WO2013145881A1 - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
WO2013145881A1
WO2013145881A1 PCT/JP2013/052979 JP2013052979W WO2013145881A1 WO 2013145881 A1 WO2013145881 A1 WO 2013145881A1 JP 2013052979 W JP2013052979 W JP 2013052979W WO 2013145881 A1 WO2013145881 A1 WO 2013145881A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat radiating
power semiconductor
sealing body
connecting member
semiconductor module
Prior art date
Application number
PCT/JP2013/052979
Other languages
English (en)
French (fr)
Inventor
樋熊 真人
俊文 佐川
志村 隆弘
吉成 英人
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112013001823.3T priority Critical patent/DE112013001823T5/de
Priority to US14/379,957 priority patent/US9474191B2/en
Publication of WO2013145881A1 publication Critical patent/WO2013145881A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/069Other details of the casing, e.g. wall structure, passage for a connector, a cable, a shaft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/40247Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73213Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a power semiconductor module that mutually converts DC power and AC current.
  • a power conversion device such as an inverter or a converter
  • a power conversion device provided with a plurality of power semiconductor modules containing power semiconductor elements and a cooler for cooling the power semiconductor modules.
  • this power semiconductor module it is necessary to release the heat generated in the power semiconductor element during conduction operation to the outside through the radiation fins, and the structure design that improves the heat dissipation within a limited size is a key point. .
  • a semiconductor circuit unit including a semiconductor element is accommodated in a cylindrical case, and the semiconductor circuit unit further has an insulating property for ensuring electrical insulation. It adheres to the inner wall (heat radiating member) of the case through a member.
  • the thin portions around the heat radiating member spring back in a direction away from the semiconductor circuit portion, so that tensile stress is generated in the semiconductor circuit portion, and peeling between the insulating member and the inner wall of the case occurs. There is a fear. Separation of the bonded portion reduces the heat dissipation performance of the semiconductor device and leads to damage of the power semiconductor.
  • the problem to be solved by the present invention is to improve the reliability of a power semiconductor module having excellent cooling performance.
  • a power semiconductor module includes a circuit body including a power semiconductor element, and a case that houses the circuit body, and the case includes a first heat radiating plate and A second heat radiating plate facing the first heat radiating plate across the circuit body, a first intermediate connection portion connected to the first heat radiating plate and surrounding the first heat radiating plate, A second intermediate connection portion connected to the second heat dissipation plate and surrounding the second heat dissipation plate, and a side wall portion connected to the first intermediate connection portion and the second intermediate connection portion.
  • the first intermediate connection portion is formed such that the first heat radiating plate generates a first compressive stress in the arrangement direction of the circuit body, and the second intermediate connection portion is formed by the second heat radiating plate.
  • the first compressive stress toward the arrangement direction of the circuit body Ri is formed to generate a larger second compressive stress, wherein the circuit body is subjected to compressive stress due to the difference between the second compressive stress and the first compressive stress. Thereby, springback can be reduced in the direction away from the circuit body.
  • the thickness of the first intermediate connection portion and the second intermediate connection portion is greater than the thickness of each of the first heat radiating plate, the second heat radiating plate, and the side wall portion.
  • the rigidity of the first intermediate connection part and the second intermediate connection part is smaller than the rigidity of the first heat radiating plate, the second heat radiating plate, and the side wall part.
  • a connection portion between the first heat dissipation portion and the first intermediate connection portion is defined as a first connection portion, and a connection portion between the first intermediate connection portion and the side wall portion is defined.
  • the second connecting portion is defined, the connecting portion between the second heat radiating portion and the second intermediate connecting portion is defined as the third connecting portion, and the connecting portion between the second intermediate connecting portion and the side wall portion is defined as the fourth connecting portion.
  • the length of the second intermediate connection part from the third connection part to the fourth connection part is the first intermediate connection part from the first connection part to the second connection part. Power semiconductor module larger than the length of.
  • the second intermediate connection portion has a bent portion.
  • the second heat radiating plate has a slanted portion of the second heat radiating plate. It is formed so as to be smaller than the shaded portion of one heat sink.
  • the reliability of a power semiconductor module having excellent cooling performance can be improved.
  • FIG. 1 is a system diagram showing a system of a hybrid vehicle. It is a circuit diagram which shows the structure of the electric circuit shown in FIG. It is an external appearance perspective view of the power converter device 200 as embodiment which concerns on this invention. It is an external appearance perspective view of the power converter device 200 as embodiment which concerns on this invention. It is a figure which shows the state which removed the lid
  • FIG. 6 is a view showing a state where the housing 10 is removed from the flow path forming body 12 in FIG. 5.
  • 2 is an exploded perspective view of a power conversion device 200.
  • FIG. 1 is a system diagram showing a system of a hybrid vehicle. It is a circuit diagram which shows the structure of the electric circuit shown in FIG. It is an external appearance perspective view of the power converter device 200 as embodiment which concerns on this invention. It is an external appearance perspective view of the power converter device 200 as embodiment which concerns on this invention. It is a figure
  • FIG. 3 is an external perspective view in which power semiconductor modules 300U to 300W, a capacitor module 500, and a bus bar assembly 800 are assembled to a flow path forming body 12.
  • FIG. The state which removed the bus-bar assembly 800 from the flow-path formation body 12 is shown.
  • 3 is a perspective view of a flow path forming body 12.
  • FIG. It is the disassembled perspective view which looked at the flow-path formation body 12 from the back surface side.
  • FIG. 12A is a perspective view of the power semiconductor module 300U of the present embodiment.
  • FIG. 12B is a cross-sectional view of the power semiconductor module 300U according to the present embodiment cut along a cross section D and viewed from the direction E.
  • FIG. 13A is a perspective view, and FIG.
  • FIG. 13B is a cross-sectional view taken along the section D and viewed from the direction E as in FIG. 12B.
  • FIG. 13C shows a view for explaining the insertion process of the module primary sealing body 302.
  • 14 (a) is a perspective view
  • FIG. 14 (b) is a cross-sectional view taken along the section D and viewed from the direction E as in FIGS. 12 (b) and 13 (b).
  • FIG. 15 is a perspective view of a power semiconductor module 300U in which the first sealing resin 348 and the wiring insulating portion 608 are further removed from the state shown in FIG. It is a figure for demonstrating the assembly process of the module primary sealing body 302.
  • FIG. 1 is an external perspective view of a capacitor module 500.
  • FIG. 2 is a perspective view of a bus bar assembly 800.
  • FIG. FIG. 4 is a diagram showing a flow path forming body 12 in which power semiconductor modules 300U to 300W are fixed to openings 402a to 402c and a capacitor module 500 is stored in a storage space 405. It is sectional drawing of the power semiconductor module 300U seen from the arrow direction of the EE cross section of FIG. The graph of the springback amount when the 1st connection member 304A (adjustment part) and the 2nd connection member 304C (plate spring part) are displaced equally is shown. It is a figure explaining the adjustment method of leaf spring force. It is an enlarged view (Example 1) of the connection member in FIG. It is an enlarged view (Example 2) of the connection member in FIG.
  • connection member 3 It is an enlarged view (Example 3) of the connection member in FIG. It is an enlarged view (Example 4) of the connection member in FIG. It is an enlarged view (Example 5) of the connection member in FIG. It is a figure explaining the press-fit process by vacuum heating.
  • the power conversion device according to the embodiment of the present invention can be applied to a hybrid vehicle or a pure electric vehicle.
  • the power conversion device according to the embodiment of the present invention is applied to a hybrid vehicle.
  • the control configuration and the circuit configuration of the power converter will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle (hereinafter referred to as “HEV”).
  • HEV hybrid vehicle
  • Engine EGN and motor generator MG1 generate vehicle running torque.
  • Motor generator MG1 not only generates rotational torque but also has a function of converting mechanical energy applied from the outside to motor generator MG1 into electric power.
  • the motor generator MG1 is, for example, a synchronous machine or an induction machine, and operates as a motor or a generator depending on the operation method as described above.
  • motor generator MG1 When motor generator MG1 is mounted on an automobile, it is desirable to obtain a small and high output, and a permanent magnet type synchronous motor using a magnet such as neodymium is suitable. Further, the permanent magnet type synchronous motor generates less heat from the rotor than the induction motor, and is excellent for automobiles from this viewpoint.
  • the output torque on the output side of the engine EGN is transmitted to the motor generator MG1 via the power distribution mechanism TSM, and the rotation torque from the power distribution mechanism TSM or the rotation torque generated by the motor generator MG1 is transmitted via the transmission TM and the differential gear DEF. Transmitted to the wheels.
  • rotational torque is transmitted from the wheels to motor generator MG1, and AC power is generated based on the supplied rotational torque.
  • the generated AC power is converted to DC power by the power conversion device 200 as described later, and the high-voltage battery 136 is charged, and the charged power is used again as travel energy.
  • the inverter circuit 140 is electrically connected to the battery 136 via the DC connector 138, and power is exchanged between the battery 136 and the inverter circuit 140.
  • motor generator MG1 When motor generator MG1 is operated as a motor, inverter circuit 140 generates AC power based on DC power supplied from battery 136 via DC connector 138 and supplies it to motor generator MG1 via AC terminal 188.
  • the configuration comprising motor generator MG1 and inverter circuit 140 operates as a first motor generator unit.
  • the vehicle can be driven only by the power of the motor generator MG1 by operating the first motor generator unit as an electric unit by the electric power of the battery 136. Further, in the present embodiment, the battery 136 can be charged by operating the first motor generator unit as a power generation unit by the power of the engine 120 or the power from the wheels to generate power.
  • the battery 136 is also used as a power source for driving an auxiliary motor.
  • the auxiliary motor is, for example, a motor for driving a compressor of an air conditioner or a motor for driving a control hydraulic pump.
  • DC power is supplied from the battery 136 to the power semiconductor module for auxiliary machinery, and the power semiconductor module for auxiliary machinery generates AC power and supplies it to the motor for auxiliary machinery.
  • the auxiliary power semiconductor module has basically the same circuit configuration and function as the inverter circuit 140, and controls the phase, frequency, and power of alternating current supplied to the auxiliary motor.
  • the power conversion device 200 includes a capacitor module 500 for smoothing the DC power supplied to the inverter circuit 140.
  • the power conversion device 200 includes a communication connector 21 for receiving a command from a host control device or transmitting data representing a state to the host control device.
  • Power conversion device 200 calculates a control amount of motor generator MG1 by control circuit 172 based on a command input from connector 21, further calculates whether to operate as a motor or a generator, and based on the calculation result.
  • the control pulse is generated, and the control pulse is supplied to the driver circuit 174.
  • the driver circuit 174 generates a driving pulse for controlling the inverter circuit 140 based on the supplied control pulse.
  • an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT.
  • the IGBT 328 and the diode 156 that operate as the upper arm, and the IGBT 330 and the diode 166 that operate as the lower arm constitute the series circuit 150 of the upper and lower arms.
  • the inverter circuit 140 includes the series circuit 150 corresponding to three phases of the U phase, the V phase, and the W phase of the AC power to be output.
  • the series circuit 150 of the upper and lower arms of each of the three phases outputs an alternating current from the intermediate electrode 169 that is the midpoint portion of the series circuit.
  • This intermediate electrode 169 is connected to AC bus bars 802 and 804 described below which are AC power lines to motor generator MG1 through AC terminal 159 and AC terminal 188.
  • the collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157.
  • the emitter electrode of the IGBT 330 of the lower arm is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 via the negative electrode terminal 158.
  • control circuit 172 receives a control command from the host control device via the connector 21, and based on this, the IGBT 328 that configures the upper arm or the lower arm of each phase series circuit 150 that constitutes the inverter circuit 140. And a control pulse that is a control signal for controlling the IGBT 330 is generated and supplied to the driver circuit 174.
  • the driver circuit 174 supplies a drive pulse for controlling the IGBT 328 and IGBT 330 constituting the upper arm or lower arm of each phase series circuit 150 to the IGBT 328 and IGBT 330 of each phase based on the control pulse.
  • IGBT 328 and IGBT 330 perform conduction or cutoff operation based on the drive pulse from driver circuit 174, convert DC power supplied from battery 136 into three-phase AC power, and supply the converted power to motor generator MG1. Is done.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154.
  • the IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164.
  • a diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155.
  • a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT is suitable when the DC voltage is relatively high
  • MOSFET is suitable when the DC voltage is relatively low.
  • the capacitor module 500 includes a positive capacitor terminal 506, a negative capacitor terminal 504, a positive power terminal 509, and a negative power terminal 508.
  • the high-voltage DC power from the battery 136 is supplied to the positive-side power terminal 509 and the negative-side power terminal 508 via the DC connector 138, and the positive-side capacitor terminal 506 and the negative-side capacitor of the capacitor module 500.
  • the voltage is supplied from the terminal 504 to the inverter circuit 140.
  • the DC power converted from the AC power by the inverter circuit 140 is supplied to the capacitor module 500 from the positive capacitor terminal 506 and the negative capacitor terminal 504, and is connected to the positive power terminal 509 and the negative power terminal 508. Is supplied to the battery 136 via the DC connector 138 and accumulated in the battery 136.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330.
  • the input information to the microcomputer includes a target torque value required for the motor generator MG1, a current value supplied from the series circuit 150 to the motor generator MG1, and a magnetic pole position of the rotor of the motor generator MG1.
  • the target torque value is based on a command signal output from a host controller (not shown).
  • the current value is detected based on a detection signal from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG1.
  • the current sensor 180 detects the current value of three phases, but the current value for two phases may be detected and the current for three phases may be obtained by calculation. .
  • the microcomputer in the control circuit 172 calculates the d-axis and q-axis current command values of the motor generator MG1 based on the target torque value, the calculated d-axis and q-axis current command values, and the detected d
  • the voltage command values for the d-axis and the q-axis are calculated based on the difference between the current values of the axes and the q-axis, and the calculated voltage command values for the d-axis and the q-axis are calculated based on the detected magnetic pole position. It is converted into voltage command values for phase, V phase, and W phase.
  • the microcomputer generates a pulse-like modulated wave based on a comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of the U phase, V phase, and W phase, and the generated modulation wave
  • the wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the corresponding IGBT 330 of the lower arm. Further, when driving the upper arm, the driver circuit 174 amplifies the PWM signal after shifting the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, and uses this as a drive signal as a corresponding upper arm. Are output to the gate electrodes of the IGBTs 328 respectively.
  • the microcomputer in the control circuit 172 detects abnormality (overcurrent, overvoltage, overtemperature, etc.) and protects the series circuit 150. For this reason, sensing information is input to the control circuit 172. For example, information on the current flowing through the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding drive units (ICs) from the signal emitter electrode 155 and the signal emitter electrode 165 of each arm. Thereby, each drive part (IC) detects overcurrent, and when overcurrent is detected, it stops the switching operation of corresponding IGBT328 and IGBT330, and protects corresponding IGBT328 and IGBT330 from overcurrent.
  • ICs drive units
  • Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150.
  • voltage information on the DC positive side of the series circuit 150 is input to the microcomputer.
  • the microcomputer performs overtemperature detection and overvoltage detection based on such information, and stops switching operations of all the IGBTs 328 and IGBTs 330 when an overtemperature or overvoltage is detected.
  • FIG. 3 and 4 are external perspective views of the power conversion apparatus 200 according to the embodiment of the present invention, and FIG. 4 shows a state in which the AC connector 187 and the DC connector 138 are removed.
  • the power conversion device 200 according to the present embodiment has an effect that the planar shape is a rectangular parallelepiped shape, which can be reduced in size and can be easily attached to the vehicle.
  • 8 is a lid
  • 10 is a housing
  • 12 is a flow path forming body
  • 13 is a cooling medium inlet pipe
  • 14 is an outlet pipe
  • 420 is a lower cover.
  • the connector 21 is a signal connector provided for connection to the outside.
  • the lid 8 is fixed to the upper opening of the housing 10 in which circuit components constituting the power conversion device 200 are accommodated.
  • the flow path forming body 12 fixed to the lower portion of the housing 10 holds a power semiconductor module 300 and a capacitor module 500, which will be described later, and cools them with a cooling medium.
  • a cooling medium For example, water is often used as the cooling medium, and will be described below as a refrigerant.
  • the inlet pipe 13 and the outlet pipe 14 are provided on one side surface of the flow path forming body 12, and the refrigerant supplied from the inlet pipe 13 flows into a flow path 19 described later in the flow path forming body 12 and is discharged from the outlet pipe 14. Is done.
  • the AC interface 185 to which the AC connector 187 is attached and the DC interface 137 to which the DC connector 138 is attached are provided on the side surface of the housing 10.
  • the AC interface 185 is provided on the side surface where the pipes 13 and 14 are provided, and the AC wiring 187 a of the AC connector 187 attached to the AC interface 185 extends downward between the pipes 13 and 14.
  • the DC interface 137 is provided on a side surface adjacent to the side surface on which the AC interface 185 is provided, and the DC wiring 135J of the DC connector 138 attached to the DC interface 137 also extends below the power conversion device 200.
  • FIG. 5 is a diagram showing a state in which lid 8, DC interface 137, and AC interface 185 are removed from power conversion device 200 shown in FIG.
  • An opening 10a to which the AC interface 185 is fixed is formed on one side of the housing 10, and an opening 10b to which the DC interface 137 is fixed is formed on the other adjacent side.
  • 6 is a view showing a state where the housing 10 is removed from the flow path forming body 12 in FIG.
  • the housing 10 has two storage spaces, and is divided into an upper storage space and a lower storage space by a partition wall 10c.
  • the control circuit board 20 to which the connector 21 is fixed is stored in the upper storage space, and the driver circuit board 22 and a bus bar assembly 800 described later are stored in the lower storage space.
  • a control circuit 172 shown in FIG. 2 is mounted on the control circuit board 20, and a driver circuit board 174 is mounted on the driver circuit board 22.
  • the control circuit board 20 and the driver circuit board 22 are connected by a flat cable (not shown) (see FIG. 7 to be described later).
  • the flat cable passes through a slit-shaped opening 10d formed in the partition wall 10c and is a lower storage space.
  • FIG. 7 is an exploded perspective view of the power converter 200.
  • control circuit board 20 on which the control circuit 172 is mounted is disposed inside the lid 8, that is, in the upper storage space of the housing 10.
  • the lid 8 is formed with an opening 5J for the connector 21.
  • Low voltage DC power for operating the control circuit in the power converter 200 is supplied from the connector 21.
  • the flow path forming body 12 is formed with a flow path through which the refrigerant flowing from the inlet pipe 13 flows.
  • the flow path forms a U-shaped flow path that flows along the three side surfaces of the flow path forming body 12.
  • the refrigerant that has flowed from the inlet pipe 13 flows into the flow path from one end of the U-shaped flow path, flows through the flow path, and then flows out from the outlet pipe 14 connected to the other end of the flow path.
  • Three openings 402a to 402c are formed on the upper surface of the flow path, and the power semiconductor modules 300U, 300V, and 300W incorporating the series circuit 150 (see FIG. 1) are connected to the inside of the flow path from the openings 402a to 402c. Inserted into.
  • the power semiconductor module 300U includes a U-phase series circuit 150
  • the power semiconductor module 300V includes a V-phase series circuit 150
  • the power semiconductor module 300W includes a W-phase series circuit 150.
  • These power semiconductor modules 300U to 300W have the same configuration and the same external shape.
  • the openings 402a to 402c are closed by the flange portions of the inserted power semiconductor modules 300U to 300W.
  • a storage space 405 for storing electrical components is formed in the flow path forming body 12 so as to be surrounded by the U-shaped flow path.
  • the capacitor module 500 is stored in the storage space 405.
  • the capacitor module 500 stored in the storage space 405 is cooled by the refrigerant flowing in the flow path.
  • a bus bar assembly 800 to which AC bus bars 802U to 802W are attached is disposed above the capacitor module 500.
  • the bus bar assembly 800 is fixed to the upper surface of the flow path forming body 12.
  • a current sensor 180 is fixed to the bus bar assembly 800.
  • the driver circuit board 22 is disposed above the bus bar assembly 800 by being fixed to a support member 807a provided in the bus bar assembly 800. As described above, the control circuit board 20 and the driver circuit board 22 are connected by the flat cable 23. The flat cable 23 is pulled out from the lower storage space to the upper storage space through the slit-shaped opening 10d formed in the partition wall 10c.
  • the power semiconductor modules 300U to 300W, the driver circuit board 22 and the control circuit board 20 are hierarchically arranged in the height direction, and the control circuit board 20 is farthest from the high-power system power semiconductor modules 300U to 300W. Therefore, it is possible to reduce mixing of switching noise and the like on the control circuit board 20 side. Furthermore, since the driver circuit board 22 and the control circuit board 20 are arranged in different storage spaces partitioned by the partition wall 10c, the partition wall 10c functions as an electromagnetic shield and enters the control circuit board 20 from the driver circuit board 22. Noise can be reduced.
  • the housing 10 is made of a metal material such as aluminum.
  • control circuit board 20 is fixed to the partition wall 10c formed integrally with the housing 10, the mechanical resonance frequency of the control circuit board 20 is increased against external vibration. Therefore, it is difficult to be affected by vibration from the vehicle side, and reliability is improved.
  • FIG. 8 is an external perspective view in which the power semiconductor modules 300U to 300W, the capacitor module 500, and the bus bar assembly 800 are assembled to the flow path forming body 12.
  • FIG. 9 shows a state in which the bus bar assembly 800 is removed from the flow path forming body 12. The bus bar assembly 800 is bolted to the flow path forming body 12.
  • FIG. 10 is a perspective view of the flow path forming body 12
  • FIG. 11 is an exploded perspective view of the flow path forming body 12 as seen from the back side.
  • the flow path forming body 12 is a rectangular parallelepiped having a planar shape, and an inlet pipe 13 and an outlet pipe 14 are provided on a side surface 12d thereof.
  • the side surface 12d is formed in a stepped portion in which the pipes 13 and 14 are provided.
  • the channel 19 is formed in a U shape so as to follow the remaining three side surfaces 12a to 12c.
  • a U-shaped opening 404 connected to one having the same shape as the cross-sectional shape of the flow path 19 is formed on the back surface side of the flow path forming body 12.
  • the opening 404 is closed by a U-shaped lower cover 420.
  • a seal member 409a is provided between the lower cover 420 and the flow path forming body 12, and airtightness is maintained.
  • the U-shaped channel 19 is divided into three channel sections 19a, 19b, and 19c according to the direction in which the refrigerant flows.
  • the first flow path section 19a is provided along the side face 12a at a position facing the side face 12d provided with the pipes 13 and 14, and the second flow path section 19b is one of the side faces 12a.
  • the third flow path section 19c is provided along the side surface 12c adjacent to the other side of the side surface 12a.
  • the refrigerant flows from the inlet pipe 13 into the flow path section 19b, flows in the order of the flow path section 19b, the flow path section 19a, and the flow path section 19c as shown by the broken line arrows, and flows out from the outlet pipe 14.
  • a rectangular opening 402a parallel to the side surface 12a is formed at a position facing the flow path section 19a, and at a position facing the flow path section 19b.
  • a rectangular opening 402b parallel to the side surface 12b is formed, and a rectangular opening 402c parallel to the side surface 12c is formed at a position facing the flow path section 19c.
  • the power semiconductor modules 300U to 300W are inserted into the flow path 19 through these openings 402a to 402c.
  • the lower cover 420 is formed with a convex portion 406 that protrudes toward the lower side of the flow path 19 at a position facing the above-described openings 402a to 402c.
  • These convex portions 406 are dents when viewed from the flow path 19 side, and the lower end portions of the power semiconductor modules 300U to 300W inserted from the openings 402a to 402c enter these dents. Since the flow path forming body 12 is formed so that the opening 404 and the openings 402a to 402c face each other, the flow path forming body 12 is configured to be easily manufactured by aluminum casting.
  • the flow path forming body 12 is provided with a rectangular storage space 405 formed so that three sides are surrounded by the flow path 19.
  • the capacitor module 500 is stored in the storage space 405. Since the storage space 405 surrounded by the flow path 19 has a rectangular parallelepiped shape, the capacitor module 500 can be formed into a rectangular parallelepiped shape, and the productivity of the capacitor module 500 is improved.
  • the power semiconductor modules 300U to 300W and the power semiconductor modules 301a to 301c used in the inverter circuit 140 and the inverter circuit 142 will be described with reference to FIGS.
  • the power semiconductor modules 300U to 300W and the power semiconductor modules 301a to 301c all have the same structure, and the structure of the power semiconductor module 300U will be described as a representative. 12 to 16, the signal terminal 325U corresponds to the gate electrode 154 and the signal emitter electrode 155 disclosed in FIG. 2, and the signal terminal 325L corresponds to the gate electrode 164 and the emitter electrode 165 disclosed in FIG. To do.
  • the DC positive terminal 315B is the same as the positive terminal 157 disclosed in FIG.
  • FIG. 12A is a perspective view of the power semiconductor module 300U of the present embodiment.
  • FIG. 12B is a cross-sectional view of the power semiconductor module 300U according to the present embodiment cut along a cross section D and viewed from the direction E.
  • FIG. 13 is a diagram showing a power semiconductor module 300U in which the screw 309 and the second sealing resin 351 are removed from the state shown in FIG. 12 to facilitate understanding.
  • FIG. 13A is a perspective view
  • FIG. 13B is a cross-sectional view taken along the section D and viewed from the direction E as in FIG. 12B.
  • FIG. 13C is a view for explaining the process of inserting the module primary sealing body 302.
  • the module primary sealing body 302 is inserted into the storage space formed by the inner wall of the module case 304 in a state where the insulating members 333 are arranged on both surfaces of the module primary sealing body 302.
  • FIG. 14 is a diagram showing a power semiconductor module 300U in which the module case 304 is further removed from the state shown in FIG. 14 (a) is a perspective view, and FIG. 14 (b) is a cross-sectional view taken along the section D and viewed from the direction E as in FIGS. 12 (b) and 13 (b).
  • FIG. 15 is a perspective view of the power semiconductor module 300U from which the first sealing resin 348 and the wiring insulating portion 608 are further removed from the state shown in FIG.
  • FIG. 16 is a diagram for explaining an assembly process of the module primary sealing body 302.
  • the power semiconductor elements (IGBT 328, IGBT 330, diode 156, and diode 166) constituting the upper and lower arm series circuit 150 are connected by the conductor plate 315 and the conductor plate 318, or by the conductor plate 320 and the conductor plate as shown in FIGS. By 319, it is fixed by being sandwiched from both sides.
  • the conductor plate 315 and the like are sealed with the first sealing resin 348 with the heat dissipation surface exposed, and the insulating member 333 is thermocompression bonded to the heat dissipation surface.
  • the first sealing resin 348 has a polyhedral shape (here, a substantially rectangular parallelepiped shape).
  • the module primary sealing body 302 sealed with the first sealing resin 348 is inserted into the module case 304 and sandwiched between the insulating members 333, and is thermocompression bonded to the inner surface of the module case 304 that is a CAN type cooler.
  • the CAN-type cooler is a cylindrical cooler having an insertion port 306 on one surface and a bottom on the other surface.
  • the gap remaining inside the module case 304 is filled with the second sealing resin 351.
  • the module case 304 is made of a member having electrical conductivity, for example, an aluminum alloy material (Al, AlSi, AlSiC, Al—C, etc.), and is integrally formed without a joint.
  • the module case 304 has a structure in which no opening other than the insertion port 306 is provided.
  • the insertion port 306 is surrounded by a flange 304B.
  • the first heat radiating member 307A and the second heat radiating member 307B which are wider than the other surfaces, are arranged facing each other so as to face these heat radiating surfaces.
  • Each power semiconductor element (IGBT 328, IGBT 330, diode 156, diode 166) is arranged.
  • the three surfaces connecting the opposing first heat radiation member 307A and second heat radiation member 307B constitute a surface sealed with a narrower width than the first heat radiation member 307A and the second heat radiation member 307B, and the other one side surface An insertion port 306 is formed at the bottom.
  • the shape of the module case 304 does not need to be an accurate rectangular parallelepiped, and the corner may form a curved surface as shown in FIG.
  • the metal case having such a shape By using the metal case having such a shape, even when the module case 304 is inserted into the flow path 19 through which a coolant such as water or oil flows, a seal against the coolant can be secured by the flange 304B. Can be prevented from entering the inside of the module case 304 with a simple configuration.
  • the fins 305 are uniformly formed on the first heat radiating member 307A and the second heat radiating member 307B facing each other.
  • the 1st connection member 304A whose thickness is extremely thin is formed in the outer periphery of the 1st heat radiating member 307A and the 2nd heat radiating member 307B. Since the first connecting member 304A is extremely thin to such an extent that it can be easily deformed by pressurizing the fin 305, the productivity after the module primary sealing body 302 is inserted is improved.
  • the module case 304 when the outer surface of the module case 304 is directly cooled by the cooling refrigerant, the module case is reduced by reducing the thermal resistance of the heat transfer path from the power semiconductor element to the outer surface of the module case 304. Heat dissipation from the outer surface of 304 is promoted. As a result, the current flowing through the power semiconductor element can be increased and the cooling unit of the power conversion device can be reduced in size, and the amount of output current per volume of the power conversion device can be greatly increased.
  • the gap between the conductor plate 315 and the inner wall of the module case 304 can be reduced by thermocompression bonding of the conductor plate 315 and the like to the inner wall of the module case 304 via the insulating member 333, and the power semiconductor The generated heat of the element can be efficiently transmitted to the fin 305. Further, by providing the insulating member 333 with a certain degree of thickness and flexibility, the generation of thermal stress can be absorbed by the insulating member 333, which is favorable for use in a power conversion device for a vehicle having a large temperature change. .
  • a metallic DC positive wiring 315A and a DC negative wiring 319A for electrical connection with the capacitor module 500 are provided, and a DC positive terminal 315B (157) and a DC are connected to the tip thereof. Negative terminals 319B (158) are formed respectively.
  • metallic AC wiring 320A for supplying AC power to motor generator MG1 is provided, and AC terminal 320B (159) is formed at the tip thereof.
  • the DC positive electrode wiring 315A is connected to the conductor plate 315
  • the DC negative electrode wiring 319A is connected to the conductor plate 319
  • the AC wiring 320A is connected to the conductor plate 320.
  • metal signal wirings 324U and 324L for electrical connection with the driver circuit 174 are further provided, and signal terminals 325U (154, 155) and a signal terminal 325L are provided at the front ends thereof. (164, 165) are formed.
  • the signal wiring 324 ⁇ / b> U is connected to the IGBT 328
  • the signal wiring 324 ⁇ / b> L is connected to the IGBT 328.
  • the DC positive electrode wiring 315A, the DC negative electrode wiring 319A, the AC wiring 320A, the signal wiring 324U, and the signal wiring 324L are integrally molded as the auxiliary mold body 600 in a state where they are insulated from each other by the wiring insulating portion 608 formed of a resin material. Is done.
  • the wiring insulating portion 608 also acts as a support member for supporting each wiring, and a thermosetting resin or a thermoplastic resin having an insulating property is suitable for the resin material used therefor. Thereby, it is possible to secure insulation between the DC positive electrode wiring 315A, the DC negative electrode wiring 319A, the AC wiring 320A, the signal wiring 324U, and the signal wiring 324L, and high-density wiring is possible.
  • the auxiliary mold body 600 is fixed to the module case 304 with a screw 309 that passes through a screw hole provided in the wiring insulating portion 608 after being metal-bonded to the module primary sealing body 302 at the connection portion 370.
  • TIG welding or the like can be used for metal bonding between the module primary sealing body 302 and the auxiliary mold body 600 in the connection portion 370.
  • the direct current positive electrode wiring 315A and the direct current negative electrode wiring 319A are stacked on each other in a state of facing each other with the wiring insulating portion 608 interposed therebetween, and have a shape extending substantially in parallel. With such an arrangement and shape, the current that instantaneously flows during the switching operation of the power semiconductor element flows oppositely and in the opposite direction. As a result, the magnetic fields produced by the currents cancel each other out, and this action can reduce the inductance.
  • the AC wiring 320A and the signal terminals 325U and 325L also extend in the same direction as the DC positive electrode wiring 315A and the DC negative electrode wiring 319A.
  • connection portion 370 in which the module primary sealing body 302 and the auxiliary mold body 600 are connected by metal bonding is sealed in the module case 304 by the second sealing resin 351.
  • the auxiliary module 600 side DC positive connection terminal 315C, the auxiliary module side DC negative connection terminal 319C, the auxiliary module side AC connection terminal 320C, and the auxiliary module side signal connection are connected to the auxiliary module 600 side of the connecting portion 370.
  • Terminals 326U and auxiliary module side signal connection terminals 326L are arranged in a line.
  • connection portion 370 On the other hand, on the module primary sealing body 302 side of the connection portion 370, along one surface of the first sealing resin 348 having a polyhedral shape, an element side DC positive connection terminal 315D, an element side DC negative connection terminal 319D, The element side AC connection terminal 320D, the element side signal connection terminal 327U, and the element side signal connection terminal 327L are arranged in a line.
  • the structure in which the terminals are arranged in a row in the connection portion 370 facilitates the manufacture of the module primary sealing body 302 by transfer molding.
  • a terminal constituted by the DC positive electrode wiring 315A (including the DC positive electrode terminal 315B and the auxiliary module side DC positive electrode connection terminal 315C) and the element side DC positive electrode connection terminal 315D is referred to as a positive electrode side terminal.
  • a terminal composed of the DC negative electrode terminal 319B (including the auxiliary module side DC negative electrode connection terminal 319C) and the element side DC negative electrode connection terminal 315D is referred to as a negative electrode side terminal, and AC wiring 320A (AC terminal 320B and auxiliary module side AC connection)
  • the terminal composed of the terminal 320C and the element side AC connection terminal 320D is referred to as an output terminal, and is composed of the signal wiring 324U (including the signal terminal 325U and the auxiliary module side signal connection terminal 326U) and the element side signal connection terminal 327U.
  • Element side DC positive electrode connecting terminal 315D Element side DC negative connection terminal 319D, element side AC connection terminal 320D, element side signal connection terminal 327U and element side signal connection terminal 327L) are one surface of the first sealing resin 348 having a polyhedral shape as described above. Are lined up in a row. Further, the positive electrode side terminal and the negative electrode side terminal protrude in a stacked state from the second sealing resin 351 and extend outside the module case 304.
  • the power semiconductor element and the terminal are connected during mold clamping when the module primary sealing body 302 is manufactured by sealing the power semiconductor element with the first sealing resin 348. It is possible to prevent an excessive stress on the portion and a gap in the mold from occurring. Further, since the magnetic fluxes in the directions canceling each other are generated by the currents in the opposite directions flowing through each of the stacked positive electrode side terminals and negative electrode side terminals, the inductance can be reduced.
  • the auxiliary module side DC positive electrode connection terminal 315C and the auxiliary module side DC negative electrode connection terminal 319C are the DC positive electrode terminal 315B and the tip of the DC positive electrode wiring 315A and the DC negative electrode wiring 319A opposite to the DC negative electrode terminal 319B. It is formed in each part. Further, the auxiliary module side AC connection terminal 320C is formed at the tip of the AC wiring 320A opposite to the AC terminal 320B. The auxiliary module side signal connection terminals 326U and 326L are formed at the distal ends of the signal wirings 324U and 324L opposite to the signal terminals 325U and 325L, respectively.
  • FIG. 17 is an external perspective view of the capacitor module 500.
  • a plurality of capacitor cells are provided in the capacitor module 500.
  • Capacitor terminals 503a to 503c are provided on the upper surface of the capacitor module 500 so as to protrude close to the surface of the capacitor module 500 facing the flow path 19.
  • the capacitor terminals 503a to 503c are formed corresponding to the positive terminal 157 and the negative terminal 158 of each power semiconductor module 300.
  • the capacitor terminals 503a to 503c have the same shape, and an insulating sheet is provided between the negative electrode side capacitor terminal 504 and the positive electrode side capacitor terminal 506 constituting the capacitor terminals 503a to 503c, and insulation between the terminals is ensured. Yes.
  • Projections 500e and 500f are formed on the upper side of the side surface 500d of the capacitor module 500.
  • a discharge resistor is mounted in the protruding portion 500e, and a Y capacitor for countering common mode noise is mounted in the protruding portion 500f.
  • the power supply terminals 508 and 509 shown in FIG. 5 are attached to the terminals 500g and 500h protruding from the upper surface of the protruding portion 500f.
  • recesses 405a and 405b are formed between the openings 402b and 402c and the side surface 12d.
  • the discharge resistor mounted in the protruding portion 500e is a resistor for discharging the electric charge accumulated in the capacitor cell in the capacitor module 500 when the inverter is stopped. Since the recessed portion 405a in which the protruding portion 500e is accommodated is provided immediately above the flow path of the refrigerant flowing in from the inlet pipe 13, it is possible to suppress the temperature rise of the discharge resistance during discharge.
  • FIG. 18 is a perspective view of the bus bar assembly 800.
  • the bus bar assembly 800 detects U, V, W phase AC bus bars 802U, 802V, 802W, a holding member 803 for holding and fixing the AC bus bars 802U to 802W, and an AC current flowing through the AC bus bars 802U to 802W.
  • AC bus bars 802U to 802W are each formed of a wide conductor.
  • a plurality of support members 807 a for holding the driver circuit board 22 are formed on the holding member 803 made of an insulating material such as resin so as to protrude upward from the holding member 803.
  • the current sensor 180 is parallel to the side face 12d at a position close to the side face 12d of the flow path forming body 12.
  • the current sensor 180 Located in the assembly 800.
  • through-holes 181 for penetrating the AC bus bars 802U to 802W are formed.
  • a sensor element is provided in a portion where the through hole 181 of the current sensor 180 is formed, and a signal line 182 a of each sensor element protrudes from the upper surface of the current sensor 180.
  • Each sensor element is arranged side by side in the extending direction of the current sensor 180, that is, in the extending direction of the side surface 12 d of the flow path forming body 12.
  • the AC bus bars 802U to 802W pass through the respective through holes 181 and their tip portions protrude in parallel.
  • the holding member 803 is formed with positioning projections 806a and 806b protruding upward.
  • the current sensor 180 is fixed to the holding member 803 by screwing.
  • the protrusions 806a and 806b are engaged with the positioning holes formed in the frame of the current sensor 180, thereby positioning the current sensor 180. Is done.
  • the positioning projections 806a and 806b are engaged with the positioning holes formed on the driver circuit board 22 side, whereby the signal line 182a of the current sensor 180 is obtained. Is positioned in the through hole of the driver circuit board 22.
  • the signal line 182a is joined to the wiring pattern of the driver circuit board 22 by solder.
  • the holding member 803, the support member 807a, and the protrusions 806a and 806b are integrally formed of resin. As described above, since the holding member 803 has a function of positioning the current sensor 180 and the driver circuit board 22, assembly and solder connection work between the signal line 182a and the driver circuit board 22 are facilitated. Further, by providing the holding member 803 with a mechanism for holding the current sensor 180 and the driver circuit board 22, the number of components as the whole power conversion device can be reduced.
  • the AC bus bars 802U to 802W are fixed to the holding member 803 so that the wide surfaces thereof are horizontal, and the connection portion 805 connected to the AC terminals 159 of the power semiconductor modules 300U to 300W rises vertically.
  • the connecting portion 805 has a concavo-convex shape at the tip, and has a shape in which heat concentrates on the concavo-convex portion during welding.
  • each power semiconductor module 300U to 300W is disposed in the flow path sections 19a, 19b, and 19c formed along the side surfaces 12a, 12b, and 12c of the flow path forming body 12, the connection portion 805 of the AC bus bars 802U to 802W. Are arranged at positions corresponding to the side surfaces 12a to 12c of the bus bar assembly 800. As a result, as shown in FIG.
  • the U-phase AC bus bar 802U extends from the power semiconductor module 300U disposed near the side surface 12b to the side surface 12d, and the V-phase AC bus bar 802V is disposed near the side surface 12a.
  • the power semiconductor module 300V extends to the side surface 12d, and the W-phase AC bus bar 802W extends from the power semiconductor module 300W disposed near the side surface 12c to the side surface 12d.
  • FIG. 19 is a diagram showing the flow path forming body 12 in which the power semiconductor modules 300U to 300W are fixed to the openings 402a to 402c and the capacitor module 500 is stored in the storage space 405.
  • the U-phase power semiconductor module 300U is fixed to the opening 402b
  • the V-phase power semiconductor module 300V is fixed to the opening 402a
  • the W-phase power semiconductor module 300W is fixed to the opening 402c. Is done.
  • the capacitor module 500 is stored in the storage space 405, and the terminals on the capacitor side and the terminals of each power semiconductor module are connected by welding or the like. Each terminal protrudes from the upper end surface of the flow path forming body 12, and a welding operation is performed by approaching a welding machine from above.
  • a DC positive terminal 315B and a DC negative terminal 319B of each of the power semiconductor modules 300U to 300W arranged in a U shape are capacitor terminals 503a to 503a provided on the upper surface of the capacitor module 500 shown in FIG. It is connected to 503c. Since the three power semiconductor modules 300U to 300W are provided so as to surround the capacitor module 500, the positional relationship of the power semiconductor modules 300U to 300W with respect to the capacitor module 500 is equivalent, and capacitor terminals 503a to 503c having the same shape are provided. And can be connected to the capacitor module 500 in a well-balanced manner. For this reason, the circuit constants of the capacitor module 500 and the power semiconductor modules 300U to 300W are easily balanced in each of the three phases, so that current can be easily taken in and out.
  • FIG. 20 is a cross-sectional view of the power semiconductor module 300U as viewed from the direction of the arrow of the AA cross section of FIG.
  • the insulating member 333 having adhesiveness may be a thin insulating sheet obtained by mixing a heat conductive filler with an epoxy resin. By making it into a sheet shape, the thickness can be accurately determined compared to grease and adhesives, etc., the generation of voids can be reduced, and variations in thermal resistance and insulation performance can be greatly reduced.
  • the insulating member 333 may be a ceramic plate or an adhesive substrate in which an adhesive is applied to both sides of the ceramic plate. By adhering the adhesive insulating member 333 and the module case 304, both surfaces of the module primary sealing body 302 can be cooled via the two first heat radiation members 307A and the second heat radiation members 307B, respectively. And the heat dissipation area can be increased. As a result, an excellent heat dissipation heat dissipation route can be formed from both sides of the power semiconductor module 300U, and the apparatus can be miniaturized.
  • the adhesion between the module primary sealing body 302 and the inner wall of the module case 304 is improved, and the module primary It is necessary to suppress the occurrence of peeling between the sealing body 302 and the inner wall of the module case 304. The principle will be described below.
  • the first connecting member 304A is formed so as to surround the first heat radiating member 307A forming the heat radiating surface and is connected to the side wall portion 306C.
  • the second connecting member 304C is formed so as to surround the second heat radiating member 307B forming the heat radiating surface and is connected to the side wall portion 306C.
  • the second connecting member 304C functions as a leaf spring portion that generates a pressing force that generates a compressive stress in the direction in which the module primary sealing body 302 is disposed.
  • the first connecting member 304A functions as an adjusting unit that is deformed so as to adjust the elastic deformation amount (pressing force) of the leaf spring of the first connecting member 304C.
  • the rigidity of the second connecting member 304C functioning as a leaf spring part and the first connecting member 304A functioning as an elastic deformation adjusting part is set to be smaller than the rigidity of the first heat dissipating member 307A and the second heat dissipating member 307B.
  • the plate thickness of the first connecting member 304A and the second connecting member 304C is set to be smaller than the first heat radiating member 307A and the second heat radiating member 307B, or the first connecting member 304A and the second connecting member 304C
  • the material of the connecting member 304C is set to be less rigid than the material of the first heat radiating member 307A and the second heat radiating member 307B.
  • 1st connection member 304A and 2nd connection may be carried out with a load much smaller than the load by which a power semiconductor element (IGBT328 and 330, diode 156 and 166) is destroyed.
  • the member 304C can be easily deformed.
  • FIG. 23 to 27 are enlarged views of the connecting member in FIG. Note that the fin 305 is omitted.
  • the connecting portion between the side wall portion 306C and the first connecting member 304A is defined as a second connecting portion C2, and the connecting portion between the first heat radiation member 307A and the first connecting member 304A is defined as a first connecting portion C1.
  • the length of the first connecting member 304A between the first connection portion C1 and the second connection portion C2 is defined as an adjustment portion length L1.
  • a connecting portion between the side wall portion 306C and the second connecting member 304C is defined as a fourth connecting portion C4, and a connecting portion between the second heat radiation member 307C and the second connecting member 304C is defined as a third connecting portion C3.
  • the length of the second connecting member 304C between the third connection portion C3 and the fourth connection portion C4 is defined as a leaf spring portion length L2.
  • plate spring part length L2 and the adjustment part length L1 be the length measured along the bending part.
  • the length L2 of the second connecting member 304C that functions as a leaf spring is the length L1 of the convex shape of the first connecting member 304A that functions as an adjusting portion. It is set to be larger.
  • FIG. 21 shows a graph of the amount of spring back when the first connecting member 304A (adjusting portion) and the second connecting member 304C (leaf spring portion) are displaced equally. This is an experimental result when the adjustment part length L1 is 6 times the adjustment part plate thickness and the leaf spring part length L2 is 1.4 times the adjustment part length L1.
  • a load is applied to the first heat radiating member 307A, a displacement X is applied in a direction from the first heat radiating member 307A toward the second heat radiating member 307B, and the amount of spring back when the load is removed is measured with a test indicator.
  • the leaf spring portion length L2 is set to be larger than the adjustment portion length L1
  • the yield stress of the second connection member 304C (leaf spring portion) is higher than that of the first connection member 304A (adjustment portion), and the elasticity is increased.
  • the limit becomes higher.
  • the spring back amount of the second connecting member 304C (leaf spring portion) is 1.1 times or more than the spring back amount of the first connecting member 304A (adjusting portion). It has become.
  • the module primary sealing body 302 having the insulating member 333 disposed on both surfaces is inserted, and the first heat radiating member 307A and the second heat radiating member 307B are moved in the direction from the first heat radiating member 307A to the second heat radiating member 307B.
  • the spring back amount of the second connecting member 304C (leaf spring part) becomes larger than that of the first connecting member 304A (adjusting part), so that a compressive residual stress is generated in the module primary sealing body 302.
  • the first connecting member 304A (adjusting part) springs back in a direction away from the module primary sealing body 302, but the second connecting member 304C (leaf spring part) approaches the module primary sealing body 302, and Since the spring back is larger than the first connecting member 304A (adjusting part), the module primary sealing body 302 can generate a compressive stress due to a difference in the spring back amount.
  • FIG. 22 is a diagram for explaining a method of adjusting the leaf spring force.
  • the side wall portion 306C of the module case 304 is placed on the cradle 100 and pressurizes the first connecting member 304A (adjusting portion) around the first heat radiation member 307A in the direction of the arrow.
  • a load is transmitted to the second heat radiating member 307B side through the module primary sealing body 302, and the second connecting member 304C (leaf spring portion) is displaced.
  • the unloading is performed after the displacement to the residual stress generation region shown in FIG. 21, the amount of spring back of the second connecting member 304C (leaf spring portion) becomes larger than that of the first connecting member 304A (adjusting portion).
  • a compressive residual stress is generated in the primary sealing body 302.
  • the leaf spring force can be adjusted and the strength of the compressive residual stress can be increased. That is, as shown in FIG. 21, when the displacement X of the first connecting member 304A (adjusting portion) is increased, the difference in the springback amount between the second connecting member 304C (leaf spring portion) and the first connecting member 304A (adjusting portion). And the compressive residual stress also increases.
  • the second connecting member 304C (leaf spring portion) is attached to the module primary sealing body 302 when the thin portion around the first heat radiation member 307A is pressurized.
  • it can be deformed into a convex shape in the opposite direction, and the height X of the step of the first connecting member 304A (adjusting portion) can be increased.
  • the upper portion of the fin 305 may be pressurized with a jig or the like instead of the thin portion around the first heat radiation member 307A.
  • FIG. 23 is an enlarged view (Example 1) of the connecting member in FIG.
  • the first connecting member 304A (adjusting portion) is formed with a first bent portion 365A
  • the second connecting member 304C (leaf spring portion) is formed with a second bent portion 365C.
  • the first bent portion 365A and the second bent portion 365C can be formed at low cost by pressing or the like.
  • the first bent portion 365A is formed on the first connecting member 304A (adjusting portion), and the second bent portion 365C is formed on the second connecting member 304C (leaf spring portion), so that the leaf spring portion length L2 and the adjusting portion length are increased.
  • the ratio of the length L1 can be set freely.
  • the leaf spring portion length L2 can be made larger than the adjustment portion length L1, and the first heat radiating member 307A and the second heat radiating member 307B are displaced in the direction from the first heat radiating member 307A toward the second heat radiating member 307B. Since the spring back amount of the second connecting member 304C (plate spring portion) is larger than the spring back amount of the first connecting member 304A (adjusting portion), a compressive residual stress is generated in the module primary sealing body 302.
  • the first bent portion 365A may be formed in a linear shape.
  • FIG. 24 is an enlarged view of the connecting member in FIG. 20 (Example 2).
  • the size of the second heat radiating member 307B is made smaller than that of the first heat radiating member 307A, and the width of the second connecting member 304C (leaf spring part) is made larger than that of the first connecting member 304A (adjusting part). That is, when projected from the vertical direction of the facing surface of the first heat radiating member 307A facing the module primary sealing body 302, the second heat radiating member 307B has a shaded portion of the second heat radiating member 307B that is shaded by the first heat radiating member 307A. It is formed to be smaller than the portion.
  • the leaf spring portion length L2 can be made larger than the adjustment portion length L1, and the first heat radiating member 307A and the second heat radiating member 307B are displaced in the direction from the first heat radiating member 307A toward the second heat radiating member 307B. Since the spring back amount of the second connecting member 304C (plate spring portion) is larger than the spring back amount of the first connecting member 304A (adjusting portion), a compressive residual stress is generated in the module primary sealing body 302.
  • FIG. 25 is an enlarged view of the connecting member in FIG. 20 (Example 3).
  • a slit-like or tapered cut-out portion 375C is formed on the side of the side wall portion 306C that is connected to the second connecting member 304C (plate spring portion).
  • the leaf spring portion length L2 can be made larger than the adjustment portion length L1
  • the first heat radiating member 307A and the second heat radiating member 307B are displaced in the direction from the first heat radiating member 307A toward the second heat radiating member 307B. Since the spring back amount of the second connecting member 304C (plate spring portion) is larger than the spring back amount of the first connecting member 304A (adjusting portion), a compressive residual stress is generated in the module primary sealing body 302.
  • the module case 304 is integrally formed, but an example in which the side wall portion 306C is separated is shown in FIGS.
  • FIG. 26 is an enlarged view (Example 4) of the connecting member in FIG.
  • the module case 304 includes a first member 375A including a first heat dissipation member 307A and a first connection member 304A (adjustment unit), a second heat dissipation member 307B, and a second connection member 304C (plate spring portion).
  • the second member 375B and the side wall portion 306C are constituted by a total of three members.
  • first member 375A and the side wall portion 306C, and the second member 375B and the side wall portion 306C are joined by laser welding or friction stir welding.
  • a joint portion between the first member 375A and the side wall portion 306C is referred to as a first joint portion 355A
  • a joint portion between the second member 375B and the side wall portion 306C is referred to as a second joint portion 355B.
  • the first connecting member 304 ⁇ / b> A has a shape protruding toward the module primary sealing body 302
  • the second connecting member 304 ⁇ / b> C has a shape protruding toward the opposite side of the module primary sealing body 302.
  • the second connecting member 304C (leaf spring portion) is deformed starting from the second joint portion 355B, and therefore the vicinity thereof. Becomes the fourth connection portion C4.
  • the first connecting member 304A (adjusting portion) is deformed from the inner wall of the side wall portion 306C. The vicinity becomes the second connection portion C2. For this reason, even if it does not change the size of a thermal radiation part or forms a notch part, the leaf
  • the leaf spring portion length L2 can be made larger than the adjustment portion length L1, and the first heat radiating member 307A and the second heat radiating member 307B are displaced in the direction from the first heat radiating member 307A toward the second heat radiating member 307B. Since the spring back amount of the second connecting member 304C (leaf spring portion) is larger than the spring back amount of the first connecting member 304A (adjusting portion), a compressive residual stress is generated in the module primary sealing body 302.
  • FIG. 27 is an enlarged view of the connecting member in FIG. 20 (Example 5).
  • the second connecting member 304C (leaf spring portion) is deformed starting from the second joint portion 355B, and therefore the vicinity thereof. Becomes the fourth connection portion C4.
  • the first connecting member 304A (adjusting portion) is deformed from the inner wall of the side wall portion 306C. The vicinity becomes the second connection portion C2. For this reason, even if it does not change the size of a thermal radiation part or forms a notch part, the leaf
  • first bent portion 365A is formed on the first connecting member 304A (adjusting portion), and the second bent portion 365C is formed on the second connecting member 304C (leaf spring portion), so that the plate spring portion length L2 and The ratio of the adjustment part length L1 can be freely set.
  • the leaf spring portion length L2 can be made larger than the adjustment portion length L1, and the first heat radiating member 307A and the second heat radiating member 307B are displaced in the direction from the first heat radiating member 307A toward the second heat radiating member 307B. Since the spring back amount of the second connecting member 304C (plate spring portion) is larger than the spring back amount of the first connecting member 304A (adjusting portion), a compressive residual stress is generated in the module primary sealing body 302.
  • the first bent portion 365A may be formed in a linear shape.
  • the second connecting member 304C (leaf spring portion) and the first connecting member 304A (adjusting portion) are the same member, but a different amount of springback is produced using different materials having different elastic limits. It may be configured.
  • FIG. 28 is a diagram for explaining a crimping process by vacuum heating.
  • the first heat radiating member 307A of the module case 304 is placed on the press 901 in which the heater 900 is built.
  • an air pocket such as a void generated at the interface of the insulating member 333 having adhesiveness is discharged by evacuating the periphery of the module primary sealing body 302.
  • curing of the adhesive is promoted by baking the first heat radiating member 307A up and down for several hours at a high temperature.
  • the reliability such as the insulation life of the insulating member 333 can be improved, so that a small and highly reliable power conversion device can be provided.
  • the insulating member 333 has adhesiveness. Furthermore, it is desirable that the insulating member 333 be made of a material that can be thermally cured by utilizing the temperature change caused by the heater 900 described above.
  • the vacuum spring pressure bonding is performed after the leaf spring force adjusting step.
  • the leaf spring force adjustment may be performed after the vacuum heat pressure bonding.
  • the insulating member 333 suitable for the power semiconductor module 300 according to the present embodiment will be described.
  • the insulating member 333 according to the present embodiment is required to ensure the electrical insulation between the inner wall of the module case 304 and the module primary sealing body 302 and to secure the adhesion between them.
  • the heat dissipation surface of the module primary sealing body 302 is formed by the conductive plates 318 and 319 and the first sealing resin 348 as shown in FIG. Therefore, if unevenness is formed at the boundary between the conductor plates 318 and 319 and the first sealing resin 348, the adhesiveness to the insulating member 333 may be reduced.
  • air or the like may enter between the insulating member 333 and the module primary sealing body 302, which may cause a decrease in the heat transfer coefficient of the power semiconductor module 300 or a partial discharge.
  • air or the like may enter the minute gap due to the surface roughness of the inner wall of the module case 304 and the conductor plates 318 and 319, and the heat transfer coefficient of the power semiconductor module 300 may decrease or partial discharge may occur.
  • the insulating member 333 can fill a minute gap due to the unevenness of the boundary between the conductor plates 318 and 319 and the module primary sealing body 302 or the surface roughness of the inner wall of the module case 304 and the conductor plates 318 and 319. It is desirable to use a soft insulating material having a low Young's modulus.
  • an insulating material having a low Young's modulus contains many impurities that are different from the material for ensuring electrical insulation, and there is a possibility that sufficient electrical insulation cannot be secured.
  • the insulating member 333 further includes an insulating material with less impurities, that is, a high Young's modulus, between the insulating material with a low Young's modulus and the inner wall of the module case 304. That is, the insulating member 333 has a multilayer shape made of insulating materials having different Young's moduli. Thereby, while suppressing the fall of a heat transfer rate, electrical insulation can also be ensured.
  • an insulating material having a low Young's modulus is used for the upper layer and the lower layer, and an insulating material having a high Young's modulus is used for the intermediate layer.
  • the Young's modulus is low at a low temperature. Therefore, the unevenness of the boundary between the conductor plates 318 and 319 and the module primary sealing body 302 or the inner wall of the module case 304 and the conductor plates 318 and 319 It becomes easy for the insulating member 333 to enter the minute gap due to the surface roughness.
  • the leaf spring force can be adjusted by adjusting the height X of the level difference of the first connecting member 304A (adjustment unit).
  • the insulation sealing sheet is prevented from being peeled off by vacuum heating and pressure bonding in a state in which a compressive residual stress is generated in advance in the module primary sealing body 302, and the module primary sealing body 302 is attached to the inner wall of the module case 304. It became possible to adhere to. With this structure, heat generated from the power semiconductor element is transferred from both sides of the power semiconductor element by transferring heat to the module case 304 via the adhesive insulating members 333 provided on both sides of the module primary sealing body 302. Heat dissipation is possible, and the heat transfer route from the power semiconductor element to the cooling medium is divided into two parallel routes, so the thermal resistance can be greatly reduced, and the power semiconductor module and power converter can be downsized. It became.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)

Abstract

 冷却性能に優れたパワー半導体モジュールの信頼性を向上させることである。 上記課題を解決するために、半導体回路部に圧縮応力を発生させる板バネ部と、板バネ部の弾性変形量を調整するように変形する調整部と、板バネ部と調整部とが連結する側壁部によって構成されるCAN状の冷却ケースを有することを特徴とするパワー半導体モジュールとした。

Description

パワー半導体モジュール
 本発明は、直流電力と交流電流を相互に変換するパワー半導体モジュールに関するものである。
 従来より、インバータやコンバータ等の電力変換装置において、パワー半導体素子を内蔵する複数のパワー半導体モジュールと該パワー半導体モジュールを冷却するための冷却器を備えた電力変換装置がある。このパワー半導体モジュールにおいては、導通動作時にパワー半導体素子に発生する熱を、放熱フィンを介して外部へ逃がす必要があり、限られたサイズの中で放熱性を向上させる構造設計がキーポイントとなる。
 例えば、特許文献1に記載の電力変換装置においては、半導体モジュールと冷却管とを交互に積層してユニット化している。そして、該積層ユニットをその外側から押え板と板ばね部材とによって挟み込むことで、冷却チューブを半導体モジュールに密着させている。しかしながら、押え板と板ばね部材とを用いることにより、積層ユニットが大きくなってしまい、電力変換装置の小型化が困難となり、さらにはコストアップにつながるという問題がある。
 また、特許文献2に記載の電力変換装置においては、筒型のケース内に、半導体素子を備えた半導体回路部を収納し、さらに前記半導体回路部は、電気的絶縁を確保するための絶縁性部材を介して、前記ケースの内壁(放熱部材)に接着される。この構造は、放熱部材周囲の薄肉部が、お互いに前記半導体回路部から離れる方向にスプリングバックするため、前記半導体回路部には引張り応力が発生し、絶縁部材とケース内壁との剥離が発生する恐れがある。接着部の剥離は、半導体装置の放熱性能を低下させ、パワー半導体の破損につながる。
特開2007-166819号公報 特開2010-110143号公報
 本発明が解決しようとする課題は、冷却性能に優れたパワー半導体モジュールの信頼性を向上させることである。
 上記課題を解決するために本発明に係るパワー半導体モジュールは、パワー半導体素子を含んで構成される回路体と、前記回路体を収納するケースと、を備え、前記ケースは、第1放熱板と、前記回路体を挟んで前記第1放熱板と対向する第2放熱板と、前記第1放熱板と接続されるとともに前記第1放熱板を囲んで形成される第1中間接続部と、前記第2放熱板と接続されるとともに前記第2放熱板を囲んで形成される第2中間接続部と、前記第1中間接続部及び前記第2中間接続部と接続される側壁部とにより構成され、前記第1中間接続部は、前記第1放熱板が前記回路体の配置方向に向かって第1圧縮応力を発生させるように形成され、前記第2中間接続部は、前記第2放熱板が前記回路体の配置方向に向かって前記第1圧縮応力より大きい第2圧縮応力を発生させるように形成され、前記回路体は、前記第2圧縮応力と前記第1圧縮応力との差による圧縮応力を受ける。これにより、回路体から離れる方向にスプリングバックを低減することができる。
 さらに本発明に係るパワー半導体モジュールは、前記第1中間接続部及び前記前記第2中間接続部の厚さは、前記第1放熱板と前記第2放熱板と前記側壁部のそれぞれの厚さよりも小さく形成され、前記第1中間接続部及び前記前記第2中間接続部の剛性は、記第1放熱板と前記第2放熱板と前記側壁部のそれぞれの剛性よりも小さい。
 さらに本発明に係るパワー半導体モジュールは、前記第1放熱部と前記第1中間接続部との接続部を第1接続部と定義し、前記第1中間接続部と前記側壁部との接続部を第2接続部と定義し、前記第2放熱部と前記第2中間接続部との接続部を第3接続部と定義し、前記第2中間接続部と前記側壁部との接続部を第4接続部と定義した場合、前記第3接続部から前記第4接続部までの前記第2中間接続部の長さは、前記第1接続部から前記第2接続部までの前記第1中間接続部の長さよりも大きいパワー半導体モジュール。
 さらに本発明に係るパワー半導体モジュールは、前記第2中間接続部は、屈曲部を有する。
 さらに本発明に係るパワー半導体モジュールは、前記回路体と対向する前記第1放熱板の対向面の垂直方向から投影した場合、前記第2放熱板は、前記第2放熱板の斜影部が前記第1放熱板の斜影部より小さくなるように形成される。
 本発明により、冷却性能に優れたパワー半導体モジュールの信頼性を向上させることができる。
ハイブリッド自動車のシステムを示すシステム図である。 図1に示す電気回路の構成を示す回路図である。 本発明に係る実施の形態としての電力変換装置200の外観斜視図である。 本発明に係る実施の形態としての電力変換装置200の外観斜視図である。 図4に示す電力変換装置200から蓋8、直流インターフェイス137および交流インターフェイス185を外した状態を示す図である。 図5において流路形成体12からハウジング10を外した状態を示す図である。 電力変換装置200の分解斜視図である。 流路形成体12にパワー半導体モジュール300U~300W、コンデンサモジュール500、バスバーアッセンブリ800を組み付けた外観斜視図である。 流路形成体12からバスバーアッセンブリ800を外した状態を示す。 流路形成体12の斜視図である。 流路形成体12を裏面側から見た分解斜視図である。 図12(a)は、本実施形態のパワー半導体モジュール300Uの斜視図である。図12(b)は、本実施形態のパワー半導体モジュール300Uを断面Dで切断して方向Eから見たときの断面図である。 図13(a)は斜視図であり、図13(b)は図12(b)と同様に断面Dで切断して方向Eから見たときの断面図である。また、図13(c)はモジュール一次封止体302の挿入工程を説明する図を示している。 図14(a)は斜視図であり、図14(b)は図12(b)、図13(b)と同様に断面Dで切断して方向Eから見たときの断面図である。 図14に示す状態からさらに第一封止樹脂348および配線絶縁部608を取り除いたパワー半導体モジュール300Uの斜視図である。 モジュール一次封止体302の組立工程を説明するための図である。 コンデンサモジュール500の外観斜視図である。 バスバーアッセンブリ800の斜視図である。 開口部402a~402cにパワー半導体モジュール300U~300Wが固定され、収納空間405にコンデンサモジュール500が収納された流路形成体12を示す図である。 図12のEE断面の矢印方向からみたパワー半導体モジュール300Uの断面図である。 第1連結部材304A(調整部)と第2連結部材304C(板バネ部)を等しく変位させた時のスプリングバック量のグラフを示す。 板バネ力の調整方法を説明する図である。 図20における連結部材の拡大図(実施例1)である。 図20における連結部材の拡大図(実施例2)である。 図20における連結部材の拡大図(実施例3)である。 図20における連結部材の拡大図(実施例4)である。 図20における連結部材の拡大図(実施例5)である。 真空加熱による圧着工程を説明する図である。
 以下、実施例について図面を用いて説明する。 
 本発明の実施形態に係る電力変換装置は、ハイブリッド用の自動車や純粋な電気自動車に適用可能であるが、代表例として、本発明の実施形態に係る電力変換装置をハイブリッド自動車に適用した場合の制御構成と電力変換装置の回路構成について、図1と図2を用いて説明する。
 図1は、ハイブリッド自動車(以下「HEV」と記述する)の制御ブロックを示す図である。エンジンEGNおよびモータジェネレータMG1は車両の走行用トルクを発生する。また、モータジェネレータMG1は回転トルクを発生するだけでなく、モータジェネレータMG1に外部から加えられる機械エネルギーを電力に変換する機能を有する。
 モータジェネレータMG1は、例えば同期機あるいは誘導機であり、上述のごとく、運転方法によりモータとしても発電機としても動作する。モータジェネレータMG1を自動車に搭載する場合には、小型で高出力を得ることが望ましく、ネオジウムなどの磁石を使用した永久磁石型の同期電動機が適している。また、永久磁石型の同期電動機は誘導電動機に比べて回転子の発熱が少なく、この観点でも自動車用として優れている。
 エンジンEGNの出力側の出力トルクは動力分配機構TSMを介してモータジェネレータMG1に伝達され、動力分配機構TSMからの回転トルクあるいはモータジェネレータMG1が発生する回転トルクは、トランスミッションTMおよびデファレンシャルギアDEFを介して車輪に伝達される。一方、回生制動の運転時には、車輪から回転トルクがモータジェネレータMG1に伝達され、供給されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は後述するように電力変換装置200により直流電力に変換され、高電圧用のバッテリ136を充電し、充電された電力は再び走行エネルギーとして使用される。
 次に電力変換装置200について説明する。インバータ回路140は、バッテリ136と直流コネクタ138を介して電気的に接続されており、バッテリ136とインバータ回路140との相互において電力の授受が行われる。モータジェネレータMG1をモータとして動作させる場合には、インバータ回路140は直流コネクタ138を介してバッテリ136から供給された直流電力に基づき交流電力を発生し、交流端子188を介してモータジェネレータMG1に供給する。モータジェネレータMG1とインバータ回路140からなる構成は第1電動発電ユニットとして動作する。
 なお、本実施形態では、バッテリ136の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータMG1の動力のみによって車両の駆動ができる。さらに、本実施形態では、第1電動発電ユニットを発電ユニットとしてエンジン120の動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができる。
 また、図1では省略したが、バッテリ136はさらに補機用のモータを駆動するための電源としても使用される。補機用のモータとしては例えば、エアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータである。バッテリ136から直流電力が補機用パワー半導体モジュールに供給され、補機用パワー半導体モジュールは交流電力を発生して補機用のモータに供給する。補機用パワー半導体モジュールはインバータ回路140と基本的には同様の回路構成および機能を持ち、補機用のモータに供給する交流の位相や周波数、電力を制御する。なお、電力変換装置200は、インバータ回路140に供給される直流電力を平滑化するためのコンデンサモジュール500を備えている。
 電力変換装置200は、上位の制御装置から指令を受けたりあるいは上位の制御装置に状態を表すデータを送信したりするための通信用のコネクタ21を備えている。電力変換装置200は、コネクタ21から入力される指令に基づいて制御回路172でモータジェネレータMG1の制御量を演算し、さらにモータとして運転するか発電機として運転するかを演算し、演算結果に基づいて制御パルスを発生し、その制御パルスをドライバ回路174へ供給する。ドライバ回路174は、供給された制御パルスに基づいて、インバータ回路140を制御するための駆動パルスを発生する。
 次に、図2を用いてインバータ回路140の電気回路の構成を説明する。なお、以下で半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと記す。上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166とで、上下アームの直列回路150が構成される。インバータ回路140は、この直列回路150を、出力しようとする交流電力のU相、V相、W相の3相に対応して備えている。
 これらの3相は、この実施の形態ではモータジェネレータMG1の電機子巻線の3相の各相巻線に対応している。3相のそれぞれの上下アームの直列回路150は、直列回路の中点部分である中間電極169から交流電流を出力する。この中間電極169は、交流端子159及び交流端子188を通して、モータジェネレータMG1への交流電力線である以下に説明の交流バスバー802や804と接続される。
 上アームのIGBT328のコレクタ電極153は、正極端子157を介してコンデンサモジュール500の正極側のコンデンサ端子506に電気的に接続されている。また、下アームのIGBT330のエミッタ電極は、負極端子158を介してコンデンサモジュール500の負極側のコンデンサ端子504に電気的に接続されている。
 上述のように、制御回路172は上位の制御装置からコネクタ21を介して制御指令を受け、これに基づいてインバータ回路140を構成する各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための制御信号である制御パルスを発生し、ドライバ回路174に供給する。
 ドライバ回路174は、上記制御パルスに基づき、各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための駆動パルスを各相のIGBT328やIGBT330に供給する。IGBT328やIGBT330は、ドライバ回路174からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ136から供給された直流電力を三相交流電力に変換し、この変換された電力はモータジェネレータMG1に供給される。
 IGBT328は、コレクタ電極153と、信号用エミッタ電極155と、ゲート電極154を備えている。また、IGBT330は、コレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。ダイオード156が、コレクタ電極153とエミッタ電極155との間に電気的に接続されている。また、ダイオード166が、コレクタ電極163とエミッタ電極165との間に電気的に接続されている。
 スイッチング用パワー半導体素子としては金属酸化物半導体型電界効果トランジスタ(以下略してMOSFETと記す)を用いてもよい、この場合はダイオード156やダイオード166は不要となる。スイッチング用パワー半導体素子としては、IGBTは直流電圧が比較的高い場合に適していて、MOSFETは直流電圧が比較的低い場合に適している。
 コンデンサモジュール500は、正極側のコンデンサ端子506と負極側のコンデンサ端子504と正極側の電源端子509と負極側の電源端子508とを備えている。バッテリ136からの高電圧の直流電力は、直流コネクタ138を介して、正極側の電源端子509や負極側の電源端子508に供給され、コンデンサモジュール500の正極側のコンデンサ端子506および負極側のコンデンサ端子504から、インバータ回路140へ供給される。
 一方、交流電力からインバータ回路140によって変換された直流電力は、正極側のコンデンサ端子506や負極側のコンデンサ端子504からコンデンサモジュール500に供給され、正極側の電源端子509や負極側の電源端子508から直流コネクタ138を介してバッテリ136に供給され、バッテリ136に蓄積される。
 制御回路172は、IGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報としては、モータジェネレータMG1に対して要求される目標トルク値、直列回路150からモータジェネレータMG1に供給される電流値、及びモータジェネレータMG1の回転子の磁極位置がある。
 目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180による検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータMG1に設けられたレゾルバなどの回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では、電流センサ180は3相の電流値を検出する場合を例に挙げているが、2相分の電流値を検出するようにし、演算により3相分の電流を求めても良い。
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータMG1のd軸、q軸の電流指令値を演算し、この演算されたd軸、q軸の電流指令値と、検出されたd軸、q軸の電流値との差分に基づいてd軸、q軸の電圧指令値を演算し、この演算されたd軸、q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路174に出力する。
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT330のゲート電極に出力する。また、ドライバ回路174は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極にそれぞれ出力する。
 また、制御回路172内のマイコンは、異常検知(過電流、過電圧、過温度など)を行い、直列回路150を保護している。このため、制御回路172にはセンシング情報が入力されている。例えば、各アームの信号用のエミッタ電極155及び信号用のエミッタ電極165からは各IGBT328とIGBT330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328、IGBT330のスイッチング動作を停止させ、対応するIGBT328、IGBT330を過電流から保護する。
 直列回路150に設けられた温度センサ(不図示)からは直列回路150の温度の情報がマイコンに入力されている。また、マイコンには直列回路150の直流正極側の電圧の情報が入力されている。マイコンは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328、IGBT330のスイッチング動作を停止させる。
 図3及び図4は本発明に係る実施の形態としての電力変換装置200の外観斜視図であり、図4は交流コネクタ187および直流コネクタ138を外した状態を示す。本実施の形態の電力変換装置200は、平面形状がほぼ正方形の直方体形状としたことにより小型化が図れ、また、車両への取り付けが容易となるという効果を有している。8は蓋、10はハウジング、12は流路形成体、13は冷却媒体の入口配管、14は出口配管、420は下カバーである。コネクタ21は、外部との接続のために設けられた信号用のコネクタである。
 蓋8は、電力変換装置200を構成する回路部品が収納されるハウジング10の上部開口部に固定される。ハウジング10の下部に固定される流路形成体12は、後述するパワー半導体モジュール300及びコンデンサモジュール500を保持するとともに、冷却媒体によってこれらを冷却する。冷却媒体としては、例えば水が用いられる場合が多く、以下では冷媒として説明する。入口配管13および出口配管14は流路形成体12の一側面に設けられ、入口配管13から供給された冷媒は流路形成体12内の後述する流路19に流入し、出口配管14から排出される。なお、冷媒の流入及び流出する方向を変更しても、冷却効率や圧力損失に対して大きな影響を与えない。つまり冷媒が出口配管14側から流入し、入口配管13から流出しても、冷却効率や圧力損失はほぼ変化はない。つまり、本実施形態に係る電力変換装置200は、当該電力変換装置200の中央部に対して入口配管13と出口配管14の配置が対称性を有しているので、車両の冷媒配管の配線の状況に応じて変更できるという利点を有している。
 交流コネクタ187が装着される交流インターフェイス185および直流コネクタ138が装着される直流インターフェイス137は、ハウジング10の側面に設けられている。交流インターフェイス185は配管13、14が設けられている側面に設けられており、交流インターフェイス185に装着された交流コネクタ187の交流配線187aは配管13、14の間を通って下方に延びている。直流インターフェイス137は交流インターフェイス185が設けられた側面に隣接する側面に設けられており、直流インターフェイス137に装着された直流コネクタ138の直流配線135Jも電力変換装置200の下方に延びている。
 このように、交流インターフェイス185と配管13、14とが同一側面12dの側に配置され、交流配線187aが配管13、14の間を通るように下方に引き出されているので、配管13、14、交流コネクタ187および交流配線187aの占める空間を小さくでき、装置全体の大型化を低減できる。また、配管13、14に対して交流配線187aを下方に引き出しているので、交流配線187aの取り回しが容易になり生産性が向上する。図5は、図4に示す電力変換装置200から蓋8、直流インターフェイス137および交流インターフェイス185を外した状態を示す図である。ハウジング10の一側面には交流インターフェイス185が固定される開口10aが形成され、隣接する他の側面には直流インターフェイス137が固定される開口10bが形成されている。開口10aからは3本の交流バスバー802、すなわち、U相交流バスバー802U、V相交流バスバー802VおよびW相交流バスバー802Wが突出し、開口10bからは直流側の電源端子508、509が突出している。図6は、図5において流路形成体12からハウジング10を外した状態を示す図である。ハウジング10は2つの収納空間を有しており、隔壁10cによって上部収納空間と下部収納空間とに区画されている。上部収納空間にはコネクタ21が固定された制御回路基板20が収納され、下部収納空間にはドライバ回路基板22および後述するバスバーアッセンブリ800が収納される。制御回路基板20には図2に示した制御回路172が実装され、ドライバ回路基板22にはドライバ回路基板174が実装されている。制御回路基板20とドライバ回路基板22とは不図示のフラットケーブル(後述する図7参照)によって接続されるが、そのフラットケーブルは隔壁10cに形成されたスリット状の開口10dを通って下部収納空間から上部収納空間へと引き出される。図7は電力変換装置200の分解斜視図である。蓋8の内側の、すなわちハウジング10の上部収納空間には、上述したように制御回路172を実装した制御回路基板20が配置されている。蓋8には、コネクタ21用の開口5Jが形成されている。電力変換装置200内の制御回路を動作させる低電圧の直流電力は、コネクタ21から供給される。
 詳細は後述するが、流路形成体12には、入口配管13から流入した冷媒が流れる流路が形成されている。流路は、流路形成体12の3つの側面に沿って流れるようなコの字形状の流路を形成している。入口配管13から流入した冷媒はコの字形状流路の一端から流路内に流入し、流路内を流れた後に、流路の他端に接続されている出口配管14から流出される。
 流路の上面には3つの開口部402a~402cが形成されており、直列回路150(図1参照)を内蔵したパワー半導体モジュール300U、300V、300Wがそれらの開口部402a~402cから流路内に挿入される。パワー半導体モジュール300UにはU相の直列回路150が内蔵され、パワー半導体モジュール300VにはV相の直列回路150が内蔵され、パワー半導体モジュール300WにはW相の直列回路150が内蔵されている。これらパワー半導体モジュール300U~300Wは同一構成になっており、外観形状も同一形状である。開口部402a~402cは、挿入されたパワー半導体モジュール300U~300Wのフランジ部によって塞がれる。
 流路形成体12には、コの字形状の流路によって囲まれるように、電装部品を収納するための収納空間405が形成されている。本実施形態では、この収納空間405にコンデンサモジュール500が収納されている。収納空間405に収納されたコンデンサモジュール500は、流路内を流れる冷媒によって冷却される。コンデンサモジュール500の上方には、交流バスバー802U~802Wが装着されたバスバーアッセンブリ800が配置される。バスバーアッセンブリ800は、流路形成体12の上面に固定される。バスバーアッセンブリ800には、電流センサ180が固定されている。
 ドライバ回路基板22は、バスバーアッセンブリ800に設けられた支持部材807aに固定されることにより、バスバーアッセンブリ800の上方に配置される。上述したように、制御回路基板20とドライバ回路基板22とはフラットケーブル23によって接続される。フラットケーブル23は隔壁10cに形成されたスリット状の開口10dを通って下部収納空間から上部収納空間へと引き出される。
 このように、パワー半導体モジュール300U~300Wとドライバ回路基板22と制御回路基板20とが高さ方向に階層的に配置され、制御回路基板20が強電系のパワー半導体モジュール300U~300Wから最も遠い場所に配置されるので、制御回路基板20側にスイッチングノイズ等が混入するのを低減することができる。さらに、ドライバ回路基板22と制御回路基板20とは隔壁10cによって区画された別の収納空間に配置されるため、隔壁10cが電磁シールドとして機能し、ドライバ回路基板22から制御回路基板20に混入するノイズを低減することができる。なお、ハウジング10はアルミ等の金属材で形成されている。
 さらに、ハウジング10に一体に形成された隔壁10cに制御回路基板20が固定されるため、外部からの振動に対して制御回路基板20の機械的な共振周波数が高くなる。そのため、車両側からの振動の影響を受け難く、信頼性が向上する。
 以下では、流路形成体12と、流路形成体12に固定されるパワー半導体モジュール300U~300W、コンデンサモジュール500およびバスバーアッセンブリ800についてより詳しく説明する。図8は、流路形成体12にパワー半導体モジュール300U~300W、コンデンサモジュール500、バスバーアッセンブリ800を組み付けた外観斜視図である。また、図9は、流路形成体12からバスバーアッセンブリ800を外した状態を示す。バスバーアッセンブリ800は、流路形成体12にボルト固定される。
 まず、図10及び図25を参照しながら流路形成体12について説明する。図10は流路形成体12の斜視図であり、図11は流路形成体12を裏面側から見た分解斜視図である。図10に示すように、流路形成体12は平面形状が略正方形の直方体を成し、その側面12dに入口配管13および出口配管14が設けられている。なお、側面12dは、配管13、14が設けられている部分が段差状に形成されている。図11に示すように、流路19は、残りの3つの側面12a~12cに沿うようにコの字形状に形成されている。そして、流路形成体12の裏面側には、流路19の横断面形状とほぼ同一形状を有する、1つに繋がったコの字形状の開口部404が形成されている。この開口部404は、コの字形状の下カバー420によって塞がれる。下カバー420と流路形成体12との間にはシール部材409aが設けられ、気密性が保たれている。
 コの字形状を成す流路19は、冷媒の流れる方向によって3つの流路区間19a、19b、19cに分けられる。詳細は後述するが、第1の流路区間19aは、配管13、14が設けられた側面12dと対向する位置の側面12aに沿って設けられ、第2の流路区間19bは側面12aの一方の側に隣接する側面12bに沿って設けられ、第3の流路区間19cは側面12aの他方の側に隣接する側面12cに沿って設けられている。冷媒は入口配管13から流路区間19bに流入し、破線矢印で示すように流路区間19b、流路区間19a、流路区間19cの順に流れ、出口配管14から流出される。
 図10に示すように、流路形成体12の上面側には、流路区間19aに対向する位置に側面12aに平行な長方形の開口部402aが形成され、流路区間19bに対向する位置に側面12bに平行な長方形の開口部402bが形成され、流路区間19cに対向する位置に側面12cに平行な長方形の開口部402cが形成されている。これらの開口部402a~402cを通して、パワー半導体モジュール300U~300Wが流路19内に挿入される。図11に示すように、下カバー420には、上述した開口部402a~402cと対向する位置に、流路19の下側に向かって突出する凸部406がそれぞれ形成されている。これらの凸部406は流路19側から見ると窪みとなっており、開口部402a~402cから挿入されたパワー半導体モジュール300U~300Wの下端部分が、これらの窪みに入り込む。流路形成体12は、開口部404と開口部402a~402cとが対向するように形成されているので、アルミ鋳造により製造し易い構成になっている。
 図10に示すように、流路形成体12には、3辺を流路19で囲まれるように形成され矩形状の収納空間405が設けられている。この収納空間405にコンデンサモジュール500が収納される。流路19で囲まれた収納空間405は直方体形状であるため、コンデンサモジュール500を直方体形状にすることができ、コンデンサモジュール500の生産性が良くなる。
 図12乃至図16を用いてインバータ回路140およびインバータ回路142に使用されるパワー半導体モジュール300U~300Wおよびパワー半導体モジュール301a~301cの詳細構成を説明する。上記パワー半導体モジュール300U~300Wおよびパワー半導体モジュール301a~301cはいずれも同じ構造であり、代表してパワー半導体モジュール300Uの構造を説明する。尚、図12乃至図16において信号端子325Uは、図2に開示したゲート電極154および信号用エミッタ電極155に対応し、信号端子325Lは、図2に開示したゲート電極164およびエミッタ電極165に対応する。また直流正極端子315Bは、図2に開示した正極端子157と同一のものであり、直流負極端子319Bは、図2に開示した負極端子158と同一のものである。また交流端子320Bは、図2に開示した交流端子159と同じものである。図12(a)は、本実施形態のパワー半導体モジュール300Uの斜視図である。図12(b)は、本実施形態のパワー半導体モジュール300Uを断面Dで切断して方向Eから見たときの断面図である。
 図13は、理解を助けるために、図12に示す状態からネジ309および第二封止樹脂351を取り除いたパワー半導体モジュール300Uを示す図である。図13(a)は斜視図であり、図13(b)は図12(b)と同様に断面Dで切断して方向Eから見たときの断面図である。また、図13(c)はモジュール一次封止体302の挿入工程を説明する図である。
 モジュールケース304の内壁により形成される収納空間に、モジュール一次封止体302の両面に絶縁部材333を配置した状態で、当該モジュール一次封止体302を挿入する。
 図14は、図13に示す状態からさらにモジュールケース304を取り除いたパワー半導体モジュール300Uを示す図である。図14(a)は斜視図であり、図14(b)は図12(b)、図13(b)と同様に断面Dで切断して方向Eから見たときの断面図である。
 図15は、図14に示す状態からさらに第一封止樹脂348および配線絶縁部608を取り除いたパワー半導体モジュール300Uの斜視図である。図16は、モジュール一次封止体302の組立工程を説明するための図である。上下アームの直列回路150を構成するパワー半導体素子(IGBT328、IGBT330、ダイオード156、ダイオード166)が、図14および図29に示す如く、導体板315や導体板318によって、あるいは導体板320や導体板319によって、両面から挟んで固着される。導体板315等は、その放熱面が露出した状態で第一封止樹脂348によって封止され、当該放熱面に絶縁部材333が熱圧着される。第一封止樹脂348は図14に示すように、多面体形状(ここでは略直方体形状)を有している。
 第一封止樹脂348により封止されたモジュール一次封止体302は、モジュールケース304の中に挿入して絶縁部材333を挟んで、CAN型冷却器であるモジュールケース304の内面に熱圧着される。ここで、CAN型冷却器とは、一面に挿入口306と他面に底を有する筒形状をした冷却器である。モジュールケース304の内部に残存する空隙には、第二封止樹脂351を充填される。
 モジュールケース304は、電気伝導性を有する部材、例えばアルミ合金材料(Al、AlSi、AlSiC、Al-C等)で構成され、かつ、つなぎ目の無い状態で一体に成形される。モジュールケース304は、挿入口306以外に開口を設けない構造であり、挿入口306は、フランジ304Bよって、その外周を囲まれている。また、図12(a)に示されるように、他の面より広い面を有する第1放熱部材307A及び第2放熱部材307Bがそれぞれ対向した状態で配置され、これらの放熱面に対向するようにして、各パワー半導体素子(IGBT328、IGBT330、ダイオード156、ダイオード166)が配置されている。当該対向する第1放熱部材307Aと第2放熱部材307Bと繋ぐ3つの面は、当該第1放熱部材307A及び第2放熱部材307Bより狭い幅で密閉された面を構成し、残りの一辺の面に挿入口306が形成される。モジュールケース304の形状は、正確な直方体である必要が無く、角が図12(a)に示す如く曲面を成していても良い。
 このような形状の金属製のケースを用いることで、モジュールケース304を水や油などの冷媒が流れる流路19内に挿入しても、冷媒に対するシールをフランジ304Bにて確保できるため、冷却媒体がモジュールケース304の内部に侵入するのを簡易な構成で防ぐことができる。また、対向した第1放熱部材307Aと第2放熱部材307Bに、フィン305がそれぞれ均一に形成される。さらに、第1放熱部材307A及び第2放熱部材307Bの外周には、厚みが極端に薄くなっている第1連結部材304Aが形成されている。第1連結部材304Aは、フィン305を加圧することで簡単に変形する程度まで厚みを極端に薄くしてあるため、モジュール一次封止体302が挿入された後の生産性が向上する。
 なお、後述する図20以降にて説示するモジュールケース304の第1連結部材304Aによって、絶縁部材333がモジュール一次封止体302やモジュールケース304から剥れてしまうことを抑制することができる。特に本実施形態のように、モジュールケース304の外面が冷却冷媒によって直接冷却される場合には、パワー半導体素子からモジュールケース304の外面までの伝熱経路の熱抵抗を低減することによって、モジュールケース304の外面からの放熱が促進される。それにより、パワー半導体素子に流す電流の増大や電力変換装置の冷却部の小型化を図ることができ、電力変換装置を体積当たりの出力電流量を大幅に増大することができる。
 上述のように導体板315等を絶縁部材333を介してモジュールケース304の内壁に熱圧着することにより、導体板315等とモジュールケース304の内壁の間の空隙を少なくすることができ、パワー半導体素子の発生熱を効率良くフィン305へ伝達できる。さらに絶縁部材333にある程度の厚みと柔軟性を持たせることにより、熱応力の発生を絶縁部材333で吸収することができ、温度変化の激しい車両用の電力変換装置に使用するのに良好となる。
 モジュールケース304の外には、コンデンサモジュール500と電気的に接続するための金属製の直流正極配線315Aおよび直流負極配線319Aが設けられており、その先端部に直流正極端子315B(157)と直流負極端子319B(158)がそれぞれ形成されている。また、モータジェネレータMG1に交流電力を供給するための金属製の交流配線320Aが設けられており、その先端に交流端子320B(159)が形成されている。本実施形態では、図15に示す如く、直流正極配線315Aは導体板315と接続され、直流負極配線319Aは導体板319と接続され、交流配線320Aは導体板320と接続される。
 モジュールケース304の外にはさらに、ドライバ回路174と電気的に接続するための金属製の信号配線324Uおよび324Lが設けられており、その先端部に信号端子325U(154、155)と信号端子325L(164、165)がそれぞれ形成されている。本実施形態では、図1に示す如く、信号配線324UはIGBT328と接続され、信号配線324LはIGBT328と接続される。
 直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lは、樹脂材料で成形された配線絶縁部608によって相互に絶縁された状態で、補助モールド体600として一体に成型される。配線絶縁部608は、各配線を支持するための支持部材としても作用し、これに用いる樹脂材料は、絶縁性を有する熱硬化性樹脂かあるいは熱可塑性樹脂が適している。これにより、直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lの間の絶縁性を確保でき、高密度配線が可能となる。補助モールド体600は、モジュール一次封止体302と接続部370において金属接合された後に、配線絶縁部608に設けられたネジ穴を貫通するネジ309によってモジュールケース304に固定される。接続部370におけるモジュール一次封止体302と補助モールド体600との金属接合には、たとえばTIG溶接などを用いることができる。
 直流正極配線315Aと直流負極配線319Aは、配線絶縁部608を間に挟んで対向した状態で互いに積層され、略平行に延びる形状を成している。こうした配置および形状とすることで、パワー半導体素子のスイッチング動作時に瞬間的に流れる電流が、対向してかつ逆方向に流れる。これにより、電流が作る磁界が互いに相殺する作用をなし、この作用により低インダクタンス化が可能となる。なお、交流配線320Aや信号端子325U、325Lも、直流正極配線315A及び直流負極配線319Aと同様の方向に向かって延びている。
 モジュール一次封止体302と補助モールド体600が金属接合により接続されている接続部370は、第二封止樹脂351によりモジュールケース304内で封止される。これにより、接続部370とモジュールケース304との間で必要な絶縁距離を安定的に確保することができるため、封止しない場合と比較してパワー半導体モジュール300Uの小型化が実現できる。
 図15に示されるように、接続部370の補助モジュール600側には、補助モジュール側直流正極接続端子315C、補助モジュール側直流負極接続端子319C、補助モジュール側交流接続端子320C、補助モジュール側信号接続端子326Uおよび補助モジュール側信号接続端子326Lが一列に並べて配置される。一方、接続部370のモジュール一次封止体302側には、多面体形状を有する第一封止樹脂348の一つの面に沿って、素子側直流正極接続端子315D、素子側直流負極接続端子319D、素子側交流接続端子320D、素子側信号接続端子327Uおよび素子側信号接続端子327Lが一列に並べて配置される。こうして接続部370において各端子が一列に並ぶような構造とすることで、トランスファーモールドによるモジュール一次封止体302の製造が容易となる。
 ここで、モジュール一次封止体302の第一封止樹脂348から外側に延出している部分をその種類ごとに一つの端子として見た時の各端子の位置関係について述べる。以下の説明では、直流正極配線315A(直流正極端子315Bと補助モジュール側直流正極接続端子315Cを含む)および素子側直流正極接続端子315Dにより構成される端子を正極側端子と称し、直流負極配線319A(直流負極端子319Bと補助モジュール側直流負極接続端子319Cを含む)および素子側直流負極接続端子315Dにより構成される端子を負極側端子と称し、交流配線320A(交流端子320Bと補助モジュール側交流接続端子320Cを含む)および素子側交流接続端子320Dにより構成される端子を出力端子と称し、信号配線324U(信号端子325Uと補助モジュール側信号接続端子326Uを含む)および素子側信号接続端子327Uにより構成される端子を上アーム用信号端子と称し、信号配線324L(信号端子325Lと補助モジュール側信号接続端子326Lを含む)および素子側信号接続端子327Lにより構成される端子を下アーム用信号端子と称する。
 上記の各端子は、いずれも第一封止樹脂348および第二封止樹脂351から接続部370を通して突出しており、その第一封止樹脂348からの各突出部分(素子側直流正極接続端子315D、素子側直流負極接続端子319D、素子側交流接続端子320D、素子側信号接続端子327Uおよび素子側信号接続端子327L)は、上記のように多面体形状を有する第一封止樹脂348の一つの面に沿って一列に並べられている。また、正極側端子と負極側端子は、第二封止樹脂351から積層状態で突出しており、モジュールケース304の外に延出している。このような構成としたことで、第一封止樹脂348でパワー半導体素子を封止してモジュール一次封止体302を製造する時の型締めの際に、パワー半導体素子と当該端子との接続部分への過大な応力や金型の隙間が生じるのを防ぐことができる。また、積層された正極側端子と負極側端子の各々を流れる反対方向の電流により、互いに打ち消しあう方向の磁束が発生されるため、低インダクタンス化を図ることができる。
 補助モジュール600側において、補助モジュール側直流正極接続端子315C、補助モジュール側直流負極接続端子319Cは、直流正極端子315B、直流負極端子319Bとは反対側の直流正極配線315A、直流負極配線319Aの先端部にそれぞれ形成されている。また、補助モジュール側交流接続端子320Cは、交流配線320Aにおいて交流端子320Bとは反対側の先端部に形成されている。補助モジュール側信号接続端子326U、326Lは、信号配線324U、324Lにおいて信号端子325U、325Lとは反対側の先端部にそれぞれ形成されている。
 一方、モジュール一次封止体302側において、素子側直流正極接続端子315D、素子側直流負極接続端子319D、素子側交流接続端子320Dは、導体板315、319、320にそれぞれ形成されている。また、素子側信号接続端子327U、327Lは、ボンディングワイヤ371によりIGBT328、330とそれぞれ接続されている。図17は、コンデンサモジュール500の外観斜視図である。コンデンサモジュール500内には複数のコンデンサセルが設けられている。コンデンサモジュール500の上面には、コンデンサモジュール500の流路19に対向する面に近接して、コンデンサ端子503a~503cが突出するように設けられている。コンデンサ端子503a~503cは、各パワー半導体モジュール300の正極端子157及び負極端子158に対応して形成される。コンデンサ端子503a~503cは同一形状を成し、コンデンサ端子503a~503cを構成する負極側コンデンサ端子504と正極側コンデンサ端子506との間には絶縁シートが設けられ、端子間の絶縁が確保されている。
 コンデンサモジュール500の側面500dの側の上部には、突出部500e、500fが形成されている。突出部500e内には放電抵抗が実装され、突出部500f内にはコモンモードノイズ対策用のYコンデンサが実装されている。また、突出部500fの上面から突出した端子500g、500hに、図5に示した電源端子508、509が取り付けられる。図10に示すように、開口402b、402cと側面12dとの間には凹部405a、405bが形成されており、コンデンサモジュール500を流路形成体12の収納空間405に収納すると、突出部500eは凹部405aに収納され、突出部500fは凹部405bに収納される。
 突出部500e内に実装された放電抵抗は、インバータ停止時にコンデンサモジュール500内のコンデンサセルに溜まった電荷を放電するための抵抗である。突出部500eが収納される凹部405aは、入口配管13から流入した冷媒の流路の直上に設けられているので、放電時の放電抵抗の温度上昇を抑えることができる。
 図18は、バスバーアッセンブリ800の斜視図である。バスバーアッセンブリ800は、U、V、W相の交流バスバー802U、802V、802Wと、交流バスバー802U~802Wを保持し固定するための保持部材803と、交流バスバー802U~802Wを流れる交流電流を検出するための電流センサ180と、を備えている。交流バスバー802U~802Wは、それぞれ幅広導体で形成されている。樹脂等の絶縁材料で形成された保持部材803には、ドライバ回路基板22を保持するための複数の支持部材807aが、保持部材803から上方に突出するように形成されている。
 電流センサ180は、図8に示すようにバスバーアッセンブリ800を流路形成体12上に固体したときに、流路形成体12の側面12dに近接した位置で側面12dに平行となるように、バスバーアッセンブリ800に配置されている。電流センサ180の側面には、交流バスバー802U~802Wを貫通させるための貫通孔181がそれぞれ形成されている。電流センサ180の貫通孔181が形成されている部分にはセンサ素子が設けられており、電流センサ180の上面から各センサ素子の信号線182aが突出している。各センサ素子は、電流センサ180の延在方向、すなわち流路形成体12の側面12dの延在方向に並んで配置されている。交流バスバー802U~802Wは各貫通孔181を貫通し、その先端部分が平行に突出している。
 図18に示されるように、保持部材803には、位置決め用の突起部806a、806bが上方に向かって突出するように形成されている。電流センサ180はネジ止めにより保持部材803に固定されるが、その際に突起部806a、806bと電流センサ180の枠体に形成された位置決め孔とを係合させることで、電流センサ180の位置決めが行われる。さらに、ドライバ回路基板22を支持部材807aに固定する際に、ドライバ回路基板22側に形成された位置決め孔に位置決め用の突起部806a、806bを係合させることで、電流センサ180の信号線182aがドライバ回路基板22のスルーホールに位置決めされる。信号線182aは、ドライバ回路基板22の配線パターンと半田によって接合される。
 本実施形態では、保持部材803、支持部材807a及び突起部806a、806bは、樹脂で一体に形成される。このように、保持部材803が電流センサ180とドライバ回路基板22との位置決め機能を備えることになるので、信号線182aとドライバ回路基板22との間の組み付け及び半田接続作業が容易になる。また、電流センサ180とドライバ回路基板22を保持する機構を保持部材803に設けることで、電力変換装置全体としての部品点数を削減できる。
 交流バスバー802U~802Wは幅広面が水平となるように保持部材803に固定され、パワー半導体モジュール300U~300Wの交流端子159に接続される接続部805が垂直に立ち上がっている。接続部805は先端が凹凸形状をしており、溶接時にこの凹凸部分に熱が集中するような形状となっている。
 上述したように電流センサ180は流路形成体12の側面12dに平行に配置されているので、電流センサ180の貫通孔181から突出した各交流バスバー802U~802Wは、流路形成体12の側面12dに配置されることになる。各パワー半導体モジュール300U~300Wは、流路形成体12の側面12a、12b、12cに沿って形成された流路区間19a、19b、19cに配置されるので、交流バスバー802U~802Wの接続部805は、バスバーアッセンブリ800の側面12a~12cに対応する位置に配置される。その結果、図8に示すように、U相交流バスバー802Uは側面12bの近傍に配置されたパワー半導体モジュール300Uから側面12dまで延接され、V相交流バスバー802Vは側面12aの近傍に配置されたパワー半導体モジュール300Vから側面12dまで延接され、W相交流バスバー802Wは側面12cの近傍に配置されたパワー半導体モジュール300Wから側面12dまで延設される。
 図19は、開口部402a~402cにパワー半導体モジュール300U~300Wが固定され、収納空間405にコンデンサモジュール500が収納された流路形成体12を示す図である。図19に示す例では、開口部402bにU相のパワー半導体モジュール300Uが固定され、開口部402aにV相のパワー半導体モジュール300Vが固定され、開口部402cにW相のパワー半導体モジュール300Wが固定される。その後、コンデンサモジュール500が収納空間405に収納され、コンデンサ側の端子と各パワー半導体モジュールの端子とが溶接等により接続される。各端子は、流路形成体12の上端面から突出しており、上方から溶接機をアプローチして溶接作業が行われる。
 なお、コの字形状に配置された各パワー半導体モジュール300U~300Wの直流正極端子315B及び直流負極端子319Bは、図17に示される、コンデンサモジュール500の上面に突出して設けられたコンデンサ端子503a~503cと接続される。3つのパワー半導体モジュール300U~300Wはコンデンサモジュール500を囲むように設けられているため、コンデンサモジュール500に対する各パワー半導体モジュール300U~300Wの位置的関係が同等となり、同一形状のコンデンサ端子503a~503cを用いてバランス良くコンデンサモジュール500に接続することができる。そのため、コンデンサモジュール500とパワー半導体モジュール300U~300Wとの回路定数が3相の各相においてバランスし易くなり、電流の出し入れがし易い構造となっている。
 以上の説明はあくまで一例であり、本発明は上記実施形態の構成に何ら限定されるものではない。
 図20は、図12のAA断面の矢印方向からみたパワー半導体モジュール300Uの断面図である。
 接着性のある絶縁部材333は、エポキシ樹脂に熱伝導性のフィラーを混ぜ合わせた薄い絶縁シートであってもよい。シート状にすることでグリースや接着剤などと比べ厚さを正確に決定できる他、ボイドの発生を低減でき、熱抵抗や絶縁性能のばらつきを大幅に低減できる。また、絶縁部材333として、セラミック板もしくはセラミック板の両側に接着材を塗布した接着基板であっても良い。この接着性のある絶縁部材333とモジュールケース304を接着することで、モジュール一次封止体302の両面を2枚の第1放熱部材307A及び第2放熱部材307Bのそれぞれを介して冷却することができ、放熱面積を大きくすることができる。これにより、パワー半導体モジュール300Uの両側から優れた放熱性の放熱ルートを構成でき、装置の小型化が可能となる。
 モジュール一次封止体302からモジュールケース304までの熱伝達経路の熱伝導率を低下させないようにするには、モジュール一次封止体302とモジュールケース304内壁との接着力を向上させて、モジュール一次封止体302とモジュールケース304内壁との間に剥離が発生することを抑制する必要がある。以下、その原理について述べる。
 第1連結部材304Aは、放熱面を形成する第1放熱部材307Aを囲んで形成されるとともに側壁部306Cと接続される。同様に、第2連結部材304Cは、放熱面を形成する第2放熱部材307Bを囲んで形成されるとともに側壁部306Cと接続される。
 第2連結部材304Cは、モジュール一次封止体302が配置された方向に圧縮応力を発生させる押圧力を発生させる板バネ部として機能する。そして、第1連結部材304Aは、第1連結部材304Cの板バネの弾性変形量(押圧力)を調整するように変形する調整部として機能する。
 板バネ部として機能する第2連結部材304Cと弾性変形量の調整部として機能する第1連結部材304Aの剛性は、第1放熱部材307A及び第2放熱部材307Bの剛性より小さくなるように設定されている。例えば、本実施形態では第1連結部材304A及び第2連結部材304Cの板厚が第1放熱部材307A及び第2放熱部材307Bよりも小さくなるように設定したり、第1連結部材304A及び第2連結部材304Cの材質が第1放熱部材307A及び第2放熱部材307Bの材質よりも剛性の小さくなるように設定したりする。このため、モジュール一次封止体302を挟むように加圧しても、パワー半導体素子(IGBT328及び330、ダイオード156及び166)が破壊される荷重よりずっと小さな荷重で第1連結部材304A及び第2連結部材304Cを容易に変形させることができる。
 図23~図27は、図20における連結部材の拡大図である。なおフィン305は省略されている。
 側壁部306Cと第1連結部材304Aの接続部分を第2接続部C2と定義し、かつ第1放熱部材307Aと第1連結部材304Aの接続部分を第1接続部C1と定義する。さらに、第1接続部C1と第2接続部C2間の第1連結部材304Aの長さを調整部長さL1と定義する。同様に、側壁部306Cと第2連結部材304Cの接続部分を第4接続部C4と定義し、かつ第2放熱部材307Cと第2連結部材304Cの接続部分を第3接続部C3と定義する。さらに、第3接続部C3と第4接続部C4間の第2連結部材304Cの長さを板バネ部長さL2と定義する。なお、板バネ部長さL2、及び調整部長さL1は屈曲部に沿って測定した長さとする。
 図23~図27に示されるように、本実施形態においては、板バネとして機能する第2連結部材304Cの長さL2が、調整部として機能する第1連結部材304Aの凸形状の長さL1より大きくなるように設定されている。
 図21に、第1連結部材304A(調整部)と第2連結部材304C(板バネ部)を等しく変位させた時のスプリングバック量のグラフを示す。これは、調整部長さL1を調整部板厚の6倍、板バネ部長さL2を調整部長さL1の1.4倍とした場合の実験結果である。第1放熱部材307Aに負荷し、第1放熱部材307Aから第2放熱部材307Bに向かう方向に変位Xを与え、除荷した時のスプリングバック量をテストインジケータにより測定する。
 同様に第2放熱部材307Bを、第1放熱部材307Aから第2放熱部材307Bに向かう方向に変位させた時のスプリングバック量をテストインジケータにより測定し、その結果をプロットした。
 板バネ部長さL2が、調整部長さL1に比べて大きく設定されているため、第2連結部材304C(板バネ部)の降伏応力が第1連結部材304A(調整部)に比べて高く、弾性限界が高くなる。このため、負荷時変位Xが0.06mm以上の時、第2連結部材304C(板バネ部)のスプリングバック量が第1連結部材304A(調整部)のスプリングバック量に対し1.1倍以上となっている。この領域で、両面に絶縁部材333を配置したモジュール一次封止体302を挿入し、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させると、第1連結部材304A(調整部)よりも第2連結部材304C(板バネ部)のスプリングバック量が大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。
 つまり、第1連結部材304A(調整部)はモジュール一次封止体302から離れる方向にスプリングバックするが、第2連結部材304C(板バネ部)はモジュール一次封止体302に近づく方向に、かつ第1連結部材304A(調整部)よりも大きくスプリングバックするため、モジュール一次封止体302にはスプリングバック量の差による圧縮応力を発生させることができる。
 図22は、板バネ力の調整方法を説明する図である。受け台100にモジュールケース304の側壁部306Cが載置され、第1放熱部材307A周囲の第1連結部材304A(調整部)を矢印の方向に加圧する。この時、モジュール一次封止体302を介して第2放熱部材307B側に荷重が伝わり、第2連結部材304C(板バネ部)が変位する。図21に示した残留応力発生領域まで変位させた後、除荷すると、第1連結部材304A(調整部)よりも第2連結部材304C(板バネ部)のスプリングバック量が大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。
 この時、第1連結部材304A(調整部)の段差の高さXを調整することで、板バネ力を調整し、圧縮の残留応力の強弱をつけることができる。つまり、図21に示すとおり、第1連結部材304A(調整部)の変位Xを大きくすると、第2連結部材304C(板バネ部)と第1連結部材304A(調整部)のスプリングバック量の差が大きくなり、圧縮の残留応力も大きくなる。
 受け台100の一部に切り欠き部100Aを設けることで、第1放熱部材307A周囲の薄肉部を加圧した際に、第2連結部材304C(板バネ部)をモジュール一次封止体302に対し反対方向に凸となる形状に変形させることができ、第1連結部材304A(調整部)の段差の高さXを大きくできる。
 また、第1放熱部材307A周囲の薄肉部の代わりにフィン305の上部を冶具等で加圧しても良い。
 以下、図23~図25の各実施例について説明する。図23は図20における連結部材の拡大図(実施例1)である。第1連結部材304A(調整部)には第1屈曲部365Aが形成され、第2連結部材304C(板バネ部)には第2屈曲部365Cが形成されている。第1屈曲部365A、及び第2屈曲部365Cはプレス加工等で安価に形成できる。第1連結部材304A(調整部)に第1屈曲部365Aが形成され、第2連結部材304C(板バネ部)に第2屈曲部365Cが形成されることで、板バネ部長さL2と調整部長さL1の比率を自由に設定できる。
 これにより、板バネ部長さL2を調整部長さL1より大きくでき、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させた際の、第2連結部材304C(板バネ部)のスプリングバック量は、第1連結部材304A(調整部)のスプリングバック量より大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。尚、第1屈曲部365Aは直線状に形成しても良い。
 図24は図20における連結部材の拡大図(実施例2)である。第2放熱部材307Bのサイズを第1放熱部材307Aより小さくし、第2連結部材304C(板バネ部)の幅を第1連結部材304A(調整部)より大きくする。つまり、モジュール一次封止体302と対向する第1放熱部材307Aの対向面の垂直方向から投影した場合、第2放熱部材307Bは、第2放熱部材307Bの斜影部が第1放熱部材307Aの斜影部より小さくなるように形成される。
 これにより、板バネ部長さL2を調整部長さL1より大きくでき、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させた際の、第2連結部材304C(板バネ部)のスプリングバック量は、第1連結部材304A(調整部)のスプリングバック量より大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。
 図25は図20における連結部材の拡大図(実施例3)である。側壁部306Cの第2連結部材304C(板バネ部)と接続する側にスリット状、あるいはテーパ状の切り込み部375Cを形成している。これにより、板バネ部長さL2を調整部長さL1より大きくでき、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させた際の、第2連結部材304C(板バネ部)のスプリングバック量は、第1連結部材304A(調整部)のスプリングバック量より大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。
 以上の実施例ではモジュールケース304は一体に形成されているが、側壁部306Cが分離して構成される例を図26、27に示す。図26は図20における連結部材の拡大図(実施例4)である。
 モジュールケース304は、第1放熱部材307Aと第1連結部材304A(調整部)から構成される第1部材375Aと、第2放熱部材307Bと第2連結部材304C(板バネ部)から構成される第2部材375Bと、側壁部306Cの合計3部材により構成される。
 第1部材375Aと側壁部306C、及び第2部材375Bと側壁部306Cはレーザ溶接、あるいは摩擦撹拌接合により接合される。第1部材375Aと側壁部306Cとの接合部を第1接合部355A、第2部材375Bと側壁部306Cとの接合部を第2接合部355Bとする。
 第1連結部材304Aは、モジュール一次封止体302側に凸となる形状とし、第2連結部材304Cは、モジュール一次封止体302とは反対側に凸となる形状とする。3部材化により、第1放熱部材307A、及び第2放熱部材307Bの内面(モジュール一次封止体302との接触部)を単品で高精度に仕上げ加工して、平面度・面粗度を向上させた状態で側壁部306Cと接合することができるため、第1放熱部材307A、及び第2放熱部材307Bと絶縁部材333との接着力を向上させることができる。
 第1放熱部材307Aから第2放熱部材307Bに向かう方向に第2放熱部材307Bを変位させると、第2連結部材304C(板バネ部)は第2接合部355Bを起点に変形するため、その近傍が第4接続部C4となる。一方、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307Aを変位させると、第1連結部材304A(調整部)は側壁部306Cの内壁を起点に変形するため、その近傍が第2接続部C2となる。このため、放熱部のサイズを変えたり、切り込み部を形成しなくても、安価に、板バネ部長さL2を調整部長さL1より大きくできる。
 これにより、板バネ部長さL2を調整部長さL1より大きくでき、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させた際の、第2連結部材304C(板バネ部)のスプリングバック量は、第1連結部材304A(調整部)のスプリングバック量より大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。
 図27は図20における連結部材の拡大図(実施例5)である。第1放熱部材307Aから第2放熱部材307Bに向かう方向に第2放熱部材307Bを変位させると、第2連結部材304C(板バネ部)は第2接合部355Bを起点に変形するため、その近傍が第4接続部C4となる。一方、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307Aを変位させると、第1連結部材304A(調整部)は側壁部306Cの内壁を起点に変形するため、その近傍が第2接続部C2となる。このため、放熱部のサイズを変えたり、切り込み部を形成しなくても、安価に、板バネ部長さL2を調整部長さL1より大きくできる。
 さらに、第1連結部材304A(調整部)に第1屈曲部365Aが形成され、第2連結部材304C(板バネ部)に第2屈曲部365Cが形成されることで、板バネ部長さL2と調整部長さL1の比率を自由に設定できる。
 これにより、板バネ部長さL2を調整部長さL1より大きくでき、第1放熱部材307Aから第2放熱部材307Bに向かう方向に第1放熱部材307A、及び第2放熱部材307Bを変位させた際の、第2連結部材304C(板バネ部)のスプリングバック量は、第1連結部材304A(調整部)のスプリングバック量より大きくなるため、モジュール一次封止体302に圧縮の残留応力が生じる。尚、第1屈曲部365Aは直線状に形成しても良い。
 本実施形態では、第2連結部材304C(板バネ部)と第1連結部材304A(調整部)を同一部材としたが、弾性限界の異なる異種材料を用いてスプリングバック量に差が出るように構成しても良い。
 図28は真空加熱による圧着工程を説明する図である。モジュールケース304の第1放熱部材307Aを加熱ヒータ900が内蔵されたプレス機901に載置する。次に、モジュール一次封止体302の周囲を真空にすることで接着性のある絶縁部材333の界面に生じるボイドなどの空気溜まりを排出する。次に、第1放熱部材307Aを上下に加圧しながら高温で数時間焼くことで接着剤の硬化を促進させる。これらにより、絶縁部材333の絶縁寿命等の信頼性を改善できることから、小型で高信頼な電力変換装置を提供できる。
 この際、絶縁部材333は、接着性を有するものが望ましい。さらには、絶縁部材333は、前述の加熱ヒータ900による温度変化を利用して、熱硬化するような材料を用いることが望ましい。
 尚、本実施例では板バネ力調整工程の後に真空加熱圧着したが、真空加熱圧着した後で板バネ力調整を行っても良い。
 ここで、本実施形態に係るパワー半導体モジュール300に好適な絶縁部材333について説明する。本実施形態に係る絶縁部材333は、モジュールケース304の内壁とモジュール一次封止体302との電気的絶縁性を確保するとともに、これらの接着性を確保することが求められる。しかし、モジュール一次封止体302の放熱面は、図14に示されるように、導体板318及び319や第一封止樹脂348により形成される。そのため、導体板318及び319と第一封止樹脂348との境目に凹凸ができてしまうと、絶縁部材333との接着性が低下するおそれがある。その結果、絶縁部材333とモジュール一次封止体302との間に空気等が侵入し、パワー半導体モジュール300の熱伝達率の低下、あるいは部分放電の発生の恐れがある。同様に、モジュールケース304の内壁と導体板318及び319の面粗度による微小空隙に空気等が侵入し、パワー半導体モジュール300の熱伝達率の低下、あるいは部分放電の発生の恐れがある。
 そこで、絶縁部材333は、導体板318及び319とモジュール一次封止体302との境目の凹凸、あるいはモジュールケース304の内壁と導体板318及び319の面粗度による微小空隙を埋められるような、柔らかい、つまりヤング率が低い絶縁材料を用いることが望ましい。
 一方で、ヤング率が低い絶縁材料は、電気的絶縁性を確保するための材料とは異なる不純物を多く含むことになり、電気的絶縁性が十分に確保できないおそれがある。
 そこで、本実施形態に係る絶縁部材333は、さらに、不純物が少ない、つまりヤング率が高い絶縁材料を、前述のヤング率が低い絶縁材料と、モジュールケース304の内壁との間に備える。つまり、絶縁部材333は、ヤング率が異なる絶縁材料による多層形状を為す。これにより、熱伝達率の低下を抑制するとともに、電気的絶縁性も確保することができる。
 つまり、絶縁部材333は、上層と下層にヤング率が低い絶縁材料を用い、中間層にヤング率が高い絶縁材料を用いる。
 さらに、熱硬化性の材料を用いれば、低温時にヤング率が低いため、導体板318及び319とモジュール一次封止体302との境目の凹凸、あるいはモジュールケース304の内壁と導体板318及び319の面粗度による微小空隙に絶縁部材333が進入しやすくなる。
 また、板バネによる圧縮の残留応力が強すぎると、絶縁部材333が潰れて絶縁性が低下する恐れがある。本実施形態では第1連結部材304A(調整部)の段差の高さXを調整することにより、板バネ力を調整することができる。
 これにより、図13のようにCAN状の冷却ケースを用いた実施形態であっても、熱伝達率の低下を抑制するとともに、電気的絶縁性も確保することができる。
 以上のように、予めモジュール一次封止体302に圧縮の残留応力を発生させた状態で真空加熱圧着することで、絶縁シートの剥離を防止し、モジュール一次封止体302をモジュールケース304の内壁に固着することが可能となった。この構造により、パワー半導体素子から生じた発熱をモジュール一次封止体302の両側面に設けた接着性のある絶縁部材333を介してモジュールケース304に熱伝達することで、パワー半導体素子の両側から放熱可能となり、パワー半導体素子から冷却媒体までの伝熱ルートが並列した2つのルートに分割されたことで熱抵抗が大幅に低減でき、パワー半導体モジュールの小型化と電力変換装置の小型化が可能となった。
 また、プレスで板バネ部、及び調整部を形成することで、パワー半導体モジュールを生産性良く、安価に提供することが可能となった。
300U、300V、300W パワー半導体モジュール
302 モジュール一次封止体
304 モジュールケース
304A 第1連結部材
304C 第2連結部材
305 フィン
306C 側壁部
307A 第1放熱部材
307B 第2放熱部材
328、330 IGBT
333 絶縁部材
L1 調整部長さ
L2 板バネ部長さ

Claims (10)

  1.  直流電力と交流電力に変換する半導体素子と、前記半導体素子の両側に配置され、前記半導体素子の電極面とはんだを介して接続される導体板と、前記半導体素子と前記導体板を樹脂で封止した封止体と、当該封止体を収納するためのケースと、当該封止体と前記ケースの間に配置される絶縁部材と、を備え、
     前記ケースは、
     前記封止体の一方の面と対向する第1放熱部材と、
     前記封止体の一方の面とは反対側の他方の面と対向する第2放熱部材と、
     前記第1放熱部材と接続されるとともに、前記第1放熱部材を囲んで形成される第1連結部材と、
     前記第2放熱部材と接続されるとともに、前記第2放熱部材を囲んで形成される第2連結部材と、前記第1連結部材及び前記第2連結部材と接続される側壁部と、を有し、
     前記第2放熱部材を、前記封止体から離れる方向に変位させた際のスプリングバック量が、前記第1放熱部材を、前記封止体に近づける方向に同じだけ変位させた際のスプリングバック量よりも大きくなるように構成され、前記封止体はスプリングバック量の差による圧縮応力を受けるパワー半導体モジュール。
  2.  直流電力と交流電力に変換する半導体素子と、前記半導体素子の両側に配置され、前記半導体素子の電極面とはんだを介して接続される導体板と、前記半導体素子と前記導体板を樹脂で封止した封止体と、当該封止体を収納するためのケースと、当該封止体と前記ケースの間に配置される絶縁部材と、を備え、
     前記ケースは、
     前記封止体の一方の面と対向する第1放熱部材と、
     前記封止体の一方の面とは反対側の他方の面と対向する第2放熱部材と、
     前記第1放熱部材と接続されるとともに、前記第1放熱部材を囲んで形成される第1連結部材と、
     前記第2放熱部材と接続されるとともに、前記第2放熱部材を囲んで形成される第2連結部材と、
     前記第1連結部材及び前記第2連結部材と接続される側壁部と、を有し、
     前記側壁部は、前記第1放熱部材及び前記第1連結部材により塞がれる第1開口部と、前記第2放熱部材及び前記第2連結部材により塞がれる第2開口部と、を形成し、
     前記第2放熱部材を、前記封止体から離れる方向に変位させた際のスプリングバック量が、前記第1放熱部材を、前記封止体に近づける方向に同じだけ変位させた際のスプリングバック量よりも大きくなるように構成され、前記封止体はスプリングバック量の差による圧縮応力を受けるパワー半導体モジュール。
  3.  請求項1、または2に記載のパワー半導体モジュールであって、
     前記第1連結部材及び前記第2連結部材の厚さは、前記第1放熱部材と前記第2放熱部材と前記側壁部のそれぞれの厚さよりも小さく形成され、
     前記第1連結部材及び前記第2連結部材の剛性は、前記第1放熱部材と前記第2放熱部材と前記側壁部のそれぞれの剛性よりも小さいパワー半導体モジュール。
  4.  請求項1~3に記載のいずれかのパワー半導体モジュールであって、
     前記第1放熱部材と前記第1連結部材との接続部を第1接続部と定義し、前記第1連結部材と前記側壁部との接続部を第2接続部と定義し、前記第2放熱部材と前記第2連結部材との接続部を第3接続部と定義し、前記第2連結部材と前記側壁部との接続部を第4接続部と定義した場合、
     前記第3接続部から前記第4接続部までの前記第2連結部材の長さは、前記第1接続部から前記第2接続部までの前記第1連結部材の長さよりも大きいパワー半導体モジュール。
  5.  請求項4に記載のパワー半導体モジュールであって、
     前記第2連結部、あるいは、前記第1連結部材と前記第2連結部材の両方は、屈曲部を有するパワー半導体モジュール。
  6.  請求項4または5に記載のパワー半導体モジュールであって、
     前記封止体と対向する前記第1放熱部材の対向面の垂直方向から投影した場合、
     前記第2放熱部材は、前記第2放熱部材の斜影部が前記第1放熱部材の斜影部より小さくなるように形成されるパワー半導体モジュール。
  7.  請求項1~6に記載のいずれかのパワー半導体モジュールであって、
     前記第1放熱部材と前記第1連結部材は、一体に形成され、
     前記第2放熱部材と前記第2連結部材は、一体に形成され、
     前記第1連結部材は、前記側壁部とレーザ溶接、あるいは摩擦撹拌接合により接合され、
     前記第2連結部材は、前記側壁部とレーザ溶接、あるいは摩擦撹拌接合により接合されるパワー半導体モジュール。
  8.  請求項7に記載されたパワー半導体モジュールにおいて、
     前記第1連結部材は前記封止体が配置された側に凸となる形状であり、
     前記第2連結部材は前記封止体が配置された側とは反対方向に凸となる形状であるパワー半導体モジュール。
  9.  請求項8に記載されたパワー半導体モジュールにおいて、
     前記凸形状の高さが、前記第1接続部と前記第2接続部とで異なることを特徴とするパワー半導体モジュール。
  10.  請求項1~9に記載されたいずれかのパワー半導体モジュールにおいて、
     前記第1連結部と前記第2連結部に別の材料を用いていることを特徴とするパワー半導体モジュール。
PCT/JP2013/052979 2012-03-30 2013-02-08 パワー半導体モジュール WO2013145881A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013001823.3T DE112013001823T5 (de) 2012-03-30 2013-02-08 Leistungshalbleitermodul
US14/379,957 US9474191B2 (en) 2012-03-30 2013-02-08 Power semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-078794 2012-03-30
JP2012078794A JP5634429B2 (ja) 2012-03-30 2012-03-30 パワー半導体モジュール

Publications (1)

Publication Number Publication Date
WO2013145881A1 true WO2013145881A1 (ja) 2013-10-03

Family

ID=49259166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052979 WO2013145881A1 (ja) 2012-03-30 2013-02-08 パワー半導体モジュール

Country Status (4)

Country Link
US (1) US9474191B2 (ja)
JP (1) JP5634429B2 (ja)
DE (1) DE112013001823T5 (ja)
WO (1) WO2013145881A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101688A4 (en) * 2014-01-27 2017-10-04 Hitachi, Ltd. Power module and manufacturing method therefor
CN109247920A (zh) * 2018-09-06 2019-01-22 博脉有限公司 一种高灵敏度压力传感器
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657329B2 (ja) * 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
US10321585B2 (en) * 2008-07-29 2019-06-11 Hitachi, Ltd. Power conversion apparatus and electric vehicle
JP5581131B2 (ja) * 2010-06-30 2014-08-27 日立オートモティブシステムズ株式会社 パワーモジュール及びそれを用いた電力変換装置
JP5588895B2 (ja) * 2011-02-28 2014-09-10 日立オートモティブシステムズ株式会社 パワー半導体モジュール,パワー半導体モジュールの製造方法及び電力変換装置
JP5567530B2 (ja) 2011-08-19 2014-08-06 日立オートモティブシステムズ株式会社 摩擦攪拌接合構造およびパワー半導体装置
JP5941787B2 (ja) * 2012-08-09 2016-06-29 日立オートモティブシステムズ株式会社 パワーモジュールおよびパワーモジュールの製造方法
JP6161713B2 (ja) * 2013-10-07 2017-07-12 日立オートモティブシステムズ株式会社 電力変換装置
US9681571B2 (en) * 2014-02-21 2017-06-13 Wells Manufacturing, L.P. Electrical connection box and apparatus
JP6286320B2 (ja) * 2014-08-07 2018-02-28 日立オートモティブシステムズ株式会社 パワーモジュール
US10037977B2 (en) 2015-08-19 2018-07-31 Ford Global Technologies, Llc Power electronics system
DE102015217287A1 (de) * 2015-09-10 2017-03-16 Siemens Aktiengesellschaft Zwischenkreiskondensatoranordnung mit Entladeelement
JP6104347B1 (ja) * 2015-10-29 2017-03-29 三菱電機株式会社 電力変換装置
US9781867B2 (en) * 2016-02-19 2017-10-03 Ford Global Technologies, Llc Power module assembly for a vehicle power inverter
JP6710163B2 (ja) * 2017-01-12 2020-06-17 日立オートモティブシステムズ株式会社 パワー半導体装置
JP6762271B2 (ja) * 2017-06-26 2020-09-30 三菱電機株式会社 半導体装置
JP6753837B2 (ja) * 2017-12-18 2020-09-09 株式会社東芝 インバータ装置、及びインバータ装置の放熱特性検出方法
US11881791B2 (en) * 2018-07-04 2024-01-23 Hitachi Astemo, Ltd. Electromagnetic shielding power conversion device
JP2020008459A (ja) * 2018-07-10 2020-01-16 日本電産トーソク株式会社 センサユニット
US11070140B2 (en) * 2018-10-25 2021-07-20 Eaton Intelligent Power Limited Low inductance bus assembly and power converter apparatus including the same
JP7095609B2 (ja) * 2019-01-24 2022-07-05 株式会社デンソー 電力変換器とその製造方法
JP2020156206A (ja) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 電力変換器
GB2602338B (en) * 2020-12-23 2023-03-15 Yasa Ltd A Method and Apparatus for Cooling One or More Power Devices
JP2022160060A (ja) * 2021-04-06 2022-10-19 三菱重工業株式会社 電気導体の冷却装置、電力変換装置及び回転電気機械
JP2024006805A (ja) * 2022-07-04 2024-01-17 日立Astemo株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217550A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd 電力変換装置
JP2011233606A (ja) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd パワーモジュール
JP2012028595A (ja) * 2010-07-26 2012-02-09 Hitachi Automotive Systems Ltd パワー半導体ユニット、パワーモジュールおよびそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322429B2 (ja) * 1992-06-04 2002-09-09 新光電気工業株式会社 半導体装置
JP4462179B2 (ja) 2005-12-15 2010-05-12 株式会社デンソー 電力変換装置
JP5557441B2 (ja) 2008-10-31 2014-07-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
JP5567530B2 (ja) 2011-08-19 2014-08-06 日立オートモティブシステムズ株式会社 摩擦攪拌接合構造およびパワー半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217550A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd 電力変換装置
JP2011233606A (ja) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd パワーモジュール
JP2012028595A (ja) * 2010-07-26 2012-02-09 Hitachi Automotive Systems Ltd パワー半導体ユニット、パワーモジュールおよびそれらの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101688A4 (en) * 2014-01-27 2017-10-04 Hitachi, Ltd. Power module and manufacturing method therefor
CN109247920A (zh) * 2018-09-06 2019-01-22 博脉有限公司 一种高灵敏度压力传感器
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter

Also Published As

Publication number Publication date
DE112013001823T5 (de) 2014-12-11
US9474191B2 (en) 2016-10-18
JP5634429B2 (ja) 2014-12-03
US20150016063A1 (en) 2015-01-15
JP2013211942A (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5634429B2 (ja) パワー半導体モジュール
JP7012813B2 (ja) パワー半導体装置及びそれを用いた電力変換装置
JP5588895B2 (ja) パワー半導体モジュール,パワー半導体モジュールの製造方法及び電力変換装置
JP5581131B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP5591396B2 (ja) 半導体モジュール、および半導体モジュールの製造方法
JP5506749B2 (ja) 電力変換装置
JP5506741B2 (ja) 電力変換装置
JP5422466B2 (ja) 電力変換装置
JP5557585B2 (ja) パワーモジュール
JP5427745B2 (ja) パワー半導体モジュール及びその製造方法
WO2012090666A1 (ja) 電力変換装置
WO2012043088A1 (ja) 電力変換装置
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP2012138409A (ja) パワーモジュールの絶縁構造とパワーモジュールを用いた電力変換装置
JP5378293B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP5978324B2 (ja) 電力変換装置
JP5687786B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14379957

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001823

Country of ref document: DE

Ref document number: 1120130018233

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767916

Country of ref document: EP

Kind code of ref document: A1