WO2013157339A1 - ガラスペースト - Google Patents

ガラスペースト Download PDF

Info

Publication number
WO2013157339A1
WO2013157339A1 PCT/JP2013/057787 JP2013057787W WO2013157339A1 WO 2013157339 A1 WO2013157339 A1 WO 2013157339A1 JP 2013057787 W JP2013057787 W JP 2013057787W WO 2013157339 A1 WO2013157339 A1 WO 2013157339A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
powder material
glass paste
paste
mass
Prior art date
Application number
PCT/JP2013/057787
Other languages
English (en)
French (fr)
Inventor
誠通 宮澤
潤 濱田
篤史 辻
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013157339A1 publication Critical patent/WO2013157339A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a glass paste, and more particularly to a glass paste used when applied and fired into a sheet or film.
  • a glass layer that forms a glass paste into a sheet or film is used as an insulating layer or protective layer for the substrate or electrode.
  • Such a glass layer is formed by applying glass paste by various application methods such as screen printing and baking.
  • the roll-to-roll method (see, for example, Patent Document 1) is a manufacturing method in which a plastic substrate film previously wound in a roll shape is unwound, and various treatments are continuously performed, and finally wound into a roll shape. Since the carrying-in and carrying-out in each process can be omitted, it is widely used when a plastic substrate film is used as a base material.
  • a glass paste is a mixture of a solid component such as glass powder and a solvent, which is baked to remove the solvent and soften the glass powder material for adhesion, sealing, coating, etc. It is.
  • a crack or crack occurs in the glass layer after firing, or a pinhole defect in which a hole is partially formed occurs.
  • Various studies have been made.
  • Patent Document 2 discloses a glass paste in which an inorganic powder having a thermal expansion coefficient of 25 ⁇ 10 ⁇ 7 / ° C. or less is mixed in order to suppress cracks that occur during firing of glass frit. Further, in Patent Document 2, the firing temperature of the glass paste is targeted to be about 100 ° C. higher than the softening point of the glass frit, and in the embodiment, firing is performed at 800 ° C. for 10 minutes.
  • Patent Document 3 3,4′-oxydianiline and 4,4 are used in order to obtain a glass film that does not cause cracking or cracking even when fired on the base material using a polyimide film as the base material.
  • a low-melting-point glass paste is disclosed in which a low-melting-point glass is dispersed in a polyimide precursor solution in which a polyimide precursor composed of '-oxydiphthalic acid and / or a derivative thereof is dissolved in a solvent as a solute.
  • the low melting point glass is melted at a temperature not lower than the melting point of the low melting point glass and not higher than 550 ° C. In this example, heating is performed at 400 to 450 ° C. for 1 hour. .
  • Patent Document 4 in order to suppress film defects such as streaky coating marks, craters, and pinholes that occur in the glass film-forming material layer on the transfer film, a binding containing an acrylic resin having a hydrophilic functional group is included.
  • a glass paste containing a resin is disclosed.
  • the glass paste when the softening point of the glass powder material is less than 400 ° C., the glass powder material is melted at a stage where an organic substance such as a binder resin is not completely decomposed and removed in the baking process of the film forming material layer. A part of the organic substance remains, and the softening point of the glass powder material is set to 400 ° C. or higher.
  • the firing temperature is set to 400 to 600 ° C., and in the embodiment, firing is performed at 570 ° C. for 30 minutes.
  • the process of removing the solvent contained in the glass paste and firing the glass powder material requires a sufficient heat treatment temperature and time.
  • the electrodes and substrates of various devices and the plastic substrate film described above are used. Thus, it is required to form a glass layer on a substrate or the like that is easily deformed or altered by heating, and a glass powder material that can be fired in a short time is desired.
  • the object of the present invention is to obtain a glass paste that can be fired in a short time without forming pinhole defects during coating or firing when the glass layer is formed.
  • the present invention is a glass paste containing a glass powder material and an organic vehicle, wherein the organic vehicle contains an organic binder in an amount of 0.1 to 5% by mass relative to the mass of the glass paste, and the organic binder has a hydroxyl group.
  • a glass paste characterized in that, among monomers constituting the polymer, a monomer having a hydroxyl group is 15 mol% or more, and the viscosity of the glass paste at 25 ° C. is 100 to 100,000 mPa ⁇ s.
  • the glass powder material is melted in the firing step to form a glass layer.
  • a glass powder material having an average particle diameter of about 0.1 to 10 ⁇ m.
  • An organic vehicle is composed of an organic solvent and an organic binder, and disappears by burning, decomposition, and volatilization after heating and baking the glass paste.
  • the organic binder is a material for dispersing and supporting a glass powder material in a glass paste, and when the glass paste is fired, it is removed from the paste by heating or the like (hereinafter sometimes referred to as “debinder”). )
  • the organic binder is a polymer containing a hydroxyl group, and among the monomers constituting the polymer, the monomer having a hydroxyl group is 15 mol% or more.
  • the glass powder material in the glass paste is more dispersed, and the glass powder material is uniformly laminated in the coating film. Later, pinholes are less likely to occur.
  • the glass powder material aggregates in the glass paste, and the glass powder material in the coating film is laminated unevenly. As a result, pinholes are likely to occur in sparsely stacked portions.
  • the content of the organic binder is 0.1 to 5% by mass. If it is less than 0.1% by mass, the effect of the organic binder is insufficient, and if it exceeds 5% by mass, the time required for the binder removal process becomes long, and the binder removal may be insufficient.
  • the viscosity of the glass paste measured with a rheometer (manufactured by BROOKFIELD, RVDV-II + PCP) at 25 ° C. and a shear rate of 10 sec ⁇ 1 is 100 to 100,000 mPa ⁇ s.
  • the viscosity is less than 100 mPa ⁇ s, the glass powder material may be difficult to disperse in the organic solvent.
  • it may be difficult to apply.
  • it may be preferably 1000 to 70000 mPa ⁇ s.
  • the present invention is particularly effective when using a base material that is easily deformed or damaged by heating, such as a plastic film substrate.
  • a base material that is easily deformed or damaged by heating, such as a plastic film substrate.
  • the firing temperature is in the range of 380 to 450 ° C.
  • the firing time can be in the range of 3 to 15 minutes.
  • the present invention it is possible to obtain a glass paste that can be fired at a low temperature in a short time without forming pinhole defects during coating or firing when the glass layer is formed.
  • the present invention is a glass paste containing a glass powder material and an organic vehicle, wherein the organic vehicle contains an organic binder in an amount of 0.1 to 5% by mass relative to the mass of the glass paste, and the organic binder has a hydroxyl group.
  • a glass paste characterized in that, among monomers constituting the polymer, a monomer having a hydroxyl group is 15 mol% or more, and the viscosity of the glass paste at 25 ° C. is 100 to 100,000 mPa ⁇ s.
  • the organic vehicle is composed of an organic solvent and an organic binder, and disappears by burning, decomposition, and volatilization after heating and baking the glass paste.
  • the organic solvent is contained in the glass paste in an amount of 5 to 69% by mass.
  • organic solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol mono Ethyl ether acetate, 2,2,4-trimethyl-1,3-pentanediol mono (2-methylpropanoate), benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, n-pentanol, 4-methyl Pentanol, cyclohexanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, di
  • the organic binder is a polymer containing a hydroxyl group, and among the monomers constituting the polymer, the monomer having a hydroxyl group is preferably 15 mol% or more. When the amount is less than 15 mol%, the glass powder material tends to aggregate in the glass paste, and the glass powder material in the coating film is laminated unevenly, and pinholes are likely to occur in the loosely laminated portions.
  • the organic binder is contained in an amount of 0.1 to 5% by mass with respect to the mass of the glass paste.
  • the content may be 0.5 to 3% by mass.
  • the binder is not sufficiently removed and the formed glass film is colored.
  • the content is less than 0.1% by mass, the aggregation, sedimentation and coating properties of the glass may be deteriorated.
  • the organic binder may be selected from those that can be removed at the time of firing, and the temperature at which the organic binder completely disappears is better as it is lower than the softening point of the glass, and preferably even at a temperature of 30 ° C. or lower than the softening point of the glass. Those capable of disappearing can be preferably used.
  • the temperature at which the disappearance of the organic binder is completed is close to the softening point of the glass, there is a high possibility that the organic binder remains in the film, and it is necessary to make the temperature rise rate slow in order to prevent the organic binder from remaining. As a result, firing takes a long time and defects such as pinholes may occur.
  • acrylic acid ester for example, acrylic acid ester, nitrocellulose, ethylcellulose and the like can be suitably used because they have a hydroxyl group.
  • those organic binders those having a hydroxyl group per monomer unit are 15 mol% or more. Is preferred.
  • the acrylic ester may be a copolymer of an acrylic ester monomer containing a hydroxyl group and an acrylic ester monomer having no hydroxyl group in a desired proportion of hydroxyl group. This is preferable because the amount can be easily adjusted.
  • Examples of the monomer having a hydroxyl group constituting the acrylate ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2 -Hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate ethylene glycol monomethyl (meth) acrylate, ethylene glycol monoethyl (meth) acrylate, glycerol (meth) acrylate, etc. It is done.
  • a monomer containing no hydroxyl group for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl methacrylate, isobutyl (meth) Acrylate, t-butyl (meth) acrylate, allyl methacrylate, butyl methacrylate, isobutyl methacrylate, ethylene glycol dimethacrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl ( (Meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate,
  • the glass powder material is preferably contained in the glass paste in an amount of 30 to 90% by mass. If it is less than 30% by mass, pinholes may be generated after heat sintering. Moreover, when exceeding 90 mass%, defects, such as a blur, may be seen visually after application
  • the content may be 60 to 85% by mass.
  • the glass powder material may be any material as long as it has a softening point such that the substrate does not deteriorate when the glass paste is heated and fired, but it is preferably 500 ° C. or less, more preferably less than 400 ° C.
  • a bismuth-type glass composition and a lead-type glass composition can be suitably selected as a glass powder material having the above softening point.
  • the bismuth-based glass composition contains Bi 2 O 3 , B 2 O 3 , and a ZnO component.
  • the total of Bi 2 O 3 , B 2 O 3 and ZnO exceeds 80% by mass, preferably 85% by mass or more, more preferably, based on the total amount of the bismuth-based glass composition. It is good also as 90 mass% or more.
  • Bismuth glass composition for example, a Bi 2 O 3 of 65 ⁇ 95, B 2 O 3 1-20, ZnO is a composition comprising 1 to 20 mentioned in mass%.
  • Bi 2 O 3 lowers the softening point of the glass and imparts fluidity, and is desirably contained in the range of 65 to 95% (hereinafter, mass% may be described as%). If it is less than 65%, the above effect cannot be exhibited, and if it exceeds 95%, the stability of the glass is lowered. More preferably, it is in the range of 70 to 85%.
  • B 2 O 3 is a glass forming component, facilitates glass melting, suppresses an excessive increase in the linear expansion coefficient of the glass, and imparts moderate fluidity to the glass during baking. It is preferably contained in the range of 1 to 20% in the glass. If it is less than 1%, depending on the relationship with other components, the fluidity of the glass may be insufficient, and the sinterability may be impaired. On the other hand, if it exceeds 20%, the softening point of the glass rises, and the moldability and workability become difficult. More preferably, it is in the range of 5 to 10%.
  • ZnO lowers the softening point of the glass and adjusts the linear expansion coefficient to an appropriate range, and is preferably contained in the range of 1 to 20% in the glass. If it is less than 1%, the above action cannot be exhibited depending on the relationship with other components. If it exceeds 20%, the glass becomes unstable and devitrification tends to occur. More preferably, it is in the range of 5 to 10%.
  • MgO, CaO, In 2 O 3 , SnO 2 , TeO 2 and the like represented by general oxides may be added as appropriate within a range not impairing the above properties.
  • the lead-based glass composition includes PbO, B 2 O 3 , and a ZnO component.
  • the total of PbO, B 2 O 3 and ZnO exceeds 80% by mass with respect to the total amount of the lead-based glass composition, preferably 85% by mass or more, more preferably 90% by mass. It is good also as above.
  • the lead-based glass composition includes, for example, a composition containing 65 to 85 PbO, 10 to 25 B 2 O 3 , and 1 to 10 ZnO by mass%.
  • PbO lowers the softening point of the glass and gives fluidity, and it is desirable to contain it in the range of 65 to 85%. If it is less than 65%, the above effect cannot be exhibited, and if it exceeds 85%, the stability of the glass is lowered. More preferably, it is in the range of 70 to 80%.
  • B 2 O 3 is a glass forming component, facilitates glass melting, suppresses an excessive increase in the linear expansion coefficient of the glass, and imparts moderate fluidity to the glass during baking. It is preferably contained in the glass in the range of 10 to 25%. If it is less than 10%, depending on the relationship with other components, the fluidity of the glass may be insufficient, and the sinterability may be impaired. On the other hand, if it exceeds 25%, the softening point of the glass rises, and the formability and workability become difficult. More preferably, it is in the range of 10 to 22%.
  • ZnO lowers the softening point of the glass and adjusts the linear expansion coefficient to an appropriate range, and is preferably contained in the glass in a range of 1 to 10%. If it is less than 1%, the above action cannot be exhibited depending on the relationship with other components. If it exceeds 10%, the glass becomes unstable and devitrification tends to occur. More preferably, it is in the range of 6 to 8%.
  • MgO, CaO, In 2 O 3 , SnO 2 , TeO 2 and the like represented by general oxides may be added as appropriate within a range not impairing the above properties.
  • the content of the ceramic powder is preferably 20% by mass or less. When it exceeds 20 mass%, sinterability will be impaired and the compactness of a glass layer will fall. More preferably, it is in the range of 0 to 10% by mass.
  • general inorganic fillers such as Al 2 O 3 , ZrO 2 and TiO 2 can be used.
  • the average particle size of the glass powder material is preferably about 0.1 to 10 ⁇ m.
  • a glass layer is produced using a glass powder material exceeding 10 ⁇ m, the glass layer becomes thick, so that it may be easily damaged when a flexible base material such as a plastic film substrate is used.
  • the average particle diameter is a value measured by a laser diffraction / scattering method using Microtrack MT3000 manufactured by Nikkiso Co., Ltd.
  • laser light was irradiated to obtain scattered / diffracted light, and the particle size distribution was calculated from the light intensity distribution data of the diffracted / scattered light.
  • the scattering phenomenon that occurs when light strikes particles suspended in a solvent varies depending on the size, refractive index, wavelength of incident light, etc., but in this study, the amount of scattered light and the number of occurrences were measured. From the value, the particle size of the particles was calculated according to the program set in the apparatus.
  • the average particle diameter is obtained by multiplying the measured particle diameter value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).
  • the average particle diameter is the average particle diameter, and means the particle diameter at an integrated value of 50% (median diameter) in the particle size distribution determined by the laser diffraction / scattering method.
  • the glass powder material as described above is obtained by weighing and mixing glass raw materials to prepare a raw material batch, heating and melting the raw material batch in a melting furnace such as a platinum crucible, and cooling and pulverizing.
  • heating is performed using a heating device such as a burner or electricity in order to raise the temperature in the furnace and maintain the temperature, and the above raw material batch is melted and vitrified to obtain molten glass.
  • the inside of the furnace is maintained at a temperature equal to or higher than the melting temperature of the glass so that the molten glass becomes homogeneous, and is allowed to flow for a predetermined time.
  • the method for cooling the obtained molten glass is not particularly limited, and it is preferably formed into a thin plate shape or a flake shape so as to be easily pulverized. After cooling the glass, it is pulverized by using a molding machine such as a ball mill or a roll molding machine, and a glass powder material is obtained by removing those having significantly different particle sizes by classification.
  • One preferred embodiment of the glass paste of the present invention is a glass paste characterized in that the glass paste has a TI value of 1.0 to 2.0.
  • the TI value is a value representing the dispersibility of the glass powder material.
  • the TI value is within the range of 1.0 to 2.0, the dispersibility is good and pinholes are hardly generated.
  • the TI value exceeds 2.0, pinholes are likely to occur due to aggregation of the glass powder material.
  • the TI value is less than 1.0, the viscosity becomes remarkably high, and it becomes difficult to apply uniformly.
  • the TI value is a value calculated using the viscosity measured with a rotary viscometer.
  • the TI value was measured using a rheometer (BROOKFIELD, RVDV-II + PCP).
  • the measurement condition of the TI value may change depending on the viscosity of the glass paste, and a suitable one of the following two measurement conditions is selected so that the torque value of the viscometer falls within the range of 10 to 90%. And measured.
  • Condition A When the rotational speed is 1 to 10 and the torque value falls within the range of 10 to 90% under the condition of 25 ° C., the viscosity at the time of one rotation is divided by the viscosity at the time of 10 rotations. Calculated.
  • Condition B When the rotational speed is 10 to 100 and the torque value falls within the range of 10 to 90% under the condition of 25 ° C., the viscosity at 10 revolutions is divided by the viscosity at 100 revolutions. Calculated.
  • the glass paste of the present invention has good dispersibility when the TI value representing the dispersibility of the glass powder material is in the range of 1.0 to 2.0, and pinholes are hardly generated. On the other hand, if the TI value exceeds 2.0, pinholes are likely to occur due to aggregation of the glass powder material.
  • the TI value may preferably be in the range of 1.0 to 1.5. More preferably, it may be in the range of 1.0 to 1.3.
  • One of the preferred embodiments of the glass paste of the present invention is a step of applying the glass paste described above on a substrate, the applied glass paste, the softening point of the glass powder material contained in the glass paste +20 to + 100 ° C.
  • a general coating machine such as a bar coat, gravure coater, reverse roll coater, curtain flow coater, or die coater can be used. Moreover, it can also be used in screen printing, intaglio printing, relief printing, flat printing, etc., which are general printing methods. In particular, by using a die coater, a gravure coater, a comma coater, and intaglio printing, it becomes possible to apply with uniform and various film thicknesses.
  • the substrate on which the glass paste has been applied by the method as described above is preferably heated and fired through a drying process.
  • the drying step volatilizes the organic solvent of the applied glass paste with hot air or IR. Further, the temperature at this time is preferably heated to such an extent that the organic solvent volatilizes and does not adversely affect the substrate.
  • the organic solvent and the organic binder are completely removed by hot air or IR, and at the same time, the softened glass powder material forms a glass layer.
  • the temperature in the apparatus used for heat-firing is gradually heated from a temperature below the softening point of the glass, and finally reaches the softening point of the glass, preferably the softening point +20 to + 100 ° C. It is better to heat. More preferably, the softening point may be +20 to + 40 ° C. At this time, as described above, heating at a temperature not higher than the softening point of the glass and raising the temperature is preferable because the organic solvent and the organic binder can be efficiently removed.
  • the substrate is not particularly limited, it is preferable to use a film material having a 5% weight loss temperature equal to or higher than the softening point of the glass powder as one preferred embodiment of the present invention. If the 5% weight loss temperature is less than the above, the film material may be deteriorated when the glass is fired.
  • the film material as described above include polyimide, polyamide, and silicone.
  • One of the preferred embodiments of the glass paste of the present invention is a film in which the substrate is installed in a roll-to-roll apparatus, and the glass layer is formed while unwinding and winding the substrate. Is preferred.
  • the roll-to-roll device unwinds a plastic substrate film previously wound in a roll shape, conveys the plastic film substrate as a base material while applying a constant tension, forms a glass layer on the base material, and then cools it.
  • This is a manufacturing method in which the product is finally wound up again in a roll shape, and it is preferable because loading and unloading in each step can be omitted.
  • the roll-to-roll apparatus is used, particularly when the time required for the baking process is long, deformation due to the tension applied to the film is generated, and since the unwinding and winding are always performed, it is necessary to enlarge the apparatus itself. Since the glass paste of the present invention can be baked in a short time of 3 to 15 minutes at a temperature of 380 to 450 ° C., it can be particularly suitably used when forming a glass layer using the apparatus.
  • a raw material batch is prepared by weighing and mixing various inorganic raw materials so that the glass powder material is PbO 2 : 76% by mass, B 2 O 3 : 15% by mass, ZnO: 7% by mass, and SiO 2 : 2% by mass.
  • the raw material batch was put into a platinum crucible and then heated and melted in an electric heating furnace at 1100 ° C. for 1 to 2 hours to obtain a lead-based glass having a softening point of 390 ° C.
  • the obtained glass was pulverized with a quenching twin roll molding machine to obtain a glass powder material.
  • the obtained glass powder material was used in the following Examples and Comparative Examples.
  • the softening point was calculated
  • the average particle diameter of the produced glass powder material was measured using a laser diffraction type particle diameter measuring device (manufactured by Nikkiso Co., Ltd., Microtrack). Measurement is performed by dispersing the glass powder material in water and then irradiating the laser beam to obtain scattered / diffracted light. From the light intensity distribution, the particle size of the glass powder material is determined according to the program set in the device. And the average particle diameter was determined. In the following Examples and Comparative Examples, glass powder materials having an average particle diameter of 1 ⁇ m were used.
  • Glass pastes shown in the following Examples and Comparative Examples were prepared using a mixed solvent composed of ⁇ -terpineol and butyl carbitol acetate, an organic binder, and the glass powder material (average particle diameter of 1 ⁇ m) described above.
  • Example 1 30% of a mixed solvent, 3% of an ethyl cellulose binder (EC vehicle (Nisshin Kasei Co., Ltd.)) and 67% of a bismuth glass powder material were mixed to prepare a glass paste having a viscosity of 6000 mPa ⁇ s.
  • the TI value was 1.1.
  • Example 2 A glass paste having a viscosity of 1200 mPa ⁇ s was prepared by mixing 22.3% of a mixed solvent, 0.7% of an ethyl cellulose binder (EC vehicle (Nisshin Kasei Co., Ltd.)) and 67% of a bismuth glass powder material.
  • the TI value was 1.5.
  • Example 3 A glass paste having a viscosity of 2000 mPa ⁇ s was prepared by mixing 47% of a mixed solvent, 3% of an acrylic binder and 50% of a bismuth glass powder material. The TI value was 1.1.
  • Example 4 A glass paste having a viscosity of 50000 mPa ⁇ s was prepared by mixing 13% of a mixed solvent, 2% of an acrylic binder, and 85% of a lead glass powder material having an average particle diameter of 1 ⁇ m.
  • the TI value was 1.1.
  • Comparative Example 1 A glass paste having a viscosity of 20000 mPa ⁇ s was prepared by mixing 43% of a mixed solvent, 7% of an ethyl cellulose binder (EC vehicle (Nisshin Kasei Co., Ltd.)) and 50% of a bismuth glass powder material.
  • the TI value was 1.1.
  • Comparative Example 2 A glass paste having a viscosity of 100000 mPa ⁇ s or more was prepared by mixing 8.5% of a mixed solvent, 0.5% of an ethyl cellulose binder (EC vehicle (Nisshin Kasei Co., Ltd.)) and 91% of a bismuth glass powder material.
  • the TI value was smaller than 1 and an accurate value could not be measured.
  • Comparative Example 3 A glass paste having a viscosity of 1000 mPa ⁇ s was prepared by mixing 31.5% of a mixed solvent, 1.5% of an acrylic binder, and 67% of a bismuth glass powder material. The TI value was 1.4.
  • Comparative Example 4 A glass paste was prepared by mixing 30% of a mixed solvent and 70% of a bismuth glass powder material. Note that the glass powder material immediately settled, and the viscosity and TI value could not be measured.
  • Comparative Example 5 A glass paste having a viscosity of 50 mPa ⁇ s was prepared by mixing 69% of a mixed solvent, 1% of an acrylic binder, and 30% of a bismuth glass powder material. The TI value was 1.1.
  • TI value of the obtained glass paste composition was measured using a rheometer (manufactured by BROOKFIELD, RVDV-II + PCP) by appropriately selecting the following conditions A and B.
  • Condition A When the rotational speed is 1 to 10 and the torque value falls within the range of 10 to 90% under the condition of 25 ° C., the viscosity at the time of one rotation is divided by the viscosity at the time of 10 rotations. Calculated.
  • Condition B When the rotational speed is 10 to 100 and the torque value falls within the range of 10 to 90% under the condition of 25 ° C., the viscosity at 10 revolutions is divided by the viscosity at 100 revolutions. Calculated.
  • Table 1 shows the composition, viscosity, and TI value of each glass paste.
  • Examples 1 to 4 had good coating properties, and glass pastes that did not cause pinholes or coloring in the glass layer after firing were obtained.
  • the present invention can be fired at a low temperature in a short time without forming pinhole defects at the time of coating or firing when the glass layer is formed. Further, it can be suitably used in a roll-to-roll method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明のガラスペーストは、ガラス粉末材料と有機ビヒクルとを含有し、該有機ビヒクルは有機バインダーをガラスペーストの質量に対して0.1~5質量%含有し、該有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上であり、該ガラスペーストの25℃における粘度が100~100000mPa・sであることを特徴とする。該ガラスペーストは、塗布時や焼成時にピンホール欠陥が発生せず、短時間で焼成可能であるという点で有用である。

Description

ガラスペースト
 本発明は、ガラスペーストに関するものであり、特にシート状や膜状に塗布・焼成する際に使用するガラスペーストに関するものである。
 液晶、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等において、その基板や電極の絶縁層や保護層としてガラスペーストをシート状や膜状に形成するガラス層が用いられている。このようなガラス層は、ガラスペーストをスクリーン印刷等の各種塗布方法により塗布し、焼成することにより形成される。
 近年、前述したデバイスの耐破損性の向上や軽量化、フレキシブル化が要求されるようになり、現在、これらの材料として基材としてプラスチック基板フィルムを用いることが注目されている。フレキシブルディスプレイや太陽電池を生産する場合は、ロールtoロール法を用いることが一般的である。ロールtoロール法(例えば特許文献1参照)は、あらかじめロール状に巻かれたプラスチック基板フィルムを巻き出し、様々な処理を連続的に行った後、最終的にロール状に巻き取る製造方法であり、各工程における搬入、搬出を省略出来ることから基材としてプラスチック基板フィルムを用いる場合に広く利用されている。
 通常、ガラスペーストはガラス粉末等の固形成分と溶剤とを混合させたものであり、これを焼成して溶剤を除去すると共にガラス粉末材料を軟化させて、接着、封着、被覆等を行うものである。特にシート状や膜状のガラス層を形成する為に使用するガラスペーストの場合、焼成後にガラス層にクラックや割れが発生したり、部分的に穴が生じるピンホール欠陥が生じるという問題があり、様々な検討がなされている。
 例えば特許文献2には、ガラスフリットの焼成時に生じるクラックを抑制するために、熱膨張係数が25×10-7/℃以下の無機質粉末を混合させたガラスペーストが開示されている。また、特許文献2ではガラスペーストの焼成温度をガラスフリットの軟化点より100℃前後高い温度を目標とし、実施例では800℃で10分間焼成を行っている。
 また、特許文献3には、基材にポリイミドフィルムを用いて該基材上に焼成してもクラックや割れを生じないガラス被膜を得るために、3,4’-オキシジアニリンと4,4’-オキシジフタル酸及び/又はその誘導体とからなるポリイミド前駆体を溶質として溶媒中に溶解しているポリイミド前駆体溶液に、低融点ガラスを分散してなる低融点ガラスペーストが開示されている。また、特許文献3ではガラス被膜を得るために、低融点ガラスの融点以上、550℃以下の温度で低融点ガラスを溶融させるとして、その実施例では400~450℃で1時間加熱を行っている。
 特許文献4では、転写フィルム上のガラスの膜形成材料層に生じる筋状の塗装跡、クレーター、ピンホールなどの膜欠陥を抑制するために、親水性の官能基を有するアクリル樹脂を含有する結着樹脂を含有するガラスペーストが開示されている。該ガラスペーストは、ガラス粉末材料の軟化点が400℃未満である場合、膜形成材料層の焼成工程に結着樹脂などの有機物質が完全に分解除去されない段階でガラス粉末材料が溶融してしまい、有機物質の一部が残留するものであり、ガラス粉末材料の軟化点を400℃以上としている。また、特許文献4では、焼成温度を400~600℃とし、その実施例では570℃で30分間焼成を行っている。
特開2011-245625号公報 特開平7-133136号公報 特開2001-270736号公報 特開平10-324541号公報
 ガラスペーストを用いてガラス層を形成する場合、スクリーン印刷等の各種塗布方法を用いるが、塗布や焼成の工程においてピンホール欠陥が発生するという問題がある。
 また、ガラスペーストに含まれる溶剤の除去とガラス粉末材料の焼成を行う工程は十分な熱処理の温度と時間が必須であるが、前述したように各種デバイスの電極や基板、上記のプラスチック基板フィルムのように加熱により変形、変質し易い基材等にガラス層を形成することが要求されており、短時間で焼成可能なガラス粉末材料が望まれている。
 本発明では、ガラス層を形成する際、塗布時や焼成時にピンホール欠陥が発生せず、短時間で焼成可能なガラスペーストを得ることを目的とした。
 本発明は、ガラス粉末材料と有機ビヒクルとを含有するガラスペーストであって、該有機ビヒクルは有機バインダーをガラスペーストの質量に対して0.1~5質量%含有し、該有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上であり、該ガラスペーストの25℃における粘度が100~100000mPa・sであることを特徴とするガラスペーストである。
 ガラス粉末材料は、焼成工程で溶融しガラス層を形成するものであり、本発明では平均粒子径が0.1~10μm程度のガラス粉末材料を用いるのが好ましい。
 有機ビヒクルとは、有機溶剤と有機バインダーとからなるものであり、ガラスペーストを加熱、焼成させた後に燃焼、分解、および揮発により消失するものである。
 有機バインダーとは、ガラス粉末材料をガラスペースト中に分散・担持させるものであり、当該ガラスペーストが焼成される際、加熱等によりペースト内から除去される(以下、脱バインダーと記載することもある)ものである。
 本発明では、該有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上となる。ガラスペースト全質量に対して含有する水酸基を有する有機バインダーを用いることにより、該ガラスペースト中でのガラス粉末材料がより分散し、塗工膜中でガラス粉末材料が均一に積層することから、焼成後にピンホールが発生しにくくなる。一方で水酸基が無い場合、ガラスペースト中でガラス粉末材料が凝集し、塗工膜中のガラス粉末材料が不均一に積層される。その結果、疎に積層された部分でピンホールが発生しやすい。
 また、本発明では、上記有機バインダーの含有量を0.1~5質量%としている。0.1質量%未満だと有機バインダーの効果が不十分となり、5質量%を超えると脱バインダー工程にかかる時間が長くなり、脱バインダーが不十分になることがある。
 さらに、本発明では、レオメーター(BROOKFIELD社製、RVDV-II+P CP)を用いて、25℃条件下でせん断速度10sec-1で測定したガラスペーストの粘度を100~100000mPa・sとしている。本発明の場合、前述したように有機バインダーの含有量を5質量%以下としたため、潜在的にガラス粉末材料が凝集・沈降し易い。従って、粘度が100mPa・s未満であると有機溶剤中にガラス粉末材料が分散し難くなることがある。また、100000mPa・sを超えると塗布し難くなることがある。また、好ましくは1000~70000mPa・sとしてもよい。
 尚、本発明は、プラスチックフィルム基板のように加熱による変形や損傷を生じ易い基材を用いる場合特に有効であり、例えば焼成温度が380~450℃の範囲内であれば、脱バインダーを含めて焼成時間を3~15分の範囲内とすることが可能となる。
 本発明によれば、ガラス層を形成する際、塗布時や焼成時にピンホール欠陥が発生せず、低温かつ短時間で焼成可能なガラスペーストを得ることが可能となった。
 本発明は、ガラス粉末材料と有機ビヒクルとを含有するガラスペーストであって、該有機ビヒクルは有機バインダーをガラスペーストの質量に対して0.1~5質量%含有し、該有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上であり、該ガラスペーストの25℃における粘度が100~100000mPa・sであることを特徴とするガラスペーストである。
 前述したように有機ビヒクルとは、有機溶剤と有機バインダーとからなるものであり、ガラスペーストを加熱、焼成させた後に燃焼、分解、および揮発により消失するものである。なお、上記の有機溶剤は、ガラスペースト中に5~69質量%含有されるものである。
 例えば有機溶剤は、N、N’-ジメチルホルムアミド(DMF)、α-テルピネオール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノ(2-メチルプロパノアート)、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、n-ペンタノール、4-メチルペンタノール、シクロヘキサノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-テルピネオールは、樹脂等の溶解性が良好であるため、好ましい。
 有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上であるのが好ましい。15mol%未満の時は、ガラスペースト中でガラス粉末材料が凝集し易くなり、塗工膜中のガラス粉末材料が不均一に積層され、疎に積層された部分でピンホールが発生しやすい。
 また、有機バインダーはガラスペーストの質量に対して0.1~5質量%含有されるものである。好ましくは0.5~3質量%としてもよい。含有量が5質量%を超えると脱バインダーが不十分となり形成されるガラス膜が着色し、0.1質量%未満ではガラスの凝集、沈降や塗布性が悪化することがある。
 有機バインダーは焼成時に除去可能なものから選択されればよく、該有機バインダーが完全に消失する温度がガラスの軟化点より低いほど良く、好ましくはガラスの軟化点より30℃以下の温度でも完全に消失することが可能であるものを好適に用いることが出来る。有機バインダーの消失が完了する温度とガラスの軟化点とが近い場合、膜中に有機バインダーが残留する可能性が高く、有機バインダーの残留を防ぐために昇温スピードを緩やかにする必要がある。その結果、焼成に長時間を要すると共に、ピンホール等の欠陥となることがある。
 上記の有機バインダーの種類としては、例えばアクリル酸エステル、ニトロセルロース、及びエチルセルロース等が水酸基を有するため好適に用いることができ、特に当該有機バインダーのうち、モノマー単位当たり水酸基を有するものが15mol%以上であるのが好ましい。
 前述した有機バインダーのうち、アクリル酸エステルは水酸基を含むアクリル酸エステルモノマーと水酸基を有さないアクリル酸エステルモノマーとを、所望の水酸基の割合で共重合させたもの使用すればよく、水酸基の含有量を調整し易いため好適である。アクリル酸エステルを構成する水酸基を有するモノマーとしては、例えば、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートエチレングリコールモノメチル(メタ)アクリレート、エチレングリコールモノエチル(メタ)アクリレート、グリセロール(メタ)アクリレート等が挙げられる。
 また、水酸基を含有しないモノマーを上記のモノマーと合わせて用いる場合、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチルメタクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アリルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、エチレングリコールジメタクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等を用いることができる。
 また、TI値が1.0~2.0を満たすように上記の水酸基を有する有機バインダーと混合したポリエチレングリコール、ポリメチルスチレン、ポリカーボネート、及びメタクリル酸エステル等を用いることも可能である。
 ガラス粉末材料は、ガラスペースト中に30~90質量%含有されるのが好ましい。30質量%未満では、加熱焼結後にピンホールが発生する可能性がある。また、90質量%を超える場合、塗布後に目視でかすれ等の欠陥が見られることがある。好ましくは60~85質量%としてもよい。
 また、ガラス粉末材料は、ガラスペーストを加熱焼成する際に基板が劣化しない程度の軟化点を有するものであればよいが、好ましくは500℃以下、より好ましくは400℃未満としてもよい。また、上記の軟化点を有するガラス粉末材料としてビスマス系ガラス組成物及び鉛系ガラス組成物を好適に選択することができる。
 上記ビスマス系ガラス組成物は、Bi23、B23、及びZnO成分を含む。これら成分のうち、Bi23、B23及びZnOの合計は、該ビスマス系ガラス組成物の全量に対して80質量%を超えるものであり、好ましくは85質量%以上、より好ましくは90質量%以上としてもよい。また、上記3成分が上記の範囲となるように、目的に応じて様々な任意成分を含有させてもよい。ビスマス系ガラス組成物は、例えば、質量%でBi23を65~95、B23を1~20、ZnOを1~20を含む組成が挙げられる。
 Bi23はガラスの軟化点を下げ、流動性を与え、65~95%(以下質量%を%と記載することもある)の範囲で含有させることが望ましい。65%未満では上記作用を発揮しえず、95%を超えるとガラスの安定性を低下させる。より好ましくは70~85%の範囲である。
 B23はガラス形成成分であり、ガラス溶融を容易とし、ガラスの線膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与える。ガラス中に1~20%の範囲で含有させるのが好ましい。1%未満では他の成分との関係によっては、ガラスの流動性が不十分となり、焼結性が損なわれることがある。他方20%を越えるとガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは5~10%の範囲である。
 ZnOはガラスの軟化点を下げ、線膨張係数を適宜範囲に調整するもので、ガラス中に1~20%の範囲で含有させるのが好ましい。1%未満では、他の成分との関係によっては、上記作用を発揮しえず、20%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは5~10%の範囲である。
 上記以外にも、一般的な酸化物で表すMgO、CaO、In23、SnO2、TeO2など上記性質を損なわない範囲で適宜加えてもよい。
 上記鉛系ガラス組成物は、PbO、B23、及びZnO成分を含む。これら成分のうち、PbO、B23及びZnOの合計は、該鉛系ガラス組成物の全量に対して80質量%を超えるものであり、好ましくは85質量%以上、より好ましくは90質量%以上としてもよい。また、上記3成分が上記の範囲となるように、目的に応じて様々な任意成分を含有させてもよい。鉛系ガラス組成物は、例えば、質量%でPbOを65~85、B23を10~25、ZnOを1~10を含む組成が挙げられる。
 PbOはガラスの軟化点を下げ、流動性を与え、65~85%の範囲で含有させることが望ましい。65%未満では上記作用を発揮しえず、85%を超えるとガラスの安定性を低下させる。より好ましくは70~80%の範囲である。
 B23はガラス形成成分であり、ガラス溶融を容易とし、ガラスの線膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与える。ガラス中に10~25%の範囲で含有させるのが好ましい。10%未満では他の成分との関係によっては、ガラスの流動性が不十分となり、焼結性が損なわれることがある。他方25%を越えるとガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは10~22%の範囲である。
 ZnOはガラスの軟化点を下げ、線膨張係数を適宜範囲に調整するもので、ガラス中に1~10%の範囲で含有させるのが好ましい。1%未満では、他の成分との関係によっては、上記作用を発揮しえず、10%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは6~8%の範囲である。
 上記以外にも、一般的な酸化物で表すMgO、CaO、In23、SnO2、TeO2など上記性質を損なわない範囲で適宜加えてもよい。
 また、本ガラスペーストには必要に応じてセラミックス粉末をフィラーとして導入することによって熱膨張率の調整、膜強度の向上や耐水・耐酸性を向上させたガラス層とすることができる。
 セラミックス粉末の含有量は20質量%以下とするのが好ましい。20質量%を超えると焼結性が損なわれガラス層の緻密性が落ちる。より好ましくは0~10質量%の範囲である。セラミックス粉末としてはAl23、ZrO2、TiO2などの一般的な無機フィラーを用いることができる。
 ガラス粉末材料の平均粒子径は0.1~10μm程度であることが好ましい。10μmを超えるガラス粉末材料を使用してガラス層を作製した場合、ガラス層が厚くなるため、プラスチックフィルム基板等のようにフレキシブルな基材を用いる場合、損傷し易くなることがある。
 平均粒子径は日機装株式会社製マイクロトラックMT3000を用いて、レーザー回折・散乱法により測定した値である。測定は溶媒にガラス粉末材料を分散させた後、レーザー光を照射することで散乱・回折光を得て、その回折/散乱光の光強度分布のデータから粒子径の分布を算出した。なお、溶媒中に浮遊する粒子に光が当たって生じる散乱現象は、粒子の大きさ、屈折率、入射光の波長等で変化するが、本検討の場合、散乱光量とその発生数を計測し、その値から装置に設定されたプログラムに準じて粒子の粒子径を算出した。
 また、平均粒子径は測定された粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径であり、レーザー回折・散乱法によって求めた粒度分布における積算値50%(メジアン径)での粒径を意味する。
 前述したようなガラス粉末材料は、ガラス原料を秤量、混合して原料バッチを作製し、この原料バッチを白金ルツボ等の溶融炉で加熱溶融し、冷却・粉砕することにより得られる。加熱溶融は炉内の熱上げや温度を保持するためにバーナーや電気等の加熱装置を用いて加熱し、上記の原料バッチを溶融させガラス化し溶融ガラスを得る。上記の工程において、溶融ガラスが均質となるように、炉内をガラスの溶融温度以上で保持し、所定時間流動させる。得られた溶融ガラスの冷却方法は特に限定されるものではなく、粉砕し易いように薄板状や薄片状に成形するのが好ましい。ガラス冷却後にボールミルやロール成型機等の成型機を用いて粉砕し、分級により著しく粒径が異なるものを除去することにより、ガラス粉末材料を得る。
 本発明のガラスペーストの好適な実施形態のひとつは、ガラスペーストのTI値が1.0~2.0であることを特徴とするガラスペーストである。
 TI値とはガラス粉末材料の分散性を表した値であり、1.0~2.0の範囲内のときは分散性が良好であり、ピンホールが発生しにくい。一方で、TI値が2.0を超えるとガラス粉末材料の凝集によりピンホールが発生しやすい。TI値が1.0未満の場合、粘度が著しく高くなるため、均一に塗工するのが困難となる。
 なお、TI値とは回転式粘度計で測定した粘度を用いて計算される値で、本発明ではレオメーター(BROOKFIELD社製、RVDV-II+P CP)を用いて測定を行った。この時、ガラスペーストの粘度によってTI値の測定条件が変わることがあり、粘度計のトルク値が10~90%の範囲内に入るように、以下二つの測定条件のうち好適なものを選択して測定を行った。
 条件A:25℃の条件下で、回転数が1~10のときにトルク値が10~90%の範囲に入るものは、1回転のときの粘度を10回転の時の粘度で除して算出した。
 条件B:25℃の条件下で、回転数が10~100のときにトルク値が10~90%の範囲に入るものは、10回転の時の粘度を100回転の時の粘度で除して算出した。
 本発明のガラスペーストは、前述したように、ガラス粉末材料の分散性を表したTI値が1.0~2.0の範囲のときは分散性が良好であり、ピンホールが発生しにくい。一方で、TI値が2.0を超えるとガラス粉末材料の凝集によりピンホールが発生しやすい。TI値が1.0未満の場合、固形分が90質量%を超えるときであり、粘度が著しく高い為、均一に塗工するのが困難となる。さらに良好なガラスペーストを得られる条件としては、好ましくはTI値を1.0~1.5の範囲にしてもよい。より好ましくは1.0~1.3の範囲にしてもよい。
 本発明のガラスペーストの好適な実施形態のひとつは、基材上に前述したガラスペーストを塗布する工程、塗布されたガラスペーストを、該ガラスペーストが含有するガラス粉末材料の軟化点+20~+100℃の範囲内で加熱焼成する工程、を有するガラス層の形成方法である。
 ガラスペーストの塗布には、バーコートやグラビアコーター、リバースロールコーター、カーテンフローコーター、又はダイコーター等の一般的な塗工機を用いることができる。また、一般的な印刷方法であるスクリーン印刷、凹版印刷、凸版印刷、平板印刷等でも用いることが出来る。特に、ダイコーターやグラビアコーター、コンマコーター、及び凹版印刷を使用することで均一かつ様々な膜厚で塗布することが可能となる。
 前述したような方法によりガラスペーストが塗布された基板は乾燥工程を経て、加熱焼成されるのが好ましい。該乾燥工程は熱風やIR等により、塗布されたガラスペーストの有機溶剤を揮発させものである。また、この時の温度は有機溶剤が揮発し、基板に悪影響を及ぼさない程度に加熱するのが好ましい。
 乾燥工程後の加熱焼成工程は、熱風やIR等により有機溶剤及び有機バインダーを完全に除去し、同時に軟化したガラス粉末材料がガラス層を形成する。該加熱焼成工程において、加熱焼成に用いる装置内の温度は、ガラスの軟化点以下の温度から徐々に加熱し、最終的にガラスの軟化点以上、好ましくは軟化点+20~+100℃となるように加熱するのがよい。より好ましくは軟化点+20~+40℃としてもよい。この時、前述したようにガラスの軟化点以下の温度で加熱し昇温させると、有機溶剤や有機バインダーを効率よく除去できるため好適である。
 基材は特に限定されるものではないが、本発明の好適な実施形態のひとつとして、基材は5%重量減少温度が前記ガラス粉末の軟化点以上のフィルム材料を用いることが好ましい。5%重量減少温度が上記未満だとガラスを焼成する際にフィルム材料が劣化することがある。上記のようなフィルム材料としては、例えば、ポリイミド、ポリアミド、シリコーンが挙げられる。
 また、本発明のガラスペーストの好適な実施形態のひとつは、前記基材がロールtoロール装置内に設置されたフィルムであり、該基材を巻き出し及び巻き取りながら前記ガラス層の形成を行うのが好ましい。
 ロールtoロール装置は、あらかじめロール状に巻かれたプラスチック基板フィルムを巻き出し、該プラスチックフィルム基板を基材として、一定の張力をかけながら搬送し、該基材上にガラス層を形成した後冷却を行って、最終的に再度ロール状に巻き取る製造方法であり、各工程における搬入、搬出を省略出来ることから好ましい。上記のロールtoロール装置を用いる場合、特に焼成工程にかかる時間が長いと、フィルムに加える張力による変形の発生や、常時巻き出しと巻き取りを行うことから装置自体を大きくする必要等が生じる。本発明のガラスペーストは380~450℃以下の温度で3~15分と短時間で焼成可能であるため、当該装置を用いてガラス層を形成する際に、特に好適に用いることができる。
 以下、実施例及び比較例をあげて本発明を具体的に説明する。なお、本発明は係る実施例に限定されるものではない。以下の説明においては、「質量%」を「%」と記載することもある。
 <ビスマス系ガラス粉末材料の作製>
 ガラス粉末材料がBi23:84質量%、B23:6質量%、ZnO:10質量%となるように各種無機原料を秤量、混合して原料バッチを作製し、この原料バッチを白金ルツボに投入した後、電気加熱炉内で1200℃、1~2時間で加熱溶融して軟化点380℃のビスマス系ガラスを得た。得られたガラスを急冷双ロール成形機にて粉砕しフレーク状としガラス粉末材料を得た。得られたガラス粉末材料を下記の実施例及び比較例で用いた。また、軟化点はDTA測定装置(リガク製)を用いて変曲点から求めた。
 <鉛系ガラス粉末材料の作製>
 ガラス粉末材料がPbO2:76質量%、B23:15質量%、ZnO:7質量%、SiO2:2質量%となるように各種無機原料を秤量、混合して原料バッチを作製し、この原料バッチを白金ルツボに投入した後、電気加熱炉内で1100℃、1~2時間で加熱溶融して軟化点390℃の鉛系ガラスを得た。得られたガラスを急冷双ロール成形機にて粉砕しフレーク状としガラス粉末材料を得た。得られたガラス粉末材料を下記の実施例及び比較例で用いた。また、軟化点はDTA測定装置(リガク製)を用いて変曲点から求めた。
 <平均粒子径の測定>
 レーザー回折型粒子径測定装置(日機装株式会社製、マイクロトラック)を用いて、作製したガラス粉末材料の平均粒子径を測定した。測定は水にガラス粉末材料を分散させた後、レーザー光を照射することで散乱・回折光を得て、その光強度分布から装置に設定されたプログラムに準じてガラス粉末材料の粒子の大きさを算出し、平均粒子径を求めた。下記の実施例及び比較例において、該平均粒子径が1μmであるガラス粉末材料をそれぞれ用いた。
 <ガラスペーストの調製>
 α-テルピネオール及びブチルカルビトールアセテートからなる混合溶剤、有機バインダー、並びに前述したガラス粉末材料(平均粒子径1μm)を用いて、下記の実施例及び比較例に示したガラスペーストを調製した。
 実施例1
 混合溶剤30%、エチルセルロースバインダー(ECビヒクル(日新化成社製))3%、ビスマスガラス粉末材料67%を混合し、粘度6000mPa・sのガラスペーストを調製した。TI値は1.1であった。
 実施例2
 混合溶剤22.3%、エチルセルロースバインダー(ECビヒクル(日新化成社製))0.7%、ビスマスガラス粉末材料67%を混合し、粘度1200mPa・sのガラスペーストを調製した。TI値は1.5であった。
 実施例3
 混合溶剤47%、アクリルバインダー3%、ビスマスガラス粉末材料50%を混合し、粘度2000mPa・sのガラスペーストを調製した。TI値は1.1であった。
 実施例4
 混合溶剤13%、アクリルバインダー2%、平均粒子径1μmの鉛ガラス粉末材料85%を混合し、粘度50000mPa・sのガラスペーストを調製した。TI値は1.1であった。
 比較例1
 混合溶剤43%、エチルセルロースバインダー(ECビヒクル(日新化成社製))7%、ビスマスガラス粉末材料50%を混合し、粘度20000mPa・sのガラスペーストを調製した。TI値は1.1であった。
 比較例2
 混合溶剤8.5%、エチルセルロースバインダー(ECビヒクル(日新化成社製))0.5%、ビスマスガラス粉末材料91%を混合し、粘度100000mPa・s以上のガラスペーストを調製した。TI値は1より小さく正確な値を測定できなかった。
 比較例3
 混合溶剤31.5%、アクリルバインダー1.5%、ビスマスガラス粉末材料67%を混合し、粘度1000mPa・sのガラスペーストを調製した。TI値は1.4であった。
 比較例4
 混合溶剤30%、ビスマスガラス粉末材料70%を混合しガラスペーストを調製した。なお、ガラス粉末材料が直ぐに沈降してしまい、粘度とTI値の測定ができなかった。
 比較例5
 混合溶剤69%、アクリルバインダー1%、ビスマスガラス粉末材料30%を混合し、粘度50mPa・sのガラスペーストを調製した。TI値は1.1であった。
 <TI値の測定>
 得られたガラスペースト組成物のTI値は、レオメーター(BROOKFIELD社製、RVDV-II+P CP)を用いて、下記の条件Aと条件Bを適宜選択して測定を行った。
 条件A:25℃の条件下で、回転数が1~10のときにトルク値が10~90%の範囲に入るものは、1回転のときの粘度を10回転の時の粘度で除して算出した。
 条件B:25℃の条件下で、回転数が10~100のときにトルク値が10~90%の範囲に入るものは、10回転の時の粘度を100回転の時の粘度で除して算出した。
 <粘度の測定>
 レオメーター(BROOKFIELD社製、RVDV-II+P CP)を用いて、ガラスペースト組成物の粘度を測定した。なお、25℃条件下でせん断速度10sec-1における粘度を測定した。なお、比較例4はガラス粉末材料が直ぐに沈降してしまい、粘度の測定ができなかった。
 各ガラスペーストの組成、粘度及びTI値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <ガラス層の作成>
 上記の実施例1~4、比較例1~3、5で作製したガラスペーストを、熱重量分析法により得られる5%重量減少温度が450℃のポリイミドフィルム(荒川化学工業製)に、ロールtoロール法においてダイコーターを用いて塗布し、焼成実験を行った。塗布後に熱風により200℃以下で乾燥を行い、次にIRにより前記のガラス粉末の軟化点以下の温度から連続的に昇温させながら加熱し、脱バインダーとガラス層の焼成を行った(370~420℃で6分間)。なお、比較例4についてはガラス粉末材料が沈降してしまい、塗布が不可能だった為塗布以降の検討を行っていない。
 結果を表2に示す。表2の「沈降」は、ガラスペーストを目視で観察し、固形分の沈降が見られたものを「有り」、特に変化が見られなかったものを「無し」と表記した。「塗布性」は、塗布後に目視で観察し、特に問題が見られないものを「○」、問題が発生したものを「×」と表記した。「ピンホール」は、焼成後にガラス層を目視で観察し、ピンホールの発生が見られないものを「無し」、ピンホールが見られたものを「有り」と表記した。なお、比較例2は焼成の前に既にピンホールが見られ、本発明の目的には適さないとして焼成を行わなかった。また、「着色」は、焼成後に目視観察し、ガラス層に着色が見られたものを「有り」、ガラス層に着色がなかったものを「無し」と表記した。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~4は塗布性が良く、焼成後にガラス層にピンホールや着色等が生じないガラスペーストが得られた。
 ガラスペースト中の有機バインダーの含有量が多すぎると脱バインダーが不十分となりガラス層に着色が見られる(比較例1)。一方で、有機バインダーの含有量を0にするとガラス粉末材料が沈降してしまい、塗布自体が不可能となった(比較例4)。さらに、ガラスペーストのTI値が低いと粘度が高くなり塗布性が低下し(比較例2)、有機バインダー中に含まれる水酸基が少ないと焼結後にピンホール欠陥が発生して好適なガラス層を形成できない(比較例3)。また、有機バインダー中に含まれる水酸基やTI値が実施例と同等でも粘度が低い場合、塗布後に乾燥~焼成までの間にガラス粉末材料が沈降してしまうため、均一なガラス層の形成が困難となる(比較例5)。従って、本発明の目的には適さない。
 以上より、本発明はガラス層を形成する際、塗布時や焼成時にピンホール欠陥が発生せず、低温かつ短時間で焼成可能であることが示された。また、ロールtoロール法において好適に用いることが可能である。

Claims (8)

  1. ガラス粉末材料と有機ビヒクルとを含有するガラスペーストであって、該有機ビヒクルは有機バインダーをガラスペーストの質量に対して0.1~5質量%含有し、該有機バインダーは水酸基を含むポリマーであり、該ポリマーを構成するモノマーのうち水酸基を有するモノマーが15mol%以上であり、該ガラスペーストの25℃における粘度が100~100000mPa・sであることを特徴とするガラスペースト。
  2. 前記ガラスペーストのTI値が1.0~2.0であることを特徴とする請求項1に記載のガラスペースト。
  3. 前記ガラス粉末材料の軟化点が500℃以下であることを特徴とする請求項1又は請求項2に記載のガラスペースト。
  4. 前記ガラス粉末材料は、質量%でBi23を65~95、B23を1~20、ZnOを1~20を含む組成であることを特徴とする請求項1乃至請求項3のいずれかに記載のガラスペースト。
  5. 前記ガラス粉末材料は、質量%でPbOを65~85、B23を10~25、ZnOを1~10を含む組成であることを特徴とする請求項1乃至請求項3のいずれかに記載のガラスペースト。
  6. 基材上に請求項1乃至請求項5のいずれかに記載のガラスペーストを塗布する工程、塗布されたガラスペーストを、該ガラスペーストが含有するガラス粉末材料の軟化点+20~+100℃の範囲内で加熱焼成する工程を有することを特徴とするガラス層の形成方法。
  7. 前記基材が、熱重量分析法を用いて得られる5%重量減少温度が前記ガラス粉末材料の軟化点以上であるフィルムであることを特徴する請求項6に記載ガラス層の形成方法。
  8. 前記基材がロールtoロール装置内に設置されたフィルムであり、該基材を巻き出し及び巻き取りながら前記ガラス層の形成を行うことを特徴とする請求項6又は請求項7に記載のガラス層の形成方法。
PCT/JP2013/057787 2012-04-19 2013-03-19 ガラスペースト WO2013157339A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012095550 2012-04-19
JP2012-095550 2012-04-19
JP2013-049761 2013-03-13
JP2013049761A JP2013237603A (ja) 2012-04-19 2013-03-13 ガラスペースト

Publications (1)

Publication Number Publication Date
WO2013157339A1 true WO2013157339A1 (ja) 2013-10-24

Family

ID=49383306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057787 WO2013157339A1 (ja) 2012-04-19 2013-03-19 ガラスペースト

Country Status (3)

Country Link
JP (1) JP2013237603A (ja)
TW (1) TWI530470B (ja)
WO (1) WO2013157339A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133136A (ja) * 1993-11-04 1995-05-23 Matsushita Electric Ind Co Ltd ガラスペーストおよびその製造方法
JPH113802A (ja) * 1997-06-11 1999-01-06 Tanaka Kikinzoku Kogyo Kk 低温焼成用抵抗ペースト
JP2006137635A (ja) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd フィラー粉末、封着用粉末およびペースト
WO2011016442A1 (ja) * 2009-08-04 2011-02-10 積水化学工業株式会社 無機微粒子分散ペースト
JP2011245625A (ja) * 2010-05-21 2011-12-08 Kaneka Corp ガスバリアフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133136A (ja) * 1993-11-04 1995-05-23 Matsushita Electric Ind Co Ltd ガラスペーストおよびその製造方法
JPH113802A (ja) * 1997-06-11 1999-01-06 Tanaka Kikinzoku Kogyo Kk 低温焼成用抵抗ペースト
JP2006137635A (ja) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd フィラー粉末、封着用粉末およびペースト
WO2011016442A1 (ja) * 2009-08-04 2011-02-10 積水化学工業株式会社 無機微粒子分散ペースト
JP2011245625A (ja) * 2010-05-21 2011-12-08 Kaneka Corp ガスバリアフィルム

Also Published As

Publication number Publication date
JP2013237603A (ja) 2013-11-28
TWI530470B (zh) 2016-04-21
TW201345864A (zh) 2013-11-16

Similar Documents

Publication Publication Date Title
JP5385530B2 (ja) 無機微粒子分散ペースト組成物
CN103578651B (zh) 制造铜电极的方法
WO2011122218A1 (ja) 封着材料及びこれを用いたペースト材料
JP5574518B2 (ja) 封着材料
KR101434167B1 (ko) 태양전지 전극용 은 페이스트 조성물
CN111302629B (zh) 玻璃组合物、玻璃粉末、封接材料、玻璃糊、封接方法、封接封装体和有机电致发光元件
KR20110131283A (ko) 무기 미립자 분산 페이스트 조성물
JP2006151774A (ja) 封着材料
JP6089921B2 (ja) ガラスペースト
JP5232395B2 (ja) ガラスペースト組成物及び封着方法
JP2009263448A (ja) 無機微粒子含有樹脂組成物及びそれを用いた無機物層
KR101581272B1 (ko) 눈부심 방지 유리 제조방법
JP5668322B2 (ja) 光学ガラス、ガラスフリット及びガラス層付き透光性基板
WO2013157339A1 (ja) ガラスペースト
JP2008214152A (ja) ガラスペースト組成物
CN102775067B (zh) 封装玻璃组合物及包含该组合物的显示板
JP6084397B2 (ja) 焼結用無機粒子含有ペーストおよび塗布形成物
JP2015044695A (ja) 封着用ガラス、封着材料、および封着用ペースト
JP2011219334A (ja) プラズマディスプレイパネル用誘電体形成ガラスペースト
JP2006321836A (ja) 無機粉体含有樹脂組成物及び誘電体層形成基板
JP4140838B2 (ja) 無機粉体含有樹脂組成物、転写シート、誘電体層形成基板の製造方法、および誘電体層形成基板
WO2012144334A1 (ja) 封着材料及び封着用ガラスビーズ
TWI549922B (zh) 玻璃組成物、及應用其之玻璃層和密封層
JP2014037490A (ja) 無機粒子含有ペーストおよび塗布形成物
JP4267295B2 (ja) 無機粉体含有樹脂組成物、転写シート、及び誘電体層形成基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778151

Country of ref document: EP

Kind code of ref document: A1