WO2013157279A1 - 多回転エンコーダ - Google Patents

多回転エンコーダ Download PDF

Info

Publication number
WO2013157279A1
WO2013157279A1 PCT/JP2013/050115 JP2013050115W WO2013157279A1 WO 2013157279 A1 WO2013157279 A1 WO 2013157279A1 JP 2013050115 W JP2013050115 W JP 2013050115W WO 2013157279 A1 WO2013157279 A1 WO 2013157279A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
detection
signal processing
state
processing circuit
Prior art date
Application number
PCT/JP2013/050115
Other languages
English (en)
French (fr)
Inventor
甚 井上
武史 武舎
西沢 博志
仲嶋 一
良祐 武内
達也 井藤
隆史 平位
啓史 永田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/380,289 priority Critical patent/US20150015245A1/en
Priority to JP2014511118A priority patent/JP5769879B2/ja
Priority to CN201380020384.7A priority patent/CN104246444B/zh
Priority to KR1020147028764A priority patent/KR20140143404A/ko
Priority to DE112013002075.0T priority patent/DE112013002075T5/de
Priority to TW102107789A priority patent/TWI482948B/zh
Publication of WO2013157279A1 publication Critical patent/WO2013157279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present invention relates to a multi-rotation encoder capable of detecting and holding the rotation direction and the rotation speed of a rotating body in a motor or the like without receiving external power supply.
  • a rotary encoder for detecting the rotation angle of a motor rotation shaft is composed of a rotating disk connected to the motor rotation shaft and formed with an optical or magnetic pattern, and a detection element for reading the optical or magnetic pattern. It is configured.
  • This type of rotary encoder has an increment method that integrates the pulse signals detected by the detection element to detect the rotation angle of the rotating shaft, and detects the absolute angle of the rotating disk from a plurality of different patterns on the rotating disk.
  • the absolute method is known.
  • the cumulative value is counted using the absolute type encoder connected via the reduction gear and the increment type encoder, Some of them hold the value electrically.
  • the encoder structure can be simplified by digitizing and maintaining the rotation speed, but the obtained rotation speed is electrically held even when the external power supply is shut off. It is necessary to install a backup battery. Therefore, there is a problem that maintainability is not good due to the periodic replacement of the backup battery.
  • the former method counts and holds the number of rotations mechanically, so there is an advantage that the number of rotations can be maintained regardless of the presence or absence of an external power supply.
  • the structure is complicated and it is difficult to increase costs and increase durability. There is a problem of being. In order to solve these problems, a batteryless multi-rotation encoder that does not use a backup power source while electrically counting and holding the number of rotations has been proposed.
  • This magnetic wire is configured using a hard magnetic material inside the wire and a soft magnetic material outside the wire.
  • the soft magnetic material the relationship of the magnetization M to the external magnetic field H exhibits a behavior (large Barkhausen effect) in which the magnetization M suddenly reverses in a certain magnetic field, as shown in FIG.
  • This inversion speed is always constant regardless of how the external magnetic field H is applied. Therefore, by using this, by installing a coil containing the magnetic wire around the magnet that rotates with the motor rotation shaft, a constant voltage pulse can be output from the coil without depending on the rotation speed of the motor. Is possible.
  • FIG. 14 shows the rotation speed of the motor rotation shaft, the magnetic field applied to the magnetic wire from the magnet corresponding to the rotation shaft, and the voltage pulse output from the coil in the above-described batteryless multi-rotation encoder.
  • the position where the voltage pulse is generated is shifted by the angle ⁇ depending on the rotation directions CW (clockwise) and CCW (counterclockwise) of the motor rotation shaft. It can be seen that a pulse occurs. Therefore, by using the power of this voltage pulse, it is possible to perform multi-rotation counting in a batteryless system.
  • a magnetic wire having a large Barkhausen effect is 90 degrees above a dipole magnetized magnet that rotates with a motor rotation shaft.
  • the signal processing circuit is driven by the power of the positive voltage pulse obtained from the coils wound on the two magnetic wires, and the rotational speed of the rotating shaft is detected by the voltage pulse.
  • a battery-less multi-rotation encoder has been proposed.
  • FIG. 15 shows a signal indicating the relationship between the magnetic field and the voltage pulse applied to the two coils A and B and the state of the coils A and B during the rotation of the motor rotation shaft in the apparatus of Patent Document 1.
  • the processed A-phase output and B-phase output are illustrated.
  • the coils A and B output voltage pulses with different signs of positive and negative with a phase difference of 90 degrees as the applied magnetic field is reversed.
  • the signal processing circuit extracts only the positive sign voltage pulse, sets the state of the coil in which the voltage pulse is generated high, and sets the state of the coil in which the voltage pulse is not generated low.
  • FIG. 16A The A-phase output and B-phase output with respect to the rotation of the motor rotation shaft at this time are shown in FIG. As shown in FIG. 16A, first, a voltage pulse is generated. At this time, when the A phase is high and the B phase is low, the rotational speed does not change. Next, when a voltage pulse is generated and the A phase is low and the B phase is high, the number of rotations is incremented by +1.
  • FIG. 17 shows the relationship between the magnetic field applied to the two coils A and B and the voltage pulse when the rotation direction of the motor rotation shaft is reversed from CW to CCW, and the A-phase output and The B phase output is illustrated.
  • FIG. 17A shows a case where the rotation axis is reversed from CW to CCW after the rotation angle of the motor rotation shaft is rotated by 175 + ⁇ / 2 °.
  • FIG. 17B shows the A-phase output and the B-phase output with respect to the rotational speed of the motor at that time.
  • FIG. 17B shows a case where the rotation axis is reversed in the CCW direction from CW after the rotation angle of the motor rotation shaft is rotated by 175 ⁇ / 2 °.
  • FIG. 16C shows the A-phase output and the B-phase output with respect to the rotational speed of the motor at this time.
  • the A-phase output and the B-phase output change from high to low and from low to high regardless of the inversion of CW to CCW. Therefore, the reversal of the motor rotation cannot be detected, and the rotation speed cannot be counted down.
  • the A-phase output is low and the B-phase output is high from the state where the A-phase output is high and the B-phase output is low regardless of the rotation direction of the rotation shaft. Since only the state changes repeatedly, depending on the rotation angle of the motor rotation shaft, a signal may not be detected when the rotation direction of the rotation shaft is reversed. Therefore, the apparatus of Patent Document 1 has a problem that the motor rotation speed cannot be detected accurately.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a multi-rotation encoder capable of detecting the rotational speed of a rotating shaft more accurately than in the past.
  • the batteryless multi-rotation encoder in one aspect of the present invention is a batteryless multi-rotation encoder that detects and holds the rotational direction and the rotational speed of the rotating shaft without receiving external power supply, and the rotating shaft L ( ⁇ 2) detection coils, which are composed of a magnet rotating with the magnetic field and a magnetic wire having a Barkhausen effect with respect to the magnetic field of the magnet, and arranged with a phase angle shifted on the rotation circumference of the magnet And a signal processing circuit electrically connected to the rotation detection mechanism.
  • Each detection coil generates voltage pulses of different positive and negative signs LN times in the order of positive, negative, negative, and positive in correspondence with the number N of magnetic poles of the magnet every rotation of the rotating shaft. And sent to the signal processing circuit.
  • the signal processing circuit determines the state of the detection coil or the state of the detection coil based on the fact that both positive and negative signs and voltage pulses of each voltage pulse generated in each detection coil are not generated.
  • the state of the previous detection coil is defined as high and low, and when no voltage pulse is generated, the state is maintained high or low, and the state of the detection coil is stored in the memory, and the controller detects each detection coil.
  • An adder that updates the rotational speed of the rotating shaft in response to a change in the state, and determines the rotational angle of the rotating shaft within about 1 / (LN) rotational units.
  • the controller in the signal processing circuit uses the positive and negative voltage pulses transmitted by the L detection coils, and uses the positive and negative signs of the voltage pulse and the voltage pulse.
  • the state of each detection coil is kept high or low, and when no voltage pulse is generated, the state of the detection coil is stored in a memory. Since the rotational speed is detected based on the stored state, the rotational speed can be counted without being counted down even if the rotational shaft reverses during the rotation. Therefore, when the number of magnetic poles of the magnet provided in the rotation detection mechanism is N, the rotation angle of the rotation shaft can be detected within about 1 / (LN) rotation, and the rotation number of the rotation shaft can be detected more accurately than before. Can be detected.
  • FIG. 1 shows the structure of the battery-less multi-rotation encoder in Embodiment 1 of this invention. It is explanatory drawing which shows arrangement
  • a batteryless multi-rotation encoder according to an embodiment of the present invention will be described below with reference to the drawings.
  • the same or similar components are denoted by the same reference numerals.
  • a detailed description of already well-known matters and a duplicate description of substantially the same configuration may be omitted. .
  • FIG. FIG. 1 shows the configuration of a batteryless multi-rotation encoder 101 according to the first embodiment of the present invention.
  • the batteryless multi-rotation encoder 101 according to the present embodiment is a multi-rotation encoder that detects and holds the rotation direction and the rotation speed of the rotation shaft without receiving external power supply.
  • a signal processing circuit 120 electrically connected to the rotation detection mechanism 110.
  • the rotation detection mechanism 110 includes a magnet 111 and detection coils 112 and 113, and is a mechanism that detects the rotation of the rotation shaft 115.
  • the rotating shaft 115 corresponds to, for example, an output shaft (rotating shaft) of a motor, but is not limited thereto, and corresponds to a rotating body that can rotate around the axis.
  • the magnet 111 has a disk shape, is concentrically attached to the rotating shaft 115, and rotates in the CW (clockwise) and CCW (counterclockwise) direction together with the rotating shaft 115.
  • the rotating shaft 115 and the magnet 111 are arranged concentrically as described above, but any configuration may be used as long as the magnet 111 rotates in response to the rotation of the rotating shaft 115. Further, in the present embodiment, the magnet 111 has two magnetic poles for each semicircular circumference, but may have a larger number of magnetic poles.
  • the detection coils 112 and 113 are arranged on the rotation circumference of the magnet 111 above the magnet 111, and are formed of a magnetic wire having a large Barkhausen effect. In this embodiment, two detection coils 112 and 113 are provided, but three or more detection coils may be provided.
  • the positional relationship between the magnet 111 magnetized to two poles and the detection coils 112 and 113 and the detection logic of the number of rotations of the rotating shaft 115 will be described.
  • the positional relationship between the detection coil 112 and the detection coil 113 will be described.
  • hysteresis is generated by the rotational speed ⁇ , and therefore the outputs of the detection coils 112 and 113 overlap regardless of the rotation direction of the rotation shaft 115.
  • the detection coil 113 is installed with respect to the detection coil 112 so that the phase angle is larger than ⁇ and smaller than 180 ⁇ .
  • one or more second detection coils (for example, detection coils) with respect to one first detection coil (for example, the detection coil 112) based on the hysteresis angle ⁇ . 113) is arranged in an angle range in which the phase angle between the first detection coil and the second detection coil is larger than the hysteresis angle ⁇ and smaller than (360 / N) ⁇ .
  • the phase angle is set to 90 ° for the sake of simplicity.
  • FIG. 3 shows the relationship between the magnetic field applied from the magnet 111 to the detection coils 112 and 113 and the voltage pulses obtained from the detection coils 112 and 113, and the A-phase output obtained by digitizing the output from the detection coil 112.
  • the B phase output which digitized the output from A, the A state of the detection coil 112, and the B state of the detection coil 113 are shown in figure.
  • 3A is a diagram in which the rotation direction is the CW direction
  • FIG. 3B is a diagram in the CCW direction.
  • A-phase output and B-phase output are high when the output from the detection coils 112 and 113 is a positive sign voltage pulse, low when a negative sign voltage pulse, and when no voltage pulse is generated. Output as none (zero).
  • FIG. 4 shows a transition with respect to the rotational speeds of the A state and the B state.
  • 4A shows a case where the rotation direction of the rotating shaft 115 is CW
  • FIG. 4B shows a case where the rotation direction is CCW. It can be seen that the rotation angle of the rotating shaft 115 can be distinguished in the range of 90 ° or ⁇ ° to 180 ° - ⁇ ° by the high and low states of the A state and the B state, respectively.
  • FIG. 6 shows the A state, the B state, and the count number with respect to the rotation angle when the rotation direction of the rotation shaft 115 is reversed halfway.
  • the area within one rotation is divided into regions by the respective voltage pulses generated from the detection coils 112 and 113 as the rotating shaft 115 rotates, from the region A to the region H as shown in FIGS. It can be classified into 8 regions ((a) in FIG. 5 shows a case in which the image is rotated in the CW direction, and (b) in FIG. 5 shows a case in which the image is rotated in the CCW direction). Therefore, FIG. 6 shows all cases where the rotation direction is reversed from CW to CCW in each region. Referring to the item of the count number in FIG.
  • the signal processing IC 120 includes a full-wave rectifier circuit 121, a constant voltage circuit 122, an enable circuit 123, a pulse waveform code determination circuit 124, a controller 125, an adder 126, a nonvolatile memory 127, an external circuit, as shown in FIG. An interface 128 and a power switch 129 are provided.
  • the basic components of the signal processing IC 120 correspond to the controller 125 and the adder 126.
  • the respective voltage pulses generated in the detection coils 112 and 113 are rectified by the full-wave rectifier circuits 121 and 121, respectively, and then set to a constant voltage by the constant voltage circuit 122.
  • This constant voltage is supplied as power to the Enable circuit 123, the pulse waveform code determination circuit 124, the controller 125, the adder 126, and the nonvolatile memory 127.
  • the power source switch 129 has a function of switching and outputting the constant voltage circuit 122 and external power supply, and a constant voltage is supplied to the controller 125 and the nonvolatile memory 127 via the power source switch 129. Further, since the external power source is not a backup power source but is a main power source, the provision of the power source switching 129 does not contradict the configuration of the batteryless multi-rotation encoder.
  • the Enable circuit 123 transmits an operation start trigger to the pulse waveform code determination circuit 124, the controller 125, the adder 126, and the nonvolatile memory 127.
  • the pulse waveform code determination circuit 124 that has received the operation start trigger determines an A-phase output and a B-phase output from each voltage pulse from the detection coils 112 and 113, and transmits it to the controller 125.
  • the controller 125 reads from the nonvolatile memory 127 the number of rotations of the rotating shaft 115 when the voltage pulse was last generated, the A state and the B state, and transmits them to the adder 126.
  • the adder 126 updates the state A, the state B, and the rotational speed from the received information (the rotational speed, the A phase output, the B phase output, the A state, the B state value) using the conversion table of FIG.
  • the latest A state, B state, and rotation speed are transmitted to the controller 125.
  • the controller 125 accesses the non-volatile memory 127 again with the information from the adder 126, and executes these writings.
  • the signal processing IC 120 performs these series of operations only with the power generated in the full-wave rectifier circuit 121 and the constant voltage circuit 122 by each voltage pulse from the detection coils 112 and 113, and before the next voltage pulse is generated. End the operation.
  • the external circuit interface 128 and the controller 125 are accessed in this order through the nonvolatile memory 127 to read the rotation speed. Do. At this time, the controller 125 restricts access to the non-volatile memory 127 from the outside so that the series of operations for detecting the rotation speed and the external reading operation are not batting. In addition, when accessing from the outside, the controller 125 and the nonvolatile memory 127 are supplied with power from the outside via the power supply switching 129, and the external circuit interface 128 is directly supplied with power from the outside. The rotational speed can be read regardless of the electric power.
  • the positive and negative signs of the voltage pulses generated from the two detection coils 112 and 113 are used to set the detection coils 112 and 113 to the A state and the B state.
  • the nonvolatile memory 127 By holding in the nonvolatile memory 127, even when the rotating shaft 115 rotates in the middle, it is possible to detect without counting down the number of rotations, and the above-described operation can be performed by the voltage pulses from the detection coils 112 and 113. It can be executed with only power.
  • the magnet 111 and the detection coil 112 estimated from the state A and the state B when the previous voltage pulse is generated in the nonvolatile memory 127,
  • the positional relationship with 113 does not necessarily match the actual positional relationship between the magnet 111 and the detection coils 112 and 113. Therefore, in the initial setting mode, the state A and the state B when the previous voltage pulse is generated in the nonvolatile memory 127 are at least two voltage pulses that reflect the positional relationship between the actual magnet 111 and the detection coils 112 and 113.
  • the controller 125 and the adder 126 perform the operation of continuously updating the state A and the state B in the nonvolatile memory 127 without updating the rotation speed.
  • FIG. 8 the battery-less multi-rotation encoder 102 according to the second embodiment of the present invention will be described.
  • the batteryless multi-rotation encoder 102 of the present embodiment also includes a rotation detection mechanism 110 and a signal processing circuit electrically connected to the rotation detection mechanism 110.
  • the batteryless multi-rotation encoder 102 of the present embodiment is different from the above-described batteryless multi-rotation encoder 101 in that a signal processing circuit 131 is provided instead of the signal processing circuit 120.
  • the difference between the signal processing circuit 120 and the signal processing circuit 131 is that the nonvolatile memory 127 is arranged outside the signal processing circuit.
  • Other configurations of the signal processing circuit 131 are the same as those of the signal processing circuit 120.
  • the batteryless multi-rotation encoder 102 With this configuration, according to the batteryless multi-rotation encoder 102, the same effect as that of the batteryless multi-rotation encoder 101 can be obtained, and further, a process for the nonvolatile memory 127 is not required when the signal processing IC is manufactured. Become. Therefore, according to the batteryless multi-rotation encoder 102, it is possible to reduce the cost of the signal processing IC and increase the number of manufacturers compared to the batteryless multi-rotation encoder 101, and to use a general-purpose product as the nonvolatile memory 127. Therefore, availability and cost can be improved.
  • FIG. 9 a batteryless multi-rotation encoder 103 according to Embodiment 3 of the present invention will be described.
  • the batteryless multi-rotation encoder 103 according to the present embodiment also includes a rotation detection mechanism 110 and a signal processing circuit electrically connected to the rotation detection mechanism 110, similarly to the batteryless multi-rotation encoder 101 described above.
  • the batteryless multi-rotation encoder 103 of this embodiment is different from the batteryless multi-rotation encoder 101 described above in that it includes a signal processing circuit 132 instead of the signal processing circuit 120.
  • the difference between the signal processing circuit 120 and the signal processing circuit 132 is that the full-wave rectification circuit 121 and the constant voltage circuit 122 are arranged between the rotation detection mechanism 110 and the signal processing circuit 132 outside the signal processing circuit. Is a point.
  • Other configurations of the signal processing circuit 132 are the same as those of the signal processing circuit 120.
  • the batteryless multi-rotation encoder 103 With this configuration, according to the batteryless multi-rotation encoder 103, the same effect as the batteryless multi-rotation encoder 101 can be obtained, and further, the voltage value input to the signal processing circuit 132 can be limited. . Therefore, according to the batteryless multi-rotation encoder 103, the input voltage tolerance of the signal processing circuit 132 can be lowered and the cost can be reduced as compared with the batteryless multi-rotation encoder 101.
  • Embodiment 4 FIG.
  • the batteryless multi-rotation encoder 104 in the fourth embodiment will be described with reference to FIGS. 10 and 11.
  • the batteryless multi-rotation encoder 104 of this embodiment also includes a rotation detection mechanism and a signal processing circuit 120 that is electrically connected to the rotation detection mechanism, similarly to the batteryless multi-rotation encoder 101 described above.
  • the batteryless multi-rotation encoder 104 of this embodiment is different from the batteryless multi-rotation encoder 101 in that a rotation detection mechanism 110-4 is provided instead of the rotation detection mechanism 110.
  • FIG. 10 illustrates the configuration of the rotation detection mechanism 110-4.
  • the batteryless multi-rotation encoder 104 of the present embodiment three or more detection coils 112, 113, and 114 are arranged with a phase angle shifted on the rotation circumference of the magnet 111, and the nonvolatile memory 127 in the signal processing circuit 120 is
  • the signal processing circuit 120 retains the state of the detection coil that was set with the rotation of the magnet 111 at the previous time and the previous time, and the signal processing circuit 120 generates a voltage pulse from one of the detection coils.
  • the previous and previous pulses are compared.
  • the value of the rotational speed of the rotary shaft is corrected or an error output is generated.
  • the correction position when the pulse detection is lost can be specified using the information on the state of three or more detection coils and the detection coil of the previous time.
  • the rotation axis is reversed, not only can the number of rotations be counted without counting down, but also the detection of the number of rotations with a high degree of reliability that allows one missing pulse can be made.
  • the magnetic wire having the Barkhausen effect is suddenly reversed in magnetization by a specific magnetic field and generates a constant voltage pulse from the coil.
  • the applied magnetic field does not become sufficiently larger than the magnetization reversal threshold, that is, when the rotation of the magnet 111 is reversed immediately after the applied magnetic field slightly exceeds the threshold and generates a voltage pulse
  • the intensity of the generated voltage pulse is reduced in the applied magnetic field direction opposite to the applied magnetic field in which the voltage pulse is generated by the rotation of the magnet 111, even when the applied magnetic field exceeds the threshold value.
  • the signal processing circuit 120 cannot operate, and the actual position of the rotating magnet 111 and the assumed position of the magnet 111 specified by the state held by the detected voltage pulse A different phenomenon occurs.
  • the A-phase detection coil is located at a position shifted from the rotating magnet 111 by a predetermined phase.
  • a B-phase detection coil 113, and a C-phase detection coil 114 are arranged.
  • the detection coils 112 and 114 are arranged at positions of 60 degrees in the CW direction and CCW direction with respect to the detection coil 113 at the central angle of the magnet 111 in the present embodiment.
  • the arrangement position of each detection coil is not limited to this.
  • the number of detection coils should just be three or more.
  • Each of the detection coils 112, 113, and 114 is divided into six angular regions from the “origin position”, and each of these is defined as “region 1” to “region 6” in the CW direction from the origin position. Further, the angular position of the rotating magnet 111 that changes from S to N in the CW direction is defined as a “magnet reference”.
  • the magnet reference is moved from the region 6 side to the region 1 in the CW direction. It is assumed that the magnetization reversal threshold is exceeded. At this time, a voltage pulse is generated from the B-phase detection coil 113.
  • the signal processing circuit 120 of the batteryless multi-rotation encoder 104 is as follows. Operate.
  • the magnetic field from the magnet 111 acts on the B-phase detection coil 113 in the opposite magnetic field direction beyond the threshold value.
  • the signal processing circuit 120 indicates that the magnet reference position of the magnet 111 is the region 1. The state of the detection coil 113 is maintained. Further, when the rotating magnet 111 advances in the CCW direction, a voltage pulse is generated exceeding the threshold value of the A-phase detection coil 112.
  • the signal processing circuit 120 holds that the position of the magnet reference is the region 1, and the movement from the region 1 to the region 6 or the region 2 generates a voltage pulse when the B-phase detection coil 113 or C Since only the phase detection coil 114 is present, it can be detected that a malfunction has occurred. In the following description, this operation is referred to as “previous example”.
  • the situation where the voltage pulse is generated in the A-phase detection coil 112 while maintaining the state of the region 1 described above is that the magnet reference moves from the region 2 to the region 1 in the CCW direction, and then from the region 1 by reversal of rotation. Switching to the region 2 occurs in the same manner when the voltage pulse is lost, and further, the region moves to the region 3 after rotating in the CW direction. Also in this case, as in the previous example, since there is no region movement in which the voltage pulse is generated from the region 1 to the A-phase detection coil 112, the occurrence of malfunction can be detected. For the sake of explanation, this operation will be referred to as a “later example”.
  • the magnet reference position of the magnet 111 specified in the previous state of the detection coil is the same in the region 1, and a malfunction can be detected but cannot be corrected.
  • the magnet reference position of the magnet 111 specified in the state before and after the detection coil held by the signal processing circuit 120 is the region 6 in the previous example and the region 2 in the later example, so they are different. Can be distinguished.
  • the voltage pulse of the A phase detection coil when the voltage pulse when moving from the region 1 to the region 6 is lost and moving from the region 6 to the region 5 is generated and the signal processing circuit It is possible to correct the holding state of 120 to the area 5 jumped from the area 1 by 1 area and to correct the value of the rotational speed by ⁇ 1 count. In the later example, the same correction can be made. Thus, the pulse state holding state and the value of the rotational speed of the rotating shaft can be corrected by the previous and previous pulse states and the generated voltage pulse. Then, the signal processing circuit 120 holds the state of the detection pulse in the nonvolatile memory 127 of the signal processing circuit 120 as described above.
  • FIG. 11 is a table showing the state transitions described above. In FIG.
  • the current region is determined by the previous detection coil state, and the previous region is determined by the detection coil state two times before.
  • a state transition not represented in the state transition table of FIG. 11 appears, an event different from the assumed missing pulse has occurred, and the signal processing circuit 120 outputs an error.
  • the previous area can be uniquely determined by having information on whether the current area has transitioned in the CW or CCW direction from the previous area, so the amount of information stored using this transition direction information can be reduced. May be.
  • “or” in the “previous region” indicates that the region is correctly determined, and the next region is the next region in any region adjacent to the current region. This means that the transition to the same area is the same. For example, no. In the case of 1, the next area is “3”, which is the same in any area of “1 or 3” as the previous area.
  • FIG. With reference to FIG. 12, multi-rotation encoder 105 according to the fifth embodiment of the present invention will be described.
  • the multi-rotation encoder 105 of the present embodiment also includes a rotation detection mechanism 110 and a signal processing circuit electrically connected to the rotation detection mechanism 110, like the batteryless multi-rotation encoders 101 to 103 described above.
  • the multi-rotation encoder 105 of this embodiment is different from the above-described battery-less multi-rotation encoders 101 to 103 in that a signal processing circuit 140 is provided instead of the signal processing circuits 120, 131, and 132.
  • multi-rotation encoder 105 in the fifth embodiment is different from multi-rotation encoders in the first to fourth embodiments in that it is not a battery-less type because it includes battery 142.
  • the half-wave rectifier circuit 141 rectifies each voltage pulse generated by the detection coils 112 and 113 for half a cycle, and this is pulsed. Output to the waveform code determination circuit 124.
  • the battery 142 is connected to the power source switch 129, and the constant voltage circuit 122 supplies a constant voltage only to the enable circuit 123.
  • the adder 121, the pulse waveform code determination circuit 124, the controller 125, the external circuit interface 128, and the memory 143 are supplied with power from the outside or the battery 142 via the power supply switching 129. Accordingly, the memory 143 does not have to be a non-volatile memory, and may be a volatile memory. In this embodiment, a volatile memory is adopted.
  • the other configuration of the signal processing circuit 140 is the same as that of the signal processing circuit 120.
  • the signal processing circuit 140 can always be supplied with power from the battery 142, so that the multi-rotation encoder 105 can achieve the same effect as the multi-rotation encoder 101, and further, an integrated circuit
  • the signal processing circuit 140 to be configured is manufactured, a process for the nonvolatile memory 127 is not required, and the signal processing circuit 140 is not required to be driven with low power consumption. Therefore, according to the multi-rotation encoder 105 in the fifth embodiment, it is possible to reduce the manufacturing cost of the signal processing circuit 140 and increase the number of manufacturers as compared with the battery-less multi-rotation encoder 101. Since the product can be used, its availability and cost can be improved.
  • the multi-rotation encoder 105 in the fifth embodiment can adopt the configuration described in the second, third, or fourth embodiment.
  • 101-103 batteryless multi-rotation encoder 105 multi-rotation encoder 110 rotation detection mechanism, 111 magnet, 112, 113 detection coil, 115 rotating shaft, 120 signal processing circuit, 121 full wave rectification circuit, 122 constant voltage circuit, 124 pulse waveform code determination circuit, 125 controller, 126 adder, 127 nonvolatile memory, 131, 132, 140 signal processing circuit, 142 battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

バルクハウゼン効果を有する検出コイル112,113を有するバッテリレス多回転エンコーダにおいて、回転検出機構110と、信号処理回路120とを備え、各検出コイルは、正負異符号の電圧パルスを発生して信号処理回路へ送出し、信号処理回路は、各電圧パルスの正負の符号、及び電圧パルスが生じていないことを元に、検出コイルの状態をハイ、ロー、及びハイ又はローを維持してメモリ127に記憶するコントローラ125と、各検出コイルの状態変化に対応して回転数を更新するアダー126と、を有し、回転軸の回転角を約1/4回転単位以内で判定する。

Description

多回転エンコーダ
 本発明は、モーター等における回転体の回転方向及び回転数を、外部からの電力供給を受けることなく、検出し保持することができる、多回転エンコーダに関する。
 一般に、例えばモーター回転軸の回転角度を検出するためのロータリーエンコーダは、モーター回転軸に連結された、光学或いは磁気パターンを形成した回転ディスクと、上記光学或いは磁気パターンを読み取るための検出素子とで構成されている。この種のロータリーエンコーダには、上記検出素子によって検出されたパルス信号を積算して回転軸の回転角度を検出するインクリメント方式と、上記回転ディスク上の異なる複数のパターンから回転ディスクの絶対角度を検出するアブソリュート方式とが知られている。
 また、回転軸における1回転以上の回転数を計数する手段としては、減速ギヤを介して接続された上記アブソリュート方式のエンコーダを用いるものと、上記インクリメント方式のエンコーダを用いて累積値を計数し、電気的にその値を保持するものとがある。
 後者のエンコーダにおいては、回転数の計数及び保持を電子化することにより、エンコーダ構造を簡素化できるという利点があるが、外部電源遮断時にも、得られた回転数を電気的に保持しておく必要があるため、バックアップ用電池を搭載する必要がある。よって、バックアップ用電池の定期交換のため、保守性が良くないという課題がある。
 一方、前者の方式では、機械式に回転数を計数し保持するため、外部電源の有無に関係なく回転数を保持できるという利点があるが、構造が複雑化し、コスト上昇及び高耐久化が困難であるという課題がある。
 そこで、これらの課題を解決するために、電気的に回転数を計数して保持しながら、バックアップ電源を用いないバッテリレス方式の多回転エンコーダが提案されている。
 このバッテリレス方式の多回転エンコーダとしては、大バルクハウゼン効果を有する磁性ワイヤを用いた方式が提案されている。この磁性ワイヤは、ワイヤ内部にはハード磁性体を、ワイヤ外側にはソフト磁性体を用いて構成される。上記ソフト磁性体について、外部磁界Hに対する磁化Mの関係は、図13に示すように、ある磁界で急激に磁化Mが反転する振る舞い(大バルクハウゼン効果)を示す。この反転速度は、外部磁界Hの加え方によらず常に一定となる。そこでこれを利用して、モーター回転軸と共に回転する磁石周囲に、上記磁性ワイヤを内包したコイルを設置することにより、モーターの回転速度に依存せずに常に一定の電圧パルスをコイルから出力させることが可能となる。
 図14は、上述のバッテリレス方式の多回転エンコーダにおいて、モーター回転軸の回転数と、回転軸に対応する磁石から磁性ワイヤに加わる磁界、及びコイルから出力される電圧パルスを示す。図14によれば、モーター回転軸の回転方向CW(時計回り)、CCW(反時計回り)により、電圧パルスの生じる位置は、角度φだけずれるが、同じ回転方向では一定回転ごとに正負の電圧パルスが生じることがわかる。よって、この電圧パルスの電力を利用することにより、バッテリレス方式での多回転のカウントを行うことができる。
 このようなバッテリレス方式を利用して、例えば特許文献1には、モーター回転軸と共に回転する2極着磁した磁石の上方に、大バルクハウゼン効果を有する磁性ワイヤを位相角が90度となるように二つ配置して、これら二つの磁性ワイヤ上にそれぞれ巻いた各コイルから得られる正符号の電圧パルスの電力によって信号処理回路が駆動され、上記電圧パルスによって回転軸の回転数検出を行う、バッテリレス方式の多回転エンコーダが提案されている。
特開2008-014799号公報
 しかしながら、上記特許文献1の装置は、図15から図17を参照して以下に説明するような問題を有する。
 図15には、上記特許文献1の装置において、モーター回転軸の回転中に、上述の二つのコイルA、Bに加わる磁界と電圧パルスとの関係、並びに、コイルA、Bの状態を示す信号処理されたA相出力及びB相出力を図示している。図15に示すように、コイルA、Bは、加わる磁界の反転に伴い、正負の異符号の電圧パルスを90度の位相差で出力する。信号処理回路は、正符号の電圧パルスのみを抽出し、電圧パルスが生じた方のコイルの状態をハイとし、電圧パルスが生じていない方のコイルの状態をローとする。このときのモーター回転軸の回転に対するA相出力及びB相出力を図16の(a)に示す。図16の(a)に示すように、まず電圧パルスが生じ、このときA相がハイ、B相がローの場合には、回転数は、変化しない。次に電圧パルスが生じ、A相がローでB相がハイのとき、回転数を+1カウントアップする。
 次に、モーター回転軸の回転が途中で反転した場合について述べる。図17は、特許文献1の装置において、モーター回転軸の回転方向がCWからCCWに反転した場合の、上記二つのコイルA、Bに加わる磁界と電圧パルスとの関係、並びに、A相出力及びB相出力を図示している。図17の(a)は、モーター回転軸の回転角が175+φ/2°回転した後に、CWからCCW方向に回転軸が反転した場合を示している。また、図17の(b)は、そのときのモーターの回転数に対するA相出力及びB相出力を示している。反転前の電圧パルスが生じたとき、A相出力がロー、B相出力がハイであり、反転後最初に電圧パルスが生じたときのA相出力はロー、B相出力はハイとなる。
 このように、前回の電圧パルスが生じたときと、A相及びB相の出力状態が同じときには、回転方向が反転したと判定する。反転後、次にA相出力がロー、B相出力がハイになったときに、回転数を-1カウントダウンする。
 更に別の角度にてモーター回転軸の回転が途中で反転した場合について述べる。図17の(b)は、モーター回転軸の回転角が175-φ/2°回転した後に、CWからCCW方向に回転軸が反転した場合を示している。このときのモーターの回転数に対するA相出力及びB相出力を図16の(c)に示す。この場合、A相出力及びB相出力は、CWからCCWの反転に関わらず、ハイからロー、ローからハイに変化する。そのため、モーター回転の反転を検出できず、回転数をカウントダウンすることができない。
 このように、特許文献1の装置にあっては、回転軸の回転方向に関わらず、A相出力がハイ、B相出力がローの状態から、A相出力がロー、B相出力がハイの状態へ繰り返し変化するだけであるため、モーター回転軸の回転角によっては、回転軸の回転方向が逆転したときのシグナルを検出できない場合が生じる。よって、特許文献1の装置では、正確にモーター回転数を検出することができないという問題がある。
 また、磁性ワイヤは、閾値をわずかに超える印加磁界が与えられて磁化反転したとき、それを更に反転する場合に発生する電圧パルスが低下することがあり、その減少量が大きい場合には信号処理回路が駆動できず、電圧パルスの検出抜けが発生する可能性があるという問題がある。
 本発明は、このような問題点を解決するためになされたもので、従来に比べてより正確に回転軸の回転数を検出可能な多回転エンコーダを提供することを目的とする。
 上記目的を達成するため、本発明は以下のように構成する。
 即ち、本発明の一態様におけるバッテリレス多回転エンコーダは、外部からの電力供給を受けることなく、回転軸の回転方向及び回転数を検出し保持するバッテリレス多回転エンコーダであって、上記回転軸と伴に回転する磁石と、この磁石の磁界に対してバルクハウゼン効果を有する磁性ワイヤで構成され上記磁石の回転円周上に位相角をずらして配置されるL(≧2)個の検出コイルとを有する回転検出機構と、この回転検出機構と電気的に接続される信号処理回路と、を備える。それぞれの上記検出コイルは、上記回転軸の1回転ごとに、上記磁石の磁極数Nに対応してLN回、正、負の異符号の電圧パルスを正、負または負、正の順で発生して上記信号処理回路へ送出する。上記信号処理回路は、それぞれの検出コイルで発生した各電圧パルスの正、負の両方の符号及び電圧パルスが生じていないことを元に、上記検出コイルの状態を又は上記検出コイルの状態とその前の検出コイルの状態をハイ、ローにて定義し、及び電圧パルスが生じていないときにはハイ又はローを維持して、この検出コイルの状態をメモリに記憶するコントローラと、コントローラから各検出コイルの状態が供給され、この状態の変化に対応して上記回転軸の回転数を更新するアダーと、を有し、上記回転軸の回転角を約1/(LN)回転単位以内で判定することを特徴とする。
 本発明の一態様におけるバッテリレス多回転エンコーダによれば、信号処理回路におけるコントローラは、L個の検出コイルが送出する正、負両方の電圧パルスを用いて、電圧パルスの正負の符号及び電圧パルスが生じていないことを元に、各検出コイルの状態をハイ、ロー、及び電圧パルスが生じていないときにはハイ又はローを維持して、検出コイルの状態をメモリに記憶する。そしてこの記憶した状態を元に回転数を検出することから、回転途中で回転軸が逆転しても、数え落とすことなく回転数をカウントすることができる。よって、回転検出機構に備わる磁石の磁極数をNとしたとき、回転軸の回転角を約1/(LN)回転以内で検出することができ、従来に比べてより正確に回転軸の回転数を検出可能となる。
本発明の実施の形態1におけるバッテリレス多回転エンコーダの構成を示す図である。 図1に示すバッテリレス多回転エンコーダに備わる各検出コイルの配置を示す説明図である。 図1に示すバッテリレス多回転エンコーダに備わる各検出コイルの磁性ワイヤに加わる磁界と各検出コイルから出力される電圧パルスとの関係、及び各検出コイルの状態を示す説明図である。 図1に示すバッテリレス多回転エンコーダにおいて、回転軸の回転に対する各検出コイルの状態を示す説明図である。 図1に示すバッテリレス多回転エンコーダに備わる各検出コイルの磁性ワイヤに加わる磁界と各検出コイルから出力される電圧パルスとのヒステリシスを示す説明図である。 図1に示すバッテリレス多回転エンコーダにおいて、回転軸の回転方向が反転するときの各検出コイルの状態を示す説明図である。 図1に示すバッテリレス多回転エンコーダにおける角検出コイルの状態と回転数を判別する信号処理テーブルとを示す図である。 本発明の実施の形態2におけるバッテリレス多回転エンコーダにおける信号処理ICの構成を示す図である。 本発明の実施の形態3におけるバッテリレス多回転エンコーダにおける信号処理ICの構成を示す図である。 本発明の実施の形態4におけるバッテリレス多回転エンコーダにおける検出コイルの配置を示す図である。 本発明の実施の形態4におけるバッテリレス多回転エンコーダにおける検出コイルの状態と回転数を判別する信号処理テーブルを示す図である。 本発明の実施の形態5における多回転エンコーダの構成を示す図である。 バルクハウゼンジャンプを示す磁性ワイヤの磁界H-磁化M曲線である。 磁性ワイヤに加わる磁界と検出コイルから出力される電圧パルスとの関係を示す図である。 従来のバッテリレス多回転エンコーダにおいて、磁性ワイヤに加わる磁界と各検出コイルから出力される電圧パルスとの関係、及び各検出コイルの状態を示す説明図である。 従来のバッテリレス多回転エンコーダにおいて、回転軸の回転に対する各検出コイルの状態を示す説明図である。 従来のバッテリレス多回転エンコーダにおいて、回転軸の回転方向が反転したときの磁性ワイヤに加わる磁界と各検出コイルから出力される電圧パルスとの関係、及び各検出コイルの状態を示す説明図である。
 本発明の実施形態であるバッテリレス多回転エンコーダについて、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。また、以下の説明が不必要に冗長になるのを避け当業者の理解を容易にするため、既によく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。
 実施の形態1.
 図1には、本発明の実施の形態1によるバッテリレス多回転エンコーダ101の構成が示されている。本実施の形態のバッテリレス多回転エンコーダ101は、外部からの電力供給を受けることなく、回転軸の回転方向及び回転数を検出し保持する多回転エンコーダであり、大きく分けて、回転検出機構110と、この回転検出機構110と電気的に接続される信号処理回路120とを備える。
 回転検出機構110は、図2に示すように、磁石111と、検出コイル112、113とを有し、回転軸115の回転を検出する機構である。尚、回転軸115は、例えばモーターの出力軸(回転軸)等が相当するが、これに限定されず、軸周り方向に回転可能な回転体が相当する。
 磁石111は、円板状であり、回転軸115と同心上に取り付けられており、回転軸115と伴にCW(時計回り)及びCCW(反時計回り)に回転する。回転軸115と磁石111とは、本実施形態ではこのように同心状に配置しているが、回転軸115の回動に対応して磁石111が回動する構成であればよい。また磁石111は、本実施形態では半円周ずつ2つの磁極を有するが、これ以上の磁極数を有しても良い。
 検出コイル112、113は、磁石111の上方で磁石111の回転円周上に配置され、大バルクハウゼン効果を有する磁性ワイヤで形成されている。本実施形態では、2つの検出コイル112,113が設けられるが、3つ以上の検出コイルを設けても良い。
 ここで、2極に着磁された磁石111と、検出コイル112、113との位置関係、及び、回転軸115の回転数の検出ロジックについて説明する。
 まず、検出コイル112と検出コイル113との位置関係について説明する。大バルクハウゼン効果を有する磁性ワイヤでは、図14を参照し説明したように、回転数φだけヒステリシスが生じるため、回転軸115の回転方向に関わらず、検出コイル112、113の出力がオーバーラップするのを避けるため、検出コイル113は、検出コイル112に対して、位相角がφより大きく且つ180-φより小さくなるように設置する。
 一般的には、磁石111の磁極数をNとしたとき、ヒステリシス角度φを元に、一つの第1検出コイル(例えば検出コイル112)に対して一又は複数の第2検出コイル(例えば検出コイル113)は、第1検出コイルと第2検出コイルとの位相角がヒステリシス角度φより大きく、(360/N)-φより小さい角度範囲に配置される。
 尚、以下では、説明の簡略化のため、上記位相角を90°として説明を行う。
 図3は、磁石111から検出コイル112、113に加わる磁界と、検出コイル112,113から得られる電圧パルスとの関係、並びに、検出コイル112からの出力をデジタル化したA相出力、検出コイル113からの出力をデジタル化したB相出力、検出コイル112のA状態、検出コイル113のB状態を図示している。図3の(a)は、回転方向がCW方向での図、図3の(b)は、CCW方向での図である。
 A相出力及びB相出力は、検出コイル112、113からの出力が、正符号の電圧パルスの場合にはハイ、負符号の電圧パルスの場合にはロー、電圧パルスが生じていない場合には無し(ゼロ)として出力される。
 A状態及びB状態は、それぞれ、A相出力、B相出力がハイの場合には各状態をハイとし、ローの場合には状態をローとし、また、無し(ゼロ)の場合には状態を変更しない。このA状態及びB状態の回転数に対する遷移を図4に示す。図4の(a)は、回転軸115の回転方向がCWの場合であり、図4の(b)は、回転方向がCCWの場合を示す。A状態及びB状態のそれぞれのハイ、ローの状態により、回転軸115の回転角は、90°あるいはφ°から180°-φ°の範囲で区別することができることがわかる。そこで、A状態がローからハイ、B状態がローで変更無しのとき、+1カウントアップし、A状態がハイからロー、B状態がローで変更無しのとき、-1カウントダウンとすることにより、回転方向に関係なく回転数を検出することができる。
 次に、回転軸115の回転方向が途中で反転した場合における、回転角に対するA状態、B状態、及びカウント数を図6に示す。回転軸115の回転に伴い、検出コイル112,113から発生するそれぞれの電圧パルスにより、1回転内を領域分けすると、図5の(a)、(b)に示すように領域Aから領域Hまで8領域に分類することができる(図5の(a)はCW方向に回転した場合、図5の(b)はCCW方向に回転した場合を示す)。そのため、図6では、各領域において、回転方向がCWからCCWに反転した場合の全てについて示している。図6におけるカウント数の項目を参照すると、どの領域で回転軸115が反転した場合でも、カウント数にずれが生じていないことがわかる。
 尚、検出コイルを3以上、又は磁石111の着磁数を3以上として、1回転内の分解能を90°あるいはφ°から180°-φ°の範囲より小さくしても問題はない。
 次に検出コイル112、113からそれぞれ電圧パルスが生じたときの、信号処理IC(上述の信号処理回路に同じ)120の動作について説明する。
 信号処理IC120は、本実施形態では図1に示すように、全波整流回路121、定電圧回路122、Enable回路123、パルス波形符号判定回路124、コントローラ125、アダー126、不揮発メモリ127、外部回路インターフェイス128、及び電源切替129を有する。信号処理IC120の基本的構成部分としては、コントローラ125及びアダー126が相当する。
 このような構成において、検出コイル112,113で発生したそれぞれの電圧パルスは、全波整流回路121、121でそれぞれ整流された後、定電圧回路122によって一定電圧にされる。この一定電圧は、Enable回路123、パルス波形符号判定回路124、コントローラ125、アダー126、及び不揮発メモリ127に電力として供給される。なお、電源切替129は、定電圧回路122と外部からの電力供給とを切り替えて出力する機能を有し、コントローラ125、不揮発メモリ127には、電源切替129を介して一定電圧が供給される。また、外部電源はバックアップ電源に相当せず主電源であるので、電源切替129を設けたことはバッテリレス多回転エンコーダの構成に反するものではない。
 次にEnable回路123は、定電圧回路122からの電圧が十分安定したのを確認した後、パルス波形符号判定回路124、コントローラ125、アダー126、及び不揮発メモリ127へ動作開始トリガーを送信する。
 動作開始トリガーを受け取ったパルス波形符号判定回路124は、検出コイル112、113からの各電圧パルスからA相出力及びB相出力を判定し、コントローラ125に送信する。
 コントローラ125は、不揮発メモリ127から、前回に電圧パルスが生じたときの回転軸115の回転数と、A状態及びB状態とを読み取り、これをアダー126に送信する。
 アダー126は、受け取った情報(回転数、A相出力B相出力、A状態、B状態の値)から、図7の変換テーブルを用いて、状態A、状態B及び回転数の更新を行い、最新のA状態、B状態、及び回転数をコントローラ125に送信する。
 コントローラ125は、アダー126からの情報を再度不揮発メモリ127にアクセスし、これらの書き込みを実施する。
 信号処理IC120は、これら一連の動作を、検出コイル112、113からの各電圧パルスによって全波整流回路121、及び定電圧回路122で発生させた電力のみで行い、且つ次の電圧パルスが生じる前に動作を終了する。
 当該バッテリレス多回転エンコーダ101の外部から、回転軸115の回転数を読み取る場合には、外部回路インターフェイス128、コントローラ125の順に、これらを介して不揮発メモリ127にアクセスして、回転数の読み取りを行う。このとき、回転数検出の一連の動作と、外部からの読み取り動作とがバッティングしないように、コントローラ125が、外部からの不揮発メモリ127へのアクセスを制限する。また、外部からアクセスするときには、コントローラ125、不揮発メモリ127には電源切替129を介して外部から、外部回路インターフェイス128には直接外部から電力供給を行うため、検出コイル112,113の電圧パルスからの電力によらず、回転数の読み取りが可能である。
 以上説明したように、バッテリレス多回転エンコーダ101では、二つ検出コイル112、113から生じる電圧パルスの正、負の両方の符号を用いて、検出コイル112、113の状態をA状態、B状態として不揮発メモリ127に保持することによって、途中で回転軸115が逆回転した場合でも、回転数を数え落とすことなく検出することができ、且つ上述の動作を、検出コイル112、113からの電圧パルスの電力のみで実行することができる。
 なお、バッテリレス多回転エンコーダ101の組み立てるとき、または一度分解後に再度組み立てたときには、不揮発メモリ127にある前回電圧パルスが生じたときの状態A及び状態Bから推定される磁石111と検出コイル112、113との位置関係と、実際の磁石111と検出コイル112、113との位置関係とは、必ずしも一致しない。そのため、初期設定モードでは、不揮発メモリ127にある、前回電圧パルスが生じたときの状態A及び状態Bが実際の磁石111と検出コイル112、113との位置関係を反映する少なくとも電圧パルスが2回以上生じるまで、コントローラ125、及びアダー126は、回転数の更新を行わず、不揮発メモリ127にある状態A及び状態Bを更新し続ける動作を行う。
 実施の形態2.
 図8を参照して、本発明の実施の形態2におけるバッテリレス多回転エンコーダ102について説明する。
 本実施形態のバッテリレス多回転エンコーダ102も、上述のバッテリレス多回転エンコーダ101と同様に、回転検出機構110と、この回転検出機構110と電気的に接続される信号処理回路とを備える。本実施形態のバッテリレス多回転エンコーダ102では、信号処理回路120に代えて信号処理回路131を有する点で、上述のバッテリレス多回転エンコーダ101と相違する。また、信号処理回路120と信号処理回路131との違いは、不揮発メモリ127を信号処理回路の外部へ配置した点である。信号処理回路131におけるその他の構成は、信号処理回路120と同じである。
 このように構成することで、バッテリレス多回転エンコーダ102によれば、バッテリレス多回転エンコーダ101と同じ効果が得られるとともに、さらに、信号処理ICの製造時に、不揮発メモリ127用のプロセスが不要となる。よって、バッテリレス多回転エンコーダ102によれば、バッテリレス多回転エンコーダ101に比べて、信号処理ICのコスト低減、製造先を増やすことが可能となり、また、不揮発メモリ127として汎用品を使用することが出来るため、入手性、コストの改善が可能となる。
 実施の形態3.
 図9を参照して、本発明の実施の形態3におけるバッテリレス多回転エンコーダ103について説明する。
 本実施形態のバッテリレス多回転エンコーダ103も、上述のバッテリレス多回転エンコーダ101と同様に、回転検出機構110と、この回転検出機構110と電気的に接続される信号処理回路とを備える。本実施形態のバッテリレス多回転エンコーダ103では、信号処理回路120に代えて信号処理回路132を有する点で、上述のバッテリレス多回転エンコーダ101と相違する。また、信号処理回路120と信号処理回路132との違いは、全波整流回路121及び定電圧回路122を、信号処理回路の外部で、回転検出機構110と信号処理回路132との間に配置した点である。信号処理回路132におけるその他の構成は、信号処理回路120と同じである。
 このように構成することで、バッテリレス多回転エンコーダ103によれば、バッテリレス多回転エンコーダ101と同じ効果が得られるとともに、さらに、信号処理回路132に入力される電圧値を制限することが出来る。よって、バッテリレス多回転エンコーダ103によれば、バッテリレス多回転エンコーダ101に比べて、信号処理回路132の入力電圧耐性を下げることができ、コスト低減を図ることができる。
 実施の形態4.
 図10及び図11を用いて実施の形態4におけるバッテリレス多回転エンコーダ104について説明する。
 本実施形態のバッテリレス多回転エンコーダ104においても、上述のバッテリレス多回転エンコーダ101と同様に、回転検出機構と、この回転検出機構と電気的に接続される信号処理回路120とを備える。本実施形態のバッテリレス多回転エンコーダ104では、回転検出機構110に代えて回転検出機構110-4を有する点で上述のバッテリレス多回転エンコーダ101と相違する。図10に、回転検出機構110-4の構成を図示する。
 本実施形態のバッテリレス多回転エンコーダ104は、3個以上の検出コイル112,113,114を磁石111の回転円周上に位相角をずらせて配置し、信号処理回路120における不揮発性メモリ127は、磁石111の回転に伴い設定された上記検出コイルの前回と前々回とにおける状態を保持し、信号処理回路120は、上記検出コイルの何れかより電圧パルスが発生したことで、前回発生した電圧パルスにより設定されたコイル状態と比較し、前回のコイル状態で指定される磁石111の回転位置からの移動として想定される電圧パルスと上記発生した電圧パルスとが異なる状態では、上記前回及び前々回のパルス状態と上記発生電圧パルスとにより、回転軸の回転数の値を補正する、或いはエラー出力を発生するものである。
 このように構成されるバッテリレス多回転エンコーダ104によれば、3個以上の検出コイルと前々回の検出コイルの状態の情報を用いてパルス検出が抜けた場合の訂正位置を特定できることから、回転途中で回転軸が逆転しても、数え落とすことなく回転数をカウントすることができるのみならず、一回のパルス抜けを許容した信頼性の高い回転数の検出が可能となる。
 次に、本実施形態のバッテリレス多回転エンコーダ104の構成及び動作について、さらに詳しく説明する。
 バルクハウゼン効果を有する磁性ワイヤは、図13を用いて先に説明したように、特定の磁界により急激に磁化が反転し、コイルから一定の電圧パルスを発生する。しかしながら、印加される磁界が磁化反転の閾値より十分に大きくならない場合、つまり印加磁界が上記閾値を僅かに上回って電圧パルスを発生させた直後に磁石111の回転が反転するような場合には、磁石111の回転によって上記電圧パルスを発生させた印加磁界とは逆方向の印加磁界方向で、たとえ印加される磁界が閾値を上回ったときでも、発生する電圧パルスの強度が小さくなるという現象がある。この発生電圧パルスの低下が激しい場合には、信号処理回路120が動作できず、回転する磁石111の実際の位置と、検出した電圧パルスに保持された状態により指定される磁石111の想定位置とが異なる現象が発生する。
 そこで本実施の形態のバッテリレス多回転エンコーダ104の回転検出機構110-4では、図10に示すように、回転する磁石111に対して所定の位相にてずれた位置に、A相の検出コイル112、B相の検出コイル113、C相の検出コイル114の3個の検出コイルを配置する。各検出コイルの配置は、本実施の形態では、磁石111の中心角において、検出コイル113に対してCW方向及びCCW方向にそれぞれ60度の位置に検出コイル112、114を配置している。しかしながら、各検出コイルの配置位置は、これに限定するものではない。また、検出コイルの数も3個以上であればよい。
 また、各検出コイル112、113、114によって、「原点位置」から6個の角度領域に分割し、その各々を原点位置よりCW方向に「領域1」から「領域6」とする。また、CW方向にSよりNに変化する回転磁石111の角度位置を「磁石基準」とする。
 今、原点位置にB相の検出コイル113が配置され、磁石基準が原点位置にある状況から、磁石基準がCW方向へ領域6側から領域1に移動し、これによりB相の検出コイル113において磁化反転の閾値を超えたとする。このとき、B相検出コイル113から電圧パルスが発生する。ここで、この電圧パルスが発生した位置から磁石111の回転が反転して、磁石基準が領域1から領域6に戻った場合、バッテリレス多回転エンコーダ104の信号処理回路120は、次のように動作する。即ち、上述したように、磁石111がCCW方向に回転することで、B相検出コイル113に対して逆側の磁界方向で磁石111からの磁界が閾値を超えて作用する。しかしながら、B相の検出コイル113で発生する電圧パルスが小さく信号処理回路120が動作しないことから、信号処理回路120は、磁石111の磁石基準の位置が領域1であることを指示するB相の検出コイル113の状態を維持する。さらに回転磁石111がCCW方向に進むとき、A相検出コイル112の閾値を超えて電圧パルスが発生する。しかしながら、信号処理回路120は、磁石基準の位置が領域1であることを保持しており、領域1から領域6又は領域2への移動で電圧パルスが発生するのはB相検出コイル113又はC相検出コイル114だけであるので、誤動作が発生したことが検知できる。尚、以下の説明上、この動作を「先の例」と記す。
 上述の、領域1の状態を保持してA相の検出コイル112に電圧パルスが発生する状況は、磁石基準がCCW方向に領域2より領域1に移動し、その後、回転の反転により領域1から領域2へ切り替わるが、電圧パルスが抜け、さらにCW方向に回転して領域3に移動した場合にも同様に発生する。この場合においても先の例と同様に領域1からA相検出コイル112に電圧パルスの発生する領域移動は存在しないので誤動作の発生が検知できる。尚、説明上、この動作を「後の例」と記す。
 先の例と後の例は、何れも検出コイルの前回の状態で指定される磁石111の磁石基準の位置が領域1で同一あり、このままでは誤動作を検知できるが補正をすることは出来ない。一方、信号処理回路120で保持されている検出コイルの前々回の状態で指定される磁石111の磁石基準の位置は先の例で領域6であり後の例では領域2であるので、両者は異なっており区別することができる。先の実施例では、領域1から領域6に移動する際の電圧パルスが抜けて領域6から領域5に移動する際のA相検出コイルの電圧パルスが発生したものと特定出来て、信号処理回路120の保持状態を領域1から1領域跳んだ領域5に補正すると共に回転数の値を-1カウント補正することが出来る。また、後の例でも同様に補正することができる。このように、前回及び前々回のパルス状態と上記発生電圧パルスとにより、パルス状態の保持状態と回転軸の回転数の値を補正することができる。
 そして信号処理回路120は、上述のように検出パルスの状態を信号処理回路120の不揮発メモリ127に保持する。上述の状態の遷移を表にしたものが図11である。図11において、上述の状態に符合するものがNo.6(上記「先の例」に相当)及びNo.4(上記「後の例」に相当)である。前回の検出コイル状態により現領域が決定され、前々回の検出コイル状態によって前領域が決定される。上述の図11の状態遷移表で表されない状態遷移が現れた場合は、想定されるパルス抜けと異なる事象が発生しており信号処理回路120ではエラーを出力する。
 尚、前領域は、現領域に対し前領域からCWかCCWかいずれの方向で遷移したかの情報を有することで一意に決定できるので、この遷移方向情報を用いて記憶する情報量を削減してもよい。
 また、図11の表中の「前領域」において「or」で記載されているものは、正しく領域の判定が行われている場合で、前領域として現領域と隣接するいずれの領域でも、次の領域への遷移は同一となることを意味する。例えば、No.1の場合、前領域として「1or3」のいずれの領域でも、次領域は「3」で、同一になる。
 尚、実施の形態4におけるバッテリレス多回転エンコーダ104において、実施の形態2又は3で説明した構成を採ることも可能である。
 また、上述の各実施の形態を適宜組み合わせた構成を採ることもできる。そのような構成では、組み合わした実施形態が奏する各効果を得ることができる。
 実施の形態5.
 図12を参照して、本発明の実施の形態5における多回転エンコーダ105について説明する。
 本実施形態の多回転エンコーダ105も、上述のバッテリレス多回転エンコーダ101~103と同様に、回転検出機構110と、この回転検出機構110と電気的に接続される信号処理回路とを備える。本実施形態の多回転エンコーダ105では、信号処理回路120、131、132に代えて信号処理回路140を有する点で、上述のバッテリレス多回転エンコーダ101~103と相違する。また、信号処理回路120と信号処理回路140との違いは、半波整流回路141を設け、バッテリ142を内蔵し、メモリ143を信号処理回路内に配置した点である。このように本実施の形態5における多回転エンコーダ105は、バッテリ142を内蔵することからバッテリレスタイプではない点で、実施の形態1~4における多回転エンコーダとは相違する。
 また、本実施の形態5における多回転エンコーダ105の信号処理回路140では、半波整流回路141は、検出コイル112,113で発生したそれぞれの電圧パルスの半サイクル分で整流を行い、これをパルス波形符号判定回路124へ出力する。また、バッテリ142は、電源切替129に接続され、定電圧回路122は、Enable回路123にのみ定電圧を供給する。その他の、アダー121、パルス波形符号判定回路124、コントローラ125、外部回路インターフェイス128、メモリ143は、電源切替129を介して外部又はバッテリ142から電力供給を受ける。これに伴い、メモリ143は、不揮発性メモリである必要はなく、揮発性メモリでもよい。本実施形態では揮発性メモリを採る。
 尚、信号処理回路140におけるその他の構成は、信号処理回路120と同じである。
 このように構成することで、信号処理回路140は、常にバッテリ142から電力供給を受けられるため、多回転エンコーダ105によれば、多回転エンコーダ101と同じ効果が得られるとともに、さらに、集積回路で構成する信号処理回路140の製造時に、不揮発メモリ127用のプロセスが不要であり、且つ、信号処理回路140の低消費電力での駆動が不要となる。よって、本実施の形態5における多回転エンコーダ105によれば、バッテリレス多回転エンコーダ101に比べて、信号処理回路140の製造コスト低減、製造先を増やすことが可能となり、また、メモリ143として汎用品を使用することができるため、その入手性、コストの改善が可能となる。
 尚、実施の形態5における多回転エンコーダ105において、実施の形態2、3又は4で説明した構成を採ることも可能である。
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 又、2012年4月17日に出願された、日本国特許出願No.特願2012-94088号、及び2012年9月11日に出願された、日本国特許出願No.特願2012-199164号における、それぞれの明細書、図面、特許請求の範囲、及び要約書の開示内容の全ては、参考として本明細書中に編入されるものである。
 101~103 バッテリレス多回転エンコーダ、
 105 多回転エンコーダ
 110 回転検出機構、111 磁石、112,113 検出コイル、
 115 回転軸、120 信号処理回路、121 全波整流回路、
 122 定電圧回路、124 パルス波形符号判定回路、125 コントローラ、
 126 アダー、127 不揮発メモリ、131,132、140 信号処理回路、
 142 バッテリ。

Claims (6)

  1.  外部からの電力供給を受けることなく、回転軸の回転方向及び回転数を検出し保持するバッテリレス多回転エンコーダであって、
     上記回転軸と伴に回転する回転軸円周方向の磁極数がN個の磁石と、この磁石の磁界に対してバルクハウゼン効果を有する磁性ワイヤで構成され上記磁石の回転円周上に位相角をずらして配置されるL個、ここでLは2以上、の検出コイルとを有する回転検出機構と、
     回転検出機構と電気的に接続される信号処理回路と、を備え、
     上記信号処理回路は、
     それぞれの検出コイルの状態と回転軸の回転数を保持する不揮発メモリ回路と、
     それぞれの検出コイルからの電圧パルスの有無及び、電圧パルス波高の正負の符号の4要素と、上記保持した状態と回転数から、今回の状態と回転軸の回転方向、回転数を判別し、新しいそれぞれの検出コイルの状態と回転数を上記不揮発メモリ回路に書き込む回路と、を備え、
     それぞれの上記検出コイルで発生した電圧パルスから上記信号処理回路を駆動するための電圧を発生する電圧回路をさらに備え、
     上記回転軸の回転角を1/(LN)回転単位以内で判定する、
    ことを特徴とするバッテリレス多回転エンコーダ。
  2.  上記検出コイルは、位相角90°で2個配置される、請求項1記載のバッテリレス多回転エンコーダ。
  3.  上記不揮発メモリは、上記信号処理回路とは別設される、請求項1記載のバッテリレス多回転エンコーダ。
  4.  上記回転検出機構において、上記回転軸の回転方向の違いによって上記磁性ワイヤにおいてバルクハイゼン効果が発生する回転角度のヒステリシス角度θを元に、一つの第1検出コイルに対して一又は複数の第2検出コイルは、第1検出コイルと第2検出コイルとの位相角がヒステリシス角度θより大きく、(360/N)-θより小さい角度範囲に配置される、請求項1から3のいずれか1項に記載のバッテリレス多回転エンコーダ。
  5.  3個以上の上記検出コイルを上記磁石の回転円周上に位相角をずらせて配置し、上記信号処理回路における上記不揮発性メモリは、上記磁石の回転に伴い設定された上記検出コイルの前回と前々回とにおける状態を保持し、上記信号処理回路は、上記検出コイルの何れかより電圧パルスが発生したことで、前回発生した電圧パルスにより設定されたコイル状態と比較し、前回のコイル状態で指定される磁石の回転位置からの移動として想定される電圧パルスと上記発生した電圧パルスとが異なる状態では、上記前回及び前々回のパルス状態と上記発生電圧パルスとにより、上記回転数の値を補正する、或いはエラー出力を発生する、請求項1に記載のバッテリレス多回転エンコーダ。
  6.  回転軸の回転方向及び回転数を検出し保持する多回転エンコーダであって、
     上記回転軸と伴に回転する回転軸円周方向の磁極数がN個の磁石と、この磁石の磁界に対してバルクハウゼン効果を有する磁性ワイヤで構成され上記磁石の回転円周上に位相角をずらして配置されるL個、ここでLは2以上、の検出コイルとを有する回転検出機構と、
     回転検出機構と電気的に接続される信号処理回路と、を備え、
     上記信号処理回路は、
     それぞれの検出コイルの状態と回転軸の回転数を保持するメモリと、
     それぞれの検出コイルからの電圧パルスの有無及び、電圧パルス波高の正負の符号の4要素と、上記保持した状態と回転数から、今回の状態と回転軸の回転方向、回転数を判別し、新しいそれぞれの検出コイルの状態と回転数を上記メモリに書き込む回路と、を備え、
     それぞれの上記検出コイルで発生した電圧パルスから上記信号処理回路を駆動するための電圧を発生する電圧回路をさらに備え、
     上記回転軸の回転角を1/(LN)回転単位以内で判定する、
    ことを特徴とする多回転エンコーダ。
PCT/JP2013/050115 2012-04-17 2013-01-08 多回転エンコーダ WO2013157279A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/380,289 US20150015245A1 (en) 2012-04-17 2013-01-08 Multi-rotation encoder
JP2014511118A JP5769879B2 (ja) 2012-04-17 2013-01-08 多回転エンコーダ
CN201380020384.7A CN104246444B (zh) 2012-04-17 2013-01-08 多旋转编码器
KR1020147028764A KR20140143404A (ko) 2012-04-17 2013-01-08 다회전 인코더
DE112013002075.0T DE112013002075T5 (de) 2012-04-17 2013-01-08 Multirotations-Drehgeber
TW102107789A TWI482948B (zh) 2012-04-17 2013-03-06 多圈編碼器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-094088 2012-04-17
JP2012094088 2012-04-17
JP2012-199164 2012-09-11
JP2012199164 2012-09-11

Publications (1)

Publication Number Publication Date
WO2013157279A1 true WO2013157279A1 (ja) 2013-10-24

Family

ID=49383248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050115 WO2013157279A1 (ja) 2012-04-17 2013-01-08 多回転エンコーダ

Country Status (7)

Country Link
US (1) US20150015245A1 (ja)
JP (1) JP5769879B2 (ja)
KR (1) KR20140143404A (ja)
CN (1) CN104246444B (ja)
DE (1) DE112013002075T5 (ja)
TW (1) TWI482948B (ja)
WO (1) WO2013157279A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114192A (ja) * 2013-12-11 2015-06-22 三菱電機株式会社 回転数検出器
JP2015219096A (ja) * 2014-05-16 2015-12-07 三菱電機株式会社 多回転エンコーダ
JP2016132817A (ja) * 2015-01-21 2016-07-25 新日鐵住金株式会社 ロール回転速度検出装置
JPWO2021200361A1 (ja) * 2020-04-01 2021-10-07
WO2021215076A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 回転検出器
WO2023140000A1 (ja) * 2022-01-19 2023-07-27 三菱電機株式会社 回転検出器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593965B2 (en) * 2014-12-08 2017-03-14 National Chung Shan Institute Of Science And Technology Non-contact adjustable hysteretic magnetic encoder
JP6773050B2 (ja) * 2016-01-18 2020-10-21 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6234497B2 (ja) * 2016-03-15 2017-11-22 Thk株式会社 エンコーダ装置及びエンコーダ装置付き運動案内装置
JP6658208B2 (ja) * 2016-03-30 2020-03-04 日本電産株式会社 モータシステム
DE102017203679B4 (de) 2016-05-03 2023-02-23 Avago Technologies International Sales Pte. Limited Zählsensor mit Korrekturfunktion
DE102017203683B4 (de) 2016-05-31 2023-02-23 Avago Technologies International Sales Pte. Limited Zählsensor mit korrekturfunktion
AU2017345562B2 (en) 2016-10-19 2024-01-25 Illumina Singapore Pte. Ltd. Methods for chemical ligation of nucleic acids
JP6545141B2 (ja) * 2016-11-29 2019-07-17 ミネベアミツミ株式会社 アブソリュートエンコーダ
CN106774451B (zh) * 2016-12-31 2019-11-15 深圳市优必选科技有限公司 基于磁编码的多圈角度控制方法及装置
CN107655510B (zh) * 2017-03-02 2023-06-06 哈尔滨工大特种机器人有限公司 一种多圈绝对值编码器及位置检测方法
TWI649540B (zh) 2017-10-26 2019-02-01 財團法人工業技術研究院 無電池旋轉編碼器
CN108225383A (zh) * 2018-01-31 2018-06-29 深圳和而泰智能控制股份有限公司 一种非接触编码器及电子设备
CN110165311B (zh) * 2018-02-14 2020-11-27 车王电子股份有限公司 电池包
TWI666814B (zh) * 2018-02-14 2019-07-21 車王電子股份有限公司 Battery pack
JP7501282B2 (ja) * 2020-09-28 2024-06-18 セイコーエプソン株式会社 磁性体シートおよびその製造方法
CN115877281A (zh) * 2021-09-27 2023-03-31 财团法人工业技术研究院 免电池旋转检测装置
CN114279483B (zh) * 2021-12-30 2024-05-14 南京埃斯顿自动化股份有限公司 一种低功耗多圈编码器圈数纠错方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006419A1 (de) * 2004-05-27 2005-12-29 Sew-Eurodrive Gmbh & Co. Kg Segmentzähler und Verfahren
JP2008014799A (ja) * 2006-07-06 2008-01-24 Yaskawa Electric Corp 絶対値エンコーダ装置
JP2009162730A (ja) * 2008-01-10 2009-07-23 Nsk Ltd 回転角検出装置
JP2011185711A (ja) * 2010-03-08 2011-09-22 Mitsubishi Electric Corp 多回転検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026543B4 (de) * 2006-06-07 2010-02-04 Vogt Electronic Components Gmbh Lagegeber und zugehöriges Verfahren zum Erfassen einer Position eines Läufers einer Maschine
EP2191238B1 (en) * 2007-09-04 2016-08-17 Yaskawa Europe Technology Ltd. Apparatus and method for measuring displacements of displaceable members
JP4617368B2 (ja) * 2008-03-25 2011-01-26 山洋電気株式会社 バッテリレス絶対位置検出用エンコーダ
TWI390183B (zh) * 2008-04-29 2013-03-21 Delta Electronics Inc 高解析絕對型編碼裝置及其操作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006419A1 (de) * 2004-05-27 2005-12-29 Sew-Eurodrive Gmbh & Co. Kg Segmentzähler und Verfahren
JP2008014799A (ja) * 2006-07-06 2008-01-24 Yaskawa Electric Corp 絶対値エンコーダ装置
JP2009162730A (ja) * 2008-01-10 2009-07-23 Nsk Ltd 回転角検出装置
JP2011185711A (ja) * 2010-03-08 2011-09-22 Mitsubishi Electric Corp 多回転検出装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114192A (ja) * 2013-12-11 2015-06-22 三菱電機株式会社 回転数検出器
JP2015219096A (ja) * 2014-05-16 2015-12-07 三菱電機株式会社 多回転エンコーダ
JP2016132817A (ja) * 2015-01-21 2016-07-25 新日鐵住金株式会社 ロール回転速度検出装置
JPWO2021200361A1 (ja) * 2020-04-01 2021-10-07
JP7378586B2 (ja) 2020-04-01 2023-11-13 三菱電機株式会社 発電素子、これを用いた磁気センサ、エンコーダおよびモータ
WO2021215076A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 回転検出器
WO2023140000A1 (ja) * 2022-01-19 2023-07-27 三菱電機株式会社 回転検出器

Also Published As

Publication number Publication date
JPWO2013157279A1 (ja) 2015-12-21
CN104246444B (zh) 2016-06-29
DE112013002075T5 (de) 2015-01-22
TW201344159A (zh) 2013-11-01
CN104246444A (zh) 2014-12-24
US20150015245A1 (en) 2015-01-15
JP5769879B2 (ja) 2015-08-26
KR20140143404A (ko) 2014-12-16
TWI482948B (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5769879B2 (ja) 多回転エンコーダ
JP6610697B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
CN108474673B (zh) 编码器装置、驱动装置、载物台装置及机器人装置
JP5216462B2 (ja) ロータリーエンコーダ及びその動作方法
US11858132B2 (en) Encoder device, drive device, stage device, and robot device
JP5802297B2 (ja) 運動検出装置
WO2021044758A1 (ja) 回転検出器及びそれを備えたモータ
JP5511748B2 (ja) 運動検出装置
JPWO2021044758A5 (ja)
WO2016002437A1 (ja) 運動検出装置
JP2018044859A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
US10274944B2 (en) Motor control system, control method, encoder, and motor controller
JP2018059875A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018054574A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6226811B2 (ja) 多回転エンコーダ
JP6870372B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP2018036138A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JPH0662322U (ja) アブソリュートエンコーダ装置
JP2018054573A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
WO2023140000A1 (ja) 回転検出器
JP2009153335A (ja) ブラシレスサーボモータ
JP2021021682A (ja) エンコーダ装置
JP2022187941A (ja) 位置検出器
KR20240018467A (ko) 운동 검출기
JP2022187942A (ja) 運動検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511118

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028764

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013002075

Country of ref document: DE

Ref document number: 1120130020750

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778811

Country of ref document: EP

Kind code of ref document: A1