WO2013140724A1 - グラファイトシートの製造方法 - Google Patents

グラファイトシートの製造方法 Download PDF

Info

Publication number
WO2013140724A1
WO2013140724A1 PCT/JP2013/001350 JP2013001350W WO2013140724A1 WO 2013140724 A1 WO2013140724 A1 WO 2013140724A1 JP 2013001350 W JP2013001350 W JP 2013001350W WO 2013140724 A1 WO2013140724 A1 WO 2013140724A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
polyimide
producing
cavity
graphite
Prior art date
Application number
PCT/JP2013/001350
Other languages
English (en)
French (fr)
Inventor
達弘 大城
典裕 河村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/372,700 priority Critical patent/US9475702B2/en
Priority to CN201380015681.2A priority patent/CN104203817B/zh
Publication of WO2013140724A1 publication Critical patent/WO2013140724A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a graphite sheet used in various electronic devices.
  • An object of the present invention is to provide a production method capable of obtaining a pyrolytic graphite sheet having a desired thickness.
  • the method for producing a graphite sheet of the present invention includes A) a step of producing a molded sheet, B) a step of producing a polyimide sheet, and C) a step of producing a graphite sheet.
  • step A a cavity-forming sheet formed in a mesh or nonwoven fabric is impregnated with polyamic acid and formed into a sheet.
  • step B a polyimide sheet having polyimide and a cavity forming sheet disposed inside the polyimide is produced by heat-treating the molded sheet to imidize the polyamic acid.
  • step C the polyimide sheet is pyrolyzed by baking the polyimide sheet in a non-oxidizing atmosphere to produce a graphite sheet.
  • the cavity forming sheet is made of a material that maintains its shape when producing a polyimide sheet, gasifies when the polyimide is thermally decomposed, and loses 80% or more of its weight.
  • the decomposition product generated when the polyimide sheet is thermally decomposed can escape to the outside of the sheet through the cavity formed by the cavity forming sheet. Therefore, even if a thick polyimide sheet is used, a graphite sheet having a desired thickness can be produced without breaking the sheet.
  • FIG. 1 is a schematic view of a cavity forming sheet according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a molded sheet and a polyimide sheet in the embodiment of the present invention.
  • FIG. 3 is a schematic view of the graphite sheet in the embodiment of the present invention.
  • the pyrolytic graphite sheet is produced by thermally decomposing a resin film such as polyimide and graphitizing it. Therefore, it is difficult to produce a thick pyrolytic graphite sheet.
  • a thick resin film is made to obtain a thick pyrolytic graphite sheet, the decomposition product generated at the stage of pyrolysis cannot be discharged outside the sheet but remains inside the sheet. Therefore, the residue is gasified at the stage of graphitization, the sheet swells up, and the sheet itself is destroyed. Therefore, the upper limit of the thickness of the pyrolytic graphite sheet is about 100 ⁇ m.
  • FIGS. 1 to 3 are diagrams showing a method for producing a graphite sheet according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a cavity forming sheet 11
  • FIG. 2 is a diagram showing configurations of a molded sheet and a polyimide sheet.
  • 3 is a schematic view of a graphite sheet.
  • a hollow forming sheet 11 is produced by weaving a polypropylene thread having a thickness of about 20 ⁇ m in a mesh shape.
  • the cavity forming sheet 11 is impregnated with the polyamic acid 14 which is a polyimide precursor, and formed into a sheet shape.
  • the molded sheet 15 thus produced is heat-treated at about 400 ° C. to imidize the polyamic acid 14.
  • a polyimide sheet 12 having the polyimide 10 and the cavity forming sheet 11 disposed inside the polyimide 10 is produced.
  • the polyamic acid 14 is formed so that the thickness of the polyimide sheet 12 is about 200 ⁇ m.
  • the cavity forming sheet 11 can maintain a mesh shape. That is, the cavity forming sheet 11 maintains the shape when the polyimide sheet 12 is produced.
  • the polyimide sheet 12 is carbonized by firing at about 1200 ° C. in a non-oxidizing atmosphere, and further fired at about 2800 ° C. By these firings, a graphite sheet 13 having a thickness of about 200 ⁇ m shown in FIG. 3 is produced.
  • the polypropylene constituting the cavity forming sheet 11 is thermally decomposed at 450 to 500 ° C. before the polyimide sheet 12 undergoes thermal decomposition.
  • the polyimide 10 begins to thermally decompose at 500 to 600 ° C. In this temperature rising process, even in a non-oxidizing atmosphere, polypropylene is thermally decomposed and gasified to almost 100% and disappears. Therefore, when the thermal decomposition of the polyimide sheet 12 is started, a mesh-like cavity is formed in the middle of the polyimide sheet 12.
  • the decomposition product (gas) generated by the thermal decomposition of the polyimide sheet 12 is discharged outside the sheet through this cavity. As a result, it is possible to prevent decomposition products from remaining in the sheet when the polyimide sheet 12 is thermally decomposed. Even if the polyimide 10 is thermally decomposed, 50% or more of the weight remains as carbon, and the rest hardly remains. Therefore, the graphite sheet 13 can be produced by firing at about 2800 ° C.
  • the shape is maintained at the temperature of imidization for producing the polyimide sheet 12, and when the polyimide 10 is thermally decomposed, it is gasified and 80% or more of the weight is lost. good. Therefore, in addition to polypropylene, polyethylene, polyethylene terephthalate, or the like can be used alone or in combination. In particular, polypropylene and polyethylene are more preferable because they almost disappear 100% upon thermal decomposition.
  • the wire diameter of the yarn used for the cavity forming sheet 11 is preferably 20 ⁇ m or more and 30 ⁇ m or less in consideration of the formation of the cavity and the strength when graphitized. Moreover, it is desirable that the mesh opening be 3 to 5 times the wire diameter.
  • the cavity forming sheet 11 may be in a non-woven fabric form other than the mesh form.
  • a plurality of the cavity forming sheets 11 may be used in order to produce a thicker pyrolytic graphite sheet. That is, when the molded sheet 15 in which the cavity forming sheet 11 is impregnated with the polyamic acid 14 is produced, the plurality of cavity forming sheets 11 are impregnated with the polyamic acid 14. In this case, it is preferable that the distance between two of the plurality of cavity forming sheets 11 in the polyimide sheet 12 is 100 ⁇ m or less. Thereby, even if the polyimide sheet 12 is thickened, the gas generated when the polyimide 10 is thermally decomposed can be discharged to the outside, and the graphite sheet 13 having a desired thickness can be produced.
  • the cavity forming sheet 11 is impregnated with the polyamic acid 14 so that the cavity forming sheet 11 is exposed on the end face of the polyimide sheet 12 and then formed into a sheet shape. That is, when producing the polyimide sheet 12, it is preferable to expose the cavity forming sheet 11 on the end face of the polyimide sheet 12. If the cavity forming sheet 11 is exposed on the end face of the polyimide sheet 12, the decomposition product generated by the decomposition of the cavity forming sheet 11 can be easily discharged to the outside of the sheet.
  • the method for producing a graphite sheet according to the present invention is industrially useful because a pyrolytic graphite sheet excellent in thermal conductivity can be obtained in a desired thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 グラファイトシートの製造方法では、まずメッシュ状もしくは不織布状に形成した空洞形成シートにポリアミド酸を含浸させてシート状に成形する。次に成形シートを熱処理してポリアミド酸をイミド化することにより、ポリイミドと、ポリイミドの内部に配置された空洞形成シートとを有するポリイミドシートを作製する。そして、ポリイミドシートを非酸化雰囲気で焼成することによりポリイミドを熱分解してグラファイトシートを作製する。空洞形成シートは、ポリイミドシートを作製する際には形状を保ち、ポリイミドが熱分解する際にはガス化し、重量の80%以上が消失する材料で構成されている。

Description

グラファイトシートの製造方法
 本発明は、各種電子機器に用いられるグラファイトシートの製造方法に関する。
 近年電子機器の各種機能や処理能力等が急速に向上し、それに伴い半導体素子をはじめとする電子部品からの発熱量は増加する傾向にある。このため半導体素子等の動作特性や信頼性等を保つために発熱体からヒートシンク等に熱を伝達させる熱伝導シートが用いられている。特に熱分解グラファイトシートは、その面方向への熱伝導性に優れることから熱伝導シートとして用いられている(例えば、特許文献1参照)。
特開2004-299937号公報
 本発明は所望の厚さの熱分解グラファイトシートを得ることができる製造方法を提供することを目的とする。
 本発明のグラファイトシートの製造方法は、A)成形シートを作製するステップと、B)ポリイミドシートを作製するステップと、C)グラファイトシートを作製するステップとを含む。Aステップでは、メッシュ状もしくは不織布状に形成した空洞形成シートにポリアミド酸を含浸させてシート状に成形する。Bステップでは、上記成形シートを熱処理してポリアミド酸をイミド化することにより、ポリイミドと、ポリイミドの内部に配置された空洞形成シートとを有するポリイミドシートを作製する。Cステップでは、ポリイミドシートを非酸化雰囲気で焼成することによりポリイミドを熱分解してグラファイトシートを作製する。空洞形成シートは、ポリイミドシートを作製する際には形状を保ち、ポリイミドが熱分解する際にはガス化し、重量の80%以上が消失する材料で構成されている。
 この製造方法では、ポリイミドシートが熱分解するときに発生した分解物は、空洞形成シートによって形成された空洞を通してシート外部に逃がすことができる。そのため、厚いポリイミドシートを用いてもシートが破壊することなく、所望の厚さのグラファイトシートを製造することができる。
図1は本発明の実施の形態における空洞形成シートの概略図である。 図2は本発明の実施の形態における成形シートおよびポリイミドシートの構成を示す図である。 図3は本発明の実施の形態におけるグラファイトシートの概略図である。
 本発明の実施の形態の説明に先立ち、従来の熱分解グラファイトシートにおける課題を説明する。熱分解グラファイトシートは、ポリイミド等の樹脂フィルムを熱分解させてグラファイト化することで作製される。そのため、厚い熱分解グラファイトシートを作製することは難しい。厚い熱分解グラファイトシートを得ようとして、原料となる樹脂フィルムを厚くすると、熱分解する段階で発生した分解物がシート外部に排出しきらず、シート内部に残留する。そのため、グラファイト化する段階で残留物がガス化してシートが膨れ上がりシートそのものが破壊される。そのため熱分解グラファイトシートの厚さの上限は、100μm程度である。
 以下、本発明の実施の形態におけるグラファイトシートの製造方法について、図1~図3を参照しながら説明する。図1~図3は本発明の実施の形態におけるグラファイトシートの製造方法を示す図であり、図1は空洞形成シート11の概略図、図2は成形シートおよびポリイミドシートの構成を示す図、図3はグラファイトシートの概略図である。
 まず図1に示すように太さ約20μmのポリプロピレンの糸をメッシュ状に織り、空洞形成シート11を作製する。
 次に、図2に示すようにポリイミドの前駆体であるポリアミド酸14を空洞形成シート11に含浸させ、シート状に成形する。このようにして作製した成形シート15を約400℃で熱処理することにより、ポリアミド酸14をイミド化させる。その結果、図2に示すようにポリイミド10と、ポリイミド10の内部に配置された空洞形成シート11とを有するポリイミドシート12を作製する。この際、ポリイミドシート12の厚さが約200μmになるようにポリアミド酸14をシート成形する。
 ポリプロピレンは、ポリアミド酸14をイミド化する温度では、軟化しているものの、熱分解しない。そのため、空洞形成シート11はメッシュ状の形状を保つことができる。すなわち、空洞形成シート11は、ポリイミドシート12を作製する際には形状を保っている。
 次にポリイミドシート12を非酸化雰囲気で、約1200℃で焼成することにより炭化し、さらに約2800℃で焼成する。これらの焼成により図3に示す厚さ約200μmのグラファイトシート13が作製される。
 ポリイミドシート12を炭化する際、ポリイミドシート12が熱分解を起こす前に、空洞形成シート11を構成するポリプロピレンが450~500℃で熱分解する。一方、ポリイミド10は500~600℃で熱分解し始める。この昇温過程において、非酸化雰囲気であっても、ポリプロピレンは熱分解してほぼ100%ガス化して消失する。そのため、ポリイミドシート12の熱分解が開始されるとき、ポリイミドシート12の中ほどには、メッシュ状の空洞が形成されている。
 ポリイミドシート12が熱分解して発生する分解物(気体)は、この空洞を通してシート外部に排出される。その結果、ポリイミドシート12の熱分解時にシート内に分解物が残留することを防ぐことができる。ポリイミド10は熱分解しても重量の50%以上が炭素として残り、その他のものはほとんど残らない。そのため、約2800℃で焼成することによりグラファイトシート13を作製することができる。
 グラファイト化したあと、グラファイトシート13の内部には空洞形成シート11が存在した部分に空洞が残っている場合がある。このような場合、ローラ等でなめすことによりこの空洞をつぶせば、柔軟性のあるグラファイトシートを作製することができる。
 なお、空洞形成シート11の材料としては、ポリイミドシート12を作製するイミド化の温度で形状を保ち、ポリイミド10が熱分解する際にはガス化して重量の80%以上が消失するものであれば良い。したがって、ポリプロピレン以外にもポリエチレン、ポリエチレンテレフタレート等を単独、または組み合わせて用いることができる。特にポリプロピレン、ポリエチレンは熱分解時にほぼ100%消失するため、より好ましい。
 また、空洞形成シート11に用いる糸の線径は、空洞の形成およびグラファイト化したときの強度を考慮して、20μm以上、30μm以下とすることが望ましい。またメッシュの開き目は、線径の3倍以上、5倍以下とすることが望ましい。
 さらに、空洞形成シート11は、メッシュ状以外に不織布状であってもかまわない。
 また、さらに厚い熱分解グラファイトシートを作製するために、空洞形成シート11を複数枚用いても良い。すなわち、空洞形成シート11にポリアミド酸14を含浸させた成形シート15を作製する際に、複数枚の空洞形成シート11にポリアミド酸14を含浸させる。この場合、ポリイミドシート12において複数の空洞形成シート11のうちの2枚の間の距離を100μm以下にすることが好ましい。これにより、ポリイミドシート12を厚くしても、ポリイミド10が熱分解したときに発生するガスを外部に排出することができ、所望の厚さのグラファイトシート13を作製することができる。
 なお空洞形成シート11がポリイミドシート12の端面に露出するようにポリアミド酸14を空洞形成シート11に含浸させ、シート状に成形することが好ましい。すなわち、ポリイミドシート12を作製する際、ポリイミドシート12の端面に空洞形成シート11を露出させることが好ましい。ポリイミドシート12の端面に空洞形成シート11が露出していれば、空洞形成シート11が分解して発生した分解物をシート外部に容易に排出することができる。
 本発明に係るグラファイトシートの製造方法は、熱伝導性に優れた熱分解グラファイトシートを所望の厚さで得ることができ、産業上有用である。
10  ポリイミド
11  空洞形成シート
12  ポリイミドシート
13  グラファイトシート
14  ポリアミド酸
15  成形シート

Claims (7)

  1. メッシュ状もしくは不織布状に形成した空洞形成シートにポリアミド酸を含浸させてシート状に成形し、成形シートを作製するステップと、
    前記成形シートを熱処理して前記ポリアミド酸をイミド化することにより、ポリイミドと、前記ポリイミドの内部に配置された前記空洞形成シートとを有するポリイミドシートを作製するステップと、
    前記ポリイミドシートを非酸化雰囲気で焼成することにより前記ポリイミドを熱分解してグラファイトシートを作製するステップと、を備え、
    前記空洞形成シートは、前記ポリイミドシートを作製する際には形状を保ち、前記ポリイミドが熱分解する際にはガス化し、重量の80%以上が消失する材料で構成されている、
    グラファイトシートの製造方法。
  2. 前記空洞形成シートの材料は、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートのうちの少なくとも1つである、
    請求項1記載のグラファイトシートの製造方法。
  3. 前記ポリイミドシートを作製する際、前記ポリイミドシートの端面に前記空洞形成シートを露出させる、
    請求項1記載のグラファイトシートの製造方法。
  4. 前記ポリイミドを熱分解して前記グラファイトシートを作製した後に、前記グラファイトシートをローラでなめすステップをさらに備えた、
    請求項1記載のグラファイトシートの製造方法。
  5. 前記空洞形成シートを構成する糸の線径は、20μm以上、30μm以下である、
    請求項1記載のグラファイトシートの製造方法。
  6. 前記空洞形成シートはメッシュ状であり、メッシュの開き目は、前記空洞形成シートを構成する糸の線径の3倍以上、5倍以下である、
    請求項1記載のグラファイトシートの製造方法。
  7. 前記空洞形成シートは複数枚の空洞形成シートの1つであり、前記成形シートを作製する際に、前記複数枚の空洞形成シートにポリアミド酸を含浸させるとともに、前記ポリイミドシートにおいて前記複数枚の空洞形成シートのうちの2枚の間の距離を100μm以下にする、
    請求項1記載のグラファイトシートの製造方法。
PCT/JP2013/001350 2012-03-22 2013-03-05 グラファイトシートの製造方法 WO2013140724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/372,700 US9475702B2 (en) 2012-03-22 2013-03-05 Method for producing graphite sheet
CN201380015681.2A CN104203817B (zh) 2012-03-22 2013-03-05 石墨片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065003A JP5887494B2 (ja) 2012-03-22 2012-03-22 グラファイトシートの製造方法
JP2012-065003 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140724A1 true WO2013140724A1 (ja) 2013-09-26

Family

ID=49222208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001350 WO2013140724A1 (ja) 2012-03-22 2013-03-05 グラファイトシートの製造方法

Country Status (4)

Country Link
US (1) US9475702B2 (ja)
JP (1) JP5887494B2 (ja)
CN (1) CN104203817B (ja)
WO (1) WO2013140724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185911A (zh) * 2016-08-31 2016-12-07 无锡东恒新能源科技有限公司 一种石墨原料铺压及石墨单晶体提取一体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669204B1 (ko) 2015-04-30 2016-10-25 에스케이씨 주식회사 그라파이트 시트 및 이의 제조방법
KR101851752B1 (ko) * 2016-10-21 2018-04-24 에스케이씨 주식회사 그라파이트 시트의 제조방법
KR101939338B1 (ko) * 2017-08-17 2019-01-16 에스케이씨 주식회사 롤 형태의 그라파이트 시트의 제조방법
KR102094925B1 (ko) * 2018-05-03 2020-03-30 에스케이씨 주식회사 전자파 차폐능 및 열전도도가 우수한 다층 그라파이트 시트 및 이의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025808A (ja) * 1973-07-10 1975-03-18
JPS60122711A (ja) * 1983-12-08 1985-07-01 Oji Paper Co Ltd 多孔質炭素板の製造方法
JPS6112918A (ja) * 1984-06-25 1986-01-21 Oji Paper Co Ltd 多孔質炭素板の製造方法
JPS61275117A (ja) * 1985-05-30 1986-12-05 Res Dev Corp Of Japan グラフアイトフイルムの製造方法
JPH05166676A (ja) * 1991-12-13 1993-07-02 Showa Denko Kk 電気二重層コンデンサ
JPH11100207A (ja) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd グラファイトフィルムの製造方法
JP2003165715A (ja) * 2001-11-29 2003-06-10 Du Pont Toray Co Ltd 炭素フィルムの製造方法およびそれから得られる炭素フィルム
JP2004123506A (ja) * 2002-03-06 2004-04-22 Kanegafuchi Chem Ind Co Ltd フィルム状グラファイトの製造方法
JP2008156145A (ja) * 2006-12-22 2008-07-10 Tokai Carbon Co Ltd 多孔質炭素材の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395514A (en) * 1980-04-18 1983-07-26 Celanese Corporation Process for preparing a carbon fiber reinforced composite article which utilizes a polyimide matrix
US5698341A (en) * 1995-08-18 1997-12-16 Petoca, Ltd. Carbon material for lithium secondary battery and process for producing the same
US5846459A (en) * 1997-06-26 1998-12-08 Ucar Carbon Technology Corporation Method of forming a flexible graphite sheet with decreased anisotropy
WO2002066245A1 (en) * 2000-11-02 2002-08-29 Graftech Inc. Flexible graphite sheet having increased isotropy
JP2004299937A (ja) 2003-03-28 2004-10-28 Kanegafuchi Chem Ind Co Ltd グラファイトフィルムの製造方法
JP3809182B2 (ja) 2004-01-08 2006-08-16 松下電器産業株式会社 電子放出材料とその製造方法ならびにこれを用いた電子放出素子
CN1910722A (zh) 2004-01-08 2007-02-07 松下电器产业株式会社 电子发射材料及其制造方法以及使用其的电子发射元件
JP4864700B2 (ja) * 2004-06-16 2012-02-01 株式会社カネカ グラファイトフィルムの製造方法
US20060062983A1 (en) * 2004-09-17 2006-03-23 Irvin Glen C Jr Coatable conductive polyethylenedioxythiophene with carbon nanotubes
JP4440165B2 (ja) * 2005-04-26 2010-03-24 名古屋油化株式会社 成形性シートおよび内装材料
CN103144387B (zh) * 2007-05-17 2015-07-01 株式会社钟化 石墨膜及石墨复合膜
AU2009253983A1 (en) * 2008-06-02 2009-12-10 Agfa-Gevaert N.V. Process for producing an ion-permeable web-reinforced separator
WO2009147771A1 (ja) * 2008-06-02 2009-12-10 パナソニック株式会社 グラファイト複合体及びその製造方法
US8720537B2 (en) * 2009-07-13 2014-05-13 Panasonic Corporation Graphite sheet and heat transfer structure using same
SA109300669B1 (ar) * 2009-09-30 2014-09-02 Grace W R & Co غشاء مقاوم للماء
JP3186199U (ja) * 2010-09-21 2013-09-26 グラフテック インターナショナル ホールディングス インコーポレーテッド 複合ヒートスプレッダ
CN102302800B (zh) 2011-09-14 2013-12-11 上海市第六人民医院 壳聚糖挂膜聚丙烯网片及其制备方法
TW201410601A (zh) * 2012-09-06 2014-03-16 綠晶能源股份有限公司 軟性石墨紙及其製造方法及其增厚結構
KR102073305B1 (ko) * 2012-12-17 2020-02-04 파나소닉 아이피 매니지먼트 가부시키가이샤 열전도 시트
FR3023059B1 (fr) * 2014-06-25 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit integre comportant un dissipateur de chaleur

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025808A (ja) * 1973-07-10 1975-03-18
JPS60122711A (ja) * 1983-12-08 1985-07-01 Oji Paper Co Ltd 多孔質炭素板の製造方法
JPS6112918A (ja) * 1984-06-25 1986-01-21 Oji Paper Co Ltd 多孔質炭素板の製造方法
JPS61275117A (ja) * 1985-05-30 1986-12-05 Res Dev Corp Of Japan グラフアイトフイルムの製造方法
JPH05166676A (ja) * 1991-12-13 1993-07-02 Showa Denko Kk 電気二重層コンデンサ
JPH11100207A (ja) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd グラファイトフィルムの製造方法
JP2003165715A (ja) * 2001-11-29 2003-06-10 Du Pont Toray Co Ltd 炭素フィルムの製造方法およびそれから得られる炭素フィルム
JP2004123506A (ja) * 2002-03-06 2004-04-22 Kanegafuchi Chem Ind Co Ltd フィルム状グラファイトの製造方法
JP2008156145A (ja) * 2006-12-22 2008-07-10 Tokai Carbon Co Ltd 多孔質炭素材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185911A (zh) * 2016-08-31 2016-12-07 无锡东恒新能源科技有限公司 一种石墨原料铺压及石墨单晶体提取一体装置

Also Published As

Publication number Publication date
US20140332993A1 (en) 2014-11-13
JP2013193944A (ja) 2013-09-30
JP5887494B2 (ja) 2016-03-16
CN104203817B (zh) 2017-03-08
US9475702B2 (en) 2016-10-25
CN104203817A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013140724A1 (ja) グラファイトシートの製造方法
Ryu et al. Direct insulation‐to‐conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers
KR101264001B1 (ko) 라이오셀/그래핀 나노복합체를 포함하는 전구체 섬유와 이를 이용한 탄소섬유 및 그 제조방법
JP6086943B2 (ja) 炭素繊維断熱材及びその製造方法
KR101079665B1 (ko) 저차원탄소 함유 탄소복합체 제조 방법 및 탄소블록 제조 방법
WO2018115177A1 (en) Graphite material
TW201122165A (en) High module carbon fiber and fabricating method thereof
JP2008169492A (ja) 炭素化布帛の製造方法およびこれにより得られた炭素化布帛
TW202120775A (zh) 石墨片的製造方法
KR102109800B1 (ko) 코팅된 열전도성 탄소 입자를 이용한 그라파이트 시트 및 이의 제조방법
JP6667568B2 (ja) 酸化繊維の製造方法及び酸化繊維
JP5829134B2 (ja) 炭素繊維フェルトの製造方法
JP2014025175A (ja) 炭素繊維不織布の製造方法および炭素繊維不織布
WO2023008392A1 (ja) 断熱材および断熱材の製造方法
KR102012753B1 (ko) 탄소섬유 제조용 전구체 섬유, 이의 제조방법 및 이를 이용한 탄소섬유의 제조방법
KR101221615B1 (ko) 전기방사에 의한 탄소나노섬유의 제조방법
KR101064944B1 (ko) 순수 탄소계 연료전지 분리판 제조 방법
JP4392434B2 (ja) 炭素化布帛の製造方法
JP2021113389A (ja) ピッチ系炭素繊維ミルド、熱伝導性成形体及びピッチ系炭素繊維ミルドの製造方法
JP2013237943A (ja) 炭素繊維不織布の製造方法
JP2016016998A (ja) 炭素フィルムの製造方法
JP2006232565A (ja) 炭素材の製造方法および純化方法
KR101586142B1 (ko) 흑연 재료의 제조 방법
JP6546489B2 (ja) 表面処理された成形断熱材及びその製造方法
JP2008190072A (ja) 炭素繊維紙及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764659

Country of ref document: EP

Kind code of ref document: A1