WO2013140785A1 - 疾患サンプル分析装置、分析システム及び分析方法 - Google Patents

疾患サンプル分析装置、分析システム及び分析方法 Download PDF

Info

Publication number
WO2013140785A1
WO2013140785A1 PCT/JP2013/001849 JP2013001849W WO2013140785A1 WO 2013140785 A1 WO2013140785 A1 WO 2013140785A1 JP 2013001849 W JP2013001849 W JP 2013001849W WO 2013140785 A1 WO2013140785 A1 WO 2013140785A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
amino acid
mice
concentration
cysteine
Prior art date
Application number
PCT/JP2013/001849
Other languages
English (en)
French (fr)
Inventor
健司 浜瀬
洋介 東條
真史 三田
智恵子 水本
Original Assignee
国立大学法人九州大学
株式会社 資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/385,871 priority Critical patent/US20150079623A1/en
Priority to EP13764636.0A priority patent/EP2829877B1/en
Priority to CN201380019921.6A priority patent/CN104246497B/zh
Priority to CN201910591893.4A priority patent/CN110133301B/zh
Priority to CN202210524153.0A priority patent/CN114966050A/zh
Priority to IN2060MUN2014 priority patent/IN2014MN02060A/en
Application filed by 国立大学法人九州大学, 株式会社 資生堂 filed Critical 国立大学法人九州大学
Priority to EP20152640.7A priority patent/EP3663758A1/en
Priority to CN201910585530.XA priority patent/CN110133296B/zh
Priority to CN201910591882.6A priority patent/CN110161256B/zh
Priority to EP20207502.4A priority patent/EP3795997B1/en
Publication of WO2013140785A1 publication Critical patent/WO2013140785A1/ja
Priority to US16/137,968 priority patent/US20190025320A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/89Inverse chromatography
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers

Definitions

  • the present invention relates to a disease sample analyzer, an analysis system, and an analysis method based on a quantitative method in which stereoisomers of amino acids are distinguished.
  • a disease sample analyzer including a means for outputting the condition information of the subject based on the condition index value, a quantitative analysis unit for separating and quantifying the amino acid stereoisomer of the biological material of the subject, Substituting the quantitative value of the amino acid stereoisomer into a discriminant and calculating it, obtaining a disease state index value calculating unit, and a disease state information output unit outputting the patient state information based on the disease state index value
  • a disease sample analysis system including: a step of separating and quantifying amino acid stereoisomers of a biological material of a subject; and a quantitative value of the amino acid stereo
  • L-amino acids are components of biological proteins, and the amino acids contained in proteins are in principle L-amino acids.
  • D-amino acids are contained in some biologically active peptides of lower organisms, but many of them are biosynthesized through a post-translational modification process. Therefore, amino acids constituting proteins or peptides are mainly L-amino acids, and D-amino acids are exceptional.
  • D-amino acid is one of the components of peptidoglycan on the bacterial cell wall.
  • free D-amino acids that do not constitute peptides exist in lower animals such as aquatic animals and insects.
  • amino acids present in higher animals were L-forms and D-forms were not involved in physiological activities (Non-patent Document 1).
  • Non-patent Document 2 D-aspartic acid is localized in prolactin-producing cells in the rat pituitary gland by a double staining method using an anti-D-aspartic acid antibody.
  • prolactin secretion increased in a dose-dependent manner by giving D-aspartic acid to cells that synthesize and secrete prolactin in a rat pituitary-derived cell line. From the above, it is considered that D-aspartic acid controls the secretion of prolactin in prolactin-producing cells (Non-patent Document 3).
  • D-serine can stimulate neurotransmission by selectively stimulating the glycine-binding site of NMDA-type glutamate receptor, which is presumed to be related to schizophrenia, and enhancing the action of glutamate via this receptor. It has been reported (Non-Patent Document 5). It has been reported that schizophrenia is actually improved by administration of D-serine, and that the serum D-serine concentration in schizophrenic patients is lower than that in healthy subjects. Furthermore, it has recently been reported that D-serine is involved in motor nerve degeneration in amyotrophic lateral sclerosis (ALS) (Non-patent Document 6).
  • ALS amyotrophic lateral sclerosis
  • the present invention shows that the amount of D-amino acid and L-amino acid in the biological material of healthy subjects is maintained at a certain balance, and individual differences are small.
  • there was some imbalance in balance that could only be confirmed by separating and quantifying D-amino acids and L-amino acids in a patient's biological material.
  • the present invention has been conceived based on such an unexpected discovery.
  • the present invention provides a disease sample analyzer.
  • the disease sample analyzer of the present invention comprises a means for separating and quantifying amino acid stereoisomers in a biological material of a subject, and calculating the disease state index by substituting the amount of the amino acid stereoisomers into a discriminant. Means for obtaining a value, and means for outputting the condition information of the patient based on the condition index value.
  • the means for outputting the pathological condition information of the subject based on the pathological condition index value is such that when the pathological index value is 2.0 or more, the subject There is a case of means for outputting the condition information of the subject that he / she is suffering from.
  • the amino acid stereoisomer correlated with the disease is D-serine, D-threonine, D-alanine, D-asparagine, allo D-threonine, D when the disease is kidney disease.
  • L-cysteine for acute myeloid leukemia L-cysteine for lymphoma, L-glutamate and L-cysteine for acute lymphoblastic leukemia, and L-arginine and L for psoriasis -Cysteine, which may be D-alanine, L-cysteine and L-glutamic acid in diabetes.
  • the present invention provides a disease sample analysis system.
  • the disease sample analysis system includes a quantitative analysis unit for separating and quantifying amino acid stereoisomers in a biological material of a subject, and calculating the amount of the amino acid stereoisomer by substituting it into a discriminant.
  • a pathologic index value calculating unit for obtaining a pathologic index value, and a pathologic information output unit for outputting the pathologic condition information of the patient based on the pathologic index value.
  • the pathological condition information output unit is configured such that when the pathological condition index value is 2.0 or more, the pathological condition of the subject that the subject is suffering from the disease. Information may be output.
  • the amino acid stereoisomer correlated with the disease is D-serine, D-threonine, D-alanine, D-asparagine, allo D-threonine, D when the disease is kidney disease.
  • phenyl It is L-phenylalanine in the case of ketosis, L-valine, L-allo-isoleucine, D-isoleucine, L-isoleucine and L-leucine in the case of maple syrup urine, and L-in the case of rheumatoid arthritis. Glutamic acid, L-glutamine, and L-cysteine.
  • the present invention provides a disease sample analysis method.
  • the disease sample analysis method of the present invention comprises a step of measuring the amount of amino acid stereoisomers in a biological material of a subject, and calculating the disease state index by substituting the amino acid stereoisomer amount into a discriminant. Obtaining a value, and outputting the patient's pathological information based on the pathological index value.
  • the step of outputting the pathological condition information of the subject based on the pathological condition index value is such that when the pathological condition index value is 2.0 or more, the subject There is a case of outputting the pathological condition information of the subject that he / she is suffering from.
  • the amino acid stereoisomer correlated with the disease is D-serine, D-threonine, D-alanine, D-asparagine, allo D-threonine, D when the disease is kidney disease.
  • L-cysteine for acute myeloid leukemia L-cysteine for lymphoma, L-glutamate and L-cysteine for acute lymphoblastic leukemia, and L-arginine and L for psoriasis -Cysteine, which may be D-alanine, L-cysteine and L-glutamic acid in diabetes.
  • the present invention provides a disease diagnosis method.
  • the disease diagnosis method of the present invention is based on the step of measuring the amount of amino acid stereoisomer in the biological material of a subject, the measured value of the amount of amino acid stereoisomer and the reference value of a healthy person. And diagnosing the disease.
  • the present invention provides a disease diagnosis method.
  • the disease diagnosis method of the present invention comprises a step of separating and quantifying amino acid stereoisomers in a biological material of a subject, and calculating by substituting the amount of the amino acid stereoisomers into a discriminant, Means for obtaining a value, and diagnosing the patient based on the disease state index value.
  • the step of outputting the pathological condition information of the subject based on the pathological condition index value is such that when the pathological condition index value is 2.0 or more, the subject There may be a step to diagnose suffering from.
  • the amino acid stereoisomer correlated with the disease is D-serine, D-threonine, D-alanine, D-asparagine, allo D-threonine, D when the disease is kidney disease.
  • D-serine D-threonine, D-alanine, D-asparagine, allo D-threonine, D when the disease is kidney disease.
  • the amino acid stereoisomers of the present invention include 20 kinds of amino acids used for protein translation, 19 kinds of D-amino acids which are engineering isomers of 19 kinds of L-amino acids excluding glycine, and alloL -Threonine, allo D-threonine and allo D-isoleucine.
  • the disease sample analyzer of the present invention comprises means for measuring the amount of amino acid stereoisomers in a biological material, and means for obtaining a disease state index value by substituting the amino acid stereoisomer amount into a discriminant and calculating it. And means for outputting pathological condition information of the patient based on the pathological condition index value.
  • Means for measuring the amount of amino acid stereoisomers in the physical material are a sample auto-preparation part and a HPLC separation and peak detection part using a reverse phase column or the like.
  • a means for obtaining the pathological index value by substituting the amount of the amino acid stereoisomer into a discriminant and calculating the pathological condition index value a storage unit for storing data such as the standard value of a healthy person for each disease, and the data And an arithmetic unit that calculates a discriminant based on the calculation unit.
  • the means for outputting the patient's pathological information based on the pathological index value is a pathological information selection unit and a pathological information output unit.
  • the disease sample analyzer of the present invention includes a control unit such as a CPU for overall control, an input / output interface unit connected to the input device and the output device, and a communication interface unit connected to the network so as to be communicable. Is included.
  • biological materials include body fluids such as blood, plasma, serum, ascites, amniotic fluid, lymph, saliva, semen, urine, excrement such as feces, sweat, nasal discharge, body hair, nails, skin tissue, although it refers to a body tissue such as a visceral tissue, it is not limited thereto.
  • the discriminant may be an equation for calculating how many times the subject measurement value of the amount of amino acid stereoisomer is a reference value set in advance from the measurement value of a healthy person. Further, there may be a formula for calculating the ratio or percentage of the amount of the amino acid stereoisomer relative to the sum of the amount of the amino acid stereoisomer and the amount of the enantiomer of the isomer. Furthermore, there may be a formula for calculating a disease state index value from a combination of amounts of plural types of amino acid stereoisomers.
  • the plurality of amino acid stereoisomers may be a group of amino acids having common points such as being a substrate for D-amino acid oxidase or D-aspartate oxidase.
  • the amount of amino acids that correlate with disease may be normalized with the amount of amino acids that do not correlate with disease.
  • the reference value of the amino acid stereoisomer correlated with the disease in the biological material of a healthy person is the biological material of the healthy person with respect to the amino acid stereoisomer correlated with the disease, Amino acid stereoisomers are determined from the mean or median amount in either or both biological materials of other diseased patients whose correlates are unrelated.
  • the reference value may be set in advance, but may be a measured value of a biological material that is prepared as a control experiment in the practice of the present invention and tested at the same time, or an average value or a median value thereof.
  • the pathological index value calculated by the discriminant of the present invention when the pathological index value calculated by the discriminant of the present invention is 1.0 or in the vicinity thereof, it is output that the subject is a healthy person.
  • the disease state index value When the disease state index value is 2.0 or more, it may be output that the subject is likely to have a disease. However, even if the disease state index value is less than 2.0, it may be output that the subject may have the disease.
  • Quantitative data of amino acid stereoisomers in the biological material of the subject obtained by the disease sample analyzer, analysis system and analysis method of the present invention is used as an indicator for diagnosis and prevention of various diseases.
  • the quantitative data is used as an index of progression of the disease state of the disease.
  • the quantitative data is used as an index for judging the efficacy of a medicine for treatment and / or prevention of the disease.
  • the quantitative data is used to determine the effects of medicines, quasi-drugs, cosmetics, foods and other chemical substances on the living body, and other physical and / or biological environmental factors on the adult. Used as an indicator for
  • the table surface which put together the analysis result of the D-amino acid about each first sample of a healthy subject and various disease patients.
  • the vertical axis represents the D-serine concentration (nanomol / mL).
  • the vertical axis represents the L-serine concentration (nanomol / mL).
  • the vertical axis represents the total serine concentration (nanomol / mL).
  • % D Percentage of D-serine concentration relative to total serine concentration in urine of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”) (% D) Average value and standard error bar graph. The vertical axis is% D. The significant difference between normal and disease was P less than 0.02 by Student's t-test. Bar graph of mean value and standard error of D-arginine concentration in urine of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”) . The vertical axis represents the D-arginine concentration (nanomol / mL).
  • the vertical axis represents the total arginine concentration (nanomol / mL).
  • the vertical axis represents the D-glutamic acid concentration (nanomol / mL). The significant difference between normal and disease was P less than 0.02 by Student's t-test.
  • the vertical axis represents the L-glutamic acid concentration (nanomol / mL).
  • Urinary total glutamic acid concentration (D-glutamic acid concentration and L-glutamic acid concentration) of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”) A bar graph of the mean value and standard error of the sum of the concentrations.
  • the vertical axis represents the total glutamic acid concentration (nanomol / mL). Bar graph of the mean value and standard error of D-proline concentration in urine of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”) .
  • the vertical axis represents the D-proline concentration (nanomol / mL). As a significant difference between normal and disease, P was less than 0.01 by Student's t-test. Bar graph of mean value and standard error of L-proline concentration in urine of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”) .
  • the vertical axis represents the L-proline concentration (nanomol / mL).
  • Total proline concentration in urine (D-proline concentration and L-proline concentration) of 3 dilated cardiomyopathy model mice (hereinafter referred to as “disease”) and 4 control normal mice (hereinafter referred to as “normal”)
  • the vertical axis represents the total proline concentration (nanomol / mL).
  • the vertical axis represents the D-lysine concentration (nanomol / mL).
  • the vertical axis represents the total lysine concentration (nanomol / mL). Twelve menopausal model mice (hereinafter referred to as “OVX”) from which ovaries were removed from 9-week-old HR-1 mice, and skin incisions and sutures without ovariectomy from female mice of the same age
  • the graph which shows the change of the average value and standard deviation of a body weight with six control mice (henceforth "sham") performed.
  • the vertical axis represents the weight (gram) of the mouse.
  • the black and black hatched bar graphs represent the 9-week-old mice before the treatment, the first week (10-week old), the second week (11-week old), the third week (12-week-old), 4 weeks after the treatment, respectively.
  • the mean values and standard deviations of the body weights of the menopausal model mice (OVX) and control mice (sham) at week (13 weeks of age) are shown.
  • the significant difference in body weight between the climacteric model mouse (OVX) and the control mouse (sham) was P less than 0.05 (*) or less than 0.01 (**) according to Student's t test.
  • the body weight increased significantly from the control mouse from the second week after the operation, indicating that the menopausal model mouse was successfully produced.
  • glycine Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention. Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low. As for cysteine, since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis. The table
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-aspartic acid was lower in climacteric model mice (OVX) than in control mice (sham), and the significant difference was P of 0.017 according to Student's t-test.
  • % D / D-Glu percentage of each D-amino acid concentration
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • surface which shows the total amino acid optical isomer content analysis result. Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • surface which shows the total amino acid optical isomer content analysis result. Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • surface which shows the analysis result of the content of all the amino acid optical isomers in the urine of the 1st (C3) out of three ICR type male 9-week-old mice individuals bred in the same environment as a control experiment of sarcoma transplanted mice. Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-asparagine and D-arginine tended to be higher in sarcoma-transplanted mice than in control mice, and the significant difference of D-arginine was 0.035 in Student's t-test. Comparison of percentage of each D-amino acid concentration (% D / D-Asn) to D-asparagine concentration in urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5) Table. D-asparagine was used as an indicator of urinary concentration correction because of its relatively high concentration in mammalian urine and its most stable ratio to total D-amino acid concentration.
  • D-arginine tended to be higher in sarcoma-transplanted mice than in control mice, and a significant difference was P of 0.016 in Student's t test.
  • Three Alzheimer's disease model mice transgenic mice with high expression of amyloid ⁇ precursor protein Tg2576 hemizygous male 8-week-old mice, hereinafter referred to as “hemi”) and control normal mice (C57BL, hereinafter referred to as “Wild”).
  • hemi amyloid ⁇ precursor protein
  • Wild control normal mice
  • the vertical axis represents the concentration (nanomol / mL).
  • the vertical axis is% D.
  • the relative ratio of D-serine to the urinary D-allo-threonine concentration and the relative ratio of D-serine to the urinary D-allo-isoleucine concentration were higher in the Alzheimer's disease model mice than in the control mice. In the Student's t test, both P were less than 0.01. Urinary D-alanine concentration (D-Ala), L-alanine concentration (L-Ala) and the sum of both (Ala) of three Alzheimer's disease model mice (hemi) and three control normal mice (Wild) Bar graph of mean and standard error of. The vertical axis represents the concentration (nanomol / mL).
  • the D-alanine concentration in urine was higher in Alzheimer's disease model mice than in control normal mice, and the significant difference was that P was less than 0.01 by Student's t-test.
  • the vertical axis is% D.
  • the percentage of D-alanine concentration (% D) relative to the total urine alanine concentration was higher in Alzheimer's disease model mice than in control normal mice, and the difference was significantly less than 0.01 in Student's t-test.
  • Urinary D-leucine concentration (D-Leu), L-leucine concentration (L-Leu), and the sum of both (Leu) of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) Bar graph of mean and standard error of.
  • the vertical axis represents the concentration (nanomol / mL).
  • the vertical axis is% D.
  • Relative ratio of D-leucine to urinary D-allo-threonine concentration (D-Leu / D-allo-Thr) or urine of three Alzheimer's disease model mice (hemi) and three control normal mice (Wild)
  • the relative ratio of D-leucine to the urinary D-allo-threonine concentration and the relative ratio of D-leucine to the urinary D-allo-isoleucine concentration were higher in the Alzheimer's disease model mice than in the control mice.
  • P was less than 0.05 and less than 0.01, respectively.
  • the vertical axis represents the concentration (nanomol / mL).
  • the urinary D-aspartic acid concentration was lower in the Alzheimer's disease model mice than in the control normal mice, and the significant difference was that the P was less than 0.05 by Student's t-test.
  • the vertical axis is% D.
  • Urinary D-phenylalanine concentration (D-Phe), L-phenylalanine concentration (L-Phe), and the sum of both (Phe) of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) Bar graph of mean and standard error of.
  • the vertical axis represents the concentration (nanomol / mL).
  • the vertical axis is% D.
  • D-amino acid oxidase (DAO) wild-type mouse ddY / DAO +, hereinafter referred to as “DAO + / +”
  • DAO + / + individual urine total amino acid optical isomer content analysis of three (3) individuals (DAO + / + 1) Table showing results. Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention.
  • Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-amino acid oxidase (DAO) wild-type mouse ddY / DAO +, hereinafter referred to as “DAO + / +”
  • DAO + / + D-amino acid oxidase
  • D-amino acid oxidase (DAO) wild type mouse ddY / DAO +, hereinafter referred to as “DAO + / +”
  • DAO + / + D-amino acid oxidase
  • D-amino acid oxidase (DAO) -deficient mouse ddY / DAO-, hereinafter referred to as “DAO-/-”.
  • glycine Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention. Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low. As for cysteine, since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-amino acid oxidase (DAO) deficient mice ddY / DAO-, hereinafter referred to as "DAO-/-"
  • the second urine (DAO-/-2) out of all three amino acid optical isomers in urine The table
  • D-amino acid oxidase (DAO) deficient mice ddY / DAO-, hereinafter referred to as “DAO ⁇ / ⁇ ”) 3 out of 3 individuals (DAO ⁇ / ⁇ 3) all amino acid optical isomers in urine
  • surface which shows a content analysis result. Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention. Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low.
  • cysteine since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • DAO D-amino acid oxidase
  • D-amino acid oxidase (DAO) wild-type mice (DAO + / + 1, DAO + / + 2, and DAO + / + 3) and three D-amino acid oxidase (DAO) -deficient mice (DAO-/-1, Table comparing the percentage (% D) of D-isomer concentration with respect to the sum of the D-isomer concentration and L-isomer concentration of each amino acid in urine with DAO-/-2 and DAO-/-3).
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • D-amino acid oxidase (DAO) wild-type mice (DAO + / + 1, DAO + / + 2, and DAO + / + 3) and three D-amino acid oxidase (DAO) -deficient mice (DAO-/-1, Table comparing the percentage of each D-amino acid concentration (% D / total L) with respect to the sum of the concentrations of all L-amino acids in urine (DAO-/-2 and DAO-/-3).
  • D-serine, D-allo-threonine, D-alanine, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • D-amino acid oxidase (DAO) wild-type mice (DAO + / + 1, DAO + / + 2, and DAO + / + 3) and three D-amino acid oxidase (DAO) -deficient mice (DAO-/-1, Table comparing the percentage of each D-amino acid concentration (% D / total D) with respect to the sum of the concentrations of all D-amino acids in DAO-/-2 and DAO-/-3) and urine.
  • D-amino acid oxidase (DAO) wild-type mice (DAO + / + 1, DAO + / + 2, and DAO + / + 3) and three D-amino acid oxidase (DAO) -deficient mice (DAO-/-1, Table comparing the percentage of each D-amino acid concentration (% D / D-Asn) with respect to D-asparagine concentration in DAO-/-2 and DAO-/-3) and urine.
  • FIG. 4 is a waveform diagram showing the results of analysis of the content of all amino acid optical isomers in urine of four D-aspartate oxidase (DDO) wild-type mice (DDO +) individuals.
  • the wave form diagram which shows the urine total amino acid optical isomer content analysis result of 2 out of 4 D-aspartate oxidase (DDO) wild type mice (DDO +) individuals.
  • FIG. 3 is a waveform diagram showing the results of analyzing the content of total urinary amino acid optical isomers in 3 out of 4 D-aspartate oxidase (DDO) wild-type mice (DDO +) individuals.
  • FIG. 4 is a waveform diagram showing the results of analyzing the content of total urinary amino acid optical isomers in 4 out of 4 D-aspartate oxidase (DDO) wild-type mice (DDO +) individuals.
  • FIG. 3 is a waveform diagram showing the results of analysis of the content of total amino acid optical isomers in urine of one of four D-aspartate oxidase (DDO) -deficient mice (DDO-) individuals.
  • FIG. 4 is a waveform diagram showing the results of analysis of the content of total amino acid optical isomers in urine of 2 out of 4 D-aspartate oxidase (DDO) deficient mice (DDO ⁇ ) individuals.
  • FIG. 3 is a waveform diagram showing the results of analysis of the total urinary amino acid optical isomer content analysis of 3 out of 4 D-aspartate oxidase (DDO) deficient mice (DDO ⁇ ) individuals.
  • FIG. 4 is a waveform diagram showing the results of analyzing the content of total urinary amino acid optical isomers in 4 out of 4 D-aspartate oxidase (DDO) deficient mice (DDO ⁇ ) individuals.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) D-valine concentration (nanomol / mL) ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black
  • control mice white) D-allo-isoleucine concentration (nanomol) in each of 5 mice / ML) and bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) D-isoleucine concentration (nanomol / mL) ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black
  • control mice white) D-leucine concentration (nanomol / mL) in each of 5 mice ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah eu2 , black) and control mice (white) D-phenylalanine concentration (nanomol / mL) in each of 5 mice ) And bar graph representing standard error. Significant difference is that p is less than 0.01. Phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) L-valine concentration (nanomol / mL) ) And bar graph representing standard error.
  • PAH phenylalanine hydroxylase
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah eu2 , black) and control mice (white)
  • L-isoleucine concentration (nanomol / mL) in the plasma of phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white)
  • bar graph representing standard error.
  • L-leucine concentration (nanomol / mL) in the plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) ) And bar graph representing standard error.
  • L-phenylalanine concentration (nanomol / mL) in the plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white)
  • Significant difference is that p is less than 0.01.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah eu2 , black) and control mice (white) D-valine concentration (nanomol / mL) in each of 5 mice ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black
  • control mice white) each containing 5 D-allo-isoleucine concentrations (nanomol) / ML) and bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) D-isoleucine concentration (nanomol / mL) in each urine ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) D-leucine concentration (nanomol / mL) in each urine ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) D-phenylalanine concentration in urine (nanomol / mL) ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black
  • control mice white) L-valine concentration (nanomol / mL) in each urine ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) L-allo-isoleucine concentration (nanomol) / ML) and bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white) L-isoleucine concentration (nanomol / mL) in each urine ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah eu2 , black) and control mice (white) L-leucine concentration (nanomol / mL) in each of 5 mice ) And bar graph representing standard error.
  • Phenylketonuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black
  • control mice white) L-phenylalanine concentration in urine (nanomol / mL)
  • bar graph representing standard error.
  • Significant difference is that p is less than 0.01.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) L-phenylalanine concentration in the plasma of each 5 mice ( (Nanomol / mL) and bar graph representing standard error.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white) D-isoleucine concentrations (nanomoles) in the plasma of each 5 mice / ML) and bar graph representing standard error.
  • Significant difference is that p is less than 0.01.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) each containing 5 D-valine concentrations in urine (white) (Nanomol / mL) and bar graph representing standard error.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) D-allo-isoleucine in each urine Bar graph showing concentration (nanomol / mL) and standard error.
  • Maple syrup urine mice branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) D-phenylalanine concentration in urine (each 5) (Nanomol / mL) and bar graph representing standard error.
  • Maple syrup urine mice branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black
  • control mice white) L-valine concentration in urine of each 5 mice ( (Nanomol / mL) and bar graph representing standard error.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) L-phenylalanine concentration in urine of each 5 mice (Nanomol / mL) and bar graph representing standard error.
  • Maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white) D-isoleucine concentration (nanomol) in 5 mice each / ML) and bar graph representing standard error.
  • Significant difference is that p is less than 0.05.
  • Dementia patients were selected from four men who were diagnosed with Alzheimer's Disease Association's 7-grade severity stage 5 (a stage in which they need help from others in their daily lives).
  • Four men diagnosed with stage II were selected as colorectal cancer patients.
  • Breast cancer patients were selected from 4 women who had developed on only one side and were diagnosed with stage II.
  • Prostate cancer was diagnosed as stage II, and men who had not received hormone therapy or chemotherapy were selected.
  • Patients with liver damage were selected from women who developed on one side and were diagnosed with stage II. Women were selected for osteoporosis patients. Stage II women were selected for ovarian cancer patients. Smokers were excluded from the sample providers used in this analysis.
  • the sample was homogenized in a 20 times volume of methanol at 4 ° C., 3,500 rpm, 2 minutes with a microhomogenizing system (Micro Smash MS-100R, Tommy Seiko Co., Ltd.), Centrifugation was performed at 400 ⁇ g for 10 minutes.
  • 10 ⁇ L of the centrifugal supernatant was dried under reduced pressure at 40 ° C.
  • 20 ⁇ L of 200 mM sodium borate buffer (pH 8.0) and 40 mM NBD-F (4-fluoro-7-nitro-2,1,3-benzoxadiazole, Tokyo Kasei Kogyo Co., Ltd.) are used for the residue.
  • 5 ⁇ L of methyl solution was added and heated at 60 ° C. for 2 minutes.
  • methyl cyanide-trifluoroacetic acid-water (volume ratio 5: 0.05: 95) was used. The flow rate was 35 ⁇ L per minute.
  • the target NBD amino acid fraction was automatically transferred to an enantioselective column via a column switching valve equipped with a 150 ⁇ L loop.
  • a Sumichiral OA-2500S column (inner diameter 250 mm ⁇ 1.5 mm ID, self-packing, material is Sumika Chemical Analysis Co., Ltd.) using (S) -naphthylglycine as a chiral selector was used. Fluorescence detection was performed with an excitation wavelength of 470 nm and a detection wavelength of 530 nm.
  • FIG. 1 is a table summarizing the D-amino acid analysis results for the first samples of healthy subjects and patients with various diseases. Each row in the table represents the disease name of the sample provider, and each column represents the type of D-amino acid analyzed. In the table, ND represents that it was below the detection limit. The rough, right-up hatching of the tryptophan, cysteine and tyrosine rows indicates that these amino acids could not be quantified in this sample. An upward arrow indicates that the amino acid amount in this sample is higher than that of the healthy male sample in the first row, and a downward arrow indicates that this sample has a lower amino acid amount than the healthy male sample in the first row.
  • Fine upward hatching eg, asparagine in kidney disease samples
  • the ratio of the amino acid content of these samples to the amino acid content of the healthy male sample is more than twice (upward arrow), or less than 1/2 (Down arrow).
  • Roughly upward hatching eg, glutamine in kidney disease samples, etc.
  • the ratio of the amino acid content of these samples to the amino acid content of the healthy male sample is less than twice (upward arrow), or less than 1/2 (Down arrow).
  • D-amino acids whose serum concentration is higher in the kidney disease patient sample of FIG. 1 than in healthy male samples, serine, allo-D-threonine, threonine, alanine, proline and phenylalanine are substrates of D-amino acid oxidase, but asparagine. Acid and glutamine are substrates for D-aspartate oxidase.
  • histidine, arginine, methyl, valine, allo-D-isoleucine and isoleucine were judged to have no change in serum concentration between patients with kidney disease and healthy men.
  • Aspartic acid and glutamic acid are substrates of D-aspartic acid oxidase, but it was judged that there was no change in serum concentration between kidney disease patients and healthy men. Therefore, the kind of D-amino acid that has a serum concentration higher than that of a healthy male sample in a kidney disease patient sample cannot be explained only by the conventionally known specificity of the D-amino acid metabolic enzyme.
  • the D-amino acids whose serum concentration is higher in the prostate cancer patient sample than the healthy male sample are D-histidine and D-asparagine, and the D-amino acid whose serum concentration is higher in the osteoporosis patient sample than the healthy male sample is D.
  • D-amino acid metabolizing enzyme which has been conventionally known. Both D-amino acid oxidase and D-aspartate oxidase are known to localize in the proximal tubule of the kidney. Therefore, it can be predicted that these enzyme activities will decrease in patients with kidney disease. In this case, it is considered that the degradation of all D-amino acids serving as substrates for these enzymes is suppressed, and the amount in the body increases. However, in reality, not all D-amino acids but only some D-amino acids are increased in the body mass. The mechanism is unknown. It was suggested that changes in the serum concentration of these disease-specific D-amino acids can be used for disease diagnosis.
  • FIG. 2-1, FIG. 2-2, FIG. 2-3, FIG. 2-4, FIG. 2-5, and FIG. 2-6 respectively show D-serine, L-serine, D-threonine, L-threonine, D -Distribution of serum concentrations of alanine and L-alanine for each disease sample.
  • Sample 1 is a healthy male
  • sample 2 is a kidney disease patient
  • sample 3 is a dementia patient
  • sample 4 is a healthy woman
  • sample 5 is a colon cancer patient
  • sample 6 is a breast cancer patient.
  • the characteristic of the D-amino acid serum concentration that is apparent from FIGS. 2-1 to 2-6 is that the serum concentration of any D-amino acid is very low and the deviation is small in the healthy male and female samples. . This is the same for other D-amino acids (data not shown). Also, the serum concentration of the D-amino acid in the patient sample is a very low serum concentration for any D-amino acid, as in the case of healthy volunteers, when there are no fluctuations correlated with the disease. Deviation is small. This leads to fewer false positives at the time of diagnosis, and is an important basis for the usefulness of diagnosis based on the amount of D-amino acid.
  • FIG. 3-1, FIG. 3-2 and FIG. 3-3 show the distribution of percentage (% D) of the D-form amount to the sum of the D-form and L-form amounts of the serine, threonine and alanine samples, respectively.
  • FIG. 3-1 the percentage of serum concentration of D-serine in the total serum concentration of serine in healthy men and women and dementia, colon cancer and breast cancer is almost constant and low, whereas kidney disease The percentage of serum concentration of D-serine in the total serum concentration of serine in patients was shown to be more than 4 times higher than other samples.
  • the percentage of serum concentration of D-threonine in the total serum concentrations of threonine in healthy men and women and dementia, colon cancer and breast cancer is almost constant and low, whereas kidney disease
  • the percentage of the serum concentration of D-threonine in the total serum concentration of the patient's threonine was shown to be more than 4 times higher than the other samples.
  • the percentage of the serum concentration of D-alanine in the total serum concentration of alanine in healthy men and women and in dementia, colorectal cancer, and breast cancer is an almost constant low value.
  • the percentage of the serum concentration of D-alanine in the total serum concentration of alanine in patients with kidney disease was shown to be 4 times higher than the other samples in 3 out of 4 subjects.
  • mice used in this example are dilated cardiomyopathy model mice, ovariectomized climacteric model mice, sarcoma transplanted mice, Alzheimer's disease model mice, DAO-deficient mice, and DDO-deficient mice. . Each mouse will be described in detail below. Experiments using mice were conducted at the graduate School of Pharmaceutical Sciences, Kyushu University.
  • MLP-KO mice As a model mouse for cardiovascular disorders, MLP-KO mice (Arber, S. et al., Cell) lacking MLP (mouse LIM protein), which is one of myocardial constituent proteins. 88: 393 (1997)).
  • Urine sample of dilated cardiomyopathy model mice (MLP-KO mice, hereinafter referred to as “disease”) 3 male 8 weeks old and 4 normal control mice (hereinafter referred to as “normal”) 4 males And its total amino acid optical isomer content was analyzed.
  • menopausal model mice As menopausal model mice, ovaries were removed from 9-week-old females of HR-1 mice under anesthesia, and the skin was sutured. Control mice were also prepared from female mice of the same age, in which only skin incision and suture were performed without ovariectomy. The body weight was measured before and 1 to 4 weeks after the treatment. Individuals whose body weight was confirmed to be increased compared to control mice were subjected to urinary total amino acid optical isomer content analysis as menopausal model mice.
  • Alzheimer's disease model mouse As an Alzheimer's disease model mouse, hemizygous male 8-week-old of transgenic mouse Tg2576 (Hsiao, K. et al., Science 274: 99 (1996)) highly expressing amyloid ⁇ precursor protein Mice were subjected to urine total amino acid optical isomer content analysis. C57BL male 8-week-old mice were subjected to urinary total amino acid optical isomer content analysis as control normal mice.
  • D-Amino Acid Oxidase (DAO) Deficient mice As one of the D-amino acid metabolism-related enzyme activity change models, D-amino acid oxidase (DAO) deficient mice (Konno, R. et al. Genetics 103: 277). (1983), ddY / DAO-, hereinafter referred to as "DAO-/-".) Male 8-week-old individuals were subjected to urinary total amino acid optical isomer content analysis. D-amino acid oxidase (DAO) wild-type male male 8-week-old individuals were subjected to urinary total amino acid optical isomer content analysis as control mice.
  • D-amino acid oxidase (DAO) wild-type male male 8-week-old individuals were subjected to urinary total amino acid optical isomer content analysis as control mice.
  • D-aspartate Oxidase (DDO) deficient mice As one of the D-amino acid metabolism-related enzyme activity change models, D-aspartate oxidase (DDO) deficient mice (Huang, AS et al., J. Neurosci., 2: 2814 (2006), hereinafter referred to as “DDO-”.) Male 8-week-old individuals were subjected to analysis of urinary total amino acid optical isomer content. D-aspartate oxidase (DDO) wild type (hereinafter referred to as “DDO +”) male 8-week-old individuals were subjected to urinary total amino acid optical isomer content analysis as control mice.
  • DDO- D-aspartate oxidase
  • Phenylketonuria Disease Model Mice As one of the amino acid metabolism disorder model mice, phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah eu2 , Shedlovsky, A Et al., Genetics 134: 1205 (1993)), five 25-35 week old males subjected to urinary total amino acid optical isomer content analysis. Five 25-35 week old males bred under wild-type allele homozygous SPF conditions of the same genetic background were subjected to urinary total amino acid optical isomer content analysis as control mice.
  • PAH phenylalanine hydroxylase
  • FIG. 4-1 shows 3 dilated cardiomyopathy model mice (MLP-KO mice, hereinafter referred to as “disease”) and control normal mice (hereinafter referred to as “normal”). .) A bar graph of the mean value and standard error of D-serine concentration in urine of 4 animals. The vertical axis represents the D-serine concentration (nanomol / mL).
  • FIG. 4-2 shows a bar graph of the mean value and standard error of L-serine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice. The vertical axis represents the L-serine concentration (nanomol / mL).
  • FIG. 4-3 is a bar graph of the mean value and standard error of total urine concentration (sum of D-serine concentration and L-serine concentration) in 3 dilated cardiomyopathy model mice and 4 control normal mice. It is. The vertical axis represents the total serine concentration (nanomol / mL).
  • FIG. 4-4 shows a bar graph of the mean value and standard error of the percentage (% D) of D-serine concentration relative to the total serine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice. . The vertical axis is% D. The significant difference between normal and disease was P less than 0.02 by Student's t-test.
  • FIG. 4-3 is a bar graph of the mean value and standard error of total urine concentration (sum of D-serine concentration and L-serine concentration) in 3 dilated cardiomyopathy model mice and 4 control normal mice. It is. The vertical axis represents the total serine concentration (nanomol / mL).
  • FIG. 4-5 is a bar graph of the mean value and standard error of D-arginine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents the D-arginine concentration (nanomol / mL).
  • FIG. 4-6 is a bar graph of the mean value and standard error of L-arginine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents the L-arginine concentration (nanomol / mL).
  • P was less than 0.01 by Student's t-test.
  • FIG. 4-7 is a bar graph of the mean value and standard error of the total arginine concentration (sum of D-arginine concentration and L-arginine concentration) in 3 dilated cardiomyopathy model mice and 4 control normal mice. It is. The vertical axis represents the total arginine concentration (nanomol / mL).
  • FIG. 4-8 is a bar graph of the mean value and standard error of D-glutamic acid concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice. The vertical axis represents the D-glutamic acid concentration (nanomol / mL). The significant difference between normal and disease was P less than 0.02 by Student's t-test.
  • FIG. 4-7 is a bar graph of the mean value and standard error of the total arginine concentration (sum of D-arginine concentration and L-arginine concentration) in 3 dilated cardiomyopathy model mice and 4 control normal mice. It is. The vertical axis represents the total arginine concentration (
  • FIG. 4-9 is a bar graph of the mean value and standard error of L-glutamic acid concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents the L-glutamic acid concentration (nanomol / mL).
  • FIG. 4-10 is a bar graph of the mean value and standard error of the total glutamic acid concentration (sum of D-glutamic acid concentration and L-glutamic acid concentration) in 3 urine cardiomyopathy model mice and 4 control normal mice. It is.
  • the vertical axis represents the total glutamic acid concentration (nanomol / mL).
  • FIG. 4-11 is a bar graph of the mean value and standard error of D-proline concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • FIG. 4-12 is a bar graph of the mean value and standard error of L-proline concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents the L-proline concentration (nanomol / mL).
  • FIG. 4-13 is a bar graph of the mean value and standard error of the total proline concentration (sum of D-proline concentration and L-proline concentration) in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice. It is.
  • FIG. 4-14 shows a bar graph of the mean value and standard error of D-lysine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents the D-lysine concentration (nanomol / mL).
  • P was less than 0.01 by Student's t-test.
  • FIG. 4-15 shows a bar graph of the mean value and standard error of L-lysine concentration in urine of 3 dilated cardiomyopathy model mice and 4 control normal mice.
  • the vertical axis represents L-lysine concentration (nanomol / mL).
  • 4-16 is a bar graph of the mean value and standard error of the total urine lysine concentration (sum of D-lysine concentration and L-lysine concentration) in 3 dilated cardiomyopathy model mice and 4 control normal mice. It is. From these results, the D-serine concentration tended to be lower in the disease group than in the normal group, but no significant difference was observed. However, when evaluated by% D, the% D of D-serine was significantly lower in the disease group than in the normal group. The L-arginine concentration was significantly lower in the disease group than in the normal group. The D-glutamic acid concentration was significantly higher in the disease group than in the normal group. The D-proline concentration was significantly lower in the disease group than in the normal group. The D-lysine concentration was significantly lower in the disease group than in the normal group.
  • FIG. 5-1 shows 12 menopausal model mice from which ovaries were removed from 9-week-old HR-1 mice (hereinafter referred to as "OVX") and female mice of the same age. It is a graph which shows the change of the average value and standard deviation of a body weight with six control mice (henceforth "sham") which performed only incision and suture of the skin without performing extraction. The vertical axis represents the weight (gram) of the mouse.
  • the black and black hatched bar graphs represent the 9-week-old mice before the treatment, the first week (10-week old), the second week (11-week old), the third week (12-week-old), 4 weeks after the treatment, respectively.
  • the mean values and standard deviations of the body weights of the menopausal model mice (OVX) and control mice (sham) at week (13 weeks of age) are shown.
  • the significant difference in body weight between the climacteric model mouse (OVX) and the control mouse (sham) was P less than 0.05 (*) or less than 0.01 (**) according to Student's t test.
  • the body weight increased significantly from the control mouse from the second week after the operation, indicating that the menopausal model mouse was successfully produced.
  • Figures 5-2, 5-3 and 5-4 show the first (OVX-3), second (OVX-4) and third (OVX-) of three menopausal model mice (OVX), respectively.
  • surface which shows the urine total amino acid optical isomer content analysis result of 5). Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention. Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low. As for cysteine, since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • FIG. 5-5, 5-6, 5-7 and 5-8 show the first (Sham-16), second (Sham-17) and third of the four control mice (sham), respectively.
  • FIG. 10 is a table showing the results of analyzing the content of total amino acid optical isomers in urine of (Sham-19) and the fourth animal (Sham-20).
  • FIG. 5-9 is a table comparing the D-amino acid content in urine of 3 menopausal model mice (OVX) and 4 control mice (sham). D-aspartic acid was lower in control mice (sham) than in climacteric model mice (OVX), and the significant difference was P of 0.015 in Student's t test.
  • FIG. 5-10 is a table comparing the L-amino acid contents in the urine of three year model mice (OVX) and four control mice (sham). L-histidine and L-phenylalanine were lower in climacteric model mice (OVX) than in control mice (sham), and significant differences were P of 0.017 and 0.037, respectively, by Student's t-test.
  • FIG. 5-11 shows the percentage (%) of the D-form concentration relative to the sum of the D-form concentration and L-form concentration of each amino acid in the urine of 3 menopausal model mice (OVX) and 4 control mice (sham). It is the table
  • FIG. 5-12 shows the percentage of each D-amino acid concentration (% D / total L) with respect to the sum of the concentrations of all L-amino acids in the urine of three menopausal model mice (OVX) and four control mice (sham). It is the table compared.
  • FIG. 5-13 shows the percentage of each D-amino acid concentration (% D / total D) relative to the sum of the concentrations of all D-amino acids in the urine of three menopausal model mice (OVX) and four control mice (sham). It is the table compared. D-aspartic acid was lower in climacteric model mice (OVX) than in control mice (sham), and the significant difference was P of 0.017 according to Student's t-test.
  • 5-14 is a table comparing the percentage of each D-amino acid concentration (% D / D-Glu) with respect to the D-glutamic acid concentration in urine of three menopausal model mice (OVX) and four control mice (sham). It is. Since D-aspartic acid is an acidic D-amino acid, it was evaluated after correction with the concentration of D-glutamic acid considered to undergo similar metabolism. Even in% D / D-Glu, D-aspartate was lower in climacteric model mice (OVX) than control mice (sham), and the significant difference was P of 0.006 in Student's t-test.
  • FIGS. 6-1, 6-2 and 6-3 are ICR male 6-week-old mice transplanted with 2 ⁇ 10 7 sarcoma cells, respectively, and were explanted 3 weeks after transplantation. It is a table
  • FIGS. 6-4, 6-5 and 6-6 show the first (C3) and 2 of 3 ICR male 9-week-old mice kept in the same environment as a control experiment of sarcoma transplanted mice, respectively. It is a table
  • FIG. 6-7 is a table comparing the D-amino acid content in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5).
  • FIGS. 6-8 are tables comparing the L-amino acid contents in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5).
  • FIG. 6-9 shows the sum of the D- and L-body concentrations of each amino acid in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5).
  • 6 is a table comparing D-body concentration percentage (% D).
  • FIG. 6-10 shows the percentage of each D-amino acid concentration relative to the sum of the total L-amino acid concentrations in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5). It is the table
  • 6-11 shows the percentage of each D-amino acid concentration relative to the sum of the total D-amino acid concentrations in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5).
  • 5 is a table comparing (% D / total D). D-asparagine and D-arginine tended to be higher in sarcoma-transplanted mice than in control mice, and the significant difference of D-arginine was 0.035 in Student's t-test.
  • 6-12 shows the percentage (% D /%) of each D-amino acid concentration relative to the D-asparagine concentration in the urine of three sarcoma transplanted mice (S3, S4 and S5) and three control mice (C3, C4 and C5).
  • 4 is a table comparing (D-Asn).
  • D-asparagine was used as an indicator of urinary concentration correction because of its relatively high concentration in mammalian urine and its most stable ratio to total D-amino acid concentration.
  • D-arginine tended to be higher in sarcoma-transplanted mice than in control mice, and a significant difference was P of 0.016 in Student's t test.
  • FIG. 7-1 shows three Alzheimer's disease model mice (transgenic mouse Tg2576 hemizygous male 8-week-old mouse, hereinafter referred to as “hemi”) that highly expresses amyloid ⁇ precursor protein; Mean value of urinary D-serine concentration (D-Ser), L-serine concentration (L-Ser) and total of both (Ser) with three control normal mice (C57BL, hereinafter referred to as “Wild”) And a standard error bar graph. The vertical axis represents the concentration (nanomol / mL).
  • FIG. 7-1 shows three Alzheimer's disease model mice (transgenic mouse Tg2576 hemizygous male 8-week-old mouse, hereinafter referred to as “hemi”) that highly expresses amyloid ⁇ precursor protein; Mean value of urinary D-serine concentration (D-Ser), L-serine concentration (L-Ser) and total of both (Ser) with three control normal mice (C57BL, hereinafter
  • FIG. 7-2 shows the mean value and standard error of the percentage (% D) of the D-serine concentration relative to the total serine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild). It is a bar graph. The vertical axis is% D.
  • FIG. 7-3 shows the relative ratio of D-serine to D-allo-threonine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) (D-Ser / D- (allo-Thr) or the relative ratio of D-serine to D-allo-isoleucine concentration in urine (D-Ser / D-allo-Ile).
  • FIG. 7-4 shows urinary D-alanine concentration (D-Ala), L-alanine concentration (L-Ala) and three Alzheimer's disease model mice (hemi) and three control normal mice (Wild). It is a bar graph of the mean and standard error of both sums (Ala). The vertical axis represents the concentration (nanomol / mL).
  • FIG. 7-5 shows the average value and standard error of the percentage (% D) of D-alanine concentration relative to the total alanine concentration in urine of three Alzheimer's disease model mice (hemi) and three control normal mice (Wild). It is a bar graph. The vertical axis is% D. The percentage of D-alanine concentration (% D) relative to the total urine alanine concentration was higher in Alzheimer's disease model mice than in control normal mice, and the difference was significantly less than 0.01 in Student's t-test.
  • FIG. 7-6 shows the urinary D-methionine concentration (D-Met), L-methionine concentration (L-Met), and 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild).
  • 2 is a bar graph of the mean and standard error of both totals (Met).
  • the vertical axis represents the concentration (nanomol / mL).
  • the urinary D-Met concentration tended to be higher in Alzheimer's disease model mice than in control normal mice.
  • FIG. 7-7 shows the mean value and standard error of the percentage (% D) of the D-methionine concentration relative to the total serine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild). It is a bar graph.
  • the vertical axis is% D.
  • FIG. 7-8 shows the relative ratio of D-methionine to the D-allo-threonine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) (D-Met / D ⁇ (allo-Thr) or the relative ratio of D-methionine to urinary D-allo-isoleucine concentration (D-Met / D-allo-Ile).
  • the relative ratio of D-methionine to the urinary D-allo-threonine concentration and the relative ratio of D-methionine to the urinary D-allo-isoleucine concentration were higher in the Alzheimer's disease model mice than in the control mice. In the Student's t-test, both P were less than 0.05.
  • FIG. 7-10 shows urinary D-leucine concentration (D-Leu), L-leucine concentration (L-Leu) and 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild).
  • Figure 6 is a bar graph of the mean and standard error of both sums (Leu). The vertical axis represents the concentration (nanomol / mL).
  • FIG. 7-10 shows the mean value and standard error of the percentage (% D) of the D-leucine concentration relative to the total serine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild). It is a bar graph.
  • FIG. 7-11 shows the relative ratio of D-leucine to D-allo-threonine concentration in urine of three Alzheimer's disease model mice (hemi) and three control normal mice (Wild) (D-Leu / D- (allo-Thr) or the relative ratio of D-leucine to D-allo-isoleucine concentration in urine (D-Leu / D-allo-Ile).
  • the relative ratio of D-leucine to the urinary D-allo-threonine concentration and the relative ratio of D-leucine to the urinary D-allo-isoleucine concentration were higher in the Alzheimer's disease model mice than in the control mice.
  • P was less than 0.05 and less than 0.01, respectively.
  • FIG. 7-12 shows urinary D-aspartic acid concentration (D-Asp), L-aspartic acid concentration (L-Asp) in three Alzheimer's disease model mice (hemi) and three control normal mice (Wild). ) And the sum of both (Asp) and standard error bar graphs. The vertical axis represents the concentration (nanomol / mL). The urinary D-aspartic acid concentration was lower in the Alzheimer's disease model mice than in the control normal mice, and the significant difference was that the P was less than 0.05 by Student's t-test.
  • D-Asp urinary D-aspartic acid concentration
  • L-Asp L-aspartic acid concentration
  • FIG. 7-13 shows the average value of the percentage (% D) of D-aspartate concentration relative to the total aspartate concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) It is a bar graph of standard error. The vertical axis is% D.
  • FIG. 7-14 shows urinary D-phenylalanine concentration (D-Phe), L-phenylalanine concentration (L-Phe), and three Alzheimer's disease model mice (hemi) and three control normal mice (Wild). 2 is a bar graph of the mean and standard error of both sums (Phe). The vertical axis represents the concentration (nanomol / mL).
  • FIG. 7-15 shows the mean value and standard error of the percentage (% D) of D-phenylalanine concentration relative to the total phenylalanine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild). It is a bar graph.
  • FIG. 7-16 shows the relative ratio of D-phenylalanine to D-allo-threonine concentration in urine of 3 Alzheimer's disease model mice (hemi) and 3 control normal mice (Wild) (D-Phe / D ⁇ (allo-Thr) or a relative ratio of D-phenylalanine to D-allo-isoleucine concentration in urine (D-Phe / D-allo-Ile).
  • the relative ratio of D-phenylalanine to urinary D-allo-isoleucine concentration was higher in Alzheimer's disease model mice than in control mice, and the difference was significantly less than 0.05 in Student's t-test.
  • FIGS. 8-1, 8-2 and 8-3 show D-amino acid oxidase (DAO) wild-type mice (ddY / DAO +, hereinafter “DAO + / +”).
  • DAO + / + D-amino acid oxidase
  • FIGS. 8-4, 8-5 and 8-6 show one of three D-amino acid oxidase (DAO) deficient mice (ddY / DAO-, hereinafter referred to as “DAO ⁇ / ⁇ ”), respectively.
  • DAO D-amino acid oxidase
  • FIG. 6 is a table showing the results of analysis of total amino acid optical isomer content in urine of eyes (DAO ⁇ / ⁇ 1), animals (DAO ⁇ / ⁇ 2) and animals (DAO ⁇ / ⁇ 3). Since glycine has no optical isomer, it is listed in the L-form column. All amino acids were fluorescently derivatized with NBD-F and analyzed using the total amino acid optical isomer content analyzer of the present invention. Tryptophan was determined to be nd in this analysis because the sensitivity of the NBD derivative is low. As for cysteine, since cystine is generated by air oxidation, its content as cysteine is extremely low. Therefore, it was set to nd in this analysis.
  • D-amino acid oxidase (DAO) wild-type mice DAO + / + 1, DAO + / + 2 and DAO + / + 3
  • D-amino acid oxidase (DAO) deficient mice 3 is a table comparing DAO-/-1, DAO-/-2 and DAO-/-3) with D-amino acid content in urine.
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • D-amino acid oxidase (DAO) wild type mice DAO + / + 1, DAO + / + 2 and DAO + / + 3
  • D-amino acid oxidase (DAO) deficient mice 3 is a table comparing DAO-/-1, DAO-/-2 and DAO-/-3) with L-amino acid content in urine.
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • DAO D-amino acid oxidase
  • DAO D-amino acid oxidase
  • DAO D-amino acid oxidase
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • DAO D-amino acid oxidase
  • DAO 8-10 shows three D-amino acid oxidase (DAO) wild type mice (DAO + / + 1, DAO + / + 2 and DAO + / + 3) and three D-amino acid oxidase (DAO) deficient mice ( DAO-/-1, DAO-/-2 and DAO-/-3) and a table comparing the percentage of each D-amino acid concentration (% D / total L) to the sum of the concentrations of all L-amino acids in urine is there.
  • DAO D-amino acid oxidase
  • D-serine, D-allo-threonine, D-alanine, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • DAO D-amino acid oxidase
  • FIG. 8-11 shows three D-amino acid oxidase (DAO) wild-type mice (DAO + / + 1, DAO + / + 2 and DAO + / + 3) and three D-amino acid oxidase (DAO) -deficient mice ( DAO-/-1, DAO-/-2 and DAO-/-3) and a table comparing the percentage of each D-amino acid concentration (% D / total D) with respect to the sum of the concentrations of all D-amino acids in urine is there.
  • DAO D-amino acid oxidase
  • DAO 8-12 shows three D-amino acid oxidase (DAO) wild type mice (DAO + / + 1, DAO + / + 2 and DAO + / + 3) and three D-amino acid oxidase (DAO) deficient mice ( 3 is a table comparing the percentage of each D-amino acid concentration (% D / D-Asn) with respect to D-asparagine concentration in DAO-/-1, DAO-/-2 and DAO-/-3) and urine.
  • DAO D-amino acid oxidase
  • D-serine, D-allo-threonine, D-alanine, D-proline, D-leucine and D-phenylalanine were significantly higher in DAO enzyme-deficient mice than in D-amino acid oxidase (DAO) wild type mice.
  • FIGS. 9-1, 9-2, 9-3 and 9-4 are D-aspartate oxidase (DDO) wild type mice (DDO +) individuals, respectively. It is a wave form diagram which shows the urine total amino acid optical isomer content analysis result of the 1st, 2nd, 3rd and 43rd of 4 animals. Figures 9-5, 9-6, 9-7 and 9-8 show the first, second, and third of the four D-aspartate oxidase (DDO) deficient mice (DDO-) individuals, respectively. It is a wave form diagram which shows the urine total amino acid optical isomer content analysis result of the eyes and the 4th animal.
  • DDO D-aspartate Oxidase
  • D-asparagine was higher than that of wild-type mice, and the concentrations of D-aspartic acid and D-arginine were also higher.
  • D-glutamic acid which is a good substrate for the DDO enzyme, was hardly observed in the urine of DDO-deficient mice.
  • FIG. 10-1 shows a phenylketonuria disease model mouse (phenylalanine hydroxylase (PAH) mutant mouse, Pah nu2 / Pah nu2 , black) and a control mouse (white) ) Bar graph showing D-valine concentration (nanomol / mL) and standard error in the plasma of 5 animals each.
  • FIG. 10-2 shows D--D in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). 2 is a bar graph showing allo-isoleucine concentration (nanomol / mL) and standard error.
  • PAH phenylalanine hydroxylase
  • Fig. 10-3 shows D--D in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 10-4 shows D--D in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing leucine concentration (nanomol / mL) and standard error.
  • FIG. 10-3 shows D--D in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing leucine concentration (nanomol /
  • FIG. 10-5 shows D--D in the plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing phenylalanine concentration (nanomol / mL) and standard error. The D-phenylalanine concentration was higher in the phenylketonuria disease model mice than in the control mice, and the significant difference was that p was less than 0.01.
  • FIG. 10-6 is a graph showing L-L in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white).
  • FIG. 10-7 shows the results of L ⁇ in plasma of 5 mice each of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white).
  • PHA phenylalanine hydroxylase
  • FIG. 10-8 shows L-- concentrations in plasma of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white).
  • FIG. 10-9 shows phenyl-ketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white) with L- It is a bar graph showing leucine concentration (nanomol / mL) and standard error.
  • PAH phenylalanine hydroxylase
  • phenyl ketoneuria disease model mice phenylalanine hydroxylase (PAH) mutant mice, Pah enu 2 / Pah eu 2 , black
  • control mice white
  • phenylalanine concentration nanomol / mL
  • the concentration of L-phenylalanine was higher in the phenylketonuria disease model mice than in the control mice, and the significant difference was that p was less than 0.01.
  • FIG. 10-11 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white) each with D- in 5 urine. It is a bar graph showing a valine concentration (nanomol / mL) and a standard error.
  • FIG. 10-12 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) each with D- in 5 urine. 2 is a bar graph showing allo-isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 10-11 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white) each with D- in 5 urine. It is a bar graph showing
  • FIG. 10-13 shows phenotypes in 5 urine of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 10-14 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu 2 , black) and control mice (white) each with D- in 5 urine. It is a bar graph showing leucine concentration (nanomol / mL) and standard error.
  • FIG. 10-13 shows phenotypes in 5 urine of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white). It is a bar graph showing isoleucine concentration (
  • FIG. 10-10 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu2 / Pah enu2 , black) and control mice (white) each with D ⁇ It is a bar graph showing phenylalanine concentration (nanomol / mL) and standard error.
  • FIG. 10-16 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu 2 , black) and control mice (white) in 5 urine L- It is a bar graph showing a valine concentration (nanomol / mL) and a standard error.
  • FIG. 10-16 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu 2 , black) and control mice (white) in 5 urine L- It is a bar graph showing a valine concentration (nanomol
  • FIG. 10-17 shows phenotypes of phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu 2 / Pah eu 2 , black) and control mice (white) of L- 2 is a bar graph showing allo-isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 10-18 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu 2 , black) and control mice (white) in each urine. It is a bar graph showing isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 10-18 shows phenyl- urineuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu 2 , black) and control mice (white) in each urine. It is a bar graph showing isoleucine concentration (n
  • FIG. 10-19 shows phenylketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah enu 2 / Pah eu 2 , black) and control mice (white) each of L- It is a bar graph showing leucine concentration (nanomol / mL) and standard error.
  • FIG. 10-20 shows phenyl-ketonuria disease model mice (phenylalanine hydroxylase (PAH) mutant mice, Pah nu2 / Pah nu2 , black) and control mice (white) in each of 5 urine samples . It is a bar graph showing phenylalanine concentration (nanomol / mL) and standard error.
  • the L-phenylalanine concentration was higher in the phenylketonuria disease model mice than in the control mice, and the significant difference was that p was less than 0.01.
  • FIG. 11-1 shows maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (White coat) Bar graph showing D-valine concentration (nanomol / mL) and standard error in plasma of 5 animals each.
  • FIG. 11-2 shows in plasma of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • FIG. 11-3 shows in plasma of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched chain alpha-keto acid dehydrogenase
  • 2 is a bar graph showing the D-isoleucine concentration (nanomol / mL) and standard error. Plasma D-isoleucine concentrations were higher in maple syrup urine mice than in control mice, with a significant difference that p was less than 0.05.
  • FIG. 11-3 shows in plasma of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • 2 is a bar graph showing the D-isoleucine concentration (nanomol / mL)
  • FIG. 11-4 shows in plasma of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • 2 is a bar graph showing the D-leucine concentration (nanomol / mL) and standard error.
  • FIG. 11-5 shows in plasma of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • FIG. 2 is a bar graph showing the D-phenylalanine concentration (nanomol / mL) and standard error.
  • FIG. 11-6 shows in plasma of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white). Is a bar graph showing the L-valine concentration (nanomol / mL) and standard error. Plasma L-valine concentrations are higher in maple syrup urine mice than in control mice, with a significant difference that p is less than 0.01. FIG.
  • BCKDH branched alpha-keto acid dehydrogenase
  • 11-7 shows in plasma of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • 2 is a bar graph showing the L-allo-isoleucine concentration (nanomol / mL) and standard error. The plasma L-allo-isoleucine concentration was higher in maple syrup urine mice than in control mice, with a significant difference that p was less than 0.01.
  • 11-8 shows in plasma of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • 11-9 shows in plasma of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • the plasma L-leucine concentration was higher in maple syrup urine mice than in control mice, with a significant difference that p was less than 0.05.
  • FIG. 11-10 shows the plasma in 5 each of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white). Is a bar graph showing the L-phenylalanine concentration (nanomol / mL) and standard error.
  • FIG. 11-11 shows the plasma of 5 maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white).
  • BCKDH branched chain alpha-keto acid dehydrogenase
  • FIG. 11-12 shows the plasma of maple syrup urine mouse intermediate type (branched alpha-keto acid dehydrogenase (BCKDH) mutant mouse, + / Dbt tm1Geh , gray) and control mouse (white), 5 mice each.
  • BCKDH branched alpha-keto acid dehydrogenase
  • FIG. 11-13 shows the plasma of maple syrup urine mouse intermediate type (branched alpha-keto acid dehydrogenase (BCKDH) mutant mouse, + / Dbt tm1Geh , gray) and control mouse (white) each 2 is a bar graph showing the concentration of L-allo-isoleucine in the solution (nanomol / mL) and standard error.
  • FIG. 11-14 shows the plasma of maple syrup urine mouse intermediate type (branched alpha-keto acid dehydrogenase (BCKDH) mutant mouse, + / Dbt tm1Geh , gray) and control mouse (white) each 2 is a bar graph showing the concentration of L-isoleucine in the solution (nanomol / mL) and standard error.
  • FIG. 11-15 shows the plasma of maple syrup urine mouse intermediate type (branched alpha-keto acid dehydrogenase (BCKDH) mutant mouse, + / Dbt tm1Geh , gray) and control mouse (white), 5 mice each.
  • 2 is a bar graph showing the concentration of L-leucine in the solution (nanomol / mL) and standard error.
  • FIG. 12-1 shows the urine of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • 2 is a bar graph showing the D-valine concentration (nanomol / mL) and standard error.
  • FIG. 12-2 shows that in maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) in urine.
  • BCKDH branched chain alpha-keto acid dehydrogenase
  • FIG. 12-3 shows that in maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) in urine.
  • BCKDH branched chain alpha-keto acid dehydrogenase
  • 2 is a bar graph showing the D-isoleucine concentration (nanomol / mL) and standard error. The concentration of D-isoleucine in urine was higher in maple syrup urine mice than in control mice, with a significant difference that p was less than 0.05.
  • FIG. 12-3 shows that in maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) in urine.
  • 2 is a bar graph showing the D-isoleucine concentration (nanomol
  • FIG. 12-4 shows in urine of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched chain alpha-keto acid dehydrogenase
  • 2 is a bar graph showing the D-leucine concentration (nanomol / mL) and standard error.
  • FIG. 12-5 shows the urine of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • FIG. 12-6 shows in urine of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • the urinary L-valine concentration was higher in maple syrup urine mice than in control mice, with a significant difference that p was less than 0.01.
  • FIG. 12-6 shows in urine of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • FIG. 12-7 shows in urine of maple syrup urine mice (branched chain alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white).
  • 2 is a bar graph showing the L-allo-isoleucine concentration (nanomol / mL) and standard error. The concentration of L-allo-isoleucine in urine was higher in maple syrup urine mice than in control mice, and a significant difference was that p was less than 0.01.
  • FIG. 12-9 shows in maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, Dbt tm1Geh / Dbt tm1Geh , black) and control mice (white) in urine.
  • BCKDH branched alpha-keto acid dehydrogenase
  • FIG. 12-11 shows the urine of maple syrup urine mouse intermediate type (branched alpha-keto acid dehydrogenase (BCKDH) mutant mouse, + / Dbt tm1Geh , gray) and control mouse (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • FIG. 12-12 shows the urine of 5 each of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • FIG. 12-13 show in maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white) in each urine.
  • 2 is a bar graph showing L-allo-isoleucine concentration (nanomol / mL) and standard error.
  • FIG. 12-14 shows in urine of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white).
  • 3 is a bar graph showing L-isoleucine concentration (nanomol / mL) and standard error.
  • 12-15 shows the urine of 5 each of maple syrup urine mice (branched alpha-keto acid dehydrogenase (BCKDH) mutant mice, + / Dbt tm1Geh , gray) and control mice (white).
  • BCKDH branched alpha-keto acid dehydrogenase
  • 2 is a bar graph showing L-leucine concentration (nanomol / mL) and standard error.
  • the cardiovascular disease sample was from a 43 year old white male.
  • the multiple sclerosis sample was from a relapsing-remitting 33 year old white male.
  • the acute myeloid leukemia sample was from a 16 year old male.
  • the lymphoma sample was from a 49 year old Vietnamese woman.
  • the psoriasis sample was from a 40 year old white male.
  • the diabetes sample was from a 50 year old white male.
  • the systemic lupus erythematosus sample was from a 38 year old white woman.
  • Example 3 results The analysis results of the disease samples of Example 3 are summarized in FIG. 13-1 for L-amino acids and in FIG. 13-2 for D-amino acids.
  • each row in the table represents the sample provider's disease name and each column represents the type of D-amino acid analyzed.
  • ND represents that it was below the detection limit.
  • An upward arrow indicates that the amino acid amount in this sample is higher than that of the healthy male sample in the first row, and a downward arrow indicates that this sample has a lower amino acid amount than the healthy male sample in the first row.
  • the fine upward hatching indicates whether the ratio of the amino acid content of these samples to the amino acid content of the healthy male sample is twice or more (upward arrow) or 1/2 or less (downward arrow).
  • the rough leftward hatching indicates whether the ratio of the amino acid content of these samples to the amino acid content of the healthy male sample is less than twice (upward arrow) or less than 1/2 (downward arrow).
  • L-glutamic acid had a higher serum concentration than control healthy male samples, but L-glutamine and L-cysteine decreased.
  • D-serine had a higher serum concentration than healthy male samples, but D-alanine had a lower serum concentration.
  • lung cancer the serum concentration of D-alanine was lower than in healthy male samples.
  • the serum concentration of L-arginine decreased from the healthy male sample, but L-glutamic acid increased.
  • the serum concentration of D-serine was higher than that of healthy male samples, but the serum concentration of L-cysteine was decreased.
  • acute myeloid leukemia the serum concentration of L-cysteine was lower than in healthy male samples.
  • lymphoma the serum concentration of L-cysteine was lower than in healthy male samples.
  • acute lymphoblastic leukemia the serum concentration of L-glutamic acid was higher than that of healthy male samples, but the L-cysteine concentration was decreased.
  • the serum concentrations of L-arginine and L-cysteine were lower than in healthy male samples.
  • diabetes the serum concentrations of D-alanine and L-cysteine were lower than in healthy male samples, but the serum concentration of L-glutamic acid was increased.
  • systemic lupus erythematosus no change was observed.
  • each amino acid has been quantified as the sum of all the stereoisomers.
  • the stereoisomers can be distinguished and quantified as different substances.
  • FIGS. 3-1 to 3-3 when the amount of D-isomer is expressed as a percentage (% D) of the sum of the amount of D-isomer and L-isomer, D-serine of colorectal cancer patients is expressed.
  • the% D of serine in the colorectal cancer patient (FIG. 3-1) is less variable.
  • the% D of alanine in patients with kidney disease (FIG.
  • the amount of D-amino acid correlated with the disease may be correlated with the amount of other substances.
  • a parameter for example,% D for normalizing the amount of the D-amino acid by the amount of the other substance is prepared. Diagnostic characteristics can be further improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

【課題】アミノ酸立体異性体の全分析により、アミノ酸立体異性体量、変化と疾患との相関を明かにして、新規な疾患診断方法と、該疾患診断方法を実行する新規な疾患診断装置とを開発する。 【解決手段】本発明の疾患サンプル分析装置は、被検者の生物学的材料中のアミノ酸立体異性体を分離・定量する手段と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者の病態情報を出力する手段とを含む。前記判別式は、病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の基準値)等の場合がある。本発明の疾患サンプル分析方法は、被検者の生物学的材料中のアミノ酸立体異性体の量を測定するステップと、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得るステップ等とを含む。

Description

疾患サンプル分析装置、分析システム及び分析方法
 本発明は、アミノ酸の立体異性体を区別した定量法に基づく疾患サンプル分析装置、分析システム及び分析方法に関する。具体的には、被検者の生物学的材料のアミノ酸立体異性体を分離・定量する手段と、該アミノ酸立体異性体の定量値を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記被検者の病態情報を出力する手段とを含む疾患サンプル分析装置と、被験者の生物学的材料のアミノ酸立体異性体を分離・定量する定量分析部と、該アミノ酸立体異性体の定量値を判別式に代入して計算し、病態指標値を得る病態指標値演算部と、前記病態指標値に基づいて前記患者の病態情報を出力する病態情報出力部とを含む疾患サンプル分析システムと、被検者の生物学的材料のアミノ酸立体異性体を分離・定量するステップと、該アミノ酸立体異性体の定量値を判別式に代入して計算し、病態指標値を得るステップと、前記病態指標値に基づいて前記被検者の病態情報を得るステップとを含む疾患サンプル分析方法とに関する。
 グリシン以外の全てのアミノ酸にはD-体とL-体という2種類の立体異性体が存在する。L-アミノ酸は生物のタンパク質の構成要素であり、タンパク質に含まれるアミノ酸は原則的にL-アミノ酸である。これに対してD-アミノ酸は下等生物の一部の生理活性ペプチドに含まれるが、その多くは翻訳後修飾のプロセスを経て生合成される。そこで、タンパク質又はペプチドを構成するアミノ酸は主にL-アミノ酸であり、D-アミノ酸は例外的な存在である。
 D-アミノ酸は細菌の細胞壁のペプチドグリカンの構成成分の1つである。また、ペプチドを構成しない遊離のD-アミノ酸については、水棲動物や昆虫などの下等な動物において存在することは以前から報告されていた。しかし、高等動物に存在するアミノ酸はL体であって、D体は生理活動に関与しないと信じられていた時代があった(非特許文献1)。
 しかし、ヒトを含む哺乳類におけるD-アミノ酸の存在とその役割については、近年の分析技術の進歩による分解能・感度の向上に伴いようやく明らかになってきた(非特許文献2)。D-アスパラギン酸は抗D-アスパラギン酸抗体を用いた二重染色法などにより、ラット下垂体においてプロラクチン産生細胞に局在することが明らかになった。また、ラット下垂体由来の細胞株でプロラクチンを合成、分泌する細胞にD-アスパラギン酸を与えることによりプロラクチン分泌が用量依存的に増加した。以上のことからプロラクチン産生細胞においてD-アスパラギン酸がプロラクチンの分泌を制御していると考えられている(非特許文献3)。
 一方、ラット精巣の静脈では他の静脈血よりも常に高濃度のD-アスパラギン酸が検出されていることに加え、ラット精巣から単離、精製したLeydig細胞にD-アスパラギン酸を加えることによりテストステロンの合成及び分泌が用量依存的に促進されることが報告されている(非特許文献4)。
 D-セリンは統合失調症に関連すると推察されているNMDA型グルタミン酸受容体のグリシン結合部位を選択的に刺激し、グルタミン酸の本受容体を介する作用を増強することで神経伝達を促進することが報告されている(非特許文献5)。実際にD-セリンの投与により統合失調症が改善することや、統合失調症患者では血清中のD-セリン濃度が健常者よりも低いことが報告されている。さらにD-セリンは筋萎縮性側索硬化症(ALS)における運動神経の変性に関与することも最近報告された(非特許文献6)。
 財津らは、D、L-アミノ酸一斉高感度分析システム(特許文献1、非特許文献7-9)を開発し、アミノ酸立体異性体の一斉高感度分析技術を実用化した。これにより、ヒトの生物学的材料に含まれる極微量のD-アミノ酸と、比較的大量に存在するL-アミノ酸とを同一サンプルから網羅的に分離・定量することが可能になった。
 本発明は、各種疾患患者のアミノ酸立体異性体の定量分析結果から、健常者の生物学的材料中のD-アミノ酸及びL-アミノ酸の量は一定のバランスを保っていること、個体差が小さいこと、及び、患者の生物学的材料中のD-アミノ酸及びL-アミノ酸を分離・定量することによってはじめて差を確認することができるバランスの崩れが一部にあることを発見した。本発明はかかる予想外の発見に基づいて想到された。
特許第4291628号
Corrigan J.J.、Science 164:142(1969) Hamase K, Morikawa A, and Zaitsu K. 、 J Chromatogr B 781: 73(2002) D’Aniello Aら、FASEB J 14: 699(2000) Nagata Yら、FEBS Lett. 444:160(1999) Nishikawa T、Biol. Pharm. Bull. 28: 1561(2005) Sasabe,J.、ら、Proc.Natl.Acad.Sci. 109:627(2012) Hamase K.、ら、J.Chromatogr.A, 1143:105(2007) HamaseK.、ら、J.Chromatogr.A, 1217:1056(2010) MiyoshiY.、ら、J.Chromatogr.B, 879:3184(2011)
 アミノ酸立体異性体の全分析により、アミノ酸立体異性体量、変化と疾患との相関を明かにして、新規な疾患診断方法と、該疾患診断方法を実行する新規な疾患診断装置とを開発する必要がある。
 本発明は疾患サンプル分析装置を提供する。本発明の疾患サンプル分析装置は、被検者の生物学的材料中のアミノ酸立体異性体を分離・定量する手段と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者の病態情報を出力する手段とを含む。
 本発明の疾患サンプル分析装置において、前記判別式は、
病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かの場合がある。
 本発明の疾患サンプル分析装置において、前記病態指標値に基づいて前記被検者の病態情報を出力する手段は、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力する手段の場合がある。
 本発明の疾患サンプル分析装置において、前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸の場合がある。
 本発明は疾患サンプル分析システムを提供する。本発明の疾患サンプル分析システムは、被検者の生物学的材料中のアミノ酸立体異性体のを分離・定量する定量分析部と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る病態指標値演算部と、前記病態指標値に基づいて前記患者の病態情報を出力する病態情報出力部とを含む。
本発明の疾患サンプル分析システムにおいて、前記判別式は、
病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かの場合がある。
 本発明の疾患サンプル分析システムにおいて、前記病態情報出力部は、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力する場合がある。
 本発明の疾患サンプル分析システムにおいて、前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸の場合がある。
 本発明は疾患サンプル分析方法を提供する。本発明の疾患サンプル分析方法は、被検者の生物学的材料中のアミノ酸立体異性体の量を測定するステップと、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得るステップと、前記病態指標値に基づいて前記患者の病態情報を出力するステップとを含む。
 本発明の疾患サンプル分析方法において、前記判別式は、
病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かの場合がある。
 本発明の疾患サンプル分析方法において、前記病態指標値に基づいて前記被検者の病態情報を出力するステップは、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力するステップの場合がある。
 本発明の疾患サンプル分析方法において、前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸の場合がある。
 本発明は疾患の診断方法を提供する。本発明の疾患の診断方法は、被検者の生物学的材料中のアミノ酸立体異性体の量を測定するステップと、該アミノ酸立体異性体の量の測定値と健常者の基準値とに基づいて前記疾患の診断をするステップとを含む。
 本発明は疾患の診断方法を提供する。本発明の疾患の診断方法は、被検者の生物学的材料中のアミノ酸立体異性体を分離・定量するステップと、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者を診断するステップとを含む。
 本発明の疾患の診断方法において、前記判別式は、
病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かの場合がある。
 本発明の疾患の診断方法において、前記病態指標値に基づいて前記被検者の病態情報を出力するステップは、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患している診断するステップの場合がある。
 本発明の疾患の診断方法において、前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンの場合がある。
 本発明のアミノ酸立体異性体とは、タンパク質の翻訳に用いられる20種類のアミノ酸と、該アミノ酸のうちグリシンを除く19種類のL-アミノ酸の工学異性体であるD-アミノ酸19種類と、アロL-スレオニン、アロD-スレオニン及びアロD-イソロイシンとをいう。
 本発明の疾患サンプル分析装置は、生物学的材料中のアミノ酸立体異性体の量を測定する手段と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者の病態情報を出力する手段とを含む。前記物学的材料中のアミノ酸立体異性体の量を測定する手段は、サンプルの自動分取部と、逆相カラム等によるHPLC分離及びピーク検出部である。前記アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段は、前記判別式、疾患ごとの健常者の基準値等のデータを格納する記憶部と、該データに基づいて判別式の計算を行う演算部とである。前記病態指標値に基づいて前記患者の病態情報を出力する手段は、病態情報選択部及び病態情報出力部である。この他、全体を統括的に制御するCPU等の制御部と、入力装置及び出力装置に接続する入出力インターフェース部と、ネットワークに通信可能に接続する通信インターフェース部とが本発明の疾患サンプル分析装置には含まれる。
 本発明において生物学的材料とは、血液、血漿、血清、腹水、羊水、リンパ液、唾液、精液、尿等の体液と、糞便、汗、鼻汁等の排泄物と、体毛、爪、皮膚組織、内臓組織等の体組織とをいうが、これらに限定されない。
 本発明において、判別式とは、アミノ酸立体異性体量の被検者測定値が、予め健常者の測定値から設定される基準値の何倍であるかを算出する式の場合がある。また、アミノ酸立体異性体の量と、該異性体のエナンチオマーの量との和に対する前記アミノ酸立体異性体の量の割合又は百分率を算出する式の場合がある。さらに、複数種類のアミノ酸立体異性体の量の組み合わせから病態指標値を算出する式の場合がある。前記複数のアミノ酸立体異性体は、D-アミノ酸酸化酵素又はD-アスパラギン酸酸化酵素の基質となる等の共通点があるアミノ酸のグループの場合がある。例えば、同一の酵素の基質となるアミノ酸立体異性体のうち、疾患と相関するアミノ酸の量を疾患と相関しないアミノ酸の量で正規化される場合がある。
 本発明の判別式において、健常者の生物学的材料中の疾患と相関するアミノ酸立体異性体の基準値とは、疾患と相関するアミノ酸立体異性体について、健常者の生物学的材料と、該アミノ酸立体異性体が相関性がない他の疾患患者の生物学的材料とのうちいずれか又は両方の生物学的材料中の量の平均値又は中央値から決定される。前記基準値は、予め設定される場合があるが、本発明の実施の際に対照実験として用意され、同時に試験される生物学的材料の測定値か、その平均値又は中央値の場合もある。
 本発明の病態情報として、本発明の判別式で算出される病態指標値が1.0又はその近傍のとき、被検者は健常者であると出力される。前記病態指標値が2.0又はこれ以上のとき、被検者は疾患に罹患している可能性が大と出力される場合がある。しかし、前記病態指標値が2.0未満でも、被検者が前記疾患に罹患している可能性があると出力される場合がある。
 本発明の疾患サンプル分析装置、分析システム及び分析方法により得られる被検者の生物学的材料中のアミノ酸立体異性体の定量データは、さまざまな疾患の診断及び予防の指標として用いられる。また、前記定量データは、前記疾患の病状の進行の指標として用いられる。さらに、前記定量データは、前記疾患の治療及び/又は予防のための医薬の薬効を判断するための指標として用いられる。さらに、前記定量データは、医薬、医薬部外品、化粧料、食品その他の化学物質の生体への影響や、その他の物理的及び/又は生物学的な環境要因の成体への影響を判断するための指標として用いられる。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
健常者及び各種疾患患者のそれぞれ最初のサンプルについてのD-アミノ酸の分析結果をまとめた表。 D-セリンの血清濃度の疾患サンプルごとの分布図。 L-セリンの血清濃度の疾患サンプルごとの分布図。 D-スレオニンの血清濃度の疾患サンプルごとの分布図。 L-スレオニンの血清濃度の疾患サンプルごとの分布図。 D-アラニンの血清濃度の疾患サンプルごとの分布図。 L-アラニンの血清濃度の疾患サンプルごとの分布図。 セリンのサンプルのD-体及びL-体の量の和に対するD-体量の百分率(%D)の分布図。 スレオニンのサンプルのD-体及びL-体の量の和に対するD-体量の百分率(%D)の分布図。 アラニンのサンプルのD-体及びL-体の量の和に対するD-体量の百分率(%D)の分布図。 拡張型心筋症モデルマウス(MLP-KOマウス、以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-セリン濃度の平均値及び標準誤差の棒グラフ。縦軸は、D-セリン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のL-セリン濃度の平均値及び標準誤差の棒グラフ。縦軸は、L-セリン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全セリン濃度(D-セリン濃度及びL-セリン濃度の和)の平均値及び標準誤差の棒グラフ。縦軸は、全セリン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全セリン濃度に対するD-セリン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。正常と疾病との有意差は、Studentのt検定でPが0.02未満であった。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-アルギニン濃度の平均値及び標準誤差の棒グラフ。縦軸は、D-アルギニン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のL-アルギニン濃度の平均値及び標準誤差の棒グラフ。縦軸は、L-アルギニン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全アルギニン濃度(D-アルギニン濃度及びL-アルギニン濃度の和)の平均値及び標準誤差の棒グラフ。縦軸は、全アルギニン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-グルタミン酸濃度の平均値及び標準誤差の棒グラフ。縦軸は、D-グルタミン酸濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.02未満であった。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のL-グルタミン酸濃度の平均値及び標準誤差の棒グラフ。縦軸は、L-グルタミン酸濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全グルタミン酸濃度(D-グルタミン酸濃度及びL-グルタミン酸濃度の和)の平均値及び標準誤差の棒グラフ。縦軸は、全グルタミン酸濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-プロリン濃度の平均値及び標準誤差の棒グラフ。縦軸は、D-プロリン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のL-プロリン濃度の平均値及び標準誤差の棒グラフ。縦軸は、L-プロリン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全プロリン濃度(D-プロリン濃度及びL-プロリン濃度の和)の平均値及び標準誤差の棒グラフ。縦軸は、全プロリン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-リジン濃度の平均値及び標準誤差の棒グラフ。縦軸は、D-リジン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のL-リジン濃度の平均値及び標準誤差の棒グラフ。縦軸は、L-リジン濃度(ナノモル/mL)である。 拡張型心筋症モデルマウス(以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中の全リジン濃度(D-リジン濃度及びL-リジン濃度の和)の平均値及び標準誤差の棒グラフ。縦軸は、全リジン濃度(ナノモル/mL)である。 9週齢HR-1マウスから卵巣が摘出された更年期モデルマウス(以下、「OVX」という。)12匹と、同じ週齢の雌マウスから、卵巣摘出を行わずに、皮膚の切開及び縫合のみを行った対照マウス(以下、「sham」という。)6匹との体重の平均値及び標準偏差の変化を示すグラフ。縦軸はマウスの体重(グラム)を示す。黒塗り及び斜線ハッチングの棒グラフは、それぞれ、施術前の9週齢マウスと、施術後1週目(10週齢)、2週目(11週齢)、3週目(12週齢)、4週目(13週齢)の更年期モデルマウス(OVX)及び対照マウス(sham)の体重の平均値及び標準偏差を示す。更年期モデルマウス(OVX)及び対照マウス(sham)との体重の有意差は、Studentのt検定でPが0.05未満(*)又は0.01未満(**)であった。卵巣が摘出された更年期モデルマウスでは術後2週目から体重が対照マウスより有意に増加し、更年期モデルマウス作製に成功したことを示す。 更年期モデルマウス(OVX)3匹のうち1匹目(OVX-3)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 更年期モデルマウス(OVX)3匹のうち2匹目(OVX-4)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 更年期モデルマウス(OVX)3匹のうち3匹目(OVX-5)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 対照マウス(sham)4匹のうち1匹目(Sham-16)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 対照マウス(sham)4匹のうち2匹目(Sham-17)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 対照マウス(sham)4匹のうち3匹目(Sham-19)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 対照マウス(sham)4匹のうち4匹目(Sham-20)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のD-アミノ酸含量を比較した表。D-アスパラギン酸は更年期モデルマウス(OVX)よりも対照マウス(sham)が低く、有意差は、Studentのt検定でPが0.015であった。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のL-アミノ酸含量を比較した表。L-ヒスチジン及びL-フェニルアラニンは対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPがそれぞれ0.017及び0.037であった。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表。スレオニン及びイソロイシンについては、生体内でのD-体がアロ体となるため、%Dは、D-アロ体濃度及びL-体濃度の和に対するD-アロ体濃度の百分率として評価された。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.002であった。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.005であった。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.017であった。 更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のD-グルタミン酸濃度に対する各D-アミノ酸濃度の百分率(%D/D-Glu)を比較した表。D-アスパラギン酸は酸性D-アミノ酸なので、同様の代謝を受けると考えられるD-グルタミン酸濃度で補正後評価された。%D/D-Gluでも、D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.006であった。 2×10個の肉腫細胞を移植されたICR系雄6週齢マウスで、移植3週間後に外植された腫瘍の成長が確認された個体3匹のうち1匹目(S3)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 2×10個の肉腫細胞を移植されたICR系雄6週齢マウスで、移植3週間後に外植された腫瘍の成長が確認された個体3匹のうち2匹目(S4)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 2×10個の肉腫細胞を移植されたICR系雄6週齢マウスで、移植3週間後に外植された腫瘍の成長が確認された個体3匹のうち3匹目(S5)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 肉腫移植マウスの対照実験として同環境で飼育されたICR系雄9週齢マウス個体3匹のうち1匹目(C3)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 肉腫移植マウスの対照実験として同環境で飼育されたICR系雄9週齢マウス個体3匹のうち2匹目(C4)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 肉腫移植マウスの対照実験として同環境で飼育されたICR系雄9週齢マウス個体3匹のうち3匹目(C5)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のD-アミノ酸含量を比較した表。D-アルギニンは対照マウスよりも肉腫移植マウスが高く、有意差は、Studentのt検定でPが0.008であった。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のL-アミノ酸含量を比較した表。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表。肉腫移植マウスのセリンの%Dは対照マウスより低く、有意差は、Studentのt検定でPが0.016であった。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表。D-アスパラギン及びD-アルギニンは対照マウスよりも肉腫移植マウスが高い傾向があり、D-アルギニンの有意差は、Studentのt検定でPが0.035であった。 肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のD-アスパラギン濃度に対する各D-アミノ酸濃度の百分率(%D/D-Asn)を比較した表。D-アスパラギンは哺乳類尿中に比較的高濃度に存在すること、及び、全D-アミノ酸濃度に対する比率が最も安定していたことのために、尿中濃度の補正の指標として用いられた。D-アルギニンは対照マウスよりも肉腫移植マウスが高い傾向があり、有意差は、Studentのt検定でPが0.016であった。 アルツハイマー病モデルマウス(アミロイドβ前駆体タンパク質高発現トランスジェニックマウスTg2576ヘミ接合体雄8週齢マウス、以下、「hemi」という。)3匹と、対照正常マウス(C57BL、以下、「Wild」という。)3匹との尿中のD-セリン濃度(D-Ser)、L-セリン濃度(L-Ser)及び両方の合計(Ser)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-セリン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-セリンの相対比(D-Ser/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-セリンの相対比(D-Ser/D-allo-Ile)のグラフ。尿中のD-アロ-スレオニン濃度に対するD-セリンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-セリンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPがともに0.01未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アラニン濃度(D-Ala)、L-アラニン濃度(L-Ala)及び両方の合計(Ala)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。尿中のD-アラニン濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより高く、有意差はStudentのt検定でPが0.01未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全アラニン濃度に対するD-アラニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。尿中の全アラニン濃度に対するD-アラニン濃度の百分率(%D)は、アルツハイマー病モデルマウスのほうが対照正常マウスより高く、有意差はStudentのt検定でPが0.01未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-メチオニン濃度(D-Met)、L-メチオニン濃度(L-Met)及び両方の合計(Met)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。尿中のD-Met濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより高い傾向があった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-メチオニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-メチオニンの相対比(D-Met/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-メチオニンの相対比(D-Met/D-allo-Ile)のグラフ。尿中のD-アロ-スレオニン濃度に対するD-メチオニンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-メチオニンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPがともに0.05未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-ロイシン濃度(D-Leu)、L-ロイシン濃度(L-Leu)及び両方の合計(Leu)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-ロイシン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-ロイシンの相対比(D-Leu/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-ロイシンの相対比(D-Leu/D-allo-Ile)のグラフ。尿中のD-アロ-スレオニン濃度に対するD-ロイシンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-ロイシンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPが、それぞれ、0.05未満及び0.01未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アスパラギン酸濃度(D-Asp)、L-アスパラギン酸濃度(L-Asp)及び両方の合計(Asp)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。尿中のD-アスパラギン酸濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより低く、有意差はStudentのt検定でPが0.05未満であった。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全アスパラギン酸濃度に対するD-アスパラギン酸濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-フェニルアラニン濃度(D-Phe)、L-フェニルアラニン濃度(L-Phe)及び両方の合計(Phe)の平均値及び標準誤差の棒グラフ。縦軸は、濃度(ナノモル/mL)である。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全フェニルアラニン濃度に対するD-フェニルアラニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフ。縦軸は、%Dである。 アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-フェニルアラニンの相対比(D-Phe/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-フェニルアラニンの相対比(D-Phe/D-allo-Ile)のグラフ。尿中のD-アロ-イソロイシン濃度に対するD-フェニルアラニンの相対比は、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPが0.05未満であった。 D-アミノ酸酸化酵素(DAO)野生型マウス(ddY/DAO+、以下、「DAO+/+」という。)個体3匹のうち1匹目(DAO+/+ 1)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)野生型マウス(ddY/DAO+、以下、「DAO+/+」という。)個体3匹のうち2匹目(DAO+/+ 2)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)野生型マウス(ddY/DAO+、以下、「DAO+/+」という。)個体3匹のうち3匹目(DAO+/+ 3)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)欠損マウス(ddY/DAO-、以下、「DAO-/-」という。)個体3匹のうち1匹目(DAO-/- 1)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)欠損マウス(ddY/DAO-、以下、「DAO-/-」という。)個体3匹のうち2匹目(DAO-/- 2)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)欠損マウス(ddY/DAO-、以下、「DAO-/-」という。)個体3匹のうち3匹目(DAO-/- 3)の尿中全アミノ酸光学異性体含量分析結果を示す表。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のD-アミノ酸含量を比較した表。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のL-アミノ酸含量を比較した表。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表。D-セリン、D-アロ-スレオニン、D-アラニン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表。 D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のD-アスパラギン濃度に対する各D-アミノ酸濃度の百分率(%D/D-Asn)を比較した表。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。 D-アスパラギン酸酸化酵素(DDO)野生型マウス(DDO+)個体4匹のうち1匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)野生型マウス(DDO+)個体4匹のうち2匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)野生型マウス(DDO+)個体4匹のうち3匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)野生型マウス(DDO+)個体4匹のうち4匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)欠損マウス(DDO-)個体4匹のうち1匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)欠損マウス(DDO-)個体4匹のうち2匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)欠損マウス(DDO-)個体4匹のうち3匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 D-アスパラギン酸酸化酵素(DDO)欠損マウス(DDO-)個体4匹のうち4匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.05未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.05未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.05未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.05未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.01未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。有意差は、pが0.05未満。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフ。 各種疾患患者のそれぞれ最初のサンプルについてのD-アミノ酸の分析結果をまとめた追加の表。 各種疾患患者のそれぞれ最初のサンプルについてのL-アミノ酸の分析結果をまとめた追加の表。
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。
 以下の実施例は、アメリカ国立衛生研究所(National Institutes of Health(NIH))のガイドラインに従って資生堂リサーチセンターの倫理委員会によって承認された後に実施された。
 各種疾患患者由来のサンプルのアミノ酸立体異性体の全分析(1)
 1.材料及び方法
 (1)サンプル
 健常人及び各種疾患由来の血清サンプルは、米国バイオサーブ社(BioServe Biotechnologies, Ltd、米国、メリーランド州、Beltsville)から入手された。前記サンプルは、現在バイオサーブ社に買収されたGenomicCollaborative Inc.社によって採取された。採血は患者の医師による管理の下で行われ、米国の医療保険の相互運用性及び説明責任に関する法律(HIPAA)に沿った書類による採血者の同意が確認済みである。今回の分析に用いられたサンプルの提供者のうち健常者は、男女各4名全員が50歳の白人で、検討対象疾患の既往歴のない者が選ばれた。腎臓病患者は糖尿病を併発していない者が選ばれた。認知症患者は、アルツハイマー病協会による7段階の重症度のステージ5(日々の生活に他人の補助が必要となり始める段階)と診断された男性4名が選ばれた。大腸がん患者はステージIIと診断された男性4名が選ばれた。乳がん患者は、片側のみで発生しステージIIと診断された女性4名が選ばれた。前立腺がんはステージIIと診断され、ホルモン療法及び化学療法を受けていない男性が選ばれた。肝障害患者は、片側のみで発生しステージIIと診断された女性が選ばれた。骨粗鬆症患者は女性が選ばれた。卵巣がん患者はステージIIの女性が選ばれた。今回の分析に用いられたサンプルの提供者には喫煙者は除外された。
 (2)アミノ酸立体異性体の全分析
 前記サンプルは、財津らが開発したD、L-アミノ酸一斉高感度分析システム(特許第4291628号)によるアミノ酸立体異性体の全分析に供された。各アミノ酸の分析条件の詳細は、Hamase K.ら、J.Chromatogr.A, 1143:105(2007)、HamaseK.、ら、J.Chromatogr.A, 1217:1056(2010)、MiyoshiY.、ら、J.Chromatogr.B, 879:3184(2011)に説明される。簡潔には、サンプルは、その20倍の容積のメタノール中で、4°C、3,500rpm、2分間マイクロホモジナイジングシステム(Micro Smash MS-100R、株式会社トミー精工)でホモジナイズされ、20,400×gで10分間遠心された。遠心上清10μLは、40°Cで減圧乾燥された。残渣に20μLの200mMホウ酸ナトリウムバッファー(pH8.0)と、40mM NBD-F(4-フルオロ-7-ニトロ-2,1,3-ベンゾオキサジアゾール、東京化成工業株式会社)の無水シアン化メチル溶液の5μLとが添加され、60°C、2分間加熱された。反応後、75μLの2%(v/v)トリフルオロ酢酸水溶液が添加された。この混合液の2μLがHPLCシステム(NANOSPACE SI-2、株式会社資生堂、Sasabe,J.ら、Proc.Natl.Acad.Sci.、109:627(2012)の補足情報を参照せよ。)に供された。簡潔には、逆相分離用分析カラムは、40°Cに保温された自社製のモノリシックODSカラム(内径759mm×0.53mm、石英ガラス毛管に装填)が用いられた。移動相は、シアン化メチル-トリフルオロ酢酸-水(容積比5:0.05:95)が用いられた。流速は毎分35μLであった。逆相分離の後、150μLループが装着されたカラム切り替えバルブを経由して、目的のNBD化アミノ酸分画は自動的にエナンチオ選択性カラムに移された。エナンチオマー分離には、キラルセレクターとして(S)-ナフチルグリシンを用いるスミキラルOA-2500Sカラム(内径250mm×1.5mmI.D.、自家充填、材料は株式会社住化分析センター製)が使用された。蛍光検出は、励起波長470nm、検出波長530nmで実行された。
 2.結果
 図1は、健常者及び各種疾患患者のそれぞれ最初のサンプルについてのD-アミノ酸の分析結果をまとめた表である。表の各行はサンプル提供者の疾患名を表し、各列は分析されたD-アミノ酸の種類を表す。表の中でNDは検出限界以下であったことを表す。トリプトファン、システイン及びチロシンの列の粗い右上がりのハッチングはこれらのアミノ酸は今回のサンプルでは定量できなかったことを表す。上向き矢印はこのサンプルでは第1行の健常男性のサンプルよりアミノ酸量が高いことを表し、下向き矢印は第1行の健常男性のサンプルよりこのサンプルのアミノ酸量が低いことを表す。細かい右上がりのハッチング(例えば、腎臓病サンプルのアスパラギン等)は、これらのサンプルのアミノ酸量の前記健常男性のサンプルのアミノ酸量に対する割合が2倍以上(上向き矢印)か、あるいは、1/2以下(下向き矢印)かを表す。粗い左上がりのハッチング(例えば、腎臓病サンプルのグルタミン等)は、これらのサンプルのアミノ酸量の前記健常男性のサンプルのアミノ酸量に対する割合が2倍未満(上向き矢印)か、あるいは、1/2未満(下向き矢印)かを表す。
 図1の腎臓病患者サンプルで健常男性サンプルより血清濃度が高くなるD-アミノ酸のうち、セリン、アロD-スレオニン、スレオニン、アラニン、プロリン及びフェニルアラニンはD-アミノ酸酸化酵素の基質であるが、アスパラギン酸及びグルタミンはD-アスパラギン酸酸化酵素の基質である。また、同じD-アミノ酸酸化酵素の基質でも、ヒスチジン、アルギニン、メチル、バリン、アロD-イソロイシン及びイソロイシンは腎臓病患者と健常男性とで血清濃度に変化がないと判断された。また、アスパラギン酸及びグルタミン酸はD-アスパラギン酸酸化酵素の基質であるが、腎臓病患者と健常男性とで血清濃度に変化がないと判断された。そこで、腎臓病患者サンプルで健常男性サンプルより血清濃度が高くなるD-アミノ酸の種類は従来知られてきたD-アミノ酸の代謝酵素の特異性だけでは説明ができない。前立腺がん患者サンプルで健常男性サンプルより血清濃度が高くなるD-アミノ酸がD-ヒスチジン及びD-アスパラギンであること、及び、骨粗鬆症患者サンプルで健常男性サンプルより血清濃度が高くなるD-アミノ酸がD-アスパラギンであることについても従来知られてきたD-アミノ酸の代謝酵素の特異性だけでは説明ができない。D-アミノ酸酸化酵素及びD-アスパラギン酸酸化酵素はともに腎臓の近位尿細管に局在することが知られている。そこで、腎臓病の患者ではこれらの酵素活性が低下することは予測できる。その場合、これらの酵素の基質となるD-アミノ酸すべての分解が抑制され、体内量が上昇すると考えられる。しかし、実際には全てのD-アミノ酸ではなく、一部のD-アミノ酸だけの体内量が上昇するに留まる。その機序は不明である。これらの疾患特異的なD-アミノ酸の血清濃度の変化は、疾患の診断に利用できることが示唆された。
 図1から、大半の種類のD-アミノ酸は、健常男性と各種疾患患者とで差がないが、一部のアミノ酸では健常男性と比較して2倍以上高いか1/2以下低いものがみられた。そこでまず、比較的多くのD-アミノ酸で健常男性サンプルと比較して大きい変化がみられた腎臓病に注目して、同じ疾患について4名の提供者のサンプルが詳しく調べられた。
 図2-1、図2-2、図2-3、図2-4、図2-5及び図2-6は、それぞれ、D-セリン、L-セリン、D-スレオニン、L-スレオニン、D-アラニン及びL-アラニンの血清濃度の疾患サンプルごとの分布図である。サンプル1は健常男性、サンプル2は腎臓病患者、サンプル3は認知症患者、サンプル4は健常女性、サンプル5は大腸がん患者、そして、サンプル6は乳がん患者である。図2-1では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのD-セリンの血清濃度はほぼ一定で低いのに対し、腎臓病患者のD-セリンの血清濃度は他のサンプルより少なくとも2倍以上高いことが示された。図2-3では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのD-スレオニンの血清濃度はほぼ一定で低いのに対し、腎臓病患者のD-スレオニンの血清濃度は他のサンプルより少なくとも2倍以上高いことが示された。同様に図2-5では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのD-アラニンの血清濃度はほぼ一定で低いのに対し、腎臓病患者のD-アラニンの血清濃度は4名のうち3名については他のサンプルより少なくとも2倍以上高いことが示された。これに対し図2-2、図2-4及び図2-6では、L-セリン、L-スレオニン及びL-アラニンのいずれも、健常者と今回調べた4種類の疾患患者とのアミノ酸量の分布は個体差により分布範囲が広がった。そして腎臓病患者のサンプルでは健常者の男女と、他の疾患患者とのサンプルに比べてやや低い傾向はあるが、全体として、D-セリン、D-スレオニン及びD-アラニンのような顕著な相違は認められなかった。
 図2-1ないし図2-6から明らかになるD-アミノ酸血清濃度の特徴は、健常者の男性及び女性のサンプルではいずれのD-アミノ酸の血清濃度が非常に低く、偏差も小さい点である。この点は他のD-アミノ酸についても同じである(データは示されない)。また、患者サンプルのD-アミノ酸の血清濃度は、疾患と相関する変動が認められない場合には、健常者の場合と同様に、いずれのD-アミノ酸についても血清濃度が非常に低い量で、偏差も小さい。これは診断の際に偽陽性が少ないことにつながるので、D-アミノ酸量による診断の有用性の重要な根拠となる。また、疾患特異的に変化するD-アミノ酸量を他の因子と組み合わせたパラメーターで表すとき、該他の因子そのものが前記D-アミノ酸量より疾患との相関が低い場合には、実質的に前記D-アミノ酸量だけに基づいて診断するのと同じ診断特性しか得られない。
 図3-1、図3-2及び図3-3は、それぞれ、セリン、スレオニン及びアラニンのサンプルのD-体及びL-体の量の和に対するD-体量の百分率(%D)の分布図である。図3-1では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのセリンの全血清濃度に占めるD-セリンの血清濃度の百分率はほぼ一定で低いのに対し、腎臓病患者のセリンの全血清濃度に占めるD-セリンの血清濃度の百分率は他のサンプルより4倍以上高いことが示された。図3-2では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのスレオニンの全血清濃度に占めるD-スレオニンの血清濃度の百分率はほぼ一定で低いのに対し、腎臓病患者のスレオニンの全血清濃度に占めるD-スレオニンの血清濃度の百分率は他のサンプルより4倍以上高いことが示された。同様に図3-3では、健常者の男性及び女性と、認知症、大腸がん及び乳がんとのアラニンの全血清濃度に占めるD-アラニンの血清濃度の百分率はほぼ一定な低い値であるのに対し、腎臓病患者のアラニンの全血清濃度に占めるD-アラニンの血清濃度の百分率は、4名のうち3名については、他のサンプルより4倍以上高いことが示された。
 マウス疾患モデルでの由来のサンプルのアミノ酸立体異性体の全分析
1.材料と方法
1.1 アミノ酸立体異性体の全分析
 アミノ酸立体異性体の全分析は、実施例1で説明されたD、L-アミノ酸一斉高感度分析システムと同様のシステムが用いられたが、送液ポンプにダンパーを有さないMSを用いたこと、MPSと低用量デガッサーとの採用により、2次元目の移動相を幅広く選択できるようになったことが異なる。
 1.2 マウス疾患モデル
 本実施例で用いられたマウス疾患モデルは、拡張型心筋症モデルマウス、卵巣摘出による更年期モデルマウス、肉腫移植マウス、アルツハイマー病モデルマウス、DAO欠損マウス及びDDO欠損マウスである。以下に詳しくそれぞれのマウスについて説明する。マウスを用いる実験は九州大学大学院薬学研究院にて行われた。
 1.2.1 拡張型心筋症モデルマウス
 心血管障害のモデルマウスとして、心筋構成タンパク質の1種である、MLP(muscle LIM protein)が欠損した、MLP-KOマウス(Arber, S.ら、Cell、88:393(1997))が用いられた。拡張型心筋症モデルマウス(MLP-KOマウス、以下、「疾病」という。)雄8週齢3匹と、対照正常マウス(以下、「正常」という。)雄8週齢4匹との尿サンプルを得て、その全アミノ酸光学異性体含量が分析された。
 1.2.2 更年期モデルマウス
 更年期モデルマウスとして、HR-1マウス9週齢雌から麻酔下で卵巣が摘出され、皮膚が縫合された。同じ週齢の雌マウスから、卵巣摘出を行わずに、皮膚の切開及び縫合のみを行った対照実験のマウスも用意された。施術前と、施術後1週間目ないし4週間目の体重が測定された。対照マウスと比較して体重が増大することが確認された個体が更年期モデルマウスとして尿中全アミノ酸光学異性体含量分析に供された。
 1.2.3 肉腫移植マウス
 肉腫移植マウスとして、2×10個の肉腫細胞を移植されたICR系雄6週齢マウスが用意された。移植3週間後に外植された腫瘍の成長が確認された個体が尿中全アミノ酸光学異性体含量分析に供された。肉腫移植マウスの対照実験として、同環境で飼育されたICR系雄9週齢マウス個体が尿中全アミノ酸光学異性体含量分析に供された。
 1.2.4 アルツハイマー病モデルマウス
 アルツハイマー病モデルマウスとして、アミロイドβ前駆体タンパク質高発現トランスジェニックマウスTg2576(Hsiao、K.ら、Science、274:99(1996))のヘミ接合体雄8週齢マウスが尿中全アミノ酸光学異性体含量分析に供された。C57BL雄8週齢マウスが対照正常マウスとして尿中全アミノ酸光学異性体含量分析に供された。
 1.2.5 D-アミノ酸酸化酵素(DAO)欠損マウス
 D-アミノ酸代謝関連酵素活性変化モデルの1つとして、D-アミノ酸酸化酵素(DAO)欠損マウス(Konno、 R.ら、Genetics 103:277(1983)、ddY/DAO-、以下、「DAO-/-」という。)雄8週齢の個体が尿中全アミノ酸光学異性体含量分析に供された。D-アミノ酸酸化酵素(DAO)野生型マウス雄8週齢の個体が、対照マウスとして尿中全アミノ酸光学異性体含量分析に供された。
 1.2.6 D-アスパラギン酸酸化酵素(DDO)欠損マウス
 D-アミノ酸代謝関連酵素活性変化モデルの1つとして、D-アスパラギン酸酸化酵素(DDO)欠損マウス(Huang、A.S.ら、J. Neurosci.、2:2814(2006)、以下、「DDO-」という。)雄8週齢の個体が尿中全アミノ酸光学異性体含量分析に供された。D-アスパラギン酸酸化酵素(DDO)野生型(以下、「DDO+」という。)雄8週齢個体が、対照マウスとして尿中全アミノ酸光学異性体含量分析に供された。
 1.2.7 フェニルケトン尿症疾患モデルマウス
 アミノ酸代謝障害モデルマウスの1つとして、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、Shedlovsky、A.ら、Genetics 134:1205(1993))のSPF条件で飼育された25-35週齢の雄5匹が尿中全アミノ酸光学異性体含量分析に供された。同一遺伝背景の野生型アレルのホモ接合体のSPF条件で飼育された25-35週齢の雄5匹が、対照マウスとして尿中全アミノ酸光学異性体含量分析に供された。
 1.2.8 メープルシロップ尿症疾患モデルマウス
 アミノ酸代謝障害モデルマウスの1つとして、(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、Homanics G.E.ら、BMC Med Genet、7:33(2006)のSPF条件で飼育された8-10週齢の雄5匹が尿中全アミノ酸光学異性体含量分析に供された。同一遺伝背景の野生型アレルのホモ接合体のSPF条件で飼育された8-10週齢の雄5匹が、対照マウスとして尿中全アミノ酸光学異性体含量分析に供された。一部の実験では、+/Dbttm1Gehのヘテロ接合体のSPF条件で飼育された8-10週齢の雄5匹が中間型として尿中全アミノ酸光学異性体含量分析に供された。
 2.結果
 2.1 拡張型心筋症モデルマウス
 図4-1は、拡張型心筋症モデルマウス(MLP-KOマウス、以下、「疾病」という。)3匹と、対照正常マウス(以下、「正常」という。)4匹との尿中のD-セリン濃度の平均値及び標準誤差の棒グラフである。縦軸は、D-セリン濃度(ナノモル/mL)である。図4-2は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のL-セリン濃度の平均値及び標準誤差の棒グラフを示す。縦軸は、L-セリン濃度(ナノモル/mL)である。図4-3は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全セリン濃度(D-セリン濃度及びL-セリン濃度の和)の平均値及び標準誤差の棒グラフである。縦軸は、全セリン濃度(ナノモル/mL)である。図4-4は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全セリン濃度に対するD-セリン濃度の百分率(%D)の平均値及び標準誤差の棒グラフを示す。縦軸は、%Dである。正常と疾病との有意差は、Studentのt検定でPが0.02未満であった。図4-5は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のD-アルギニン濃度の平均値及び標準誤差の棒グラフである。縦軸は、D-アルギニン濃度(ナノモル/mL)である。図4-6は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のL-アルギニン濃度の平均値及び標準誤差の棒グラフである。縦軸は、L-アルギニン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。図4-7は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全アルギニン濃度(D-アルギニン濃度及びL-アルギニン濃度の和)の平均値及び標準誤差の棒グラフである。縦軸は、全アルギニン濃度(ナノモル/mL)である。図4-8は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のD-グルタミン酸濃度の平均値及び標準誤差の棒グラフである。縦軸は、D-グルタミン酸濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.02未満であった。図4-9は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のL-グルタミン酸濃度の平均値及び標準誤差の棒グラフである。縦軸は、L-グルタミン酸濃度(ナノモル/mL)である。図4-10は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全グルタミン酸濃度(D-グルタミン酸濃度及びL-グルタミン酸濃度の和)の平均値及び標準誤差の棒グラフである。縦軸は、全グルタミン酸濃度(ナノモル/mL)である。図4-11は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のD-プロリン濃度の平均値及び標準誤差の棒グラフである。縦軸は、D-プロリン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。図4-12は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のL-プロリン濃度の平均値及び標準誤差の棒グラフである。縦軸は、L-プロリン濃度(ナノモル/mL)である。図4-13は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全プロリン濃度(D-プロリン濃度及びL-プロリン濃度の和)の平均値及び標準誤差の棒グラフである。縦軸は、全プロリン濃度(ナノモル/mL)である。図4-14は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のD-リジン濃度の平均値及び標準誤差の棒グラフを示す。縦軸は、D-リジン濃度(ナノモル/mL)である。正常と疾病との有意差は、Studentのt検定でPが0.01未満であった。図4-15は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中のL-リジン濃度の平均値及び標準誤差の棒グラフを示す。縦軸は、L-リジン濃度(ナノモル/mL)である。図4-16は、拡張型心筋症モデルマウス3匹と、対照正常マウス4匹との尿中の全リジン濃度(D-リジン濃度及びL-リジン濃度の和)の平均値及び標準誤差の棒グラフである。これらの結果から、D-セリン濃度は疾病群で正常群より低い傾向はあったが、有意差は認められなかった。しかし%Dで評価すると、D-セリンの%Dは、疾病群で正常群より有意に低かった。L-アルギニン濃度は、疾病群で正常群より有意に低かった。D-グルタミン酸濃度は、疾病群で正常群より有意に高かった。D-プロリン濃度は疾病群で正常群より有意に低かった。D-リジン濃度は疾病群で正常群より有意に低かった。
 2.2 更年期モデルマウス
 図5-1は、9週齢HR-1マウスから卵巣が摘出された更年期モデルマウス(以下、「OVX」という。)12匹と、同じ週齢の雌マウスから、卵巣摘出を行わずに、皮膚の切開及び縫合のみを行った対照マウス(以下、「sham」という。)6匹との体重の平均値及び標準偏差の変化を示すグラフである。縦軸はマウスの体重(グラム)を示す。黒塗り及び斜線ハッチングの棒グラフは、それぞれ、施術前の9週齢マウスと、施術後1週目(10週齢)、2週目(11週齢)、3週目(12週齢)、4週目(13週齢)の更年期モデルマウス(OVX)及び対照マウス(sham)の体重の平均値及び標準偏差を示す。更年期モデルマウス(OVX)及び対照マウス(sham)との体重の有意差は、Studentのt検定でPが0.05未満(*)又は0.01未満(**)であった。卵巣が摘出された更年期モデルマウスでは術後2週目から体重が対照マウスより有意に増加し、更年期モデルマウス作製に成功したことを示す。
 図5-2、5-3及び5-4は、それぞれ、更年期モデルマウス(OVX)3匹のうち1匹目(OVX-3)、2匹目(OVX-4)及び3匹目(OVX-5)の尿中全アミノ酸光学異性体含量分析結果を示す表である。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。図5-5、5-6、5-7及び5-8は、それぞれ、対照マウス(sham)4匹のうち1匹目(Sham-16)、2匹目(Sham-17)、3匹目(Sham-19)及び4匹目(Sham-20)の尿中全アミノ酸光学異性体含量分析結果を示す表である。図5-9は、更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のD-アミノ酸含量を比較した表である。D-アスパラギン酸は更年期モデルマウス(OVX)よりも対照マウス(sham)が低く、有意差は、Studentのt検定でPが0.015であった。図5-10は、年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のL-アミノ酸含量を比較した表である。L-ヒスチジン及びL-フェニルアラニンは対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPがそれぞれ0.017及び0.037であった。図5-11は、更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表である。スレオニン及びイソロイシンについては、生体内でのD-体がアロ体となるため、%Dは、D-アロ体濃度及びL-体濃度の和に対するD-アロ体濃度の百分率として評価された。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.002であった。図5-12は、更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表である。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.005であった。図5-13は、更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表である。D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.017であった。図5-14は、更年期モデルマウス(OVX)3匹及び対照マウス(sham)4匹の尿中のD-グルタミン酸濃度に対する各D-アミノ酸濃度の百分率(%D/D-Glu)を比較した表である。D-アスパラギン酸は酸性D-アミノ酸なので、同様の代謝を受けると考えられるD-グルタミン酸濃度で補正後評価された。%D/D-Gluでも、D-アスパラギン酸は対照マウス(sham)よりも更年期モデルマウス(OVX)が低く、有意差は、Studentのt検定でPが0.006であった。
 2.3 肉腫移植マウス
 図6-1、6-2及び6-3は、それぞれ、2×10個の肉腫細胞を移植されたICR系雄6週齢マウスで、移植3週間後に外植された腫瘍の成長が確認された個体3匹のうち1匹目(S3)、2匹目(S4)及び3匹目(S5)の尿中全アミノ酸光学異性体含量分析結果を示す表である。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。図6-4、6-5及び6-6は、それぞれ、肉腫移植マウスの対照実験として同環境で飼育されたICR系雄9週齢マウス個体3匹のうち1匹目(C3)、2匹目(C4)及び3匹目(C5)の尿中全アミノ酸光学異性体含量分析結果を示す表である。図6-7は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のD-アミノ酸含量を比較した表である。図6-8は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のL-アミノ酸含量を比較した表である。図6-9は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表である。肉腫移植マウスのセリンの%Dは対照マウスより低く、有意差は、Studentのt検定でPが0.016であった。図6-10は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表である。図6-11は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表である。D-アスパラギン及びD-アルギニンは対照マウスよりも肉腫移植マウスが高い傾向があり、D-アルギニンの有意差は、Studentのt検定でPが0.035であった。図6-12は、肉腫移植マウス3匹(S3、S4及びS5)及び対照マウス(C3、C4及びC5)3匹の尿中のD-アスパラギン濃度に対する各D-アミノ酸濃度の百分率(%D/D-Asn)を比較した表である。D-アスパラギンは哺乳類尿中に比較的高濃度に存在すること、及び、全D-アミノ酸濃度に対する比率が最も安定していたことのために、尿中濃度の補正の指標として用いられた。D-アルギニンは対照マウスよりも肉腫移植マウスが高い傾向があり、有意差は、Studentのt検定でPが0.016であった。
 2.4 アルツハイマー病モデルマウス
 図7-1は、アルツハイマー病モデルマウス(アミロイドβ前駆体タンパク質高発現トランスジェニックマウスTg2576ヘミ接合体雄8週齢マウス、以下、「hemi」という。)3匹と、対照正常マウス(C57BL、以下、「Wild」という。)3匹との尿中のD-セリン濃度(D-Ser)、L-セリン濃度(L-Ser)及び両方の合計(Ser)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。図7-2は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-セリン濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。縦軸は、%Dである。図7-3は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-セリンの相対比(D-Ser/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-セリンの相対比(D-Ser/D-allo-Ile)のグラフである。尿中のD-アロ-スレオニン濃度に対するD-セリンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-セリンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPがともに0.01未満であった。図7-4は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アラニン濃度(D-Ala)、L-アラニン濃度(L-Ala)及び両方の合計(Ala)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。尿中のD-アラニン濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより高く、有意差はStudentのt検定でPが0.01未満であった。図7-5は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全アラニン濃度に対するD-アラニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。縦軸は、%Dである。尿中の全アラニン濃度に対するD-アラニン濃度の百分率(%D)は、アルツハイマー病モデルマウスのほうが対照正常マウスより高く、有意差はStudentのt検定でPが0.01未満であった。図7-6は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-メチオニン濃度(D-Met)、L-メチオニン濃度(L-Met)及び両方の合計(Met)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。尿中のD-Met濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより高い傾向があった。図7-7は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-メチオニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。縦軸は、%Dである。図7-8は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-メチオニンの相対比(D-Met/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-メチオニンの相対比(D-Met/D-allo-Ile)のグラフである。尿中のD-アロ-スレオニン濃度に対するD-メチオニンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-メチオニンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPがともに0.05未満であった。図7-9は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-ロイシン濃度(D-Leu)、L-ロイシン濃度(L-Leu)及び両方の合計(Leu)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。図7-10は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全セリン濃度に対するD-ロイシン濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。図7-11は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-ロイシンの相対比(D-Leu/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-ロイシンの相対比(D-Leu/D-allo-Ile)のグラフである。尿中のD-アロ-スレオニン濃度に対するD-ロイシンの相対比も、尿中のD-アロ-イソロイシン濃度に対するD-ロイシンの相対比も、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPが、それぞれ、0.05未満及び0.01未満であった。図7-12は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アスパラギン酸濃度(D-Asp)、L-アスパラギン酸濃度(L-Asp)及び両方の合計(Asp)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。尿中のD-アスパラギン酸濃度は、アルツハイマー病モデルマウスのほうが対照正常マウスより低く、有意差はStudentのt検定でPが0.05未満であった。図7-13は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全アスパラギン酸濃度に対するD-アスパラギン酸濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。縦軸は、%Dである。図7-14は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-フェニルアラニン濃度(D-Phe)、L-フェニルアラニン濃度(L-Phe)及び両方の合計(Phe)の平均値及び標準誤差の棒グラフである。縦軸は、濃度(ナノモル/mL)である。図7-15は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中の全フェニルアラニン濃度に対するD-フェニルアラニン濃度の百分率(%D)の平均値及び標準誤差の棒グラフである。図7-16は、アルツハイマー病モデルマウス(hemi)3匹と、対照正常マウス(Wild)3匹との尿中のD-アロ-スレオニン濃度に対するD-フェニルアラニンの相対比(D-Phe/D-allo-Thr)又は尿中のD-アロ-イソロイシン濃度に対するD-フェニルアラニンの相対比(D-Phe/D-allo-Ile)のグラフである。尿中のD-アロ-イソロイシン濃度に対するD-フェニルアラニンの相対比は、アルツハイマー病モデルマウスのほうが対照マウスよりも高く、有意差はStudentのt検定でPが0.05未満であった。
 2.5 D-アミノ酸酸化酵素(DAO)欠損マウス
 図8-1、8-2及び8-3は、それぞれD-アミノ酸酸化酵素(DAO)野生型マウス(ddY/DAO+、以下、「DAO+/+」という。)個体3匹のうち1匹目(DAO+/+ 1)、2匹目(DAO+/+ 2)及び3匹目(DAO+/+ 3)の尿中全アミノ酸光学異性体含量分析結果を示す表である。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。図8-4、8-5及び8-6は、それぞれ、D-アミノ酸酸化酵素(DAO)欠損マウス(ddY/DAO-、以下、「DAO-/-」という。)個体3匹のうち1匹目(DAO-/- 1)、2匹目(DAO-/- 2)及び3匹目(DAO-/- 3)の尿中全アミノ酸光学異性体含量分析結果を示す表である。グリシンは光学異性体が存在しないので、L体の欄に記載された。アミノ酸はすべてNBD-Fにより蛍光誘導体化され、本発明の全アミノ酸光学異性体含量分析装置を用いて解析された。トリプトファンはNBD誘導体の感度は低いため、今回の解析ではndとされた。システインについては、空気酸化によりシスチンが生成するため、システインとしての含量は極めて低い。そこで今回の解析ではndとされた。図8-7は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のD-アミノ酸含量を比較した表である。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。図8-8は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のL-アミノ酸含量を比較した表である。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。図8-9は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の各アミノ酸のD-体濃度及びL-体の濃度の和に対するD-体濃度の百分率(%D)を比較した表である。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。図8-10は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の全L-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total L)を比較した表である。D-セリン、D-アロ-スレオニン、D-アラニン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。図8-11は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中の全D-アミノ酸の濃度の和に対する各D-アミノ酸濃度の百分率(%D/total D)を比較した表である。図8-12は、D-アミノ酸酸化酵素(DAO)野生型マウス3匹(DAO+/+ 1、DAO+/+ 2及びDAO+/+ 3)と、D-アミノ酸酸化酵素(DAO)欠損マウス3匹(DAO-/- 1、DAO-/- 2及びDAO-/- 3)と尿中のD-アスパラギン濃度に対する各D-アミノ酸濃度の百分率(%D/D-Asn)を比較した表である。D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンはD-アミノ酸酸化酵素(DAO)野生型マウスよりもDAO酵素欠損マウスが有意に高かった。
 2.6 D-アスパラギン酸酸化酵素(DDO)欠損マウス
 図9-1、9-2、9-3及び9-4は、それぞれ、D-アスパラギン酸酸化酵素(DDO)野生型マウス(DDO+)個体4匹のうち1匹目、2匹目、3匹目及び43匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図である。図9-5、9-6、9-7及び9-8は、それぞれ、D-アスパラギン酸酸化酵素(DDO)欠損マウス(DDO-)個体4匹のうち1匹目、2匹目、3匹目及び4匹目の尿中全アミノ酸光学異性体含量分析結果を示す波形図である。DDO欠損マウスの尿中には野生型マウスの尿中よりD-アスパラギン濃度が高く、D-アスパラギン酸及びD-アルギニンの濃度も高いことが示された。DDO酵素の良好な基質であるD-グルタミン酸は、DDO欠損マウスの尿中にはほとんど認められなかった。
 以上の2.5及び2.6の結果から、D-アミノ酸代謝酵素であるDAO及びDDOの欠損によりそれぞれ、特異的なD-アミノ酸の濃度が変化した。すなわち、これらの酵素活性を制御することにより、特異的なD-アミノ酸の濃度を制御することができると考えられる。
 2.7 フェニルケトン尿症疾患モデルマウス
 図10-1は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-2は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-3は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-4は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-5は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。D-フェニルアラニン濃度は対照マウスよりフェニルケトン尿症疾患モデルマウスで高く、有意差は、pが0.01未満であった。図10-6は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-7は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-8は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-9は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-10は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。L-フェニルアラニンの濃度は、対照マウスよりフェニルケトン尿症疾患モデルマウスが高く、有意差は、pが0.01未満であった。
 図10-11は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-12は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-13は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-14は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-15は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-16は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-17は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-18は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-19は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図10-20は、フェニルケトン尿症疾患モデルマウス(フェニルアラニン水酸化酵素(PAH)突然変異マウス、Pahenu2/Pahenu2、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。L-フェニルアラニン濃度は、対照マウスよりフェニルケトン尿症疾患モデルマウスで高く、有意差は、pが0.01未満であった。
 2.8 メープルシロップ尿症疾患モデルマウス
 図11-1は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-2は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-3は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のD-イソロイシン濃度は、メープルシロップ尿症マウスで対照マウスより高く、有意差は、pが0.05未満であった。図11-4は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-5は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-6は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のL-バリン濃度は、メープルシロップ尿症マウスのほうが対照マウスより高く、有意差は、pが0.01未満である。図11-7は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のL-アロ-イソロイシン濃度はメープルシロップ尿症マウスのほうが対照マウスより高く、有意差は、pが0.01未満であった。図11-8は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のL-イソロイシン濃度は、メープルシロップ尿症マウスのほうが対照マウスより高く、有意差は、pが0.01未満であった。図11-9は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のL-ロイシン濃度は、メープルシロップ尿症マウスのほうが対照マウスより高く、有意差は、pが0.05未満であった。図11-10は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の血漿中のL-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-11は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。血漿中のD-イソロイシン濃度は、メープルシロップ尿症マウスのほうが対照マウスより高く、有意差は、pが0.01未満であった。図11-12は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-13は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-14は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図11-15は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の血漿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。
 図12-1は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-2は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-3は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のD-イソロイシン濃度は対照マウスよりメープルシロップ尿症マウスで高く、有意差は、pが0.05未満であった。図12-4は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-5は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のD-フェニルアラニン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-6は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のL-バリン濃度は対照マウスよりメープルシロップ尿症マウスで高く、有意差は、pが0.01未満であった。図12-7は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のL-アロ-イソロイシン濃度は、対照マウスよりメープルシロップ尿症マウスで高く、有意差は、pが0.01未満であった。図12-8は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のL-イソロイシン濃度は対照マウスよりメープルシロップ尿症マウスで高く、有意差は、pが0.05未満であった。図12-9は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、Dbttm1Geh/Dbttm1Geh、黒塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のL-ロイシン濃度は対照マウスよりメープルシロップ尿症マウスで高く、有意差は、pが0.01未満であった。図12-11は、メープルシロップ尿症マウス中間型(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のD-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。尿中のD-イソロイシン濃度は対照マウスよりメープルシロップ尿症マウス中間型で高く、有意差は、pが0.05未満であった。図12-12は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-バリン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-13は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-アロ-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-14は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-イソロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。図12-15は、メープルシロップ尿症マウス(分岐鎖アルファ-ケト酸脱水素酵素(BCKDH)突然変異マウス、+/Dbttm1Geh、灰色塗り)及び対照マウス(白塗り)各5匹の尿中のL-ロイシン濃度(ナノモル/mL)及び標準誤差を表す棒グラフである。
 各種疾患患者由来のサンプルのアミノ酸立体異性体の全分析(2)
1.材料と方法
 (1)サンプル
 実施例1と同様に、各種疾患由来の血清サンプルは、米国バイオサーブ社(BioServe Biotechnologies, Ltd、米国、メリーランド州、Beltsville)から入手された。前記サンプルは、現在バイオサーブ社に買収されたGenomicCollaborative Inc.社によって採取された。採血は患者の医師による管理の下で行われ、米国の医療保険の相互運用性及び説明責任に関する法律(HIPAA)に沿った書類による採血者の同意が確認済みである。関節リウマチサンプルは、多少可動な疾患状態の49才の白人男性由来であった。腎臓がんサンプルは、ステージIの47才のベトナム人男性由来であった。肺がんサンプルは、ステージIの65才のベトナム人男性由来であった。心血管疾患サンプルは、43才の白人男性由来であった。多発性硬化症サンプルは、再発寛解型の33才の白人男性由来であった。急性骨髄性白血病サンプルは、16才男性由来であった。リンパ腫サンプルは、49才ベトナム人女性由来であった。乾癬サンプルは、40才の白人男性由来であった。糖尿病サンプルは、50才白人男性由来であった。全身性エリテマトーテスサンプルは38才白人女性由来であった。
 (2)アミノ酸立体異性体の全分析
 前記サンプルのアミノ酸立体異性体の全分析は実施例1と同様に実施された。
 2.結果
 実施例3の疾患サンプルの解析結果のうちL-アミノ酸については図13-1に、D-アミノ酸については図13-2にそれぞれ分析結果をまとめた。実施例1と同様に、表の各行はサンプル提供者の疾患名を表し、各列は分析されたD-アミノ酸の種類を表す。表の中でNDは検出限界以下であったことを表す。上向き矢印はこのサンプルでは第1行の健常男性のサンプルよりアミノ酸量が高いことを表し、下向き矢印は第1行の健常男性のサンプルよりこのサンプルのアミノ酸量が低いことを表す。細かい右上がりのハッチングは、これらのサンプルのアミノ酸量の前記健常男性のサンプルのアミノ酸量に対する割合が2倍以上(上向き矢印)か、あるいは、1/2以下(下向き矢印)かを表す。粗い左上がりのハッチングは、これらのサンプルのアミノ酸量の前記健常男性のサンプルのアミノ酸量に対する割合が2倍未満(上向き矢印)か、あるいは、1/2未満(下向き矢印)かを表す。関節リウマチでは、L-グルタミン酸は対照の健常男性サンプルより血清濃度が上がったが、L-グルタミン及びL-システインは下がった。腎臓がんでは、D-セリンは健常男性サンプルより血清濃度が上がったが、D-アラニンは血清濃度が下がった。肺がんでは、D-アラニンの血清濃度が健常男性サンプルより下がった。心血管疾患では、L-アルギニンの血清濃度が健常男性サンプルより下がったが、L-グルタミン酸は上がった。多発性硬化症では、D-セリンの血清濃度が健常男性サンプルより上がったが、L-システインの血清濃度は下がった。急性骨髄性白血病では、L-システインの血清濃度は健常男性サンプルより下がった。リンパ腫では、L-システインの血清濃度は健常男性サンプルより下がった。急性リンパ性白血病では、L-グルタミン酸の血清濃度は健常男性サンプルより上がったが、L-システイン濃度は下がった。乾癬では、L-アルギニン及びL-システインの血清濃度は健常男性サンプルより下がった。糖尿病では、D-アラニン及びL-システインの血清濃度は健常男性サンプルより下がったが、L-グルタミン酸の血清濃度は上がった。なお、全身性エリテマトーテスでは、変化が認められなかった。
 従来のアミノ酸定量分析では、立体異性体が区別できないので、各アミノ酸はそのすべての立体異性体の和として定量されてきた。しかし本発明の診断方法では、立体異性体をそれぞれ別の物質として区別して定量できる。図3-1ないし図3-3に示されるように、D-体の量をD-体及びL-体の量の和の百分率(%D)で表現すると、大腸がん患者のD-セリン量(図2-1)と比較して大腸がん患者のセリンの%D(図3-1)はばらつきが少なくなる。同様に、腎臓病患者のD-アラニン量(図2-5)と比較して腎臓病患者のアラニンの%D(図3-3)はばらつきが少なくなる。これは、D-アミノ酸量は疾患と相関するとともに、ラセミ化を通じてL-体量との相関がありうるので、D-体及びL-体の和で正規化することでL-体量の変動の影響を除外することができることが理由として考えられる。このように、疾患と相関性のあるD-アミノ酸の量が他の物質の量とも相関性が認められることがある。ここで該他の物質の量そのものは前記疾患との相関性はない場合には、前記D-アミノ酸の量を前記他の物質の量で正規化するパラメーター(例えば%D)を作成することでより診断特性を向上させることができる。
 今後多数の疾患についてD-アミノ酸量との相関関係の研究が大規模に展開される。これによりさらに多くの疾患でD-アミノ酸量に基づく診断技術の開発が期待される。

Claims (12)

  1.  被検者の生物学的材料中のアミノ酸立体異性体を分離・定量する手段と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者の病態情報を出力する手段とを含むことを特徴とする、疾患サンプル分析装置。
  2.  前記判別式は、
    病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
    病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かであることを特徴とする、請求項1に記載の疾患サンプル分析装置。
  3.  前記病態指標値に基づいて前記被検者の病態情報を出力する手段は、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力する手段であることを特徴とする、請求項2に記載の疾患サンプル分析装置。
  4.  前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸であることを特徴とする、請求項2又は3に記載の疾患サンプル分析装置。
  5.  被検者の生物学的材料中のアミノ酸立体異性体を分離・定量する定量分析部と、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る病態指標値演算部と、前記病態指標値に基づいて前記患者の病態情報を出力する病態情報出力部とを含むことを特徴とする、疾患サンプル分析システム。
  6.  前記判別式は、
    病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
    病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かであることを特徴とする、請求項5に記載の疾患サンプル分析システム。
  7.  前記病態情報出力部は、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力することを特徴とする、請求項6に記載の疾患サンプル分析システム。
  8.  前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸であることを特徴とする、請求項6又は7に記載の疾患サンプル分析システム。
  9.  被検者の生物学的材料中のアミノ酸立体異性体の量を測定するステップと、該アミノ酸立体異性体の量を判別式に代入して計算し、病態指標値を得る手段と、前記病態指標値に基づいて前記患者の病態情報を出力するステップとを含むことを特徴とする、疾患サンプル分析方法。
  10.  前記判別式は、
    病態指標値=(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/(健常者の生物学的材料中の前記疾患と相関するアミノ酸立体異性体の基準値)か、
    病態指標値=[(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)/{(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体の測定値)+(前記被検者の生物学的材料中の測定値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの測定値)}]÷[(健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)/{(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体の基準値)+(前記健常者の基準値のうち前記疾患と相関するアミノ酸立体異性体のエナンチオマーの基準値)}]かであることを特徴とする、請求項9に記載の疾患サンプル分析方法。
  11.  前記病態指標値に基づいて前記被検者の病態情報を出力するステップは、前記病態指標値が2.0又はこれ以上のとき、前記被検者は前記疾患に罹患しているとの前記被検者の病態情報を出力するステップであることを特徴とする、請求項10に記載の疾患サンプル分析方法。
  12.  前記疾患と相関するアミノ酸立体異性体は、前記疾患が腎臓病のとき、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、アロD-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のアミノ酸であり、前記疾患が前立腺がんのとき、D-ヒスチジン及び/又はD-アスパラギンであり、前記疾患が骨粗鬆症のとき、D-アスパラギンであり、前記疾患が拡張型心筋症のとき、D-セリン、L-アルギニン、D-グルタミン酸及びD-プロリンであり、前記疾患が更年期障害のとき、L-ヒスチジン、L-フェニルアラニン及びD-アスパラギン酸であり、前記疾患が肉腫のとき、D-アルギニンであり、前記疾患がアルツハイマー病のとき、D-アロ-イソロイシン、D-セリン、D-アラニン、D-メチオニン、D-ロイシン、D-アスパラギン酸、D-フェニルアラニン及びL-フェニルアラニンであり、DAO欠損のとき、D-セリン、D-アロ-スレオニン、D-アラニン、D-プロリン、D-ロイシン及びD-フェニルアラニンであり、DDO欠損のとき、D-アスパラギン、D-アスパラギン酸及びD-アルギニンであり、フェニルケトン尿症のとき、L-フェニルアラニンであり、メープルシロップ尿症のとき、L-バリン、L-アロ-イソロイシン、D-イソロイシン、L-イソロイシン及びL-ロイシンであり、関節リウマチのとき、L-グルタミン酸、L-グルタミン及びL-システインであり、腎臓がんのとき、D-セリン及びD-アラニンであり、肺がんのとき、D-アラニンであり、心血管疾患のとき、L-アルギニン及びL-グルタミン酸であり、多発性硬化症のとき、D-セリン及びL-システインであり、急性骨髄性白血病のとき、L-システインであり、リンパ腫のとき、L-システインであり、急性リンパ性白血病のとき、L-グルタミン酸及びL-システインであり、乾癬のとき、L-アルギニン及びL-システインであり、糖尿病のときD-アラニン、L-システイン及びL-グルタミン酸であることを特徴とする、請求項10又は11に記載の疾患サンプル分析方法。
PCT/JP2013/001849 2012-03-18 2013-03-18 疾患サンプル分析装置、分析システム及び分析方法 WO2013140785A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP13764636.0A EP2829877B1 (en) 2012-03-18 2013-03-18 Apparatus, system and method for analyzing disease sample
CN201380019921.6A CN104246497B (zh) 2012-03-18 2013-03-18 疾病样品分析装置、分析系统及分析方法
CN201910591893.4A CN110133301B (zh) 2012-03-18 2013-03-18 疾病样品分析装置、分析系统及分析方法
CN202210524153.0A CN114966050A (zh) 2012-03-18 2013-03-18 疾病样品分析装置、分析系统及分析方法
IN2060MUN2014 IN2014MN02060A (ja) 2012-03-18 2013-03-18
US14/385,871 US20150079623A1 (en) 2012-03-18 2013-03-18 Apparatus, system and method for analyzing disease sample
EP20152640.7A EP3663758A1 (en) 2012-03-18 2013-03-18 Apparatus, system and method for analyzing disease sample
CN201910585530.XA CN110133296B (zh) 2012-03-18 2013-03-18 疾病样品分析装置、分析系统及分析方法
CN201910591882.6A CN110161256B (zh) 2012-03-18 2013-03-18 疾病样品分析装置、分析系统及分析方法
EP20207502.4A EP3795997B1 (en) 2012-03-18 2013-03-18 Apparatus, system and method for analyzing disease sample
US16/137,968 US20190025320A1 (en) 2012-03-18 2018-09-21 Apparatus, system and method for analyzing disease sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012061305 2012-03-18
JP2012-061305 2012-03-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/385,871 A-371-Of-International US20150079623A1 (en) 2012-03-18 2013-03-18 Apparatus, system and method for analyzing disease sample
US16/137,968 Division US20190025320A1 (en) 2012-03-18 2018-09-21 Apparatus, system and method for analyzing disease sample

Publications (1)

Publication Number Publication Date
WO2013140785A1 true WO2013140785A1 (ja) 2013-09-26

Family

ID=49222264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001849 WO2013140785A1 (ja) 2012-03-18 2013-03-18 疾患サンプル分析装置、分析システム及び分析方法

Country Status (7)

Country Link
US (2) US20150079623A1 (ja)
EP (3) EP2829877B1 (ja)
JP (3) JP6037388B2 (ja)
CN (11) CN110133298A (ja)
IN (1) IN2014MN02060A (ja)
TW (2) TWI615614B (ja)
WO (1) WO2013140785A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087985A1 (ja) 2013-12-11 2015-06-18 株式会社資生堂 腎不全の早期診断マーカー
WO2018092818A1 (ja) 2016-11-15 2018-05-24 株式会社資生堂 多次元クロマトグラフィー分析方法及び分析システム
WO2018159841A1 (ja) 2017-03-03 2018-09-07 株式会社資生堂 新規化合物、当該新規化合物を含む蛍光誘導体化用試薬、並びに当該新規化合物を用いたアミノ酸の光学異性体を光学分割する方法及び蛍光誘導体化されたアミノ酸
WO2021132658A1 (ja) 2019-12-27 2021-07-01 Kagami株式会社 腎機能を推定する方法及びシステム
US11099191B2 (en) 2016-05-17 2021-08-24 Osaka University Kidney disease prognosis prediction method and system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683414A (zh) * 2015-06-10 2018-02-09 国立大学法人金泽大学 肾病的病态生物标志物
CN108486028B (zh) * 2015-10-10 2021-06-01 中国科学院南海海洋研究所 一种高产含有L-Val结构单元的化合物的菌株△mfnH
WO2017200025A1 (ja) * 2016-05-17 2017-11-23 国立大学法人大阪大学 糖尿病を判定するための血液試料の分析方法及びシステム
WO2018159833A1 (ja) * 2017-03-02 2018-09-07 株式会社ニコン 細胞の判別方法、がんの検査方法、計測装置、がんの検査装置および検査プログラム
CN112469404A (zh) * 2018-06-07 2021-03-09 国立大学法人金泽大学 肾损伤的预防或治疗用的药物组合物
JP7366428B2 (ja) * 2018-08-27 2023-10-23 Kagami株式会社 乾癬を判定するための皮膚試料の分析方法及びシステム
JP7434678B2 (ja) * 2019-05-20 2024-02-21 花王株式会社 認知症又はそのリスクの検査方法
CN112180007B (zh) * 2020-09-16 2023-08-18 上海市皮肤病医院 基于代谢组学的泛发性脓疱型银屑病诊断标志物及其应用
CN111899883B (zh) * 2020-09-29 2020-12-15 平安科技(深圳)有限公司 少样本或零样本的疾病预测设备、方法、装置及存储介质
WO2023033178A1 (ja) * 2021-09-03 2023-03-09 Kagami株式会社 癌についての情報を提供する方法、癌についての情報を提供するシステム及び癌を治療する方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291628B2 (ja) 2003-06-12 2009-07-08 株式会社資生堂 液体クロマトグラフ装置及び試料に含まれる光学異性体の分析方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290893A (en) * 1979-05-08 1981-09-22 Yeda Research & Development Co. Ltd. Separation of amino acids by liquid chromatography using chiral eluants
NZ236114A (en) * 1989-11-22 1993-04-28 Merrell Dow Pharma Peptide antagonists of bombesin and of gastrin releasing peptide, and pharmaceutical compositions
US5374651A (en) * 1991-09-27 1994-12-20 Board Of Regents, The University Of Texas System Methods and compositions for the treatment of hypotension with arginine free essential and essential amino acids and arginine derivatives
AU5360796A (en) * 1995-03-09 1996-10-02 Neurocrine Biosciences, Inc. Peptide analogues of human myelin basic protein useful in treating multiple sclerosis
JPH0975078A (ja) * 1995-09-13 1997-03-25 Ikeda Shokken Kk 耐熱性d−アミノ酸オキシダーゼ、その製造法および微生物
US5780435A (en) * 1995-12-15 1998-07-14 Praecis Pharmaceuticals Incorporated Methods for treating prostate cancer with LHRH-R antagonists
EP0882736A1 (en) * 1997-06-02 1998-12-09 Laboratoire Theramex S.A. LH-RH peptide analogues, their uses and pharmaceutical compositions containing them
ATE251308T1 (de) * 1998-06-11 2003-10-15 Fox Chase Cancer Ct Methoden zur ermittlung des risikos eines diabetikers für einen mit diabetes in zusammenhang stehenden pathologischen zustand
AU775563B2 (en) * 1999-05-14 2004-08-05 Brandeis University Nucleic acid-based detection
US6479063B2 (en) * 1999-12-27 2002-11-12 Kenneth Weisman Therapeutic uses of hormonal manipulation using combinations of various agents to treat atherosclerosis
US7223558B2 (en) * 2001-07-11 2007-05-29 Bristol-Myers Squibb Company Polynucleotides encoding three novel human cell surface proteins with leucine rich repeats and immunologobulin folds, BGS2, 3, and 4 and variants thereof
FR2828693B1 (fr) * 2001-08-14 2004-06-18 Exonhit Therapeutics Sa Nouvelle cible moleculaire de la neurotoxicite
CA2475953A1 (en) * 2002-02-27 2003-09-04 E. Ann Tallant Angiotensin-(1-7) and angiotensin-(1-7) agonists for inhibition of cancer cell growth
FR2838444B1 (fr) * 2002-04-10 2016-01-01 Neovacs Nouveaux peptides et leur application en therapeutique
US20070298041A1 (en) * 2002-06-28 2007-12-27 Tomlinson Ian M Ligands That Enhance Endogenous Compounds
GB0219776D0 (en) * 2002-08-24 2002-10-02 Oxford Glycosciences Uk Ltd A protein involved in carcinoma
GB0223424D0 (en) * 2002-10-09 2002-11-13 Imp College Innovations Ltd Disease-associated gene
AU2003289263A1 (en) * 2002-12-09 2004-06-30 Ajinomoto Co., Inc. Organism condition information processor, organism condition information processing method, organism condition information managing system, program, and recording medium
US20060241051A1 (en) * 2002-12-26 2006-10-26 Chieko Kitada Metastin derivatives and use thereof
AU2003900777A0 (en) * 2003-02-21 2003-03-13 Medvet Science Pty. Ltd. A method of diagnosis and treatment
EP1601948A2 (en) * 2003-03-10 2005-12-07 Sionex Corporation Systems for differential ion mobility analysis
CA2521221A1 (en) * 2003-04-02 2004-10-14 Genix Therapeutics, Inc. Method for the treatment of prostate cancer
CN1557823A (zh) * 2004-02-12 2004-12-29 窦德献 L-或d-氨基酸合铂配位体、制备方法及其用途
AT500483B1 (de) * 2004-07-13 2006-01-15 Mattner Frank Dr Set zur vorbeugung oder behandlung der alzheimer'schen erkrankung
GB0417887D0 (en) * 2004-08-11 2004-09-15 Ares Trading Sa Protein
ES2594885T3 (es) * 2005-03-18 2016-12-23 Shiseido Company, Limited Método para evaluar una enfermedad de la piel utilizando un antígeno relacionado con el carcinoma de células escamosas como medida
CN101189243A (zh) * 2005-04-06 2008-05-28 阿斯利康(瑞典)有限公司 取代的杂环及其作为chk1、pdk1和pak抑制剂的应用
JP2007077104A (ja) * 2005-09-16 2007-03-29 Shiseido Co Ltd 血管内皮増殖因子阻害剤
BRPI0708485A2 (pt) * 2006-03-02 2011-05-31 Perkinelmer Las Inc métodos para distinguir isÈmeros usando espectrometria de massa
US20070258899A1 (en) * 2006-03-31 2007-11-08 Karyon-Ctt Ltd Diagnostic and therapeutic agents
JP5005955B2 (ja) * 2006-05-24 2012-08-22 田辺三菱製薬株式会社 被験物質の脂質代謝異常症誘発可能性を予測する方法
CA2655997A1 (en) * 2006-06-30 2008-01-10 Schering Corporation Igfbp2 biomarker
EP1900742A1 (en) * 2006-09-07 2008-03-19 AEterna Zentaris GmbH Conjugates of disorazoles and their derivatives with cell-binding molecules, novel disorazole derivatives, processes of manufacturing and uses thereof
CN101578287B (zh) * 2006-09-06 2012-09-05 阿特纳赞塔里斯有限公司 地索拉唑及其衍生物与细胞结合分子的轭合物,新的地索拉唑衍生物,其制备方法及其应用
US20090075284A1 (en) * 2006-09-19 2009-03-19 The Regents Of The University Of Michigan Metabolomic profiling of prostate cancer
ZA200904686B (en) * 2007-01-18 2010-09-29 Sepracor Inc Inhibitiors of D-amino acid oxidase
AU2008216748A1 (en) * 2007-02-12 2008-08-21 Anthrogenesis Corporation Hepatocytes and chondrocytes from adherent placental stem cells; and CD34+, CD45- placental stem cell-enriched cell populations
US8034780B2 (en) * 2007-07-16 2011-10-11 Mcphail Kerry Leigh Isolation, purification, and structure elucidation of the antiproliferative compound coibamide A
KR20110000548A (ko) * 2008-01-17 2011-01-03 도레이 카부시키가이샤 신장암의 진단 또는 검출을 위한 조성물 및 방법
JP2009184981A (ja) * 2008-02-07 2009-08-20 Shiseido Co Ltd 抗d−アミノ酸モノクローナル抗体及び、抗d−アミノ酸モノクローナル抗体を用いたd−アミノ酸の免疫学的分析方法
WO2009139497A1 (en) * 2008-05-14 2009-11-19 Takeda Pharmaceutical Company Limited Cbp501 -derived agents and methods based thereon for inhibiting g2 cell cycle arrest and sensitizing cells to dna damaging agents
WO2009143489A2 (en) * 2008-05-22 2009-11-26 Archer Pharmaceuticals, Inc. Modulation of angiogenesis by a-beta peptide fragments
WO2010005982A2 (en) * 2008-07-07 2010-01-14 The General Hospital Corporation Multiplexed biomarkers of insulin resistance
JP2010038796A (ja) * 2008-08-06 2010-02-18 Human Metabolome Technologies Inc 疾患マーカー、および、疾患マーカーの測定方法
CN102124103A (zh) * 2008-08-26 2011-07-13 国立大学法人九州大学 利用了Dao1-/-小鼠的D-氨基酸相关疾病的评价筛选方法
WO2010057647A2 (en) * 2008-11-21 2010-05-27 Universita' Degli Studi Di Milano Methods and compositions for the diagnosis and treatment of diabetes
ES2799327T3 (es) * 2009-05-05 2020-12-16 Infandx Ag Método para diagnosticar asfixia
CN101619092B (zh) * 2009-08-06 2012-08-15 中国人民解放军第三军医大学第二附属医院 肿瘤抗原trag-3模拟表位肽及其应用
CN102079771B (zh) * 2010-12-10 2012-10-03 郑州大学 具有抗肿瘤活性的雌甾氨基酸酯化合物及其合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291628B2 (ja) 2003-06-12 2009-07-08 株式会社資生堂 液体クロマトグラフ装置及び試料に含まれる光学異性体の分析方法

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
ARBER, S., CELL, vol. 88, 1997, pages 393
CORRIGAN J.J., SCIENCE, vol. 164, 1969, pages 142
D'ANIELLO ACT, FASEB J, vol. 14, 2000, pages 699
FUKUSHIMA T ET AL.: "Determination of D-Amino Acids in Serum from Patients with Renal Dysfunction", BIOL PHARM BULL, vol. 18, no. 8, 1995, pages 1130 - 1132, XP008073859 *
HAMASE K., J. CHROMATOGR. A, vol. 1143, 2007, pages 105
HAMASE K., J. CHROMATOGR. A, vol. 1217, 2010, pages 1056
HAMASE K; MORIKAWA A; ZAITSU K., J CHROMATOGR. B, vol. 781, 2002, pages 73
HOMANICS GE, BMC MED GENET, vol. 7, 2006, pages 33
HSIAO, K., SCIENCE, vol. 274, 1996, pages 99
HUANG, A.S., J. NEUROSCI., vol. 26, 2006, pages 2814
KONNO, R., GENETICS, vol. 103, 1983, pages 277
MAGDALENA C. WALDHIER ET AL.: "Improved enantiomer resolution and quantification of free D-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry", J CHROMATOGR A, vol. 1218, no. 28, 2011, pages 4537 - 4544, XP055166406 *
MIYOSHI Y, J. CHROMATOGR. B, vol. 879, 2011, pages 3184
MIYOSHI Y., J. CHROMATOGR. B, vol. 879, 2011, pages 3184
NAGATA Y, FEBS LETT., vol. 444, 1999, pages 160
NISHIKAWA T, BIOL. PHARM. BULL., vol. 28, 2005, pages 1561
SASABE, J., PROC. NATL. ACAD. SCI., vol. 109, 2012, pages 627
See also references of EP2829877A4
SHEDLOVSKY, A, GENETICS, vol. 134, 1993, pages 1205
YOKO NAGATA: "Hito Kessho Chu ni Sonzai suru Chusei Yuri D-Amino Acid", VIVA ORIGINO, vol. 18, no. 2, 1990, pages 88 - 89, XP008174915 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087985A1 (ja) 2013-12-11 2015-06-18 株式会社資生堂 腎不全の早期診断マーカー
CN105793712A (zh) * 2013-12-11 2016-07-20 株式会社资生堂 肾衰竭的早期诊断标志物
US10393749B2 (en) 2013-12-11 2019-08-27 Shiseido Company, Ltd. Marker for early diagnosis of kidney failure
EP3842806A1 (en) 2013-12-11 2021-06-30 Kagami Inc. Marker for early diagnosis of kidney failure
US11099191B2 (en) 2016-05-17 2021-08-24 Osaka University Kidney disease prognosis prediction method and system
WO2018092818A1 (ja) 2016-11-15 2018-05-24 株式会社資生堂 多次元クロマトグラフィー分析方法及び分析システム
WO2018159841A1 (ja) 2017-03-03 2018-09-07 株式会社資生堂 新規化合物、当該新規化合物を含む蛍光誘導体化用試薬、並びに当該新規化合物を用いたアミノ酸の光学異性体を光学分割する方法及び蛍光誘導体化されたアミノ酸
WO2021132658A1 (ja) 2019-12-27 2021-07-01 Kagami株式会社 腎機能を推定する方法及びシステム

Also Published As

Publication number Publication date
TW201344194A (zh) 2013-11-01
CN110161256B (zh) 2022-03-25
US20190025320A1 (en) 2019-01-24
CN110133300B (zh) 2022-02-25
EP3795997B1 (en) 2022-08-24
CN104246497B (zh) 2017-10-13
CN110133300A (zh) 2019-08-16
CN110133296A (zh) 2019-08-16
EP3663758A1 (en) 2020-06-10
JP6037388B2 (ja) 2016-12-07
EP2829877B1 (en) 2020-01-22
CN110133299A (zh) 2019-08-16
IN2014MN02060A (ja) 2015-08-21
CN110133301A (zh) 2019-08-16
TW201736851A (zh) 2017-10-16
CN110133295A (zh) 2019-08-16
CN110133301B (zh) 2022-03-22
JP6214016B2 (ja) 2017-10-18
JP2017015741A (ja) 2017-01-19
JP2017223711A (ja) 2017-12-21
CN110133297A (zh) 2019-08-16
CN107449923B (zh) 2020-07-24
US20150079623A1 (en) 2015-03-19
TWI615614B (zh) 2018-02-21
TWI664425B (zh) 2019-07-01
CN110161256A (zh) 2019-08-23
CN110133296B (zh) 2022-03-25
CN114966050A (zh) 2022-08-30
CN107449923A (zh) 2017-12-08
EP2829877A1 (en) 2015-01-28
CN104246497A (zh) 2014-12-24
EP2829877A4 (en) 2015-12-09
CN110133298A (zh) 2019-08-16
JP2013224929A (ja) 2013-10-31
EP3795997A1 (en) 2021-03-24
JP6391787B2 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6391787B2 (ja) 疾患サンプル分析装置、分析システム及び分析方法
JP2013224929A5 (ja)
US20190339281A1 (en) Marker for early diagnosis of kidney failure
CN109154621B (zh) 肾脏病的预后预测方法及系统
JP5877862B2 (ja) Dao1−/−マウスを活用したD−アミノ酸関連疾患の評価・スクリーニング方法
JP5224536B2 (ja) 尿路系腫瘍の判定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14385871

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013764636

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE