JP2008056079A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2008056079A
JP2008056079A JP2006234955A JP2006234955A JP2008056079A JP 2008056079 A JP2008056079 A JP 2008056079A JP 2006234955 A JP2006234955 A JP 2006234955A JP 2006234955 A JP2006234955 A JP 2006234955A JP 2008056079 A JP2008056079 A JP 2008056079A
Authority
JP
Japan
Prior art keywords
deviation
value
motor
current command
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006234955A
Other languages
English (en)
Inventor
Tomoya Takahashi
友哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006234955A priority Critical patent/JP2008056079A/ja
Publication of JP2008056079A publication Critical patent/JP2008056079A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】制御系の応答性や安定性に関する調整の余裕度を高めるために、制御系に第1及び第2のフィードバックループを設け、それらの第1及び第2のフィードバックループにおいて算出される第1及び第2のフィードバック制御項に基づいてモータに対する制御出力を算出しつつ、モータの実電流に重畳したノイズ成分に起因する振動の発生を抑制すること。
【解決手段】電動モータ6が発生すべき目標補助力の変化が小さいとき、電流指令値Iと実電流値Iとの偏差に対して、その偏差εを減少させる第1ゲインK1を乗じて、補正偏差εcompを算出する。この補正偏差εcompに基づいて第1フィードバック制御項を算出し、また補正偏差εcompと電流指令値Iとの加算値に基づいて第2のフィードバック制御項を算出する。
【選択図】図4

Description

本発明は、車両のステアリングホイールによる操舵操作に対して、補助力を与えるモータの駆動を制御するモータ制御装置に関する。
従来、電動モータが発生するトルクを利用して、運転者によるステアリングホイールの操舵力を軽減する電動パワーステアリング装置が知られている。この電動パワーステアリング装置においては、通常、電動モータが、電流フィードバック制御によって駆動される。すなわち、電動モータに実際に通電された実電流が検出され、ステアリングホイールに加えられたトルクや車速などに基づいて設定される電流指令値との偏差が算出される。この偏差に基づいて、例えば比例積分処理するPI制御が適用されて、電動モータに印加すべき制御電圧が発生される。
しかしながら、PI制御による制御電圧は、所定の制御周期毎に発生されるので、急操舵時における操舵補助の遅れや、路面からの入力などによる外乱を打ち消すための補助操舵に遅れが生じやすい。PI制御におけるゲインを上げて応答性の向上を図ろうとしても、制御系が不安定になるなどの影響がでるため、調整できる余地が少ない。
そのため、特許文献1では、応答性を改善しつつ、かつ制御系の安定化を図ることができるように調整の余裕を高めるため、PI制御による制御項に加え、電動モータの実電流に基づく制御項を用いて制御電圧を算出することが提案されている。
特開2001−8491号公報
しかしながら、電動モータに実際に流れる実電流には、種々の要因によってノイズが重畳する。このため、特許文献1のモータ制御装置のように、電動モータの実電流に基づく制御項を用いて、電動モータの制御電圧を算出すると、電動モータの実電流に重畳されたノイズ成分に応じて電動モータが制御されてしまう。この結果、電動モータが発生するトルクが、ノイズ成分に反応して変動するので、ステアリングホイールに振動が伝わり、操舵感覚を悪化させる場合がある。
なお、特許文献1のモータ制御装置においては、ノイズ成分が重畳する実電流値と電流指令値との偏差に基づいてPI制御による制御項を算出している。このため、実電流値と電流指令値との偏差にもノイズ成分の影響が含まれることになり、結果として、PI制御による制御項によっても、上述した振動を発生させるような制御電圧が算出されてしまう。
本発明は、このような点に鑑みてなされたものであり、制御系の応答性や安定性に関する調整の余裕度を高めるために、制御系に第1及び第2のフィードバックループを設け、それらの第1及び第2のフィードバックループにおいて算出される第1及び第2のフィードバック制御項に基づいてモータに対する制御出力を算出しつつ、モータの実電流に重畳したノイズ成分に起因する振動の発生を抑制することが可能なモータ制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載のモータ制御装置は、車両のステアリングホイールによる操舵操作に対して、補助力を与えるモータの駆動を制御するものであって、
モータが発生すべき目標補助力に応じた電流指令値を算出する指令値算出手段と、
モータに実際に通電された実電流値を検出する検出手段と、
電流指令値と実電流値との偏差を算出する偏差算出手段と、
モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとき、前記電流指令値と実電流値との偏差に対して、その偏差を減少させる第1ゲインを乗じて、偏差を補正する偏差補正手段と、
偏差補正手段によって補正された偏差に基づいて、第1のフィードバック制御項を算出する第1の算出手段と、
偏差補正手段によって補正された偏差と電流指令値との加算値に基づいて、第2のフィードバック制御項を算出する第2の算出手段と、
第1のフィードバック制御項と前記第2のフィードバック制御項とに基づいて、モータに対する制御出力を算出する制御出力算出手段とを備えることを特徴とする。
上述したように、請求項1に記載のモータ制御装置においては、第1のフィードバック制御項及び第2のフィードバック制御項をそれぞれ算出する第1及び第2の算出手段を備え、これらの第1及び第2のフィードバック制御項に基づいてモータの制御出力を算出する。従って、モータ制御装置における応答性や外乱に対する安定性を調整するための余裕度を高めることができる。
ここで、モータの目標補助力が大きく変化しないとき、基本的に、運転者がステアリングホイールを保舵もしくはゆっくりと操舵している状態である。このような状態において、実電流値に重畳したノイズ成分に起因するモータのトルク変動が生じると、運転者はモータからステアリングホイールに伝わる振動を感じやすい。一方、モータの目標補助力が大きく変化しないときには、電流フィードバック制御を行っている結果として、電流指令値と実電流値とが大きく乖離する可能性が低くなる。従って、電流指令値と実電流値との偏差が生じた場合、それは実電流値に重畳したノイズ成分による可能性が高いと考えられる。そのため、請求項1に記載のモータ制御装置では、モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとき、当該偏差に対して、その偏差を減少させる第1ゲインを乗じて、偏差を補正する。なお、第1ゲインは0を含み、0以上1未満の値が用いられる。
請求項1に記載のモータ制御装置では、このようにして補正された偏差に基づいて第1のフィードバック制御項を算出し、また補正された偏差と電流指令値との加算値に基づいて第2のフィードバック制御項を算出する。このため、第1及び第2のフィードバック制御項に対する、モータの実電流に重畳したノイズ成分の影響を低減することができ、そのノイズ成分に起因する振動の発生を抑制することができる。
請求項2に記載したように、偏差補正手段は、目標補助力の変化の大きさが所定基準値以上のとき、電流指令値と実電流値との偏差に対して第1ゲインよりも大きい第2ゲインを乗じて、偏差を補正するようにしても良い。目標補助力の変化の大きさが所定基準値以上のときに生じる電流指令値と実電流値との偏差は、モータの実電流に重畳したノイズ成分によるものではなく、電流指令値の変化などによる可能性が高くなる。従って、電流指令値と実電流値との差を打ち消すために、その偏差に応じた制御出力を算出する必要がある。第1ゲインよりも大きな第2ゲインを偏差に乗じることにより、良好な応答性をもって、その偏差を打ち消すことができる。なお、第2ゲインは1を含む。
請求項3に記載したように、偏差算出手段は、電流指令値に所定の時定数を用いて遅れを生じさせて、遅れ電流指令値を生成する生成手段を有し、当該遅れ電流指令値と実電流値との偏差を算出することが好ましい。モータの電流制御では、一般的に電流指令値と実電流値の関係が一次遅れ特性となるように制御系が構成される。すなわち、実電流値は、電流指令値に対してある遅れを有している。そこで、電流制御の一次遅れ特性に相当する所定の時定数を用いて、電流指令値に遅れを生じさせれば、実電流値との偏差をより精度よく算出することができる。
請求項4に記載したように、偏差補正手段は、さらに、電流指令値と実電流値の偏差の絶対値が所定の第1閾値よりも小さいことを条件として、当該偏差に第1ゲインを乗じることが好ましい。第1閾値をノイズ成分相当の大きさに設定することにより、電流指令値と実電流値との偏差に対して、ノイズ成分相当の幅の不感帯を設定できる。すなわち、電流指令値と実電流値との偏差の絶対値が第1閾値よりも小さい場合には、それがノイズによって生じたものとみなすことができるようになる。このようにすれば、ノイズ成分に起因するとみなされる偏差のみに対して第1のゲインを乗じて、その偏差を小さくすることができる。
請求項5に記載したように、偏差補正手段は、モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さくとも、電流指令値と実電流値の偏差の絶対値が第1閾値以上である場合には、当該偏差に対して第1ゲインよりも大きい第2ゲインを乗じて、偏差を補正することが好ましい。第1閾値以上の偏差が生じた場合には、実際に電流指令値と実電流値とが乖離している可能性があり、第1ゲインよりも大きい第2ゲインを偏差に乗じることにより、制御の応答性の悪化を防止することができる。
モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいか否かは、種々の手法で判定することができる。例えば、請求項6に記載したように、電流指令値の変化率を算出して、この電流指令値の変化率の絶対値が第2閾値より小さい場合に、目標補助力の変化の大きさは所定基準値よりも小さいと判定することができる。また、請求項7に記載したように、モータの回転速度を検出して、このモータの回転速度の絶対値が第3閾値より小さい場合に、目標補助力の変化の大きさは所定基準値よりも小さいと判定しても良い。さらに、請求項8に記載するように、これらを組み合わせて、電流指令値の変化率の絶対値が第2閾値より小さく、かつモータの回転速度の絶対値が第3閾値より小さい場合に、目標補助力の変化の大きさは所定基準値よりも小さいと判定しても良い。いずれの場合であっても、運転者がステアリングホイールを保舵もしくはゆっくり操舵しており、モータの目標補助力も大きく変化しない状態を検出することができる。
(第1実施形態)
次に本発明の第1実施形態について図面を参照して説明する。図1は、本実施形態によるモータ制御装置の制御対象となる、電動パワーステアリング装置(EPS)を備えたステアリングシステムの全体構成を示す構成図である。
図1において、ステアリングホイール1に接続されたステアリングシャフト2には、トルクセンサ3が設けられている。このトルクセンサ3は、ステアリングホイール1に加えたれた力である操舵トルクを検出する。さらに、ステアリングシャフト2には、運転者の操舵操作を補助する補助操舵トルクを与える電動パワーステアリング装置4が取り付けられている。
ステアリングシャフト2の先端は、ピニオン軸7に連結されている。このピニオン軸7は、ラックアンドピニオン式のギア装置を介してラック軸8に連結されている。ラック軸8の両端には、タイロッド及びナックルアームを介して左右操舵輪としての一対のタイヤ9がそれぞれ連結されている。従って、ピニオン軸7の回転運動が、ラック軸8の直線運動に変換されると、そのラック軸8の直線運動変位に応じた角度だけ、左右の操舵輪9が転舵される。
電動パワーステアリング装置4は、補助操舵トルクを発生する電動モータ6、及び電動モータ6の回転を減速してステアリングシャフト2に伝達する減速機5を備える。これにより、電動パワーステアリング装置4は、電動モータ6の駆動によって、ステアリングホイール1の操舵方向及び操舵トルクに応じた補助操舵トルクをステアリングシャフト2に伝達することができる。
電動モータ6の駆動は、電子コントロールユニット(ECU)10によって制御される。以下、ECU10によって実行される電動モータ6の駆動制御に関して、図に基づいて詳しく説明する。
図2は、ECU10の制御ブロック図を示している。図2に示すように、ECU10は、トルクセンサ3によって検出される操舵トルクと、車速センサ11によって検出される車速とに基づいて、電動モータ6が発生すべき補助操舵トルクに応じた電流指令値Iを設定する電流指令値設定部12を有する。この電流指令値設定部12は、電流指令値Iとして、d軸における電流指令値Idとq軸における電流指令値Iqとを算出して、それぞれd軸及びq軸電流制御部13,14へ出力する。
なお、公知のように、d軸及びq軸によって示されるdq座標は、例えば、回転子のS極からN極に向かう方向をd軸とし、そのd軸に垂直なq軸によって定義される回転座標である。そして、d軸電流値及びq軸電流値とは、そのd軸方向及びq軸方向における電流指令値や実電流値の成分である。
本実施形態におけるモータ制御装置は、基本的に、電流指令値設定部12が設定した電流指令値Iに応じた制御電圧Vによって電動モータ6を駆動するように構成されている。電動モータ6は、3相の固定子巻線及び回転子を有する3相モータである。
このため、d軸及びq軸電流制御部13,14は、各々入力されたd軸電流指令値Id及びq軸電流指令値Iqに応じたd軸及びq軸制御電圧Vd,Vqを算出して出力する。時間指令値生成部16は、これらd軸及びq軸制御電圧Vd,Vqからなる制御電圧Vに応じて、3相インバータ17の、各固定子巻線に対応するスイッチング素子を駆動するためのパルス幅変調(PWM)信号を発生する。このPWM信号によって、3相インバータ17を構成する各スイッチング素子を駆動することにより、制御電圧Vに相当する電圧を各固定子巻線に印加し、電動モータ6を駆動する。
電流検出回路18は、電動モータ6の3相の固定子巻線に実際に流れる実電流値を検出する。また、電動モータ6には、回転子の回転位置を検出する、エンコーダやレゾルバなどからなる位置検出器19が設けられている。座標変換部20は、位置検出器19によって検出された回転子位置を基準として、電流検出回路18によって検出された実電流値をdq座標に座標変換して、d軸実電流値Id及びq軸実電流値Iqを算出する。これらのd軸実電流値Id及びq軸実電流値Iqは、それぞれd軸及びq軸電流制御部13,14に与えられる。
ここで、d軸及びq軸電流制御部13,14について、図3のブロック図に基づいて詳しく説明する。なお、d軸及びq軸電流制御部13,14は同様の構成を有するので、図3においては、d軸とq軸とを区別することなく説明する。
図3に示すように、電流制御部13、14は、電流指令値Iと座標変換部20によって算出された実電流値Iとの偏差εを演算する偏差演算部21を有している。偏差演算部21によって算出された偏差εは、偏差補正部22にて補正される。偏差補正部22における偏差εの補正方法について、以下に詳しく説明する。
座標変換部20によって算出される電動モータ6の実電流値Iには、種々の要因によってノイズが重畳する。このため、実電流値Iに基づいて偏差演算部21にて演算される偏差εにも、そのノイズ成分の影響が含まれることになる。このようにノイズ成分を含む偏差εに基づいて、上述した制御電圧Vを算出すると、電動モータ6の実電流値Iに重畳されたノイズ成分に応じて電動モータ6が制御されてしまう。この結果、電動モータ6が発生する補助操舵トルクが、ノイズ成分に反応して変動するので、ステアリングホイール1に振動が伝わり、操舵感覚を悪化させる可能性がある。
そのため、偏差補正部22は、偏差εがノイズ成分によって生じたものとみなされる場合に、その偏差εに第1ゲインK1を乗じて、その偏差εを減少させた補正偏差εcompを算出する。第1ゲインK1は、0以上1未満の値が用いられ、通常、0に設定される。電流指令値Iと実電流値Iとの偏差εが、ノイズ成分によって発生したものではないとみなされる場合には、第1ゲインK1よりも大きな第2ゲインK2を偏差εに乗じて、補正偏差εcompを算出する。第2ゲインK2は、1以上の値が用いられ、通常、1に設定される。なお、第2ゲインK2が1である場合には、実質的には、偏差εが、そのまま補正偏差εcompとなる。
このように、偏差εが、ノイズ成分によって生じたものとみなされるか否かによってゲインを切り換えつつ、当該ゲインを偏差εに乗じる。この結果、ノイズ成分によって生じたとみなされる偏差εのみが、小さく補正される。従って、補正された偏差εcompに基づいて制御電圧Vを算出すると、制御の応答性を犠牲にすることなく、電動モータ6のトルク変動を低減することができる。
偏差εが、実電流値Iに重畳したノイズ成分によって発生されたか否かを判断して、偏差εに乗じるべきゲインを決定するための構成を以下に説明する。
運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵しているとき、基本的に、電動モータ6が発生すべき補助操舵トルクの変化は小さくなる。このような状態において、実電流値Iに重畳したノイズ成分に起因する電動モータ6のトルク変動が生じると、運転者は電動モータ6からステアリングホイール1に伝わる振動を感じやすい。一方、電動モータ6が発生すべき補助操舵トルクの変化が小さいとき、後述するように、電流フィードバック制御を行っている結果として、電流指令値Iと実電流値Iとが大きく乖離する可能性が低くなる。従って、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵しているときに、電流指令値Iと実電流値Iとの偏差εが生じても、それは実電流値Iに重畳したノイズ成分による可能性が高いと考えられる。従って、偏差εが、実電流値Iに重畳したノイズ成分によって発生されたか否かは、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態であるか否かに基づいて判断できる。
そのため、本実施形態によるモータ制御装置において、電流制御部13、14は、電流指令値Iの変化率ΔIを演算する変化率演算部23を備える。電流指令値Iは、電動モータ6が発生すべき補助操舵トルクに応じて算出される。従って、電動モータ6が発生すべき補助操舵トルクと、電流指令値Iとは、同様の変化の傾向を示す。そして、補助操舵トルクの変化が小さいときが、上述したように、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵しているときに対応する。従って、電流指令値Iの変化率ΔIの大きさから、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態か否かを判断することができる。
変化率演算部23によって算出された電流指令値Iの変化率ΔIが、ゲイン決定部24に与えられる。ゲイン決定部24は、この電流指令値Iの変化率の絶対値|ΔI|と所定の第1閾値Th1とを比較して、電流指令値Iの変化率の絶対値|ΔI|の大小を判別する。そして、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さいと判別したときには、偏差εに乗じるべきゲインとして、上述した第1ゲインK1を選択し、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1以上であると判別したときには、上述した第2ゲインK2を選択する。
ゲイン決定部24は、上述したように、原則として、電流指令値Iの変化率の絶対値|ΔI|と所定の第1閾値Th1との大小関係に基づいて、偏差εに乗じるべきゲインを決定するが、このゲインの決定に際して、さらに偏差演算部21によって算出された偏差εの大きさを考慮しても良い。
具体的には、ゲイン決定部24が、偏差εの絶対値|ε|と所定の第2閾値Th2との大小関係も判別し、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さく、かつ偏差εの絶対値|ε|が第2閾値Th2よりも小さいときに、第1ゲインK1を選択するようにする。
偏差εの絶対値|ε|と比較される第2閾値Th2は、電動モータ6の実電流値Iに重畳するノイズ成分相当の大きさに設定される。これにより、電流指令値Iと実電流値Iとの偏差εに対して、ノイズ成分相当の幅の不感帯を設定できる。その結果、電流指令値Iと実電流値Iとの偏差εの絶対値|ε|が第2閾値Th2よりも小さい場合には、それがノイズ成分によって生じたものとみなすことができるようになる。このようにすれば、ノイズ成分に起因するとみなされる偏差εのみに対して第1ゲインK1を乗じて、補正偏差εcompを算出することができる。
電流指令値Iと実電流値Iとの偏差εの絶対値|ε|が第2閾値Th2以上である場合、ゲイン決定部26は、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さくても、第2ゲインK2を選択することが好ましい。第2閾値Th2以上の大きさの偏差εが生じた場合には、ノイズ成分によらず、実際に電流指令値Iと実電流値Iとが乖離している可能性がある。この場合、第1ゲインK1よりも大きい第2ゲインK2を偏差εに乗じることにより、制御の応答性の悪化を防止することができるためである。
偏差補正部22にて算出された補正偏差εcompは、補正モータ電流演算部25に与えられる。補正モータ電流演算部25は、電流指令値Iと補正偏差εcompとを加算して、補正モータ電流値Icompを算出する。この補正モータ電流値Icompは、差分算出部26に与えられる。差分算出部26は、電流指令値Iと補正モータ電流値Icompとの差分を算出して、第1のフィードバック制御項算出部27に与える。第1のフィードバック制御項算出部27は、差分算出部26から入力された差分結果に対して、積分処理を施して、第1のフィードバック制御項(積分項)を算出する。
なお、差分算出部26によって算出される差分結果は、偏差補正部22が出力する補正偏差εcompの符号を反転させたものに等しい。従って、偏差補正部22が出力する補正偏差εcompの符号を反転させたものを、直接、第1のフィードバック制御項算出部27に入力するようにしても良い。
補正モータ電流演算部25にて算出された、補正モータ電流値Icompは、第2のフィードバック制御項算出部28にも与えられる。第2のフィードバック制御項算出部28は、補正モータ電流値Icompに対して、所定の制御ゲインを乗じる比例項算出処理を施して、第2のフィードバック制御項(比例項)を算出する。
制御電圧演算部29は、これらの第1及び第2のフィードバック制御項に基づいて、上述した制御電圧Vを演算する。
このように、本実施形態によるモータ制御装置は、第1のフィードバック制御項及び第2のフィードバック制御項をそれぞれ算出する第1及び第2のフィードバック制御項算出部27,28を備える。そして、制御電圧演算部29が、これらの第1及び第2のフィードバック制御項に基づいて電動モータ6の制御電圧Vを算出する。従って、モータ制御装置における応答性や外乱に対する安定性を調整するための余裕度を高めることができる。
さらに、第1のフィードバック制御項は、補正偏差εcompに基づいて算出され、また第2のフィードバック制御項は、補正偏差εcompと電流指令値Iとの加算値である補正モータ電流値Icompに基づいて算出される。このため、第1及び第2のフィードバック制御項に対する、電動モータ6の実電流値Iに重畳したノイズ成分の影響を低減することができ、そのノイズ成分に起因する振動の発生を抑制することができる。
次に、ECU10によって実行される電動モータ6の駆動制御処理の流れを、図4のフローチャートに基づいて説明する。なお、この駆動制御処理に関しても、実際には、電流指令値Iとしてd軸及びq軸電流指令値Id,Iqとが算出され、制御電圧Vとしてd軸及びq軸制御電圧Vd,Vqとが算出されるが、ともに同様に処理されるため区別することなく説明する。
まず、ステップS10では、ステアリングホイール1に加わる操舵トルクと、車速とに基づいて、電動モータ6が発生すべき補助操舵トルクに応じた電流指令値Iを設定する。続くステップS20では、座標変換部20によって算出された電動モータ6の実電流値Iを取り込む。
ステップS30では、実電流値Iから電流指令値Iを減算することによって、実電流値Iと電流指令値Iとの偏差εを算出する。さらにステップS40では、電流指令値Iの変化率ΔIを演算する。ステップS50では、演算された電流指令値Iの変化率の絶対値|ΔI|と所定の第1閾値Th1とを比較する。このステップS50の判定処理において、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1以上であると判別したときには、ステップS80の処理に進み、偏差εに第2ゲインK2を乗じることによって、補正偏差εcompを算出する。
一方、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さいと判別したときには、ステップS60の処理に進み、さらに、偏差εの絶対値|ε|と所定の第2閾値Th2との大小関係を判定する。このステップS60の判定処理において、偏差εの絶対値|ε|が第2閾値Th2よりも小さいと判定されると、ステップS70の処理に進み、偏差εに第1ゲインK1を乗じることによって、補正偏差εcompを算出する。ステップS60にて、偏差εの絶対値|ε|が第2閾値Th2以上と判定されると、ステップS80の処理に進み、第2ゲインK2を用いて補正偏差εcompを算出する。
このように、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さく、かつ偏差εの絶対値|ε|が第2閾値Th2よりも小さいときに、第1ゲインK1が選択される。なお、これらの条件は、d軸及びq軸において独立して判定しても良いが、d軸及びq軸において、同時に、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1より小さく、かつ偏差εの絶対値|ε|が第2閾値Th2よりも小さいとの条件が成立したときに、第1ゲインK1を選択し、いずれか一方において、条件が不成立である場合には、第2ゲインK1を選択するようにしても良い。
このようにして、ステップS70またはステップS80のいずれかにおいて補正偏差εcompが算出されると、ステップS90において、補正偏差εcompに電流指令値Iを加算することによって、補正モータ電流値Icompを算出する。そして、ステップS100では、補正モータ電流値Icompに所定の制御ゲインF1を乗じることによって、第2のフィードバック制御項を算出し、ステップS110では、電流指令値Iから補正モータ電流値Icompを減じることによって算出した差分結果に対して積分演算処理を行って、第1のフィードバック制御項を算出する。
ステップS120では、ステップS100及びステップS110にて算出した第1及び第2のフィードバック制御項に基づいて、電動モータ6を駆動するための制御電圧出力Vを演算する。そして、ステップS130において、制御電圧出力Vに応じたPWM時間指令値を演算して、3相インバータ17に出力する。
上述した電動モータ6の駆動制御処理による効果について、図5(a),(b)を参照しつつ説明する。図5(a),(b)は、電流指令値として、q軸電流指令値を0[A]から5[A]にステップ的に変化させた際の、実際に電動モータ6に流れる実電流値のd軸電流値とq軸電流値との変動を示すものである。
図5(a)、(b)から明らかなように、d軸電流及びq軸電流とも、本実施形態によれば、その変動範囲が小さくなっていることが判る。これは、上述したように、実電流値に重畳するノイズ成分を、第1のゲインを用いて減少させていることによる効果である。この結果から、電動モータ6におけるトルク変動が低減され、ステアリングホイール1に伝達する振動も小さく抑えることができる。一方、本実施形態のようなゲインの切り換えを行うことなく、電流指令値と実電流値との偏差に基づいて、電流フィードバック制御を行う従来のものでは、実電流値の変動が大きくなっている。
なお、本実施形態のように、偏差εを補正するゲインの切り換えを行っても、制御系の応答性や安定性を阻害することはない。これを示すのが図6(a),(b)及び図7(a)、(b)のグラフである。
図6(a)、(b)は、従来のものと本実施形態によるモータ制御装置の閉ループ伝達特性を示している。周波数に対するゲイン及び位相特性は、従来のものと本実施形態とで、ほぼ同一である。これにより、本実施形態のように、偏差εを減少させる第1ゲインK1とそれよりも大きな第2ゲインK2との切り換えを行っても、制御系の応答性には何ら悪影響は生じていないことが判る。
また、図7(a)、(b)は、従来のものと本実施形態によるモータ制御装置の開ループ伝達特性を示している。この開ループ伝達特性は、外乱などに対する制御系の安定度を評価するために用いることができる。すなわち、ゲインが0となる周波数の位相が、−180度までどの程度余裕があるかに基づいて、制御系の安定度が評価できる。ゲイン0における周波数は、従来のものも、本実施形態によるものも、ともに約−120度であり、同等の安定度を有していることがわかる。
なお、上述した実施形態において、図3に点線で示す位置に低域通過フィルタ(LPF)を挿入して、電流指令値Iに遅れを生じさせて、遅れ電流指令値を生成し、偏差演算部21が、遅れ電流指令値と実電流値Iとの偏差を算出するように構成しても良い。電動モータ6の制御では、一般的に電流指令値Iと実電流値Iが一次遅れ特性を持つように制御系が設計される。すなわち、実電流値Iは、電流指令値Iに対してある遅れを有している。そこで、電流制御の一次遅れ特性に相当する所定の時定数にて電流指令値Iに遅れを発生させるLPFを用いれば、偏差演算部21において、電流指令値Iと実電流値Iとの偏差εをより精度よく算出することができる。
(第2実施形態)
次に、本発明の第2実施形態によるモータ制御装置について説明する。上述した第1実施形態では、電流指令値Iの変化率の絶対値|ΔI|が、所定の第1閾値Th1より小さいか否かによって、電動モータ6が発生すべき補助操舵トルクの変化が小さく、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態とみなせるか否かを判断した。
これに対して、第2実施形態によるモータ制御装置では、電動モータ6の回転速度に基づいて、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態とみなせるか否かを判断するものである。運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態では、電動モータ6が発生すべき補助操舵トルクの変化も僅かであり、結果として、電動モータ6の回転位置が僅かな範囲でしか変化しない。その場合、電動モータ6の回転速度ωの絶対値|ω|は所定の第3閾値Th3よりも小さくなる。逆に、電動モータ6が発生すべき補助操舵トルクが大きく変化すると、電動モータ6の回転位置の変化も大きくなるので、その回転速度ωの絶対値|ω|は第3閾値Th3以上となる。
なお、電動モータ6の回転速度ωは、位置検出回路19による回転位置の変化に基づいて算出するようにしても良いし、電動モータ6の電流のリプルや、電動モータ6の逆起電力を利用して算出しても良い。
図8は、第2実施形態によるモータ制御装置における電流制御部の制御ブロック図を示すものである。図8に示すように、第1実施形態における変化率演算部23が、電動モータ6の回転速度ωを演算する回転速度演算部30に置き換えられている。その他の構成は、第1実施形態によるモータ制御装置と同じである。
ただし、ゲイン決定部24では、演算された回転速度ωの絶対値|ω|を所定の第3閾値Th3と比較し、その大小関係を比較する。そして、回転速度ωの絶対値|ω|が第3閾値Th3より低いと判定したときに、第1ゲインK1を選択し、回転速度ωの絶対値|ω|が第3閾値Th3以上と判定したとき、第2ゲインK2を選択する。
図9は、第2実施形態によるモータ制御装置によって実行される駆動制御処理の流れを示すフローチャートである。この図9に示すフローチャートでは、ステップS45及びステップS55のみが、図4に示すフローチャートと異なっている。すなわち、ステップS45において、電動モータ6の回転速度ωを演算し、ステップS55において、演算した回転速度ωの絶対値|ω|と第3閾値Th3とを比較する。
(第3実施形態)
次に、本発明の第3実施形態によるモータ制御装置について説明する。本実施形態によるモータ制御装置では、第1実施形態における、電流指令値Iの変化率の絶対値|ΔI|と第1閾値Th1との比較、及び第2実施形態における、電動モータ6の回転速度ωの絶対値|ω|と第3閾値Th3との比較を組み合わせて、同時に実施するものである。これにより、電動モータ6が発生すべき補助操舵トルクの変化が小さく、運転者がステアリングホイール1を一定の舵角に保舵しているか、もしくはゆっくりと操舵している状態とみなせるか否かをより高精度に判断することができる。
図10は、第3実施形態によるモータ制御装置における電流制御部の制御ブロック図を示すものである。図10に示すように、ゲイン決定部24には、変化率演算部23によって算出された電流指令値Iの変化率ΔIと、回転速度演算部30によって演算された電動モータの回転速度ωとが入力される。そして、ゲイン決定部24では、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1よりも小さく、かつ回転速度ωの絶対値|ω|が第3閾値Th3よりも低い場合に、第1ゲインK1を選択し、それ以外の場合には、第2ゲインK2を選択する。
図11は、第3実施形態によるモータ制御装置によって実行される駆動制御処理の流れを示すフローチャートである。図11のフローチャートに示すように、ステップS40にて、電流指令値Iの変化率ΔIが演算され、ステップS45にて、電動モータ6の回転速度ωが演算される。そして、ステップS58では、電流指令値Iの変化率の絶対値|ΔI|が第1閾値Th1よりも小さく、かつ回転速度ωの絶対値|ω|が第3閾値Th3よりも低いか否かが判定される。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々、変形して実施することが可能である。
例えば、上述した各実施形態では、第1のフィードバック制御項として積分項を、第2のフィードバック制御項として比例項を用いたが、それ以外の制御項を用いても良い。例えば、第1及び第2のフィードバック制御項を算出するために、P、I、D制御の任意の組み合わせを用いることが可能である。
第1実施形態によるモータ制御装置の制御対象となる、電動パワーステアリング装置(EPS)を備えたステアリングシステムの全体構成を示す構成図である。 第1実施形態のモータ制御装置の制御ブロック図である。 図2の制御ブロック図における電流制御部の詳細な構成を示すブロック図である。 第1実施形態のモータ制御装置による、電動モータ6の駆動制御処理の流れを示すフローチャートである。 (a),(b)は、電動モータ6の駆動制御処理による効果を説明するための説明図である。 (a)、(b)は、従来のものと第1実施形態によるモータ制御装置の閉ループ伝達特性を示すグラフである。 (a)、(b)は、従来のものと第1実施形態によるモータ制御装置の開ループ伝達特性を示すグラフである。 第2実施形態のモータ制御装置における、電流制御部の構成を示すブロック図である。 第2実施形態のモータ制御装置による、電動モータ6の駆動制御処理の流れを示すフローチャートである。 第3実施形態のモータ制御装置における、電流制御部の構成を示すブロック図である。 第3実施形態のモータ制御装置による、電動モータ6の駆動制御処理の流れを示すフローチャートである。
符号の説明
6…電動モータ、
10…ECU、
12…電流指令値算出部、
13…d軸電流制御部、
14…q軸電流制御部、
16…時間指令値生成部、
17…3相インバータ、
18…電流検出回路、
19…位置検出回路、20…座標変換部、21…偏差演算部
22…偏差補正部、23…変化率演算部、24…ゲイン決定部、
25…補正モータ電流演算部、27…第1フィードバック制御項算出部
28…第2フィードバック制御項算出部、29…制御電圧演算部

Claims (8)

  1. 車両のステアリングホイールによる操舵操作に対して、補助力を与えるモータの駆動を制御するモータ制御装置であって、
    前記モータが発生すべき目標補助力に応じた電流指令値を算出する指令値算出手段と、
    前記モータに実際に通電された実電流値を検出する検出手段と、
    前記電流指令値と実電流値との偏差を算出する偏差算出手段と、
    前記モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとき、前記電流指令値と実電流値との偏差に対して、その偏差を減少させる第1ゲインを乗じて、前記偏差を補正する偏差補正手段と、
    前記偏差補正手段によって補正された偏差に基づいて、第1のフィードバック制御項を算出する第1の算出手段と、
    前記偏差補正手段によって補正された偏差と前記電流指令値との加算値に基づいて、第2のフィードバック制御項を算出する第2の算出手段と、
    前記第1のフィードバック制御項と前記第2のフィードバック制御項とに基づいて、前記モータに対する制御出力を算出する制御出力算出手段とを備えることを特徴とするモータ制御装置。
  2. 前記偏差補正手段は、前記目標補助力の変化の大きさが所定基準値以上のとき、前記偏差に対して前記第1ゲインよりも大きい第2ゲインを乗じて、前記偏差を補正することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記偏差算出手段は、前記電流指令値に所定の時定数を用いて遅れを生じさせて、遅れ電流指令値を生成する生成手段を有し、当該遅れ電流指令値と実電流値との偏差を算出することを特徴とする請求項1に記載のモータ制御装置。
  4. 前記偏差補正手段は、さらに、前記電流指令値と実電流値の偏差の絶対値が所定の第1閾値よりも小さいことを条件として、当該偏差に前記第1ゲインを乗じることを特徴とする請求項1に記載のモータ制御装置。
  5. 前記偏差補正手段は、前記モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さくとも、前記電流指令値と実電流値の偏差の絶対値が前記第1閾値以上である場合には、前記偏差に対して前記第1ゲインよりも大きい第2ゲインを乗じて、前記偏差を補正することを特徴とする請求項4に記載のモータ制御装置。
  6. 前記偏差補正手段は、前記電流指令値の変化率を算出する変化率算出手段を有し、当該電流指令値の変化率の絶対値が所定の第2閾値より小さい場合に、前記モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとみなすことを特徴とする請求項1に記載のモータ制御装置。
  7. 前記偏差補正手段は、前記モータの回転速度を検出する回転速度検出手段を有し、当該モータの回転速度の絶対値が所定の第3閾値より小さい場合に、前記モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとみなすことを特徴とする請求項1に記載のモータ制御装置。
  8. 前記偏差補正手段は、前記電流指令値の変化率を算出する変化率算出手段と、前記モータの回転速度を検出する回転速度検出手段とを備え、前記電流指令値の変化率の絶対値が所定の第2閾値より小さく、かつ前記モータの回転速度の絶対値が所定の第3閾値より小さい場合に、前記モータが発生すべき目標補助力の変化の大きさが所定基準値よりも小さいとみなすことを特徴とする請求項1に記載のモータ制御装置。
JP2006234955A 2006-08-31 2006-08-31 モータ制御装置 Pending JP2008056079A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234955A JP2008056079A (ja) 2006-08-31 2006-08-31 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234955A JP2008056079A (ja) 2006-08-31 2006-08-31 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2008056079A true JP2008056079A (ja) 2008-03-13

Family

ID=39239326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234955A Pending JP2008056079A (ja) 2006-08-31 2006-08-31 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2008056079A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273500A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 電動車両の制御装置
JP2013244798A (ja) * 2012-05-24 2013-12-09 Jtekt Corp 電動パワーステアリング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273500A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 電動車両の制御装置
JP2013244798A (ja) * 2012-05-24 2013-12-09 Jtekt Corp 電動パワーステアリング装置

Similar Documents

Publication Publication Date Title
EP2835906B1 (en) Motor control device and electric power steering device equipped with same
JP5440846B2 (ja) モータ制御装置および車両用操舵装置
EP2700565B1 (en) Electric power steering system
JP6107158B2 (ja) 電動パワーステアリング装置
JP5561516B2 (ja) モータ制御装置および車両用操舵装置
WO2010001579A1 (ja) モータ制御装置およびそれを備えた車両用操舵装置
US9821836B2 (en) Electric power steering system
JP5387878B2 (ja) モータ制御装置
JP5408469B2 (ja) モータ制御装置
JP2016172459A (ja) ステアリング装置
EP2700564B1 (en) Electric power steering system
CN111315637B (zh) 电动助力转向装置
JP2009006985A (ja) 電動パワーステアリング装置
JP2011109733A (ja) モータ制御装置および車両用操舵装置
JP5440845B2 (ja) モータ制御装置および車両用操舵装置
JP7047686B2 (ja) モータ駆動装置、及び操舵システム
JP2010070037A (ja) 電動パワーステアリング装置
US20220289274A1 (en) Electric power steering apparatus, control device used in electric power steering apparatus, and control method
JP5641299B2 (ja) モータ制御装置および車両用操舵装置
JP2008056079A (ja) モータ制御装置
JP5028813B2 (ja) 電動パワーステアリング装置及びその制御装置
JP5360273B2 (ja) 電動パワーステアリング装置の制御装置
JP5532294B2 (ja) モータ制御装置および車両用操舵装置
JP2009227105A (ja) 電動パワーステアリング装置
JP4852975B2 (ja) 電動パワーステアリング装置及びその制御装置