000である。Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは10以下であり、より好ましくは8以下である。なお、液晶配向剤の調製に使用する重合体[P]は、1種のみでもよく、2種以上を組み合わせてもよい。
 液晶配向剤中における重合体[P]の含有割合は、基板に対する塗布性を十分に高くし、かつ液晶素子の液晶配向性及び電圧保持率を良好にする観点から、液晶配向剤に含まれる全重合体に対して、0.1質量%以上とすることが好ましく、0.5質量%以上とすることがより好ましく、1質量%以上とすることがさらに好ましい。また、重合体[P]の含有割合の上限値は特に制限されないが、液晶配向剤に含まれる全重合体に対して、90質量%以下とすることが好ましく、70質量%以下とすることがより好ましく、50質量%以下とすることがさらに好ましい。
<その他の成分>
 本開示の液晶配向剤は、上記の如き重合体[P]を含有するが、必要に応じて、重合体[P]以外のその他の成分を含有していてもよい。
(重合体[Q])
 本開示の液晶配向剤は、電気特性や信頼性をさらに良好にする観点から、重合体[P]とは異なる重合体[Q]をさらに含有していることが好ましい。
 重合体[Q]としては、例えば、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミド、ポリオルガノシロキサン、不飽和結合を有する単量体の重合体等が挙げられる。重合体[Q]を、上記式(2)で表される環及び環状カーボネートよりなる群から選ばれる少なくとも一種の環構造と反応する官能基を有する重合体とした場合、重合体[P]と重合体[Q]との相互作用が高まり、得られる液晶素子の液晶配向性をより高くできる点で好適である。
 重合体[Q]は、電気特性の改善や液晶との親和性、機械的強度、重合体[P]との親和性の観点から、中でも、ポリアミック酸、ポリアミック酸エステル、ポリイミド、及び不飽和結合を有する単量体の重合体よりなる群から選択される少なくとも一種であることが好ましく、電圧保持率の改善効果が高い点で、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選択される少なくとも一種であることが特に好ましい。
 重合体[Q]の配合割合は、重合体[Q]の配合による効果と、重合体[P]の配合による効果とをバランス良く発現させる観点から、液晶配向剤の調製に使用する重合体[P]100質量部に対して、100質量部以上とすることが好ましく、100~2000質量部とすることがより好ましく、200~1500質量部とすることがさらに好ましい。
・ポリアミック酸、ポリアミック酸エステル及びポリイミド
 液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドは、従来公知の方法に従って合成することができる。例えば、ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。ポリアミック酸エステルは、例えば、上記で得られたポリアミック酸とエステル化剤(例えばメタノールやエタノール、N,N-ジメチルホルムアミドジエチルアセタール等)とを反応させる方法等により得ることができる。ポリイミドは、例えば、上記で得られたポリアミック酸を脱水閉環してイミド化することにより得ることができる。なお、ポリイミドは、そのイミド化率が20~95%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。
 重合に使用するテトラカルボン酸二無水物としては、特に限定されず、種々のテトラカルボン酸二無水物を使用することができる。それらの具体例としては、ブタンテトラカルボン酸二無水物、エチレンジアミン四酢酸二無水物等の脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)等の芳香族テトラカルボン酸二無水物、等を挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、テトラカルボン酸二無水物は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 重合に使用するテトラカルボン酸二無水物は、重合体[Q]の溶剤に対する溶解性を良好にする点、及び重合体[P]との相分離性を制御する点で、脂環式テトラカルボン酸二無水物を含むことが好ましく、シクロブタン環、シクロペンタン環又はシクロヘキサン環を有するテトラカルボン酸二無水物を含むことがより好ましい。脂環式テトラカルボン酸二無水物の使用割合は、重合に使用するテトラカルボン酸二無水物の全量に対して、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることがさらに好ましい。
 また、上記重合に使用するジアミンとしては、例えば、エチレンジアミン、テトラメチレンジアミン等の脂肪族ジアミン;p-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン;ヘキサデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、2,5-ジアミノ-N,N-ジアリルアニリン、下記式(2-1)~式(2-3)
Figure JPOXMLDOC01-appb-C000022
のそれぞれで表される化合物等の側鎖型の芳香族ジアミン;p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,5-ビス(4-アミノフェノキシ)ペンタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン等の非側鎖型の芳香族ジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、等を挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。なお、ジアミンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドにつき、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。なお、液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドは、1種のみでもよく、又は2種以上を組み合わせてもよい。
・不飽和結合を有する単量体の重合体
 重合体[Q]としての不飽和結合を有する単量体の重合体は、例えば(メタ)アクリル系重合体、スチレン系重合体、マレイミド系重合体等が挙げられる。ただし、重合体[Q]は、上記式(1)で表される部分構造及び光配向性基のうち少なくともいずれかを有さない点で重合体[P]と相違する。当該重合体[Q]は、上記重合体[P]と同様の方法に従って得ることができる。
(溶剤)
 本開示の液晶配向剤は、重合体成分、及び必要に応じて任意に配合される成分が、好ましくは有機溶媒に溶解された溶液状の組成物として調製される。当該有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素等が挙げられる。溶剤成分は、これらの1種でもよく、2種以上の混合溶媒であってもよい。
 使用する有機溶媒の具体例としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、エチレンカーボネート、プロピレンカーボネート等の高極性溶剤;や、
4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル等を挙げることができる。これらは、1種を単独で又は2種以上を混合して使用することができる。
 液晶配向剤の溶剤成分としては一般に、溶解性及びレベリング性が高い高極性溶剤(例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン等)と、濡れ広がり性が良好な溶剤(例えばブチルセロソルブ等)との混合溶剤が使用される。
 一方、プラスチック基材用や低温焼成用の液晶配向剤とする場合、溶剤成分としては、1気圧での沸点が180℃以下であるエーテル/アルコール系溶剤、エステル系溶剤、及びケトン系溶剤よりなる群から選ばれる少なくとも一種の溶剤(以下、「特定溶剤」ともいう。)を好ましく使用することができる。
 特定溶剤の具体例としては、エーテル/アルコール系溶剤として、例えばプロピレングリコールモノメチルエーテル、ジエチレングリコールメチルエチルエーテル、3-メトキシ-1-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等を;
エステル系溶剤として、例えばプロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート等を;
ケトン系溶剤として、例えばシクロブタノン、シクロペンタノン、シクロヘキサノン、ジイソブチルケトン等を、それぞれ挙げることができる。なお、特定溶剤としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 液晶配向剤中の溶剤成分として特定溶剤を用いる場合、特定溶剤の含有割合は、液晶配向剤中に含まれる溶剤の全体量に対して、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
 その他の成分としては、上記のほか、例えば分子内に少なくとも一つのエポキシ基を有する分子量1000以下の低分子化合物(例えば、エチレングリコールジグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等)、官能性シラン化合物、多官能(メタ)アクリレート、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等が挙げられる。その他の成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
≪液晶配向膜及び液晶素子≫
 本開示の液晶配向膜は、上記のように調製された液晶配向剤により形成される。また、本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子における液晶の動作モードは特に限定されず、例えばTN型、STN型、VA型(VA-MVA型、VA-PVA型などを含む。)、IPS(In-Plane Switching)型、FFS(Fringe Field Switching)型、OCB(Optically Compensated Bend)型、PSA型(Polymer Sustained Alignment)など種々のモードに適用することができる。液晶素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
<工程1:塗膜の形成>
 先ず基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた電極が設けられている基板と、電極が設けられていない対向基板とを用いる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法により行う。
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~250℃であり、より好ましくは80~200℃である。ポストベーク時間は、好ましくは5~200分である。特に、重合体[P]は低沸点溶剤に対する溶解性についても良好であり、ポストベーク温度を例えば200℃以下、好ましくは180℃以下、より好ましくは160℃以下にした場合にも、液晶配向性及び電気特性に優れた液晶素子を得ることが可能な点で好適である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。
<工程2:配向処理>
 TN型、STN型、IPS型又はFFS型の液晶素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理を用いることが好ましい。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、液晶配向能を更に高めるために、該塗膜に対し配向処理を施してもよい。
 光配向のための光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて塗膜の加熱中に塗膜に対して照射する方法、等により行うことができる。塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200~400nmの波長の光を含む紫外線である。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線の場合の照射方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等が挙げられる。放射線の照射量は、好ましくは400~50,000J/mであり、より好ましくは1,000~20,000J/mである。配向能付与のための光照射後において、基板表面を例えば水、有機溶媒(例えば、メタノール、イソプロピルアルコール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル等)又はこれらの混合物を用いて洗浄する処理や、基板を加熱する処理を行ってもよい。
<工程3:液晶セルの構築>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、液晶配向膜が対向するように間隙を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面とシール剤で囲まれたセルギャップ内に液晶を注入充填し注入孔を封止する方法、ODF方式による方法等が挙げられる。シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。PSAモードでは、液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行う。
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせ、液晶素子とする。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。
 本開示の液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等に適用することができる。
 以下、実施例により具体的に説明するが、本開示の内容は以下の実施例に限定されるものではない。
 以下の例において、重合体の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は以下の方法により測定した。
<重量平均分子量、数平均分子量及び分子量分布>
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記条件でMw及びMnを測定した。また、分子量分布(Mw/Mn)は、得られたMw及びMnより算出した。
  装置:昭和電工(株)の「GPC-101」
  GPCカラム:(株)島津ジーエルシー製の「GPC-KF-801」、「GPC-KF-802」、「GPC-KF-803」及び「GPC-KF-804」を結合
  移動相:テトラヒドロフラン(THF)
  カラム温度:40℃
  流速:1.0mL/分
  試料濃度:1.0質量%
  試料注入量:100μL
  検出器:示差屈折計
  標準物質:単分散ポリスチレン
 下記の例で使用した化合物を以下に示す。なお、以下では便宜上、「式(X)で表される化合物」を単に「化合物(X)」と示す場合がある。
(光配向性基導入モノマー)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(環構造含有モノマー)
Figure JPOXMLDOC01-appb-C000025
(反応性官能基含有モノマー)
Figure JPOXMLDOC01-appb-C000026
(その他)
Figure JPOXMLDOC01-appb-C000027
<モノマーの合成>
[合成例1-1]
 下記スキーム1に従って化合物(MI-1)を合成した。
Figure JPOXMLDOC01-appb-C000028
・化合物(M-1-1)の合成
 攪拌子を入れた2000mL三つ口フラスコに(4-アミノフェニル)メタノール12.3gを取り、テトラヒドロフランを200g加えて氷浴した。そこに、無水こはく酸9.81gとテトラヒドロフラン200gからなる溶液を滴下し、室温で3時間攪拌した。その後、析出してきた黄色固体濾過により回収した。この黄色固体を真空乾燥することで化合物(M-1-1)を21.0g得た。
・化合物(M-1-2)の合成
 攪拌子を入れた500mL三つ口フラスコに化合物(M-1-1)を17.7g、塩化亜鉛(II)を10.9g、トルエンを250g加え、80℃に加熱撹拌した。そこに、ビス(トリメチルシリル)アミン23.2gとトルエン100gからなる溶液を滴下し、80℃で5時間撹拌した。その後、反応液に酢酸エチル300gを加え1mol/L塩酸で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回分液洗浄した。その後、有機層をロータリーエバポレータにより、内容量が50gになるまでゆっくり濃縮し、途中で析出してきた白色固体を濾過により回収した。この白色固体を真空乾燥することで化合物(M-1-2)を8.13g得た。
・化合物(MI-1)の合成
 攪拌子を入れた100mLナスフラスコに(E)-3-(4-((4-(4,4,4-トリフルオロブトキシ)ベンゾイル)オキシ)フェニル)アクリル酸11.8g、塩化チオニル20g、N,N-ジメチルホルムアミド0.01gを加え,80℃で1時間攪拌した。その後、過剰の塩化チオニルをダイヤフラムポンプで除去し、テトラヒドロフランを100g加え、溶液Aとした。
 新たに、攪拌子を入れた500mL三口フラスコに化合物(M-1-2)を6.09g、テトラヒドロフラン200g、トリエチルアミン12.1gを加え、氷浴した。そこに溶液Aを滴下し、室温で3時間撹拌した。反応液を水800mLで再沈殿し、得られた白色固体を真空乾燥することで化合物(MI-1)を13.7g得た。
[合成例1-2]
 下記スキーム2に従って化合物(MI-2)を合成した。
Figure JPOXMLDOC01-appb-C000029
・化合物(M-2-1)の合成
 攪拌子を入れた2000mL三つ口フラスコに4-(4-アミノフェニル)ブタン-1-オール16.5g、テトラヒドロフランを1000g取り、トリエチルアミンを15.1g加え、氷浴した。そこに、二炭酸t-ブチル24.0gとテトラヒドロフラン100gからなる溶液を滴下し、室温で10時間攪拌した後、反応液に酢酸エチル300gを加え、蒸留水200gで4回分液洗浄した。その後、有機層をロータリーエバポレータにより、内容量が100gになるまでゆっくり濃縮し、途中で析出してきた白色固体を濾過により回収した。この白色固体を真空乾燥することで化合物(M-2-1)を25.2g得た。
・化合物(M-2-2)の合成
 攪拌子を入れた2000mL三つ口フラスコに化合物(M-2-1)を21.2g、(E)-3-(4-((4-(4,4,4-トリフルオロブトキシ)ベンゾイル)オキシ)フェニル)アクリル酸を31.5g取り、ジクロロメタンを1000g加え、氷浴した。そこに、N,N-ジメチルアミノピリジン1.95g、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩23.0gの順で加え、室温で8時間攪拌した後、蒸留水500gで4回分液洗浄した。その後、有機層をロータリーエバポレータにより、内容量が100gになるまでゆっくり濃縮し、途中で析出してきた白色固体を濾過により回収した。この白色固体を真空乾燥することで化合物(M-2-2)を33.2g得た。
・化合物(M-2-3)の合成
 攪拌子を入れた300mLナスフラスコに化合物(M-2-2)を27.3g、トリフルオロ酢酸を28.5g取り、ジクロロメタンを50g加え、室温で1時間攪拌した。その後、飽和炭酸水素ナトリウム水溶液により中和した後、蒸留水50gで4回分液洗浄した。その後、有機層をロータリーエバポレータにより、内容量が50gになるまでゆっくり濃縮し、途中で析出してきた白色固体を濾過により回収した。この白色固体を真空乾燥することで化合物(M-2-3)を26.5g得た。
・化合物(MI-2)の合成
 出発物質として化合物(M-2-3)を用いて、化合物(M-1-1)と同様の合成処方により化合物(MI-2)を得た。
[合成例1-3]
 下記スキーム3に従って化合物(MI-3)を合成した。
Figure JPOXMLDOC01-appb-C000030
・化合物(MI-3)の合成
 出発物質として3-(4-((4-(ペンチルオキシ)ベンゾイル)オキシ)フェニル)アクリル酸、及び、1-(2-ヒドロキシエチル)-1H-ピロール-2,5-ジオンを用いて、化合物(MI-1)と同様の合成処方により化合物(MI-3)を得た。
[合成例1-4]
 上記化合物(MI-2)の合成の要領で、側鎖に化合物(MI-3)と同様の側鎖構造を持つマレイン酸アミド化合物(MI-3A)を得た。
<重合体の合成>
[合成例2-1]
 窒素下、100mL二口フラスコに、重合モノマーとして、上記合成例1-2で得られた化合物(MI-2)5.50g(8.6mmol)、4-ビニル安息香酸0.64g(4.3mmol)、4-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸2.82g(13.0mmol)、及び4-(グリシジルオキシメチル)スチレン3.27g(17.2mmol)、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.31g(1.3mmol)、連鎖移動剤として2,4-ジフェニル-4-メチル-1-ペンテン0.52g(2.2mmol)、並びに溶媒としてテトラヒドロフラン25mlを加え、70℃で5時間重合した。n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することで目的の重合体(P-1)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは30000、分子量分布Mw/Mnは3であった。
[合成例2-2~2-9及び比較合成例1~5]
 重合モノマーを下記表1に示す種類及びモル比とした以外は合成例2-1と同様に重合を行い、重合体(P-1)と同等の重量平均分子量及び分子量分布の重合体(P-2)~(P-9)及び重合体(R-1)~(R-5)の各重合体を得た。なお、重合モノマーの総モル数は、上記合成例2-1と同様に43.1mmolとした。表1中の数値は、重合体の合成に使用した全モノマーに対する各モノマーの仕込み量[モル%]を表す。
Figure JPOXMLDOC01-appb-T000031
[合成例2-10]
 重合モノマーを上記表1に示す種類及びモル比とした以外は、合成例2-1と同様に重合を行い、重合体(P-1)と同等の重量平均分子量及び分子量分布の無水物基含有重合体を得た。得られた重合体に対して更に、下記式(M-2-3)で表される光配向性基含有モノアミンを、モノマーの仕込み量の合計量に対して20モル%加えて、目的とする重合体(P-10)を得た。
Figure JPOXMLDOC01-appb-C000032
[合成例2-11]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物13.8g(70.0mmol)、ジアミンとして2,2’-ジメチル-4,4’-ジアミノビフェニル16.3g(76.9mmol)をNMP170gに溶解し、25℃で3時間反応を行うことにより、ポリアミック酸を10質量%含有する溶液を得た。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PAA)を得た。
<光垂直型液晶表示素子の製造及び評価>
[実施例1]
1.液晶配向剤(AL-1)の調製
 重合体[P]として上記合成例2-1で得た重合体(P-1)100質量部に、溶剤としてNMP及びブチルセロソルブ(BC)を加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-1)を調製した。
2.塗布性の評価
 上記で調製した液晶配向剤(AL-1)を、ガラス基板上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した230℃のオーブンで30分間加熱(ポストベーク)することにより、平均膜厚が0.1μmとなるように塗膜を形成した。この塗膜を倍率100倍及び10倍の顕微鏡で観察して膜厚ムラ及びピンホールの有無を調べた。評価は、100倍の顕微鏡で観察しても膜厚ムラ及びピンホールの双方とも観察されなかった場合に「良好(A)」、100倍の顕微鏡では膜厚ムラ及びピンホールの少なくともいずれかが観察されたが、10倍の顕微鏡では膜厚ムラ及びピンホールの双方とも観察されなかった場合に「可(B)」、10倍の顕微鏡で膜厚ムラ及びピンホールの少なくともいずれかが明確に観察された場合に「不良(C)」とした。この実施例では、100倍の顕微鏡でも膜厚ムラ及びピンホールの双方とも観察されず、塗布性は「良好(A)」の評価であった。
 更に詳細な塗布性の評価として、エッジ部分(形成された塗膜の外縁部分)での塗布性の評価を実施した。上記で調製した液晶配向剤(AL-1)を、液晶配向膜塗布用印刷機を用いて、ITO膜からなる透明電極付きガラス基板の上に透明電極面に塗布し、上記の要領で乾燥した。エッジ部分の形状及び平坦性を観察し、直線性が高くかつ平坦面である場合に「良好(A)」、直線性は高いが凸凹がある場合に「可(B)」、凸凹があり、かつエッジからの液戻りがある(直線性が低い)場合に「不良(C)」とした。その結果、この実施例では「良好(A)」と判断された。
 また更に、触針式膜厚計を用いて、塗膜の面内の4点において膜厚を測定し、測定値のバラツキ(平均膜厚δ(δ=0.1μm)との差)により膜厚均一性を評価した。評価は、4点の測定値が平均膜厚δに対して±25Åの範囲内にあり、均一な膜厚が得られた場合に「良好(A)」、平均膜厚δに対して±25Åの範囲から外れた測定値があったものの、4点の測定値全てが平均膜厚δに対して±50Åの範囲内にあった場合に「可(B)」、平均膜厚δに対して±50Åの範囲から外れた測定値があり、測定値のバラツキが大きかった場合に「不良(C)」とした。その結果、この実施例では、「良好(A)」の評価であった。
3.光垂直型液晶表示素子の製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-1)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線1,000J/mを、基板法線から40°傾いた方向から照射して液晶配向能を付与した。同じ操作を繰り返して、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうちの1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、各基板の紫外線の光軸の基板面への投影方向が逆平行となるように圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、液晶注入口より基板間の間隙にネガ型液晶(メルク社製、MLC-6608)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを130℃で加熱してから室温まで徐冷した。次に、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と45°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を光学顕微鏡により観察し、異常ドメインがない場合を「良好(A)」、一部に異常ドメインがある場合を「可(B)」、全体的に異常ドメインがある場合を「不良(C)」として液晶配向性を評価した。その結果、この実施例では液晶配向性は「良好(A)」であった。
5.電圧保持率(VHR)の評価
 上記で製造した液晶表示素子につき、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。測定装置は(株)東陽テクニカ製VHR-1を使用した。このとき、電圧保持率が95%以上の場合に「優良(A)」、80%以上95%未満の場合に「良好(B)」、50%以上80%未満の場合に「可(C)」、50%未満の場合に「不良(D)」とした。その結果、この実施例では電圧保持率は「良好(B)」の評価であった。
6.引き置き耐性の評価
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-1)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線1,000J/mを、基板法線から40°傾いた方向から照射して液晶配向膜とした。同じ操作を繰り返して、液晶配向膜を有する一対の基板を2組(合計4枚)作成した。
 ステンレス製バット(約20cm×30cm)の中に、上記で作成した基板のうち一対の基板(2枚)と、NMPを入れたシャーレと、を入れ、基板及びシャーレを入れたステンレス製バットをアルミホイルで覆い、25℃で2時間静置した後に基板を取り出した。その後、取り出した一対の基板を用い、上記の「3.光垂直型液晶表示素子の製造」と同様の方法により液晶表示素子(これを「素子A」とする。)を製造した。
 また、もう1組の一対の基板については、ステンレス製バット中にNMP入りシャーレと基板とを静置する処理を行わなかった以外は、上記と同様の操作を行うことにより液晶表示素子(これを「素子B」とする。)を製造した。
 続いて、2個の液晶表示素子のプレチルト角を、非特許文献(T. J. Scheffer et. al. J. Appl. Phys. vo. 19. p2013(1980))に記載の方法に準拠し、He-Neレーザー光を用いる結晶回転法によりそれぞれ測定し、下記数式(2)によりチルト差Δθを求めた。
 Δθ=((θ1-θ2)/θ1)×100   …(2)
(数式(2)中、θ1は素子Bのプレチルト角であり、θ2は素子Aのプレチルト角である。)
 Δθが5%以下の場合に「良好(A)」、5%以上10%未満の場合に「可(B)」、10%以上の場合に「不良(C)」とした。その結果、この実施例では引き置き耐性は「良好(A)」の評価であった。
[実施例2~6,9~12及び比較例1,2,5]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤をそれぞれ得た。また、それぞれの液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例1と同様にして光垂直型液晶表示素子を製造して各種評価を行った。それらの結果を下記表4に示した。なお、下記表4では、膜厚ムラ及びピンホールの観察結果を「塗布性」の欄に示し、エッジ部分の観察結果を「エッジ形状」の欄に示し、膜厚のバラツキに基づく評価結果を「膜厚均一性」の欄に示している。比較例2は重合体の溶解性が低く、目的とする溶剤組成で液晶配向剤の調製ができず評価不良であった。このため、表4には「×」と記した。
[実施例13~15及び比較例6]
 液晶配向剤に配合する重合体の種類及び量を下記表3に示す通りに変更するとともに、溶剤組成を下記表3に示す通りに変更した以外は実施例1と同じ固形分濃度(4.0質量%)で調製を行い、液晶配向剤をそれぞれ得た。また、それぞれの液晶配向剤を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例1と同様にして光垂直型液晶表示素子を製造して各種評価を行った。それらの結果を下記表4に示した。なお、比較例6は重合体の溶解性が低く、目的とする溶剤組成で液晶配向剤の調製ができず評価不良であったため、表4には「×」と記した。
<PSA型液晶表示素子の製造及び評価>
[実施例7]
1.液晶配向剤(AL-7)の調製
 使用する重合体を、上記合成例2-5で得た重合体(P-5)を100質量部、及び上記合成例2-11で得た重合体(PAA)1000質量部に変更した以外は、上記実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-7)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-7)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では塗布性は「B」の評価であった。また、エッジ形状の評価は「A」であり、膜厚均一性の評価は「B」であった。
3.液晶組成物の調製
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、下記式(L1-1) で表される液晶性化合物を5質量%、及び下記式(L2-1)で表される光重合性化合物 を0.3質量%、を添加して混合することにより液晶組成物LC1を得た。
Figure JPOXMLDOC01-appb-C000033
4.PSA型液晶表示素子の製造
 上記で調製した液晶配向剤(AL-7)を、ITO電極からなる導電膜をそれぞれ有するガラス基板2枚の各電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で2分間加熱(プレベーク)して溶媒を除去した後、150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.06μmの塗膜を形成した。これら塗膜につき、超純水中で1分間超音波洗浄を行った後、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を一対(2枚)得た。なお、使用した電極のパターンは、PSAモードにおける電極パターンと同種のパターンである。
 次いで、上記一対の基板のうち一方の基板の液晶配向膜を有する面の外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、上記で調製した液晶組成物LC1を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。その後、液晶セルの導電膜間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、100,000J/mの照射量にて紫外線を照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて測定した値である。その後、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と45°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
5.液晶配向性の評価
 上記で製造したPSA型液晶表示素子につき、上記実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
6.電圧保持率(VHR)の評価
 上記で製造したPSA型液晶表示素子につき、上記実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
7.引き置き耐性の評価
 上記で製造したPSA型液晶表示素子につき、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[比較例3]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤(BL-3)を得た。また、液晶配向剤(BL-3)を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例7と同様にしてPSA型液晶表示素子を製造し、実施例1と同様にして各種評価を行った。評価結果を下記表4に示した。
<光水平型液晶表示素子の製造及び評価>
[実施例8]
1.液晶配向剤(AL-8)の調製
 使用する重合体を、上記合成例2-6で得た重合体(P-6)を100質量部、及び上記合成例2-11で得た重合体(PAA)1000質量部に変更した以外は、上記実施例1と同じ溶媒組成及び固形分濃度で液晶配向剤(AL-8)を調製した。
2.塗布性の評価
 液晶配向剤を(AL-1)の代わりに(AL-8)を用いた以外は上記実施例1と同様にして塗布性の評価を行った。その結果、この実施例では塗布性は「B」の評価であった。また、エッジ形状の評価は「A」であり、膜厚均一性の評価は「B」であった。
3.光水平型液晶表示素子の製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(AL-8)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線1,000J/mを、基板法線から90°傾いた方向から照射するとともに、偏光紫外線の照射後、150℃で10分間、ホットプレートにて加熱処理を行った。これら一連の操作を繰り返して、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうちの1枚の液晶配向膜を有する面の外周に直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、各基板の紫外線の光軸の基板面への投影方向が水平となるように圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、液晶注入口より基板間の間隙にポジ型液晶(メルク社製、MLC-7028-100)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを130℃で加熱してから室温まで徐冷した。次に、基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と90°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
4.液晶配向性の評価
 上記で製造した光水平型液晶表示素子につき、上記実施例1と同様にして液晶配向性を評価した。その結果、この実施例では液晶配向性は「A」であった。
5.電圧保持率(VHR)の評価
 上記で製造した光水平型液晶表示素子につき、上記実施例1と同様にして電圧保持率の評価を行った。その結果、この実施例では電圧保持率は「A」の評価であった。
6.引き置き耐性の評価
 上記で製造した光水平型液晶表示素子につき、上記実施例1と同様にして引き置き耐性の評価を行った。その結果、この実施例では引き置き耐性は「A」の評価であった。
[比較例4]
 配合組成を下記表2に示す通り変更した以外は実施例1と同じ固形分濃度で調製を行い、液晶配向剤(BL-4)を得た。また、液晶配向剤(BL-4)を用いて実施例1と同様にして液晶配向剤の塗布性の評価を行うとともに、実施例8と同様にして光水平型液晶表示素子を製造し、実施例1と同様にして各種評価を行った。評価結果を下記表4に示した。
Figure JPOXMLDOC01-appb-T000034
 表2中、重合体欄の数値は、実施例2~12については、液晶配向剤の調製に使用した重合体[P]100質量部に対する重合体(PAA)の配合割合(質量部)を示し、比較例5については、液晶配向剤の調製に使用した重合体(R-5)100質量部に対する重合体(PAA)の配合割合(質量部)を示す。液晶配向剤の固形分濃度はいずれの例も同じ(4.0質量%)である。「-」は、該当する欄の重合体を使用しなかったことを意味する。
Figure JPOXMLDOC01-appb-T000035
 表3中、液晶配向剤の固形分濃度はいずれの例も同じ(4.0質量%)である。「-」は、該当する欄の重合体を使用しなかったことを意味する。溶剤1及び溶剤2の数値は、液晶配向剤の調製に使用した溶剤の合計量に対する各化合物の使用割合(質量%)を示す。
溶剤の略称は以下の意味である。
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EDM:ジエチレングリコールメチルエチルエーテル
CHN:シクロヘキサノン
BC:ブチルセロソルブ
Figure JPOXMLDOC01-appb-T000036
 比較例5については、得られた液晶表示素子において液晶配向性が不良であり、プレチルト角θ2を測定できない状態であったため、表4では引き置き耐性の評価を「-」と示した。
 以上の実施例の結果から分かるように、重合体[P]を含有する液晶配向剤を用いた実施例1~15では、塗布性(膜厚ムラ及びピンホールの有無、エッジ形状、膜厚均一性)はいずれも「A」又は「B」の評価であった。また、液晶表示素子の液晶配向性及び電圧保持率も良好な結果を示した。また、引き置き耐性も「A」の評価であった。
 また、溶剤として低沸点溶剤であるCHN、PGMEA、PGME、EDM、BCを用いた実施例13~15についても、塗布性(膜厚ムラ及びピンホールの有無、エッジ形状、膜厚均一性)は「A」、液晶配向性は「A」、電圧保持率「B」、引き置き耐性「A」の評価であり、低沸点溶剤を用いた場合にも優れた特性を示すことが分かった。
 これに対し、重合体成分として重合体[P]の代わりに、マレイミド環含有化合物をモノマーに用いた重合体を含有させた比較例1では、膜厚ムラ及びピンホールの有無に基づき評価した塗布性が「C」、エッジ形状が「B」、膜厚均一性が「C」であった。また、比較例4では、膜厚ムラ及びピンホールの有無に基づき評価した塗布性は「B」であったものの、膜厚均一性は「C」、液晶配向性が「C」、電圧保持率が「D」であった。また、比較例3では、同じくPSA方式とした実施例7と比較すると、塗布性のうちエッジ形状、及び引き置き耐性が実施例7よりも劣っていた。また、比較例5では、エッジ形状、膜厚均一性、液晶配向性、及び電圧保持率が「C」の評価であった。比較例6は、比較例1の溶剤組成を低沸点溶剤に変更した例であるが、比較例6では重合体が十分に溶解せず、実施例13~15よりも劣っていた。
 これらの結果から、重合体[P]を含む液晶配向剤によれば、塗布性(膜厚ムラ及びピンホールの有無、エッジ形状、膜厚均一性)、液晶配向性、及び電圧保持率に優れた液晶配向膜を形成できることが分かった。加えて、重合体[P]を含む液晶配向剤は引き置き耐性にも優れていた。

Claims (9)

  1.  下記式(1)で表される部分構造を有し、かつ光配向性基を有する重合体[P]を含有する、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、それぞれ独立に水素原子、ハロゲン原子又は炭素数1以上の1価の有機基であり、X及びXは、それぞれ独立に、-OH、-NH又は炭素数1以上の1価の有機基である。ただし、X及びXの少なくとも一方は、「-OR」又は「-NR」(ただし、R及びRは、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。)である。)
  2.  前記重合体[P]は、下記式(2)で表される環及び環状カーボネートよりなる群から選ばれる少なくとも一種の環構造を有する、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Yは、酸素原子、硫黄原子又は-NR-(ただし、Rは水素原子又は炭素数1~6のアルキル基である。)であり、Rは、単結合又はメチレン基である。)
  3.  前記重合体[P]は、加熱により、上記式(2)で表される環及び環状カーボネートよりなる群から選ばれる少なくとも一種の環構造と反応する官能基を有する、請求項2に記載の液晶配向剤。
  4.  前記重合体[P]は、カルボキシル基及び保護されたカルボキシル基よりなる群から選ばれる少なくとも一種の官能基を有する、請求項1~3のいずれか一項に記載の液晶配向剤。
  5.  前記重合体[P]とは異なる重合体[Q]を更に含有する、請求項1~4のいずれか一項に記載の液晶配向剤。
  6.  前記重合体[Q]は、ポリアミック酸、ポリアミック酸エステル、ポリイミド、及び不飽和結合を有する単量体の重合体、よりなる群から選ばれる少なくとも一種である、請求項5に記載の液晶配向剤。
  7.  請求項1~6のいずれか一項に記載の液晶配向剤から形成された液晶配向膜。
  8.  請求項7に記載の液晶配向膜を具備する液晶素子。
  9.  下記式(1)で表される部分構造を有し、かつ光配向性基を有する重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R及びRは、それぞれ独立に水素原子、ハロゲン原子又は炭素数1以上の1価の有機基であり、X及びXは、それぞれ独立に、-OH、-NH又は炭素数1以上の1価の有機基である。ただし、X及びXの少なくとも一方は、「-OR」又は「-NR」(ただし、R及びRは、それぞれ独立に水素原子又は炭素数1以上の1価の有機基である。)である。)
PCT/JP2017/037834 2016-10-20 2017-10-19 液晶配向剤、液晶配向膜、液晶素子及び重合体 WO2018074548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018546399A JP6593546B2 (ja) 2016-10-20 2017-10-19 液晶配向剤、液晶配向膜、液晶素子及び重合体
KR1020197007873A KR102196239B1 (ko) 2016-10-20 2017-10-19 액정 배향제, 액정 배향막, 액정 소자 및 중합체
CN201780063851.2A CN109844629B (zh) 2016-10-20 2017-10-19 液晶取向剂、液晶取向膜、液晶元件及聚合体
US16/342,981 US11193067B2 (en) 2016-10-20 2017-10-19 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element and polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016206306 2016-10-20
JP2016-206306 2016-10-20
JP2017091428 2017-05-01
JP2017-091428 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018074548A1 true WO2018074548A1 (ja) 2018-04-26

Family

ID=62018572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037834 WO2018074548A1 (ja) 2016-10-20 2017-10-19 液晶配向剤、液晶配向膜、液晶素子及び重合体

Country Status (6)

Country Link
US (1) US11193067B2 (ja)
JP (1) JP6593546B2 (ja)
KR (1) KR102196239B1 (ja)
CN (1) CN109844629B (ja)
TW (1) TWI739929B (ja)
WO (1) WO2018074548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138259A1 (ja) * 2018-12-27 2020-07-02 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び新規モノマー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861416A (zh) * 2021-09-30 2021-12-31 Tcl华星光电技术有限公司 液晶配向剂、液晶显示面板及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057659A (ja) * 2001-07-31 2003-02-26 Samsung Electronics Co Ltd 液晶配向膜用光配向材
US20060280880A1 (en) * 2005-06-14 2006-12-14 Park Su H Liquid crystal display device and method of fabricating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612308A (ja) 1984-06-14 1986-01-08 Yasuhiro Otsuka 永久磁石を動力又は熱源として利用する装置
KR100261119B1 (ko) 1997-04-18 2000-08-01 김순택 광배향성고분자
KR100465445B1 (ko) 2001-07-31 2005-01-13 삼성전자주식회사 액정배향막용 광배향재
JP4523848B2 (ja) * 2005-02-04 2010-08-11 シャープ株式会社 液晶表示装置
CN101614912B (zh) * 2008-06-26 2011-01-05 奇美实业股份有限公司 液晶定向剂及其所形成液晶定向膜的制造方法
JP5790156B2 (ja) * 2010-07-15 2015-10-07 Jsr株式会社 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
JP5866999B2 (ja) * 2011-01-11 2016-02-24 Jsr株式会社 液晶配向剤、液晶表示素子、液晶配向膜及びポリオルガノシロキサン化合物
JP5716428B2 (ja) * 2011-02-04 2015-05-13 Jsr株式会社 液晶表示素子及びその製造方法
EP2727903B1 (en) * 2011-06-30 2018-01-10 DIC Corporation Cinnamic acid derivative, polymer thereof, and liquid crystal alignment layer comprising hardened product of said polymer
CN105778928B (zh) * 2011-08-31 2018-06-08 Jsr株式会社 液晶显示元件的制造方法、液晶取向剂、液晶取向膜以及液晶显示元件
JP6036253B2 (ja) * 2012-02-29 2016-11-30 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP6805475B2 (ja) * 2014-09-09 2020-12-23 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057659A (ja) * 2001-07-31 2003-02-26 Samsung Electronics Co Ltd 液晶配向膜用光配向材
US20060280880A1 (en) * 2005-06-14 2006-12-14 Park Su H Liquid crystal display device and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138259A1 (ja) * 2018-12-27 2020-07-02 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び新規モノマー
CN113316742A (zh) * 2018-12-27 2021-08-27 日产化学株式会社 液晶取向剂、液晶取向膜、液晶表示元件和新型单体

Also Published As

Publication number Publication date
TWI739929B (zh) 2021-09-21
US11193067B2 (en) 2021-12-07
KR102196239B1 (ko) 2020-12-29
KR20190043566A (ko) 2019-04-26
JP6593546B2 (ja) 2019-10-23
CN109844629A (zh) 2019-06-04
JPWO2018074548A1 (ja) 2019-06-24
TW201827579A (zh) 2018-08-01
CN109844629B (zh) 2021-06-22
US20200048555A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6701635B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN106010582B (zh) 液晶取向剂、液晶取向膜、液晶显示元件、相位差膜及其制造方法、聚合物以及二胺
CN111602087B (zh) 液晶取向剂、液晶取向膜、液晶元件、聚合体及化合物
JP6597913B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP6561475B2 (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、並びに位相差フィルム及びその製造方法
JP6593546B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び重合体
JP6680362B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP6828360B2 (ja) 液晶配向剤、液晶配向膜、液晶素子、並びに液晶配向膜及び液晶素子の製造方法
JP6962456B2 (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
JP7322894B2 (ja) 液晶配向剤及びその製造方法、液晶配向膜並びに液晶素子
CN112400135B (zh) 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法
JP2023107736A (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
JP2022161796A (ja) 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶素子
WO2019193854A1 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861241

Country of ref document: EP

Kind code of ref document: A1