WO2013146661A1 - 薄膜パターン形成方法 - Google Patents

薄膜パターン形成方法 Download PDF

Info

Publication number
WO2013146661A1
WO2013146661A1 PCT/JP2013/058543 JP2013058543W WO2013146661A1 WO 2013146661 A1 WO2013146661 A1 WO 2013146661A1 JP 2013058543 W JP2013058543 W JP 2013058543W WO 2013146661 A1 WO2013146661 A1 WO 2013146661A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
organic
forming
pattern
film pattern
Prior art date
Application number
PCT/JP2013/058543
Other languages
English (en)
French (fr)
Inventor
修二 工藤
水村 通伸
梶山 康一
マハール アジズ ハニー
佳敬 梶山
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020147028436A priority Critical patent/KR102011452B1/ko
Priority to CN201380016813.3A priority patent/CN104206016B/zh
Publication of WO2013146661A1 publication Critical patent/WO2013146661A1/ja
Priority to US14/500,767 priority patent/US20150017321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to a thin film pattern forming method for forming a thin film pattern on the surface of a substrate on which an electrode has been previously formed in a thin film pattern forming region, and more particularly to a thin film pattern forming method capable of easily forming a high-definition thin film pattern.
  • the mask used is usually made by forming an opening of a predetermined shape on a thin metal plate by a method such as etching.
  • a method such as etching.
  • the pitch of the openings is narrowed in order to form a high-definition thin film pattern
  • the structural strength of the pitch portion is lowered, and the warp may occur.
  • the mask is distorted, the mask cannot be accurately aligned with the pattern on the substrate, making it difficult to form a high-definition thin film pattern.
  • a problem to be solved by the present invention that addresses such problems is to provide a thin film pattern forming method capable of easily forming a high-definition thin film pattern.
  • a thin film pattern forming method is a thin film pattern forming method for forming a thin film pattern having a predetermined shape on a surface of a substrate on which electrodes are previously formed in a thin film pattern forming region, A step of closely attaching a resin film that transmits visible light on the substrate, a step of irradiating a thin film pattern formation region on the substrate with a laser beam, and forming an opening pattern having the same shape as the thin film pattern on the film And forming a thin film pattern in the thin film pattern forming region on the substrate through the opening pattern of the film, and peeling the film.
  • the opening pattern of the film can be formed with high accuracy because it is formed by irradiating the laser beam with the film in close contact with the surface of the substrate. Since the thin film pattern is formed through the opening pattern formed with high precision, a high-definition thin film pattern can be easily formed.
  • FIGS. 1 to 4 are sectional views showing the TFT substrate 1 in the forming process of the present embodiment
  • FIGS. 5 to 8 are flowcharts showing the forming process of the present embodiment.
  • This method for manufacturing an organic EL display device is based on an anode electrode 12 (12R, 12G, 12B) formed in advance in an organic EL layer forming region (thin film pattern forming region) 11 (11R, 11G, 11B) of a TFT substrate 1.
  • an organic EL display device is manufactured by sequentially forming an organic EL layer (thin film pattern) 14 (14R, 14G, 14B) having a predetermined shape and a cathode electrode 15 (15R, 15G, 15B).
  • An organic EL layer forming step, a green (G) organic EL layer forming step, a blue (B) organic EL layer forming step, and a cathode electrode forming step are included.
  • the R organic EL layer forming step will be described with reference to FIGS.
  • the electrode material 13 of the R anode electrode 12R, the R organic EL layer 14R, and the R cathode electrode 15R are sequentially deposited and formed on the R organic EL layer forming region 11R of the TFT substrate 1 to form R.
  • This is a process of forming the organic EL layer 14R, and includes steps S1 to S9 as shown in FIG.
  • step S1 the film 2 is disposed above the TFT substrate 1.
  • the TFT substrate 1 is formed by laminating a transistor 17, a plurality of insulating films 18 and an anode electrode 12 provided for each organic EL layer forming region 11R, 11G, 11B on a transparent substrate 16 made of glass or the like. It is formed and driven by an active matrix driving method or a passive matrix driving method.
  • a top emission type organic EL display device is manufactured. That is, in the organic EL display device manufactured in the present embodiment, the counter substrate 3 side described later (see FIG. 4D) is the image display side.
  • the film 2 is a resin film that transmits visible light.
  • a film capable of ultraviolet laser ablation such as polyethylene terephthalate (PET) or polyimide having a thickness of about 10 ⁇ m to 30 ⁇ m is used.
  • PET polyethylene terephthalate
  • the film 2 is held by, for example, a holding unit that holds the film 2 that is cut to a size that covers the entire surface of the TFT substrate 1 and a roller that feeds and winds the long film 2.
  • 1 (a) is disposed above the TFT substrate 1, that is, spaced apart from the TFT substrate 1 on the R anode electrode 12R side.
  • step S2 as shown in FIG. 1 (b), the film 2 is brought into close contact with the TFT substrate 1.
  • the film 2 can be adhered by a method such as electrostatic adsorption. Since this film 2 is transparent to visible light, even if the film 2 covers the surface of the TFT substrate 1, the imaging means such as a microscope or a CCD camera can be used to cover the surface of the TFT through the film 2. Can be observed.
  • step S3 as shown in FIG. 1C, an opening pattern 21 is formed in a portion corresponding to the R organic EL layer forming region 11R of the film 2.
  • the surface of the TFT substrate 1 is observed through the film 2 by the imaging means, and the position of the R organic EL layer forming region 11R on the TFT substrate 1 is detected.
  • the portion of the film 2 covering the surface of the detected R organic EL layer forming region 11R is irradiated with the laser light L.
  • the laser used here for example, an excimer laser having a wavelength of 400 nm or less can be used, and for example, a KrF248 nm laser can be used.
  • the film 2 With the light energy of the ultraviolet laser beam L, the film 2 is ablated and removed, and an opening pattern 21 having the same shape as the R organic EL layer forming region 11R is formed. From the opening pattern 21 of the film 2 formed in this way, the R anode electrode 12R for driving the R organic EL layer 14R (see FIG. 1G) of the TFT substrate 1 is exposed. At this time, the opening pattern 21 is formed so that a part of the insulating film disposed on both sides of the R anode electrode 12R is exposed so that the R organic EL layer 14R can be formed over the entire surface of the R anode electrode 12R. It is preferable.
  • step S4 impurities are removed from the surface of the R anode electrode 12R as shown in FIG.
  • the impurities referred to here include, for example, residues such as the film 2 and the R anode electrode 12R ablated in step S3.
  • the R organic EL layer 14R is formed in a state where such impurities are attached to the surface of the R anode electrode 12R, the electrical resistance of the R anode electrode 12R increases, and the driving of the R organic EL layer 14R is obstructed. There is a fear. In addition, some of these impurities corrode the organic EL layer, which may shorten the useful life of the organic EL layer.
  • etching or laser is used.
  • a mixed gas of O 2 (oxygen), O 2 and Ar (argon), or a mixed gas of O 2 , Ar and CF 4 (carbon tetrafluoride) is used as an etching gas. It is preferable to remove impurities by dry etching.
  • a laser a green laser having an energy density of about 0.5 J / cm 2 and a wavelength of 532 nm, a 355 nm UV laser, a 266 nm DUV laser, or the like can be used.
  • O 2 a mixed gas of O 2 and Ar, the gas mixture of O 2 and Ar and CF 4, or O 3 (ozone) is preferably used in combination as the assist gas and the like.
  • step S5 impurities remaining on the R anode electrode 12R are removed.
  • step S4 impurities including residues such as the film 2 and the R anode electrode 12R are removed by etching or laser, but the residues attached to the surface of the R anode electrode 12R to be formed may not be completely removed. . Therefore, in addition to step S4, impurities remaining on the R anode electrode 12R are physically removed by performing ion bombardment treatment with inert gas plasma. As a result, the organic EL can be turned on without shortening the service life of the organic EL layer.
  • the inert gas referred to here includes Ar (argon), He (helium), Ne (neon), Xe (xenon), Kr (krypton), and the like.
  • both the impurity removal steps S4 and S5 are performed. However, either one of steps S4 or S5 may be performed.
  • the steps S4 and S5 and step S6 described later need not be executed if an impurity removal step is unnecessary.
  • an electrode material 13 is formed on the R anode electrode 12R.
  • the electrode material 13 here means a material for forming the anode electrode 12, and includes, for example, Al (aluminum), Mg (magnesium), and the like.
  • the electrode material 13 is deposited on the surface of the R anode electrode 12R through the opening pattern 21 formed in the film 2 by a method such as sputtering, vacuum deposition, and ion plating. If the impurity residue is completely removed in step S4 or S5, step S6 need not be executed.
  • an R organic EL layer 14R is formed as shown in FIG.
  • the R organic EL layer 14R is formed by sequentially depositing a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and the like on the R anode electrode 12R through the opening pattern 21 of the film 2. And laminating.
  • an R cathode electrode 15R is formed as shown in FIG.
  • the R cathode electrode (ITO) 15R is a transparent metal thin film made of indium tin oxide or the like.
  • the R cathode electrode 15 ⁇ / b> R is formed on the R organic EL layer 14 ⁇ / b> R through the opening pattern 21 formed on the film 2.
  • step S9 as shown in FIG. 1 (i), the film 2 is peeled off.
  • the film 2 adhered to the surface of the TFT substrate 1 is peeled off from the surface of the TFT substrate 1 by relatively separating the film 2 and the TFT substrate 1 in the vertical direction in FIG.
  • the R organic EL layer forming step is completed.
  • the G organic EL layer forming step will be described with reference to FIGS.
  • the electrode material 13 of the G anode electrode 12G, the G organic EL layer 14G and the G cathode electrode 15G are sequentially deposited and formed on the G organic EL layer forming region 11G of the TFT substrate 1 to form the G
  • step S10 the film 2 is disposed above the TFT substrate 1 in step S10 (see FIG. 2A), the film 2 is brought into close contact with the TFT substrate 1 in step S11 (see FIG. 2B), and in step S12.
  • An opening pattern 21 is formed in a portion corresponding to the G organic EL layer forming region 11G of the film 2 (see FIG. 2C), and in step S13, impurities are removed from the surface of the G anode electrode 12G by dry etching (or laser).
  • step S14 impurities on the G anode electrode 12G that could not be removed in step S13 are removed by ion bombardment processing (see FIG. 2E).
  • step S15 G is removed.
  • An electrode material 13 is deposited on the anode electrode 12G (see FIG. 2 (f)), and in step S16 G organic EL 14G is formed (see FIG. 2 (g)), the G cathode electrode 15G is formed in step S17 (see FIG. 2 (h)), and the film 2 is peeled off in step S18 (see FIG. 2 (i)). , G organic EL layer forming step is completed.
  • both the impurity removal steps S13 and S14 are performed. However, only one of steps S13 and S14 may be performed.
  • the steps S13, S14, and S15 do not have to be performed when the impurity removal step is unnecessary. If the impurity residue is completely removed in step S13 or S14, step S15 need not be executed.
  • the opening pattern 21 formed in the film 2 in step S12 is formed so that the R anode electrode 12R and the G anode electrode 12G are not short-circuited. That is, the respective opening patterns 21 are formed so that the electrode materials 13 formed in the R organic EL layer forming region 11R and the G organic EL layer forming region 11G are separated from each other by a predetermined distance without contacting each other (FIG. 2). (Refer to (f)).
  • the B organic EL layer forming step will be described with reference to FIGS.
  • the electrode material 13 of the B anode electrode 12B, the B organic EL layer 14B, and the B cathode electrode 15B are sequentially deposited on the B organic EL layer forming region 11B of the TFT substrate 1 to form B.
  • step S19 the film 2 is disposed above the TFT substrate 1 in step S19 (see FIG. 3A), the film 2 is brought into close contact with the TFT substrate 1 in step S20 (see FIG. 3B), and in step S21.
  • An opening pattern 21 is formed in a portion corresponding to the B organic EL layer forming region 11B of the film 2 (see FIG. 3C).
  • step S22 impurities are removed from the surface of the B anode electrode 12B by dry etching (or laser).
  • step S23 impurities on the B anode electrode 12B that could not be removed in step S22 are removed by ion bombardment (see FIG. 3E), and in step S24, B is removed.
  • An electrode material 13 is formed on the anode electrode 12B (see FIG.
  • step S25 B organic EL is formed in step S25.
  • 14B is formed (see FIG. 3G)
  • the B cathode electrode 15B is formed in step S26 (see FIG. 3H)
  • the film 2 is peeled off in step S27 (see FIG. 3I).
  • B organic EL layer forming step is completed.
  • both the impurity removal steps S22 and S23 are performed. However, either one of steps S22 or S23 may be performed.
  • the steps S22, S23, and S24 do not have to be performed when the impurity removal step is unnecessary. If the impurity residue is completely removed in step S22 or S23, step S24 need not be executed.
  • the above steps are the same as the corresponding steps of the R organic EL layer forming step and the G organic EL layer forming step.
  • the opening pattern 21 formed in the film 2 in step S21 is formed so that the R anode electrode 12R, the G anode electrode 12G, and the B anode electrode 12B are not short-circuited. That is, the respective opening patterns are formed so that the electrode materials 13 formed in the R organic EL layer forming region 11R, the G organic EL layer forming region 11G, and the B organic EL layer forming region 11B are separated from each other by a predetermined distance without being in contact with each other. 21 is formed (see FIG. 3F).
  • This cathode electrode forming step is a step of completing the organic EL display device by forming the cathode electrode 15 and bonding the counter substrate 3 together, and includes steps S28 to S31 as shown in FIG. Is done.
  • step S28 the cathode electrode 15 is formed as shown in FIG.
  • cathode electrodes 15R, 15G, and 15B are formed on the organic EL layers 14R, 14G, and 14B.
  • the cathode electrodes 15R, 15G, and 15B are formed on each other. They are not electrically connected (see FIG. 3 (i)). Therefore, the cathode electrode 15 is again formed on the entire TFT substrate 1 to electrically connect the cathode electrodes 15R, 15G, and 15B.
  • step S29 the protective film 4 is formed as shown in FIG.
  • the protective film 4 is formed of an insulating material, and is formed on the cathode electrode 15 formed in step S28 so as to cover the entire cathode electrode 15.
  • step S30 an adhesive layer 5 is formed on the protective film 4 as shown in FIG.
  • the adhesive layer 5 is formed, for example, by spin coating or spray coating a UV curable resin.
  • step S31 the counter substrate 3 is bonded as shown in FIG.
  • the counter substrate 3 is transparent and is bonded onto the adhesive layer 5.
  • the counter substrate 3 can be bonded by, for example, attaching the counter substrate 3 to the adhesive layer 5 and then curing the adhesive layer 5 by irradiating ultraviolet rays from the counter substrate 3 side.
  • the organic EL display device is completed.
  • the organic EL display device manufacturing method includes a step (S 2, S 11, S 20) of closely attaching a resin film 2 that transmits visible light on the TFT substrate 1, and an organic on the TFT substrate 1.
  • a step (S7, S16, S25) for forming the organic EL layer 14 in the organic EL layer forming region 11 on the TFT substrate 1 and a step (S9, S18, S27) for peeling the film 2 are included. Composed.
  • the opening pattern 21 of the film 2 is formed by irradiating the laser beam L with the film 2 being in close contact with the surface of the TFT substrate 1, it can be formed with high accuracy. Further, since the organic EL layer is formed through the opening pattern 21 formed with high accuracy, the high-definition organic EL layer 14 can be easily formed.
  • the method for manufacturing an organic EL display device includes the steps of forming the opening pattern 21 in the TFT substrate 1 in which the anode electrode 12 is previously formed in the organic EL layer forming region 11 (S3, S12, Between the step S21) and the step of forming the organic EL layer 14 (S7, S16, S25), a step of removing impurities from the surface of the anode electrode 12 is further included. In this case, steps (S4, S13, S22) of removing impurities from the surface of the anode electrode 12 by dry etching (or laser) are performed.
  • steps (S4, S13, S22) steps (S5, S14, S23) for removing impurities from the surface of the anode electrode 12 by ion bombardment with an inert gas are performed. Therefore, even if the impurities cannot be completely removed from the surface of the anode electrode 12 in steps (S4, S13, S22), the electrical resistance of the anode electrode 12 can be reduced by physically removing the impurities by ion bombardment treatment. It is possible to remove adverse effects such as rising and corrosion of the organic EL layer 14. Thereby, the organic EL can be turned on without reducing the life of the organic EL display device.
  • the method for manufacturing an organic EL display device includes the steps of forming the opening pattern 21 on the TFT substrate 1 in which the anode electrode 12 is previously formed in the organic EL layer forming region 11 (S3, S12, Between the step S21) and the step of forming the organic EL layer 14 (S7, S16, S25), the method further includes the step of forming the electrode material 13 on the anode electrode 12 through the opening pattern 21 of the film 2. Composed. In this case, the film is removed between the step of removing impurities from the surface of the anode electrode 12 (S4, S5; S13, S14; S22, S23) and the step of forming the organic EL layer 14 (S7, S16, S25).
  • the step (S6, S15, S24) of forming the electrode material 13 on the anode electrode 12 through the two opening patterns 21 is performed. Therefore, even if impurities are deposited on the anode electrode 12 after the opening pattern 21 is formed on the film 2, the electrode material 13 is formed again to prevent the electrical resistance of the anode electrode 12 from increasing. Can do. Moreover, since the electrode material 13 is formed between the impurity and the organic EL layer 14, corrosion of the organic EL layer 14 due to the impurity can be prevented.
  • the present invention is not limited to the method of manufacturing the organic EL display device described in the present embodiment, and any bottom emission type organic EL display device or liquid crystal display device can be used as long as it is intended to form a high-definition thin film pattern.
  • the present invention can also be applied to the formation of color filters, semiconductor substrate wiring patterns, and the like.
  • a thin metal plate made of iron or the like is disposed on at least a part of the upper part of the film 2 (opposite side of the TFT substrate 1), and below the TFT substrate 1 (opposite of the film 2) A magnetic chuck may be arranged on the side). With such a configuration, the film 2 can be adhered to the TFT substrate 1 by magnetic adsorption.
  • the cathode electrode 15 is formed in each organic EL layer forming step and then formed again in the cathode electrode forming step, but the film formation in each organic EL layer forming step is omitted. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明は、薄膜パターン形成領域に予め電極が形成された基板1の表面に所定の形状を有する薄膜パターン14を形成する薄膜パターン形成方法であって、前記基板1上に可視光を透過する樹脂製のフィルム2を密着させるステップと、前記基板1上の薄膜パターン形成領域11にレーザ光Lを照射し、前記フィルム2に薄膜パターン14と同形状の開口パターン21を形成するステップと、前記フィルム2の開口パターン21を介して、前記基板1上の前記薄膜パターン形成領域11に薄膜パターン14を成膜するステップと、前記フィルム2を剥離するステップと、を含んで構成されるものである。これにより、薄膜パターン形成領域に予め電極が形成された基板の表面に高精細な薄膜パターンを容易に形成することができる。

Description

薄膜パターン形成方法
 本発明は、薄膜パターン形成領域に予め電極が形成された基板の表面に薄膜パターンを形成する薄膜パターン形成方法に関し、特に高精細な薄膜パターンを容易に形成することができる薄膜パターン形成方法に関する。
 従来の薄膜パターン形成方法として、所定のパターンに対応した形状の開口を有するマスクを基板に対して位置合わせした後に基板上に密着させ、前記マスクを介して基板に対するパターニング成膜を行うものがあった(例えば、特許文献1参照)。
特開2003-73804号公報
 前記従来の薄膜パターン形成方法において、使用されるマスクは、通常薄い金属板に所定形状の開口をエッチング等の方法により形成して作られたものであった。このようなメタルマスクは、高精細な薄膜パターンを形成するために開口のピッチを狭くすると、当該ピッチ部分の構造強度が低下し、よれが発生することがあった。マスクによれが発生すると、基板上のパターンに対してマスクを正確にアライメントできず、高精細な薄膜パターンを形成するのが困難となった。
 そこで、このような問題点に対処し、本発明が解決しようとする課題は、高精細な薄膜パターンを容易に形成することができる薄膜パターン形成方法を提供することにある。
 前記課題を解決するために、本発明による薄膜パターン形成方法は、薄膜パターン形成領域に予め電極が形成された基板の表面に所定の形状を有する薄膜パターンを形成する薄膜パターン形成方法であって、前記基板上に、可視光を透過する樹脂製のフィルムを密着させるステップと、前記基板上の薄膜パターン形成領域にレーザ光を照射し、前記フィルムに薄膜パターンと同形状の開口パターンを形成するステップと、前記フィルムの開口パターンを介して、前記基板上の前記薄膜パターン形成領域に薄膜パターンを成膜するステップと、前記フィルムを剥離するステップと、を含んで構成される。
 本発明による薄膜パターン形成方法によれば、フィルムの開口パターンは、フィルムが基板の表面に密着した状態でレーザ光を照射することにより形成されるため、高精度に形成することができる。薄膜パターンは、高精度に形成された開口パターンを介して成膜されるため、高精細な薄膜パターンを容易に形成することができる。
本発明による薄膜パターン形成方法を適用した有機EL表示装置の製造方法の実施形態を示す説明図であり、赤色(R)有機EL層形成工程におけるTFT基板を示す断面図である。 前記実施形態の緑色(G)有機EL層形成工程におけるTFT基板を示す断面図である。 前記実施形態の青色(B)有機EL層形成工程におけるTFT基板を示す断面図である。 前記実施形態のカソード電極形成工程におけるTFT基板を示す断面図である。 前記R有機EL層形成工程を示すフローチャートである。 前記G有機EL層形成工程を示すフローチャートである。 前記B有機EL層形成工程を示すフローチャートである。 前記カソード電極形成工程を示すフローチャートである。
 1…TFT基板
 11,11R,11G,11B…有機EL層形成領域(薄膜パターン形成領域)
 12,12R,12G,12B…アノード電極
 13…電極材料
 14,14R,14G,14B…有機EL層(薄膜パターン)
 15,15R,15G,15B…カソード電極
 16…透明基板
 17…トランジスタ
 18…絶縁膜
 2…フィルム
 21…開口パターン
 3…対向基板
 4…保護膜
 5…接着層
 L…レーザ光
 以下、本発明による薄膜パターン形成方法を、基板上に有機EL層を形成して有機EL表示装置を製造する製造方法に適用した実施形態について、図1~8を参照して説明する。図1~4は本実施形態の形成工程におけるTFT基板1を示す断面図であり、図5~8は本実施形態の形成工程を示すフローチャートである。この有機EL表示装置の製造方法は、TFT基板1の有機EL層形成領域(薄膜パターン形成領域)11(11R,11G,11B)に予め形成されたアノード電極12(12R,12G,12B)上に、所定の形状を有する有機EL層(薄膜パターン)14(14R,14G,14B)及びカソード電極15(15R,15G,15B)を順次成膜して有機EL表示装置を製造する方法であり、赤色(R)有機EL層形成工程と、緑色(G)有機EL層形成工程と、青色(B)有機EL層形成工程と、カソード電極形成工程とを含んで構成される。
 まず、R有機EL層形成工程について、図1,5を参照して説明する。このR有機EL層形成工程は、TFT基板1のR有機EL層形成領域11Rに、Rアノード電極12Rの電極材料13、R有機EL層14R及びRカソード電極15Rを順次蒸着・成膜してR有機EL層14Rを形成する工程であり、図5に示すように、ステップS1~S9を含んで構成される。
 ステップS1において、図1(a)に示すように、TFT基板1の上方にフィルム2を配置する。TFT基板1は、ガラス等から構成された透明基板16上に、各有機EL層形成領域11R,11G,11Bごとに設けられたトランジスタ17と複数の絶縁膜18とアノード電極12とを積層して形成されており、アクティブマトリックス駆動方式やパッシブマトリクス駆動方式により駆動される。このTFT基板1を使用することにより、トップエミッション方式の有機EL表示装置が製造される。すなわち、本実施形態において製造される有機EL表示装置は、後述する対向基板3側(図4(d)参照)が画像の表示側となる。
 前記フィルム2は、可視光を透過する樹脂製のフィルムであり、例えば厚みが10μm~30μm程度のポリエチレンテレフタレート(PET)やポリイミド等の紫外線レーザアブレーションが可能なフィルムが使用される。このフィルム2は、例えば、TFT基板1の全面を覆う大きさに裁断された状態のフィルム2を保持する保持手段や、長尺なフィルム2の送出し及び巻取りを行うローラにより保持され、図1(a)におけるTFT基板1の上方に、すなわちTFT基板1のRアノード電極12R側に離間して配置される。
 ステップS2において、図1(b)に示すように、TFT基板1上にフィルム2を密着させる。フィルム2は、静電吸着等の方法により密着させることができる。このフィルム2は可視光に対して透明であるため、フィルム2がTFT基板1の表面を覆った状態であっても、顕微鏡やCCDカメラ等の撮像手段は、フィルム2を介してTFTの表面を観察することができる。
 ステップS3において、図1(c)に示すように、フィルム2のR有機EL層形成領域11Rと対応する部分に開口パターン21を形成する。まず、撮像手段によりフィルム2を介してTFT基板1の表面を観察し、TFT基板1上のR有機EL層形成領域11Rの位置を検出する。次に、検出されたR有機EL層形成領域11Rの表面を覆うフィルム2の部分に対してレーザ光Lを照射する。ここで使用されるレーザとして、例えば、波長が400nm以下のエキシマレーザ等を使用することができ、例えばKrF248nmのレーザを使用することができる。このような紫外線のレーザ光Lの光エネルギーにより、フィルム2がアブレーションされて除去され、R有機EL層形成領域11Rと同形状の開口パターン21が形成される。このように形成されたフィルム2の開口パターン21からは、TFT基板1のR有機EL層14R(図1(g)参照)を駆動するためのRアノード電極12Rが露出する。この際、開口パターン21は、Rアノード電極12Rの全面に亘ってR有機EL層14Rを形成できるように、Rアノード電極12Rの両側に配置された絶縁膜の一部が露出するように形成されるのが好ましい。
 ステップS4において、図1(d)に示すように、Rアノード電極12Rの表面から不純物を除去する。ここでいう不純物には、例えば前記ステップS3においてアブレーションされたフィルム2やRアノード電極12R等の残渣が含まれる。このような不純物がRアノード電極12Rの表面に付着した状態でR有機EL層14Rが成膜されると、Rアノード電極12Rの電気抵抗が上昇し、R有機EL層14Rの駆動に障害が生じるおそれがある。また、このような不純物には有機EL層を腐食するものもあり、有機EL層の耐用年数を縮めるおそれがある。
 このような不純物を除去するために、エッチングやレーザが使用される。エッチングを行う場合には、O2(酸素)、O2とAr(アルゴン)との混合気、又はO2とArとCF4(四フッ化炭素)との混合気等をエッチングガスとして使用したドライエッチングにより不純物を除去するのが好ましい。また、レーザを使用する場合には、エネルギー密度が0.5J/cm2程度で波長が532nmのグリーンレーザ,355nmのUVレーザ,266nmのDUVレーザ等を使用することができる。この際、O2、O2とArとの混合気、O2とArとCF4との混合気、又はO3(オゾン)等をアシストガスとして併用するのが好ましい。
 ステップS5において、図1(e)に示すように、Rアノード電極12R上に残った不純物を除去する。ステップS4において、エッチングやレーザによりフィルム2やRアノード電極12R等の残渣を含む不純物の除去を行ったが、成膜するRアノード電極12Rの表面に付着した残渣は完全には除去できないおそれがある。したがって、ステップS4に加えて、不活性ガスプラズマによるイオン衝撃処理を行うことにより、Rアノード電極12R上に残った不純物を物理的に除去する。これにより有機EL層の耐用年数を縮めることなく有機ELの点灯が可能となる。また、ここでいう不活性ガスには、Ar(アルゴン)、He(ヘリウム)、Ne(ネオン)、Xe(キセノン)又はKr(クリプトン)等が含まれる。
 なお、前記では、不純物除去のステップS4及びS5の両方を行ったが、ステップS4又はS5のどちらか一方のみを行ってもよい。また、前記開口パターン21を形成するステップS3の工程終了後に、不純物除去の工程が不要な場合は、前記ステップS4,S5及び後述のステップS6を実行しなくてもよい。
 ステップS6において、図1(f)に示すように、Rアノード電極12Rに電極材料13を成膜する。ここでいう電極材料13とは、アノード電極12を形成する材料を意味し、例えばAl(アルミニウム)やMg(マグネシウム)等が含まれる。電極材料13は、スパッタリング、真空蒸着、及びイオンプレーティング等の方法により、フィルム2に形成された開口パターン21を介してRアノード電極12Rの表面に蒸着される。また、前記ステップS4又はS5で不純物の残渣が完全に除去される場合は、前記ステップS6を実行しなくてもよい。
 ステップS7において、図1(g)に示すように、R有機EL層14Rを成膜する。R有機EL層14Rの成膜は、Rアノード電極12R上にフィルム2の開口パターン21を介して、正孔注入層、正孔輸送層、赤色の有機発光層、電子輸送層等を順次蒸着して積層することにより行われる。
 ステップS8において、図1(h)に示すように、Rカソード電極15Rを成膜する。Rカソード電極(ITO)15Rは、酸化インジウム錫等からなる透明な金属薄膜である。Rカソード電極15Rは、フィルム2に形成された開口パターン21を介してR有機EL層14R上に成膜される。
 ステップS9において、図1(i)に示すように、フィルム2を剥離する。TFT基板1の表面に密着したフィルム2は、フィルム2とTFT基板1とを相対的に図1の上下方向に引き離すことにより、TFT基板1の表面から剥離される。以上により、R有機EL層形成工程が終了する。
 次に、G有機EL層形成工程について、図2,6を参照して説明する。このG有機EL層形成工程は、TFT基板1のG有機EL層形成領域11Gに、Gアノード電極12Gの電極材料13、G有機EL層14G及びGカソード電極15Gを順次蒸着・成膜してG有機EL層14Gを形成する工程であり、図6に示すように、ステップS10~S18を含んで構成される。
 すなわち、ステップS10においてTFT基板1の上方にフィルム2を配置し(図2(a)参照)、ステップS11においてTFT基板1上にフィルム2を密着させ(図2(b)参照)、ステップS12においてフィルム2のG有機EL層形成領域11Gと対応する部分に開口パターン21を形成し(図2(c)参照)、ステップS13において、ドライエッチング(又はレーザ)によりGアノード電極12Gの表面から不純物を除去し(図2(d)参照)、ステップS14において、イオン衝撃処理によりステップS13で除去しきれなかったGアノード電極12G上の不純物を除去し(図2(e)参照)、ステップS15においてGアノード電極12Gに電極材料13を成膜し(図2(f)参照)、ステップS16においてG有機EL層14Gを成膜し(図2(g)参照)、ステップS17においてGカソード電極15Gを成膜し(図2(h)参照)、ステップS18においてフィルム2を剥離し(図2(i)参照)、G有機EL層形成工程が終了する。
 なお、前記では、不純物除去のステップS13及びS14の両方を行ったが、ステップS13又はS14のどちらか一方のみを行ってもよい。また、前記開口パターン21を形成するステップS12の工程終了後に、不純物除去の工程が不要な場合は、前記ステップS13,S14及びS15を実行しなくてもよい。また、前記ステップS13又はS14で不純物の残渣が完全に除去される場合は、前記ステップS15を実行しなくてもよい。
 以上の各工程は、R有機EL層形成工程の対応する各工程と同様である。なお、ステップS12においてフィルム2に形成される開口パターン21は、Rアノード電極12RとGアノード電極12Gとが短絡しないように形成される。すなわち、R有機EL層形成領域11RとG有機EL層形成領域11Gとに成膜した電極材料13が互いに接することなく所定の距離離間するように、それぞれの開口パターン21は形成される(図2(f)参照)。
 次に、B有機EL層形成工程について、図3,7を参照して説明する。このB有機EL層形成工程は、TFT基板1のB有機EL層形成領域11Bに、Bアノード電極12Bの電極材料13、B有機EL層14B及びBカソード電極15Bを順次蒸着・成膜してB有機EL層14Bを形成する工程であり、図7に示すように、ステップS19~S27を含んで構成される。
 すなわち、ステップS19においてTFT基板1の上方にフィルム2を配置し(図3(a)参照)、ステップS20においてTFT基板1上にフィルム2を密着させ(図3(b)参照)、ステップS21においてフィルム2のB有機EL層形成領域11Bと対応する部分に開口パターン21を形成し(図3(c)参照)、ステップS22において、ドライエッチング(又はレーザ)によりBアノード電極12Bの表面から不純物を除去し(図3(d)参照)、ステップS23において、イオン衝撃処理によりステップS22で除去しきれなかったBアノード電極12B上の不純物を除去し(図3(e)参照)、ステップS24においてBアノード電極12Bに電極材料13を成膜し(図3(f)参照)、ステップS25においてB有機EL層14Bを成膜し(図3(g)参照)、ステップS26においてBカソード電極15Bを成膜し(図3(h)参照)、ステップS27においてフィルム2を剥離し(図3(i)参照)、B有機EL層形成工程が終了する。
 なお、前記では、不純物除去のステップS22及びS23の両方を行ったが、ステップS22又はS23のどちらか一方のみを行ってもよい。また、前記開口パターン21を形成するステップS21の工程終了後に、不純物除去の工程が不要な場合は、前記ステップS22,S23及びS24を実行しなくてもよい。また、前記ステップS22又はS23で不純物の残渣が完全に除去される場合は、前記ステップS24を実行しなくてもよい。
 以上の各工程は、R有機EL層形成工程及びG有機EL層形成工程の対応する各工程と同様である。なお、ステップS21においてフィルム2に形成される開口パターン21は、Rアノード電極12RとGアノード電極12GとBアノード電極12Bとが短絡しないように形成される。すなわち、R有機EL層形成領域11RとG有機EL層形成領域11GとB有機EL層形成領域11Bとに成膜した電極材料13が互いに接することなく所定の距離離間するように、それぞれの開口パターン21は形成される(図3(f)参照)。
 最後に、カソード電極形成工程について、図4,8を参照して説明する。このカソード電極形成工程は、カソード電極15を成膜して対向基板3を貼り合わせることにより、有機EL表示装置を完成させる工程であり、図8に示すように、ステップS28~S31を含んで構成される。
 ステップS28において、図4(a)に示すように、カソード電極15を成膜する。上記の各有機EL層形成工程において、それぞれの有機EL層14R,14G,14B上にはカソード電極15R,15G,15Bが成膜されているが、これらの各カソード電極15R,15G,15Bは互いに電気的に接続されていない(図3(i)参照)。そこで改めてTFT基板1全体にカソード電極15を成膜することにより、各カソード電極15R,15G,15Bをそれぞれ電気的に接続する。
 ステップS29において、図4(b)に示すように、保護膜4を成膜する。この保護膜4は、絶縁性の材料により形成さており、上記ステップS28において成膜されたカソード電極15上に、カソード電極15全体を覆うように成膜される。
 ステップS30において、図4(c)に示すように、保護膜4上に接着層5を形成する。接着層5は、例えばUV硬化性の樹脂をスピンコート又はスプレー塗布することにより形成される。
 ステップS31において、図4(d)に示すように、対向基板3を貼り合わせる。この対向基板3は透明であり、接着層5上に貼り合わせられる。対向基板3の貼り合わせは、例えば対向基板3を接着層5上に密着させた後、対向基板3側から紫外線を照射して接着層5を硬化させることにより行うことができる。以上により、有機EL表示装置が完成する。
 本実施形態によれば、有機EL表示装置の製造方法は、TFT基板1上に可視光を透過する樹脂製のフィルム2を密着させるステップ(S2,S11,S20)と、TFT基板1上の有機EL層形成領域11にレーザ光Lを照射し、フィルム2に有機EL層形成領域11と同形状の開口パターン21を形成するステップ(S3,S12,S21)と、フィルム2の開口パターン21を介して、TFT基板1上の有機EL層形成領域11に有機EL層14を成膜するステップ(S7,S16,S25)と、フィルム2を剥離するステップ(S9,S18,S27)と、を含んで構成される。フィルム2の開口パターン21は、フィルム2がTFT基板1の表面に密着した状態でレーザ光Lを照射することにより形成されるため、高精度に形成することができる。また、有機EL層は、高精度に形成された開口パターン21を介して成膜されるため、高精細な有機EL層14を容易に形成することができる。
 また、本実施形態によれば、有機EL表示装置の製造方法は、有機EL層形成領域11に予めアノード電極12が形成されたTFT基板1において、開口パターン21を形成するステップ(S3,S12,S21)と有機EL層14を成膜するステップ(S7,S16、S25)との間に、アノード電極12の表面から不純物を除去するステップをさらに含んで構成される。この場合、ドライエッチング(又はレーザ)によりアノード電極12の表面から不純物を除去するステップ(S4,S13,S22)を行う。したがって、アノード電極12上に不純物が存在することによりもたらされる、アノード電極12の電気抵抗の上昇や有機EL層14の腐食などの弊害を除去することができる。加えて、上記ステップ(S4,S13,S22)後に、不活性ガスによるイオン衝撃処理によりアノード電極12の表面から不純物を除去するステップ(S5,S14,S23)を行う。したがって、ステップ(S4,S13,S22)でアノード電極12の表面から不純物を完全に除去できない場合であっても、イオン衝撃処理によって物理的に不純物を除去することにより、アノード電極12の電気抵抗の上昇や有機EL層14の腐食などの弊害を除去することができる。これにより、有機EL表示装置の寿命を低下させることなく有機ELの点灯が可能となる。
 さらに、本実施形態によれば、有機EL表示装置の製造方法は、有機EL層形成領域11に予めアノード電極12が形成されたTFT基板1において、開口パターン21を形成するステップ(S3,S12,S21)と有機EL層14を成膜するステップ(S7,S16、S25)との間に、フィルム2の開口パターン21を介して、アノード電極12に電極材料13を成膜するステップをさらに含んで構成される。この場合、アノード電極12の表面から不純物を除去するステップ(S4,S5;S13,S14;S22,S23)と有機EL層14を成膜するステップ(S7,S16,S25)との間に、フィルム2の開口パターン21を介して、アノード電極12に電極材料13を成膜するステップ(S6,S15,S24)を行う。したがって、フィルム2に開口パターン21を形成した後にアノード電極12上に不純物が付着した場合であっても、電極材料13を改めて成膜することにより、アノード電極12の電気抵抗の上昇を防止することができる。また、不純物と有機EL層14との間に電極材料13が成膜されるため、不純物による有機EL層14の腐食を防止することができる。
 なお、本発明は、本実施形態において説明した有機EL表示装置の製造方法に限られず、高精細な薄膜パターンを形成しようとするものであれば、ボトムエミッション方式の有機EL表示装置、液晶表示装置のカラーフィルター、半導体基板の配線パターン等の形成にも適用することができる。
 また、本発明の他の実施形態において、フィルム2の上部(TFT基板1と反対側)の少なくとも一部に鉄等からなる薄い金属板を配置するとともに、TFT基板1の下方(フィルム2と反対側)に磁気チャックを配置してもよい。このような構成により、フィルム2を磁気吸着によりTFT基板1に密着させることができる。
 さらに、本実施形態において、カソード電極15は、各有機EL層形成工程でそれぞれ成膜した後、カソード電極形成工程で改めて全体に成膜したが、各有機EL層形成工程での成膜を省略してもよい。

Claims (3)

  1.  薄膜パターン形成領域に予め電極が形成された基板の表面に所定の形状を有する薄膜パターンを形成する薄膜パターン形成方法であって、
     前記基板上に、可視光を透過する樹脂製のフィルムを密着させるステップと、
     前記基板上の薄膜パターン形成領域にレーザ光を照射し、前記フィルムに薄膜パターンと同形状の開口パターンを形成するステップと、
     前記フィルムの開口パターンを介して、前記基板上の前記薄膜パターン形成領域に薄膜パターンを成膜するステップと、
     前記フィルムを剥離するステップと、
    を含んで構成されることを特徴とする薄膜パターン形成方法。
  2.  前記開口パターンを形成するステップと前記薄膜パターンを成膜するステップとの間に、前記電極の表面から不純物を除去するステップをさらに含んで構成されることを特徴とする請求項1に記載の薄膜パターン形成方法。
  3.  前記開口パターンを形成するステップと前記薄膜パターンを成膜するステップとの間に、前記フィルムの開口パターンを介して、前記電極に電極材料を成膜するステップをさらに含んで構成されることを特徴とする請求項1又は2に記載の薄膜パターン形成方法。
PCT/JP2013/058543 2012-03-30 2013-03-25 薄膜パターン形成方法 WO2013146661A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147028436A KR102011452B1 (ko) 2012-03-30 2013-03-25 박막 패턴 형성 방법
CN201380016813.3A CN104206016B (zh) 2012-03-30 2013-03-25 薄膜图案形成方法
US14/500,767 US20150017321A1 (en) 2012-03-30 2014-09-29 Method for forming thin film pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-079207 2012-03-30
JP2012079207 2012-03-30
JP2012-264451 2012-12-03
JP2012264451A JP6194493B2 (ja) 2012-03-30 2012-12-03 薄膜パターン形成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/500,767 Continuation US20150017321A1 (en) 2012-03-30 2014-09-29 Method for forming thin film pattern

Publications (1)

Publication Number Publication Date
WO2013146661A1 true WO2013146661A1 (ja) 2013-10-03

Family

ID=49259912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058543 WO2013146661A1 (ja) 2012-03-30 2013-03-25 薄膜パターン形成方法

Country Status (6)

Country Link
US (1) US20150017321A1 (ja)
JP (1) JP6194493B2 (ja)
KR (1) KR102011452B1 (ja)
CN (1) CN104206016B (ja)
TW (1) TWI602335B (ja)
WO (1) WO2013146661A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158858A1 (ja) * 2016-03-18 2017-09-21 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642999B2 (ja) * 2015-08-06 2020-02-12 株式会社ブイ・テクノロジー 有機el素子の製造方法
KR102512716B1 (ko) * 2015-10-23 2023-03-23 삼성디스플레이 주식회사 유기발광 디스플레이 장치 제조방법 및 유기발광 디스플레이 장치
CN106159107B (zh) 2016-08-09 2018-05-29 京东方科技集团股份有限公司 有机发光二极管照明灯片及其制备方法
KR20180054983A (ko) 2016-11-15 2018-05-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN109844165B (zh) * 2017-02-21 2021-11-12 株式会社爱发科 树脂膜形成方法以及掩膜
KR20210091382A (ko) 2020-01-13 2021-07-22 삼성디스플레이 주식회사 마스크, 이의 제조 방법, 및 표시 패널 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261486A (ja) * 1997-03-19 1998-09-29 Idemitsu Kosan Co Ltd 有機el発光装置の製造方法
JP2001118679A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el素子の製造方法
JP2004146184A (ja) * 2002-10-24 2004-05-20 Konica Minolta Holdings Inc 有機el素子の製造装置
JP2010040567A (ja) * 2008-07-31 2010-02-18 Tokyo Electron Ltd 酸化膜表面の洗浄及び保護方法および酸化膜表面の洗浄及び保護装置
JP2011501380A (ja) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー 発光デバイスのパターニング方法
JP2012111985A (ja) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd 蒸着マスクおよびそれを用いた薄膜パターン形成方法
WO2013008745A1 (ja) * 2011-07-08 2013-01-17 株式会社ブイ・テクノロジー 薄膜パターン形成方法及び有機el表示装置の製造方法
WO2013039196A1 (ja) * 2011-09-16 2013-03-21 株式会社ブイ・テクノロジー 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5703900A (en) * 1999-06-29 2001-01-31 Nikon Corporation Method and apparatus for detecting mark, exposure method and apparatus, and production method for device and device
JP2003073804A (ja) 2001-08-30 2003-03-12 Sony Corp 成膜方法および成膜装置
US20030049551A1 (en) * 2001-09-07 2003-03-13 Xerox Corporation Blue diode laser sensitive photoreceptor
JP2004226673A (ja) * 2003-01-23 2004-08-12 Toyota Industries Corp 有機電界発光装置
WO2005045911A1 (ja) * 2003-11-11 2005-05-19 Asahi Glass Company, Limited パターン形成方法、およびこれにより製造される電子回路、並びにこれを用いた電子機器
JP4375232B2 (ja) * 2005-01-06 2009-12-02 セイコーエプソン株式会社 マスク成膜方法
JP4428285B2 (ja) * 2005-05-16 2010-03-10 セイコーエプソン株式会社 マスク保持構造、成膜方法、及び電気光学装置の製造方法
FR2900351B1 (fr) * 2006-04-26 2008-06-13 Commissariat Energie Atomique Procede de preparation d'une couche nanoporeuse de nanoparticules et couche ainsi obtenue
GB0620955D0 (en) * 2006-10-20 2006-11-29 Speakman Stuart P Methods and apparatus for the manufacture of microstructures
JP2011034852A (ja) * 2009-08-03 2011-02-17 Sony Corp ドナー基板の製造方法およびドナー基板、並びに表示装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261486A (ja) * 1997-03-19 1998-09-29 Idemitsu Kosan Co Ltd 有機el発光装置の製造方法
JP2001118679A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el素子の製造方法
JP2004146184A (ja) * 2002-10-24 2004-05-20 Konica Minolta Holdings Inc 有機el素子の製造装置
JP2011501380A (ja) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー 発光デバイスのパターニング方法
JP2010040567A (ja) * 2008-07-31 2010-02-18 Tokyo Electron Ltd 酸化膜表面の洗浄及び保護方法および酸化膜表面の洗浄及び保護装置
JP2012111985A (ja) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd 蒸着マスクおよびそれを用いた薄膜パターン形成方法
WO2013008745A1 (ja) * 2011-07-08 2013-01-17 株式会社ブイ・テクノロジー 薄膜パターン形成方法及び有機el表示装置の製造方法
WO2013039196A1 (ja) * 2011-09-16 2013-03-21 株式会社ブイ・テクノロジー 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158858A1 (ja) * 2016-03-18 2017-09-21 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法
JP6461423B2 (ja) * 2016-03-18 2019-01-30 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法
JP2019031737A (ja) * 2016-03-18 2019-02-28 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法
JPWO2017158858A1 (ja) * 2016-03-18 2019-02-28 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法

Also Published As

Publication number Publication date
KR20150002654A (ko) 2015-01-07
CN104206016B (zh) 2018-08-24
JP2013229287A (ja) 2013-11-07
US20150017321A1 (en) 2015-01-15
JP6194493B2 (ja) 2017-09-13
TW201405908A (zh) 2014-02-01
CN104206016A (zh) 2014-12-10
TWI602335B (zh) 2017-10-11
KR102011452B1 (ko) 2019-08-19

Similar Documents

Publication Publication Date Title
JP6194493B2 (ja) 薄膜パターン形成方法
US11145844B2 (en) Method for manufacturing electroluminescent device
US9219253B2 (en) Method for manufacturing organic EL display device
US7863814B2 (en) Organic electroluminescent device comprising a stack partition structure
JP2007103098A (ja) 有機el装置の製造方法、有機el装置及び電子機器
US11004920B2 (en) Display device and method of manufacturing the same
KR102017086B1 (ko) 도너 기판 및 도너 기판을 이용한 유기 발광 표시 장치의 제조 방법
JP2010218940A (ja) 有機発光装置及びその製造方法
JP2006040711A (ja) 表示装置の製造方法及び表示装置
KR20110126608A (ko) 표시 장치용 기판 및 그의 제조 방법
JP2010040510A (ja) 有機エレクトロルミネッセンス表示装置
WO2009157591A1 (en) Organic electroluminescence display apparatus and manufacturing method therefor
JP2005166266A (ja) 有機elディスプレイおよびその製造方法
JP2010003629A (ja) 有機el表示装置の製造方法
JP2008010243A (ja) 有機el素子およびその製造方法
JP2005108678A (ja) 有機el発光装置およびその製造方法
JP2004253214A (ja) 有機elデバイスの製造方法および有機elデバイス
JP2012038574A (ja) 表示装置の製造方法
JP2007294413A (ja) 有機elパネル及びその製造方法
JP4618497B2 (ja) 表示装置および表示装置の製造方法
JP2011017890A (ja) 電子機器の製造方法
KR102455579B1 (ko) 유기전계 발광표시장치 및 그 제조방법
JP3755727B2 (ja) 有機薄膜発光ディスプレイパネルおよびその製造方法
JP2010086846A (ja) 有機el表示装置の製造方法
JP2008140616A (ja) 有機el表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147028436

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13768426

Country of ref document: EP

Kind code of ref document: A1