WO2015087985A1 - 腎不全の早期診断マーカー - Google Patents
腎不全の早期診断マーカー Download PDFInfo
- Publication number
- WO2015087985A1 WO2015087985A1 PCT/JP2014/082899 JP2014082899W WO2015087985A1 WO 2015087985 A1 WO2015087985 A1 WO 2015087985A1 JP 2014082899 W JP2014082899 W JP 2014082899W WO 2015087985 A1 WO2015087985 A1 WO 2015087985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- renal failure
- threonine
- concentration
- allo
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6806—Determination of free amino acids
- G01N33/6812—Assays for specific amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8877—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/34—Genitourinary disorders
- G01N2800/347—Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/461—Flow patterns using more than one column with serial coupling of separation columns
- G01N30/463—Flow patterns using more than one column with serial coupling of separation columns for multidimensional chromatography
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Definitions
- the present invention relates to a method for analyzing blood or urine of a subject suspected of having renal failure, and a blood or urine sample analysis system of a subject suspected of having renal failure, and more specifically, A subject comprising a step of measuring the concentration of a D-form and L-form pair of at least one amino acid of the group consisting of [D-serine] and [L-serine] etc. in blood, plasma, serum or urine Blood, plasma, serum or urine analysis method and blood, plasma, serum or urine sample analysis system of the subject, storage unit, analysis measurement unit, data processing unit, pathological information output A blood, plasma, serum or urine sample analysis system for carrying out the analysis method.
- Chronic renal failure is a disease that affects 13.3 million people, equivalent to about 13% of Japan's adult population, and has a high risk of end-stage renal failure (ESKD), threatening the health of the people.
- Chronic renal failure includes all those with decreased renal function, expressed as glomerular filtration rate, or with persistent (3 months or longer) evidence suggesting kidney damage.
- There is no effective treatment for chronic renal failure and if chronic renal failure progresses and kidney function declines, there is a risk of uremia, necessitating artificial dialysis and kidney transplantation, which imposes a heavy burden on the medical economy (non-patented) Reference 1).
- Chronic renal failure has no subjective symptoms.
- Acute renal failure is a disease in which renal function rapidly decreases in weeks or days.
- an acute renal failure experimental model induced by a surgical technique or drug administration is known.
- the gold standard for diagnosis of acute renal failure is urine production and serum creatinine concentration. Serum creatinine concentration is excellent in that it can be evaluated without biopsy regardless of urination.
- the glomerular filtration rate needs to be in a steady state. Insensitive to small fluctuations in glomerular filtration rate.
- changes become apparent at a relatively late stage.
- Non-patent Document 2 The serum creatinine concentration varies depending on conditions such as age, sex, muscle mass, and medicines to be taken, so it cannot be said to be a specific marker (Non-patent Document 2). Markers of acute renal failure include neutrophil gelatinase-related lipocalin (NGAL), interleukin-18 (IL-18), nephropathy molecule (KIM-1), liver fatty acid binding proteins (FABPs), cystatin C and other proteins.
- NGAL neutrophil gelatinase-related lipocalin
- IL-18 interleukin-18
- KIM-1 nephropathy molecule
- FABPs liver fatty acid binding proteins
- cystatin C cystatin C
- metabolic low molecular weight compounds such as homovanillic acid sulfate and trimethylamine-N-oxide have been reported. However, none of these markers are detected early in renal failure.
- D-serine and D-alanine have higher serum concentrations in patients with renal insufficiency than those in healthy subjects, and the ratio of D-isomer and D-isomer / (D-isomer + L-isomer) Both of these are correlated with creatinine, suggesting that they are candidates for markers of renal proximal tubule dysfunction (Non-patent Document 3). It has been disclosed that D-amino acids (Ala, Pro, Ser) tend to be high in the plasma of nephritis patients and have a correlation with the amount of creatinine (Non-patent Document 9).
- Non-Patent Document 5 The concentration of D-serine and D-alanine in urine and the ratio of D-form to the sum of D-form and L-form have been investigated for healthy individuals in each age, and the handling of D-serine in the kidneys is different (Non-Patent Document 6).
- One or more amino acids selected from the group consisting of D-serine, D-threonine, D-alanine, D-asparagine, D-allose threonine, D-glutamine, D-proline and D-phenylalanine
- a body fluid such as blood, plasma, urine, etc.
- the serum is the only sample used for determining the disease state index value in kidney disease, and it is not disclosed whether these amino acids can be used as the disease state index value in kidney disease.
- Non-patent Document 8 D-amino acid oxidase enzyme involved in the degradation of D-amino acid is expressed in the renal proximal tubule, and the D-amino acid oxidase enzyme activity decreases in ischemia-reperfused rats (Non-patent Document 4). ).
- L-serine is reabsorbed, whereas D-serine is hardly reabsorbed.
- D-amino acids including D-serine fluctuate early in renal failure.
- the present invention provides a method for analyzing blood or urine of a subject suspected of having renal failure.
- the analysis method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], and [D-asparagine] in the blood, plasma, serum or urine of a subject.
- the pathological index value calculated from the concentration of the D-form and L-form pair of at least one amino acid shows a significant decrease in the D-form composition ratio
- the ratio of the concentration of the D-form to the concentration of the L-form of at least one amino acid pair, or the ratio or percentage of the concentration of the D-form to the sum of the concentrations of the D-form and the L-form It can be calculated as a disease state index value.
- Non-Patent Document 7 amino acids in urine of patients with renal failure whose disease condition criteria are not shown are analyzed, but D-amino acid ratio is significantly higher for alanine, valine, proline, threonine, and aspartic acid. It has been shown that it has increased. Therefore, it is a surprising discovery that the percentage of D-amino acids is reduced in the urine of patients with renal failure.
- the analysis method of the present invention includes the above-mentioned amino acid group, [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], and [D-allo-threonine]. ] And [L-allo-threonine], and [D-leucine] and [L-leucine] may be included. Therefore, the analysis method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], [D-asparagine] and [L-serine] in the urine of the subject.
- the pathological index value calculated from the concentration of the D-form and L-form pair of at least one amino acid shows a significant decrease in the D-form composition ratio
- the ratio of the concentration of the D-form to the concentration of the L-form of at least one amino acid pair, or the ratio or percentage of the concentration of the D-form to the sum of the concentrations of the D-form and the L-form It can be calculated as a disease state index value.
- a method for examining renal failure wherein [D-serine] and [L-serine], [D-histidine] and [L-histidine], and [D -Asparagine] and [L-Asparagine], [D-Arginine] and [L-Arginine], [D-Allo-threonine] and [L-Threonine], [D-Glutamic acid] and [L-Glutamic acid] [D-alanine] and [L-alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], [D-allo-isoleucine] and [ L-isoleucine], [D-phenylalanine] and [L-phenylalanine], [D-lysine] and [L-lysine], [D-glutamine] and [L-glutamine], and [D-threonine] as well as[ -Threon
- the inspection method may be performed by a medical assistant who is not a doctor, or relates to a method performed by an analysis organization or the like.
- amino acid may be arbitrarily selected from the above amino acid group, but [D-histidine] and [L-histidine], [D-arginine] and [L-arginine], [D-glutamic acid] and [ L-glutamic acid], [D-valine] and [L-valine], [D-allo-isoleucine] and [L-isoleucine], [D-lysine], [L-lysine] and [D-glutamine] And [L-glutamine], [D-leucine] and [L-leucine], and [D-allo-threonine] and [L-allo-threonine] are more preferable.
- each amino acid combination may be excluded from the amino acid group described above.
- [D-serine] and [L-serine] may be excluded, [D-histidine] and [L-histidine] may be excluded, [D-asparagine] and [L-asparagine]. ], [D-arginine] and [L-arginine] may be removed, [D-allo-threonine] and [L-threonine] may be removed, [D-glutamic acid] and [L-glutamic acid] may be excluded, [D-alanine] and [L-alanine] may be excluded, and [D-proline] and [L-proline] may be excluded.
- [D-valine] and [L-valine] may be excluded, [D-allo-isoleucine] and [L-isoleucine] may be excluded, or [D-phenylalanine].
- [L-phenylalanine] [D-lysine] and [L-lysine] may be excluded, [D-glutamine] and [L-glutamine] may be excluded, and [D-threonine] and [ [L-threonine] may be removed, [D-allo-threonine] and [L-allo-threonine] may be removed, and [D-leucine] and [L-leucine] may be removed. May be.
- pathologic index values were shown to decrease after renal ischemia / reperfusion as well as the urinary creatinine concentration. Since a decrease in urinary creatinine concentration indicates a decrease in renal function, it can be used as a marker for renal failure, and the pathologic index value of the present application should also be used as a marker for renal failure in the same manner as the urinary creatinine concentration. Can do. Note that KIM-1 and NGAL, which are markers of renal failure in urine, increase in urine concentration due to decreased renal function.
- [D-histidine] and [L-histidine], [D-asparagine] and [L-asparagine], [D-proline] and [L-proline], [D-lysine] and [ L-lysine] is a pathological index value calculated using the concentration of a pair of D-form and L-form of one or more amino acids selected from the group consisting of Since it decreases with a significant difference of ⁇ 0.01, the disease state index value can be used as a more sensitive marker.
- the pathological index value calculated from the concentration of the D-form and L-form pairs of a plurality of amino acids decreases with a significant difference of P ⁇ 0.001 4 hours after renal ischemia reperfusion.
- the disease state index value can be used as a very sensitive marker. Therefore, the disease state index value of the present invention is equivalent to serum creatinine or the like, which is a conventional renal failure marker, or higher in sensitivity, and can be used for diagnosis of early stage renal failure.
- chronic kidney Insufficiency includes a state in which a decrease in renal function indicated by GFR starts, or a very early state that has renal impairment but before changes in serum creatinine and GFR appear.
- [D-glutamic acid] and [L-glutamic acid], [D-phenylalanine] and [D] have no significant difference after 4 hours after renal ischemia / reperfusion, but have significant differences after 8 hours after renal ischemia / reperfusion.
- L-phenylalanine [D-valine] and [L-valine], [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], [D-leucine] and D-form of one or more amino acids selected from the group consisting of [L-leucine], [D-allo-isoleucine] and [L-isoleucine], [D-allo-threonine] and [L-threonine]
- the pathological index value calculated using the concentration of the L-form pair can be used as a marker having sensitivity equivalent to that of conventional creatinine or the like.
- a disease state index value calculated from the concentration of a pair of D-form and L-form of one amino acid may be used, or a condition state index calculated from the concentration of a pair of D-form and L-form of another amino acid Can also be used in combination with a value.
- a condition state index calculated from the concentration of a pair of D-form and L-form of another amino acid Can also be used in combination with a value.
- [D-histidine] and [L-histidine] [D-proline] and [L-proline]
- [D-lysine] and [L-lysine] [L-lysine].
- An extremely sensitive pathological index value calculated from the concentration of the body and L-pair, and another extremely sensitive pathological index calculated from the concentration of the D- and L-pairs selected from the same group May be combined with a value.
- the above highly sensitive pathological condition index values are less sensitive pathological condition index values such as [D-glutamic acid] and [L-glutamic acid], [D-phenylalanine] and [L-phenylalanine].
- [D-valine] and [L-valine] [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], [D-leucine] and [L-leucine]
- the analysis method of the present invention compares the pathological index value of the subject with the pathological index reference value of a healthy person and the pathological index reference value of a patient with acute renal failure and / or chronic renal failure. Whether the patient's pathological index value is similar to the normal pathological index value of the healthy person, or whether the pathological index value of the subject is similar to the pathological index reference value of the acute renal failure patient or chronic renal failure patient, or the subject
- the method may further include a step of determining whether the pathological index value of the person is between the pathological index reference value of the healthy person and the pathological index reference value of the chronic renal failure patient.
- the present invention provides a method in which a threshold is set in advance from a pathological index value of a group of healthy subjects and / or a group of patients with renal failure, thereby comparing the pathological index value of the subject with the threshold and Can be determined. If it is an expert, a threshold value can be suitably set from the pathological condition index value of a healthy subject group or a renal failure patient group. As the threshold value, for example, an average value, a median value, and an X percentile value of a healthy person group or a renal failure patient group can be used, but the threshold value is not limited thereto.
- the threshold may be one, type of renal failure (acute, chronic) and cause (for example, drug nephropathy, diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrosclerosis, etc.), A plurality can be set according to the state (early, middle, late) and the amino acids used or combinations thereof. By comparing the preset threshold value with the pathological condition index value of the subject, it becomes possible to determine, determine or diagnose the pathological condition of the subject's renal failure.
- the analysis method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], and [D-asparagine in the blood, plasma, serum or urine of the subject. ] And [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-alanine] and [L-alanine], D of at least one amino acid in the amino acid group consisting of [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-lysine] and [L-lysine]
- the first pathological index value of the subject calculated from the concentration of the body and L-body pair is between the pathological index reference value of the healthy subject and the pathological index reference value of the chronic renal failure patient; And the subject's blood, plasma, serum or Of [D-glutamic acid] and [L-gluta
- the first disease state index value [D-serine] and [L-serine]
- [D-histidine] and [L-histidine] [D-asparagine] and [L-asparagine]
- [D-arginine] and [L-arginine] [D-alanine] and [L-alanine]
- [D-proline] and [L-proline] [D-lysine] and [L-lysine]
- the pathological condition index value of the subject calculated from the concentrations of the D-form and L-form pairs of at least one amino acid in the group consisting of: [D-glutamic acid] ] And [L-glutamic acid], [D-allo-isoleucine] and [L-isoleucine], [D-phenylalanine] and [L-phenylalanine], [D-valine] and [L-valine]
- the amino acid group further includes [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], [D-allo-threonine] and [L-allo-threonine], [ When D-leucine] and [L-leucine] are included, the first disease state index values are [D-serine] and [L-serine], [D-histidine] and [L-histidine], [D-asparagine] and [L-asparagine], [D-arginine] and [L-arginine], [D-alanine] and [L-alanine], [D-proline] and [L-proline] And [D-lysine] and [L-lysine], and [D-allo-threonine] and [L-allo-threonine] at least one amino acid in the D-form and L-form pair Calculated from the concentration It can be used a condition index of the subject.
- the second disease state index values are [D-glutamic acid] and [L-glutamic acid], [D-allo-isoleucine] and [L-isoleucine], [D-phenylalanine] and [L-phenylalanine], In addition to [D-valine] and [L-valine], [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], [D-leucine] and [L-valine] It may be a disease state index value calculated from the concentration of a pair of D-form and L-form of at least one amino acid selected from the group consisting of [leucine].
- the present invention provides a sample analysis system for blood or urine of a subject suspected of having renal failure.
- the sample analysis system of the present invention includes a storage unit, an analysis measurement unit, a data processing unit, and a pathological condition information output unit.
- the storage unit stores a pathological index reference value in blood, plasma, serum or urine of a healthy person and a pathological index reference value in blood, plasma, serum or urine of a patient with acute renal failure and / or chronic renal failure.
- the analytical measurement unit comprises D-serine and L-serine, D-histidine and L-histidine, D-asparagine and L-asparagine among amino acids in blood, plasma, serum or urine of the subject.
- D-arginine and L-arginine D-allo-threonine and L-threonine, D-glutamic acid and L-glutamic acid, D-alanine and L-alanine, D-proline and L-proline, D- At least one pair of amino acid stereoisomers selected from the group consisting of valine and L-valine, D-allo-isoleucine and L-isoleucine, D-phenylalanine and L-phenylalanine, and D-lysine and L-lysine Is separated and quantified.
- the data processing unit includes [D-serine] and [L-serine], [D-histidine] and [L-histidine], [D-asparagine] and [L-asparagine] of the subject, [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-glutamic acid] and [L-glutamic acid], [D-alanine] and [L- Alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], [D-allo-isoleucine] and [L-isoleucine], and [D-phenylalanine].
- the pathological index value calculated from the concentration of the D-form and L-form pair of at least one amino acid indicates that the subject is associated with renal failure when it indicates a decrease in the proportion of the D-form. it can.
- the analytical measurement unit comprises D-serine and L-serine, D-histidine and L-histidine, D-asparagine and L-asparagine among the urine amino acids of the subject.
- the data processing unit includes [D-serine] and [L-serine], [D-histidine] and [L-histidine], [D-asparagine] and [L-asparagine] of the subject, [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-glutamic acid] and [L-glutamic acid], [D-alanine] and [L- Alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], [D-allo-isoleucine] and [L-isoleucine], and [D-phenylalanine].
- the pathological index value Calculating at least one amino acid of the group consisting of D-form and L-form pairs, the pathological index value Calculating.
- the pathological index value calculated from the concentration of the D-form and L-form pair of at least one amino acid indicates that the subject is associated with renal failure when it indicates a decrease in the proportion of the D-form. it can.
- the disease state index value can be calculated from the concentration of a D-form and L-form pair of a certain amino acid, and is a value that can correlate a subject with renal failure when it indicates a decrease in the proportion of the D-form.
- the sample analysis system of the present invention further includes, for example, the ratio of the concentration of D-isomer to the concentration of L-isomer in the D-isomer and L-isomer pair, the concentration of D-isomer and L-isomer, as pathological index values.
- the ratio or percentage of the concentration of D-form relative to the sum is defined as the disease state index value of the subject.
- the pathological index value of the subject is compared with the pathological index reference value of a healthy person and the pathological index reference value of a patient with acute renal failure and / or chronic renal failure.
- the subject is similar to a normal condition index value of a healthy subject, the subject is less likely to have renal failure and is defined as the subject's disease state information.
- the condition index value of the subject is similar to the condition index reference value of the chronic renal failure patient, it is defined as the condition information of the subject that the subject is suspected of having renal failure.
- the subject is suspected of premature renal failure when the condition index value of the subject is between the condition index reference value of the healthy subject and the condition index reference value of the chronic kidney failure patient It is defined as the condition information of the subject.
- the pathological condition information output unit outputs pathological condition information of the subject.
- [D-serine] and [L-serine], [D-histidine] and [L-histidine] in the blood, plasma, serum or urine of the subject [D- Asparagine] and [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-alanine] and [L-alanine] [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-lysine] and [L-lysine].
- the first pathological index value of the subject calculated from the concentration of the body and L-body pair is between the pathological index reference value of the healthy subject and the pathological index reference value of the chronic renal failure patient; And the blood of the subject At least one of [D-glutamic acid] and [L-glutamic acid], [D-allo-isoleucine] and [L-isoleucine], and [D-phenylalanine] and [L-phenylalanine] in plasma, serum or urine
- the second disease state index value of the subject calculated from the concentration of a pair of D-form and L-form of one kind of amino acid is the disease condition index reference value of the healthy person and the disease condition index reference value of the chronic renal failure patient
- the subject is suspected of having very early renal failure as the condition information of the subject.
- the present invention provides a method for diagnosing renal failure.
- the diagnostic method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine] in blood, plasma, serum or urine of a subject suspected of having renal failure, [D-asparagine] and [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-glutamic acid] and [L- Glutamic acid], [D-alanine] and [L-alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-allo-isoleucine].
- the diagnostic method of the present invention comprises [D-glutamine] and [L-glutamine], [D-threonine] and [L-threonine], [D-leucine] and [L-leucine] may be included. Therefore, the diagnostic method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], [D-asparagine] and [L-asparagine] in urine of a subject.
- the pathological index value calculated from the concentration of the D-form and L-form pair of at least one amino acid correlates the subject with renal failure when it indicates a decrease in the proportion of the D-form.
- the disease state index value is the ratio of the concentration of D-form to the concentration of L-form of at least one amino acid pair, or the ratio or percentage of the concentration of D-form to the sum of the concentrations of D-form and L-form. Can be used as the disease state index value of the subject.
- the diagnostic method of the present invention comprises comparing the pathological index value of the subject with the pathological index reference value of a healthy person and the pathological index reference value of a patient with acute renal failure and / or chronic renal failure.
- the patient's disease state index value is similar to the healthy person's disease state index reference value, the subject is diagnosed as having a high possibility of being a healthy person or having a low suspicion of renal failure.
- the subject's disease state index value is similar to the disease state index reference value of the acute renal failure patient or chronic kidney failure patient, the subject is diagnosed with a high suspicion of renal failure, and the subject's When the disease condition index value is between the disease condition index reference value of the healthy subject and the disease condition index reference value of the chronic renal failure patient, the subject further includes a step of diagnosing that the subject is suspected of having early renal failure. There is.
- the diagnostic method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], and [D-asparagine in the blood, plasma, serum or urine of the subject. ] And [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-alanine] and [L-alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-lysine] and [L-lysine].
- the first condition index value of the subject calculated from the concentration of the body and L-body pair is between the condition index reference value of the healthy subject and the condition index reference value of the chronic renal failure patient, and , Blood, plasma, serum or urine of the subject At least one amino acid selected from [D-glutamic acid] and [L-glutamic acid], [D-allo-isoleucine] and [L-isoleucine], and [D-phenylalanine] and [L-phenylalanine].
- the second condition index value of the subject calculated from the concentration of the D-form and L-form pairs is between the condition index reference value of the healthy subject and the condition index reference value of the chronic renal failure patient Sometimes, the subject is diagnosed as suspected of having very early renal failure.
- the present invention provides a method for treating renal failure.
- the diagnostic method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine] in blood, plasma, serum or urine of a subject suspected of having renal failure, [D-asparagine] and [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-glutamic acid] and [L- Glutamic acid], [D-alanine] and [L-alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-allo-isoleucine].
- the subject When it is between the index reference value, the subject is diagnosed with suspected early renal failure. And when the subject is diagnosed as suspected of having renal failure, an antihypertensive drug including, but not limited to, angiotensin converting enzyme, an angiotensin II receptor antagonist, and the like, an ⁇ -glucosidase inhibitor, insulin
- an antihypertensive drug including, but not limited to, angiotensin converting enzyme, an angiotensin II receptor antagonist, and the like, an ⁇ -glucosidase inhibitor, insulin
- a therapeutic agent for diabetes including but not limited to a pharmaceutical preparation, a therapeutic agent for dyslipidemia including but not limited to an HMG-CoA reductase inhibitor, a small intestinal cholesterol transporter inhibitor, and the like, and a recombinant human erythropoietin preparation Including, but not limited to, anemia treatment, bone / mineral metabolism disorder treatment, hyperuricemia treatment, and uremic treatment including but not limited to spherical
- the treatment method of the present invention comprises [D-serine] and [L-serine], [D-histidine] and [L-histidine], and [D-asparagine in the blood, plasma, serum or urine of the subject. ] And [L-asparagine], [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine], [D-alanine] and [L-alanine], [D-proline] and [L-proline], [D-valine] and [L-valine], and [D-lysine] and [L-lysine].
- the first condition index value of the subject calculated from the concentration of the body and L-body pair is between the condition index reference value of the healthy subject and the condition index reference value of the chronic renal failure patient, and , Blood, plasma, serum or urine of the subject At least one amino acid selected from [D-glutamic acid] and [L-glutamic acid], [D-allo-isoleucine] and [L-isoleucine], and [D-phenylalanine] and [L-phenylalanine].
- the second condition index value of the subject calculated from the concentration of the D-form and L-form pairs is between the condition index reference value of the healthy subject and the condition index reference value of the chronic renal failure patient
- a step of diagnosing that the subject is suspected of having very early renal failure a therapeutic agent for hyperkalemia, including but not limited to sodium polystyrene sulfonate, and calcium carbonate or calcium acetate. Treating said subject by administering a therapeutic agent for acute renal failure, including but not limited to a therapeutic agent for hyperphosphatemia.
- the measurement of the D-amino acid concentration in blood, plasma, serum and urine in the present invention may be carried out using any method known to those skilled in the art.
- o-phthalaldehyde OPA
- Boc-L-Cys N-tert-butyloxycarbonyl-L-cysteine
- other modifying reagents are derivatized stereospecifically with D- and L-amino acids, and then A method of separating a mixture of 100 mM acetate buffer (pH 6.0) and acetonitrile using an analytical column such as ODS-80TsQA with gradient elution is a D-form and L-form of aspartic acid, serine and alanine.
- D- and L-amino acids are derivatized with a fluorescent reagent such as 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) in advance, and then ODS-80TsQA, Mightysil RP.
- a fluorescent reagent such as 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) in advance, and then ODS-80TsQA, Mightysil RP.
- NBD-F 4-fluoro-7-nitro-2,1,3-benzoxadiazole
- ODS-80TsQA Mightysil RP.
- -Each amino acid is separated non-stereoisomerically using an analytical column such as -18GP, and then optically resolved using a Pilkle type chiral stationary phase column (for example, Sumichiral OA-2500S or R).
- a Pilkle type chiral stationary phase column for example, Sumichiral OA-2500S or R.
- the optical resolution column system in the present specification refers to a separation analysis system using at least an optical resolution column, and may include a separation analysis using an analysis column other than the optical resolution column. More specifically, passing a sample containing components having optical isomers along with a first liquid as a mobile phase through a first column filler as a stationary phase to separate the components of the sample; Individually holding each of the components of the sample in a multi-loop unit, each of the components of the sample individually held in the multi-loop unit as a stationary phase together with a second liquid as a mobile phase Supplying the second column packing material having an optically active center through a flow path to split the optical isomers contained in each of the sample components, and the optical isomerism contained in each of the sample components
- the D- / L-amino acid concentration in the sample can be measured by using an optical isomer analysis method characterized by including a step of detecting a body ( Patent No.
- D-amino acids can be quantified by immunological techniques using monoclonal antibodies that identify optical isomers of amino acids, such as monoclonal antibodies that specifically bind to D-leucine, D-aspartic acid, etc. (Japanese Patent Application No. 2008-27650).
- the notation (for example, [D-serine]) enclosed in square brackets ([]) for a certain amino acid means the concentration of the amino acid.
- a parameter (pathologic index value) based on the amino acid concentration for example, the ratio of the concentration of D-form to the concentration of L-form and the concentration of D-form relative to the sum of the concentrations of D-form and L-form Percentage is used. Since these parameters divide the concentration of one substance by the concentration of another substance, the volume of body fluids such as blood, serum, plasma or urine is reduced. Therefore, unlike the case of concentration, these parameters have the advantage that correction by the amount of body fluid is unnecessary.
- the function of the kidney to generate urine by specifically removing only a part of the blood components by filtering and reabsorbing blood plays a major role. Therefore, the amino acid concentration of the present invention may differ greatly between blood and urine, but there is not much difference between blood, serum and plasma. This is because it is not known that amino acids are specifically concentrated in blood cells, blood clots and the like. Therefore, in the examples of the present invention, the serum concentration is measured, and the parameters based on the serum concentration are used as the pathological index value of the subject and the pathological index reference value of a healthy person or a patient with renal failure. Instead of medium concentration, blood concentration or plasma concentration is measured, and parameters based on blood concentration or plasma concentration are used as the pathological index value of the subject or the pathological index reference value of healthy subjects or patients with renal failure. It doesn't matter.
- the “pathological condition index value” refers to a numerical value that can be calculated based on the concentration of a plurality of biomarkers, not the concentration of individual biomarker molecules.
- the disease state index value used in the present specification can be calculated from the concentration of a pair of D-form and L-form of a certain amino acid. A value that can be associated.
- the concentration ratio between a certain amino acid and its enantiomer for example, the ratio of the concentration of the D-form to the concentration of the L-form of a certain amino acid, and the D-form relative to the sum of the concentrations of the D-form and the L-form But not limited to these percentages.
- the “pathological index reference value” is a pathological index value of a biomarker molecule obtained for a healthy person diagnosed by an existing diagnostic technique and a patient with acute renal failure and / or chronic renal failure. Mean or median.
- the disease state index value is a numerical value at a specific time of a specific subject
- the disease state index reference value is obtained by statistical processing from a plurality of healthy subjects and patients with acute renal failure and / or chronic renal failure. Number. Therefore, being similar to a certain disease state index reference value means that the disease state index value is not statistically significantly different from the disease state index reference value. For example, statistical methods such as Student's t-tailed test, one-way analysis of variance, Tukey's multiple comparison test, and the like can be used.
- the significance threshold value P in these tests is less than 0.05, it is considered significant.
- the subject's blood, plasma, serum, or urine analysis system in the present invention includes a storage unit, an analysis measurement unit, a data processing unit, and a pathological condition information output unit.
- the memory is based on enantiomer concentration data of amino acids in blood, plasma, serum, or urine obtained for healthy subjects diagnosed by existing diagnostic techniques and patients with acute and / or chronic renal failure. It includes a memory for storing pathologic index reference values obtained from the parameters.
- the storage unit may include data on the threshold value P of significance obtained by statistical processing from the number of healthy persons and patients and data for each individual.
- the analytical measurement unit controls any automatic analyzer capable of automatically operating a two-dimensional HPLC system for measuring amino acid enantiomer concentrations described herein by robot control, and the automatic analyzer.
- the data processing unit calculates parameters described herein from the amino acid enantiomer concentration obtained by the analytical measurement unit.
- the subject's disease state index value obtained from the parameter is compared with the normal state and patient's disease state index reference values called from the storage unit.
- the disease condition index value of the subject is similar to the disease condition index reference value of the healthy person, the subject is defined as having the suspicion of renal failure as the condition information of the subject.
- the condition index value of the subject is similar to the condition index reference value of the chronic renal failure patient, it is defined as the condition information of the subject that the subject is suspected of having renal failure.
- the subject is suspected of premature renal failure when the condition index value of the subject is between the condition index reference value of the healthy subject and the condition index reference value of the chronic kidney failure patient It is defined as the condition information of the subject.
- the threshold value P of significance may be called from the storage unit and used to determine the degree to which the subject's pathological index value is similar to the normal or patient's pathological index reference value.
- the data processing unit includes a conventional computer and pathological information processing software stored in the computer.
- the pathological condition information output unit displays the pathological condition information of the subject on a liquid crystal or other display screen, prints it out on a printer, or uses the pathological condition information of the subject as data via the Internet or a LAN. Or send it.
- the renal failure to be analyzed or examined is a state in which the renal function is lower than normal, and includes all kidney disorders that are used in a normal sense.
- renal failure refers to a state in which renal function falls below 30% of normal, and is roughly classified into acute renal failure and chronic renal failure.
- causes of decreased renal function include multiple factors such as immune system abnormalities, allergies to drugs, high blood pressure, diabetes, bleeding, rapid blood pressure decrease, infection, dehydration associated with burns.
- Acute renal failure (AKI) has been proposed for stage classification such as RIFLE classification, AKIN classification, and KDIGO classification.
- Acute renal failure is classified as Risk (stage 1), Injury (stage 2), Failure (stage 3), Furthermore, it classified into Loss and End stage kidney disease according to the duration. All of these classifications are based on the amount of serum creatinine and the amount of urine. For example, in Risk (stage 1), serum creatinine increases 1.5 to 2.0 times from the baseline or 0.5 ml. urine volume of less than 6 hours / kg / hour is 6 hours or more.
- stage 2 serum creatinine increases 2.0 to 3.0 times from baseline or less than 0.5 ml / kg / hour Urine volume is 12 hours or more, and in Failure (Stage 3), serum creatinine increases 3.0 times or more from baseline, or urine volume of less than 0.3 ml / kg / hour is 24 hours or more. It is based on judgment. On the other hand, these classifications make it possible to classify acute renal failure more accurately by using other indicators, for example, the amount of change in GFR together.
- Chronic renal failure is a diagnostic criterion for stage 1 (with renal impairment but normal renal function, eGFR ⁇ 90) to stage 5 (renal failure, eGFR ⁇ 15) according to the Japanese Society of Nephrology guidelines (2009) It is shown.
- the estimated glomerular filtration rate (eGFR) which is an index here, is calculated from the serum creatinine level, age, and sex, and indicates the ability of the kidneys to discharge waste products into the urine.
- eGFR which is an index here, is calculated from the serum creatinine level, age, and sex, and indicates the ability of the kidneys to discharge waste products into the urine.
- it is possible to detect a decrease in renal function with higher sensitivity than conventional renal function markers. Therefore, it is possible to classify into a risk group that was not classified as renal failure with the previous marker. For example, it has risk factors of AKI and CKD as described above, but it is clear in serum creatinine and GFR. It is possible to detect a decrease in renal function even in
- subjects are not limited to humans, and may include laboratory animals such as mice, rats, rabbits, dogs, monkeys, and the like.
- the subject may be represented as a subject.
- the analysis method of the present invention can be used to collect preliminary data for a diagnostic method of chronic and / or acute renal failure.
- a doctor can diagnose chronic and / or acute renal failure using such preliminary data, but such an analysis method may be performed by a medical assistant who is not a doctor, or by an analysis organization or the like. You can also Therefore, it can be said that the analysis method of the present invention is a preliminary method of diagnosis.
- Typical chromatogram obtained by two-dimensional HPLC method of D- / L-serine in serum of C57BL / 6J wild type mice subjected to sham surgery or ischemia reperfusion treatment The graph which shows the change of the D-serine density
- mouth which performed the renal ischemia reperfusion process The graph which shows the change of the creatinine density
- Typical chromatogram obtained by two-dimensional HPLC method of D- / L-serine in urine of C57BL / 6J wild type mice subjected to sham surgery or ischemia reperfusion treatment The graph which shows the change of the D-serine density
- mouth urine to which the renal ischemia reperfusion process was performed.
- mouth urine to which the renal ischemia reperfusion process was performed.
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine which performed the renal ischemia reperfusion process The graph which shows the change of the ratio of D-allo-threonine density
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine which performed the renal ischemia reperfusion process The graph which shows the change of the percentage of D-asparagine density
- mouth urine which performed renal ischemia reperfusion processing The graph which shows the change of the percentage of D-arginine density
- mouth urine which performed the renal ischemia reperfusion process The graph which shows the change of the percentage of D-glutamic acid concentration with respect to the sum of L-glutamic acid density
- mouth urine which performed the renal ischemia reperfusion process The graph which shows the change of the percentage of the D-proline density
- mouth which performed renal ischemia reperfusion processing The graph which shows the change of the percentage of D-allo-isoleucine density
- mouth urine which performed renal ischemia reperfusion processing The graph which shows the change of the percentage of D-lysine density
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine which performed the renal ischemia reperfusion process The graph which shows the change of the ratio of D-allo-threonine density
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine in which the renal ischemia reperfusion process was performed.
- mouth urine to which renal ischemia reperfusion processing was performed.
- C57BL / 6J mice were purchased from CLEA Japan (Tokyo).
- the D-amino acid oxidase point mutant mouse used in this example was a mutant in which glycine at position 181 was replaced with arginine, and the ddY strain was backcrossed to the C57BL / 6J strain (Sasabe, J. et al., Proc. Natl. Acad. Sci. USA 109: 627 (2012)).
- Serine racemase knockout mice are described in Miyoshi, Y. et al. (Amino Acids 43: 1919 (2012)).
- Renal ischemia reperfusion treatment 12-16 week old male mice were subjected to renal ischemia reperfusion treatment (hereinafter also referred to as “IRI”). Before the IRI treatment, the right kidney was removed under pentobarbital anesthesia. After 12 days, mice were randomly selected and subjected to sham surgery (Sham) or IRI treatment. Under pentobarbital anesthesia, the left kidney was withdrawn from the body and the artery and vein were occluded with a clamp (Schwartz Micro Serrefines, Fine Science Tools Inc., Vancouver, Canada). Blood circulation resumed after 45 minutes and the clamp was removed. It was confirmed with the naked eye that the color of the kidney surface was restored, and the kidney was returned to the body.
- IRI renal ischemia reperfusion treatment
- mice were anesthetized with diethyl ether, bled from the vena cava, and collected from the bladder. The kidney was perfused and fixed as needed after removal. Serum was separated by centrifugation in a Becton Dickinson (BD) microtainer at 1500 ⁇ g for 10 minutes. Serum or urine creatinine and blood urea nitrogen (BUN) levels were measured using the FujiDRI-CHEM4000 system (Fuji Film, Tokyo).
- BD Becton Dickinson
- Cystatin C in serum and KIM-1 and NGAL in urine were quantified using a mouse ELISA kit manufactured by R & D Systems.
- NBD-F 4-fluoro-7-nitro-2,1,3-benzoxadiazole
- HPLC system NANOSPACE
- an in-house manufactured monolithic ODS column (inner diameter 1.5 mm ⁇ 250 mm, loaded in a quartz glass capillary) was used as the analytical column for reverse phase separation. Fluorescence detection was performed with an excitation wavelength of 470 nm and a detection wavelength of 530 nm. After reverse phase separation, it was transferred to an enantioselective column.
- a Sumichiral OA-2500S column 250 mm ⁇ 1.5 mm, self-packing, material is manufactured by Sumika Chemical Analysis Co., Ltd.) using (S) -naphthylglycine as a chiral selector was used.
- the concentration of D-amino acid in the body fluid is kept physiologically on the order of micromolar.
- the two-dimensional HPLC system described in this example can quantitatively measure in the range of 1 fmol to 100 pmol, for example, by distinguishing the stereoisomer of serine. This was sensitive enough to discriminate changes in serine D- and L-concentrations in healthy and renal failure patients (not shown).
- FIG. 1-A shows two-dimensional HPLC of D- / L-serine in serum of C57BL / 6J wild-type mice subjected to sham surgery or ischemia-reperfusion treatment It is a typical chromatogram obtained by the method.
- markers were measured for 8 animals in sham surgery, 5 animals, 9 animals, 6 animals and 7 animals at 4 hours, 8 hours, 20 hours and 40 hours after reperfusion, respectively.
- the bar graphs in FIGS. 1-A to 1-F represent the mean value, and the error bars represent the standard error (SEM) of the sample mean.
- SEM standard error
- NS means no significant difference.
- Sham is the concentration of sham-operated mice
- IRI4, IRI8, IRI20 and IRI40 are the concentrations of mice at 4, 8, 20 and 40 hours after reperfusion, respectively.
- serum D-serine concentration did not change significantly at 4 and 8 hours after reperfusion, but increased at 20 hours and further increased at 40 hours (FIG. 1-B). ).
- [D-serine] / [L-serine] increased as the L-serine concentration decreased, and further increased even after 40 hours (FIG. 1-D).
- the numerical values of [D-serine] / [L-serine] shown in FIG. 1-D are 0.036 ⁇ 0.004 for Sham, 0.074 ⁇ 0.005 for IRI4, and 0.073 ⁇ 0 for IRI8. 0.009, IRI 20 was 0.082 ⁇ 0.009, and IRI 40 was 0.164 ⁇ 0.008.
- Serum creatinine concentration increased from 4 hours after reperfusion and further increased at 40 hours (FIG. 1-E). The creatinine concentration values shown in FIG.
- the IRI20 was 1.19 ⁇ 0.05 ⁇ g / mL and the IRI40 was 1.06 ⁇ 0.10 ⁇ g / mL. From these experiments, the ratio of [D-serine] / [L-serine] begins to increase at 4 hours after reperfusion and increases monotonically up to 40 hours, which makes it useful as a marker for renal failure. It was. Here, if the marker is monotonically changing, a certain value is shown only for one period after reperfusion, but in the case of a fluctuation with a peak or bottom, a certain value is displayed not only for one period but also once. Or it exists more than once. Therefore, the progression stage of renal failure cannot be uniquely estimated by the marker value.
- FIGS. 4-A to 4-L Change in percentage of D-form concentration with respect to the total concentration of various amino acid enantiomers in urine
- FIGS. 4-A to 4-L the average concentration of L-form and the D-form concentration of mouse individuals are shown.
- the percentage of the mean value of D-body relative to the sum of the mean values is shown as a bar graph for sham-operated mice and mice at 4, 8, 20 and 40 hours after ischemia-reperfusion treatment.
- [D-glutamic acid] and [L-glutamic acid] FIG. 4-F
- [D-allo-isoleucine] and [L-isoleucine] FIG.
- At least one of the percentage, the percentage of [D-valine] with respect to [total valine], and the percentage of [D-lysine] with respect to [total lysine] is lower than that of healthy subjects, and [D-glutamic acid ] Of [Total glutamic acid] and [D-Allo-isoleucine] and [L-isoleucine] of [D-Allo-isoleucine]
- the state at the time when renal function decline begins is detected. .
- the urinary concentrations of D- and L-amino acids of different groups not only whether the subject is in early stage of renal failure, A distinction can be made between an early state and a state in which renal function decline begins.
- [D-allo-threonine] and [L-allo-threonine] (FIG. 5-Q)
- [D-histidine] and [L-histidine] [D-asparagine] and [L- Aspa Gin]
- [D-serine] and [L-serine] [D-arginine] and [L-arginine]
- [D-allo-threonine] and [L-threonine [D-alanine] and [L-alanine]
- [D-proline] and [L-proline] (FIG. 5-H)
- [D-lysine] and [L-lysine] (FIG. 5-L) are all in urine.
- [D-histidine] / [L-histidine], [D-asparagine] / [L-asparagine], and [D-arginine] / [L-arginine] detectable with a significant difference at 4 hours after reperfusion [D-allo-threonine] / [L-threonine], [D-alanine] / [L-alanine], [D-proline] / [L-proline], [D-lysine] / [ L-lysine] makes it possible to diagnose renal failure with higher sensitivity than urinary creatinine using one or more disease state index values selected from the group consisting of L-lysine].
- One or a plurality of disease state index values selected from the group consisting of [L-proline] and [D-lysine] / [L-lysine] can diagnose renal failure with higher sensitivity.
- the pathological index value may be used alone, but by combining a plurality of pathological index values, a more reliable diagnosis is possible.
- [D-allo-isoleucine] and [L-isoleucine] [D-phenylalanine] and [L-phenylalanine]
- [D-leucine] and [L-leucine] [D-glutamic acid] and [L-glutamic acid]
- [D-valine] and [L-valine] [D-glutamine] and [L-glutamine]
- [D -Serine] and [L-serine] [D-arginine] and [L-arginine], [D-allo-threonine] and [L-threonine, [D-alanine] and [L-alanine]
- the disease state index value in the subject has a statistically significant difference from the disease state index reference value of the healthy subject group and has a statistically significant difference from the disease state index reference value of the renal failure patient group.
- the condition index reference value of the healthy subject group and the condition index reference value of the renal failure patient group are between, the subject can be diagnosed as suspected of having early renal failure.
- the pathological index values [D-histidine] and [L-histidine], [D-asparagine] and [D] exhibiting a significant difference of p ⁇ 0.01 from the sham operation group, 4 hours after reperfusion.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
前記少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から、D-体の構成割合の減少と、被検体の腎不全とを関連づける病態指標値を算出するステップと
を含む、検査方法に関してもよい。ここで、検査方法とは、医師ではない医療補助者などにより行われてもよいし、分析機関などが行う方法に関する。
(1)研究倫理
全ての実験は施設のガイドラインに従って実施され、該施設の動物実験委員会の承認を得て行われた。
アミノ酸のエナンチオマー及びHPLC級のアセトニトリルはナカライテスク(京都)から購入された。HPLC級のメタノール、トリフルオロ酢酸、ホウ酸等は和光純薬(大阪)から購入された。水はMill-QグラジエントA10システムを用いて精製された。
動物はSPF環境、12時間ずつの明暗サイクルの条件下で、自由に水及び飼料を摂取できるようにして飼育された。C57BL/6Jマウスは日本クレア(東京)から購入された。本実施例で用いたD-アミノ酸オキシダーゼの点突然変異マウスは181位のグリシンがアルギニンに置換された突然変異体で、ddY系統をC57BL/6J系統に戻し交配された(Sasabe,J.ら、Proc.Natl.Acad.Sci. U.S.A.109:627(2012))。セリンラセマーゼノックアウトマウスは、Miyoshi,Y.ら(Amino Acids 43:1919(2012))によって作成された。
12-16週齢のオスマウスが腎虚血再灌流(以下、「IRI」ともいう。)処理に供された。IRI処理施術前にペントバルビタール麻酔下で右側腎は除去された。12日後に、マウスはランダムに選ばれて、偽手術(Sham)か、IRI処置かに供された。ペントバルビタール麻酔下で、左側腎が体外に引き出され、クランプ(Schwartz Micro Serrefines、Fine Science Tools Inc.、カナダ、バンクーバー)で動脈及び静脈が閉塞された。45分後に血流循環が再開され、クランプは除去された。腎表面の色がもとどおりになることは肉眼で確認され、腎は体内に戻された。偽手術では、左側の腎が体外に引き出されたが、クランプによる血流閉塞は行われなかった。再灌流の4、8、20及び40時間後に、マウスはジエチルエーテルで麻酔され、大静脈から採血され、膀胱から採尿された。腎は摘出後、必要に応じて灌流固定された。血清はベクトン・ディッキンソン(BD)マイクロテーナー中で1500×g、10分間遠心により分離された。血清又は尿中のクレアチニン及び血中尿素窒素(BUN)レベルはFujiDRI-CHEM4000システム(富士フィルム、東京)を用いて測定された。
前記サンプルは、財津らが開発したD、L-アミノ酸一斉高感度分析システム(特許第4291628号)によるアミノ酸立体異性体の全分析に供された。各アミノ酸の分析条件の詳細は、MiyoshiY.、ら、J.Chromatogr.B, 879:3184(2011)及びSasabe,J.ら、Proc.Natl.Acad.Sci.U.S.A.、109:627(2012)に説明される。簡潔には、血清及び尿中のアミノ酸は、NBD-F(4-フルオロ-7-ニトロ-2,1,3-ベンゾオキサジアゾール、東京化成工業株式会社)で誘導体化され、HPLCシステム(NANOSPACE SI-2、株式会社資生堂、の補足情報を参照せよ。)に供された。簡潔には、逆相分離用分析カラムは、自社製のモノリシックODSカラム(内径1.5mm×250mm、石英ガラス毛管に装填)が用いられた。蛍光検出は、励起波長470nm、検出波長530nmで実行された。逆相分離の後、エナンチオ選択性カラムに移された。エナンチオマー分離には、キラルセレクターとして(S)-ナフチルグリシンを用いるスミキラルOA-2500Sカラム(250mm×1.5mm、自家充填、材料は株式会社住化分析センター製)が使用された。体液中のD-アミノ酸の濃度は生理学的にマイクロモルのオーダーに保たれている。本実施例で説明された2次元HPLCシステムは、例えばセリンの立体異性体を区別して1fmolから100pmolの範囲で定量的に測定できる。これは、健常者と腎不全患者とにおけるセリンのD-体及びL-体の濃度変化を識別するのに十分な感度であった(図示されない。)。
本明細書及び図面に記載の全ての数値は、平均±標本平均の標準誤差(SEM)で表示される。実験の統計学的解析には、ステューデントのt両側検定、一元配置分散分析(one way ANOVA)、テューキーの多重比較検定(Tukey’s multiple comparison test)等の統計学的手法が利用された。また、これらの検定におけるP値が0.05未満のとき、有意性があると評価された。全ての解析はPrism5(GraphPad Software、カリフォルニア州、ラホヤ)が用いられた。
(1)血清中D-セリン及びL-セリン濃度
図1-Aは偽手術又は虚血再灌流処置が施されたC57BL/6J野生型マウス血清中のD-/L-セリンの2次元HPLC法により得られた典型的なクロマトグラムである。以下の実験では、偽手術に8匹、再灌流後4時間、8時間、20時間及び40時間にそれぞれ、5匹、9匹、6匹及び7匹についてマーカーが測定された。図1-Aないし1-Fの棒グラフは平均値を表し、誤差棒は標本平均の標準誤差(SEM)を表す。本実施例のデータについては一元配置分散分析の後、テューキーの多重比較検定による統計解析が行われた。図1-Aないし1-Fにおいて、*はPが0.05未満を意味し、**はPが0.01未満を意味し、***はPが0.001未満を意味する。NSは有意差がないことを意味する。図のShamは偽手術処置マウスの濃度、IRI4、IRI8、IRI20及びIRI40は、それぞれ再灌流後4、8、20及び40時間後のマウスの濃度を表す。C57BL/6Jマウスでは、血清中のD-セリン濃度は再灌流後4時間及び8時間では有意な変動がみられなかったが、20時間で上昇し、40時間ではさらに上昇した(図1-B)。なお、図1-Bに示されたD-セリン濃度の数値は、Shamで3.7±0.3μM、IRI4で3.4±0.3μM、IRI8で4.3±0.4μM、IRI20で5.5±0.5μM、IRI40で10.6±0.4μMであった。血清中のL-セリン濃度は再灌流後4時間で激減し、その後はずっと低い値のままであった(図1-C)。図1-Cに示されたD-セリン濃度の数値は、Shamで106.1±5.0μM、IRI4で46.9±0.9μM、IRI8で61.5±5.6μM、IRI20で70.6±7.5μM、IRI40で64.7±2.2μMであった。そのため、[D-セリン]/[L-セリン]はL-セリン濃度の低下に伴って上昇し、40時間でもさらに上昇した(図1-D)。図1-Dに示された[D-セリン]/[L-セリン]の数値は、Shamで0.036±0.004、IRI4で0.074±0.005、IRI8で0.073±0.009、IRI20で0.082±0.009、IRI40で0.164±0.008であった。血清中クレアチニン濃度は、再灌流後4時間から上昇し、40時間ではさらに上昇した(図1-E)。図1-Eに示されたクレアチニン濃度の数値は、Shamで0.59±0.05mg/dl、IRI4で1.108±0.04mg/dl、IRI8で1.89±0.09mg/dl、IRI20で1.14±0.22mg/dl、IRI40で3.73±0.09mg/dlであった。しかし血清中シスタチンC濃度は再灌流後4時間で上昇後、40時間まで徐々に低下した(図1-F)。図1-Fに示されたシスタチンC濃度の数値は、Shamで0.84±0.01μg/mL、IRI4で1.63±0.08μg/mL、IRI8で1.39±0.09μg/mL、IRI20で1.19±0.05μg/mL、IRI40で1.06±0.10μg/mLであった。これらの実験から、[D-セリン]/[L-セリン]の比は再灌流後4時間で上昇し初め、40時間まで単調増加するため、腎不全のマーカーとして有用であることが明かになった。ここで単調変化するマーカーであれば、ある数値を示すのは再灌流後の一時期だけであるが、ピーク又はボトムがある変動の場合では、ある数値を示すのは一時期だけでなく、もう1回又は2回以上存在する。そのため、マーカーの数値によって腎不全の進行段階を一義的に推定することができない。
以下の実験では、偽手術に7匹、再灌流後4時間、8時間、20時間及び40時間にそれぞれ、5匹、5匹、5匹及び5匹についてマーカーが測定された。図2-Aないし2-Jの棒グラフは平均値を表し、誤差棒は標本平均の標準誤差(SEM)を表す。本実施例のデータについては一元配置分散分析の後、テューキーの多重比較検定による統計解析が行われた。図2-Aないし2-Gにおいて、*はPが0.05未満を意味し、**はPが0.01未満を意味し、***はPが0.001未満を意味する。NSは有意差がないことを意味する。血清中では虚血再灌流後の時間経過とともにD-セリン濃度は上昇したが、L-セリン濃度は低下した。しかし、尿中では逆に、虚血再灌流後の時間経過とともにD-セリン濃度が低下し(図2-B)、L-セリン濃度が上昇した(図2-C)。図2-Bに示されたD-セリン濃度の数値は、Shamで52.0±7.6μM、IRI4で24.5±5.7μM、IRI8で9.9±1.1μM、IRI20で36.9±3.3μM、IRI40で22.4±3.8μMであった。図2-Cに示されたL-セリン濃度の数値は、Shamで19.0±3.0μM、IRI4で23.6±2.7μM、IRI8で62.6±9.9μM、IRI20で136.1±14.9μM、IRI40で93.8±12.1μMであった。なお、尿中のクレアチニンは再灌流後8時間以降激減している(図2-D)。これは、クレアチニンの尿への流出が腎機能低下のために阻害されたためである。そして、クレアチニンは再灌流後4時間では偽手術マウスとあまり変わらないことから、腎機能低下は再灌流後4時間ではまだ顕著ではないが、尿中の[D-セリン]/[L-セリン]の比は4時間でも偽手術マウスの3分の1近くまで低下していた(図2-E)。そこで、尿中の[D-セリン]/[L-セリン]の比は、腎機能低下に先立って変動し、単調減少するため、腎不全の早期マーカーとして有用であることが示された。図2-Eに示される[D-セリン]/[L-セリン]の比の数値は、Shamで2.82±0.18、IRI4で1.10±0.26、IRI8で0.16±0.01、IRI20で0.28±0.02、IRI40で0.25±0.04であった。尿中のKIM-1濃度は、再灌流後20時間で上昇したが、40時間では減少した(図2-F)。尿中NGAL濃度は、再灌流後4時間では偽手術マウスと有意差がなく、8時間では上昇し、その後ほぼ変化はなかった(図2-G)。したがって、尿中セリン濃度にもとづくパラメーターは既存のいずれのマーカーよりも早い時期から腎不全に伴う変動をしめし、かつ、その変化が単調変化であるため、被検者が腎不全の進行のどの段階にあるのかの判断に有用である。
尿中のマーカーが測定された図2-Aないし2-Jの実験に用いられたマウスのうち2匹の尿について、さまざまなアミノ酸のエナンチオマーの対の濃度が測定された。図3-Aないし図3-Lでは、マウス個体のL-体の濃度の平均値に対するD-体の濃度の平均値比が、偽手術マウスと、虚血再灌流処理後4、8、20及び40時間のマウスとについて棒グラフで示される。その結果、尿中の[D-グルタミン酸]及び[L-グルタミン酸](図3-F)と、[D-アロ-イソロイシン]及び[L-イソロイシン](図3-J)と、[D-フェニルアラニン]及び[L-フェニルアラニン](図3-K)とでは、L-体の濃度に対するD-体の濃度の比は、再灌流4時間後でも変動せず、8時間後以降は非常に低下していた。これに対し、[D-ヒスチジン]及び[L-ヒスチジン](図3-A)と、[D-アスパラギン]及び[L-アスパラギン](図3-B)と、[D-セリン]及び[L-セリン](図3-C)と、[D-アルギニン]及び[L-アルギニン](図3-D)と、[D-アロ-スレオニン]及び[L-スレオニン(図3-E)と、[D-アラニン]及び[L-アラニン](図3-G)と、[D-プロリン]及び[L-プロリン](図3-H)と、[D-バリン]及び[L-バリン](図3-I)と、[D-リジン]及び[L-リジン](図3-L)との組合せでは、L-体の濃度に対するD-体の濃度の比は再灌流後4時間で大きく変動し、偽手術マウスと、再灌流8時間以降との中間の数値を示した。そこで、ある個体について[D-ヒスチジン]/[L-ヒスチジン]と、[D-アスパラギン]/[L-アスパラギン]と、[D-アルギニン]/[L-アルギニン]と、[D-アロ-スレオニン]/[L-スレオニン]と、[D-アラニン]/[L-アラニン]と、[D-プロリン]/[L-プロリン]と、[D-バリン]/[L-バリン]と、[D-リジン]/[L-リジン]とのいずれか少なくとも1つが健常者の数値より低ければ、[D-グルタミン酸]/[L-グルタミン酸]と、[D-アロ-イソロイシン]/[L-イソロイシン]と、[D-フェニルアラニン]/[L-フェニルアラニン]とのうちいずれか少なくとも1つでは健常者と変わらない数値であっても、腎機能低下が始まる以前の非常に早期の状態が検出できることになる。また、ある個体について、[D-ヒスチジン]/[L-ヒスチジン]と、[D-アスパラギン]/[L-アスパラギン]と、[D-アルギニン]/[L-アルギニン]と、[D-アロ-スレオニン]/[L-スレオニン]と、[D-アラニン]/[L-アラニン]と、[D-プロリン]/[L-プロリン]と、[D-バリン]/[L-バリン]と、[D-リジン]/[L-リジン]とのうちいずれか少なくとも1つが健常者の数値より低く、かつ、[D-グルタミン酸]/[L-グルタミン酸]と、[D-アロ-イソロイシン]/[L-イソロイシン]と、[D-フェニルアラニン]/[L-フェニルアラニン]とのうちいずれか少なくとも1つも健常者の数値より低いときは、腎機能低下が始まる時期の状態が検出されることになる。このようにして異なるグループのアミノ酸のD-体及びL-体の尿中濃度にもとづくパラメーターによって、被検者が腎不全の早期にあるかどうかだけでなく、腎機能低下が始まる以前の非常に早期の状態か、それとも、腎機能低下が始まる時期の状態かまで区別することができる。
図4-Aないし図4-Lでは、マウス個体のL-体の濃度の平均値とD-体の濃度の平均値の和に対するD-体の濃度の平均値の百分率が、偽手術マウスと、虚血再灌流処理後4、8、20及び40時間のマウスとについて棒グラフで示される。その結果、尿中の[D-グルタミン酸]及び[L-グルタミン酸](図4-F)と、[D-アロ-イソロイシン]及び[L-イソロイシン](図4-J)と、[D-フェニルアラニン]及び[L-フェニルアラニン](図4-K)とでは、L-体の濃度の平均値とD-体の濃度の平均値の和に対するD-体の濃度の平均値の百分率は、再灌流4時間後でも変動せず、8時間後以降は非常に低下していた。これに対し、[D-ヒスチジン]及び[L-ヒスチジン](図4-A)と、[D-アスパラギン]及び[L-アスパラギン](図4-B)と、[D-セリン]及び[L-セリン](図4-C)と、[D-アルギニン]及び[L-アルギニン](図4-D)と、[D-アロ-スレオニン]及び[L-スレオニン(図4-E)と、[D-アラニン]及び[L-アラニン](図4-G)と、[D-プロリン]及び[L-プロリン](図4-H)と、[D-バリン]及び[L-バリン](図4-I)と、[D-リジン]及び[L-リジン](図4-L)との組合せでは、L-体の濃度の平均値とD-体の濃度の平均値の和に対するD-体の濃度の平均値の百分率は再灌流後4時間で大きく変動し、偽手術マウスと、再灌流8時間以降との中間の数値を示した。そこで、ある個体について[D-ヒスチジン]の[全ヒスチジン]に対する百分率と、[D-アスパラギン]の[全アスパラギン]に対する百分率と、[D-アルギニン]の[全アルギニン]に対する百分率と、[D-アロ-スレオニン]の[D-アロ-スレオニン]及び[L-スレオニン]の和に対する百分率と、[D-アラニン]の[全アラニン]に対する百分率と、[D-プロリン]の[全プロリン]に対する百分率と、[D-バリン]の[全バリン]に対する百分率と、[D-リジン]の[全リジン]に対する百分率とのいずれか少なくとも1つが健常者の数値より低ければ、[D-グルタミン酸]の[全グルタミン酸]に対する百分率と、[D-アロ-イソロイシン]の[D-アロ-イソロイシン]及び[L-イソロイシン]の和に対する百分率と、[D-フェニルアラニン]の[全フェニルアラニン]に対する百分率とのうちいずれか少なくとも1つでは健常者と変わらない数値であっても、腎機能低下が始まる以前の非常に早期の状態が検出できることになる。
また、ある個体について、[D-ヒスチジン]の[全ヒスチジン]に対する百分率と、[D-アスパラギン]の[全アスパラギン]に対する百分率と、[D-アルギニン]の[全アルギニン]に対する百分率と、[D-アロ-スレオニン]の[D-アロ-スレオニン]及び[L-スレオニン]の和に対する百分率と、[全アラニン]の[L-アラニン]に対する百分率と、[D-プロリン]の[全プロリン]に対する百分率と、[D-バリン]の[全バリン]に対する百分率と、[D-リジン]の[全リジン]に対する百分率とのうちいずれか少なくとも1つが健常者の数値より低く、かつ、[D-グルタミン酸]の[全グルタミン酸]に対する百分率と、[D-アロ-イソロイシン]の[D-アロ-イソロイシン]及び[L-イソロイシン]の和に対する百分率と、[D-フェニルアラニン]の[全フェニルアラニン]に対する百分率とのうちいずれか少なくとも1つも健常者の数値より低いときは、腎機能低下が始まる時期の状態が検出されることになる。このようにして異なるグループのアミノ酸のD-体及びL-体の尿中濃度にもとづくパラメーターによって、被検者が腎不全の早期にあるかどうかだけでなく、腎機能低下が始まる以前の非常に早期の状態か、それとも、腎機能低下が始まる時期の状態かまで区別することができる。
3~7匹のマウスについて、虚血再灌流処理を行い、取得した尿について、さまざまなアミノ酸のエナンチオマーの対の濃度を測定した。図5-A~図5-Rでは、マウス個体のL-体の濃度の平均値に対するD-体の濃度の平均値比が、偽手術マウスと、虚血再灌流処理後4、8、20及び40時間のマウスとについて棒グラフで示し、統計的有意差の有無を調べた。その結果、尿中の[D-アロ-イソロイシン]及び[L-イソロイシン](図5-J)と、[D-フェニルアラニン]及び[L-フェニルアラニン](図5-K)と、[D-ロイシン]及び[L-ロイシン](図5-R)では、L-体の濃度に対するD-体の濃度の比は、再灌流4時間後でも変動せず(統計的有意差無し)、8時間後以降は非常に低下していた(有意差有り)。[D-グルタミン酸]及び[L-グルタミン酸](図5-F)と、[D-バリン]及び[L-バリン](図5-I)と、[D-グルタミン]及び[L-グルタミン](図5-M)、[D-スレオニン]及び[L-スレオニン](図5-N)、[D-アロ-スレオニン]及び[L-アロ-スレオニン](図5-Q)とでは、再灌流4時間後でも変動したものの、統計的有意差が無く、8時間後以降は非常に低下していた(有意差有り)。[D-メチオニン]及び[L-メチオニン](図5-O)と、[D-アスパラギン酸]及び[L-アスパラギン酸](図5-P)とでは、変動の傾向が得られなかった。これに対し、[D-ヒスチジン]及び[L-ヒスチジン](図5-A)と、[D-アスパラギン]及び[L-アスパラギン](図5-B)と、[D-セリン]及び[L-セリン](図5-C)と、[D-アルギニン]及び[L-アルギニン](図5-D)と、[D-アロ-スレオニン]及び[L-スレオニン(図5-E)と、[D-アラニン]及び[L-アラニン](図5-G)と、[D-プロリン]及び[L-プロリン](図5-H)と、[D-リジン]及び[L-リジン](図5-L)、との組合せでは、L-体の濃度に対するD-体の濃度の比は再灌流後4時間で大きく変動し(統計的有意差有り)、偽手術マウスと、再灌流8時間以降との中間の数値を示した。従来の腎不全の診断マーカーとして使用される尿中クレアチニンでは、マウス虚血再灌流モデルにおいて、虚血後4時間では、腎不全を検知できず、8時間以降で検知できていた(図2-D)ため、本願の[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-ロイシン]及び[L-ロイシン]と、[D-グルタミン酸]及び[L-グルタミン酸]と、[D-バリン]及び[L-バリン]と、[D-グルタミン]及び[L-グルタミン]と、[D-スレオニン]及び[L-スレオニン](図5-N)と、[D-アロ-スレオニン]及び[L-アロ-スレオニン](図5-Q)と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-セリン]及び[L-セリン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アロ-スレオニン]及び[L-スレオニンと、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン](図5-H)と、[D-リジン]及び[L-リジン](図5-L)とはいずれも、尿中クレアチニンと同等又はそれ以上の感度の腎不全マーカーとして使用することができる。特に再還流後4時間において有意差をもって検知可能な[D-ヒスチジン]/[L-ヒスチジン]と、[D-アスパラギン]/[L-アスパラギン]と、[D-アルギニン]/[L-アルギニン]と、[D-アロ-スレオニン]/[L-スレオニン]と、[D-アラニン]/[L-アラニン]と、[D-プロリン]/[L-プロリン]と、[D-リジン]/[L-リジン]とからなる群から選ばれる1又は複数の病態指標値を用いれば、尿中クレアチニンよりも高い感度で腎不全を診断することを可能にする。その中でも特に、再灌流後4時間後において、偽手術群とp<0.01の有意差を示す、[D-ヒスチジン]/[L-ヒスチジン]と、[D-アスパラギン]/[L-アスパラギン]と、[D-プロリン]/[L-プロリン]と、[D-リジン]/[L-リジン]とからなる群から選ばれる1又は複数の病態指標値は、より高い感度で腎不全を診断することができ、さらに再灌流後4時間後において、偽手術群とp<0.001の有意差を示す、[D-ヒスチジン]/[L-ヒスチジン]と、[D-プロリン]/[L-プロリン]と、[D-リジン]/[L-リジン]とからなる群から選ばれる1又は複数の病態指標値は、さらに高い感度で腎不全を診断することができる。病態指標値は、単独で用いられてもよいが、複数を組み合わせることにより、より信頼性の高い診断を可能にする。
Claims (13)
- 腎不全が疑われる被検体の尿の分析方法であって、
該被検体の尿における[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アロ-スレオニン]及び[L-スレオニン]と、[D-グルタミン酸]及び[L-グルタミン酸]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-リジン]及び[L-リジン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度を測定するステップと、
前記少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から、D体の構成割合の有意差をもった減少と、被検体の腎不全とを関連づける病態指標値を算出するステップとを含む、分析方法。 - 前記病態指標値が、前記少なくとも1種類のアミノ酸の対のL-体の濃度に対するD-体の濃度の比又は、D-体及びL-体の濃度の和に対するD-体の濃度の比である、請求項1に記載の分析方法。
- 前記被検体の病態指標値を、健常者群の病態指標基準値と、急性腎不全及び/又は慢性腎不全の患者群の病態指標基準値と比較して、前記被検体の病態指標値が前記健常者群の病態指標基準値からの統計的有意差の有無を判定し、前記被検体の病態指標値が前記急性腎不全患者及び/又は慢性腎不全患者群の病態指標基準値と統計的有意差の有無を判定し、又は前記健常者群と前記急性腎不全患者及び/又は慢性腎不全患者群とに対し統計的に有意差が有る場合に、前記被検体の病態指標値が前記健常者群の病態指標基準値と急性腎不全及び/又は慢性腎不全患者群の病態指標基準値との間にあるかを判定するステップをさらに含む、請求項1又は2に記載の分析方法。
- 前記被検体の尿における[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-リジン]及び[L-リジン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第一病態指標値が、前記健常者群の病態指標基準値並びに前記急性腎不全患者及び/又は慢性腎不全患者群の病態指標基準値に統計的に有意差が有る場合に、前記健常者群の病態指標基準値と前記慢性腎不全患者群の病態指標基準値との間にあるかを判定するステップをさらに含む、請求項3に記載の分析方法。
- 前記被検体の尿における[D-グルタミン酸]及び[L-グルタミン酸]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-アロ-スレオニン]及び[L-スレオニン]からなるアミノ酸群から選ばれる少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第二病態指標値が前記健常者の病態指標基準値と前記慢性腎不全及び/又は急性腎不全患者の病態指標基準値との間にあるかを、さらに判定するステップを含む、請求項4に記載の分析方法。
- 腎不全の検査方法であって、非検体の尿における[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アロ-スレオニン]及び[L-スレオニン]と、[D-グルタミン酸]及び[L-グルタミン酸]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-リジン]及び[L-リジン]と[D-グルタミン]及び[L-グルタミン]と、[D-スレオニン]及び[L-スレオニン]と、[D-アロ-スレオニン]及び[L-アロ-スレオニン]と、[D-ロイシン]及び[L-ロイシン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度を測定するステップと、
前記少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から、D体の構成割合の減少と、被検体の腎不全とを関連づける病態指標値を算出するステップとを含む、検査方法。 - 前記アミノ酸群が、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アルギニン]及び[L-アルギニン]と、[D-グルタミン酸]及び[L-グルタミン酸]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-リジン]及び[L-リジン]と[D-グルタミン]及び[L-グルタミン]と、[D-ロイシン]及び[L-ロイシン]と、[D-アロ-スレオニン]及び[L-アロ-スレオニン]からなる、請求項6に記載の検査方法。
- 記憶部と、分析測定部と、データ処理部と、病態情報出力部とを含む、腎不全が疑われる被検体の尿のサンプル分析システムであって、
前記記憶部は、健常者群の尿における病態指標基準値と、急性腎不全患者及び/又は慢性腎不全患者群の尿における病態指標基準値とを記憶し、
前記分析測定部は、前記被検体の尿中のアミノ酸のうち、D-セリン及びL-セリンと、D-ヒスチジン及びL-ヒスチジンと、D-アスパラギン及びL-アスパラギンと、D-アルギニン及びL-アルギニンと、D-アロ-スレオニン及びL-スレオニンと、D-グルタミン酸及びL-グルタミン酸と、D-アラニン及びL-アラニンと、D-プロリン及びL-プロリンと、D-バリン及びL-バリンと、D-アロ-イソロイシン及びL-イソロイシンと、D-フェニルアラニン及びL-フェニルアラニンと、D-リジン及びL-リジンとからなるアミノ酸群から選択される少なくとも1対のアミノ酸立体異性体を分離し定量し、
前記データ処理部は、前記被検体の[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アロ-スレオニン]及び[L-スレオニン]と、[D-グルタミン酸]及び[L-グルタミン酸]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-リジン]及び[L-リジン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から、D体の構成割合の減少と被検体の腎不全とを関連づける病態指標値を算出し、該被検体の病態指標値を、健常者の病態指標基準値と、急性腎不全及び/又は慢性腎不全の患者の病態指標基準値と比較して、前記被検体の病態指標値が前記健常者群の病態指標基準値と統計的に有意差が無いときは前記被検体は腎不全の疑いが薄いことを前記被検体の病態情報と定義し、前記被検体の病態指標値が前記急性腎不全及び/又は慢性腎不全患者群の病態指標基準値と統計的に有意差が無いときは前記被検体は腎不全の疑いがあることを前記被検体の病態情報と定義し、前記健常者群の病態指標基準値並びに前記急性腎不全及び/又は慢性腎不全患者群の病態指標基準値に統計的に有意差が有る場合に、前記被検体の病態指標値が前記健常者群の病態指標基準値と前記急性腎不全及び/又は慢性腎不全患者群の病態指標基準値との間にあるときは前記被検体は早期腎不全の疑いがあることを前記被検体の病態情報と定義し、
前記病態情報出力部は前記被検体の病態情報を出力する、被検体の尿の分析システム。 - 前記病態指標値が、前記少なくとも1種類のアミノ酸の対のL-体の濃度に対するD-体の濃度の比又は、D-体及びL-体の濃度の和に対するD-体の濃度の百分率である、請求項8に記載の分析システム。
- 前記被検体の尿における[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-リジン]及び[L-リジン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第一病態指標値が前記健常者群の病態指標基準値と前記急性腎不全及び/又は慢性腎不全患者群の病態指標基準値との間にあるときは、非常に早期の腎不全である疑いがあることを前記被検体の病態情報と定義する、請求項8又は9に記載の分析システム。
- 前記アミノ酸群に、さらに[D-グルタミン]及び[L-グルタミン]と、[D-スレオニン]及び[L-スレオニン]と、[D-アロ-スレオニン]及び[L-アロ-スレオニン]と、[D-ロイシン]及び[L-ロイシン]が含まれ、
[D-セリン]及び[L-セリン]と、[D-ヒスチジン]及び[L-ヒスチジン]と、[D-アスパラギン]及び[L-アスパラギン]と、[D-アルギニン]及び[L-アルギニン]と、[D-アラニン]及び[L-アラニン]と、[D-プロリン]及び[L-プロリン]と、[D-リジン]及び[L-リジン]と、[D-アロ-スレオニン]及び[L-アロ-スレオニン]とからなるアミノ酸群の少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第一病態指標値が前記健常者群の病態指標基準値と前記急性腎不全及び/又は慢性腎不全患者群の病態指標基準値との間にあるときは、非常に早期の腎不全である疑いがあることを前記被検体の病態情報と定義する、請求項8~10のいずれか一項に記載の分析システム。 - 前記被検体の尿における[D-グルタミン酸]及び[L-グルタミン酸]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]と、[D-バリン]及び[L-バリン]と、[D-アロ-スレオニン]及び[L-スレオニン]のうちの少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第二病態指標値が前記健常者の病態指標基準値と前記慢性腎不全及び/又は急性腎不全患者の病態指標基準値との間にあるとき、前記被検体が、腎機能低下が始まる時期の状態である疑いがあることを前記被検体の病態情報と定義する、請求項10に記載の分析システム。
- 前記アミノ酸群に、さらに[D-グルタミン]及び[L-グルタミン]と、[D-スレオニン]及び[L-スレオニン]と、[D-アロ-スレオニン]及び[L-アロ-スレオニン]と、[D-ロイシン]及び[L-ロイシン]が含まれ、
[D-グルタミン酸]及び[L-グルタミン酸]と、[D-バリン]及び[L-バリン]と、[D-アロ-イソロイシン]及び[L-イソロイシン]と、[D-フェニルアラニン]及び[L-フェニルアラニン]、[D-グルタミン]及び[L-グルタミン]と、[D-スレオニン]及び[L-スレオニン]と、[D-アロ-スレオニン]及び[L-スレオニン]と、[D-ロイシン]及び[L-ロイシン]からなる群から選ばれる少なくとも1種類のアミノ酸のD-体及びL-体の対の濃度から算出された前記被検体の第二病態指標値が前記健常者の病態指標基準値と前記慢性腎不全及び/又は急性腎不全患者の病態指標基準値との間にあるとき、前記被検体が、腎機能低下が始まる時期の状態である疑いがあることを前記被検体の病態情報と定義する、請求項11に記載の分析システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/103,539 US10393749B2 (en) | 2013-12-11 | 2014-12-11 | Marker for early diagnosis of kidney failure |
CN201480065113.8A CN105793712B (zh) | 2013-12-11 | 2014-12-11 | 肾衰竭的早期诊断标志物 |
EP14868998.7A EP3081939B1 (en) | 2013-12-11 | 2014-12-11 | Marker for early diagnosis of kidney failure |
EP21155414.2A EP3842806A1 (en) | 2013-12-11 | 2014-12-11 | Marker for early diagnosis of kidney failure |
US16/231,381 US20190339281A1 (en) | 2013-12-11 | 2018-12-21 | Marker for early diagnosis of kidney failure |
US16/511,097 US20190339282A1 (en) | 2013-12-11 | 2019-07-15 | Marker for early diagnosis of kidney failure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-256224 | 2013-12-11 | ||
JP2013256224 | 2013-12-11 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/103,539 A-371-Of-International US10393749B2 (en) | 2013-12-11 | 2014-12-11 | Marker for early diagnosis of kidney failure |
US16/231,381 Continuation US20190339281A1 (en) | 2013-12-11 | 2018-12-21 | Marker for early diagnosis of kidney failure |
US16/511,097 Division US20190339282A1 (en) | 2013-12-11 | 2019-07-15 | Marker for early diagnosis of kidney failure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087985A1 true WO2015087985A1 (ja) | 2015-06-18 |
Family
ID=53371283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082899 WO2015087985A1 (ja) | 2013-12-11 | 2014-12-11 | 腎不全の早期診断マーカー |
Country Status (5)
Country | Link |
---|---|
US (3) | US10393749B2 (ja) |
EP (2) | EP3081939B1 (ja) |
JP (1) | JP5740523B1 (ja) |
CN (1) | CN105793712B (ja) |
WO (1) | WO2015087985A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018022866A1 (en) * | 2016-07-28 | 2018-02-01 | Metabolon, Inc. | Diagnostic methods, therapeutic agents and uses thereof |
US11099191B2 (en) * | 2016-05-17 | 2021-08-24 | Osaka University | Kidney disease prognosis prediction method and system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6609282B2 (ja) * | 2016-05-17 | 2019-11-20 | 国立大学法人大阪大学 | 糖尿病を判定するための血液試料の分析方法及びシステム |
CN117577321A (zh) | 2017-08-08 | 2024-02-20 | 费森尤斯医疗保健控股公司 | 用于治疗和评估慢性肾脏疾病的进程的系统和方法 |
JP7364166B2 (ja) * | 2018-06-07 | 2023-10-18 | 国立大学法人金沢大学 | 腎障害の予防又は治療用の医薬組成物 |
WO2020080488A1 (ja) * | 2018-10-17 | 2020-04-23 | 株式会社 資生堂 | クリティカル期の腎障害を判定するためのマーカー |
WO2020080494A1 (ja) * | 2018-10-17 | 2020-04-23 | 株式会社 資生堂 | クリティカル期の腎障害を判定するためのマーカー |
TW202028747A (zh) * | 2018-10-17 | 2020-08-01 | 日商資生堂股份有限公司 | 絲球體過濾能力之決定方法 |
CN113631927A (zh) * | 2019-03-22 | 2021-11-09 | 镜株式会社 | 辅助肾病况的评价的方法、肾病况的评价系统及肾病况的评价程序 |
CN113631923A (zh) * | 2019-03-22 | 2021-11-09 | 镜株式会社 | 辅助肾病况的评价的方法、肾病况的评价系统及肾病况的评价程序 |
JP6993654B2 (ja) * | 2019-12-27 | 2022-02-15 | Kagami株式会社 | 腎機能を推定する方法及びシステム |
JP7390921B2 (ja) * | 2020-02-17 | 2023-12-04 | 花王株式会社 | 高次脳機能の測定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027650A (ja) | 2006-07-19 | 2008-02-07 | Koito Mfg Co Ltd | 車輌用灯具 |
JP4291628B2 (ja) | 2003-06-12 | 2009-07-08 | 株式会社資生堂 | 液体クロマトグラフ装置及び試料に含まれる光学異性体の分析方法 |
WO2013140785A1 (ja) | 2012-03-18 | 2013-09-26 | 国立大学法人九州大学 | 疾患サンプル分析装置、分析システム及び分析方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU775563B2 (en) | 1999-05-14 | 2004-08-05 | Brandeis University | Nucleic acid-based detection |
EP1601948A2 (en) | 2003-03-10 | 2005-12-07 | Sionex Corporation | Systems for differential ion mobility analysis |
KR101228233B1 (ko) * | 2004-03-30 | 2013-01-31 | 리립사, 인크. | 이온 결합 중합체 및 이의 용도 |
US20060046268A1 (en) * | 2004-08-26 | 2006-03-02 | Australian Stem Cell Centre Ltd. | Diagnosis of anemia and optimizing treatment for heart repair |
US20090075284A1 (en) | 2006-09-19 | 2009-03-19 | The Regents Of The University Of Michigan | Metabolomic profiling of prostate cancer |
EP2249161B1 (en) | 2009-05-05 | 2020-05-13 | InfanDx AG | Method of diagnosing asphyxia |
-
2014
- 2014-12-11 US US15/103,539 patent/US10393749B2/en active Active
- 2014-12-11 EP EP14868998.7A patent/EP3081939B1/en active Active
- 2014-12-11 EP EP21155414.2A patent/EP3842806A1/en not_active Withdrawn
- 2014-12-11 WO PCT/JP2014/082899 patent/WO2015087985A1/ja active Application Filing
- 2014-12-11 CN CN201480065113.8A patent/CN105793712B/zh active Active
- 2014-12-11 JP JP2014251322A patent/JP5740523B1/ja active Active
-
2018
- 2018-12-21 US US16/231,381 patent/US20190339281A1/en not_active Abandoned
-
2019
- 2019-07-15 US US16/511,097 patent/US20190339282A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4291628B2 (ja) | 2003-06-12 | 2009-07-08 | 株式会社資生堂 | 液体クロマトグラフ装置及び試料に含まれる光学異性体の分析方法 |
JP2008027650A (ja) | 2006-07-19 | 2008-02-07 | Koito Mfg Co Ltd | 車輌用灯具 |
WO2013140785A1 (ja) | 2012-03-18 | 2013-09-26 | 国立大学法人九州大学 | 疾患サンプル分析装置、分析システム及び分析方法 |
Non-Patent Citations (20)
Title |
---|
FUKUSHIMA, T. ET AL., BIOL. PHARM. BULL., vol. 18, 1995, pages 1130 |
HAMASE, K.; ZAITSU, K., ANALYTICAL CHEMISTRY, vol. 53, 2004, pages 677 - 690 |
ISHIDA ET AL., KITASATO MEDICAL JOURNAL, vol. 23, 1993, pages 51 - 62 |
JAPANESE SOCIETY OF NEPHROLOGY, 2009 |
JUMPEI SASABE ET AL.: "Ischemic Acute Kidney Injury Perturbs Homeostasis of Serine Enantiomers in the Body Fluid in Mice: Early Detection of Renal Dysfunction Using the Ratio of Serine Enantiomers", PLOS ONE, vol. 9, no. ISSUEL, January 2014 (2014-01-01), pages E86504, XP055348838 * |
JUMPEJI SASABE ET AL., PLOS ONE, vol. 9, no. 1, pages E86504 |
KDIGO: "Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease", KIDNEY INTERNATIONAL SUPPLEMENTS, vol. 1, 2012 |
KENJI HAMASE ET AL.: "Kogaku Iseitai o Kubetsu suru Zen Amino Acid Nijigen HPLC Issei Bunsekiho no Kaihatsu to Soyaku·Shindan eno Tenkai", BIOMEDICAL BUNSEKI KAGAKU SYMPOSIUM KOEN YOSHISHU, vol. 23 RD, 21 July 2010 (2010-07-21), pages 16 - 17, XP008183951 * |
MAGDALENA C. ET AL.: "Comparison of derivatization and chromatographic methods for GC.MS analysis of amino acid enantiomers in physiological samples", JOURNAL OF CHROMATOGRAPHY B, vol. 878, 2010, pages 1103 - 1112, XP027015420 * |
MAGDALENA C. WALDHIER ET AL., CHROMATOGRAPHY B, 2010, pages 1103 - 1112 |
MIYOSHI, Y. ET AL., AMINO ACIDS, vol. 43, 2012, pages 1919 |
MIYOSHI, Y. ET AL., J. CHROMATOGR. B, vol. 879, 2011, pages 3194 |
NAGATA, Y.: "Viva Origino", 15TH ACADEMIC SYMPOSIUM, COLLECTION OF ABSTRACTS, vol. 18, no. 2, 1990 |
SASABE, J. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 109, 2012, pages 627 |
See also references of EP3081939A4 * |
SLOCUM, J. L. ET AL., TRANSL. RES., vol. 159, 2012, pages 277 |
TAKESHI FUKUSHIMA ET AL.: "Determination of D- Amino Acids in Serum from Patient with Renal Dysfunction", BIOL. RHARM. BULL., vol. 18, no. 8, 1995, pages 1130 - 1132, XP008073859 * |
YONG HUANG ET AL., BIOL. PHARM. BULL., vol. 21, no. 2, 1998, pages 156 - 162 |
YURIKA MIYOSHI ET AL.: "Development of a Simultaneous Two-dimensional Micro-HPLC Analysis System for the Chiral Amino Acid Metabolomics Study in Mammals", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 61, no. 6, 2012, pages 489 - 499, XP055348840 * |
ZHANG, H. ET AL., AMINO ACIDS, vol. 42, 2012, pages 337 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11099191B2 (en) * | 2016-05-17 | 2021-08-24 | Osaka University | Kidney disease prognosis prediction method and system |
WO2018022866A1 (en) * | 2016-07-28 | 2018-02-01 | Metabolon, Inc. | Diagnostic methods, therapeutic agents and uses thereof |
CN109563127A (zh) * | 2016-07-28 | 2019-04-02 | 麦特博隆股份有限公司 | 诊断方法、治疗药物及其用途 |
US10865183B2 (en) | 2016-07-28 | 2020-12-15 | Metabolon, Inc. | Compounds, reagents, and uses thereof |
AU2017301949B2 (en) * | 2016-07-28 | 2021-09-23 | Metabolon, Inc. | Compounds, reagents, and uses thereof |
CN109563127B (zh) * | 2016-07-28 | 2024-01-05 | 麦特博隆股份有限公司 | 化合物、试剂及其用途 |
Also Published As
Publication number | Publication date |
---|---|
EP3081939A4 (en) | 2017-06-21 |
JP2015132598A (ja) | 2015-07-23 |
US20190339281A1 (en) | 2019-11-07 |
EP3842806A1 (en) | 2021-06-30 |
US20190339282A1 (en) | 2019-11-07 |
EP3081939A1 (en) | 2016-10-19 |
EP3081939B1 (en) | 2021-02-17 |
US20160313342A1 (en) | 2016-10-27 |
CN105793712B (zh) | 2018-01-05 |
CN105793712A (zh) | 2016-07-20 |
US10393749B2 (en) | 2019-08-27 |
JP5740523B1 (ja) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5740523B1 (ja) | 腎不全の早期診断マーカー | |
US20220003774A1 (en) | Kidney disease prognosis prediction method and system | |
US10852308B2 (en) | Disease-state biomarker for renal disease | |
JP6884346B2 (ja) | 糖尿病を判定するための血液試料の分析方法及びシステム | |
JP6993654B2 (ja) | 腎機能を推定する方法及びシステム | |
JP7471581B2 (ja) | 腎臓病の病態バイオマーカー | |
JP4299243B2 (ja) | 統合失調症の検査、診断方法 | |
WO2020080482A1 (ja) | 血液中のシスタチンc量に基づく腎機能検査結果の妥当性を検定する方法 | |
TW202107085A (zh) | 用以判定關鍵期之腎損傷之標記 | |
JPWO2020080491A1 (ja) | 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法 | |
TW202028747A (zh) | 絲球體過濾能力之決定方法 | |
TW202028746A (zh) | 用以判定關鍵期之腎損傷之標記 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14868998 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 15103539 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014868998 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014868998 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |