WO2013008745A1 - 薄膜パターン形成方法及び有機el表示装置の製造方法 - Google Patents

薄膜パターン形成方法及び有機el表示装置の製造方法 Download PDF

Info

Publication number
WO2013008745A1
WO2013008745A1 PCT/JP2012/067322 JP2012067322W WO2013008745A1 WO 2013008745 A1 WO2013008745 A1 WO 2013008745A1 JP 2012067322 W JP2012067322 W JP 2012067322W WO 2013008745 A1 WO2013008745 A1 WO 2013008745A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
mask
layer
tft substrate
anode electrode
Prior art date
Application number
PCT/JP2012/067322
Other languages
English (en)
French (fr)
Inventor
修二 工藤
水村 通伸
梶山 康一
マハール アジズ ハニー
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2013008745A1 publication Critical patent/WO2013008745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a thin film pattern forming method for forming a thin film pattern having a fixed shape on a substrate, and more particularly to a thin film pattern forming method and an organic EL display device manufacturing method capable of easily forming a high-definition thin film pattern. It is concerned.
  • a mask having an opening having a shape corresponding to a predetermined pattern is aligned with the substrate, and is then brought into close contact with the substrate. Thereafter, patterning is performed on the substrate through the mask.
  • a film was formed (see, for example, Patent Document 1).
  • a metal mask made of a ferromagnetic material provided with a plurality of openings corresponding to a predetermined film formation pattern is closely attached to the substrate so as to cover one surface of the substrate, and the other surface of the substrate.
  • the metal mask is fixed by using the magnetic force of the magnet arranged on the side, and the deposition material is attached to one surface of the substrate through the opening of the metal mask in the vacuum chamber of the vacuum deposition apparatus to form a thin film pattern.
  • Still another thin film pattern forming method is, for example, a method for manufacturing an organic EL device, in which a hole injection layer or a hole transport layer is formed on an anode formed on a transparent substrate, and a light emitting layer is formed thereon by an inkjet method.
  • a pattern was formed (see, for example, Patent Document 3).
  • Another method for forming a thin film pattern is to form a light-to-heat conversion layer on a base film, and to form a donor film on which a transfer layer composed of an organic EL layer is formed so that the base film is on the outside.
  • the transfer layer is selectively transferred onto the substrate by using the thermal energy generated locally by applying the laser beam L from the base film side and applying the laser beam L from the base film side (for example, patents). Reference 4).
  • a mask to be used is generally formed by forming a predetermined shape of an opening in a thin metal plate, for example, by etching. It is difficult to form the opening with high precision, and it is difficult to form a high-definition thin film pattern of, for example, 300 dpi or more due to the influence of misalignment or warpage due to thermal expansion of the metal plate.
  • Patent Document 2 the adhesion between the substrate and the mask is improved as compared with Patent Document 1, but when manufacturing an organic EL display device, for example, it is necessary to replace the mask for each color. In addition, it is difficult to shorten the tact time of the light emitting layer forming step of the organic EL display device due to the necessity of precise alignment between the TFT substrate and the mask before the mask adheres to the TFT substrate. .
  • Patent Document 3 can form a high-definition thin film pattern, it is easy to dissolve materials between layers of a polymer material, and for example, to provide a heterostructure indispensable for organic EL. It was difficult. Moreover, since it is difficult to remove impurities in the solvent, it has been difficult to obtain sufficient organic EL performance.
  • an object of the present invention is to provide a thin film pattern forming method and an organic EL display device manufacturing method that can cope with such problems and can easily form a high-definition thin film pattern. .
  • a thin film pattern forming method is a thin film pattern forming method for forming a thin film pattern having a predetermined shape on a substrate, which is made of a resin that covers the substrate and transmits visible light.
  • a step of closely adhering a mask member, a step of irradiating a predetermined portion on the substrate with laser light, providing a mask with a certain shape in the mask member of the portion, and a step on the substrate A step of forming a film on the predetermined portion of the mask through the opening of the mask, and a step of peeling the mask.
  • a resin mask member that covers the substrate and transmits visible light is closely attached, and a predetermined portion on the substrate is irradiated with laser light, and the mask member in the portion has a certain shape.
  • a mask is formed by providing the openings, and a film is formed on a predetermined portion of the substrate through the opening of the mask, and then the mask is peeled to form a thin film pattern having a fixed shape on the substrate.
  • the laser beam has a wavelength of 400 nm or less, for example, KrF248 nm.
  • the method for manufacturing an organic EL display device is a method for manufacturing an organic EL display device in which an organic EL display device is manufactured by forming an organic EL layer of a corresponding color on an anode electrode on a TFT substrate, A step of closely attaching a resin mask member that covers the TFT substrate and transmits visible light; and irradiating a laser beam on the anode electrode of a specific color on the TFT substrate, and for the mask on the anode electrode Forming a mask by providing an opening having a shape corresponding to a pixel in a member; and depositing the organic EL layer of the specific color on the anode electrode of the specific color on the TFT substrate through the opening of the mask Forming, and peeling the mask.
  • a mask member made of resin that covers the TFT substrate and transmits visible light is closely attached, and laser light is irradiated on the anode electrode of a specific color on the TFT substrate, thereby masking the anode electrode.
  • a mask is formed by providing an opening having a shape corresponding to a pixel on the member, and a specific color organic EL layer is formed on the anode electrode of the specific color on the TFT substrate through the mask opening, and then the mask is formed.
  • the organic EL layer of a corresponding color is formed on the anode electrode on the TFT substrate by peeling.
  • the organic EL layer it is desirable to further form a transparent electrode layer on the organic EL layer.
  • the laser beam has a wavelength of 400 nm or less, for example, KrF248 nm.
  • the mask is formed by irradiating the mask member in close contact with the substrate by irradiating a laser beam.
  • the mask is bent or misaligned or formed in the gap between the lower surface of the mask and the upper surface of the substrate. There is no fear that the material molecules for the film wrap around and adhere to enlarge the thin film pattern. Therefore, it is possible to easily form a high-definition thin film pattern.
  • the mask member is transparent, the reference position of the anode electrode or the like can be detected through the mask member, and the opening can be formed with high positional accuracy.
  • the opening is formed and the mask is formed. Therefore, it is not necessary to align the anode electrode of the TFT substrate and the opening of the mask, and the mask is firmly fixed to the substrate surface. Therefore, unlike the prior art, the mask may be bent or displaced.
  • the material molecules of the organic EL layer wrap around and adhere to the gap between the lower surface of the mask and the upper surface of the TFT substrate, and there is no possibility of expanding the thin film pattern of the organic EL layer. Therefore, it is possible to easily form a thin film pattern of a high-definition organic EL layer. Thereby, a high-definition organic EL display device can be manufactured.
  • a transparent electrode can be functioned as a protective film of an organic EL layer. Therefore, it is possible to prevent the organic EL layer from being altered during the manufacturing process.
  • This organic EL display device manufacturing method is a method of manufacturing an organic EL display device by forming an organic EL layer of a corresponding color on an anode electrode on a TFT substrate, and a red (R) organic EL layer forming step, It consists of a green (G) organic EL layer forming step, a blue (B) organic EL layer forming step, and a cathode electrode forming step.
  • FIG. 1 is a cross-sectional explanatory view showing the R organic EL layer forming step.
  • This R organic EL layer forming step corresponds to the red (R) of the TFT substrate 1 by a known technique such as a method of heating the organic material in a vacuum to deposit the organic material on the TFT substrate 1 or an inkjet method.
  • a step of forming an R organic EL layer 3R by sequentially forming a general laminated structure such as a hole injection layer, a hole transport layer, an R light emitting layer, and an electron transport layer on the anode electrode 2R, A first step of covering the TFT substrate 1 with a resin mask member 4 that transmits visible light, and a portion of the anode electrode 2R corresponding to R on the TFT substrate 1 is irradiated with the laser light L, and the portion A second step of forming a mask 6 by forming a pixel-shaped opening 5 in the mask member 4 and forming an R organic EL layer 3R on the R corresponding anode electrode 2R through the opening 5 of the mask 6. Third step to form and mask A fourth step of separating the one in which to run.
  • polyethylene having a thickness of, for example, about 10 ⁇ m to 30 ⁇ m is formed above the surface of the TFT substrate 1 on which the anode electrodes 2R, 2G, 2B are formed.
  • a film-like mask member 4 capable of ultraviolet laser ablation such as terephthalate (PET) or polyimide is stretched, the mask member 4 is brought into close contact with the surface of the TFT substrate 1 as shown in FIG.
  • the upper surface of the mask member 4 may be pressed uniformly with an elastic member such as urethane rubber so that the mask member 4 is in close contact with the surface of the TFT substrate 1.
  • the laser beam L is irradiated onto the anode electrode 2R corresponding to R on the TFT substrate 1, and the anode as shown in FIG. A mask 6 is formed by providing an opening 5 having a shape corresponding to a pixel in the mask member 4 on the electrode 2R.
  • the laser used here is an excimer laser 13 having a wavelength of 400 nm or less, for example, a KrF 248 nm laser. Because of the light energy of the ultraviolet laser beam L, the carbon bond of the mask member 4 is broken and removed in an instant, so that clean drilling without residue can be performed.
  • FIG. 5 is a front view showing a configuration example of the laser processing apparatus used in the second step.
  • This laser processing apparatus irradiates a mask member 4 on the TFT substrate 1 with laser light L while conveying the TFT substrate 1 at a constant speed in the direction indicated by the arrow A in FIG. 5 is provided to form a mask 6, and includes a transport unit 7, a laser optical system 8, an imaging unit 9, an alignment unit 10, and a control unit 11.
  • the transfer means 7 mounts the TFT substrate 1 on a stage 12 having a plurality of air ejection holes and air suction holes formed on the upper surface, and balances the air jetting force and the suction force so that the TFT substrate 1 is placed on the stage. In this state, the edge portion parallel to the arrow A direction of the TFT substrate 1 is held and transported by a moving mechanism (not shown) while being floated on the surface 12 by a certain amount.
  • a laser optical system 8 is provided above the conveying means 7. This laser optical system 8 irradiates the selected anode electrodes 2R-2B on the TFT substrate 1 with ultraviolet laser light L.
  • an excimer laser 13 that emits laser light L of KrF 248 nm, and laser light
  • a coupling optical system 14 that expands the L light beam diameter, makes the intensity distribution uniform, and irradiates parallel light on a photomask 15 described later, and the upper surface of the stage 12 of the conveying means 7 are arranged opposite to each other.
  • 12 is provided with a photomask 15 having a plurality of openings 17 (see FIG. 6) formed in a direction intersecting the arrow A direction in a plane parallel to the upper surface of 12.
  • the photomask 15 has a light shielding film 28 such as chromium (Cr) provided on one surface of a transparent substrate 16 on the TFT substrate 1.
  • the openings 17 are formed in a line at an array pitch 3X that is three times the pixel pitch X in the direction crossing the arrow A direction, and the center and the central axis of each opening 17 are matched on the other surface to form a plurality of microlenses 18.
  • the opening 17 is reduced and projected onto the TFT substrate 1 by the microlens 18.
  • the size of the opening 17 is M times the pixel size, where M is the reduction magnification of the microlens 18.
  • region which attached the oblique line is an area
  • an elongated viewing window 19 having a longitudinal central axis intersecting with the arrow A direction is formed at a position away from the center of the plurality of openings 17 by a distance D in the direction opposite to the arrow A.
  • This viewing window 19 is for enabling the surface of the TFT substrate 1 that passes under the photomask 15 to be photographed from above the photomask 15 by the imaging means 9 described later.
  • the imaging means 9 is provided above the conveying means 7.
  • the image pickup means 9 is a line camera for photographing the surface of the TFT substrate 1 through the viewing window 19 of the photomask 15 and having a plurality of light receiving elements arranged in a straight line in a direction intersecting with the arrow A direction.
  • the central axis of the plurality of light receiving elements is arranged so as to coincide with the longitudinal central axis of the viewing window 19 of the photomask 15.
  • an illumination unit (not shown) is provided so that the imaging region of the imaging unit 9 can be illuminated from the upper side of the TFT substrate 1.
  • reference numeral 21 denotes a reflection mirror that bends the optical path of the imaging system.
  • Alignment means 10 is provided so that the photomask 15 can be moved in a direction crossing the arrow A in a plane parallel to the upper surface of the stage 12.
  • the alignment means 10 aligns the photomask 15 with respect to the moving TFT substrate 1, and a direction in which the photomask 15 intersects the arrow A by a moving mechanism including an electromagnetic actuator, a motor, and the like. It can be moved to.
  • Control means 11 is provided in electrical connection with the transport means 7, excimer laser 13, imaging means 9, and alignment means 10.
  • the control unit 11 controls the transport unit 7 to transport the TFT substrate 1 at a constant speed in the direction of arrow A, and controls the excimer laser 13 to emit light at regular intervals, and processes the image input from the imaging unit 9. Then, a reference position preset on the TFT substrate 1 is detected, and a horizontal distance between the reference position and the alignment mark 20 of the photomask 15 is calculated, and the horizontal distance becomes a predetermined distance.
  • the alignment means 10 is controlled to move the photomask 15.
  • the second step is executed as follows. First, the TFT substrate 1 is positioned and placed on the upper surface of the stage 12 of the transport means 7. Next, the transport unit 7 is controlled by the control unit 11 in a state where the TFT substrate 1 is floated on the stage 12 by a certain amount, and starts transport in the direction of arrow A at a constant speed.
  • the TFT substrate 1 is transported, reaches the lower side of the photomask 15, and passes through the viewing window 19 of the photomask 15 and intersects with the arrow A direction previously formed on the TFT substrate 1 by the imaging means 9, for example, an anode electrode or a predetermined location
  • the movement distance of the TFT substrate 1 is calculated by the control means 11 based on the position of the TFT substrate 1 when the anode electrode or the like is detected. Then, when the moving distance matches the preset target value of the moving distance and the anode electrode 2R corresponding to R of the TFT substrate 1 reaches directly below the opening 17 of the photomask 15, the control means 11 performs control. Then, the excimer laser 13 emits pulses.
  • the edge of the gate line serving as a reference for the alignment selected in advance among a plurality of gate lines, for example, parallel to the direction of arrow A formed in advance on the TFT substrate 1 is imaged.
  • the horizontal distance between the photomask 15 and the alignment mark 20 detected simultaneously is calculated by the control means 11, and the alignment means 10 is set so that the distance matches a preset target value stored.
  • the photomask 15 can be aligned with the TFT substrate 1 that moves while swinging in a direction intersecting the arrow A.
  • the excimer laser 13 emits light when the anode electrode 2R corresponding to R of the TFT substrate 1 reaches directly below the opening 17 of the photomask 15.
  • the laser beam L is irradiated onto the irradiation region of the photomask 15.
  • the laser light L that has passed through the opening 17 of the photomask 15 is condensed by the microlens 18 onto the anode electrode 2R corresponding to R of the TFT substrate 1 corresponding to the opening 17, and for the mask on the anode electrode 2R.
  • the member 4 is removed to form the opening 5.
  • the excimer laser 13 is allowed to emit light continuously, and a shutter is provided on the output optical axis side of the laser beam so that the shutter is opened when the anode electrode 2R corresponding to R reaches just below the opening 17 of the photomask 15. Good.
  • the laser processing apparatus shown in FIG. 5 is installed in the atmosphere for processing.
  • the TFT substrate 1 is held on the transfer means 7 by an electrostatic chuck or the like.
  • the holding means may be provided, and the TFT substrate 1 may be moved by the holding means in the direction of arrow A shown in FIG.
  • the photomask 15 is provided with a plurality of openings 17 arranged in a line.
  • the plurality of openings 17 are arranged in the direction of arrow A and are an integral multiple of the pixel pitch in the same direction.
  • a plurality of rows may be provided at the pitch.
  • the mask member 4 on the R-compatible anode electrode 2R is removed by multiple laser irradiations.
  • the positive electrode is formed on the anode electrode 2R corresponding to R of the TFT substrate 1 through the opening 5 of the mask 6 in the same manner as described above.
  • R organic EL layer 3R is formed by sequentially forming a laminated structure of a hole injection layer, a hole transport layer, an R light emitting layer, an electron transport layer, and the like, and further, as shown in FIG.
  • a transparent electrode layer 23 made of an ITO film is formed on the R organic EL layer 3R using a known film formation technique such as vapor deposition or sputtering.
  • the vacuum deposition is performed in a state in which the anode electrodes 2G and 2B for G and B are energized and a constant voltage is applied to the anode electrodes 2G and 2B, the film-like mask 6 is adapted for G and B. Since it is electrostatically attracted and fixed to the anode electrodes 2G and 2B, there is no possibility that the mask 6 moves and the positional deviation between the opening 5 of the mask 6 and the anode electrode 2R corresponding to R of the TFT substrate 1 occurs.
  • the edge of the mask 6 is lifted upward to mechanically peel the mask 6 from the surface of the TFT substrate 1.
  • the R organic EL layer 3R remains on the R corresponding anode electrode 2R, and the R organic EL layer forming step is completed.
  • the thickness of the R organic EL layer 3R is about 100 nm while the thickness of the mask 6 is about 10 ⁇ m to 30 ⁇ m.
  • the thickness of the R organic EL layer 3R attached to the sidewall of the opening 5 of the mask 6 is Further, since the vertical and horizontal lengths of the openings of the R organic EL layer 3R are sufficiently larger than the thickness of the mask 6, when the mask 6 is peeled off, the mask 6 and the R corresponding anode electrode 2R The R organic EL layer 3R is easily separated. Therefore, there is no possibility that the R organic EL layer 3R on the anode electrode 2R corresponding to R peels off.
  • each of the anode electrodes 2G and 2B is removed when the mask 6 is peeled off.
  • the applied voltage may be turned off, or a reverse polarity voltage may be applied. Thereby, peeling of the mask 6 can be performed easily.
  • the mask member 4 is attached to the surface of the TFT substrate 1 using an adhesive, a force larger than the adhesive force of the adhesive may be applied to the mask 6 and mechanically peeled off.
  • the pressure-sensitive adhesive is cured by ultraviolet irradiation
  • the pressure-sensitive adhesive is cured by irradiating ultraviolet light, and the mask 6 is peeled off after the adhesive force at the interface between the mask 6 and the TFT substrate 1 is reduced. Good.
  • FIG. 2 is a cross-sectional explanatory view showing the G organic EL layer forming step.
  • This G organic EL layer forming step is performed on the anode electrode 2G corresponding to the green color (G) of the TFT substrate 1 in the same manner as described above, such as a stacked structure of a hole injection layer, a hole transport layer, a G light emitting layer, an electron transport layer, and the like.
  • a step of closely attaching a resin mask member 4 that covers the TFT substrate 1 and transmits visible light (FIG. 2A).
  • FIGS. 2B and 2C See FIGS. 2B and 2C) and a step of forming a G organic EL layer 3G and a transparent electrode layer 23 on the G corresponding anode electrode 2G through the opening 5 of the mask 6 (FIG. 4D).
  • (E)) and a step of peeling the mask 6 (see FIG. ) And the reference) intended to run is carried out in the same manner as R organic EL layer forming step.
  • FIG. 3 is a cross-sectional explanatory view showing the B organic EL layer forming step.
  • This B organic EL layer forming step is a layered structure of a hole injection layer, a hole transport layer, a B light emitting layer, an electron transport layer and the like on the anode electrode 2B corresponding to blue (B) of the TFT substrate 1 as described above.
  • the B organic EL layer 3B is formed by sequentially forming a film, and a step of closely attaching a resin mask member 4 that covers the TFT substrate 1 and transmits visible light (FIG. 2A).
  • FIGS. 2B and 2C See FIGS. 2B and 2C) and a step of forming a B organic EL layer 3B and a transparent electrode layer 23 on the anode B 2 corresponding to B through the opening 5 of the mask 6 (FIG. 4D).
  • (E)) and a step of peeling the mask 6 (see FIG. ) And the reference) intended to run is carried out in the same manner as R organic EL layer or G organic EL layer forming step.
  • FIG. 4 is a cross-sectional explanatory view showing a cathode electrode forming step.
  • This cathode electrode forming step is for electrically connecting the transparent electrode layers 23 on the organic EL layers 3R, 3G, 3B formed on the anode electrodes 2R, 2G, 2B of the TFT substrate 1,
  • a cathode electrode 24 transparent electrode
  • an insulating protective layer 25 is formed in a similar manner so as to cover the cathode electrode 24 (see FIG.
  • the adhesive layer 26 is formed (see (c) in the same figure). Then, after the transparent counter substrate 27 is adhered onto the adhesive layer 26, the adhesive layer 26 is cured by irradiating ultraviolet rays from the counter substrate 27 side, and the counter substrate 27 is bonded to the TFT substrate 1 (FIG. d)). Thereby, an organic EL display device is completed.
  • the mask member 4 is in the form of a film.
  • the present invention is not limited to this, and any liquid material can be used as long as it can be subjected to ultraviolet laser ablation. It may be.
  • the mask member 4 is spin coated or dip coated on the surface of the TFT substrate 1.
  • the transparent electrode layer 23 is further formed on the organic EL layers 3R to 3B when the organic EL layers 3R to 3B are formed.
  • the present invention is not limited to this, and the organic EL layer is not limited thereto.
  • the transparent electrode layer 23 may not be formed when the layers 3R to 3B are formed.
  • the mask member 4 is liquid, in order to prevent the organic EL layers 3R to 3B from being dissolved by the liquid mask member 4, a transparent electrode layer is formed on the organic EL layers 3R to 3B. 23 may be formed as a protective film.
  • this invention is not restricted to the manufacturing method of an organic electroluminescent display device, If it is going to form a high-definition thin film pattern, formation of the color filter of a liquid crystal display device, formation of the wiring pattern of a semiconductor substrate, etc. It can be applied to anything.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、TFT基板1上のアノード電極2R~2B上に対応色の有機EL層3R~3Bを形成して有機EL表示装置を製造する有機EL表示装置の製造方法であって、TFT基板1上を覆って可視光を透過する樹脂製のマスク用部材4を密着するステップと、TFT基板1上のR対応アノード電極2R上にレーザ光Lを照射し、当該アノード電極2R上のマスク用部材4に画素に対応した形状の開口5を設けてマスク6を形成するステップと、TFT基板1上のR対応アノード電極2R上にマスク6の開口5を介してR有機EL層3Rを成膜形成するステップと、マスク6を剥離するステップと、を含むものである。これにより、高精細な薄膜パターンの形成を容易に行うことができる。

Description

薄膜パターン形成方法及び有機EL表示装置の製造方法
 本発明は、基板上に一定形状の薄膜パターンを形成する薄膜パターン形成方法に関し、特に高精細な薄膜パターンの形成を容易に行い得るようにする薄膜パターン形成方法及び有機EL表示装置の製造方法に係るものである。
 従来のこの種の薄膜パターン形成方法は、所定のパターンに対応した形状の開口を有するマスクを基板に対して位置合わせした後、該基板上に密着させ、その後マスクを介して基板に対するパターンニング成膜するものであった(例えば、特許文献1参照)。
 また、他の薄膜パターン形成方法は、所定の成膜パターンに対応した複数の開口が設けられた強磁性体から成るメタルマスクを基板の一面を覆うように基板に密着させると共に、基板の他面側に配置された磁石の磁力を利用してメタルマスクを固定し、真空蒸着装置の真空槽内で上記メタルマスクの開口を通して基板の一面に蒸着材料を付着させ、薄膜パターンを形成するものであった(例えば、特許文献2参照)。
 さらに他の薄膜パターン形成方法は、例えば有機EL素子の製造方法において、透明基板上に形成された陽極上に正孔注入層又は正孔輸送層を形成し、その上に発光層をインクジェット方式によりパターン形成するものであった(例えば、特許文献3参照)。
 そして、別の薄膜パターン形成方法は、基材フィルム上に光-熱変換層を形成し、その上に有機EL層からなる転写層を形成したドナーフィルムを基材フィルムが外側になるようにして基板上に貼り付け、基材フィルム側からレーザ光Lを照射して局所的に発生する熱エネルギーを利用して上記転写層を選択的に基板上に転写するようになっていた(例えば、特許文献4参照)。
特開2003-73804号公報 特開2009-164020号公報 特開2000-208254号公報 特開2002-216957号公報
 しかし、このような従来の薄膜パターン形成方法において、上記特許文献1に記載の方法では、使用するマスクが、一般に、薄い金属板に所定形状の開口を例えばエッチング等により形成して作られるので、開口を高精度に形成することが困難であり、又金属板の熱膨張による位置ずれや反り等の影響で例えば300dpi以上の高精細な薄膜パターンの形成が困難であった。
 また、上記特許文献2に記載の方法では、上記特許文献1よりも基板とマスクとの密着性は改善されるものの、例えば有機EL表示装置を製造する場合、色毎にマスクを取り替える必要があること、及びTFT基板へのマスクの密着前にTFT基板とマスクとの精密な位置合わせが必要であること等により、有機EL表示装置の発光層形成工程のタクトを短縮することが困難であった。
 さらに、上記特許文献3に記載の方法では、高精細な薄膜パターンの形成が可能であるものの、高分子材料による層間の材料同士が溶解し易く、例えば有機ELに不可欠なヘテロ構造を持たせることが困難であった。また、溶媒内の不純物の除去が困難であるため、充分な有機EL性能を得ることが難しかった。
 そして、上記特許文献4に記載の方法では、例えば有機EL表示装置の製造においては、複数の画素に対して照射するレーザ光の強度分布が不均一であるため、被照射面での温度分布が不均一となり、その結果、転写層である有機EL層の幅、形状、膜質等にばらつきが生じるという問題がある。また、ドナーフィルムの密着性が悪いときには、未転写領域が発生する場合がある。さらに、ドナーフィルムの剥離を防ぐための保護層や接着層など、機能の異なる複数の層が必要であり、且つ相互に不具合が発生しないようにする必要があり、製造コストを抑えることが難しいという問題がある。
 そこで、本発明は、このような問題点に対処し、高精細な薄膜パターンの形成を容易に行い得るようにする薄膜パターン形成方法及び有機EL表示装置の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明による薄膜パターン形成方法は、基板上に一定形状の薄膜パターンを形成する薄膜パターン形成方法であって、前記基板上を覆って可視光を透過する樹脂製のマスク用部材を密着するステップと、前記基板上の予め定められた部分にレーザ光を照射し、当該部分の前記マスク用部材に一定形状の開口を設けてマスクを形成するステップと、前記基板上の前記予め定められた部分に前記マスクの前記開口を介して成膜するステップと、前記マスクを剥離するステップと、を含むものである。
 このような構成により、基板上を覆って可視光を透過する樹脂製のマスク用部材を密着し、基板上の予め定められた部分にレーザ光を照射し、当該部分のマスク用部材に一定形状の開口を設けてマスクを形成し、基板上の予め定められた部分にマスクの開口を介して成膜した後、マスクを剥離して基板上に一定形状の薄膜パターンを形成する。
 好ましくは、前記レーザ光は、波長が400nm以下であり、例えばKrF248nmであるのが望ましい。
 また、本発明による有機EL表示装置の製造方法は、TFT基板上のアノード電極上に対応色の有機EL層を形成して有機EL表示装置を製造する有機EL表示装置の製造方法であって、前記TFT基板上を覆って可視光を透過する樹脂製のマスク用部材を密着するステップと、前記TFT基板上の特定色のアノード電極上にレーザ光を照射し、当該アノード電極上の前記マスク用部材に画素に対応した形状の開口を設けてマスクを形成するステップと、前記TFT基板上の前記特定色のアノード電極上に前記マスクの前記開口を介して前記特定色の有機EL層を成膜形成するステップと、前記マスクを剥離するステップと、を含むものである。
 このような構成により、TFT基板上を覆って可視光を透過する樹脂製のマスク用部材を密着し、TFT基板上の特定色のアノード電極上にレーザ光を照射し、当該アノード電極上のマスク用部材に画素に対応した形状の開口を設けてマスクを形成し、TFT基板上の特定色のアノード電極上にマスクの開口を介して特定色の有機EL層を成膜形成した後、マスクを剥離してTFT基板上のアノード電極上に対応色の有機EL層を形成する。
 好ましくは、前記有機EL層を成膜形成するステップにおいては、前記有機EL層上に、さらに透明電極層を成膜形成するのが望ましい。
 さらに好ましくは、前記レーザ光は、波長が400nm以下であり、例えばKrF248nmであるのが望ましい。
 請求項1に係る薄膜パターン形成方法の発明によれば、基板に密着させたマスク用部材にレーザ光を照射することにより、開口を形成してマスクを形成するようにしているので、基板とマスクの位置合わせが不要であり、且つマスクが基板面に対して密着固定されるため、従来技術と違って、マスクの撓みや位置ずれが生じたり、マスク下面と基板上面との間の隙間に成膜用の材料分子が回り込んで付着し、薄膜パターンを拡大させたりするおそれがない。したがって、高精細な薄膜パターンの形成を容易に行うことができる。さらに、マスク用部材が透明であるため、マスク用部材を通してアノード電極等の基準となる位置が検出可能であり、開口を位置精度よく形成することができる。
 また、請求項2に係る発明によれば、マスク用部材の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の無いクリーンな穴あけ加工を行うことができる。さらに、レーザ光照射による熱的過程を使用しないため、レーザ光の照射寸法と同程度でパターン加工することができ、縮小結像手段を用いれば、数μm程度の開口を有するマスク形成も可能である。したがって、より高精細な薄膜パターンを形成することができる。
 また、請求項3に係る有機EL表示装置の製造方法の発明によれば、TFT基板に密着させたマスク用部材にレーザ光を照射することにより、開口を形成してマスクを形成するようにしているので、TFT基板のアノード電極とマスクの開口との位置合わせが不要であり、且つマスクが基板面に対して密着固定されるため、従来技術と違って、マスクの撓みや位置ずれが生じたり、マスク下面とTFT基板上面との間の隙間に有機EL層の材料分子が回り込んで付着し、有機EL層の薄膜パターンを拡大させたりするおそれがない。したがって、高精細な有機EL層の薄膜パターンの形成を容易に行うことができる。これにより、高精細な有機EL表示装置を製造することができる。
 さらに、請求項4に係る発明によれば、透明電極を有機EL層の保護膜として機能させることができる。したがって、製造過程で有機EL層が変質するのを防止することができる。
 そして、請求項5に係る発明によれば、マスク用部材の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の無いクリーンな穴あけ加工を行うことができる。また、レーザ光照射による熱的過程を使用しないため、レーザ光の照射寸法と同程度でパターン加工することができ、縮小結像手段を用いれば、数μm程度の開口を有するマスク形成も可能である。したがって、より高精細な有機EL層の薄膜パターンを形成することができ、より高精細な有機EL表示装置を製造することができる。
本発明による有機EL表示装置の製造方法の実施形態を示す図であり、R有機EL層形成工程を示す断面説明図である。 本発明による有機EL表示装置の製造方法の実施形態を示す図であり、G有機EL層形成工程を示す断面説明図である。 本発明による有機EL表示装置の製造方法の実施形態を示す図であり、B有機EL層形成工程を示す断面説明図である。 本発明による有機EL表示装置の製造方法の実施形態を示す図であり、カソード電極層形成工程を示す断面説明図である。 上有機EL層形成工程において使用するレーザ加工装置の一構成例を示す正面図である。 上記レーザ加工装置に使用するフォトマスクの一構成例を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1~4は本発明による有機EL表示装置の製造方法の実施形態を示す工程図である。この有機EL表示装置の製造方法は、TFT基板上のアノード電極上に対応色の有機EL層を形成して有機EL表示装置を製造する方法であり、赤色(R)有機EL層形成工程と、緑色(G)有機EL層形成工程と、青色(B)有機EL層形成工程と、カソード電極形成工程とからなる。
 図1は、R有機EL層形成工程を示す断面説明図である。このR有機EL層形成工程は、有機材料を真空中で加熱してTFT基板1にその有機材料を蒸着する方法や、インクジェット法などの公知の技術によりTFT基板1の赤色(R)に対応したアノード電極2R上に正孔注入層、正孔輸送層、R発光層、電子輸送層等、一般的な積層構造をとるように順次成膜してR有機EL層3Rを形成する工程であり、TFT基板1上を覆って可視光を透過する樹脂製のマスク用部材4を密着する第1ステップと、TFT基板1上のR対応のアノード電極2Rの部分にレーザ光Lを照射し、当該部分の上記マスク用部材4に画素形状の開口5を設けてマスク6を形成する第2ステップと、R対応のアノード電極2R上に上記マスク6の開口5を介してR有機EL層3Rを成膜形成する第3ステップと、マスク6を剥離する第4ステップと、を実行するものである。
 より詳細には、先ず、第1ステップにおいては、図1(a)に示すようにTFT基板1のアノード電極2R,2G,2Bを形成した面の上方に、例えば厚みが10μm~30μm程度のポリエチレンテレフタレート(PET)やポリイミド等の紫外線レーザアブレーションが可能なフィルム状のマスク用部材4を張設した後、同図(b)に示すように該マスク用部材4をTFT基板1面に密着する。この場合、マスク用部材4の上面を例えばウレタンゴムのような弾性部材で均一に押圧してマスク用部材4をTFT基板1面に密着させるとよい。
 次に、第2ステップにおいては、図1(c)に示すように、TFT基板1上のR対応のアノード電極2R上にレーザ光Lを照射し、同図(d)に示すように当該アノード電極2R上のマスク用部材4に画素に対応した形状の開口5を設けてマスク6を形成する。ここで使用するレーザは、波長が400nm以下のエキシマレーザ13であり、例えばKrF248nmのレーザである。このような紫外線のレーザ光Lの光エネルギーにより、マスク用部材4の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の無いクリーンな穴あけ加工を行うことができる。
 図5は、上記第2ステップにおいて使用するレーザ加工装置の一構成例を示す正面図である。
 このレーザ加工装置は、TFT基板1を同図に矢印Aで示す方向に一定速度で搬送しながら、TFT基板1上のマスク用部材4にレーザ光Lを照射して画素に対応した形状の開口5を設けてマスク6を形成するものであり、搬送手段7と、レーザ光学系8と、撮像手段9と、アライメント手段10と、制御手段11と、を備えて構成されている。
 上記搬送手段7は、上面に複数のエア噴出孔及びエア吸引孔を形成したステージ12上にTFT基板1を載置し、エアの噴出力と吸引力とをバランスさせてTFT基板1を上記ステージ12上に一定量だけ浮上させた状態で、TFT基板1の矢印A方向に平行な縁部を図示省略の移動機構により保持して搬送するものである。
 上記搬送手段7の上方には、レーザ光学系8が設けられている。このレーザ光学系8は、紫外線のレーザ光LをTFT基板1上の選択されたアノード電極2R~2B上に照射させるものであり、例えばKrF248nmのレーザ光Lを放射するエキシマレーザ13と、レーザ光Lの光束径を拡大すると共に、強度分布を均一化して平行光を後述のフォトマスク15に照射させるカップリング光学系14と、上記搬送手段7のステージ12の上面に対向して配置され、ステージ12の上面に平行な面内にて、矢印A方向と交差する方向に複数の開口17(図6参照)を形成したフォトマスク15とを備えて構成されている。
 ここで、上記フォトマスク15について詳細に説明すると、フォトマスク15は、例えば図6に示すように、透明な基板16の一面に設けたクロム(Cr)等の遮光膜28に、TFT基板1の矢印A方向と交差する方向の画素ピッチXの3倍の配列ピッチ3Xで一列に並べて開口17を形成し、他面には、各開口17の中心と中心軸を合致されて複数のマイクロレンズ18を形成したものであり、マイクロレンズ18により開口17をTFT基板1上に縮小投影するようになっている。この場合、開口17の大きさは、マイクロレンズ18の縮小倍率をMとすると、画素サイズのM倍の大きさに形成される。なお、同図(a)において、斜線を付した領域は、レーザ光Lが照射される領域である。
 また、上記複数の開口17の中心に対して矢印Aと反対方向に距離Dだけ離れた位置に、矢印A方向と交差する長手中心軸を有する細長状の覗き窓19が形成されている。この覗き窓19は、フォトマスク15の下側を通過するTFT基板1の表面をフォトマスク15の上方から後述の撮像手段9により撮影可能にするためのものであり、窓内には、いずれかの開口17の中心と長手中心軸を合致させて矢印A方向に平行な細線状の少なくとも一本のアライメントマーク20(ここでは、一本のアライメントマークで示す)が設けられている。
 上記搬送手段7の上方には、撮像手段9が設けられている。この撮像手段9は、上記フォトマスク15の覗き窓19を通してTFT基板1の表面を撮影するものであり、矢印A方向と交差する方向に複数の受光エレメントを一直線に並べて有するラインカメラである。そして、複数の受光エレメントの並びの中心軸が上記フォトマスク15の覗き窓19の長手中心軸と合致するように配設されている。さらに、撮像手段9の撮影領域をTFT基板1の上側から照明可能に図示省略の照明手段が設けられている。なお、図5において符号21は、撮像系の光路を折り曲げる反射ミラーである。
 上記フォトマスク15をステージ12の上面に平行な面内にて、矢印Aと交差する方向に移動可能にアライメント手段10が設けられている。このアライメント手段10は、フォトマスク15を移動中のTFT基板1に対して位置合わせするものであり、電磁アクチュエータやモータ等を含んで構成された移動機構によりフォトマスク15を矢印Aと交差する方向に移動させることができるようになっている。
 上記搬送手段7と、エキシマレーザ13と、撮像手段9と、アライメント手段10とに電気的に接続して制御手段11が設けられている。この制御手段11は、搬送手段7を制御してTFT基板1を矢印A方向に一定速度で搬送させ、エキシマレーザ13を一定間隔で発光させるように制御し、撮像手段9から入力する画像を処理して、TFT基板1に予め設定された基準位置を検出すると共に、該基準位置とフォトマスク15のアライメントマーク20との間の水平距離を演算し、該水平距離が予め定められた距離となるようにアライメント手段10を制御してフォトマスク15を移動させるものである。
 このように構成されたレーザ加工装置を使用して、上記第2ステップは次のようにして実行される。
 先ず、搬送手段7のステージ12上面にTFT基板1が位置決めして載置される。次に、搬送手段7は、TFT基板1をステージ12上に一定量だけ浮上させた状態で制御手段11により制御されて矢印A方向に一定速度で搬送を開始する。
 TFT基板1が搬送されて、フォトマスク15の下側に達し、フォトマスク15の覗き窓19を通して撮像手段9によりTFT基板1に予め形成された矢印A方向と交差する例えばアノード電極或いは所定の箇所に設けたラインパターン等が検出されると、該アノード電極等が検出された時のTFT基板1の位置を基準にして制御手段11によりTFT基板1の移動距離が演算される。そして、該移動距離が予め設定して保存された移動距離の目標値に合致し、TFT基板1のRに対応するアノード電極2Rがフォトマスク15の開口17の真下に達すると制御手段11に制御されてエキシマレーザ13がパルス発光する。
 一方、TFT基板1の移動中は、TFT基板1に予め形成された矢印A方向に平行な例えば複数のゲート線のうち、予め選択されたアライメントの基準となるゲート線の縁部を撮像手段9により検出し、同時に検出したフォトマスク15のアライメントマーク20との間の水平距離を制御手段11により演算し、該距離が予め設定して保存されたアライメントの目標値と合致するようにアライメント手段10を制御してフォトマスク15を矢印Aと交差する方向に移動させる。これにより、矢印Aと交差する方向に振れながら移動するTFT基板1にフォトマスク15を追従させて位置合わせすることができる。
 上述したように、TFT基板1のR対応のアノード電極2Rがフォトマスク15の開口17の真下に達するとエキシマレーザ13が発光する。これにより、レーザ光Lがフォトマスク15の照射領域に照射される。そして、フォトマスク15の開口17を通過したレーザ光Lは、マイクロレンズ18により該開口17に対応するTFT基板1のR対応のアノード電極2R上に集光され、該アノード電極2R上のマスク用部材4を除去して開口5を形成する。なお、エキシマレーザ13を連続発光させ、レーザ光の出力光軸側にシャッタを設けてRに対応するアノード電極2Rがフォトマスク15の開口17の真下に達したときにシャッタを開くようにしてもよい。
 以上の説明は、図5に示すレーザ加工装置を大気中に施設して処理する場合について述べているが、真空中で行う場合には、搬送手段7に静電チャック等によってTFT基板1を保持する保持手段を備え、該保持手段によってTFT基板1を同図に示す矢印A方向に移動させるとよい。
 なお、以上の説明においては、フォトマスク15に複数の開口17が1列に並べて設けられている場合について説明したが、上記複数の開口17を矢印A方向に、同方向の画素ピッチの整数倍のピッチで複数列設けてもよい。この場合、R対応のアノード電極2R上のマスク用部材4が複数回のレーザ照射により除去されることになる。
 第3ステップにおいては、図1(e)に示すように、例えば真空蒸着装置を使用してTFT基板1のRに対応するアノード電極2R上にマスク6の開口5を介して前述と同様に正孔注入層、正孔輸送層、R発光層、電子輸送層等の積層構造となるように順次成膜してR有機EL層3Rを成膜形成し、さらに、同図(f)に示すように該R有機EL層3R上にITO膜からなる透明電極層23を蒸着又はスパッタリング等の公知の成膜技術を使用して成膜形成する。このとき、G対応及びB対応のアノード電極2G,2Bに通電して各アノード電極2G,2Bに一定電圧を印加した状態で真空蒸着を行えば、フィルム状のマスク6がG対応及びB対応のアノード電極2G,2Bに静電吸着されて固定されるため、マスク6が動いてマスク6の開口5とTFT基板1のR対応のアノード電極2Rとの位置ずれが生ずるおそれが無い。また、マスク6がTFT基板1面に密着してマスク6の下面とTFT基板1の上面との間に隙間が生じるおそれが無いため、該隙間に蒸着分子が回りこんで付着し薄膜パターンの形成精度を悪くするという問題も回避することができる。
 第4ステップにおいては、図1(g)に示すように、マスク6の縁部を上方に持ち上げてマスク6をTFT基板1面から機械的に剥離する。これにより、R対応のアノード電極2R上にR有機EL層3Rが残りR有機EL層形成工程が終了する。この場合、マスク6の厚みが約10μm~30μmであるのに対してR有機EL層3Rの厚みは100nm程度であるので、マスク6の開口5の側壁に付着するR有機EL層3Rの厚みは極薄く、また、このR有機EL層3Rの開口部の縦横の長さがマスク6の厚みに対して充分に大きいためマスク6を剥離する際に、マスク6とR対応のアノード電極2R上のR有機EL層3Rとが容易に分離する。したがって、R対応のアノード電極2R上のR有機EL層3Rが剥離するおそれがない。なお、G対応及びB対応のアノード電極2G,2Bに電圧を印加させてマスク6をTFT基板1面に静電吸着させた場合には、マスク6を剥離する際に、各アノード電極2G,2Bの印加電圧をオフするか、又は逆極性の電圧を印加してやるとよい。これにより、マスク6の剥離を容易に行うことができる。また、粘着剤を使用してマスク用部材4をTFT基板1面に貼り付けた場合には、上記粘着剤の粘着力よりも大きな力をマスク6に加えて機械的に剥離するとよい。さらに、上記粘着剤が紫外線照射により硬化するものであるときには、紫外線を照射して粘着剤を硬化させ、マスク6とTFT基板1面との界面の粘着力を低下させてからマスク6を剥離するとよい。
 図2は、G有機EL層形成工程を示す断面説明図である。このG有機EL層形成工程は、TFT基板1の緑色(G)に対応したアノード電極2G上に前述と同様に正孔注入層、正孔輸送層、G発光層、電子輸送層等の積層構造となるように順次成膜してG有機EL層3Gを形成する工程であり、TFT基板1上を覆って可視光を透過する樹脂製のマスク用部材4を密着するステップ(同図(a)参照)と、TFT基板1上のG対応のアノード電極2Gの部分にレーザ光Lを照射し、当該部分の上記マスク用部材4に画素形状の開口5を設けてマスク6を形成するステップ(同図(b),(c)参照)と、G対応のアノード電極2G上に上記マスク6の開口5を介してG有機EL層3G及び透明電極層23を成膜形成するステップ(同図(d),(e)参照)と、マスク6を剥離するステップ(同図(f)参照)と、を実行するもので、R有機EL層形成工程と同様にして行われる。
 図3は、B有機EL層形成工程を示す断面説明図である。このB有機EL層形成工程は、TFT基板1の青色(B)に対応したアノード電極2B上に前述と同様に正孔注入層、正孔輸送層、B発光層、電子輸送層等の積層構造となるように順次成膜してB有機EL層3Bを形成する工程であり、TFT基板1上を覆って可視光を透過する樹脂製のマスク用部材4を密着するステップ(同図(a)参照)と、TFT基板1上のB対応のアノード電極2Bの部分にレーザ光Lを照射し、当該部分の上記マスク用部材4に画素形状の開口5を設けてマスク6を形成するステップ(同図(b),(c)参照)と、B対応のアノード電極2B上に上記マスク6の開口5を介してB有機EL層3B及び透明電極層23を成膜形成するステップ(同図(d),(e)参照)と、マスク6を剥離するステップ(同図(f)参照)と、を実行するもので、R有機EL層又はG有機EL層形成工程と同様にして行われる。
 図4は、カソード電極形成工程を示す断面説明図である。このカソード電極形成工程は、TFT基板1の各アノード電極2R,2G,2B上に形成された有機EL層3R,3G,3B上の透明電極層23を電気的に接続するためのものであり、図4に示すように、先ず、公知の成膜技術を使用してTFT基板1上面を覆ってITO膜からなるカソード電極24(透明電極)を形成する(同図(a)参照)。続いて、同様にしてカソード電極24を覆って絶縁性の保護層25を成膜形成し(同図(b)参照)、さらにその上に例えばUV硬化性の樹脂を例えばスピンコート又はスプレー塗布して接着層26を形成する(同図(c)参照)。そして、上記接着層26上に透明な対向基板27を密着させた後、対向基板27側から紫外線を照射して接着層26を硬化させ、対向基板27をTFT基板1に接合する(同図(d)参照)。これにより、有機EL表示装置が完成する。
 なお、上記実施形態においては、マスク用部材4がフィルム状の形態を成すものである場合について説明したが、本発明はこれに限られず、紫外線レーザアブレーションが可能な材料であれば、液状のものであってもよい。この場合は、マスク用部材4は、TFT基板1面にスピンコート又はディップコートされる。
 また、以上の説明においては、各有機EL層3R~3B形成時に、有機EL層3R~3B上にさらに透明電極層23を形成する場合について説明したが、本発明はこれに限られず、有機EL層3R~3B形成時には透明電極層23を形成しなくてもよい。ただし、マスク用部材4が液状のものであるときには、該液状のマスク用部材4によって有機EL層3R~3Bが溶解されるのを防止するために、有機EL層3R~3B上に透明電極層23を保護膜として形成するのがよい。
 そして、本発明は、有機EL表示装置の製造方法に限られず、高精細な薄膜パターンを形成しようとするものであれば、液晶表示装置のカラーフィルターの形成、又は半導体基板の配線パターンの形成等、如何なるものにも適用することができる。
 1…TFT基板(基板)
 2R…R対応のアノード電極
 2G…G対応のアノード電極
 2B…B対応のアノード電極
 3R…R有機EL層
 3G…G有機EL層
 3B…B有機EL層
 4…マスク用部材
 5…開口
 6…マスク
 23…透明電極層
 L…レーザ光
 

Claims (5)

  1.  基板上に一定形状の薄膜パターンを形成する薄膜パターン形成方法であって、
     前記基板上を覆って可視光を透過する樹脂製のマスク用部材を密着するステップと、
     前記基板上の予め定められた部分にレーザ光を照射し、当該部分の前記マスク用部材に一定形状の開口を設けてマスクを形成するステップと、
     前記基板上の前記予め定められた部分に前記マスクの前記開口を介して成膜するステップと、
     前記マスクを剥離するステップと、
    を含むことを特徴とする薄膜パターン形成方法。
  2.  前記レーザ光は、波長が400nm以下であることを特徴とする請求項1記載の薄膜パターン形成方法。
  3.  TFT基板上のアノード電極上に対応色の有機EL層を形成して有機EL表示装置を製造する有機EL表示装置の製造方法であって、
     前記TFT基板上を覆って可視光を透過する樹脂製のマスク用部材を密着するステップと、
     前記TFT基板上の特定色のアノード電極上にレーザ光を照射し、当該アノード電極上の前記マスク用部材に画素に対応した形状の開口を設けてマスクを形成するステップと、
     前記TFT基板上の前記特定色のアノード電極上に前記マスクの前記開口を介して前記特定色の有機EL層を成膜形成するステップと、
     前記マスクを剥離するステップと、
    を含むことを特徴とする有機EL表示装置の製造方法。
  4.  前記有機EL層を成膜形成するステップにおいては、前記有機EL層上に、さらに透明電極層を成膜形成することを特徴とする請求項3記載の有機EL表示装置の製造方法。
  5.  前記レーザ光は、波長が400nm以下であることを特徴とする請求項3又は4記載の有機EL表示装置の製造方法。
     
PCT/JP2012/067322 2011-07-08 2012-07-06 薄膜パターン形成方法及び有機el表示装置の製造方法 WO2013008745A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152018A JP5895382B2 (ja) 2011-07-08 2011-07-08 薄膜パターン形成方法及び有機el表示装置の製造方法
JP2011-152018 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008745A1 true WO2013008745A1 (ja) 2013-01-17

Family

ID=47506035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067322 WO2013008745A1 (ja) 2011-07-08 2012-07-06 薄膜パターン形成方法及び有機el表示装置の製造方法

Country Status (3)

Country Link
JP (1) JP5895382B2 (ja)
TW (1) TW201316118A (ja)
WO (1) WO2013008745A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065446A (ja) * 2011-09-16 2013-04-11 V Technology Co Ltd 薄膜パターン形成方法
JP2013077541A (ja) * 2011-09-16 2013-04-25 V Technology Co Ltd 薄膜パターン形成方法及び有機el表示装置の製造方法
WO2013146661A1 (ja) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー 薄膜パターン形成方法
JP2017510951A (ja) * 2014-03-28 2017-04-13 アイメック・ヴェーゼットウェーImec Vzw 並置された多層膜の高解像度パターン形成
JP2017224584A (ja) * 2016-06-16 2017-12-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光表示装置及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095088B2 (ja) * 2016-05-19 2017-03-15 株式会社ブイ・テクノロジー マスクの製造方法、薄膜パターン形成方法及び有機el表示装置の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501380A (ja) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー 発光デバイスのパターニング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118679A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el素子の製造方法
US6821348B2 (en) * 2002-02-14 2004-11-23 3M Innovative Properties Company In-line deposition processes for circuit fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501380A (ja) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー 発光デバイスのパターニング方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065446A (ja) * 2011-09-16 2013-04-11 V Technology Co Ltd 薄膜パターン形成方法
JP2013077541A (ja) * 2011-09-16 2013-04-25 V Technology Co Ltd 薄膜パターン形成方法及び有機el表示装置の製造方法
WO2013146661A1 (ja) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー 薄膜パターン形成方法
JP2017510951A (ja) * 2014-03-28 2017-04-13 アイメック・ヴェーゼットウェーImec Vzw 並置された多層膜の高解像度パターン形成
JP2017224584A (ja) * 2016-06-16 2017-12-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光表示装置及びその製造方法

Also Published As

Publication number Publication date
JP5895382B2 (ja) 2016-03-30
TW201316118A (zh) 2013-04-16
JP2013020764A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
TWI555862B (zh) 蒸鍍遮罩、蒸鍍遮罩的製造方法及薄膜圖案形成方法
JP5935179B2 (ja) 蒸着マスク及び蒸着マスクの製造方法
WO2013039196A1 (ja) 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法
JP5958804B2 (ja) 蒸着マスク、蒸着マスクの製造方法及び有機el表示装置の製造方法
WO2013008745A1 (ja) 薄膜パターン形成方法及び有機el表示装置の製造方法
JP5515025B2 (ja) マスク、それに使用するマスク用部材、マスクの製造方法及び有機el表示用基板の製造方法
JP3580550B1 (ja) パターン基板の欠陥修正方法及び欠陥修正装置並びにパターン基板製造方法
JP5517308B2 (ja) マスクの製造方法、マスク及びマスクの製造装置
JP5899585B2 (ja) マスクの製造方法
TWI602335B (zh) 薄膜圖案形成方法
US20110146889A1 (en) Method for manufacturing display device with optical/electronic structures
JP6078741B2 (ja) 薄膜パターン形成方法及びマスク
JP5804457B2 (ja) マスク
JP5935101B2 (ja) 薄膜パターン形成方法
JP5884543B2 (ja) 薄膜パターン形成方法、マスクの製造方法及び有機el表示装置の製造方法
JP5953566B2 (ja) 薄膜パターン形成方法及び有機el表示装置の製造方法
JP2009009031A (ja) 有機el表示装置用基板及びその製造方法
KR100699992B1 (ko) 레이저 전사장치와 유기전계발광표시장치의 제조방법
JP6095088B2 (ja) マスクの製造方法、薄膜パターン形成方法及び有機el表示装置の製造方法
WO2006022036A1 (ja) 半導体装置、表示装置およびデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811799

Country of ref document: EP

Kind code of ref document: A1