WO2013161905A1 - 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板 - Google Patents

樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2013161905A1
WO2013161905A1 PCT/JP2013/062123 JP2013062123W WO2013161905A1 WO 2013161905 A1 WO2013161905 A1 WO 2013161905A1 JP 2013062123 W JP2013062123 W JP 2013062123W WO 2013161905 A1 WO2013161905 A1 WO 2013161905A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
layer
resin composition
metal
Prior art date
Application number
PCT/JP2013/062123
Other languages
English (en)
French (fr)
Inventor
敏文 松島
佐藤 哲朗
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201380021892.7A priority Critical patent/CN104254571B/zh
Priority to US14/396,848 priority patent/US11419210B2/en
Priority to KR1020147030032A priority patent/KR101639503B1/ko
Publication of WO2013161905A1 publication Critical patent/WO2013161905A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31696Including polyene monomers [e.g., butadiene, etc.]

Definitions

  • the present invention relates to a resin composition constituting a resin layer of a laminate comprising a resin layer on the surface of a metal layer such as a metal-clad laminate, and a metal with a resin layer comprising a resin layer formed using the resin composition
  • the present invention relates to a foil, a metal-clad laminate, and a printed wiring board.
  • a metal foil with a resin layer has been used as a material for producing a multilayer printed wiring board.
  • the resin layer portion of the metal foil with a resin layer is used as an insulating layer or an adhesive layer, and the metal foil portion is used as a conductor layer on which a conductor pattern or the like is formed.
  • multilayered printed wiring boards mounted on electronic devices have been developed. Many of these electronic devices operate with high-frequency signals exceeding 1 GHz, and the speed of signal processing is also increasing.
  • an insulating layer can be formed using an insulating material having a low dielectric constant and a low dielectric loss tangent from the viewpoint of suppressing signal delay and signal transmission loss. preferable. Therefore, also in the metal foil with a resin layer, it is preferable to form the resin layer using an insulating material having a low dielectric constant and dielectric loss tangent.
  • a capacitor circuit has been formed on the inner layer of a multilayer printed wiring board.
  • the metal foil with a resin layer is also used as a material for forming such a built-in capacitor, and the resin layer may be used as a dielectric layer (for example, “Patent Document 1: WO 2009/008471”). reference.).
  • a capacitor having a larger capacitance can be formed when the dielectric constant of the dielectric layer is higher.
  • the dielectric loss tangent of the dielectric layer is low, and it is preferable that the dielectric constant is not too high.
  • the dielectric characteristics required for the resin layer differ depending on the use of the resin layer, in any case, it is required to be a material excellent in high frequency characteristics with a low dielectric loss tangent.
  • a hole such as a through hole or a blind via (hereinafter referred to as “through hole etc.”) for interlayer connection.
  • through hole etc. a hole for interlayer connection.
  • a plating process is performed in order to make the inside of the through-holes and the inner layer circuit conductive. If the resin (smear) remains in the through hole or the like during the plating process, the reliability of electrical connection between the inner layer circuit and the through hole cannot be ensured.
  • a desmear process is generally performed in which smear is chemically dissolved and removed using a desmear solution made of potassium permanganate or the like before the plating process.
  • a desmear solution made of potassium permanganate or the like before the plating process.
  • the solubility of the resin layer in the desmear liquid becomes too high, the resin layer is dissolved around the through-holes or blind vias during the desmear process, and the resin portion is retracted. In that case, since the adhesiveness of a resin layer and a conductor layer falls locally, it is unpreferable.
  • the solubility of the resin layer in the desmear liquid is low, smear remains inside the hole, causing a conduction failure between the inner layer circuit and the through hole.
  • the subject of this invention is the resin composition which can form the resin layer which has the electrical property excellent in the high frequency characteristic etc. which are requested
  • the object is to provide a metal foil with a resin layer, a metal-clad laminate, and a printed wiring board, each having a resin layer made of the resin composition.
  • the resin composition according to the present invention is a resin composition constituting a resin layer of a laminate having a resin layer on the surface of a metal layer, and is 10 parts by mass to 100 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound. Part of a styrene butadiene block copolymer and 0.1 part by weight to 100 parts by weight of a desmear liquid dissolution promoting component.
  • the resin composition according to the present invention preferably contains at least one selected from diallyl phthalate, (meth) acrylate, and unsaturated polyester as the desmear liquid dissolution promoting component.
  • the resin composition according to the present invention may contain 0.1 to 30 parts by mass of a curl reducing component with respect to 100 parts by mass of the polyphenylene ether compound.
  • the resin composition according to the present invention may include 50 to 600 parts by mass of dielectric particles with respect to 100 parts by mass of the resin composition (excluding dielectric particles).
  • the dielectric particles are preferably a complex oxide having a perovskite structure.
  • the metal foil with a resin layer according to the present invention is a metal foil with a resin layer provided with a resin layer on at least one side of the metal foil, and the resin layer is formed using the resin composition.
  • the resin layer is preferably a layer used as a dielectric layer.
  • the metal-clad laminate according to the present invention includes a resin layer formed using the resin composition and a metal layer.
  • the printed wiring board according to the present invention is formed using the metal foil with a resin layer or the metal-clad laminate.
  • the resin composition according to the present invention has a low dielectric constant and dielectric loss tangent itself, a resin layer having excellent high frequency characteristics can be formed.
  • a resin layer having a high dielectric constant can be formed by incorporating dielectric particles in the resin composition. Therefore, if the resin composition according to the present invention is used, it is possible to form a resin layer having excellent electrical characteristics such as high frequency characteristics required as a printed wiring board manufacturing material. Furthermore, according to the said resin composition, it is excellent in adhesiveness with another conductor layer, and can form the resin layer which has moderate solubility with respect to a desmear liquid. For this reason, the metal foil with a resin layer provided with the resin layer formed using the said resin composition and a metal-clad laminated board can be used suitably as a manufacturing material of a multilayer printed wiring board.
  • the resin composition according to the present invention is a resin composition constituting a resin layer of a laminate having a resin layer on the surface of a metal layer, and is a polyphenylene ether compound, a styrene butadiene block copolymer, and a desmear liquid dissolution
  • An accelerating component is included at a predetermined blending ratio described later.
  • a laminated body is one having a resin layer on the surface of a metal layer, specifically, a metal foil with a resin layer, a metal-clad laminate, a printed wiring board, and the like. Point to.
  • the laminate according to the present invention is not particularly limited as long as the resin layer is laminated on the surface of the metal layer (including the metal foil). That is, the resin composition according to the present invention may be a laminate in any form as long as it is used for forming a resin layer on the surface of the metal layer provided in these laminates. .
  • a metal layer points out the metal foil part of the metal foil with a resin layer mentioned above, or the metal layer part provided in the metal-clad laminated board or the printed wiring board. Any of these metal layers is a layer used as a conductor layer in a printed wiring board or the like, and may be in a state in which a conductor pattern is formed. Moreover, there is no limitation in particular in the kind of metal which comprises a metal layer, What is necessary is just a metal which has electroconductivity, such as various metals, such as copper, aluminum, nickel, cobalt, gold
  • the metal constituting the metal layer may be any of these metals, but it is preferable to use copper, aluminum, nickel, or an alloy thereof from the viewpoint of easy availability and low cost. . Furthermore, from the viewpoint of low electrical efficiency and easy formation of a conductor pattern by etching or the like, the metal layer is preferably a layer made of copper or a copper alloy.
  • the resin layer is a layer provided on the surface of the metal layer.
  • a resin solution in which the resin composition according to the present invention is dissolved or dispersed in a solvent is applied to the surface of the metal layer, and then dried and heated. It can obtain by giving etc.
  • the resin layer is a layer used as an adhesive layer, an insulating layer, a dielectric layer, or the like when a printed wiring board is manufactured.
  • the resin composition according to the present invention includes a polyphenylene ether compound, a styrene butadiene block copolymer, and a desmear liquid dissolution promoting component as essential components, and, as necessary, a curl reducing component, a dielectric
  • a polyphenylene ether compound such as polyphenylene ether compound
  • a styrene butadiene block copolymer such as polyphenylene ether compound
  • a desmear liquid dissolution promoting component as essential components
  • a curl reducing component such as body powder
  • the polyphenylene ether compound is a compound represented by the following structural formula (1).
  • a polyphenylene ether compound is a material having a low dielectric constant and a low dielectric loss tangent, and a resin layer having excellent high frequency characteristics is formed by using the polyphenylene ether compound as one of the constituent components of the resin composition. Can do.
  • the polyphenylene ether compound has an ether bond, it has high heat resistance. Further, since there is no hydrophilic group in the compound, it is possible to form a resin layer that has low water absorption and hardly deteriorates in quality even in a humid environment.
  • the polyphenylene ether compound used in the present invention is represented by the following general formula.
  • R1, R2, R3, and R4 each represent a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • the polyphenylene ether compound examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, and poly (2,6-dipropyl). -1,4-phenylene) ether or the like can be used.
  • the terminal group is preferably a hydroxyl group.
  • Ether compounds, glycidyl-modified polyphenylene ether compounds, and the like can also be preferably used. Moreover, you may use these commercial items.
  • the number average molecular weight of the polyphenylene ether compound is preferably 500 to 4000, and more preferably 1000 to 3000.
  • the number average molecular weight of the polyphenylene ether compound is less than 500, the flexibility of the resulting resin layer is lowered, which is not preferable.
  • the number average molecular weight of the polyphenylene ether compound exceeds 4000, the solubility in a solvent such as methyl ethyl ketone or toluene is not preferable.
  • the styrene butadiene block copolymer is a polymerization (crosslinking) component for the polyphenylene ether compound.
  • the resin layer exhibits elasticity and flexibility due to high flexibility derived from the butadiene structure portion.
  • a styrene-modified polyphenylene ether compound or a glycidyl-modified polyphenylene ether compound is used, this tendency becomes remarkable.
  • the adhesion of the resin layer to the metal layer (conductor layer) or the insulating resin base material can be improved, and crack resistance can also be improved.
  • the peeling strength of a circuit can be made into the value requested
  • the styrene butadiene block copolymer it is possible to improve the moisture absorption deterioration resistance, and it is possible to prevent the peeling strength from deteriorating with time in a humid environment.
  • styrene butadiene block copolymer since styrene butadiene block copolymer has few polar groups and has little influence on the low dielectric properties of polyphenylene ether compounds, it has excellent low frequency and low dielectric loss tangent high frequency characteristics derived from polyphenylene ether compounds. Characteristic can be maintained.
  • the desmear liquid dissolution accelerating component is a resin layer formed using the resin composition by being used together with the polyphenylene ether compound and the styrene butadiene block copolymer as a component of the resin composition. It is a component for giving solubility to the desmear liquid without impairing the dielectric properties.
  • the desmear liquid dissolution promoting component is an easily oxidizable compound having a plurality of unsaturated bond portions that are easily oxidized by the desmear liquid, and a crosslinking component for the polyphenylene ether compound and / or the styrene butadiene block copolymer.
  • a permanganate salt such as potassium permanganate or sodium permanganate is mainly used as a desmear liquid. These permanganates are used as oxidizing agents and chemically dissolve and remove the resin.
  • the polyphenylene ether compound described above has high acid resistance due to its structure, and its solubility in desmear liquid is extremely low.
  • the resin composition according to the present invention has an appropriate solubility in the desmear liquid of the resin layer formed using the resin composition by including the desmear liquid dissolution promoting component at a predetermined blending ratio. Can be.
  • a compound having a plurality of unsaturated bond portions such as vinyl groups in the structure as a desmear liquid dissolution promoting component.
  • examples of such compounds include diallyl phthalate, (meth) acrylate, and unsaturated polyester.
  • the resin composition of the present invention preferably contains one or more selected from these compounds as a desmear dissolution promoting component.
  • each compound will be described in order.
  • diallyl phthalate may be any of diallyl orthophthalate, diallyl isophthalate and diallyl terephthalate, and these diallyl phthalates are used alone or in combination of two or more. May be used in combination.
  • diallyl phthalates may be either a monomer (monomer) or a polymer (oligomer / polymer), and use a copolymer obtained by copolymerizing two or more monomers or polymers. Also good.
  • the benzene ring of diallyl phthalate may be substituted with a halogen atom such as a chlorine atom, a bromine atom or an iodine atom.
  • diallyl phthalate all or part of unsaturated bonds present in the molecule may be hydrogenated.
  • the diallyl phthalate polymer may be a copolymer of these monomers and a different monomer having a C ⁇ C double bond such as styrene (monomer).
  • diallyl isophthalate is more preferable because it is excellent in heat resistance and mechanical strength, and a diallyl isophthalate polymer (an oligomer having a molecular weight of about 10,000 to about 50,000) is used. More preferably.
  • (meth) acrylate refers to a compound (acrylate and / or methacrylate) having an acrylic group or a methacrylic group ((meth) acrylic group) in the compound, and a plurality of (meth) acrylic groups in the compound. It is preferable that it is a polyfunctional (meth) acrylate having. Specifically, di (meth) acrylate and poly (meth) acrylate having 3 or more (meth) acryl groups in the compound can be preferably used. Moreover, you may use modified polyol poly (meth) acrylate.
  • di (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate and bis-glycidyl (meth) Mention may be made of acrylate, and the like.
  • poly (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
  • modified polyol polyacrylates for example, ethylene oxide 4 mol addition diacrylate of bisphenol S, ethylene oxide 4 mol addition diacrylate of bisphenol A (modified bisphenol A diacrylate), fatty acid modified pentaerythritol diacrylate, propylene oxide of trimethylolpropane
  • modified polyol polyacrylates such as 3 mol addition triacrylate and trimethylolpropane propylene oxide 6 mol addition triacrylate.
  • bifunctional di (meth) acrylates are preferably used from the viewpoint of being a compound having a lower viscosity than the molecular weight.
  • the molecular weight of (meth) acrylate added to the resin composition is low, there is a high possibility that these compounds will volatilize together with the solvent when forming the resin layer, which is not preferable.
  • an increase in the molecular weight of the compound is not preferable because the viscosity of the solution increases and the handleability when kneading dielectric particles described later decreases.
  • difunctional di (meth) acrylates in particular, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, and modified bisphenol A diacrylate are used. Is preferred.
  • the unsaturated polyester resin refers to a polymer having a carbon double bond portion and an ester bond portion in its main chain, and an ester component containing an acid component containing an unsaturated dibasic acid and a polyhydric alcohol component is present. It can obtain by making dehydration condensation reaction under.
  • the unsaturated dibasic acid that is an essential component of the acid component examples include maleic acid, fumaric acid, itaconic acid, citraconic acid, and acid anhydrides thereof. These may be used alone or in combination of two or more.
  • an acid component used in combination with such an unsaturated dibasic acid as necessary examples include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, Examples thereof include a mixture of fatty acids such as hexahydrophthalic anhydride and adipic acid, soybean oil fatty acid, linseed oil fatty acid, coconut oil fatty acid, tall oil fatty acid and rice bran oil fatty acid. These may be used alone or in combination of two or more.
  • Polyhydric alcohol components include ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 1,6-cyclohexanedimethanol, glycerol monoallyl ether, trimethylolpropane monoallyl ether And dihydric alcohols such as pentaerythritol diallyl ether, and trihydric or higher alcohols such as glycerin, trimethylolpropane, tris-2-hydroxyethyl isocyanurate, pentaerythritol monoallyl ether, and these may be used alone. Two or more types can be mixed and used.
  • esterification catalyst used in the dehydration condensation reaction examples include phosphorus-containing compounds such as triphenylphosphine and tributylphosphine, tertiary amines such as N, N-benzyldimethylamine, N, N-dimethylphenylamine and triethylamine, and quaternary ammonium salts.
  • phosphorus-containing compounds such as triphenylphosphine and tributylphosphine
  • tertiary amines such as N, N-benzyldimethylamine, N, N-dimethylphenylamine and triethylamine
  • quaternary ammonium salts examples include quaternary compounds such as quaternary phosphonium salts and quaternary pyridinium salts, chlorides such as zinc chloride, aluminum chloride and tin chloride, and organometallic compounds such as tetrabutyl titanate.
  • the resin composition according to the present invention contains 10 to 100 parts by mass of a styrene-butadiene block copolymer and 0.1 to 100 parts by mass of a desmear liquid dissolution promoting component with respect to 100 parts by mass of the polyphenylene ether compound. It is characterized by that.
  • the styrene-butadiene block copolymer When the styrene-butadiene block copolymer is less than 10 parts by mass relative to 100 parts by mass of the polyphenylene ether compound, film formation is difficult, and sufficient elasticity and flexibility of the resin layer formed using the resin composition It is not preferable because the property cannot be obtained. On the other hand, when the styrene butadiene block copolymer exceeds 100 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, when the resin layer is formed using the resin composition, the heat resistance is low, and the required level Since the glass transition temperature (Tg) cannot be obtained, it is not preferable.
  • Tg glass transition temperature
  • the blending ratio of the styrene butadiene block copolymer to 100 parts by mass of the polyphenylene ether compound is more preferably 20 parts by mass or more, and still more preferably 40 parts by mass or more.
  • the resin layer formed using the resin composition has low solubility in the desmear liquid, and the present invention. It is not preferable because the above-mentioned purpose cannot be achieved.
  • the desmear liquid dissolution promoting component exceeds 100 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, the solubility in the desmear liquid may become too high, which is not preferable.
  • the resin composition according to the present invention preferably contains 10 to 80 parts by mass of a desmear liquid dissolution promoting component with respect to 100 parts by mass of the polyphenylene ether compound.
  • Additives described below can be appropriately added to the resin composition according to mechanical properties or electrical properties required for the resin layer.
  • the resin composition according to the present invention preferably contains 0.1 to 30 parts by mass, more preferably 10 parts by mass or more of the curl reducing component with respect to 100 parts by mass of the polyphenylene ether compound.
  • a resin solution containing the resin composition is applied to the surface of the metal layer, and the coating film is dried, heated, and the like.
  • the solvent is volatilized from the coating film, and the components constituting the resin composition are polymerized to form a polymer having a crosslinked structure. That is, the resin layer is in a semi-cured state or a completely cured state.
  • the resin layer is more easily contracted than in the state of the coating film, and the metal layer is likely to curl with the resin layer being warped inward. Therefore, in the present invention, the curling phenomenon can be reduced when the resin layer is semi-cured or completely cured by containing the curl reducing component in the above range in the resin composition.
  • the curl reducing component it is preferable to use a liquid compound at room temperature and a relatively low molecular weight compound having reactivity with the polyphenylene ether compound.
  • styrene monomer, ⁇ -methylstyrene, ⁇ -methylstyrene dimer (2,4-diphenyl-4-methyl-1-pentene) can be used.
  • lauryl mercaptan, octyl mercaptan, 2-mercaptoethanol, octyl thioglycolate, 3-propion mercapto acid and the like can be used.
  • the crosslinking reaction during polymerization of each component constituting the resin composition can be moderately suppressed, and the resin layer can be reduced to half.
  • the curling phenomenon can be reduced by suppressing the shrinkage on the resin layer side during curing or complete curing.
  • Dielectric Particles when it is necessary to form a resin layer having a high dielectric constant, such as when forming a dielectric layer of a capacitor, 50 to 600 parts by mass with respect to 100 parts by mass of the resin composition. Part by mass of dielectric particles can be included. By adding dielectric particles to the resin composition, a resin layer having a high dielectric constant can be formed, and as a result, a capacitor circuit having a large capacitance can be formed.
  • the capacitance of a capacitor can be obtained by the following equation. That is, the capacitance (C) of the capacitor is proportional to the dielectric constant ( ⁇ ) of the dielectric layer, and increases in inverse proportion to the distance (d) between the electrodes and the electrode area (A).
  • ⁇ 0 indicates a relative dielectric constant.
  • the dielectric particles are less than 50 parts by mass with respect to 100 parts by mass of the resin composition, the dielectric constant of the resin layer cannot be sufficiently increased, and a capacitor circuit is formed using the laminate. Even so, it is not preferable because it cannot achieve the level of capacitance required in the market. From this viewpoint, the dielectric particles are more preferably 200 parts by mass or more with respect to 100 parts by mass of the resin composition. As the content ratio of the dielectric particles in the resin composition increases, it becomes possible to form a resin layer having a higher dielectric constant, and thus it is possible to form a capacitor circuit having a larger capacitance. .
  • the dielectric particles exceed 600 parts by mass with respect to 100 parts by mass of the resin composition, the amount of the resin present in the resin layer is reduced, so that the adhesion of the resin layer to the metal layer is reduced, This is not preferable because the adhesion when the laminate is bonded to another layer such as an inner layer material of a multilayer printed wiring board is lowered. Furthermore, when the amount of resin is reduced, it is not preferable because the toughness of the resin layer deteriorates and becomes brittle when the resin layer is cured. From these viewpoints, the dielectric particles are more preferably 600 parts by mass or less with respect to 100 parts by mass of the resin composition.
  • the dielectric particle is, for example, a metal oxide containing at least one metal selected from magnesium, silicon, aluminum, titanium, zinc, calcium, strontium, zirconium, barium, tin, neodymium, bismuth, lithium, samarium, and tantalum. Preferably it consists of.
  • the dielectric particles are preferably made of a complex oxide having a perovskite structure that is a ferroelectric.
  • a complex oxide having a perovskite structure for example, barium titanate, strontium titanate, barium strontium titanate, strontium zirconate, bismuth zirconate, PLZT (PbLATiO 3 ⁇ PbLaZrO), SBT (SrBi 2 Ta 2 O 9 ) Can be mentioned.
  • the primary particle diameter of these dielectric particles is preferably in the range of 0.02 ⁇ m to 2 ⁇ m.
  • the primary particle diameter of the dielectric particles is less than 0.02 ⁇ m, when preparing the resin solution by dispersing or dissolving the resin composition in a solvent, the dielectric particles are uniformly mixed and dispersed in the resin solution. Is not preferable because it becomes difficult.
  • the capacitance of the capacitor increases in inverse proportion to the distance between the electrodes as described above. That is, a capacitor having a large capacitance can be obtained as the thickness of the dielectric layer is reduced.
  • the primary particle diameter of the dielectric particles exceeds 2 ⁇ m, it is difficult to form a dielectric layer having a thickness of about 3 ⁇ m to 4 ⁇ m due to the large particle diameter of the dielectric particles, and the dielectric particles are in a semi-cured state. This is not preferable because the tendency of the surface of the dielectric layer to become rough is increased.
  • the dielectric particles are preferably subjected to a surface treatment for improving dispersibility in the resin solution. Specifically, it is preferable to perform silane coupling agent treatment, oleic acid treatment, stearic acid treatment, and the like. In particular, from the viewpoint of good wettability with the solvent used when preparing the resin solution, it is preferable that the dielectric particles have been treated with a silane coupling agent.
  • the resin composition according to the present invention includes, as other additives, epoxy resins, curing agents, curing accelerators, thermoplastic particles, colorants, antioxidants, flame retardants, coupling agents, and polymerization. Initiators, dispersants, inorganic fillers and the like can be included. These various additives may be added in appropriate amounts within a range not departing from the gist of the present invention.
  • the metal foil with a resin layer according to the present invention is provided with a resin layer on at least one surface of the metal foil, and this resin layer is a layer formed using the resin composition according to the present invention described above.
  • metal foil either electrolytic foil or rolled foil may be used, and there is no particular limitation regarding the method for producing the metal foil. Moreover, there is no limitation in particular also about the kind of metal which comprises metal foil, Since it is the same as that of the metal layer of the laminated body mentioned above, description is abbreviate
  • the thickness of the metal foil is not particularly limited, but the resin layer is preferably provided on the metal foil in the range of 0.5 ⁇ m to 70 ⁇ m. What is necessary is just to employ
  • a resin layer is provided on one side (one side) of a metal foil of 5.0 ⁇ m or less
  • a so-called carrier foil (support) may be provided on the other side of the metal foil. .
  • a metal foil of 5.0 ⁇ m or less By using a metal foil of 5.0 ⁇ m or less, a high-definition circuit with a narrower circuit pitch can be formed with a good etching factor.
  • the resin layer only needs to be provided on at least one side of the metal foil, and may be provided on both sides thereof.
  • the resin layer may be provided on either the glossy surface (drum surface) or the deposition surface (rough surface).
  • the surface on which the resin layer of the metal foil is provided may be roughened or may not be roughened.
  • the surface roughness (Rzjis) of the surface of the metal foil is preferably 3 ⁇ m or less.
  • the roughening process is given to the surface of metal foil, it is preferable at the point that the adhesiveness of metal foil and a resin layer improves.
  • the surface of the metal foil is not roughened, it is preferable in that a conductor pattern with a better etching factor can be formed. Further, when the surface of the metal foil is not roughened, the signal delay of the high frequency signal due to the so-called skin effect can be suppressed.
  • rust prevention treatment for metal foil examples include inorganic rust prevention treatment using zinc, nickel, cobalt, etc., chromate treatment using chromate, organic rust prevention treatment using organic agents such as benzotriazole, imidazole, etc. .
  • a metal foil when referred to as a metal foil, it also includes a metal foil having a rust-proofing layer formed on the surface of the metal foil, and when referred to as the surface of a metal foil, it may be the surface of a rust-proofing layer. Shall be included.
  • the surface of one side of the metal foil may be treated with a silane coupling agent, and a resin layer may be provided on the surface of the silane coupling agent layer.
  • a resin layer may be provided on the surface of the silane coupling agent layer.
  • vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane Triazinesilane, ⁇ -mercaptopropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and the like can be used.
  • the silane coupling agent treatment is performed on the surface of the metal foil, 0.5 g / l to 10 g / l of the silane coupling agent dissolved in water as a solvent is used at a room temperature level. It is preferable that the surface of the metal foil and the silane coupling agent are brought into uniform contact with each other by an immersion method, a showering method, a spraying method, etc., and the silane coupling agent is uniformly adsorbed on the surface of the metal foil.
  • the silane coupling agent forms a film by condensing with OH groups protruding from the surface of the metal foil.
  • a metal foil when referred to as a metal foil, it also includes a metal foil in which a silane coupling agent layer is formed on the surface of the metal foil, and when referred to as the surface of the metal foil, the surface of the silane coupling agent layer Shall also be included.
  • the resin layer is formed using the resin composition according to the present invention as described above. Since the resin composition is as described above, the description of the resin composition is omitted here. Similar to the resin layer provided in the laminate, the resin layer is a layer used as an adhesive layer, an insulating layer, a dielectric layer, or the like when a printed wiring board is manufactured. Further, a metal foil may be further provided on the surface of the resin layer, and it may be used as a capacitor circuit forming material, which will be described later, or may be used as a capacitor circuit forming material, which will be described later, by bonding the resin layers of the copper foil with resin layer together.
  • the thickness of the resin layer can be appropriately adjusted according to the use of the resin layer, and is not particularly limited.
  • a resin layer having a thickness of about 0.5 ⁇ m to 100 ⁇ m is generally provided.
  • the manufacturing process of the said metal foil with a resin layer can be divided roughly into (1) resin solution preparation process, (2) resin solution application
  • Resin Solution Preparation Step 10 parts by mass to 100 parts by mass of a styrene butadiene block copolymer and 0.1 parts by mass to 100 parts by weight of a desmear liquid dissolution accelerating component with respect to 100 parts by mass of the polyphenylene ether compound. It is a step of preparing a resin solution (varnish) contained in the range of parts by mass.
  • a resin composition in which a polyphenylene ether compound, a styrene butadiene block copolymer, and a desmear liquid dissolution promoting component are mixed in advance at a predetermined mixing ratio may be dissolved in a solvent.
  • a polyphenylene ether compound, a styrene butadiene block copolymer, and a desmear liquid dissolution promoting component dissolved in a solvent may be mixed so that these components have a predetermined blending ratio.
  • the preparation method is not particularly limited.
  • a ketone solvent such as methyl ethyl ketone or an aromatic solvent such as toluene can be used.
  • a ketone solvent such as methyl ethyl ketone or an aromatic solvent such as toluene
  • any of these solvents can efficiently volatilize the solvent when heating and pressurizing the metal foil with the resin layer and the resin base material, and purification of the volatilized gas is easy. .
  • the solution viscosity is such that a coating film having a desired film thickness can be accurately formed when the resin solid content concentration is appropriately adjusted and the resin solution is applied to the surface of the metal foil. It is preferable to adjust to.
  • the resin solution application step is a step of applying the resin solution to one side of the metal foil so that the thickness of the resin layer after drying is 0.5 ⁇ m to 100 ⁇ m.
  • the application method for applying the resin solution is not particularly limited, and an appropriate method may be adopted as appropriate depending on the thickness of the resin layer to be formed.
  • a drying method can be suitably performed by a conventionally known method, and is not particularly limited. Through this process, the solvent is volatilized from the coating film, and the resin composition is made into a semi-cured resin in which the curing reaction of the resin composition is terminated at an intermediate stage.
  • the metal foil with a resin layer which concerns on this invention can be manufactured according to the above process.
  • the metal-clad laminate according to the present invention uses the metal foil with a resin layer according to the present invention described above.
  • each mode will be briefly described.
  • a double-sided metal-clad laminate obtained by laminating a metal foil on the resin layer of the metal foil with a resin layer according to the present invention can be mentioned.
  • the double-sided metal-clad laminate uses the above-described copper foil with a resin layer, and heats and presses the metal foil against the surface of the semi-cured resin layer. That is, in the above-described method for producing a copper foil with a resin layer (3) after the drying step is completed, the metal foil is brought into contact with the resin layer and heated and pressed to melt and cure the resin layer.
  • a double-sided metal-clad laminate with a metal foil firmly adhered to the surface can be obtained.
  • a double-sided metal-clad laminate obtained by bringing the resin layers of the copper foil with a resin layer according to the present invention into contact with each other and heating and pressing can be mentioned as the metal-clad laminate of the second aspect.
  • the double-sided metal-clad laminates of the first and second aspects can be particularly suitably used as a material for forming a built-in capacitor circuit of a multilayer printed wiring board. If the double-sided metal-clad laminate is used as a material for forming a built-in capacitor circuit, the dielectric layer is preliminarily sandwiched between metal foils used as electrode layers. Since the withstand voltage measurement can be performed at the stage before the double-sided metal-clad laminate is laminated on the inner layer material of the printed wiring board, the production yield can be improved.
  • the present invention is applied to one or both sides of a resin substrate such as paper or a prepreg obtained by impregnating a sheet of glass cloth or the like impregnated with an insulating resin, or a paper phenol resin substrate.
  • a resin substrate such as paper or a prepreg obtained by impregnating a sheet of glass cloth or the like impregnated with an insulating resin, or a paper phenol resin substrate.
  • a single-sided metal-clad laminate or a double-sided metal-clad laminate in which a metal foil is laminated on one or both sides of a resin substrate by laminating the resin layer side of such a metal foil with a resin layer and heating and pressing can be mentioned.
  • the resin layer of the metal foil with a resin layer according to the present invention functions as an adhesive layer.
  • the resin layer side of the metal foil with a resin layer according to the present invention is heated by abutting the resin layer as the interlayer insulating layer on the inner layer substrate (inner layer circuit layer) of the multilayer printed wiring board.
  • the laminated body obtained by pressurizing can be mentioned.
  • the resin layer of the metal foil with a resin layer according to the present invention functions as an adhesive layer.
  • a laminate obtained by heating and pressing the resin layer side of the copper foil with a resin layer according to the present invention on the inner layer substrate (inner layer circuit layer) of the multilayer printed wiring board is provided.
  • the resin layer of the metal foil with a resin layer according to the present invention can be used as an interlayer insulating layer.
  • the metal-clad laminate according to the present invention is not limited to these embodiments, and includes various laminates.
  • the printed wiring board which concerns on this invention is characterized by using the metal foil with a resin layer which concerns on this invention mentioned above, The thing using the said metal-clad laminated board may be used.
  • the printed wiring board according to the present invention may be a multilayer printed wiring board, for example, a build-up printed wiring board in which a build-up layer is formed using the metal foil with a resin layer. May be.
  • Example 1 a copper foil with a resin layer was produced as follows. First, 200 g of polyphenylene ether resin (manufactured by SABIC; MX-90) and 400 g of toluene were poured into a 1 liter four-necked flask equipped with a stirrer, a temperature controller, and a reflux tube, and stirred and dissolved at 60 ° C. did. Subsequently, 10 g of chloromethylstyrene was introduced into the flask, dissolved by stirring, and the liquid temperature was adjusted to 80 ° C.
  • the polyphenylene ether compound obtained above was dissolved in toluene to prepare a 50 mass% polyphenylene ether compound solution. Further, a styrene butadiene block copolymer (manufactured by JSR Corporation; TR2003) was dissolved in toluene to prepare a 30% by mass styrene butadiene block copolymer solution. Furthermore, diallyl isophthalate oligomer (manufactured by Daiso Corporation; Daiso Isodap (registered trademark)) was dissolved in toluene as a desmear liquid dissolution promoting component to prepare a 30% by mass diallyl isophthalate oligomer solution.
  • the polyphenylene ether compound, styrene butadiene block copolymer, diallyl isophthalate oligomer, and 2,4-diphenyl-4-methyl-1-pentene are 50: 30: 10: 10 in mass ratio.
  • each solution was mixed and 2,4-diphenyl-4-methyl-1-pentene reagent (manufactured by Wako Pure Chemical Industries, Ltd. ( ⁇ -methylstyrene dimer)) was added as a curl reducing component.
  • a resin solution (varnish) was prepared so that the resin solid content concentration was 40%.
  • the resin solution was applied on the surface of a low profile copper foil having a thickness of 35 ⁇ m and a surface roughness (Rzjis) of 2.2 ⁇ m using a gravure coater so that the thickness of the resin layer after drying was 12 ⁇ m.
  • the resin layer-attached copper foil provided with a resin layer obtained by semi-curing the resin composition was produced by drying at 150 ° C. for 3 minutes.
  • the double-sided metal-clad laminate is obtained by abutting the resin layers of the copper foil with resin layer produced as described above and hot press-molding under a heating and pressing condition of 220 ° C. ⁇ 90 minutes and 30 kgf / cm 2. (Double-sided copper-clad laminate) was produced.
  • Each of the polyphenylene ether compound, the styrene butadiene block copolymer, the diallyl isophthalate oligomer, and the 2,4-diphenyl-4-methyl-1-pentene is 40: 20: 30: 10 in mass ratio.
  • a copper foil with a resin layer and a double-sided metal-clad laminate were produced in the same manner as in Example 1 except that the solution was mixed to obtain a resin solution.
  • Copper foil with resin layer in the same manner as in Example 1 except that diallyl phthalate oligomer (manufactured by Daiso Corporation; Daiso Dup (registered trademark)) was used instead of diallyl isophthalate oligomer as a desmear liquid dissolution promoting component. And the sample for desmear liquid melt
  • dissolution evaluation was produced. Further, a double-sided metal-clad laminate was produced in the same manner as in Example 1 except that the copper foil with resin layer of Example 3 was used.
  • Example 1 was used except that tetraethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .; 4G (polyethylene glycol dimethacrylate)) was used as a desmear liquid dissolution promoting component instead of diallyl isophthalate oligomer.
  • tetraethylene glycol dimethacrylate manufactured by Shin-Nakamura Chemical Co., Ltd .
  • 4G polyethylene glycol dimethacrylate
  • Resin layer-coated copper foil and both surfaces in the same manner as in Example 1 except that an unsaturated polyester resin (manufactured by Iupika Japan Ltd .; Iupika 8523) was used as a desmear liquid dissolution promoting component instead of diallyl isophthalate oligomer.
  • a metal-clad laminate was produced.
  • Each of the polyphenylene ether compound, the styrene butadiene block copolymer, the diallyl isophthalate oligomer, and the 2,4-diphenyl-4-methyl-1-pentene is 30: 20: 40: 10 in mass ratio.
  • a copper foil with a resin layer and a double-sided metal-clad laminate were produced in the same manner as in Example 1 except that the solution was mixed to obtain a resin solution.
  • Example 3 Example 1 except that a bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd .; YDF-170) used as a curing agent (crosslinking agent) for the polyphenylene ether compound was used instead of the desmear liquid dissolution promoting component. Similarly, a copper foil with a resin layer and a double-sided metal-clad laminate were produced.
  • a bisphenol F type epoxy resin manufactured by Nippon Steel Chemical Co., Ltd .
  • YDF-170 curing agent
  • crosslinking agent crosslinking agent
  • the resin layer of Comparative Example 1 is formed using a resin solution that does not contain a desmear liquid dissolution promoting component or a bisphenol F type epoxy resin, and its dielectric loss tangent value is the lowest, 0.0020. From the above, it can be seen that the resin layer formed using a resin composition that does not contain a desmear liquid dissolution promoting component has the lowest dielectric loss tangent and good high-frequency characteristics. In addition, when a resin layer is formed using the resin composition containing the desmear liquid dissolution promoting component of the present invention, the value of the dielectric loss tangent is slightly higher, but a resin layer having excellent high frequency characteristics can be obtained. Was confirmed.
  • the dissolution rate in the desmear liquid was 0.10 mg / min to 0.20 mg / min, and it was confirmed that the samples showed moderate solubility in the desmear liquid. It was done.
  • the desmear liquid dissolution promoting component referred to in the present invention together with the polyphenylene ether compound and the styrene butadiene block copolymer as the constituent components of the resin composition, a resin formed using the resin composition. It was confirmed that the solubility of the layer in desmear liquid can be provided.
  • Example 2 and Comparative Example 2 As the mixing ratio of the desmear liquid dissolving component in the resin composition increases, the dissolution rate with respect to the desmear liquid increases, and the desmear liquid easily dissolves. I understand. Moreover, when it replaces with the desmear liquid melt
  • Example 1 when the dielectric constant of the resin layer part of the copper foil with a resin layer manufactured in Example 1 was measured using the network analyzer E8362B made from Agilent Technologies, 7.3 / 7.3 / 7.1 (1 GHz / 3 GHz / 10 GHz) and a relatively high value.
  • a copper foil with a resin layer was produced in the same manner as in Example 1 except that the barium titanate powder was not included, and the dielectric constant of the resin layer was measured to find 2.5 / 2.5 / 2.5. (1 GHz / 3 GHz / 10 GHz) and a relatively low value.
  • a resin composition comprising 10 to 100 parts by mass of a styrene butadiene block copolymer and 0.1 to 100 parts by mass of a desmear liquid dissolution promoting component with respect to 100 parts by mass of the polyphenylene ether compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本件発明は、プリント配線板の製造材料として要求される高周波特性等に優れた電気的特性を有すると共に、デスミア液に対する適度な溶解性を有する樹脂層を形成することができる樹脂組成物等を提供することを目的とする。 上記目的を達成するため、金属層の表面に樹脂層を備えた積層体の樹脂層を構成する樹脂組成物を、ポリフェニレンエーテル化合物100質量部に対して、10質量部~100質量部のスチレンブタジエンブロック共重合体と、0.1質量部~100質量部のデスミア液溶解促進成分とを含む構成とする。

Description

樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板
 本件発明は、金属張積層板等の金属層の表面に樹脂層を備えた積層体の樹脂層を構成する樹脂組成物、当該樹脂組成物を用いて形成された樹脂層を備える樹脂層付金属箔、金属張積層板及びプリント配線板に関する。
 従来より、多層プリント配線板の製造材料として、樹脂層付金属箔が用いられている。樹脂層付金属箔の樹脂層部分は絶縁層又は接着剤層として用いられ、金属箔部分は導体パターン等が形成される導体層として用いられる。近年、電子機器の小型軽量化、高速化、多機能化に伴い、電子機器に搭載されるプリント配線板の多層化が進展している。また、これらの電子機器の中には1GHzを超える高周波信号で作動するものも多く、信号処理の高速化も進んでいる。このような高周波信号で高速に動作する高周波・高速回路では、信号遅延及び信号の伝送損失を抑制するという観点から、低誘電率及び低誘電正接の絶縁材料を用いて絶縁層を形成することが好ましい。従って、樹脂層付金属箔においても、誘電率及び誘電正接が共に低い絶縁材料を用いて樹脂層を形成することが好ましい。
 一方、近年、多層プリント配線板の内層にキャパシタ回路を形成することが行われている。上記樹脂層付金属箔は、このような内蔵キャパシタを形成するための材料としても用いられ、樹脂層が誘電体層として用いられる場合もある(例えば、「特許文献1:WO2009/008471号公報」参照。)。この場合、誘電層の誘電率が高い方が静電容量の大きいキャパシタを形成することが可能になる。一方、誘電損失等を考慮した場合、誘電層の誘電正接は低いことが好ましく、誘電率は高すぎないことが好ましい。このように樹脂層の用途に応じて、樹脂層に要求される誘電特性は異なるものの、いずれの場合であっても誘電正接の低い高周波特性に優れた材料であることが求められる。
 ところで、上述のような樹脂層付金属箔を用いて、ビルドアップ法により多層プリント配線板を製造する場合、層間接続のためにスルーホール又はブラインドビア等の穴(以下、「スルーホール等」と称する。)がドリルやレーザ加工により開けられる。そして、その後、スルーホール等の内部と内層回路とを導通するためにめっき処理が施される。めっき処理の際に、スルーホール等の内部に樹脂(スミア)が残留していると、内層回路とスルーホール等との電気的接続信頼性を確保することができない。このため、めっき処理を施す前に、過マンガン酸カリウム等からなるデスミア液を用いてスミアを化学的に溶解除去するデスミア処理が一般に行われている。ここで、デスミア液に対する樹脂層の溶解性が高くなりすぎると、デスミア処理の際に、スルーホール又はブラインドビア等の周囲において樹脂層の溶解が進行して樹脂部が後退する。その場合、樹脂層と導体層との密着性が局部的に低下するため、好ましくない。一方、デスミア液に対する樹脂層の溶解性が低いと、穴の内部にスミアが残留し、内層回路とスルーホールとの導通不良の原因となる。
 そこで、本件発明の課題は、プリント配線板の製造材料として要求される高周波特性等に優れた電気的特性を有すると共に、デスミア液に対する適度な溶解性を有する樹脂層を形成することができる樹脂組成物、この樹脂組成物から成る樹脂層を備える樹脂層付金属箔、金属張積層板及びプリント配線板を提供することにある。
 そこで、本発明者等は、鋭意研究を行った結果、以下の樹脂組成物を採用することにより、上記課題を達成するに到った。
 本件発明に係る樹脂組成物は、金属層の表面に樹脂層を備えた積層体の樹脂層を構成する樹脂組成物であって、ポリフェニレンエーテル化合物100質量部に対して、10質量部~100質量部のスチレンブタジエンブロック共重合体と、0.1質量部~100質量部のデスミア液溶解促進成分とを含むことを特徴とする。
 本件発明に係る樹脂組成物は、前記デスミア液溶解促進成分として、ジアリルフタレート、(メタ)アクリレート及び不飽和ポリエステルから選ばれる一種以上を含むことが好ましい。
 本件発明に係る樹脂組成物は、前記ポリフェニレンエーテル化合物100質量部に対して、カール低減成分を0.1質量部~30質量部含むことができる。
 本件発明に係る樹脂組成物は、当該樹脂組成物100質量部(但し、誘電体粒子を除く)に対して、50質量部~600質量部の誘電体粒子を含むことができる。
 本件発明に係る樹脂組成物において、前記誘電体粒子は、ペブロスカイト構造を有する複合酸化物であることが好ましい。
 本件発明に係る樹脂層付金属箔は、金属箔の少なくとも片面に樹脂層を備える樹脂層付金属箔であって、当該樹脂層は、上記樹脂組成物を用いて形成されたものであることを特徴とする。
 本件発明に係る樹脂層付金属箔において、前記樹脂層は、誘電体層として用いられる層であることが好ましい。
 本件発明に係る金属張積層板は、上記樹脂組成物を用いて形成された樹脂層と、金属層とを備えたことを特徴とする。
 本件発明に係るプリント配線板は、上記樹脂層付金属箔又は上記金属張積層板を用いて形成されたことを特徴とする。
 本件発明に係る樹脂組成物は、それ自体の誘電率及び誘電正接が低いため、高周波特性の優れた樹脂層を形成することができる。また、当該樹脂組成物に誘電体粒子を含有させることにより、誘電率の高い樹脂層を形成することもできる。従って、本件発明に係る樹脂組成物を用いれば、プリント配線板の製造材料として要求される高周波特性等に優れた電気的特性を有する樹脂層を形成することが可能になる。さらに、当該樹脂組成物によれば、他の導体層との密着性に優れ、且つ、デスミア液に対する適度な溶解性を有する樹脂層を形成することができる。このため、当該樹脂組成物を用いて形成された樹脂層を備える樹脂層付金属箔、金属張積層板は、多層プリント配線板の製造材料として好適に用いることができる。
 以下、本発明に係る樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板の実施の形態を順に説明する。
〈樹脂組成物〉
 まず、本件発明に係る樹脂組成物について説明する。本件発明に係る樹脂組成物は、金属層の表面に樹脂層を備えた積層体の樹脂層を構成する樹脂組成物であって、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、デスミア液溶解促進成分とを後述する所定の配合比で含むことを特徴とする。以下では、まず、積層体について説明した後に、本件発明に係る樹脂組成物を構成する各成分について説明するものとする。
1.積層体
 上述した通り、本件明細書において、積層体とは、金属層の表面に樹脂層を備えたものであり、具体的には、樹脂層付金属箔、金属張積層板、プリント配線板等を指す。しかしながら、本件発明に係る積層体は、金属層(金属箔を含む)の表面に樹脂層が積層されるものであれば、特に限定されるものではない。すなわち、本件発明に係る樹脂組成物は、これらの積層体に設けられた金属層の表面に樹脂層を形成するために用いられるものであれば、どのような形態の積層体であってもよい。
(1)金属層
 本件発明において、金属層は、上述した樹脂層付金属箔の金属箔部分、又は、金属張積層板或いはプリント配線板に設けられた金属層部分を指す。これらの金属層は、いずれもプリント配線板等において、導体層として用いられる層であり、導体パターンが形成された状態であってもよい。また、金属層を構成する金属の種類に特に限定はなく、銅、アルミニウム、ニッケル、コバルト、金、白金等の種々の金属又はこれらの合金等の導電性を有する金属であればよい。金属層を構成する金属は、これらのいずれの金属であってもよいが、入手が容易であり、且つ、安価であるという観点から、銅、アルミニウム、ニッケル又はこれらの合金等を用いることが好ましい。さらに、電気的効率が低く、エッチング等による導体パターンの形成が容易であるという観点から、当該金属層は、銅又は銅合金から成る層であることが好ましい。
(2)樹脂層
 次に、樹脂層について説明する。当該樹脂層は、上記金属層の表面に設けられる層であり、例えば、本件発明に係る樹脂組成物を溶剤に溶解又は分散させた樹脂溶液を金属層の表面に塗布し、その後、乾燥、加熱等を施すことにより得ることができる。当該樹脂層は、プリント配線板を製造する際に、接着剤層、絶縁層或いは、誘電層等として用いられる層である。
2.樹脂組成物の構成成分
 次に、上当該樹脂組成物の構成成分について説明する。本件発明に係る樹脂組成物は、上述した通り、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、デスミア液溶解促進成分とを必須の構成成分として含み、必要に応じて、カール低減成分、誘電体粉末等の各種添加剤を含むことができる。以下、順に説明する。
2-1.必須の構成成分
(1)ポリフェニレンエーテル化合物
 まず、本件発明に係る樹脂組成物の必須の構成成分の一つであるポリフェニレンエーテル化合物について説明する。ポリフェニレンエーテル化合物は、下記構造式(1)で表される化合物である。ポリフェニレンエーテル化合物は、低誘電率及び低誘電正接の電気的特性を有する材料であり、ポリフェニレンエーテル化合物を当該樹脂組成物の構成成分の一つとすることにより高周波特性に優れた樹脂層を形成することができる。また、ポリフェニレンエーテル化合物は、エーテル結合を有するため耐熱性が高い。また、化合物内に親水性基が存在しないため、吸水性が低く、多湿環境下においても品質の劣化しにくい樹脂層を形成することができる。
 本件発明に用いられるポリフェニレンエーテル化合物は、次の一般式で表される。但し、下記一般式において、R1、R2、R3、R4はそれぞれ水素原子または炭素数1~3の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000001
 上記ポリフェニレンエーテル化合物として、具体的には、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル等を用いることができる。また、上記一般式で表されるポリフェニレンエーテル化合物において、末端基は水酸基であることが好ましい。しかしながら、本件発明では、末端基が水酸基であるポリフェニレンエーテル化合物だけではなく、必要に応じて、スチレン基やグリシジル基を有する化合物を用いて、公知の方法により、末端基を変性させたスチレン変性ポリフェニレンエーテル化合物や、グリシジル変性ポリフェニレンエーテル化合物等も好ましく用いることができる。また、これらの市販品を用いてもよい。
 ポリフェニレンエーテル化合物の数平均分子量は、500~4000であることが好ましく、1000~3000であることがより好ましい。ポリフェニレンエーテル化合物の数平均分子量が500未満である場合、得られる樹脂層の可撓性が低くなるため好ましくない。一方、ポリフェニレンエーテル化合物の数平均分子量が4000を超える場合、メチルエチルケトンやトルエン等の溶剤に対する溶解性が低くなるため好ましくない。
(2)スチレンブタジエンブロック共重合体
 次に、スチレンブタジエンブロック共重合体について説明する。スチレンブタジエンブロック共重合体は、ポリフェニレンエーテル化合物に対する重合(架橋)成分である。ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体とが重合することにより、ブタジエン構造体部分に由来する高柔軟性により当該樹脂層が弾性、可撓性を示すようになる。特に、スチレン変性ポリフェニレンエーテル化合物又はグリシジル変性ポリフェニレンエーテル化合物を用いた場合、この傾向は顕著になる。その結果、樹脂層の金属層(導体層)或いは絶縁性樹脂基材に対する密着性が向上すると共に、耐クラック性も向上させることができる。そして、当該樹脂層付金属箔を用いてプリント配線板を製造したときに、回路の引き剥がし強さを実用上要求される値にすることができる。また、当該スチレンブタジエンブロック共重合体を用いることにより、耐吸湿劣化特性を向上させることができ、引き剥がし強さが多湿環境下で経時的に劣化することを防ぐことができる。さらに、スチレンブタジエンブロック共重合体は、極性基が少なく、ポリフェニレンエーテル化合物が有する低誘電特性に与える影響が少ないため、ポリフェニレンエーテル化合物に由来する低誘電率及び低誘電正接の高周波特性に優れた電気的特性を維持することができる。
(3)デスミア液溶解促進成分
 次に、デスミア液溶解促進成分について説明する。本件発明において、デスミア液溶解促進成分とは、樹脂組成物の構成成分として上記ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と共に用いられることにより、当該樹脂組成物を用いて形成される樹脂層の誘電特性を損なうことなく、デスミア液に対する溶解性を与えるための成分である。具体的には、デスミア液溶解促進成分とは、デスミア液により酸化されやすい不飽和結合部分を複数有する易酸化性の化合物であり、ポリフェニレンエーテル化合物及び/又はスチレンブタジエンブロック共重合体に対する架橋成分となる化合物を指す。現在、デスミア処理の際には、デスミア液として主として過マンガン酸カリウムや過マンガン酸ナトリウムなどの過マンガン塩が用いられている。これらの過マンガン酸塩は酸化剤として用いられ、樹脂を化学的に溶解除去する。しかしながら、上述したポリフェニレンエーテル化合物はその構造から耐酸性が高く、デスミア液に対する溶解性が極めて低い。また、スチレンブタジエンブロック共重合体は、その分子鎖内に炭素の二重結合部分を有するものの、ポリフェニレンエーテル化合物と重合する際に、当該二重結合部分が重合反応により消費される。そこで、本件発明に係る樹脂組成物は、当該デスミア液溶解促進成分を所定の配合比で含む構成とすることにより、当該樹脂組成物を用いて形成した樹脂層のデスミア液に対する溶解性を適度なものとすることができる。
 ここで、デスミア液溶解促進成分として、ビニル基などの不飽和結合部分を構造内に複数有する化合物を用いることが好ましい。このような化合物として、例えば、ジアリルフタレート、(メタ)アクリレート及び不飽和ポリエステルを挙げることができる。本件発明の樹脂組成物は、これらの化合物から選ばれる一種以上をデスミア溶解促進成分として含むことが好ましい。以下、各化合物について順に説明する。
ジアリルフタレート: 本件発明において、ジアリルフタレート(フタル酸ジアリル)とは、ジアリルオルソフタレート、ジアリルイソフタレート及びジアリルテレフタレートのいずれであってもよく、これらのジアリルフタレートは1種を単独で、又は2種以上を組み合わせて用いてもよい。また、これらのジアリルフタレートは、単量体(モノマー)及び重合体(オリゴマー/ポリマー)のいずれであってもよく、2種以上の単量体又は重合体が共重合した共重合体を用いてもよい。さらに、ジアリルフタレートのベンゼン環は塩素原子、臭素原子、ヨウ素原子のようなハロゲン原子で置換されていてもよい。また、ジアリルフタレートは、分子内に存在する不飽和結合の全部または一部が水添されていてもよい。さらに、ジアリルフタレート重合体は、これらの単量体と、例えばスチレン(単量体)のようなC=C二重結合を有する異種モノマーとの共重合体であってもよい。
 上記例示したジアリルフタレートの中でも、耐熱性及び機械的強度に優れる点で、ジアリルイソフタレートを用いることがより好ましく、ジアリルイソフタレートの重合体(分子量約1万~約5万のオリゴマー体)を用いることが更に好ましい。
(メタ)アクリレート: 次に、(メタ)アクリレートについて説明する。本件発明において、(メタ)アクリレートとは、化合物内にアクリル基又はメタクリル基((メタ)アクリル基)を有する化合物(アクリレート及び/又はメタクリレート)を指し、化合物内に複数の(メタ)アクリル基を有する多官能性(メタ)アクリレートであることが好ましい。具体的には、ジ(メタ)アクリレート、化合物内の(メタ)アクリル基の数が3以上のポリ(メタ)アクリレートを好ましく用いることができる。また、変性ポリオールポリ(メタ)アクリレートを用いてもよい。
 ジ(メタ)アクリレートとして、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート及びビス・グリシジル(メタ)アクリレート等を挙げることができる。
 また、ポリ(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
 さらに、変性ポリオールポリアクリレートとして、例えば、ビスフェノールSのエチレンオキシド4モル付加ジアクリレート、ビスフェノールAのエチレンオキシド4モル付加ジアクリレート(変性ビスフェノールAジアクリレート)、脂肪酸変性ペンタエリスリトールジアクリレート、トリメチロールプロパンのプロピレンオキシド3モル付加トリアクリレート及びトリメチロールプロパンのプロピレンオキシド6モル付加トリアクリレート等の変性ポリオールポリアクリレート等を挙げることができる。
 上記例示した(メタ)アクリレートの中でも、分子量に比して粘度が低い化合物であるという観点から、2官能性のジ(メタ)アクリレートを用いることが好ましい。樹脂組成物に添加する(メタ)アクリレートの分子量が低い場合、樹脂層を形成する際に、溶剤と共にこれらの化合物も揮発する恐れが高いため、好ましくない。一方、化合物の分子量が大きくなると、溶液粘度が高くなり、後述する誘電体粒子を混練する際の取り扱い性が低下するため好ましくない。2官能性のジ(メタ)アクリレートの中でも、特に、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、変性ビスフェノールAジアクリレートを用いることが好ましい。
不飽和ポリエステル: 次に、不飽和ポリエステルについて説明する。不飽和ポリエステル樹脂は、その主鎖中に炭素の二重結合部分と、エステル結合部分とを有するポリマーを指し、不飽和二塩基酸を含む酸成分と多価アルコール成分とをエステル化触媒の存在下で、脱水縮合反応させることにより得ることができる。
 酸成分の必須成分である不飽和二塩基酸としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、これらの酸無水物などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、このような不飽和二塩基酸と必要に応じて併用される酸成分としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、無水テトラヒドロフタル酸、ヘキサヒドロフタル酸、無水ヘキサヒドロフタル酸、アジピン酸などの脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、ヤシ油脂肪酸、トール油脂肪酸、米ぬか油脂肪酸などの複数種の脂肪酸が混合したものが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 多価アルコール成分としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,6-シクロヘキサンジメタノール、グリセリンモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、ペンタエリスリトールジアリルエーテルなどの2価アルコール、グリセリン、トリメチロールプロパン、トリス-2-ヒドロキシエチルイソシアヌレート、ペンタエリスリトールモノアリルエーテルなどの3価以上のアルコールが挙げられ、これらは単独で用いてもよく、2種類以上を混合して使用することができる。
 脱水縮合反応に用いるエステル化触媒としては、トリフェニルホスフィン、トリブチルホスフィンなどの含リン化合物、N,N-ベンジルジメチルアミン、N,N-ジメチルフェニルアミン、トリエチルアミンなどの3級アミン、4級アンモニウム塩、4級ホスホニウム塩、4級ピリジニウム塩などの第4級化合物、塩化亜鉛、塩化アルミニウム、塩化スズなどの塩化物、テトラブチルチタネートなどの有機金属化合物などが挙げられる。
(4)配合比
 次に、本件発明に係る樹脂組成物におけるポリフェニレンエーテル化合物、スチレンブタジエンブロック共重合体及びデスミア液溶解促進成分の配合比について説明する。本件発明に係る樹脂組成物は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を10質量部~100質量部、デスミア液溶解促進成分を0.1質量部~100質量部含むことを特徴とする。
 ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体が10質量部未満の場合、成膜が困難である他、当該樹脂組成物を用いて形成した樹脂層の十分な弾性、可撓性が得られないため好ましくない。一方、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体が100質量部を超える場合、当該樹脂組成物を用いて樹脂層を形成した場合、耐熱性が低く、要求されるレベルのガラス転移温度(Tg)が得られないため好ましくない。
 ここで、ポリフェニレンエーテル化合物100質量部に対してスチレンブタジエンブロック共重合体の配合比は20質量部以上であることがより好ましく、40質量部以上であることが更に好ましい。ポリフェニレンエーテル化合物100質量部に対してスチレンブタジエンブロック共重合体を20質量部以上、好ましくは40質量部以上配合することにより、成膜が容易になり、当該樹脂組成物を用いて形成した樹脂層に弾性及び可撓性を付与することができるためである。
 また、ポリフェニレンエーテル化合物100質量部に対して、デスミア液溶解促進成分が0.1質量部未満である場合、当該樹脂組成物を用いて形成した樹脂層のデスミア液に対する溶解性が低く、本件発明の目的を達成することができず好ましくない。一方、ポリフェニレンエーテル化合物100質量部に対して、デスミア液溶解促進成分が100質量部を超える場合、デスミア液に対する溶解性が高くなり過ぎる可能性があるため、好ましくない。また、この場合、ポリフェニレンエーテル化合物が有する誘電特性を低下させる懸念があるため好ましくない。これらの観点から、本件発明に係る樹脂組成物において、ポリフェニレンエーテル化合物100質量部に対して、デスミア液溶解促進成分を10質量部~80質量部含むことがより好ましい。
2-2.添加剤
 次に、添加剤について説明する。以下に説明する添加剤は、当該樹脂層に要求される機械的特性或いは電気的特性等に応じて、当該樹脂組成物に適宜添加することができる。
(1)カール低減成分
 まず、カール低減成分について説明する。本件発明に係る樹脂組成物は、ポリフェニレンエーテル化合物100質量部に対して、カール低減成分を0.1質量部~30質量部含むことが好ましく、10質量部以上含むことがより好ましい。当該樹脂組成物を用いて樹脂層を形成する際、上述した様に、樹脂組成物を含む樹脂溶液を金属層の表面に塗布して、塗布膜の乾燥、加熱等を行う。このとき、塗布膜からは溶剤が揮発すると共に、樹脂組成物を構成する各成分は互いに重合し、架橋構造を有する重合体となる。すなわち、半硬化状態又は完全硬化状態の樹脂層となる。この際、樹脂層は塗布膜の状態のときと比較すると収縮し易くなり、金属層が樹脂層側を内側にして反る金属層のカール現象が生じやすくなる。そこで、本件発明では、樹脂組成物に、カール低減成分を上記の範囲で含有させることにより、樹脂層を半硬化又は完全硬化させるときに、このカール現象を低減することができる。
 カール低減成分としては、液体で常温の化合物であり、ポリフェニレンエーテル化合物と反応性を有する比較的低分子量の化合物を用いることが好ましい。具体的には、スチレンモノマー、α-メチルスチレン、α-メチルスチレンダイマー(2,4-ジフェニル-4-メチル-1-ペンテン)を用いることができる。これらの他にも、ラウリルメルカプタン、オクチルメルカプタン、2-メルカプトエタノール、チオグリコール酸オクチルおよび3-プロピオンメルカプト酸等を用いることができる。本件発明に係る樹脂組成物に、これらの化合物を上記範囲内で適宜添加することにより、樹脂組成物を構成する各成分の重合時の架橋反応を適度に抑制することができ、樹脂層を半硬化又は完全硬化させる際に樹脂層側の収縮を抑制して、カール現象を低減することができる。
(2)誘電体粒子
 また、キャパシタの誘電層を形成する場合など、誘電率の高い樹脂層を形成する必要がある場合には、当該樹脂組成物100質量部に対して、50質量部~600質量部の誘電体粒子を含むことができる。樹脂組成物に誘電体粒子を添加することにより、誘電率の高い樹脂層を形成することが可能になり、その結果、静電容量の大きいキャパシタ回路を形成することができる。
 なお、周知のとおり、キャパシタの静電容量は下記式で求められる。すなわち、キャパシタの静電容量(C)は、誘電層の誘電率(ε)に比例し、電極間の距離(d)及び電極面積(A)に反比例して大きくなる。なお、下記式において、εは比誘電率を指す。
 C=εε(A/d)
 ここで、樹脂組成物100質量部に対して、誘電体粒子が50質量部未満である場合、樹脂層の誘電率を十分に高くすることができず、当該積層体を用いてキャパシタ回路を形成しても市場で要求されるレベルの静電容量を達成することができないため、好ましくない。当該観点から、樹脂組成物100質量部に対して、誘電体粒子は200質量部以上であることがより好ましい。樹脂組成物内の誘電体粒子の含有比率が増加するにつれて、誘電率のより高い樹脂層を形成することが可能になるため、より大きい静電容量を有するキャパシタ回路を形成することが可能になる。
 一方、樹脂組成物100質量部に対して、誘電粒子が600質量部を超える場合、樹脂層内に存在する樹脂量が少なくなるため、当該樹脂層の金属層に対する密着性が低下する他、当該積層体を多層プリント配線板の内層材等の他の層に張り合わせたときの密着性が低下するため好ましくない。さらに、樹脂量が少なくなると、樹脂層を硬化させたときに、樹脂層の靭性が劣化して脆くなるため好ましくない。これらの観点から、当該誘電体粒子は、樹脂組成物100質量部に対して、600質量部以下であることがより好ましい。
 当該誘電体粒子は、例えば、マグネシウム、ケイ素、アルミニウム、チタン、亜鉛、カルシウム、ストロンチウム、ジルコニウム、バリウム、錫、ネオジム、ビスマス、リチウム、サマリウム及びタンタルから選ばれる少なくとも1種の金属を含む金属酸化物から成ることが好ましい。特に、より高い誘電率の樹脂層を形成することができるという観点から、当該誘電体粒子は、強誘電体であるペブロスカイト構造を有する複合酸化物から成ることが好ましい。ペブロスカイト構造を有する複合酸化物として、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウム、ジルコン酸ストロンチウム、ジルコン酸ビスマス、PLZT(PbLATiO・PbLaZrO)、SBT(SrBiTa)を挙げることができる。
 また、これらの誘電体粒子の1次粒子径は、0.02μm~2μmの範囲内であることが好ましい。誘電体粒子の1次粒子径が0.02μm未満の場合、樹脂組成物を溶剤に分散又は溶解させて樹脂溶液を調製する際に、樹脂溶液内に当該誘電体粒子を均一に混合分散させることが困難になるため好ましくない。
 ここで、キャパシタの静電容量は、上述した様に電極間の距離に反比例して大きくなる。すなわち、誘電層の厚みが薄くなるほど、静電容量の大きなキャパシタを得ることができる。しかしながら、誘電体粒子の1次粒子径が2μmを超える場合、誘電体粒子の粒径が大きいため、厚みが3μm~4μm程度の誘電層を形成するのが困難になると共に、半硬化状態としたときの誘電層の表面が荒れた状態となる傾向が高くなるため好ましくない。
 また、当該誘電体粒子は、上記樹脂溶液内での分散性を向上させるための表面処理が施されていることが好ましい。具体的には、シランカップリング剤処理、オレイン酸処理、ステアリン酸処理等を施すことが好ましい。特に、樹脂溶液を調製する際に用いる溶剤との濡れ性が良好であるという観点から、当該誘電体粒子はシランカップリング剤処理が施されたものであることが好ましい。
(3)その他
 なお、本件発明に係る樹脂組成物は、その他の添加剤として、エポキシ樹脂、硬化剤、硬化促進剤、熱可塑性粒子、着色剤、酸化防止剤、難燃剤、カップリング剤、重合開始剤、分散剤、無機充填材等を含むことができる。これらの各種添加剤を本件発明の趣旨を逸脱しない範囲において、適宜量、添加してもよい。
〈樹脂層付金属箔〉
 次に、本件発明に係る樹脂層付金属箔について説明する。本件発明に係る樹脂層付金属箔は、金属箔の少なくとも片面に樹脂層を備えたものであり、この樹脂層は上述した本件発明に係る樹脂組成物を用いて形成された層であることを特徴とする。
1.金属箔
 本件発明において、金属箔は、電解箔及び圧延箔のいずれを用いてもよく、金属箔の製造方法に関する限定は特にない。また、金属箔を構成する金属の種類についても特に限定はなく、上述した積層体の金属層と同様であるためここでは説明を省略する。但し、上述した理由と同様の理由から、当該金属箔を構成する金属は銅又は銅合金であることが好ましく、当該金属箔は銅箔又は銅合金箔であることが好ましい。
 本件発明において、金属箔の厚みは特に限定されるものではないが、0.5μm~70μmの範囲の金属箔に当該樹脂層を設けることが好ましい。プリント配線板を製造する際に求められる特性等に応じて、適宜、適切な厚みの金属箔を採用すればよい。また、本件発明において、例えば、5.0μm以下の金属箔の片面(一面側)に樹脂層を備える構成とした場合、金属箔の他面に、いわゆるキャリア箔(支持体)を設けてもよい。5.0μm以下の金属箔を用いることにより、より回路ピッチの狭い高精細な回路を、良好なエッチングファクタで形成することができる。
 また、本件発明において、樹脂層は金属箔の少なくとも片面に設けられていればよく、その両面に設けられていてもよい。電解金属箔の片面にのみ樹脂層を設ける場合には、樹脂層は光沢面(ドラム面)或いは析出面(粗面)のいずれの面に設けられていてもよい。また、金属箔の樹脂層が設けられる面に対して、粗化処理を施してもよいし、粗化処理を施さなくてもよい。いずれの場合であっても、当該金属箔の表面(但し、樹脂層が設けられる面を指す。以下、同じ。)の表面粗さ(Rzjis)は3μm以下であることが好ましい。
 なお、金属箔の表面に粗化処理を施した場合には、金属箔と樹脂層との密着性が向上するという点で好ましい。一方、金属箔の表面に粗化処理を施していない場合には、エッチングファクタのより良好な導体パターンを形成できるという点で好ましい。また、金属箔の表面に粗化処理を施していない場合には、いわゆる表皮効果による高周波信号の信号遅延を抑制することができる。
 なお、本件発明では、金属箔の表面に防錆処理を施し、この防錆処理層の表面に樹脂層を設ける構成としてもよい。金属箔に対する防錆処理として、亜鉛、ニッケル、コバルト等を用いた無機防錆処理、クロム酸塩を用いたクロメート処理、ベンゾトリアゾール、イミダゾール等の有機剤を用いた有機防錆処理等が挙げられる。なお、以下において金属箔と称した場合、金属箔の表面に防錆処理層が形成されている金属箔も含むものとし、金属箔の表面と称した場合、防錆処理層の表面である場合も含むものとする。
 また、本件発明では、金属箔の片面側の表面にシランカップリング剤処理を施し、このシランカップリング剤層の表面に樹脂層を設ける構成としてもよい。シランカップリング剤層を介して、樹脂層を金属箔の表面に設けることにより、金属箔の表面と樹脂層との濡れ性を改善し、当該金属箔と樹脂層との密着性をより良好なものとすることができる。シランカップリング処理を施す際には、アミノ官能性シランカップリング剤、アクリル官能性シランカップリング剤、メタクリル官能性シランカップリング剤、ビニル官能性シランカップリング剤、エポキシ官能性シランカップリング剤、オレフィン官能性シランカップリング剤、メルカプト官能性シランカップリング剤等の種々のシランカップリング剤を用いることができる。シランカップリング剤として、より具体的には、ビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ-メルカプトプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等を用いることができる。
 金属箔の表面に対して、シランカップリング剤処理を施す際には、溶媒としての水にシランカップリング剤を0.5g/l~10g/l溶解させたものを、室温レベルの温度で、浸漬法、シャワーリング法、噴霧法等により金属箔の表面とシランカップリング剤とを均一に接触させて、金属箔の表面にシランカップリング剤を均一に吸着させることが好ましい。シランカップリング剤は、金属箔の表面に突きだしたOH基と縮合結合することにより、被膜を形成する。シランカップリング剤の濃度が0.5g/l未満の溶液を用いた場合、金属箔の表面に対するシランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず好ましくない。また、シランカップリング剤も金属箔の表面に対して不均一に吸着されるため好ましくない。一方、シランカップリング剤の濃度が10g/lを超える溶液を用いた場合であっても、特に吸着速度や均一吸着性が向上する訳ではなく、経済上の観点から好ましくない。
 なお、以下において金属箔と称した場合、金属箔表面にシランカップリング剤層が形成されている金属箔も含むものとし、金属箔の表面と称した場合、シランカップリング剤層の表面である場合も含むものとする。
2.樹脂層
 本件発明に係る樹脂層付金属箔において、樹脂層は上述したとおり、本件発明に係る樹脂組成物を用いて形成される。樹脂組成物は上述したとおりであるため、ここでは樹脂組成物についての説明を省略する。樹脂層は、積層体に設けられる樹脂層と同様に、プリント配線板を製造する際に、接着剤層、絶縁層或いは誘電層等として用いられる層である。また、樹脂層の表面に更に金属箔を設け、後述するキャパシタ回路形成材としてもよいし、樹脂層付銅箔の樹脂層同士を張り合わせて、後述するキャパシタ回路形成材としてもよい。
 樹脂層の厚みは、樹脂層の用途に応じて適宜調整することができ、特に限定されるものではない。樹脂層付金属箔では、一般的には0.5μm~100μm程度の厚みの樹脂層が設けられる。但し、当該樹脂層を誘電層として用いる場合には、50μm以下とすることが好ましい。樹脂層の厚みが薄い方が、静電容量の大きなキャパシタを得る上で有利であるためである。従って、当該樹脂層を誘電層として用いる場合には、樹脂層の厚みは、25μm以下であることがより好ましい。  
3.樹脂層付銅箔の製造方法
 次に、本件発明に係る樹脂層付金属箔の製造方法の一例を説明する。上記樹脂層付金属箔の製造工程は、例えば、(1)樹脂溶液調製工程と、(2)樹脂溶液塗布工程と、(3)乾燥工程とに大別することができる。以下、各工程毎に説明する。
(1)樹脂溶液調製工程
 樹脂溶液工程は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を10質量部~100質量部、デスミア液溶解促進成分を0.1質量部~100質量部の範囲で含む樹脂溶液(ワニス)を調製する工程である。当該樹脂溶液を調製する際には、例えば、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、デスミア液溶解促進成分とを予め所定の配合比で混合した樹脂組成物を溶剤に溶解させてもよいし、ポリフェニレンエーテル化合物、スチレンブタジエンブロック共重合体及びデスミア液溶解促進成分をそれぞれ溶剤に溶解させたものを、これらの成分が所定の配合比となるように混合してもよく、樹脂溶液の調製方法は特に限定されるものではない。
 樹脂溶液の溶剤としては、メチルエチルケトン等のケトン系溶剤、或いはトルエン等の芳香族系溶剤を用いることができる。これらの溶剤を用いることにより樹脂組成物を溶解させることが容易であり、且つ、樹脂溶液の粘度の調整も容易になる。また、これらの溶剤は、いずれも当該樹脂層付金属箔と樹脂基材とを張り合わせる際に加熱加圧する際に効率良く溶剤を揮発させることができ、揮発したガスの浄化処理も容易である。
 また、当該樹脂溶液調製工程では、樹脂固形分濃度を適宜調整し、金属箔の表面に樹脂溶液を塗布したときに、精度良く所望の膜厚の塗布膜を形成することができるような溶液粘度に調整することが好ましい。
(2)樹脂溶液塗布工程
 樹脂溶液塗布工程は、金属箔の片面に、乾燥後の樹脂層の厚さが0.5μm~100μmになるように、当該樹脂溶液を塗布する工程である。樹脂溶液を塗布する際の塗布方法は特に限定されるものではなく、形成する樹脂層の厚みに応じて、適宜、適切な方法を採用すればよい。
(3)乾燥工程
 乾燥方法は、従来既知の方法により適宜行うことができ、特に限定されるものではない。当該工程により、塗布膜から溶剤を揮発させると共に、樹脂組成物の硬化反応を中間段階で終了させた半硬化状態の樹脂とする。以上の工程により、本件発明に係る樹脂層付金属箔を製造することができる。
〈金属張積層板〉
 次に、本件発明に係る金属張積層板の実施の形態を説明する。本件発明に係る金属張積層板は、上述した本件発明に係る樹脂層付金属箔を用いたことを特徴とする。ここで、金属張積層板には種々の態様があるため、各態様毎に簡単に説明する。
 まず、第一の態様の金属張積層板として、本件発明に係る樹脂層付金属箔の樹脂層に金属箔を積層した両面金属張積層板を挙げることができる。当該両面金属張積層板は、上記樹脂層付銅箔を用い、半硬化状態の樹脂層の表面に金属箔を当接させて、加熱加圧する。つまり、上述した樹脂層付銅箔の製造方法において(3)乾燥工程が終了した後に、金属箔を樹脂層に当接して加熱加圧することにより、樹脂層が溶融・硬化する過程で樹脂層の表面に金属箔が強固に密着した両面金属張積層板を得ることができる。
 次に、第二の態様の金属張積層板として、本件発明に係る樹脂層付銅箔の樹脂層同士を当接して加熱加圧することにより得られる両面金属張積層板を挙げることができる。
 第一の態様及び第二の態様の両面金属張積層板は、多層プリント配線板の内蔵キャパシタ回路を形成するための材料として特に好適に用いることができる。当該両面金属張積層板を内蔵キャパシタ回路形成材料として用いれば、電極層として用いられる金属箔により誘電体層が予め挟み込まれた状態となっているので、キャパシタ回路の形成が容易である他、多層プリント配線板の内層材に当該両面金属張積層板を積層する前の段階で、耐電圧測定等を行うことができるため、生産歩留まりを向上させることができる。
 次に、第三の態様として、紙、または、ガラス布等に絶縁性樹脂を含浸させたシートを必要枚数重ねたプリプレグ、紙フェノール樹脂基材等の樹脂基材の片面又は両面に本件発明に係る樹脂層付金属箔の樹脂層側を積層し、加熱加圧することにより樹脂基材の片面又は両面に金属箔を積層した片面金属張積層板又は両面金属張積層板を挙げることができる。この場合、本件発明に係る樹脂層付金属箔の樹脂層は接着剤層として機能する。
 さらに、第四の態様として、多層プリント配線板の内層基板(内層回路層)上に層間絶縁層としての樹脂層を介して本件発明に係る樹脂層付金属箔の樹脂層側を当接して加熱加圧することにより得られた積層体を挙げることができる。この場合も本件発明に係る樹脂層付金属箔の樹脂層は接着剤層として機能する。
 また、第五の態様として、多層プリント配線板の内層基板(内層回路層)上に本件発明に係る樹脂層付銅箔の樹脂層側を当接して加熱加圧することにより得られた積層体を挙げることができる。この場合は、本件発明に係る樹脂層付金属箔の樹脂層を層間絶縁層として用いることができる。なお、本件発明に係る金属張積層板は、これらの態様に限定されるものではなく、種々の積層体を含む。
〈プリント配線板〉
 また、本件発明に係るプリント配線板は、上述した本件発明に係る樹脂層付金属箔を用いたことを特徴とするものであり、上記金属張積層板を用いたものであってもよい。また、本件発明に係るプリント配線板は、多層プリント配線板であってもよいのは勿論であり、例えば、当該樹脂層付金属箔を用いてビルドアップ層を形成したビルドアッププリント配線板であってもよい。
 上記説明した本件発明に係る樹脂層付金属箔、金属張積層板及びプリント配線板の実施の形態は、本件発明の一態様に過ぎず、本件発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。また、以下では実施例を挙げて、本件発明をより具体的に説明するが、本件発明は以下の実施例に限定されるものではないことは勿論である。また、以下の実施例では、本件発明に係る樹脂組成物を用いて形成した樹脂層付金属箔について説明する。
〈樹脂層付金属箔の製造〉
 実施例1では、次のようにして樹脂層付銅箔を製造した。まず、撹拌装置、温度調節機、還流管を備えた1リットルの4つ口フラスコに、ポリフェニレンエーテル樹脂(SABIC社製;MX-90)200gとトルエン400gとを注入し、60℃にて撹拌溶解した。続いて、当該フラスコ内に、クロロメチルスチレン10gを導入し、撹拌溶解し、液温を80℃とした。さらに、撹拌しながら、水酸化ナトリウム50質量%水溶液24gを滴下導入し、80℃で3時間撹拌を続けた。次に、内容物を1N塩酸水溶液で中和後、メタノールを添加し化合物を沈殿させ、ろ過した。ろ過物をメタノール水溶液(メタノール:蒸留水=4:1)で2回洗浄後、溶剤、水分を乾燥除去し、ポリフェニレンエーテル化合物を得た。
 次に、上記で得られたポリフェニレンエーテル化合物をトルエンに溶解して、50質量%ポリフェニレンエーテル化合物溶液を調製した。また、スチレンブタジエンブロック共重合体(JSR株式会社製;TR2003)をトルエンに溶解して、30質量%のスチレンブタジエンブロック共重合体溶液を調製した。さらに、デスミア液溶解促進成分として、ジアリルイソフタレートオリゴマー(ダイソー株式会社製;ダイソーイソダップ(登録商標))をトルエンに溶解して、30質量%のジアリルイソフタレートオリゴマー溶液を調製した。そして、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、ジアリルイソフタレートオリゴマーと、2,4-ジフェニル-4-メチル-1-ペンテンとが、質量比において、50:30:10:10となるように、各溶液を混合するとともに、カール低減成分として、2,4-ジフェニル-4-メチル-1-ペンテン試薬(和光純薬工業株式会社社製(α-メチルスチレンダイマー))を添加して、樹脂固形分濃度が40%となるように樹脂溶液(ワニス)を調製した。
 以上のように調製した樹脂溶液に対して、樹脂溶液中に含まれる樹脂組成物の全量を100質量部としたときに、チタン酸バリウム粉を233質量部を混合分散させ、チタン酸バリウム粉を70質量%含有した半硬化状態の樹脂層(誘電層)の形成が可能な樹脂溶液とした。このとき平均一次粒径は、0.25μm、体積累積平均粒径(D50)は0.5μmのチタン酸バリウム粉を用いた。
 そして、厚さ35μm、表面粗さ(Rzjis)2.2μmのロープロファイル銅箔の表面にグラビアコータを用いて、乾燥後の樹脂層の厚みが12μmとなるように、当該樹脂溶液を塗布した。塗布膜形成後、150℃で3分間乾燥することにより、樹脂組成物を半硬化させた樹脂層を備える樹脂層付銅箔を製造した。
〈両面金属張積層板の製造〉
 以上のようにして製造した樹脂層付銅箔の樹脂層同士を当接して、220℃×90分、30kgf/cmの加熱加圧条件下で熱間プレス成形することで両面金属張積層板(両面銅張積層板)を製造した。
 ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、ジアリルイソフタレートオリゴマーと、2,4-ジフェニル-4-メチル-1-ペンテンとが質量比において、40:20:30:10になるように各溶液を混合して樹脂溶液とした以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
 デスミア液溶解促進成分として、ジアリルイソフタレートオリゴマーに代えて、ジアリルフタレートオリゴマー(ダイソー株式会社製;ダイソーダップ(登録商標))を用いたこと以外は、実施例1と同様にして樹脂層付銅箔及びデスミア液溶解評価用サンプルを作製した。また、この実施例3の樹脂層付銅箔を用いたこと以外は実施例1と同様に、両面金属張積層板を製造した。
 デスミア液溶解促進成分として、ジアリルイソフタレートオリゴマーに代えて、テトラエチレングリコールジメタクリレート(新中村化学工業株式会社製;4G(ポリエチレングリコールジメタクリレート))を用いたこと以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
 デスミア液溶解促進成分として、ジアリルイソフタレートオリゴマーに代えて、不飽和ポリエステル樹脂(日本ユピカ株式会社製;ユピカ8523)を用いたこと以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
比較例
 次に、比較例について説明する。
[比較例1]
 ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、2,4-ジフェニル-4-メチル-1-ペンテンとが質量比において、55:35:10になるように各溶液を混合して樹脂溶液とし、デスミア液溶解促進成分を含まなかったこと以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
[比較例2]
 ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と、ジアリルイソフタレートオリゴマーと、2,4-ジフェニル-4-メチル-1-ペンテンとが質量比において、30:20:40:10になるように各溶液を混合して樹脂溶液とした以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
[比較例3]
 デスミア液溶解促進成分の代わりに、ポリフェニレンエーテル化合物に対する硬化剤(架橋剤)として用いるビスフェノールF型エポキシ樹脂(新日鐵化学株式会社製;YDF-170)を用いたこと以外は、実施例1と同様にして樹脂層付銅箔及び両面金属張積層板を製造した。
[評価]
 以上のように製造した実施例1~実施例5及び比較例1~比較例3の両面金属張積層板を用いて、(1)樹脂層の誘電特性(2)デスミア液に対する溶解性を評価した。以下、評価方法と評価結果とに分けて説明する。
1.評価方法
(1)樹脂層の誘電特性の評価
 樹脂層の誘電特性の評価は、次のようにして行った。実施例1~実施例5及び比較例1~比較例3で製造した両面金属張積層板の両面の銅箔をエッチングにより除去し、これを誘電正接測定用のサンプルとした。そして、アジレントテクノロジー社製のネットワークアナライザーE8362Bを用いて、10GHzにおける各サンプルの誘電正接を測定した。結果を表1に示す。
(2)デスミア液に対する溶解性の評価
 デスミア液に対する溶解性の評価は、次のようにして行った。誘電正接測定用のサンプルと同様に、実施例1~実施例5及び比較例1~比較例3で製造した両面金属張積層板の両面の銅箔をエッチングにより除去したものをデスミア液溶解評価用サンプルとした。デスミア液溶解評価用サンプルをそれぞれ3枚用い、各デスミア液溶解評価用サンプルの重量を測定した後、75℃の膨潤液(ローム・アンド・ハース電子材料株式会社製)に10分間浸漬した後、70℃の過マンガン酸カリウム溶液(ローム・アンド・ハース電子材料株式会社製)に10分間浸漬した。その後、40℃の中和液(ローム・アンド・ハース電子材料株式会社製)に3分間浸漬し、水洗した。そして、大気中でサンプルを乾燥した後、重量を測定し、デスミア液浸漬前後の重量からデスミア液(過マンガン酸カリウム溶液)に浸漬した10分間のデスミア液溶解量を算出した。それを1分間当たりに換算し、デスミア液溶解速度とした。結果を表1に示す。
2.評価結果
(1)樹脂層の誘電特性の評価
 表1を参照すると、比較例3のサンプルの誘電正接の値は0.0084であるのに対して、他のサンプルの誘電正接の値はいずれも0.005以下であり、比較例3のサンプルの誘電正接の値が他のサンプルと比較すると高いことが分かる。比較例3で製造した樹脂層は、デスミア液溶解促進成分に代えて、架橋成分としてビスフェノールF型エポキシ樹脂を含む以外は、実施例1と同様にして形成されたものである。一方、比較例1の樹脂層は、デスミア液溶解促進成分もビスフェノールF型エポキシ樹脂も含まない樹脂溶液を用いて形成されたものであり、その誘電正接の値は0.0020と最も低い。以上のことから、デスミア液溶解促進成分を含まない樹脂組成物を用いて形成された樹脂層の誘電正接が最も低く、高周波特性が良好であることが分かる。また、本件発明のデスミア液溶解促進成分を含む樹脂組成物を用いて、樹脂層を形成した場合には、誘電正接の値が多少高くなるものの、高周波特性に優れた樹脂層を得ることができることが確認された。特に、実施例1に示すようにデスミア液溶解促進成分として、ジアリルイソフタレートオリゴマーを添加した場合、デスミア液溶解促進成分を含まない比較例1の樹脂層と同等の誘電正接の値を維持することが可能であることが分かる。一方、比較例3に示すように、デスミア液溶解促進成分に代えてビスフェノールF型エポキシ樹脂を添加した場合には、誘電正接の値が高くなり、高周波特性が低下することが確認された。なお、実施例2及び比較例2のように、樹脂組成物中のジアリルイソフタレートオリゴマーの配合量が増加すると、誘電正接の値も高くなる傾向が見られた。
(2)デスミア液溶解特性の評価
 表1を参照すると、デスミア液溶解促進成分を含まない比較例1のサンプルでは、デスミア液に対する溶解速度が0.00mg/minと、デスミア液に対する溶解性がほとんどないことが確認された。従って、比較例1のように、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体とを主成分とする樹脂組成物を用いて樹脂層を形成した場合、デスミア液に対する溶解性が極めて低いため、スルーホール等により層間接続を行う多層プリント配線板の製造材料として用いた場合、スルーホール等の内部にスミアが残留し、層間接続を良好に行うことができない恐れがあることが分かる。
 これに対して、実施例1~実施例5のサンプルでは、デスミア液に対する溶解速度が0.10mg/min~0.20mg/minであり、デスミア液に対して適度な溶解性を示すことが確認された。このように、樹脂組成物の構成成分として上記ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体と共に、本件発明にいうデスミア液溶解促進成分を用いることにより、当該樹脂組成物を用いて形成される樹脂層のデスミア液に対する溶解性を与えることができることが確認された。
 一方、実施例2及び比較例2に示すように、樹脂組成物中のデスミア液溶解成分の配合比率が高くなるにつれて、デスミア液に対する溶解速度が速くなり、デスミア液に対して溶解し易くなることが分かる。また、比較例3のサンプルのように、本件発明のデスミア液溶解促進成分に代えて、ビスフェノールF型エポキシ樹脂を含む樹脂組成物を用いた場合、デスミア液に対する溶解性が極めて高くなる。比較例2及び比較例3のように、デスミア液に対する溶解性が一定限度を超えて高くなると、デスミア処理の際に、スルーホール又はブラインドビア等の周囲において樹脂層の溶解が進行して樹脂部が後退する恐れがあり、その場合、樹脂層と導体層との密着性が局部的に低下するため、好ましくない。
 なお、実施例1で製造した樹脂層付銅箔の樹脂層部分の誘電率をアジレントテクノロジー社製のネットワークアナライザーE8362Bを用いて測定したところ、7.3/7.3/7.1(1GHz/3GHz/10GHz)と比較的高い値を示した。また、チタン酸バリウム粉を含まない以外は、実施例1と同様にして樹脂層付銅箔を製造し、当該樹脂層の誘電率を測定したところ、2.5/2.5/2.5(1GHz/3GHz/10GHz)と、比較的低い値を示した。このことから、本件発明に係る樹脂組成物自体の誘電率及び誘電正接は低く、本件発明に係る樹脂組成物を用いれば高周波特性の優れた樹脂層を形成することが可能であることが確認された。また、当該樹脂組成物に誘電体粒子を含有させることにより、誘電率の高い樹脂層を形成することが可能であることも確認された。従って、本件発明に係る樹脂組成物を用いれば、プリント配線板の製造材料として要求される好ましい電気的特性を有する樹脂層を形成することが可能になる。
Figure JPOXMLDOC01-appb-T000002
 本件発明では、ポリフェニレンエーテル化合物100質量部に対して、10質量部~100質量部のスチレンブタジエンブロック共重合体と、0.1質量部~100質量部のデスミア液溶解促進成分とを含む樹脂組成物を用いることにより、プリント配線板の製造材料として要求される高周波特性等に優れた電気的特性を有すると共に、デスミア液に対する適度な溶解性を有する樹脂層を形成することができる。

Claims (10)

  1.  金属層の表面に樹脂層を備えた積層体の樹脂層を構成する樹脂組成物であって、
     ポリフェニレンエーテル化合物100質量部に対して、10質量部~100質量部のスチレンブタジエンブロック共重合体と、0.1質量部~100質量部のデスミア液溶解促進成分とを含むことを特徴とする樹脂組成物。
  2.  前記デスミア液溶解促進成分として、ジアリルフタレート、(メタ)アクリレート及び不飽和ポリエステルから選ばれる一種以上を含む請求項1に記載の樹脂組成物。
  3.  前記ポリフェニレンエーテル化合物100質量部に対して、カール低減成分を0.1質量部~30質量部含む請求項1に記載の樹脂組成物。
  4.  当該樹脂組成物100質量部(但し、誘電体粒子を除く)に対して、50質量部~600質量部の誘電体粒子を含む請求項1に記載の樹脂組成物。
  5.  前記誘電体粒子は、ペブロスカイト構造を有する複合酸化物である請求項4に記載の樹脂組成物。
  6.  金属箔の少なくとも片面に樹脂層を備える樹脂層付金属箔であって、
     当該樹脂層は、請求項1に記載の樹脂組成物を用いて形成されたものであることを特徴とする樹脂層付金属箔。
  7.  前記樹脂層は、誘電体層として用いられる層である請求項6に記載の樹脂層付金属箔。
  8.  請求項1に記載の樹脂組成物を用いて形成された樹脂層と、金属層とを備えたことを特徴とする金属張積層板。
  9.  請求項6に記載の樹脂層付金属箔を用いて形成されたことを特徴とするプリント配線板。
  10.  請求項8に記載の金属張積層板を用いて形成されたことを特徴とするプリント配線板。
PCT/JP2013/062123 2012-04-27 2013-04-24 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板 WO2013161905A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380021892.7A CN104254571B (zh) 2012-04-27 2013-04-24 树脂组合物、带有树脂层的金属箔、覆金属层压板及印刷布线板
US14/396,848 US11419210B2 (en) 2012-04-27 2013-04-24 Resin composition, metal foil provided with resin layer, metal clad laminate, and printed wiring board
KR1020147030032A KR101639503B1 (ko) 2012-04-27 2013-04-24 수지 조성물, 수지층 부착 금속박, 금속 피복 적층판 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104046A JP5901066B2 (ja) 2012-04-27 2012-04-27 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板
JP2012-104046 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161905A1 true WO2013161905A1 (ja) 2013-10-31

Family

ID=49483213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062123 WO2013161905A1 (ja) 2012-04-27 2013-04-24 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板

Country Status (7)

Country Link
US (1) US11419210B2 (ja)
JP (1) JP5901066B2 (ja)
KR (1) KR101639503B1 (ja)
CN (1) CN104254571B (ja)
MY (1) MY169238A (ja)
TW (1) TWI490270B (ja)
WO (1) WO2013161905A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154722A1 (ja) * 2016-03-07 2017-09-14 三菱ケミカル株式会社 樹脂組成物、樹脂組成物の製造方法、成形体及び車両
WO2018061736A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 金属張積層板、プリント配線板および樹脂付金属箔

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088884A1 (ja) * 2014-12-05 2016-06-09 三井金属鉱業株式会社 高周波信号伝送回路形成用表面処理銅箔、銅張積層板及びプリント配線板
KR101865649B1 (ko) * 2014-12-22 2018-07-04 주식회사 두산 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
US9809720B2 (en) * 2015-07-06 2017-11-07 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications
MY195223A (en) * 2017-07-27 2023-01-11 Mitsui Mining & Smelting Co Ltd Resin Composition, Insulating Layer for Wiring Board, and Laminate
US10839992B1 (en) 2019-05-17 2020-11-17 Raytheon Company Thick film resistors having customizable resistances and methods of manufacture
JP7124227B2 (ja) * 2019-08-06 2022-08-23 日本曹達株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、及び金属張積層板
CN114940816A (zh) * 2022-06-28 2022-08-26 上海载正化工科技发展有限公司 一种可交联聚苯醚薄膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189999A (ja) * 1988-01-26 1989-07-31 Matsushita Electric Works Ltd ポリフェニレンオキサイド樹脂系lcr多層板
JPH01215852A (ja) * 1988-02-23 1989-08-29 Matsushita Electric Works Ltd 難燃化ポリフェニレンオキサイド系樹脂組成物とその金属張積層板
JPH01215851A (ja) * 1988-02-23 1989-08-29 Matsushita Electric Works Ltd 難燃化ポリフェニレンオキサイド系樹脂組成物とその金属張積層板
JPH03275760A (ja) * 1990-03-26 1991-12-06 Matsushita Electric Works Ltd ポリフェニレンオキサイド系樹脂組成物
JPH0563323A (ja) * 1991-06-18 1993-03-12 Matsushita Electric Works Ltd 回路用基板
JPH0652716A (ja) * 1992-07-28 1994-02-25 Matsushita Electric Works Ltd 複合誘電体および回路用基板
JPH07182921A (ja) * 1990-12-06 1995-07-21 Matsushita Electric Works Ltd 複合誘電体およびプリント回路用基板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923929A (en) * 1972-05-26 1975-12-02 Fmc Corp Composition comprising a diallylic phthalate polymer and a polyphenylene ether
DE3339291C2 (de) * 1982-10-30 1995-11-30 Daiso Co Ltd Diallylterephthalatcopolymeres
CA2060709C (en) * 1991-02-08 1996-06-04 Kiyotaka Komori Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
JP2001262078A (ja) * 2000-03-17 2001-09-26 Sony Chem Corp 接続材料
JP5021208B2 (ja) * 2004-01-30 2012-09-05 新日鐵化学株式会社 硬化性樹脂組成物
JP5104507B2 (ja) 2007-04-26 2012-12-19 日立化成工業株式会社 セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
TW200915932A (en) 2007-07-10 2009-04-01 Mitsui Mining & Smelting Co Copper foil with dielectric layer
US20100252310A1 (en) * 2007-07-27 2010-10-07 Kiyoshige Kojima Composite for multilayer circuit board
US8168356B2 (en) * 2009-05-01 2012-05-01 Xerox Corporation Structurally simplified flexible imaging members
CN101643565B (zh) * 2009-08-24 2010-07-21 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
CN102070854A (zh) * 2010-12-18 2011-05-25 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189999A (ja) * 1988-01-26 1989-07-31 Matsushita Electric Works Ltd ポリフェニレンオキサイド樹脂系lcr多層板
JPH01215852A (ja) * 1988-02-23 1989-08-29 Matsushita Electric Works Ltd 難燃化ポリフェニレンオキサイド系樹脂組成物とその金属張積層板
JPH01215851A (ja) * 1988-02-23 1989-08-29 Matsushita Electric Works Ltd 難燃化ポリフェニレンオキサイド系樹脂組成物とその金属張積層板
JPH03275760A (ja) * 1990-03-26 1991-12-06 Matsushita Electric Works Ltd ポリフェニレンオキサイド系樹脂組成物
JPH07182921A (ja) * 1990-12-06 1995-07-21 Matsushita Electric Works Ltd 複合誘電体およびプリント回路用基板
JPH0563323A (ja) * 1991-06-18 1993-03-12 Matsushita Electric Works Ltd 回路用基板
JPH0652716A (ja) * 1992-07-28 1994-02-25 Matsushita Electric Works Ltd 複合誘電体および回路用基板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154722A1 (ja) * 2016-03-07 2017-09-14 三菱ケミカル株式会社 樹脂組成物、樹脂組成物の製造方法、成形体及び車両
JPWO2017154722A1 (ja) * 2016-03-07 2018-03-15 三菱ケミカル株式会社 樹脂組成物、樹脂組成物の製造方法、成形体及び車両用部品
WO2018061736A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 金属張積層板、プリント配線板および樹脂付金属箔
JP2018052111A (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 金属張積層板、プリント配線板および樹脂付金属箔
JP6994660B2 (ja) 2016-09-27 2022-01-14 パナソニックIpマネジメント株式会社 金属張積層板及びプリント配線板
US11351755B2 (en) 2016-09-27 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminate, printed wiring board and metal foil with resin

Also Published As

Publication number Publication date
JP5901066B2 (ja) 2016-04-06
TW201350539A (zh) 2013-12-16
KR20140139092A (ko) 2014-12-04
KR101639503B1 (ko) 2016-07-13
JP2013231132A (ja) 2013-11-14
TWI490270B (zh) 2015-07-01
US11419210B2 (en) 2022-08-16
CN104254571B (zh) 2016-11-16
MY169238A (en) 2019-03-19
US20150140296A1 (en) 2015-05-21
CN104254571A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5901066B2 (ja) 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板
JP6215711B2 (ja) 接着剤層付銅箔、銅張積層板及びプリント配線板
TWI335347B (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
KR101298368B1 (ko) 예비 경화물, 조화 예비 경화물 및 적층체
JP6408847B2 (ja) 樹脂組成物
TW200846411A (en) Thermosetting resin composition
JP2018115334A (ja) エポキシ樹脂材料及び多層基板
KR102548243B1 (ko) 수지 조성물, 수지를 구비한 구리박, 유전체층, 동장 적층판, 캐패시터 소자 및 캐패시터 내장 프린트 배선판
KR101612974B1 (ko) 열경화성 수지 조성물 및 인쇄 배선판
JP5799174B2 (ja) 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
JP2013185089A (ja) 熱硬化性樹脂材料及び多層基板
JP2007051225A (ja) 高誘電率樹脂組成物
JP6451280B2 (ja) 多層プリント配線板の製造方法
JP5727403B2 (ja) 積層体及び多層基板
JP2009242449A (ja) 熱硬化性樹脂組成物及びプリント配線板
JP5351910B2 (ja) Bステージフィルム及び多層基板
JP5838009B2 (ja) 積層体、積層体の製造方法及び多層基板
JP2013023667A (ja) エポキシ樹脂材料及び多層基板
JP2003229674A (ja) 多層プリント配線板用接着フィルム
JP2012072318A (ja) エポキシ樹脂材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396848

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147030032

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781411

Country of ref document: EP

Kind code of ref document: A1