WO2013150948A9 - モータ制御装置及びそれを搭載した電動パワーステアリング装置 - Google Patents

モータ制御装置及びそれを搭載した電動パワーステアリング装置 Download PDF

Info

Publication number
WO2013150948A9
WO2013150948A9 PCT/JP2013/059198 JP2013059198W WO2013150948A9 WO 2013150948 A9 WO2013150948 A9 WO 2013150948A9 JP 2013059198 W JP2013059198 W JP 2013059198W WO 2013150948 A9 WO2013150948 A9 WO 2013150948A9
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
estimated
motor
unit
Prior art date
Application number
PCT/JP2013/059198
Other languages
English (en)
French (fr)
Other versions
WO2013150948A1 (ja
Inventor
譲 星
徹 坂口
中山 幸雄
前田 将宏
堅吏 森
洋介 今村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US14/234,176 priority Critical patent/US8831832B2/en
Priority to EP13772690.7A priority patent/EP2835906B1/en
Priority to CN201380018649.XA priority patent/CN104205617B/zh
Publication of WO2013150948A1 publication Critical patent/WO2013150948A1/ja
Publication of WO2013150948A9 publication Critical patent/WO2013150948A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention includes an adaptive current observer for estimating the current of the motor, and diagnoses (monitors) an erroneous estimation of the adaptive current observer. When an abnormality is detected, the duty is limited and the current can be forcibly detected.
  • the present invention relates to a motor control device that switches to current control with a detected current and an electric power steering device equipped with the motor control device.
  • An electric power steering apparatus that assists and controls a vehicle steering system with the rotational force of a motor urges an assisting force on a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a reduction gear. It is like that.
  • An inverter is used in the motor drive circuit in order to supply a current to the motor so that the motor generates a desired torque.
  • a column shaft (steering shaft) 2 of the handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, a tie rod. Via 6a and 6b, it is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3.
  • the control unit (ECU) 100 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 100 calculates a current command value of an assist (steering assistance) command based on the steering torque Tr detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and the current control unit calculates the current command.
  • the current I supplied to the motor 20 is controlled by a voltage command value E in which the value is compensated.
  • the vehicle speed Vs can also be received from CAN (Controller Area Network) or the like.
  • the control unit 100 is mainly composed of a CPU (including MPU and MCU), and FIG. 2 shows general functions executed by a program inside the CPU.
  • the function and operation of the control unit 100 will be described with reference to FIG. 2.
  • the steering torque Tr detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12 are calculated as a current command value that calculates a current command value Iref1.
  • the current command value calculation unit 101 determines, for example, a current command value Iref1, which is a control target value of the current supplied to the three-phase motor 20, using an assist map or the like based on the input steering torque Tr and vehicle speed Vs. .
  • the current command value Iref1 is input to the current limiting unit 103 as the current command value Iref2 through the adding unit 102A, and the current command value Iref3 with the maximum current limited is input to the subtracting unit 102B and fed back to the motor current value i m.
  • the voltage command value E whose characteristics have been improved by the current control unit 104 is input to the PWM control unit 105, and the motor 20 is PWM driven via an inverter 106 as a drive unit.
  • the inverter 106 generally uses an FET as a switching element, and is configured by an FET bridge circuit.
  • the compensation signal CM is added from the compensation unit 110 to the addition unit 102A, and the system system is compensated by the addition of the compensation signal CM so as to improve the convergence and inertia characteristics.
  • the compensation unit 110 adds the self-aligning torque (SAT) 113 and the inertia 112 by the addition unit 114, further adds the convergence 111 to the addition result by the addition unit 115, and adds the addition result of the addition unit 115 to the compensation signal CM. It is said.
  • the PWM control unit 105 includes a duty calculation unit 105A for calculating the voltage command value E for the three-phase PWM-Duty command values D1 to D6 according to a predetermined formula, and each gate of the FET1 to FET6 using the PWM-Duty command values D1 to D6.
  • the inverter 106 includes an upper and lower arm made up of a U-phase upper FET 1 and a lower FET 4, and an upper and lower arm made up of a V-phase upper FET 2 and a lower FET 5.
  • the motor 20 is driven by being turned on / off by PWM-Duty command values D1 to D6.
  • the three-phase bridge is composed of upper and lower arms composed of an upper FET 3 and a lower FET 6 of the W phase.
  • the inverter 106 is supplied with electric power from the battery 13 via the power supply relay 14, and the duty command values D 1 to D 6 of the PWM control unit 105 are dead to compensate for the dead times of the FET 1 to FET 6 of the inverter 106.
  • the time compensation value is added and input.
  • the current detection circuit 120 There is unification (one shunt type current detection circuit).
  • a single shunt type current detection circuit is known as a unitary current detection circuit, and the configuration of a single shunt type current detection circuit 120 is as shown in FIG. 4, for example (Japanese Patent Laid-Open No. 2009-131064). .
  • one shunt resistor R1 is connected between the bottom arm of the FET bridge and the ground (GND), and a voltage drop caused by the shunt resistor R1 when a current flows through the FET bridge is an operational amplifier (differential amplifier circuit). ) 121 and converted into a current value Ima by the resistors R2 ⁇ R4, further resistors R6 and a / D conversion on a predetermined timing by the a / D converter 122 via a filter comprising a capacitor C1, the current value i m of the digital values Is output.
  • 2.5V which becomes a reference voltage is connected to the positive terminal input of the operational amplifier 121 through the resistor R5.
  • FIG. 5 shows a connection diagram of the battery 13, the inverter 106, the current detection circuit 120, and the motor 20, and the U-phase upper FET 1 is ON (lower FET 4 is OFF), and the V-phase upper FET 2 is OFF (lower FET 5 is ON).
  • FIG. 6 shows a state where the upper FET 1 of the U phase is ON (lower FET 4 is OFF), the upper FET 2 of the V phase is ON (lower FET 5 is OFF), and the upper FET 3 of the W phase is OFF (lower FET 6 is ON).
  • Current paths are shown.
  • the total value of the phases in which the upper stage FETs are ON appears in the current detection circuit 120 as the detection current. That is, the U-phase current can be detected in FIG. 5, and the U-phase and V-phase currents can be detected in FIG. The same applies to the case where the current detection circuit 120 is connected between the upper arm of the inverter 106 and the power source. 5 and 6, the connection of the resolver 21 and the power relay 14 are omitted.
  • the current detection value used for current control is used as the estimated current.
  • a method has been considered in which the influence of current detection noise is alleviated to some extent, and the response of current control is improved correspondingly to improve the operating sound performance and torque ripple performance.
  • Patent Document 1 discloses a method and apparatus for performing feedback control by using a d-q axis voltage command value for vector control as an input, calculating a d-q axis estimated current with a d-q axis current observer.
  • this method and apparatus it has been proposed to improve robustness by changing each parameter of the current observer model depending on the temperature detection value of each element.
  • Patent Document 2 a motor current value after several samples is estimated from a voltage command value, a motor current detection value, and a motor input estimation disturbance estimated by a disturbance observer, and this motor current estimation value is used for control.
  • a motor control device has been proposed in which the current observer responds to model parameter variations by state feedback.
  • JP 2009-526511 A Japanese Patent No. 4045747 JP 2009-131069 A JP 2009-124782 A
  • each parameter variation of the motor includes not only a temperature change but also a change in the current path due to manufacturing variation, aging deterioration, current regeneration, etc., and in the control method for correcting only the temperature disclosed in Patent Document 1, There is a problem that it is not sufficient to maintain the estimation accuracy.
  • the disturbance estimated by the disturbance observer includes a current detection disturbance that is not an actual motor current, and the estimated current follows a value including the current detection disturbance. Therefore, there is a problem that the entire control system is not robust against current detection disturbance.
  • the present invention has been made for the above-described circumstances, and the object of the present invention is to reduce motor parameters such as temperature changes and manufacturing variations while using an inexpensive and small one-shunt current detection circuit.
  • the entire control system can be robust against disturbances, and when an erroneous estimation is diagnosed and an abnormality is detected, the duty is forcibly set to a current detectable state by limiting the duty. It is an object of the present invention to provide a motor control device capable of switching to current control and an electric power steering device equipped with the motor control device.
  • the present invention includes a current detection circuit that detects a current of a motor as a current detection value, a drive control unit that drives and controls the motor with a duty based on a voltage command value determined based on at least a current command value,
  • the present invention relates to a motor control device including a rotation detection unit that detects an angle and an angular velocity, and the object of the present invention is to identify each parameter variation of the output model of the motor, calculate a current estimation value of the motor, and calculate the voltage.
  • An adaptive current observer used to calculate a command value used to calculate a command value, an adaptive identification diagnosis unit for diagnosing erroneous estimation of a current estimated value from the adaptive current observer, and a current undetectable state where the current detection value cannot be detected
  • Current detection impossible state detection unit the adaptive identification diagnosis unit based on the current estimated value, the current detection value, the angle and the current detection impossible state This is achieved by diagnosing an erroneous estimation of the current estimation value, limiting the duty based on the diagnosis result, forcibly making the current detectable, and switching to current control based on the detected current.
  • the object of the present invention is that the current detection circuit is a one-shunt current detection method, or the drive control unit is configured by a dq axis vector control method, and the adaptive identification diagnosis unit is A q-axis current calculation unit that calculates a detected q-axis current value and an estimated q-axis current value based on the estimated current value, the detected current value, and the angle; and a non-detectable state that monitors the continuation of the undetectable state A continuity monitoring unit, an estimated current each phase sum monitoring unit that monitors each phase sum based on the current estimated value, a current undetectable state, a detection based on the detected q-axis current value and the estimated q-axis current value A q-axis difference monitoring unit for monitoring an estimated q-axis difference, an estimated q-axis change difference based on the current undetectable state, the estimated q-axis current value, and an estimated q-axis current value immediately before the current undetectable state Q-axis change difference monitoring
  • the above object can be achieved by mounting the motor control device in the electric power steering device.
  • the adaptive identification unit sequentially identifies the parameters of the motor model, estimates the motor current using the parameter identification results of the adaptive identification unit, and performs adaptive identification diagnosis.
  • the configuration is robust against fluctuations in motor parameters such as variations, so that the estimation accuracy can be further improved, and the operating sound performance and torque ripple performance can be improved significantly. Since the one-shunt current detection method is used to detect the motor current, an inexpensive and small-sized configuration is possible.
  • the responsiveness of the adaptive identification unit and the current estimation unit variable based on the motor operation state, for example, in the operation state where the influence of the current detection disturbance appears greatly in a state such as a steered state, current detection is performed.
  • the current detection disturbance for the estimated current used to determine the voltage command value can be suppressed, and the responsiveness can be improved with an easy current control configuration. The sound and torque ripple performance can be improved reliably.
  • the motor current detection method is the one-shunt current detection method
  • the duty is limited to be forcibly detected and switched to the current control with the detected current. Therefore, even when the electric power steering apparatus detects an abnormality, the assist can be continued and the steering can be performed safely.
  • the adaptive current observer includes an adaptive identification unit 130, a current estimation unit 140, a voltage command value determination unit 150, and a PWM control unit 160.
  • the adaptive identification unit 130 includes a current detection value i (t) detected by the current detector 120, a current estimation value i_hat (t) estimated by the current estimation unit 140, a voltage command value Um (t), and a dead time compensation value.
  • Dt (t) is input and each parameter variation of the motor output model is identified based on the adaptive identification rule. Thereby, the influence of the change in the electric characteristic parameter of the motor due to the temperature change, manufacturing variation, aging deterioration, etc. is canceled, and the current estimation accuracy is improved.
  • Examples of adaptive identification rules used in the adaptive identification unit 130 include various identification rules such as integral adaptive identification rules, proportional integral adaptive identification rules, least square adaptive identification rules, and direct identification methods using state variable filters. However, as long as each parameter variation of the output model of the motor 20 can be identified, any of them may be used.
  • the current estimation unit 140 inputs the identification result of each parameter identified by the adaptive identification unit 130, the current estimation value i_hat (t), the current detection value i (t), and the voltage command value Um (t) to the motor 20.
  • the flowing current is estimated, and the current estimated value i_hat (t) is calculated.
  • the voltage command value determination unit 150 receives the current command value Iref (t) and the current estimation value i_hat (t), and calculates the voltage command value Um (t) so that the motor current becomes the current command value Iref (t). is doing.
  • the PWM control unit 160 adds the dead time compensation value Dt (t) to the voltage command value Um (t) calculated by the voltage command value determination unit 150 by the addition unit 161, and outputs the duty command value of PWM control to the inverter 106.
  • the motor 20 is driven by the input.
  • control using the current detection value i (t) is not performed as in normal feedback control, and feedforward control is performed using the calculated current estimation value i_hat (t). It is not easily affected by input disturbances such as As a result, a simple control method can be used, and the control responsiveness can be improved to improve the operating sound performance and the torque ripple performance. Further, as the current detection method, a one-shunt current detection method that is inexpensive and can be miniaturized is used.
  • the motor 20 to be controlled, voltage Vm input, when the current i m to output the electrical characteristic equation of the motor is as Equation 1.
  • the voltage Vm (t) applied between the single-phase coils is duty-converted based on the ECU input voltage detection value Vr (t) from the voltage command value Um (t) output from the control unit, and the dead time of the inverter 106
  • This is a voltage generated by PWM and applied to the motor 20 after adding a dead time compensation value Dt (t) for compensating characteristics.
  • Equation 1 The number 3 is substituted into Equation 1 and solving for the differential value of the current i m, so that the following equation 4.
  • the current estimation unit 140 that estimates the motor current is configured to realize the following Expression 6 with respect to the above Expression 5.
  • the current estimation error e (t) is defined as a difference between the current estimation value and the motor current detection value, and is represented by Equation 7.
  • Equation 8 Since the first term on the right side of Equation 8 is A ⁇ 0, it is an error convergence term, the second term to the fourth term are terms representing the estimation error, and the fifth term is a control input term.
  • the control input u (t) is set as shown in Equation 9.
  • Equation 9 Substituting Equation 9 into Equation 8 yields an estimation error equation such as Equation 10 below.
  • the adaptive identification gains of the second term to the fourth term on the right side representing the estimation error in Equation 10 can be calculated as shown in Equation 11, the second term to the fourth term on the right side are 0, and the first error convergence term. Since only the term remains, the estimation error converges to “0”.
  • Lyapunov stability theory defines a certain positive definite function (solution must be greater than or equal to 0) as the Lyapunov function V.
  • the Lyapunov function converges to “0”. It is a way to guide.
  • a Lyapunov function candidate a positive definite function of the following formula 12 is selected.
  • ⁇ x , ⁇ u , and ⁇ dt are positive definite values (values greater than or equal to zero)
  • the first term is a term representing the convergence of the current estimation error
  • the second to fourth terms are the adaptive identification gains Kx, Ku.
  • Kdt is a term representing the convergence to the true value.
  • Equation 13 Calculating the derivative of Equation 12 and substituting Equation 10 above yields Equation 13 below.
  • the adaptive identification rule shown in Equation 14 is generally called an integral type adaptive identification rule. Since ⁇ x , ⁇ u , and ⁇ dt are positive definite gains and determine identification sensitivities (speeds) of the adaptive identification gains Kx, Ku, and Kdt, they are hereinafter referred to as identification sensitivity gains. When the identification sensitivity gains ⁇ x , ⁇ u , and ⁇ dt are set as shown in Equation 14, the derivative of the Lyapunov function becomes as shown in Equation 15.
  • the configurations of the adaptive identification unit 130 and the current estimation unit 140 may be finally configured according to the following Expression 16.
  • FIG. 8 is a block diagram illustrating an example of a motor control device including the adaptive identification unit 130 and the current estimation unit 140 defined in Equation 16.
  • the adaptive identification rule of the adaptive identification unit 130 is configured to use the integral adaptive identification rule shown in Equation 16, and the adaptive identification gain Kdt (t) for inputting the dead time compensation value Dt (t) and the current estimation error e (t).
  • the current estimation unit 140 multiplies the dead time compensation value Dt (t) and the output of the adaptive identification gain Kdt (t) calculation unit 131, the voltage command value Um (t) and the adaptive identification gain Ku (t ) Multiplying unit 143 that multiplies the output of computing unit 412; Multiplying unit 144 that multiplies the output of motor current detection value i (t) and adaptive identification gain Kx (t) computing unit 133; and Multiplying units 142 to 144
  • An addition unit 145 for adding the multiplication results of, a subtraction unit 147 for subtracting the current estimation value i_hat (t) from the motor current detection value i (t) to calculate a current estimation error e (t), and a current estimation error e
  • the feedback value output from the state feedback unit 148 is added to the addition value of the multiplication results of the multiplication units 142 to 144 calculated by the addition unit 145 and the state feedback unit 148 that inputs (t) and feeds back with the feedback gain Ke.
  • each identification sensitivity gain ⁇ x , ⁇ u , ⁇ dt is values that govern the responsiveness of the adaptive identification unit 130 and can be arbitrarily determined.
  • each adaptive identification gain Kx, Ku, Kdt may be determined to be asymptotically stable (converged) within a desired time.
  • the adaptive identification poles may coincide with each other, which may cause an interference state.
  • the identification sensitivity gains ⁇ x , ⁇ u , and ⁇ dt are set to different values.
  • the relationship between the values is, for example, as the change width of the elements to be identified increases, the corresponding identification sensitivity gains ⁇ x , ⁇ u and ⁇ dt may be set high.
  • each adaptive identification gain Kx, Ku, Kdt indicates the motor parameter fluctuation range in a correlated manner, and the motor parameter fluctuation changes depending on the temperature except for initial fluctuation such as manufacturing fluctuation and aging deterioration.
  • the adaptive identification gains Kx, Ku, Kdt are set to the electric time constant of the motor so that the convergence time of each adaptive identification gain Kx, Ku, Kdt is not affected by the current detection disturbance. It is desirable to set it to be slower (for example, about 1 second).
  • the setting of the state feedback gain Ke will be described. Because the motor output model from applied voltage to current is equivalent to the actual motor characteristics by adaptive identification, the response of the estimated current value i_hat (t) to the applied voltage is very high with respect to the modeled elements. It becomes sex. Since the adaptive identification time is set slower than the electrical time constant, it is desirable to set the state feedback gain Ke that stabilizes the adaptive identification system to a small value.
  • the state feedback gain Ke also has the meaning of setting the natural response frequency of the current estimation unit 140 with respect to the modeling error, if the state feedback gain Ke is set high, the state feedback gain Ke also follows the detected disturbance sensitively. This is not preferable because there is a possibility. Conversely, by reducing the state feedback gain Ke and reducing the natural response frequency, it becomes insensitive to current detection disturbance, and the robustness of the entire control system can be improved.
  • the dead time compensation amount Dt (t) is input to the adaptive identification unit 130 and the current estimation unit 140, the present invention is not limited thereto.
  • the dead time equivalent value including the potential change direction information during the dead time may be used, and if the influence of the dead time is small, the input of the dead time compensation amount Dt (t) and the adaptive identification element related to the dead time are It is not necessary.
  • the state feedback unit 148 is provided in consideration of the modeling error of the current estimation unit 140.
  • the state feedback unit 148 is not limited thereto, and the state feedback unit 148 may be omitted when the influence of the modeling error is small. .
  • the parameter variation amount related to the resistance value is the largest, and the inductance component variation and the ECU input voltage variation are small. For this reason, it is also possible to configure the adaptive identification unit 130 only with the parameter variation relating to resistance, that is, the adaptive identification gain Kx (t).
  • the configuration of the motor control device is illustrated in FIG. 9, and the configuration of the adaptive identification unit 130A and the current estimation unit 140A Is given by Equation 17.
  • an identification rule for directly identifying the parameters of the motor 20 itself for example, a direct identification method using a state variable filter
  • the coefficients A and B of the current estimation unit 140 are directly set. Since it can be rewritten, the estimated current value i_hat (t) can be estimated only from the parameter identification result and the voltage command value Um (t).
  • Patent Document 4 assume that a failure is determined from an estimated current.
  • the present invention comprises four monitoring functions described below and an evaluation function for comprehensively evaluating these monitoring results, and makes a diagnosis.
  • the duty is forcibly set to a state where the current can be detected. That is, the current control with the estimated current is switched to the current control with the detected current.
  • FIG. 10 shows a configuration example of the present invention corresponding to FIG. 7, and further includes an adaptive identification diagnosis unit 170, a current detection impossible state detection unit 180, and a switching unit 151.
  • the current detection impossible state detection unit 180 detects a current detection impossible state (or a current detection possible state) based on the duty command value of the PWM control unit 160, and cannot detect a current when a current detection impossible state is detected.
  • the state flag DNF is turned on and input to the adaptive identification diagnosis unit 170.
  • the adaptive identification diagnosis unit 170 makes a diagnosis based on the current estimation value i_hat (t), the current detection value i (t), the angle ⁇ , and the current non-detectable state flag DNF from the current estimation unit 140 for duty control.
  • the observer diagnosis abnormality flag OAF and the assist stop driving stop flag DSF are output ON / OFF.
  • the observer diagnosis abnormality flag OAF for Duty control is output, the current estimation value i_hat (t) is abnormal, so that the switching unit 151 causes the current detection value i (hat) to be detected from the current estimation value i_hat (t). ) And input to the voltage command value determination unit 150.
  • the details of the adaptive identification diagnosis unit 170 are as shown in FIG. 11, and the detected q-axis current value and the estimated q-axis current value are calculated based on each phase current estimated value i_hat, each phase current detected value i and the angle ⁇ .
  • An evaluation unit 177 and a holding unit 176 that holds the state of the observer diagnosis abnormality flag OAF before one sampling are provided.
  • a monitoring function that monitors the continuation of the current non-detectable state (always monitoring), a monitoring function that monitors the three-phase sum of the current estimation values (always monitoring), the q-axis current detection value and the q-axis current Comprehensive evaluation of the monitoring function for monitoring the difference in the estimated value (monitoring only when current detection is possible), the monitoring function for monitoring the difference in the q-axis current estimation value (monitoring only when current detection is impossible), and the above functions Has an evaluation function.
  • the duty is forcibly set to a current detectable state by switching the current control with the estimated current by the adaptive current observer to the current control with the detected current. ing.
  • the timing when the current detection becomes impossible is the case where the use area of the intermediate phase duty is low duty or high duty as shown in FIG. 12 in the three-phase duty output, and usually does not continue for several milliseconds.
  • the current detection impossible state detection unit 180 detects the current detection impossible state by each phase Duty from the PWM control unit 160, and sets the current detection impossible state flag DNF when the current detection impossible state occurs. Outputs ON.
  • the current non-detectable state continuation monitoring unit 172 determines that an abnormality has occurred when the duration of the current non-detectable state, that is, the time during which the current non-detectable state flag DNF is ON is equal to or longer than the predetermined time T1.
  • the undetectable continuation flag DNC is turned ON.
  • the estimated current three-phase sum monitoring unit 173 monitors whether the calculation of the adaptive current observer is normally performed from the relationship between the sum of the respective phase current estimated values and the error threshold. That is, when the absolute value of the three-phase sum of the three-phase current estimated value is equal to or larger than the error threshold EA1, the error counter # 1 is “+1”, and the absolute value of the three-phase sum of the three-phase current estimated value is larger than the error threshold EA1.
  • the error counter # 1 is set to “ ⁇ 1”, and then it is determined whether or not the count value of the error counter # 1 is equal to or larger than the abnormality threshold value. In order to limit the duty, the estimated current three-phase sum monitoring flag EAF is turned ON. Further, when the count value of the error counter # 1 is smaller than the abnormality threshold, the abnormality threshold estimated current three-phase sum monitoring flag EAF is turned off.
  • the q-axis current is used because the q-axis current contributes to the torque, so that unstable driving is prevented by comparing the detected q-axis current (equivalent to the detected torque) and the estimated q-axis current (equivalent to the estimated torque). It is to do.
  • the q-axis current is obtained by converting a three-phase current detection value (detection_i u , detection_i v , detection_i w ) into a three-phase / two-phase converter 175A.
  • the three-phase current estimated values (estimated_i u , estimated_i v , estimated_i w ) are converted into the three-phase / 2-phase by the three-phase / two-phase converter 175B. It is obtained by converting and calculating an estimated q-axis current value estimation_Iq.
  • the adaptive current observer is functioning, and the actual current is estimated.
  • the q-axis difference monitoring unit 174 is adapted when the absolute value of the difference between the detected q-axis current value (current output torque) and the estimated q-axis current value (torque calculated from the estimated current value) is equal to or greater than the error threshold EB1.
  • the q-axis difference monitoring unit 174 sets the error counter # 2 when the absolute value of the difference between the detected q-axis current value and the estimated q-axis current value is equal to or larger than the error threshold EB1 when the current detection impossible state flag DNF is OFF. “+1”, and when the absolute value of the difference between the detected q-axis current value and the estimated q-axis current value is smaller than the error threshold value EB1, “ ⁇ 1” is set to error counter # 2, and the count value of error counter # 2 is abnormal. Abnormality detection is confirmed when the threshold value is EB2 or more, and the detection-estimated q-axis difference monitoring flag DEF is turned ON to limit the duty.
  • the detection-estimated q-axis difference monitoring flag DEF is turned off.
  • the error counter # 2 holds the past value.
  • the current detection value cannot be acquired, so the adaptive current observer learning function and state feedback are stopped.
  • the current estimated value is calculated using an adaptive gain learned in the past. Therefore, when the current cannot be detected, the accuracy of the current estimation value is increased because (1) the state learned in the past and the current state are significantly different, the adaptive gain is not optimal, and (2) there is no state feedback amount. Getting worse.
  • the change difference monitoring of the q-axis current estimated value is performed by the q-axis difference monitoring unit 174.
  • the absolute difference between the estimated q-axis current value immediately before the current cannot be detected and the estimated q-axis current value when the current cannot be detected is absolute.
  • the error threshold EC1 it is determined that the adaptive current observer is not normally calculated.
  • this monitoring function is a diagnostic process for a case where the estimated current value becomes unreliable only when it cannot be detected.
  • the non-detectable duration is short, and the amount of change in the estimated q-axis current value that changes in that short time is small.
  • the estimated q-axis current immediately before the current detection becomes impossible can be latched, and the sign inversion and the amount of change can be monitored by comparing the absolute value of the difference from the current estimated q-axis current.
  • a method for returning the estimated q-axis change difference monitoring flag ECF will be described.
  • the return of the estimated q-axis change difference monitoring flag ECF requires a duty restriction flag, unlike the return of the monitoring flags (DNC, EAF, DEF) in the above three functions.
  • the reason is the following (1) to (4).
  • Error counter # 3 updates the value when current cannot be detected, and holds the past value when current can be detected.
  • the error counter # 3 becomes equal to or greater than the abnormality threshold EC2 and the estimated q-axis change difference monitoring flag ECF is turned on, the duty is limited.
  • Due to the Duty limitation the current detection is enabled, and the error counter # 3 continues to hold a value equal to or greater than the abnormal threshold EC2.
  • the estimated q-axis change difference monitoring flag ECF does not return. Therefore, when the estimated q-axis change difference monitoring flag ECF is ON using the duty limit flag (value before one sampling), the error counter # 3 is reset to 0 and the estimated q-axis change difference monitoring ECF is turned OFF ( Return). The estimated q-axis current value immediately before the current cannot be detected is latched. When the current detection impossible state flag is ON, if the absolute value of the difference between the latched value and the estimated q-axis current value is equal to or greater than the error threshold EC1, the error counter # 3 is incremented by "+1".
  • the error counter # 3 When the current detection impossible state flag is ON, if the absolute value of the difference between the latched value and the estimated q-axis current value is smaller than the error threshold EC1, the error counter # 3 is set to “ ⁇ 1”. When the current detection impossible state flag is OFF, error counter # 3 holds the past value. When the count value of the error counter # 3 is equal to or greater than the abnormality threshold EC2, the abnormality detection is confirmed, and the estimated q-axis change difference monitoring flag is turned on to limit the duty. When the count value of the error counter # 3 is smaller than the abnormality threshold EC2, the estimated q-axis change difference monitoring flag is turned OFF. When the duty limit flag (value before one sampling) is ON, error counter # 3 is reset to zero.
  • the comprehensive evaluation unit 177 comprehensively evaluates the result of the monitoring function, and confirms or restores the abnormality detection.
  • the duty limit observer diagnosis abnormality flag OAF is turned ON to limit the duty.
  • the observer diagnosis abnormality flag OAF for duty limitation is turned OFF.
  • FIG. 16 shows an example of the overall operation of the present invention.
  • the current command value is calculated (step S1)
  • the voltage command value is calculated (step S2)
  • the PWM duty is calculated (step S3).
  • the motor is driven (step S4).
  • the motor current ⁇ is input from the current detection circuit 120 and the motor angle ⁇ and the angular velocity ⁇ are input from the rotation detection means (step S5).
  • the current identification value is estimated by the adaptive identification unit 130 and the current estimation unit 140 described above. Is calculated (step S6).
  • step S10 the continuation of the current undetectable state is monitored (step S10), the estimated current three-phase sum is monitored (step S20), the q-axis difference is further monitored (step S30), and the estimated q-axis change difference is monitored. (Step S50).
  • the comprehensive evaluation unit 177 determines whether or not at least one of the undetectable continuation flag DNC, the detection-estimated q-axis difference monitoring flag DEF, and the estimated q-axis change difference monitoring flag ECF is ON (step S70). ). If there is at least one ON flag, the comprehensive evaluation unit 177 turns on an observer diagnosis abnormality flag OAF for duty limitation (step S71), the duty is limited by the PWM control unit 160 (step S72), and the process ends. .
  • step S70 If it is determined in step S70 that the undetectable continuation flag DNC, the detection-estimated q-axis difference monitoring flag DEF, and the estimated q-axis change difference monitoring flag ECF are all OFF, the comprehensive evaluation unit 177
  • the elapsed time is measured and it is determined whether or not the elapsed time is equal to or longer than the predetermined time T3 (step S73). If the elapsed time is equal to or longer than the predetermined time T3, the observer diagnosis abnormality flag OAF is turned off (step S73). S74), the duty restriction is canceled and the process ends (step S75). On the other hand, when the elapsed time does not exceed the predetermined time T3 in step S73, the process proceeds to step S71.
  • step S10 the continuity monitoring of the current undetectable state (step S10) is as shown in FIG. 17, and the current undetectable state continuation monitoring unit 172 determines whether the current detection is impossible (step S11).
  • the duration is incremented by “+1” (step S12), and when it is determined that current detection is possible, the duration is reset (step S13).
  • step S14 it is determined whether or not the continuation time is equal to or longer than the predetermined time T1 (step S14).
  • the non-detectable continuation flag DNC is turned on (step S15). Is less than the predetermined time T1, the undetectable continuation flag DNC is turned OFF (step S16).
  • the current detection impossible state continuation monitoring unit 172 further determines whether or not the continuation time is equal to or longer than the predetermined time T2 (> T1) (step S17). Then, the drive stop flag DSF is turned on to stop the assist (step S18). If the duration is shorter than the predetermined time T2, the process proceeds to the next monitoring.
  • the detailed operation of the estimated current three-phase sum monitoring is as shown in FIG. 18, and the estimated current three-phase sum monitoring unit 173 calculates the absolute value of the sum of the respective phase current estimated values (step S21). It is determined whether or not the error threshold is EA1 or more (step S22). The estimated current three-phase sum monitoring unit 173 increments the error counter # 1 by “+1” when the absolute value of the three-phase sum of the three-phase current estimated value is equal to or larger than the error threshold EA1 (step S23).
  • the error counter # 1 is set to "-1" (step S26), and it is determined whether or not the error counter # 1 is equal to or greater than the abnormal threshold value EA2 (Ste S24). If the error counter # 1 is equal to or greater than the abnormality threshold EA2, the abnormality detection is confirmed, the estimated current three-phase sum monitoring flag EAF is turned on to limit the duty (step S25), and the error counter # 1 is detected as the abnormality threshold EA2. If it is smaller than that, it is not abnormal, and the estimated current three-phase sum monitoring flag EAF is turned OFF and the process proceeds to the next monitoring (step S27).
  • step S31 the detected q-axis current value
  • step S31 the estimated q-axis current value
  • step S32 the absolute value of the difference between the detected q-axis current value and the estimated q-axis current value is calculated (step S33), and it is determined whether or not the absolute value is greater than or equal to the error threshold EB1 (step S34). If the absolute value is greater than or equal to the error threshold EB1, the error counter # 2 is incremented by "+1" (step S35). If the absolute value is smaller than the error threshold EB1, the error counter # 2 is incremented by "-1" (step S36). Thereafter, it is determined whether or not the current detection impossible flag DNF is ON (step S40).
  • the error counter # 2 of one sample before is substituted for the error counter # 2 ′ (step S41), and the current detection impossible state flag DNF is OFF
  • the error counter # 2 is substituted for the error counter # 2 ′ (step S42), and it is determined whether or not the error counter # 2 ′ is equal to or greater than the abnormal threshold EB2 (step S43). If the error counter # 2 ′ is equal to or greater than the abnormal threshold EB2, the detection-estimated q-axis difference monitoring flag DEF is turned ON (step S44), and if the error counter # 2 ′ is smaller than the abnormal threshold EB2, the detection is performed. -The estimated q-axis difference monitoring flag DEF is turned OFF (step S45).
  • the estimated q-axis change difference monitoring unit 175 inputs the estimated q-axis current value (A) (step S51) and determines whether or not the current detection impossible state flag DNF is ON (step S52).
  • step S52 determines whether or not the current detection impossible state flag DNF is ON
  • step S54 absolute values of the stored estimated q-axis current value (B) and estimated q-axis current value (A) are calculated (step S54), and current detection is impossible.
  • the state flag DNF is OFF, the estimated q-axis current value is stored (step S53), and the absolute value of the difference between the stored value (B) and the estimated q-axis current value (A) is calculated. (Step S54).
  • step S55 it is determined whether or not the absolute value of the difference is greater than or equal to the error threshold EC1 (step S55). If the absolute value is greater than or equal to the error threshold EC1, the error counter # 3 is incremented by "+1" (step S56). If the absolute value is smaller than the error threshold EC1, the error counter # 3 is set to “ ⁇ 1” (step S57), and then it is determined whether or not the current undetectable state flag DNF is OFF (step S60). .
  • step S61 When the current detection impossible state flag DNF is OFF, the error counter # 3 of the previous sample is substituted into the error counter # 3 ′ (step S61), and the current detection impossible state flag DNF is ON The error counter # 3 is substituted for the error counter # 3 ′ (step S62).
  • step S63 it is determined whether or not the observer diagnosis abnormality flag OAF is OFF (step S63). If the observer diagnosis abnormality flag OAF is OFF, it is determined whether or not the error counter # 3 ′ is equal to or more than the abnormality threshold EC2. Determination is made (step S65).
  • the error counter # 3 ′ is reset (step S64), and then it is determined whether or not the error counter # 3 ′ is equal to or greater than the abnormality threshold EC2 (step S65). ).
  • the estimated q-axis change difference monitoring flag ECF is turned on (step S66), and when the error counter # 3 ′ is smaller than the abnormal threshold EC2, the estimated q The axis change difference monitoring flag ECF is turned off (step S67).
  • the monitoring order is the monitoring of the continuation of the current undetectable state, the monitoring of the estimated current three-phase sum, the monitoring of the q-axis difference, and the monitoring of the estimated q-axis change difference, but the order can be changed as appropriate. is there.
  • the method of the present invention may use the estimated current during steady-state control and limit the duty when the estimated current diagnosis is abnormal, and control with the detected current.
  • control is performed by switching to the estimated current
  • detection current control may be performed by limiting the duty when the estimated current diagnosis is abnormal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Electric Motors In General (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 モータの電流を電流検出値として検出する電流検出回路と、少なくとも電流指令値に基づいて決定された電圧指令値に基づくDuty で前記モータを駆動制御する駆動制御部と、モータの角度及び角速度を検出する回転検出手段とを備えたモータ制御装置であり、モータの出力モデルの各パラメータ変動を同定し、モータの電流推定値を演算して電圧指令値の演算に使用する適応電流オブザーバと、適応電流オブザーバからの電流推定値の誤推定を診断する適応同定診断部と、電流検出値の検出が不可能な電流検出不可能状態を検出する電流検出不可能状態検出部とを備え、適応同定診断部は前記電流推定値、電流検出値、角度及び電流検出不可能状態に基づいて電流推定値の誤推定を診断し、診断結果に基づいてDuty を制御するモータ制御装置を搭載した電動パワーステアリング装置。

Description

モータ制御装置及びそれを搭載した電動パワーステアリング装置
 本発明は、モータの電流を推定する適応電流オブザーバを備えると共に、適応電流オブザーバの誤推定を診断(監視)し、異常を検出した場合には、Dutyを制限して強制的に電流検出可能状態にして、検出電流での電流制御に切替えるようにしたモータ制御装置及びそれを搭載した電動パワーステアリング装置に関するものである。
 車両の操舵系をモータの回転力でアシスト制御する電動パワーステアリング装置は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に補助力を付勢するようになっている。そして、当該モータが所望のトルクを発生するようにモータに電流を供給するため、モータ駆動回路にインバータが用いられている。
 ここで、従来の電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)100には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット100は、トルクセンサ10で検出された操舵トルクTrと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流制御部で電流指令値に補償等を施した電圧指令値Eによってモータ20に供給する電流Iを制御する。なお、車速VsはCAN(Controller Area Network)等から受信することも可能である。
 コントロールユニット100は主としてCPU(MPU、MCUも含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと図2のようになる。
 図2を参照してコントロールユニット100の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTr及び車速センサ12で検出された車速Vsは、電流指令値Iref1を演算する電流指令値演算部101に入力される。電流指令値演算部101は、入力された操舵トルクTr及び車速Vsに基づいてアシストマップ等を用いて、例えば3相のモータ20に供給する電流の制御目標値である電流指令値Iref1を決定する。電流指令値Iref1は加算部102Aを経て電流指令値Iref2として電流制限部103に入力され、最大電流を制限された電流指令値Iref3が減算部102Bに入力され、フィードバックされているモータ電流値iとの偏差Iref4(=Iref3-i)が演算され、その偏差Iref4がPI制御等を行う電流制御部104に入力される。電流制御部104で特性改善された電圧指令値EがPWM制御部105に入力され、更に駆動部としてのインバータ106を介してモータ20がPWM駆動される。モータ20の電流値iはインバータ106内の電流検出回路120で検出され、減算部102Bにフィードバックされる。インバータ106はスイッチング素子として一般的にFETが用いられ、FETのブリッジ回路で構成されている。
 また、加算部102Aには補償部110から補償信号CMが加算されており、補償信号CMの加算によってシステム系の補償を行い、収れん性や慣性特性等を改善するようようになっている。補償部110は、セルフアライニングトルク(SAT)113と慣性112を加算部114で加算し、その加算結果に更に収れん性111を加算部115で加算し、加算部115の加算結果を補償信号CMとしている。
 モータ20をd-q軸でベクトル制御する場合には、回転センサとしてレゾルバ21が連結されると共に、回転角度θから角速度ωを演算する角速度演算部22が設けられている。そして、モータ20が3相(U,V,W)ブラシレスDCモータの場合、PWM制御部105及びインバータ106の詳細は例えば図3に示すような構成となっている。PWM制御部105は、電圧指令値Eを所定式に従って3相分のPWM-Duty指令値D1~D6を演算するデューティ演算部105Aと、PWM-Duty指令値D1~D6でFET1~FET6の各ゲートを駆動してON/OFFするゲート駆動部105Bとで構成されており、インバータ106は、U相の上段FET1及び下段FET4で成る上下アームと、V相の上段FET2及び下段FET5で成る上下アームと、W相の上段FET3及び下段FET6で成る上下アームとで成る3相ブリッジで構成されており、PWM-Duty指令値D1~D6でON/OFFされることによってモータ20を駆動する。
 なお、インバータ106には、バッテリ13から電源リレー14を経て電力が供給され、PWM制御部105のDuty指令値D1~D6には、インバータ106のFET1~FET6の各デッドタイムを補償するためのデッドタイム補償値が加算入力されている。
 このような構成において、インバータ106の駆動電流ないしはモータ20のモータ電流を計測する必要があるが、コントロールユニット100のコンパクト化、軽量化、コストダウンの要求項目の1つとして、電流検出回路120の単一化(1シャント式電流検出回路)がある。電流検出回路の単一化として1シャント式電流検出回路が知られており、1シャント式の電流検出回路120の構成は例えば図4に示すようになっている(特開2009-131064号公報)。即ち、FETブリッジの底部アームと接地(GND)との間に1つのシャント抵抗R1が接続されており、FETブリッジに電流が流れたときのシャント抵抗R1による降下電圧を演算増幅器(差動増幅回路)121及び抵抗R2~R4で電流値Imaに換算し、更に抵抗R6及びコンデンサC1で成るフィルタを経てA/D変換部122で所定のタイミングにA/D変換し、ディジタル値の電流値iを出力するようになっている。なお、演算増幅器121の正端子入力には、抵抗R5を経て基準電圧となる2.5Vが接続されている。
 図5はバッテリ13、インバータ106、電流検出回路120及びモータ20の結線図を示すと共に、U相の上段FET1がON(下段FET4はOFF)、V相の上段FET2がOFF(下段FET5はON)、W相の上段FET3がOFF(下段FET6はON)の状態時の電流経路(破線)を示している。また、図6は、U相の上段FET1がON(下段FET4はOFF)、V相の上段FET2がON(下段FET5はOFF)、W相の上段FET3がOFF(下段FET6はON)の状態時の電流経路(破線)を示している。これら図5及び図6の電流経路から分かるように、上段FETがONしている相の合計値が電流検出回路器120に検出電流として現れる。即ち、図5ではU相電流を検出することができ、図6ではU相及びV相電流を検出することができる。これは、電流検出回路120がインバータ106の上段アームと電源との間に接続されている場合も同様である。なお、図5及び図6では、レゾルバ21の連結及び電源リレー14を省略している。
 上述のようなモータ制御方式では、モータ電流検出値の検出外乱の影響を出力しないようにするため、制御応答性を余り高めることができず、モータ20及びコントロールユニット100のパラメータ変動、モータ入力電圧の外乱等の抑制に制限がかかる。そのため、モータ電流検出値の検出外乱等の影響を抑制しながら、高応答性を持つロバスト性の高い制御方法を得るために、一般的に電流制御に用いる電流検出値を推定電流とすることにより、電流検出ノイズの影響をある程度緩和させ、その分電流制御の応答性を向上させて作動音性能やトルクリップル性能を改善する手法が考えられている。
 特許文献1には、ベクトル制御のd-q軸電圧指令値を入力とし、d-q軸電流オブザーバにてd-q軸推定電流を演算し、フィードバック制御する方法及び装置が開示されている。この方法及び装置では、電流オブザーバモデルの各パラメータを各要素の温度検出値に依存させて変化させることで、ロバスト性を高めることが提案されている。また、特許文献2には、電圧指令値とモータ電流検出値、外乱オブザーバにより推定したモータの入力推定外乱より、数サンプル後のモータ電流値を推定し、このモータ電流推定値を制御に用い、電流オブザーバは状態フィードバックによりモデルパラメータ変動に対応するようにしているモータ制御装置が提案されている。
特表2009-526511号公報 特許第4045747号公報 特開2009-131069号公報 特開2009-124782号公報
 しかし、モータの各パラメータ変動は温度変化だけではなく、製造バラツキ、経年劣化、電流回生等による電流経路変化によるものも含まれ、特許文献1に開示された温度のみの補正を行う制御方法では、推定精度を保つのには十分ではないという問題がある。また、特許文献2に開示された装置では、外乱オブザーバで推定される外乱には実際のモータ電流となっていない電流検出外乱が含まれ、推定電流は電流検出外乱が含まれた値に追従するため、電流検出外乱に対して制御系全体をロバストするものとはなっていない問題がある。上記問題に対して、特許文献2の構成を用いて、状態フィードバックゲインを小さくし、オブザーバの自然応答周波数を下げることで、電流検出外乱が推定値として算出されないようにすることも考えられるが、推定対象モデルのパラメータ変動に対する応答性も同時に下がってしまうため、推定電流誤差が拡大するという問題点も考えられる。
 本発明は上述のような事情からなされたものであり、本発明の目的は、安価で小型の1シャント式電流検出回路を用いながら、温度変化、製造バラツキ等のモータパラメータ変動に対しても、外乱に対しても制御系全体がロバストとすることができると共に、誤推定を診断し、異常を検出した場合には、Dutyを制限して強制的に電流検出可能状態にして、検出電流での電流制御に切替えることができるモータ制御装置及びこのモータ制御装置を搭載した電動パワーステアリング装置を提供することにある。
 本発明は、モータの電流を電流検出値として検出する電流検出回路と、少なくとも電流指令値に基づいて決定された電圧指令値に基づくDutyで前記モータを駆動制御する駆動制御部と、前記モータの角度及び角速度を検出する回転検出手段とを備えたモータ制御装置に関し、本発明の上記目的は、前記モータの出力モデルの各パラメータ変動を同定し、前記モータの電流推定値を演算して前記電圧指令値の演算に使用する適応電流オブザーバと、前記適応電流オブザーバからの電流推定値の誤推定を診断する適応同定診断部と、前記電流検出値の検出が不可能な電流検出不可能状態を検出する電流検出不可能状態検出部とを備え、前記適応同定診断部は前記電流推定値、前記電流検出値、前記角度及び前記電流検出不可能状態に基づいて前記電流推定値の誤推定を診断し、診断結果に基づいて前記Dutyを制限して強制的に電流検出可能な状態にして、検出電流による電流制御に切替えることにより達成される。
 また、本発明の上記目的は、前記電流検出回路が1シャント電流検出方式であることにより、或いは前記駆動制御部がd-q軸のベクトル制御方式で構成され、前記適応同定診断部が、前記電流推定値、前記電流検出値及び前記角度に基づいて検出q軸電流値及び推定q軸電流値を演算するq軸電流演算部と、電流検出不可能状態の継続を監視する電流検出不可能状態継続監視部と、前記電流推定値に基づいて各相和を監視する推定電流各相和監視部と、前記電流検出不可能状態、前記検出q軸電流値及び推定q軸電流値に基づいて検出-推定q軸差分を監視するq軸差分監視部と、前記電流検出不可能状態、前記推定q軸電流値及び前記電流検出不可能状態直前の推定q軸電流値に基づいて推定q軸変化差分を監視する推定q軸変化差分監視部と、前記電流検出不可能状態継続監視部、前記推定電流各相和監視部、前記q軸差分監視部及び前記推定q軸変化差分監視部の監視結果を総合的に評価する総合評価部とで構成されていることにより、或いは前記総合評価部が、前記Duty制限用のオブザーバ診断異常フラグ又はアシスト停止用の駆動停止フラグを出力するようになっていることにより、或いは前記適応電流オブザーバが、前記モータの出力モデルの各パラメータ変動を同定する適応同定手段と、前記モータの電流を推定する電流推定手段と、前記電圧指令値を決定する電圧指令値決定手段とで構成されていることにより、より効果的に達成される。
 さらに、電動パワーステアリング装置が上記モータ制御装置を搭載することによっても、上記目的は達成される。
 本発明は、適応同定部によりモータモデルのパラメータを逐次同定し、適応同定部のパラメータ同定結果を用いてモータ電流を推定すると共に、適応同定の診断を行うようにしているので、温度変化、製造バラツキ等のモータパラメータ変動に対してロバストな構成となり、一層推定精度を向上させ、効果的に作動音性能、トルクリップル性能を顕著に改善することができる。モータ電流の検出に1シャント電流検出方式を用いているので、安価で小型な構成が可能である。
 また、モータの動作状態に基づいて、適応同定部及び電流推定部の応答性を可変とすることで、例えば保舵状態等の状態で、電流検出外乱の影響が大きく現れる動作状態では、電流検出外乱の影響が推定値として出力されない程度の応答性に変化させることにより、電圧指令値の決定に用いられる推定電流に対する電流検出外乱を抑制でき、安易な電流制御構成で応答性を上げることができ、作動音やトルクリップル性能を確実に改善することができる。
 また、一般的に、モータ電流の検出方式が1シャント電流検出方式である場合、Dutyに応じて相電流が検出できない状態がある。しかし、本発明によれば、推定電流の誤推定を診断し、異常を検出した場合には、Dutyを制限して強制的に電流検出可能状態にして、検出電流での電流制御に切替えるようにしているので、電動パワーステアリング装置が異常を検出した場合でもアシストを継続し、安全に操舵することができる。
一般的な電動パワーステアリング装置の構成例を示す図である。 コントロールユニットの一例を示すブロック構成図である。 PWM制御部及びインバータの構成例を示す結線図である。 1シャント式電流検出器の構成例を示す結線図である。 1シャント式電流検出器を備えたインバータの動作例を示す電流経路図である。 1シャント式電流検出器を備えたインバータの動作例を示す電流経路図である。 本発明の前提となる適応電流オブザーバの一例を示すブロック構成図である。 適応電流オブザーバをモータ制御装置に適用した一例を示すブロック図である。 本発明の前提となる適応電流オブザーバの他の例を示すブロック構成図である。 本発明の実施形態に係るモータ制御装置の一例を示すブロック構成図である。 本発明に係る適応同定診断部の構成例を示すブロック図である。 本発明の機能を説明するための図である。 本発明の機能を説明するための図である。 本発明の機能を説明するための図である。 本発明の機能を説明するための図である。 本発明の全体の動作例を示すフローチャートである。 電流検出不可能状態の継続の監視の動作例を示すフローチャートである。 推定電流3相和監視の動作例を示すフローチャートである。 q軸差分監視の動作例を示すフローチャートである。 推定q軸変化差分監視の動作例を示すフローチャートである。
 先ず本発明の前提となる適応電流オブザーバについて説明する。
 図2に対応させて示す図7の例では、適応電流オブザーバは適応同定部130、電流推定部140、電圧指令値決定部150、PWM制御部160を備えている。
 適応同定部130は、電流検出器120により検出された電流検出値i(t)、電流推定部140により推定された電流推定値i_hat(t)、電圧指令値Um(t)及びデッドタイム補償値Dt(t)を入力し、適応同定則に基づいてモータ出力モデルの各パラメータ変動を同定している。これにより、温度変化、製造バラツキ、経年劣化等によるモータの電気特性パラメータ変化の影響をキャンセルし、電流推定精度を向上させている。なお、適応同定部130に用いられる適応同定則としては、例えば積分型適応同定則、比例積分型適応同定則、最小二乗適応同定則、状態変数フィルタを用いた直接同定法等、様々な同定則があるが、モータ20の出力モデルの各パラメータ変動を同定できれば、いずれを用いても良い。
 電流推定部140は、適応同定部130により同定された各パラメータの同定結果、電流推定値i_hat(t)、電流検出値i(t)及び電圧指令値Um(t)を入力してモータ20に流れている電流を推定し、電流推定値i_hat(t)を算出している。
 電圧指令値決定部150は、電流指令値Iref(t)及び電流推定値i_hat(t)を入力し、モータ電流を電流指令値Iref(t)となるように電圧指令値Um(t)を算出している。
 PWM制御部160は、電圧指令値決定部150で算出された電圧指令値Um(t)にデッドタイム補償値Dt(t)を加算部161で加算し、PWM制御のDuty指令値をインバータ106へ入力してモータ20を駆動している。
 このような構成において、通常のフィードバック制御のように電流検出値i(t)を用いる制御を行わず、演算された電流推定値i_hat(t)を用いてフィードフォワード制御を行うため、電流検出ノイズ等の入力外乱の影響を受けにくい。これにより、簡易な制御方式を利用でき、かつ制御応答性を高めて作動音性能及びトルクリップル性能を向上させることができる。また、電流検出方式として、安価で小型化が可能な1シャント電流検出方式を用いている。
 以下、一例として適応同定部130が積分型適応同定則を用い、かつ電流推定部140が状態フィードバック部を持っているモータ制御装置の具体的な構成を説明する。
 制御対象であるモータ20に対して、入力を電圧Vm、出力を電流iとすると、モータの電気特性方程式は数1のようになる。
Figure JPOXMLDOC01-appb-M000001
 ここで、単相コイル間印加電圧Vm(t)は、制御部から出力された電圧指令値Um(t)がECU入力電圧検出値Vr(t)に基づいてDuty変換され、インバータ106のデッドタイム特性を補償するデッドタイム補償値Dt(t)を加算された後、PWMにより生成されてモータ20に印加される電圧である。ECU入力電圧の検出誤差をΔvVr(t)とし、デッドタイム補償誤差を、デッドタイムの大きさが補償値と実値で異なるとしてΔdDt(t)と すると、下記数2が成立する。
Figure JPOXMLDOC01-appb-M000002
 上記数2を用いて、Dutyを消去すると、下記数3が得られる。
Figure JPOXMLDOC01-appb-M000003
 上記数3を上記数1に代入し、電流iの微分値について解くと、下記数4のようになる。
Figure JPOXMLDOC01-appb-M000004
 ここで、状態x(t)=i(t)とし、出力y(t)=x(t)とすると、下記数5で示されるモータ連続時間状態方程式を導くことができる。
Figure JPOXMLDOC01-appb-M000005
 上記数5に対し、モータ電流を推定する電流推定部140を、下記数6を実現するように構成することが考えられる。
Figure JPOXMLDOC01-appb-M000006
 電流推定誤差e(t)は、電流推定値とモータ電流検出値との差分であると定義されており、数7で示すようになっている。
Figure JPOXMLDOC01-appb-M000007
 そして、数7を積分式に変換すると、即ち、上記数5及び数6を数7に代入すると、下記数8が得られる。
Figure JPOXMLDOC01-appb-M000008
 数8の右辺第一項はA<0であることから、誤差収束項であり、第二項~第四項は推定誤差を表す項であり、第五項は制御入力項である。数8に応じて、制御入力u(t)を、数9のように設定する。
Figure JPOXMLDOC01-appb-M000009
 上記数9を上記数8に代入すると、下記数10のような推定誤差方程式を得る。
Figure JPOXMLDOC01-appb-M000010
 上記数10で推定誤差を表す右辺第二項~第四項の各適応同定ゲインを、数11のように算出できれば、右辺第二項~第四項は0となり、誤差収束項である第一項のみ残るため、推定誤差は“0”に収束する。
Figure JPOXMLDOC01-appb-M000011
 ここで、各適応同定ゲインKx、Ku、Kdtの同定算出はリアプノフ安定論を利用して導く。リアプノフ安定論は、ある正定関数(解が必ず0以上)をリアプノフ関数Vとして定め、その微分dV/dtが零以下となるとき、リアプノフ関数は“0”に収束することを利用して解を導く方法である。リアプノフ関数の候補として、下記数12の正定関数を選ぶ。
Figure JPOXMLDOC01-appb-M000012
 Γ、Γ、Γdtは正定値(零以上の値)であり、第一項は電流推定誤差の収束を表す項であり、第二項~第四項は各適応同定ゲインKx、Ku、Kdtの真値への収束を表す項である。
 数12の微分を算出して、上記数10を代入すると、下記数13を得る。
Figure JPOXMLDOC01-appb-M000013
 数13に基づいて、状態フィードバックゲインKe及び各適応同定ゲインKx、Ku、Kdtの算出(即ち、適応同定部130及び電流推定部140の構成)を数14のようにする。
Figure JPOXMLDOC01-appb-M000014
 数14のような適応同定則を一般に積分型適応同定則と称する。Γ、Γ、Γdtは正定値ゲインであり、各適応同定ゲインKx、Ku、Kdtの同定感度(速度)を決定するので、以下、同定感度ゲインと称する。各同定感度ゲインΓ、Γ、Γdtを数14のように設定すると、リアプノフ関数の微分は数15のようになる。
Figure JPOXMLDOC01-appb-M000015
 ここで、A<0、B>0、Ke<0であるため、dV/dt
<0となり、リアプノフ関数Vは零に収束する。すなわち、電流推定誤差e(t)は零収束し、各適応同定ゲインKx、Ku、Kdtは真値に収束する。
 以上述べたことから、適応同定部130及び電流推定部140の構成は最終的に下記数16に従って構成すれば良い。
Figure JPOXMLDOC01-appb-M000016
 図8は、数16に定義された適応同定部130及び電流推定部140を備えたモータ制御装置の一例を示すブロック図である。適応同定部130の適応同定則は数16に示す積分適応同定則を用いる構成となっており、デッドタイム補償値Dt(t)及び電流推定誤差e(t)を入力する適応同定ゲインKdt(t)演算部131と、電圧指令値Um(t)及び電流推定誤差e(t)を入力する適応同定ゲインKu(t)演算部132と、モータ電流検出値i(t)及び電流推定誤差e(t)を入力する適応同定ゲインKx(t)演算部133と、電流推定値i_hat(t)とモータ電流検出値i(t)とを減算して電流推定誤差e(t)を算出する減算部134とで構成されている。
 電流推定部140は、デッドタイム補償値Dt(t)と適応同定ゲインKdt(t)演算部131の出力とを乗算する乗算部142と、電圧指令値Um(t)と適応同定ゲインKu(t)演算部412の出力とを乗算する乗算部143と、モータ電流検出値i(t)と適応同定ゲインKx(t)演算部133の出力とを乗算する乗算部144と、乗算部142~144の乗算結果を加算する加算部145と、モータ電流検出値i(t)から電流推定値i_hat(t)を減算して電流推定誤差e(t)を算出する減算部147と、電流推定誤差e(t)を入力してフィードバックゲインKeでフィードバックする状態フィードバック部148と、加算部145で算出した乗算部142~144の乗算結果の加算値に、状態フィードバック部148から出力されたフィードバック値を加算する加算部146と、加算部146の加算結果を入力し、数16で定義されたモータ20の出力モデルを用いて電流推定値i_hat(t)を算出するモータ特性計算部141とで構成されている。
 次に、各同定感度ゲインΓ、Γ、Γdtの設定について説明する。各同定感度ゲインΓ、Γ、Γdtの値は適応同定部130の応答性を支配する値であり、任意に定めることができる。一般的に、各適応同定ゲインKx、Ku、Kdtが希望する時間以内に漸近安定(収束)するように定めれば良い。しかし、各同定感度ゲインΓ、Γ、Γdtの全てを同一値とすると各適応同定の極が一致にすることで、互いに干渉状態となる可能性がある。そのため、各同定感度ゲインΓ、Γ、Γdtを異なる値に設定することが望ましく、各値の関係は、例えば、同定する要素の変化幅が大きいほど、対応する同定感度ゲインΓ、Γ、Γdtを高く設定すれば良い。
 また、各適応同定ゲインKx、Ku、Kdtはモータパラメータ変動幅を相関的に示しており、モータパラメータ変動は、製造バラツキ、経年劣化等の初期バラツキを除き、温度によっても変化する。これを考慮して、各適応同定ゲインKx、Ku、Kdtの収束時間は電流検出外乱の影響を受けないようにするため、各適応同定ゲインKx、Ku、Kdtを、モータの電気的時定数に対して遅くなるように設定することが望ましい(例えば約1秒)。
 次に、状態フィードバックゲインKeの設定について説明する。適応同定により印加電圧~電流までのモータ出力モデルが実モータ特性と同等となるため、モデル化されている要素に対して、印加電圧に対する電流推定値i_hat(t)の応答性は非常に高応答性となる。また、その適応同定時間は電気的時定数に対し遅く設定されているので、適応同定系を安定化させる状態フィードバックゲインKeも小さく設定することが望ましい。
 前述したように、状態フィードバックゲインKeは、モデル化誤差に対する電流推定部140の自然応答周波数を設定する意味も持つため、状態フィードバックゲインKeを高く設定すると、検出外乱に対しても過敏に追従することとなる可能性があるので、好ましくない。逆に、状態フィードバックゲインKeを小さくし、自然応答周波数を小さくすることで、電流検出外乱に不感応とし、制御系全体のロバスト性を向上させることができる。
 また、適応同定部130及び電流推定部140にデッドタイム補償量Dt(t)を入力しているが、それに限定するものではなく、例えば、デッドタイム補償量Dt(t)符号のように、少なくともデッドタイム中の電位変化方向情報を含むデッドタイム相当値であっても良く、更に、デッドタイムの影響が小さい場合には、デッドタイム補償量Dt(t)の入力、デッドタイムに関する適応同定要素はなくても良い。
 更に、電流推定部140のモデル化誤差を考慮し、状態フィードバック部148を設けているが、それに限定するものではなく、モデル化誤差の影響が小さい場合には状態フィードバック部148はなくても良い。
 更に、モータパラメータの変動において、抵抗値に関するパラメータの変動量は最も大きく、インダクタンス成分の変動及びECU入力電圧の変動は小さい。このため、抵抗に関するパラメータ変動、すなわち、適応同定ゲインKx(t)のみで適応同定部130を構成することも可能である。
 抵抗に関するパラメータ変動のみで適応同定部130を構成し、かつ状態フィードバック部148を備えていない場合、モータ制御装置の構成は図9に示されており、適応同定部130A、電流推定部140Aの構成は数17となる。
Figure JPOXMLDOC01-appb-M000017
更に、適応同定部130の適応同定則をモータ20のパラメータそのものを直接同定する同定則(例えば状態変数フィルタを用いる直接同定法)を用いた場合、電流推定部140の係数A、Bを直接に書き換えることが可能であるため、パラメータ同定結果と電圧指令値Um(t)のみで電流推定値i_hat(t)を推定することができる。
 上述した適応電流オブザーバにより算出された推定値を制御に使用するにあたり、誤推定の懸念がある。推定誤差が拡大した場合、本来出力すべきトルクとは異なるトルクを出力するなど、制御的不安定状態となる。このような不安定な駆動を防止するため、電流推定値の異常を監視して診断する必要があり、本発明はかかる要請に応えるものである。
 ここにおいて、ブラシレスモータの部品故障対策として、以下の4項目(a)~(d)が考えられる。
(a)ブラシレスモータの駆動状態に応じて推定電流を算出する。
(b)この推定値が判定値より大きい場合、計数値を増加するか、この時点で異常と判定する。
(c)上記計数値が所定値より大きい場合、異常と判定する。
(d)異常と判定した場合、Duty制限やシャットダウン等の異常判定処理を実施する。
 
 このようなブラシレスモータの部品故障対策として、推定電流から故障を判定しているものとして、例えば特開2009-131069号公報(特許文献3)、特開2009-124782号公報(特許文献4)に開示されている制御装置がある。しかしながら、上記特許文献3及び4の制御装置では、いずれも算出した推定電流の正確さを診断していないため、誤った推定電流を使用し、誤った判定処理を実施する場合が生じる問題がある。本発明は上記問題を解決するため、以下に説明する4つの監視機能と、これらの監視結果を総合評価する評価機能とを具備して診断を行っている。総合評価で異常を検出し確定した場合には、Dutyを制限して強制的に電流検出可能状態にする。つまり、推定電流での電流制御から、検出電流での電流制御に切替える。
 図10は本発明の構成例を図7に対応させて示しており、適応同定診断部170、電流検出不可能状態検出部180及び切替部151を更に設けている。電流検出不可能状態検出部180はPWM制御部160のDuty指令値に基づいて電流検出不可能状態(若しくは電流検出可能状態)を検出し、電流検出不可能状態を検出したときに電流検出不可能状態フラグDNFをONし、適応同定診断部170に入力する。また、適応同定診断部170は、電流推定部140からの電流推定値i_hat(t)、電流検出値i(t)、角度θ及び電流検出不可能状態フラグDNFに基づいて診断し、Duty制御用のオブザーバ診断異常フラグOAF及びアシスト禁止用の駆動停止フラグDSFをON/OFF出力する。この時、Duty制御用のオブザーバ診断異常フラグOAFが出力されると、電流推定値i_hat(t)が異常であるので、切替部151により、電流推定値i_hat(t)から電流検出値i(t)に切替えて電圧指令値決定部150に入力する。
 適応同定診断部170の詳細は図11に示すようになっており、各相電流推定値i_hat、各相電流検出値i及び角度θに基づいて検出q軸電流値及び推定q軸電流値を演算するq軸電流演算部171と、電流検出不可能状態フラグDNFの継続を監視する電流検出不可能状態継続監視部172と、各相電流推定値i_hatに基づいて推定電流3相和監視フラグをON/OFF出力する推定電流3相和監視部173と、電流検出不可能状態フラグDNF、検出q軸電流値及び推定q軸電流値に基づいて検出-推定q軸差分監視フラグをON/OFF出力するq軸差分監視部174と、推定q軸変化差分監視フラグをON/OFF出力する推定q軸変化差分監視部175と、総合評価を行ってオブザーバ診断異常フラグOAFをON/OFF出力する総合評価部177と、オブザーバ診断異常フラグOAFの1サンプリング前の状態を保持する保持部176とを具備している。
 本発明では診断機能として、電流検出不可能状態の継続を監視(常時監視)する監視機能、電流推定値の3相和を監視(常時監視)する監視機能、q軸電流検出値とq軸電流推定値の差分を監視(電流検出可能時のみ監視)する監視機能、q軸電流推定値の変化差分を監視(電流検出不可能時のみ監視)する監視機能及び上記各機能を総合的に評価する評価機能を具備している。そして、総合評価の結果として異常を検出した場合には、Dutyを制限して強制的に電流検出可能状態にし、適応電流オブザーバによる推定電流での電流制御から検出電流での電流制御に切替えるようにしている。
 先ず、電流検出不可能状態の継続を監視(常時監視)する監視機能について説明する。
 電流検出不可能状態となるタイミングは、3相Duty出力において、図12に示すように中間相Dutyの使用領域が低Duty又は高Dutyの場合であり、通常数ミリ秒も継続しない。本発明ではPWM制御部160からの各相Dutyによって、電流検出不可能状態検出部180が電流検出不可能状態を検出し、電流検出不可能状態となったときに電流検出不可能状態フラグDNFをON出力する。そして、電流検出不可能状態継続監視部172は電流検出不可能状態の継続時間、つまり電流検出不可能状態フラグDNFがONされている時間が所定時間T1以上となった場合、異常と判断して検出不可能継続フラグDNCをON出力する。更に、電流検出不可能状態フラグDNFがONされている状態が継続して所定時間T2以上の場合は明らかに異常であるので、駆動停止するために駆動停止フラグDSFをONする。この駆動停止フラグDSFは復帰しない。なお、電流検出不可能状態フラグDNFがOFF時、継続時間は0にリセットされる。
 次に、電流推定値の3相和を監視(常時監視)する監視機能について説明する。
 図13に示されるスター型モータ結線における3相電流の和は、物理的にゼロでなければならない(キルヒホッフの第一法則)。適応電流オブザーバから算出された3相電流推定値においても同様な関係が成立する。そのため、推定電流3相和監視部173は、各相電流推定値の和と誤差閾値の関係より適応電流オブザーバの演算が正常に行われているか否かを監視する。即ち、3相電流推定値の3相和の絶対値が誤差閾値EA1以上の場合にエラーカウンタ#1を「+1」し、3相電流推定値の3相和の絶対値が誤差閾値EA1よりも小さい場合にエラーカウンタ#1を「-1」し、その後、エラーカウンタ#1の計数値が異常閾値以上であるか否かを判定し、異常閾値以上である場合には異常検出を確定し、Dutyを制限するために推定電流3相和監視フラグEAFをONする。また、エラーカウンタ#1の計数値が異常閾値よりも小さい場合には異常閾値推定電流3相和監視フラグEAFをOFFする。
 次に、q軸電流検出値とq軸電流推定値の差分を監視(電流検出可能時のみ監視)する監視機能について説明する。
 q軸電流を使用する理由として、q軸電流はトルクに寄与するため、検出q軸電流(検出トルク相当)と推定q軸電流(推定トルク相当)を比較することで、不安定な駆動を防止するためである。q軸電流は図14に示すように、3相電流検出値(検出_i,検出_i,検出_i)を3相/2相変換部175Aで3相/2相変換して検出q軸電流値検出_Iqを算出することにより、3相電流推定値(推定_i,推定_i,推定_i)を3相/2相変換部175Bで3相/2相変換して推定q軸電流値推定_Iqを算出することにより得られる。電流検出可能時は適応電流オブザーバが機能しており、実電流を推定演算している。q軸差分監視部174は、検出q軸電流値(現在出力されているトルク)と推定q軸電流値(推定電流値から算出したトルク)の差の絶対値が誤差閾値EB1以上の場合、適応電流オブザーバの演算が正常に行われていないと判定する。即ち、q軸差分監視部174は、電流検出不可能状態フラグDNFのOFF時、検出q軸電流値と推定q軸電流値の差の絶対値が誤差閾値EB1以上の場合にエラーカウンタ#2を「+1」し、検出q軸電流値と推定q軸電流値の差の絶対値が誤差閾値EB1よりも小さい場合にエラーカウンタ#2を「-1」し、エラーカウンタ#2の計数値が異常閾値EB2以上の場合に異常検出を確定し、Dutyを制限するために検出-推定q軸差分監視フラグDEFをONする。また、エラーカウンタ#2の計数値が異常閾値EB2よりも小さい場合に検出-推定q軸差分監視フラグDEFをOFFする。電流検出不可能状態フラグDNFのON時、エラーカウンタ#2は過去値を保持する。
 次に、q軸電流推定値の変化差分を監視(電流検出不可能時のみ監視)する監視機能について説明する。
 電流検出不可能時は電流検出値を取得できないので、適応電流オブザーバの学習機能と状態フィードバックを停止する。ただし、電流推定値は過去に学習した適応ゲインを使用して算出される。よって、電流検出不可能時は、(1)過去に学習した状態と現在の状態が大きく異なる場合、適応ゲインが最適でない、(2)状態フィードバック量がない、という理由により電流推定値の精度が悪化する。
 このq軸電流推定値の変化差分監視は、q軸差分監視部174において、電流検出不可能になる直前までの推定q軸電流値と電流検出不可能時の推定q軸電流値の差の絶対値が誤差閾値EC1以上の場合、適応電流オブザーバの演算が正常に行われていないと判定する。この監視機能は、図15に示すように、検出不可能時だけ推定電流値が信用できなくなるといった場合に対しての診断処理である。正常時は検出不可能の継続時間は短く、その短時間で変化する推定q軸電流値の変化量は小さい。電流検出不可になる直前の推定q軸電流をラッチし、現在の推定q軸電流との差分の絶対値を比較することで符号反転、変化量を監視することができる。
 推定q軸変化差分監視フラグECFの復帰方法を説明する。推定q軸変化差分監視フラグECFの復帰は、上記3つの機能における監視フラグ(DNC,EAF,DEF)の復帰とは異なり、Duty制限フラグが必要となる。その理由は下記(1)~(4)である。
(1)エラーカウンタ#3は電流検出不可能時に値を更新し、電流検出可能時に過去値を保持する。
(2)エラーカウンタ#3が異常閾値EC2以上となり、推定q軸変化差分監視フラグECFがONしたら、Dutyが制限される。
(3)Duty制限により電流検出可能状態となり、エラーカウンタ#3は異常閾値EC2以上の値を保持し続ける。
(4)推定q軸変化差分監視フラグECFが復帰しない。
 
そのため、Duty制限フラグ(1サンプリング前の値)を使用して、推定q軸変化差分監視フラグECFがONの場合、エラーカウンタ#3を0にリセットして推定q軸変化差分監視ECFをOFF(復帰)する。電流検出不可能になる直前の推定q軸電流値をラッチする。電流検出不可能状態フラグON時、上記ラッチした値と推定q軸電流値の差の絶対値が誤差閾値EC1以上となった場合、エラーカウンタ#3を「+1」する。電流検出不可能状態フラグON時、上記ラッチした値と推定q軸電流値の差の絶対値が誤差閾値EC1よりも小さい場合、エラーカウンタ#3を「-1」する。電流検出不可能状態フラグOFF時、エラーカウンタ#3は過去値を保持する。エラーカウンタ#3の計数値が異常閾値EC2以上になった場合に異常検出を確定し、Dutyを制限するために推定q軸変化差分監視フラグをONする。エラーカウンタ#3の計数値が異常閾値EC2よりも小さい場合、推定q軸変化差分監視フラグをOFFする。Duty制限フラグ(1サンプリング前の値)がONの場合、エラーカウンタ#3をゼロリセットする。
 総合評価部177は上記監視機能の結果を総合評価し、異常検出の確定又は復帰を実施する。上記監視で出力されたフラグが1つ以上ONの場合、Dutyを制限するためにDuty制限用のオブザーバ診断異常フラグOAFをONする。また、上記監視で出力されたフラグが全てOFF状態であり、更にこの状態が所定時間T3だけ継続した場合、Duty制限用のオブザーバ診断異常フラグOAFをOFFする。
 
 このような構成において、その動作例を図16~図20のフローチャートを参照して説明する。
 図16は本発明全体の動作例を示しており、先ず電流指令値を演算し(ステップS1)、次いで電圧指令値を演算し(ステップS2)、PWMのDutyを演算することにより(ステップS3)、モータを駆動する(ステップS4)。その後、電流検出回路120よりモータ電流、回転検出手段よりモータの角度θ及び角速度ωを入力し(ステップS5)、上記動作を繰り返すと共に、前述した適応同定部130及び電流推定部140により電流推定値を演算する(ステップS6)。
 その後、電流検出不可能状態の継続を監視し(ステップS10)、推定電流3相和を監視し(ステップS20)、更にq軸差分を監視し(ステップS30)、推定q軸変化差分を監視する(ステップS50)。そして、総合評価部177は検出不可能継続フラグDNC、検出-推定q軸差分監視フラグDEF、推定q軸変化差分監視フラグECFのうちの少なくとも1つがONであるか否かを判定する(ステップS70)。ONのフラグが1つでもある場合には、総合評価部177はDuty制限用のオブザーバ診断異常フラグOAFをONし(ステップS71)、PWM制御部160でDutyを制限し(ステップS72)、終了する。また、上記ステップS70において、検出不可能継続フラグDNC、検出-推定q軸差分監視フラグDEF、推定q軸変化差分監視フラグECFの全てがOFFと判定された場合には、総合評価部177はその経過時間を計測すると共に、経過時間が所定時間T3以上であるか否かを判定し(ステップS73)、経過時間が所定時間T3以上となった場合にはオブザーバ診断異常フラグOAFをOFFし(ステップS74)、Duty制限を解除して終了する(ステップS75)。また、上記ステップS73で経過時間が所定時間T3を経過していないときは、上記ステップS71に進む。
 次に、各監視の動作例を詳細に説明する。
 先ず電流検出不可能の継続の監視(ステップS10)は図17のようになっており、電流検出不可能状態継続監視部172は電流検出が不可能か否かを判定し(ステップS11)、電流検出が不可能と判定された場合には継続時間を「+1」し(ステップS12)、電流検出が可能と判定された場合には継続時間をリセットする(ステップS13)。その後、継続時間が所定時間T1以上となったか否かを判定し(ステップS14)、継続時間が所定時間T1以上となったときに検出不可能継続フラグDNCをONし(ステップS15)、継続時間が所定時間T1より小さいときに検出不可能継続フラグDNCをOFFする(ステップS16)。電流検出不可能状態継続監視部172は更に継続時間が所定時間T2(>T1)以上となったか否かを判定し(ステップS17)、継続時間が所定時間T2以上となったときには異常を確定し、駆動停止フラグDSFをONしてアシストを停止する(ステップS18)。また、継続時間が所定時間T2よりも小さい場合には、次の監視に移行する。
 推定電流3相和監視の詳細動作は図18に示すようになっており、推定電流3相和監視部173は各相電流推定値の和の絶対値を算出し(ステップS21)、絶対値が誤差閾値EA1以上であるか否かを判定する(ステップS22)。推定電流3相和監視部173は、3相電流推定値の3相和の絶対値が誤差閾値EA1以上の場合にはエラーカウンタ#1を「+1」し(ステップS23)、3相電流推定値の3相和の絶対値が誤差閾値EA1よりも小さい場合にはエラーカウンタ#1を「-1」し(ステップS26)、エラーカウンタ#1が異常閾値EA2以上であるか否かを判定する(ステップS24)。エラーカウンタ#1が異常閾値EA2以上である場合には異常検出を確定し、Dutyを制限するために推定電流3相和監視フラグEAFをONし(ステップS25)、エラーカウンタ#1が異常閾値EA2よりも小さい場合には異常ではないとし、推定電流3相和監視フラグEAFをOFFして次の監視へ移行する(ステップS27)。
 次のq軸差分監視の詳細動作は図19に示すようになっており、q軸差分監視部174は検出q軸電流値を入力し(ステップS31)、推定q軸電流値を入力し(ステップS32)、検出q軸電流値と推定q軸電流値の差の絶対値を算出し(ステップS33)、絶対値が誤差閾値EB1以上であるか否かを判定する(ステップS34)。絶対値が誤差閾値EB1以上の場合にはエラーカウンタ#2を「+1」し(ステップS35)、絶対値が誤差閾値EB1よりも小さい場合にはエラーカウンタ#2を「-1」し(ステップS36)、その後電流検出不可能状態フラグDNFがONであるか否かを判定する(ステップS40)。
 電流検出不可能状態フラグDNFがONである場合には、エラ-カウンタ#2’に1サンプル前のエラーカウンタ#2を代入し(ステップS41)、電流検出不可能状態フラグDNFがOFFである場合には、エラ-カウンタ#2’にエラーカウンタ#2を代入し(ステップS42)、エラ-カウンタ#2’が異常閾値EB2以上であるか否かを判定する(ステップS43)。エラ-カウンタ#2’が異常閾値EB2以上である場合には検出-推定q軸差分監視フラグDEFをONし(ステップS44)、エラ-カウンタ#2’が異常閾値EB2よりも小さい場合には検出-推定q軸差分監視フラグDEFをOFFする(ステップS45)。
 次に、推定q軸変化差分監視の詳細動作を、図20を参照して説明する。
 推定q軸変化差分監視部175は推定q軸電流値(A)を入力し(ステップS51)、電流検出不可能状態フラグDNFがONであるか否かを判定する(ステップS52)。電流検出不可能状態フラグDNFがONの場合には、保存されている推定q軸電流値(B)と推定q軸電流値(A)の絶対値を算出し(ステップS54)、電流検出不可能状態フラグDNFがOFFの場合には、推定q軸電流値を保存しておき(ステップS53)、この保存した値(B)と推定q軸電流値(A)との差の絶対値を算出する(ステップS54)。そして、差の絶対値が誤差閾値EC1以上であるか否かを判定し(ステップS55)、絶対値が誤差閾値EC1以上となった場合にはエラーカウンタ#3を「+1」し(ステップS56)、絶対値が誤差閾値EC1よりも小さい場合にはエラーカウンタ#3を「-1」し(ステップS57)、その後電流検出不可能状態フラグDNFがOFFであるか否かを判定する(ステップS60)。
 電流検出不可能状態フラグDNFがOFFである場合には、エラ-カウンタ#3’に1サンプル前のエラーカウンタ#3を代入し(ステップS61)、電流検出不可能状態フラグDNFがONである場合には、エラ-カウンタ#3’にエラーカウンタ#3を代入する(ステップS62)。次いで、オブザーバ診断異常フラグOAFがOFFであるか否かを判定し(ステップS63)、オブザーバ診断異常フラグOAFがOFFの場合にはエラ-カウンタ#3’が異常閾値EC2以上であるか否かを判定する(ステップS65)。また、オブザーバ診断異常フラグOAFがONの場合には、エラーカウンタ#3’をリセットし(ステップS64)、その後エラ-カウンタ#3’が異常閾値EC2以上であるか否かを判定する(ステップS65)。エラ-カウンタ#3’が異常閾値EC2以上である場合には推定q軸変化差分監視フラグECFをONし(ステップS66)、エラ-カウンタ#3’が異常閾値EC2よりも小さい場合には推定q軸変化差分監視フラグECFをOFFする(ステップS67)。
 なお、上述では監視の順番を電流検出不可能状態の継続の監視、推定電流3相和の監視、q軸差分の監視、推定q軸変化差分の監視としているが、その順番は適宜変更可能である。
 本発明の方式は、定常制御時に推定電流を使用し、推定電流診断の異常時にDutyを制限して検出電流で制御しても良く、また、定常制御時に検出電流を使用し、電流検出が不可能になった時に推定電流に切替えて制御し、推定電流診断異常時にDuty制限して検出電流制御するようにしても良い。
1      ハンドル
2      コラム軸
10     トルクセンサ
12     車速センサ
13     バッテリ
20     モータ
21     レゾルバ
22     角速度演算部
100    コントロールユニット(ECU)
101    電流指令値演算部
103    電流制限部
104    電流制御部
105    PWM制御部
106    インバータ
110    補償部
120    電流検出回路
130    適応同定部
140    電流推定部
150    電圧指令値決定部
160    PWM制御部
170    適応同定診断部
171    q軸電流演算部
172    電流検出不可能状態継続監視部
173    推定電流3相和監視部
174    q軸差分監視部
175    推定q軸変化差分監視部
176    保持部
177    総合評価部
180    電流検出不可能状態検出部

Claims (6)

  1. モータの電流を電流検出値として検出する電流検出回路と、少なくとも電流指令値に基づいて決定された電圧指令値に基づくDutyで前記モータを駆動制御する駆動制御部と、前記モータの角度及び角速度を検出する回転検出手段とを備えたモータ制御装置において、
    前記モータの出力モデルの各パラメータ変動を同定し、前記モータの電流推定値を演算して前記電圧指令値の演算に使用する適応電流オブザーバと、前記適応電流オブザーバからの電流推定値の誤推定を診断する適応同定診断部と、前記電流検出値の検出が不可能な電流検出不可能状態を検出する電流検出不可能状態検出部とを備え、
    前記適応同定診断部は前記電流推定値、前記電流検出値、前記角度及び前記電流検出不可能状態に基づいて前記電流推定値の誤推定を診断し、診断結果に基づいて前記Dutyを制限して強制的に電流検出可能な状態にして、検出電流による電流制御に切替えることを特徴とするモータ制御装置。
  2. 前記電流検出回路が1シャント電流検出方式である請求項1に記載のモータ制御装置。
  3. 前記駆動制御部がd-q軸のベクトル制御方式で構成され、
    前記適応同定診断部が、
    前記電流推定値、前記電流検出値及び前記角度に基づいて検出q軸電流値及び推定q軸電流値を演算するq軸電流演算部と、電流検出不可能状態の継続を監視する電流検出不可能状態継続監視部と、前記電流推定値に基づいて各相和を監視する推定電流各相和監視部と、前記電流検出不可能状態、前記検出q軸電流値及び推定q軸電流値に基づいて検出-推定q軸差分を監視するq軸差分監視部と、前記電流検出不可能状態、前記推定q軸電流値及び前記電流検出不可能状態直前の推定q軸電流値に基づいて推定q軸変化差分を監視する推定q軸変化差分監視部と、前記電流検出不可能状態継続監視部、前記推定電流各相和監視部、前記q軸差分監視部及び前記推定q軸変化差分監視部の監視結果を総合的に評価する総合評価部とで構成されている請求項1又は2に記載のモータ制御装置。
  4. 前記総合評価部が、前記Duty制限用のオブザーバ診断異常フラグ又はアシスト停止用の駆動停止フラグを出力するようになっている請求項3に記載のモータ制御装置。
  5. 前記適応電流オブザーバが、前記モータの出力モデルの各パラメータ変動を同定する適応同定手段と、前記モータの電流を推定する電流推定手段と、前記電圧指令値を決定する電圧指令値決定手段とで構成されている請求項1乃至4のいずれかに記載のモータ制御装置。
  6. 請求項1乃至5のいずれかに記載のモータ制御装置を搭載したことを特徴とする電動パワーステアリング装置。
PCT/JP2013/059198 2012-04-04 2013-03-28 モータ制御装置及びそれを搭載した電動パワーステアリング装置 WO2013150948A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/234,176 US8831832B2 (en) 2012-04-04 2013-03-28 Motor control apparatus and electric power steering apparatus provided with the same
EP13772690.7A EP2835906B1 (en) 2012-04-04 2013-03-28 Motor control device and electric power steering device equipped with same
CN201380018649.XA CN104205617B (zh) 2012-04-04 2013-03-28 电动机控制装置及搭载其的电动助力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012085239A JP5641008B2 (ja) 2012-04-04 2012-04-04 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2012-085239 2012-04-04

Publications (2)

Publication Number Publication Date
WO2013150948A1 WO2013150948A1 (ja) 2013-10-10
WO2013150948A9 true WO2013150948A9 (ja) 2013-11-21

Family

ID=49300438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059198 WO2013150948A1 (ja) 2012-04-04 2013-03-28 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US8831832B2 (ja)
EP (1) EP2835906B1 (ja)
JP (1) JP5641008B2 (ja)
CN (1) CN104205617B (ja)
WO (1) WO2013150948A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808999B1 (en) * 2012-01-27 2017-06-07 Mitsubishi Electric Corporation Motor control device and electric power steering device
CN105340173B (zh) * 2013-07-02 2017-09-29 三菱电机株式会社 电机控制装置
US9450513B2 (en) * 2013-09-27 2016-09-20 Daihen Corporation Control circuit and control method for inverter circuit, and control circuit and control method for power conversion circuit
KR101507729B1 (ko) * 2013-12-10 2015-04-07 현대모비스 주식회사 전동식 조향장치의 히스테리시스 제거 장치 및 방법
JP6361178B2 (ja) * 2014-03-07 2018-07-25 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
KR101575294B1 (ko) * 2014-06-02 2015-12-21 현대자동차 주식회사 인버터의 입력단 전압 추정 방법 및 이를 이용한 모터 제어 방법
EP3162662B1 (en) * 2014-06-25 2019-07-24 NSK Ltd. Electric power-steering device
FR3025890B1 (fr) 2014-09-17 2018-02-16 Valeo Equipements Electriques Moteur Procede et dispositif de diagnostic de defauts de capteurs de courants de phases d'un systeme de pilotage d'une machine electrique tournante synchrone de vehicule automobile
US9862409B2 (en) * 2014-09-17 2018-01-09 Nsk Ltd. Electric power steering apparatus
CN106794809B (zh) * 2014-09-25 2018-02-13 日本精工株式会社 车载用电子设备的控制装置以及控制方法
KR102217599B1 (ko) * 2014-10-29 2021-02-22 현대모비스 주식회사 3상 브러시리스 교류 모터 전류센서의 고장 진단 장치 및 방법
DE102014117718A1 (de) * 2014-12-02 2016-06-02 Trw Automotive Gmbh Lenkvorrichtung sowie Verfahren zur Steuerung einer Lenkvorrichtung
JP2017022862A (ja) * 2015-07-10 2017-01-26 日立オートモティブシステムズ株式会社 電力変換装置およびそれを搭載した電動パワーステアリング装置
GB201513200D0 (en) * 2015-07-27 2015-09-09 Trw Ltd Control for electric power steering
CN105450124B (zh) * 2015-12-16 2018-05-01 四川长虹电器股份有限公司 一种获得电机参数的方法和装置
CN105553371B (zh) * 2015-12-16 2018-06-12 四川长虹电器股份有限公司 一种获得电机参数的方法和装置
GB201522228D0 (en) 2015-12-16 2016-01-27 Trw Ltd And Trw Automotive U S Llc And Zf Friedrichshafen Ag Motor control system
US10236808B2 (en) * 2016-08-25 2019-03-19 Analog Devices, Inc. Systems and methods for determining motor parameters
CN109641619A (zh) * 2016-08-26 2019-04-16 日本精工株式会社 电动助力转向装置的控制装置
US10322746B2 (en) * 2016-11-30 2019-06-18 Steering Solutions Ip Holding Corporation Velocity estimation for electric power steering systems
US11007101B2 (en) 2017-05-02 2021-05-18 Liko Research & Development Ab Adaptive compensation of wear in person lifting assemblies
JP6988300B2 (ja) * 2017-09-19 2022-01-05 株式会社デンソー 三相インバータ装置
JP7149398B2 (ja) * 2017-10-11 2022-10-06 日立Astemo株式会社 モータ駆動装置及びモータ駆動装置の制御方法
JP2019097268A (ja) 2017-11-20 2019-06-20 株式会社安川電機 モータ制御装置およびモータ制御方法
CN111344945A (zh) * 2017-12-06 2020-06-26 日本电产株式会社 控制器、具有该控制器的马达控制系统以及具有该马达控制系统的电动助力转向系统
WO2019111728A1 (ja) * 2017-12-06 2019-06-13 日本電産株式会社 コントローラ、当該コントローラを有するモータ制御システム、および当該モータ制御システムを有する電動パワーステアリングシステム
FR3076331B1 (fr) 2018-01-02 2020-02-14 Foundation Brakes France Actionneur de frein et procede de commande associe
JP6658995B2 (ja) * 2018-01-31 2020-03-04 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
DE102018106871A1 (de) * 2018-03-22 2019-09-26 Thyssenkrupp Ag Verfahren zur Diagnose einer Funktionalität mit diskreten Werten oder diskreten Klassen von Werten auf der Eingangs- oder Ausgangsseite
US10717463B2 (en) * 2018-10-31 2020-07-21 Steering Solutions Ip Holding Corporation Feedforward control of permanent magnet synchronous motor drive under current sensing failure
JP7327951B2 (ja) * 2019-02-28 2023-08-16 ローム株式会社 ステッピングモータの駆動回路およびその駆動方法、それを用いた電子機器
CN113437918B (zh) * 2021-07-02 2023-06-27 深圳鹏行智能研究有限公司 电机驱动电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045747B2 (ja) 2001-02-26 2008-02-13 松下電器産業株式会社 モータ制御装置
US7075327B2 (en) * 2003-06-18 2006-07-11 Eaton Corporation System and method for proactive motor wellness diagnosis
JP2007006566A (ja) * 2005-06-22 2007-01-11 Hitachi Ltd モータ制御装置
DE102006006032A1 (de) 2006-02-09 2007-08-23 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Synchronmaschine
JP4867483B2 (ja) * 2006-06-09 2012-02-01 日本精工株式会社 モータ制御方法及び制御装置
JP5135976B2 (ja) * 2007-10-02 2013-02-06 日本精工株式会社 モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
JP2009124782A (ja) 2007-11-12 2009-06-04 Omron Corp 多相電動モータ制御装置
JP2009131069A (ja) * 2007-11-26 2009-06-11 Mitsuba Corp モータ制御装置
JP4884355B2 (ja) 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
JP5384838B2 (ja) 2008-02-14 2014-01-08 マミヤ・オーピー・ネクオス株式会社 近接センサおよびこの近接センサを遊技媒体の流路に配設した遊技機
JP2010029028A (ja) * 2008-07-23 2010-02-04 Jtekt Corp モータ制御装置
JP5343955B2 (ja) * 2009-12-25 2013-11-13 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
US8474570B2 (en) * 2009-12-25 2013-07-02 Toyota Jidosha Kabushiki Kaisha Electric power steering apparatus
JP5463215B2 (ja) * 2010-06-21 2014-04-09 日立オートモティブシステムズ株式会社 電動パワーステアリング用モータの制御装置

Also Published As

Publication number Publication date
US20140156144A1 (en) 2014-06-05
EP2835906A1 (en) 2015-02-11
EP2835906A4 (en) 2016-10-12
WO2013150948A1 (ja) 2013-10-10
JP2013215064A (ja) 2013-10-17
CN104205617A (zh) 2014-12-10
CN104205617B (zh) 2017-09-05
US8831832B2 (en) 2014-09-09
JP5641008B2 (ja) 2014-12-17
EP2835906B1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP5641008B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP5344023B2 (ja) 電動パワーステアリング装置
KR100338965B1 (ko) 전기 파워 스티어링 시스템의 제어 장치
US8901863B2 (en) Motor control device
US9688302B2 (en) In-vehicle electronic control apparatus
JP3212216B2 (ja) 直流電動モータ式操舵装置
JP4867483B2 (ja) モータ制御方法及び制御装置
US20080201041A1 (en) Control device for electric power steering apparatus
JP2015097471A (ja) モータ制御装置、これを使用した電動パワーステアリング装置および車両
JP5453714B2 (ja) モータ制御装置および電動パワーステアリング装置
US8706354B2 (en) Electric power steering apparatus
EP2448106A1 (en) Motor control device and electric power steering apparatus
CN105612097B (zh) 电动助力转向装置
JP2010029028A (ja) モータ制御装置
JP3706296B2 (ja) 電動パワーステアリング装置の制御装置。
JP5017883B2 (ja) 電動パワーステアリング装置
JPH08310417A (ja) 電動パワ−ステアリング装置の制御装置
JP4371844B2 (ja) ブラシレスモータ駆動装置
JP2012214093A (ja) 電動パワーステアリング装置の制御方法
JP2011120445A (ja) モータ制御装置および車両用操舵装置
JP2006321411A (ja) 電動パワーステアリング装置の制御装置
JP2012017026A (ja) 電動パワーステアリング装置
JP2008056079A (ja) モータ制御装置
JP2023070265A (ja) モータ制御方法、制御装置、ステアリング装置
JP6236867B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013772690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14234176

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE