WO2013137152A1 - 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置 - Google Patents

半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置 Download PDF

Info

Publication number
WO2013137152A1
WO2013137152A1 PCT/JP2013/056525 JP2013056525W WO2013137152A1 WO 2013137152 A1 WO2013137152 A1 WO 2013137152A1 JP 2013056525 W JP2013056525 W JP 2013056525W WO 2013137152 A1 WO2013137152 A1 WO 2013137152A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
valve
gas supply
pipe
diffusion chamber
Prior art date
Application number
PCT/JP2013/056525
Other languages
English (en)
French (fr)
Inventor
秀幸 羽藤
小川 裕之
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020147019506A priority Critical patent/KR102039759B1/ko
Priority to US14/377,898 priority patent/US9460895B2/en
Publication of WO2013137152A1 publication Critical patent/WO2013137152A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87676With flow control
    • Y10T137/87684Valve in each inlet

Definitions

  • the present invention relates to a gas supply method, a gas supply system, and a semiconductor manufacturing apparatus for a semiconductor manufacturing apparatus.
  • etching process for forming a hole having a relatively small diameter of about 10 to 20 ⁇ m and a depth of 100 ⁇ m or more in a silicon (Si) substrate is required.
  • three-dimensional mounting a technique for increasing the degree of integration per unit area by stacking semiconductor chips called three-dimensional mounting.
  • three-dimensional mounting there is, for example, a three-dimensional wiring technique for electrically connecting upper and lower semiconductor chips using through-hole (TSV: Through-Silicon Via) electrodes penetrating the inside of the semiconductor chip. Also in this case, an etching process is required in which a hole is formed on the chip and deeply dug to penetrate the chip.
  • TSV Through-Silicon Via
  • the plasma treatment in which the deposition process and the etching process are repeated has a high selectivity of the silicon substrate to the resist film compared to the normal plasma etching process, and a good etching shape is efficiently maintained while maintaining a high etching rate. Can be well formed.
  • the gas of the next process is introduced while exhausting the gas of the immediately preceding process at the timing when the deposition process and the etching process are switched. At that time, the gas passes through the gas supply pipe, is diffused in the diffusion chamber, and then introduced into the chamber. Therefore, when the two processes are switched, the process gas of the previous process remains in the diffusion chamber and is mixed with the gas that is newly supplied as the process gas of the next process, so that the component ratio of the process gas changes. Will end up.
  • the remaining amount of residual gas in the previous process is subject to fluctuations depending on processing conditions such as pressure in the processing chamber, so that it is difficult to set each gas component ratio to a predetermined ratio at the initial stage of switching of each process. This hinders obtaining results.
  • a process for controlling the pressure of the processing gas in the gas supply pipe is added to the previous process in the gas supply pipe.
  • An object of the present invention is to provide a gas supply method, a gas supply system, and a semiconductor manufacturing apparatus for a semiconductor manufacturing apparatus capable of suppressing the residual gas component generated in step 1 from being mixed with a newly supplied gas.
  • a first gas is supplied to the chamber through the first gas pipe through the diffusion chamber, and the second gas is passed through the diffusion chamber to the chamber through the second gas pipe.
  • a gas supply method for a semiconductor manufacturing apparatus that alternately repeats a second step of plasma processing the object to be processed,
  • the first valve controls communication between the first gas pipe and the diffusion chamber;
  • a second valve for controlling communication between the second gas pipe and the diffusion chamber;
  • the fifth valve controls communication between the exhaust pipe and the diffusion chamber, Before the first step, the first valve is closed and the third valve is closed, and the first gas is used to increase the pressure of the first gas in the first gas pipe by the first gas.
  • a pressing step Before the second step, the second valve is closed and the fourth valve is closed, and the second gas is used to increase the pressure of the second gas in the second gas pipe by the second gas.
  • a pressing step An exhaust step of opening the fifth valve in response to the start of the first step and the start of the second step and exhausting the gas in the diffusion chamber;
  • a gas supply method for a semiconductor manufacturing apparatus is provided.
  • a first gas is supplied to the chamber through the first gas pipe through the diffusion chamber, and the second gas is passed through the diffusion chamber to the chamber through the second gas pipe.
  • a gas supply system for a semiconductor manufacturing apparatus that alternately repeats a second step of plasma processing the object to be processed, A first valve that controls communication between the first gas pipe and the diffusion chamber; A second valve for controlling communication between the second gas pipe and the diffusion chamber; A third valve connected to the upstream side of the first valve of the first gas pipe and controlling discharge of the gas in the first gas pipe; A fourth valve connected to the upstream side of the second valve of the second gas pipe and controlling discharge of gas in the second gas pipe; A fifth valve for controlling communication between the exhaust pipe and the diffusion chamber; Before the first step, the first valve is closed and the third valve is closed, and the first gas is used to increase the pressure of the first gas in the first gas pipe by the first gas.
  • a gas supply mechanism Before the second step, the second valve is closed and the fourth valve is closed, and the second gas is used to increase the pressure of the second gas in the second gas pipe by the second gas.
  • a gas supply mechanism An exhaust mechanism that opens the fifth valve in response to the start of the first step and the start of the second step and exhausts the gas in the diffusion chamber; A gas supply system is provided.
  • a semiconductor manufacturing apparatus for performing plasma processing on an object to be processed using the gas supply system.
  • a process for controlling the pressure of the processing gas in the gas supply pipe (a pressurization process and an exhaust process) is added to the front in the gas supply pipe. It is possible to suppress the residual gas component generated in the process from being mixed with the newly supplied gas, and to shorten the processing gas switching time between the processes.
  • FIG. 1 is an overall configuration diagram of a gas supply system according to an embodiment.
  • 1 Torr can be converted as 133.322 Pa.
  • FIG. 15 is a diagram illustrating an example of plasma emission intensity by plasma processing in which the deposition process and the etching process according to the embodiment are repeatedly performed.
  • FIG. 16 is a diagram illustrating an example of an etching result of a plasma process in which a deposition process and an etching process according to an embodiment are repeatedly performed.
  • a deposition process in which a gas in which a deposition gas is mixed with an etching gas is introduced, and a gas in which an etching gas is mixed with a deposition gas in a larger amount The etching process for introducing is repeated at intervals of approximately 10 seconds. Further, as shown in FIG. 15, in the plasma processing in which the deposition process and the etching process are repeated, the transition point between the deposition process and the etching process and the change point of the plasma emission intensity are intentionally shifted to perform the etching from the deposition process.
  • the plasma generation conditions are controlled so that the plasma emission intensity in the deposition process is maintained for a while.
  • the plasma generation conditions are controlled so that the plasma emission intensity in the etching process is maintained for a while even after the transition from the etching process to the deposition process. In this way, a transient state of plasma was intentionally formed.
  • step of obtaining the etching result of the plasma processing in which the deposition step and the etching step of FIG. 16 are repeated and the step of obtaining the etching result of the plasma processing in which the deposition step and the etching step according to this embodiment described later are repeated.
  • the timings of switching between the deposition process and the etching process are matched.
  • the mixing ratio B shown on the right side of FIG. 16 is a mixing ratio of the deposition gas (film forming gas) 80% and the etching gas 20%.
  • the film thickness was 0.446 ⁇ m as a result of executing the plasma treatment in which the deposition process and the etching process were repeated. That is, when the deposition gas ratio was lowered from 91% to 80%, the film thickness decreased by about 45%.
  • the shape of the hole bottom is good in the case of the mixing ratio A shown on the left side of FIG. 16, whereas in the case of the mixing ratio B shown on the right side of FIG. Etching is progressing. From the above, it can be seen that when plasma treatment is performed in which the deposition process and the etching process are repeated at a mixing ratio of 80% deposition gas and 20% etching gas, the film thickness is small and does not function as a protective film.
  • the etching rate is 3 ⁇ m / min or less when the plasma processing is performed in which the deposition process and the etching process are repeated at a mixture ratio of 80% deposition gas and 20% etching gas, and the etching performance is deteriorated.
  • the gas supply system according to an embodiment of the present invention described below has the features (1) to (3) in order to reduce the switching time of the two steps.
  • a first gas supply mechanism for supplying a deposition main gas (corresponding to a first gas obtained by mixing a deposition gas more than an etching gas) into a chamber as a path in the diffusion chamber from a gas supply source;
  • a gas supply line having a second gas supply mechanism for supplying an etching main gas (corresponding to a second gas in which an etching gas is mixed more than a deposition gas) into the chamber.
  • the gas supply line is divided into a plurality of parts, the volume of the gas diffusion chamber in which the gas is mixed is made as small as possible, and the mixing of the residual gas generated in the previous process when switching between the processes is reduced.
  • Each gas supply line is provided with a valve controlled by a control device, and the pressure in the pipe of the gas supply line is controlled by opening and closing the valve.
  • the valve Before supplying the gas into the chamber, the valve is closed and the pressure in the piping of the gas supply line is raised to create a pressure gradient with the chamber pressure.
  • the gas supply line is switched, that is, when the valve is opened, the gas moves in a short time to the diffusion chamber in the chamber due to the pressure gradient. Thereby, the effect which pushes out the gas of the previous process which remained in the diffusion chamber out of the diffusion chamber is also acquired.
  • an exhaust line is provided to efficiently replace the gas from the previous process remaining in the diffusion chamber.
  • the gases used in the two processes of the plasma treatment in which the deposition process and the etching process are repeated are almost mixed at the time of switching. Absent.
  • the film formation process and the etching process of the protective film are efficiently performed in each process, and the performance in the deposition process and the performance in the etching process can be improved.
  • the cycle of the plasma treatment in which the deposition process and the etching process are repeated can be shortened, the etching rate and the selectivity of the silicon substrate to the resist film can be increased, and a good etching shape can be obtained.
  • a gas supply system according to an embodiment of the present invention will be described in detail.
  • the gas supply system 10 is used in the semiconductor manufacturing apparatus 30.
  • the semiconductor manufacturing apparatus 30 includes a deposition process in which a deposition main gas (first gas) in which a deposition gas is mixed more than an etching gas is supplied into the chamber C through the diffusion chamber 16a, and the silicon substrate W is plasma-processed.
  • the plasma process is repeated a number of times. Thereby, for example, a desired deep hole is formed in the silicon substrate W mounted on the mounting table 102.
  • the deposition main gas is a mixed gas containing SiF 4 gas and O 2 gas.
  • the etching main gas is a mixed gas containing SF 6 gas and O 2 gas.
  • the gas supply system 10 includes a gas adjustment unit 115b.
  • the gas adjustment unit 115b is connected to the gas supply source 20, the semiconductor manufacturing apparatus 30, the control apparatus 60, and the exhaust apparatus 115c.
  • the gas adjusting unit 115b includes a first gas supply mechanism F1 as a gas supply line for the deposition process and a second gas supply mechanism F2 as a gas supply line for the etching process.
  • the deposition main gas is supplied into the chamber C in the deposition process by the first gas supply mechanism F1.
  • the etching main gas is supplied into the chamber C in the etching process by the second gas supply mechanism F2.
  • the gas adjustment unit 115b repeatedly supplies the deposition main gas and the etching main gas alternately from the gas supply source 20 to the semiconductor manufacturing apparatus 30 at a predetermined timing.
  • the gas adjusting unit 115b has an exhaust mechanism F3 as a gas exhaust line in addition to the two gas supply lines of the first gas supply mechanism F1 and the second gas supply mechanism F2.
  • the first gas supply mechanism F1 includes a first gas supply pipe 41, a first gas introduction pipe 42, and a first valve 11.
  • the first gas supply pipe 41 is a pipe for supplying a deposition main gas controlled to a predetermined flow rate from a flow rate control device (FCS: Flow Control System) 21 provided in the gas supply source 20.
  • FCS flow rate control device
  • a first bypass pipe 45 is connected to the first gas supply pipe 41 via a third valve 13.
  • the first bypass pipe 45 bypasses and exhausts the deposition main gas.
  • the first bypass pipe 45 is provided with an orifice 48. By restricting the gas flow path in the first bypass pipe 45 by the orifice 48, a sudden pressure fluctuation in the first bypass pipe 45 is avoided at the timing of switching between the etching process and the deposition process.
  • the pressure fluctuation in the first bypass pipe 45 before and after the first pressurizing step described in detail later is reduced.
  • the deposition process is being performed when the first valve 11 is open.
  • the deposition main gas flows through the first gas introduction pipe 42 through the first gas supply pipe 41 and is introduced into the chamber C through the diffusion chamber 16 a provided in the gas shower head 116 in the chamber C. Is done.
  • the third valve 13 is normally controlled to be opened, and the deposition main gas is exhausted by the exhaust device 115 c through the first bypass pipe 45.
  • the exhaust device 115c include a dry pump (Dry Pump) and a turbo molecular pump TMP (Turbo Molecular Pump).
  • the first pressurizing step closes the third valve 13 provided in the first bypass pipe 45 for bypassing the deposition main gas before the deposition step, and supplies the deposition main gas into the chamber.
  • This is a step of pressurizing the interior of the first gas supply pipe 41 by accumulating in the first gas supply pipe 41.
  • the first valve 11 provided in the first gas introduction pipe 42 is closed before the first pressurizing step.
  • the second valve 12 is opened and the etching process is being performed.
  • the third valve 13 is controlled to be closed before the deposition step while the first valve 11 is controlled to be closed, and the deposition main gas supplied from the gas supply source 20 is changed to the first pressure step. 1 is stored in the gas supply pipe 41.
  • the inside of the first gas supply pipe 41 is pressurized (see FIG. 2).
  • the first valve 11 is controlled to open at the timing of switching from the etching process to the deposition process, the deposition main gas in the first gas supply pipe 41 flows into the diffusion chamber 16a all at once.
  • the second gas supply mechanism F2 includes a second gas supply pipe 43, a second gas introduction pipe 44, and a second valve 12.
  • the second gas supply pipe 43 is a pipe for supplying an etching main gas controlled at a predetermined flow rate from a flow rate control device (FCS) 22 provided in the gas supply source 20.
  • a second bypass pipe 46 is connected to the second gas supply pipe 43 via the fourth valve 14.
  • the second bypass pipe 46 bypasses and exhausts the etching main gas during the deposition process.
  • the second bypass pipe 46 is provided with an orifice 49. By restricting the gas flow path in the second bypass pipe 46 by the orifice 49, a sudden pressure fluctuation in the second bypass pipe 46 is avoided at the timing of switching between the etching process and the deposition process. Further, by increasing the pressure in the second bypass pipe 46 to some extent, the pressure fluctuation in the second bypass pipe 46 before and after the second pressurizing step, which will be described in detail later, is reduced.
  • the etching process is executed when the second valve 12 is open.
  • the etching main gas flows through the second gas supply pipe 44 through the second gas supply pipe 43 and is introduced into the chamber C through the diffusion chamber 16a.
  • the fourth valve 14 is normally controlled to be opened, so that the etching main gas is exhausted by the exhaust device 115 c through the second bypass pipe 46.
  • the second pressurizing step closes the fourth valve 14 provided in the second bypass pipe 46 for bypassing the etching main gas before the etching step, and supplies the etching main gas into the chamber.
  • This is a step of pressurizing the second gas supply pipe 43 by accumulating in the second gas supply pipe 43.
  • the second valve 12 provided in the second gas introduction pipe 44 is closed before the second pressurizing step.
  • the first valve 11 is opened and the deposition process is being performed.
  • the fourth valve 14 is controlled to be closed before the etching step while the second valve 12 is controlled to be closed, and the etching main gas supplied from the gas supply source 20 is changed to the first pressure step. 2 is stored in the gas supply pipe 43. Thereby, the inside of the second gas supply pipe 43 is pressurized. In this state, when the second valve 12 is controlled to open at the timing of switching from the deposition process to the etching process, the etching main gas in the second gas supply pipe 43 flows into the diffusion chamber 16a all at once.
  • the exhaust mechanism F3 has an exhaust pipe 47 communicating with the diffusion chamber 16a, and the exhaust pipe 47 is provided with a fifth valve 15.
  • the fifth valve 15 of the exhaust mechanism F3 is controlled to be opened when switching each process of the plasma processing in which the deposition process and the etching process are repeated. This forcibly exhausts the gas in the previous process existing in the diffusion chamber 16a (exhaust process).
  • the control device 60 includes a CPU (not shown) and the like, and controls the gas type and gas flow rate output from the gas supply source 20 and the first valves 11 to 5 according to the switching timing of the deposition process and the etching process.
  • the opening / closing of the valve 15 is controlled.
  • the opening / closing of the valve can be computer controlled by the control device 60.
  • a specific configuration example of the semiconductor manufacturing apparatus 30 will be described later with reference to FIG.
  • a pressurization process and an exhaust process are added to the plasma processing in which the deposition process and the etching process are alternately repeated.
  • the third valve 13 or the fourth valve 14 is closed earlier than the switching timing between the deposition process and the etching process.
  • the gas of the next process is accumulated in the first gas supply pipe 41 or the second gas supply pipe 43 until switching.
  • the gas accumulated in the first gas supply pipe 41 or the second gas supply pipe 43 at the time of switching can be flowed toward the diffusion chamber 16a at a high speed.
  • the fifth valve 15 of the exhaust line is opened at the time of switching.
  • the gas of the front process which exists in a gas shower can be forcedly exhausted.
  • the gas in the diffusion chamber 16a can be replaced at high speed, and the gas switching time can be shortened. it can.
  • the gases used in the two steps hardly mix at the time of switching, so that the selectivity can be increased while maintaining a high etching rate, and a good etching shape can be efficiently formed.
  • FIG. 3 is a flowchart of plasma processing in which a deposition process and an etching process using the gas supply system according to an embodiment are repeatedly performed.
  • FIG. 4 is a sequence chart of plasma processing in which a deposition process and an etching process using the gas supply system according to one embodiment are repeated.
  • the control device 60 controls gas switching and valve opening / closing shown in the following flowchart according to a recipe stored in a storage unit such as a ROM or a RAM.
  • the control device 60 executes the deposition process (step S100).
  • an etching process may be performed before the deposition process of step S100.
  • This timing is the timing indicated as “Recipe / On” in FIG. 4.
  • the first valve 11 is open, the second valve 12 is closed, the third valve 13 is closed, and the fourth valve 14 is open. It has become.
  • the deposition main gas flows through the first gas introduction pipe 42 through the first gas supply pipe 41, and passes through the diffusion chamber 16 a provided in the gas shower head 116 in the chamber C to the chamber C. (See FIG. 1).
  • the fifth valve 15 is switched from closed to open (step S120), and after a predetermined exhaust time has elapsed, the fifth valve 15 is switched from open to closed (step S122).
  • the gas in the previous process existing in the diffusion chamber 16a is forcibly exhausted (exhaust process).
  • the control device 60 switches the fourth valve 14 from opening to closing at a predetermined timing before the execution of the etching process (step S102) (step S110: second pressurizing process). This time is the timing indicated as “before switching 1” in FIG. Accordingly, the fourth valve 14 is controlled to be closed while the second valve 12 is controlled to be closed before the etching process. As a result, the etching main gas supplied from the gas supply source 20 accumulates in the second gas supply pipe 43 and pressurizes the second gas supply pipe 43.
  • step S102 the control device 60 executes an etching process (step S102). This time is the timing indicated as “switch 1” in FIG. Thereby, the deposition process is switched to the etching process.
  • the second valve 12 is controlled from closed to open (step S112), and the first valve 11 is controlled to close. Thereby, the supply of the deposition main gas is stopped, and the etching main gas accumulated in the second gas supply pipe 43 flows into the diffusion chamber 16a all at once.
  • the gas atmosphere in the diffusion chamber 16a instantly changes from the deposition main gas to the etching main gas, shortening the gas switching timing, and avoiding the mixing of the gas in the previous process and the gas in the next process as much as possible. Can do.
  • the fifth valve 15 is switched from closed to open (step S124), and after a predetermined exhaust time has elapsed, it is switched from open to closed (step S126).
  • the gas in the previous process here, the deposition main gas
  • the third valve 13 is controlled from closed to open.
  • the deposition main gas in the first gas supply pipe 41 is exhausted from the first bypass pipe 45.
  • the control device 60 determines whether the deposition process and the etching process have been executed a predetermined number of times (step S104). If it has been executed a predetermined number of times, this process is terminated. If not executed a predetermined number of times, the process returns to step S100. At that time, the control device 60 switches from the etching process to the deposition process after a predetermined etching time has elapsed, and executes the deposition process (step S100), but before that, the third valve 13 is switched from open to closed. (Step S114: 1st pressurization process). This time is the timing “2 before switching” in FIG. Thereby, the third valve 13 is controlled to be closed while the first valve 11 is controlled to be closed before the deposition step. As a result, the deposition main gas supplied from the gas supply source 20 accumulates in the first gas supply pipe 41 and pressurizes the first gas supply pipe 41.
  • step S100 the control device 60 executes a deposition process (step S100). This time is the timing indicated as “switch 2” in FIG. Thereby, it switches from an etching process to a deposition process.
  • the first valve 11 is controlled from closed to open (step S116), and the second valve 12 is controlled to close.
  • the supply of the etching main gas is stopped, and the deposition main gas in the first gas supply pipe 41 flows all at once into the diffusion chamber 16a.
  • the gas atmosphere in the diffusion chamber 16a is instantaneously changed from the etching main gas to the deposition main gas, shortening the timing of gas switching, and avoiding the mixing of the gas in the previous process and the gas in the next process as much as possible. Can do.
  • the fifth valve 15 is switched from closed to open (step S120), and after a predetermined exhaust time has elapsed, it is switched from open to closed (step S122).
  • the gas in the previous process here, the etching main gas
  • the fourth valve 14 is controlled from closed to open at the timing of “switch 2”.
  • the etching main gas in the second gas supply pipe 43 is exhausted from the second bypass pipe 46.
  • the gases used in the two processes of the plasma treatment in which the deposition process and the etching process are repeated hardly mix at the time of switching.
  • the film forming process and the etching process of the protective film are efficiently performed in each process, and the performance in the deposition process and the performance in the etching process can be improved.
  • a pressurizing step is provided before gas switching in two steps. Therefore, in the following, the start of the pressurizing process and the pressure fluctuation will be described.
  • the flow path system of the second gas supply mechanism F2 connected to the flow control device (FCS) 22 is the same as the flow path system of the first gas supply mechanism F1 connected to the flow control device 21. Therefore, here, the start of the pressurization process of the flow path system of the first gas supply mechanism F1 and the pressure fluctuation will be described, and the description of the flow path system of the second gas supply mechanism F2 will be omitted.
  • the pressure fluctuation is calculated using the number of moles. The number of moles is expressed in terms of mass / molecular weight, and can be expressed independently of the gas species, so it can be explained uniformly even in different mixed gases.
  • n 1 P 1 V 1 / RT
  • the pressure in the first gas supply pipe 41 is P 1 and the volume is V 1 .
  • Gas flow rate outputted from the flow control device 21 (1000 sccm) and Q 1.
  • the total number of moles n 2 in the first gas supply pipe 41 after t seconds from the start of the pressurization process with the third valve closed is introduced into the first gas supply pipe 41 from the flow rate control device 21.
  • the value obtained by multiplying the number of moles of the gas flow rate Q 1 by the time t and the number of moles n 1 existing in the first gas supply pipe 41 is obtained.
  • the total number of moles n 2 in the first gas supply pipe 41 after t seconds from the start of the pressurization step is shown in the following formula (1).
  • P 2 Q 1 / V 1 ⁇ t + P 1 (2) [Pressure after opening the switching valve]
  • the number of moles necessary for the gas in the volume A of the diffusion chamber 16a to be replaced is calculated. If the calculated required number of moles can be stored in the first gas supply pipe 41 during the pressurizing step, the gas type in the diffusion step 16a is instantaneously changed from the gas type in the previous step to the next step in switching between the two steps. You can switch to
  • a is the radius of the tube (cm)
  • l is the length of the tube
  • V 1 dP 1 / dt ⁇ C 1 (P 2 2 ⁇ P 1 2 ) + Q 1 (3)
  • P 1 is the pressure in the first gas supply pipe 41
  • V 1 is the volume in the first gas supply pipe 41
  • C 1 is the conductance in the first gas supply pipe 41
  • P 2 is the pressure in the diffusion chamber 16 a
  • Q 1 is the gas flow rate flowing from the flow control device 21. Equation (3) shows the state of the gas flowing into or out of the first gas supply pipe 41 after opening the first valve 11.
  • V 2 dP 2 / dt C 1 (P 2 2 ⁇ P 1 2 ) ⁇ Q 3 ⁇ Q 4 (4)
  • P 2 is the pressure of the diffusion chamber 16a
  • V 2 is the volume of the diffusion chamber 16a
  • C 1 is a conductance in the first gas supply pipe 41
  • P 1 is a pressure in the first gas supply pipe 41.
  • Q 3 is a flow rate of the gas introduced into the chamber C from the diffusion chamber 16a
  • Q 4 is a gas flow rate flowing through the exhaust pipe 47 from the diffusion chamber 16a to the atmosphere side.
  • the equation of state (4) indicates the state of the gas flowing into or out of the diffusion chamber 16a after opening the first valve 11.
  • dP 2 / dt C 1 (P 2 2 ⁇ P 1 2 ) / V 2 ⁇ C 2 (P 2 2 ⁇ P 3 2 ) / V 2 ⁇ C 3 (P 2 2 ⁇ P 4 2 ) / V 2.
  • P 3 is the pressure in the chamber
  • P 4 is the pressure on the exhaust side.
  • Equations (5) showing the temporal change dP 1 / dt of the pressure in the first gas supply pipe 41 and equations (6) showing the temporal change dP 2 / dt of the pressure in the diffusion chamber 16a Is calculated, the number of moles of gas flowing into the diffusion chamber 16a and the number of moles of gas flowing out of the diffusion chamber 16a are calculated. When the sum of the number of moles of gas flowing out to the exhaust side and the number of moles of gas flowing out into the chamber C reaches the volume A in the diffusion chamber 16a, the same amount from the first gas supply pipe 41 side. The number of moles of gas flows into the diffusion chamber 16a. At this time, the switching from the gas in the previous process to the gas in the next process is completely completed.
  • the time until the total number of moles of gas in the diffusion chamber 16a flows out of the diffusion chamber 16a is calculated to be 0.017 seconds. That is, all the gas in the diffusion chamber 16a flows out in 0.017 seconds, and the switching from the gas in the previous process to the gas in the next process is completely completed. It shows that the gas in the diffusion chamber 16a is changed almost instantaneously.
  • the total number of moles in the diffusion chamber 16a is 0.000409 mol.
  • the pipe diameter is 3/8 (inch) and the inner diameter is ⁇ 7.52 (mm)
  • the total number of moles flowing out from the diffusion chamber 16a into the chamber C is 0.000175 mol (at 0.017 seconds).
  • the total number of moles flowing out from the diffusion chamber 16a to the exhaust line is 0.000235 mol (at 0.017 seconds).
  • the total number of moles flowing out from the diffusion chamber 16a into the chamber C is 0.000358 mol (at 0.031 seconds) and exhausted from the diffusion chamber 16a.
  • the total number of moles flowing out to the line is 0.000051 mol (at 0.031 seconds).
  • the switching time is shortened when the exhaust process is provided, and the switching time is shortened the most when the pipe diameter is 1 ⁇ 2 (inch) than when the exhaust process is not provided. I understand.
  • the set flow rate of the first gas is 1000 sccm. This indicates that 0.000693 mole flows out of the flow control device 21 every second. 0.000011781 mol flows out of the flow rate control device 21 in 0.017 seconds until the total gas remaining in the diffusion chamber 16a flows out of the diffusion chamber 16a.
  • the residual gas in the diffusion chamber 16a flows out into the 100% chamber C, which adversely affects the process.
  • the fifth valve 15 of the exhaust line is closed when the pressure drops to the normal pressure while exhausting (position Pa in FIG. 7, 0.3 seconds here).
  • the number of moles in the diffusion chamber 16a is estimated to be 0 in about 3/100 seconds.
  • FIG. 8 is a diagram showing experimental results of the pressurizing process according to the present embodiment.
  • FIG. 9 is a diagram showing an experimental result of the exhaust process according to the present embodiment.
  • FIG. 10 is a graph showing the experimental results of FIGS. 8 and 9.
  • FIG. 11 is a diagram showing experimental results of plasma processing in which the deposition process and the etching process with the pressurization process and the exhaust process according to the present embodiment are repeatedly performed.
  • FIG. 8 shows the difference in the etching result of the deep hole depending on the presence or absence of the pressurizing step during the plasma processing in which the deposition step and the etching step are repeatedly performed based on the following process conditions.
  • the left side of FIG. 8 shows the case where the pressurization process was not executed
  • the center of FIG. 8 shows the case where the pressurization process was executed for 1 second
  • the right side of FIG. 8 shows the pressurization process for 2 seconds. Shown when executed.
  • the process conditions at this time are as follows. 1.
  • Etching process pressure: 200 (mTorr) High frequency power: Plasma generation HF 2500 (W) / bias LF 0 (W) Etching gas: O 2 / SF 6 100/600 (sccm) Temperature: 20 ° C Process time: 0.05 (min) In this experiment, deep holes were formed on the silicon substrate using a 5.5 ⁇ m photoresist film having a diameter of 10 ⁇ m as a mask.
  • the selection ratio (sel) of the silicon substrate to the resist film is improved as compared with the case where the pressurization process is not performed. I was able to confirm.
  • FIG. 9 shows the difference in the etching result of the deep hole depending on the presence or absence of the evacuation process during the plasma processing in which the deposition process and the etching process are repeatedly performed based on the process conditions.
  • the left side of FIG. 9 shows the case where the exhaust process was not executed, the center of FIG. 9 shows the case where the exhaust process was executed for 0.5 seconds, and the right side of FIG. 9 executed the exhaust process for 1 second. The case is shown.
  • a pressurization time of about 1 second to 2 seconds is preferable in the pressurization process on the left side of FIG. It can be seen that an exhaust time of about 0.5 seconds is preferable in the exhaust process on the right side of FIG.
  • both the pressurization process and the exhaust process have the effect of shortening the gas switching time in the diffusion chamber 16a, and the performance of generating the protective film in the deposition process has been improved, so that the protective film as expected is formed. It is presumed that the reduction of the resist film was suppressed in the etching process, and the selectivity was improved.
  • FIG. 11 shows the difference in the etching result of the deep hole depending on the presence or absence of the pressurizing step and the exhausting step during the execution of the plasma processing in which the deposition step and the etching step are repeatedly performed based on the above process conditions.
  • the left side of FIG. 11 shows the case without valve control (no pressurization process and exhaust process), and the right side of FIG. 11 shows the case with valve control (with pressurization process and exhaust process). Yes.
  • Each process time is as follows.
  • valve control pressing process and exhaust process
  • a good protective film can be formed even if the deposition process is shortened to 1 second for the deposition process compared to 5 seconds for the etching process. I knew it was possible. In this case, the switching time is 1 second (pressurization process 1 second, exhaust process 0.5 second).
  • the time of the etching process with respect to the deposition process can be lengthened, and the processing time of the etching process can be reduced. It is possible to make the maximum 5 times longer than the processing time.
  • the gas switching time is shortened by providing the pressurizing step and the exhausting step, and the gas in the preceding and following steps is changed during the switching. Mixing can be suppressed.
  • a protective film having an appropriate thickness can be generated even if the time for the deposition process is shortened. Therefore, the etching time with respect to the deposition time can be lengthened, and the hole can be etched deeper. Since the etching time with respect to the deposition time can be increased, the etching rate (E / R) can be kept high. Furthermore, the selectivity is improved and a good etching shape can be obtained.
  • the deposition process can be shortened, the period of the plasma treatment in which the deposition process and the etching process are repeated can be shortened.
  • FIG. 12 schematically shows the overall configuration of the semiconductor manufacturing apparatus 30 that uses the gas supply system 10.
  • the semiconductor manufacturing apparatus 30 has a chamber C whose inside is kept airtight and electrically grounded.
  • the semiconductor manufacturing apparatus 30 is connected to the gas supply system 10 according to this embodiment outside the chamber C.
  • the gas supply system 10 repeatedly supplies the deposition main gas and the etching main gas alternately into the chamber C at a predetermined switching timing.
  • plasma generated in the chamber C of the semiconductor manufacturing apparatus 30 is subjected to plasma processing etching in which the deposition process and the etching process are repeatedly performed on the silicon substrate W as a target object, and the silicon substrate W has a desired diameter. Deep holes can be formed.
  • the chamber C is cylindrical and is made of, for example, aluminum whose surface is anodized.
  • a mounting table 102 for horizontally supporting the silicon substrate W is provided in the chamber C.
  • the mounting table 102 is made of, for example, aluminum whose surface is anodized, and also functions as a lower electrode.
  • the mounting table 102 is supported by a conductive support table 104 and can be moved up and down by an elevating mechanism 107 via an insulating plate 103.
  • the elevating mechanism 107 is disposed in the chamber C and is covered with a bellows 108 made of stainless steel.
  • a bellows cover 109 is provided outside the bellows 108.
  • a focus ring 105 made of, for example, single crystal silicon is provided on the outer periphery above the mounting table 102.
  • a cylindrical inner wall member 103 a made of, for example, quartz is provided so as to surround the periphery of the mounting table 102 and the support table 104.
  • a first high frequency power supply 110a is connected to the mounting table 102 via a first matching unit 111a, and high frequency power for plasma generation of a predetermined frequency (27 MHz or more, for example, 40 MHz) is supplied from the first high frequency power supply 110a. It has become so.
  • a second high frequency power supply 110b is connected to the mounting table 102 via a second matching unit 111b, and a high frequency power for bias of a predetermined frequency (13.56 MHz or more, for example, 2 MHz) is supplied from the second high frequency power supply 110b. Is to be supplied.
  • a shower head 116 that functions as an upper electrode is provided above the mounting table 102 so as to face the mounting table 102 in parallel. The shower head 116 and the mounting table 102 function as a pair of electrodes. It has become.
  • An electrostatic chuck 106 for electrostatically attracting the substrate W is provided on the upper surface of the mounting table 102.
  • the electrostatic chuck 106 has an electrode 106a interposed between insulators 106b.
  • a DC voltage source 112 is connected to the electrode 106a, and when a DC voltage is applied from the DC voltage source 112 to the electrode 106a, the substrate W is adsorbed by Coulomb force.
  • a coolant channel 104 a is formed inside the support body 104.
  • a refrigerant inlet pipe 104b and a refrigerant outlet pipe 104c are connected to the refrigerant flow path 104a.
  • the substrate W is controlled to a predetermined temperature by appropriately circulating, for example, cooling water or the like as a coolant in the coolant channel 104a.
  • a pipe 130 for supplying cold transfer gas (backside gas) such as helium gas (He) is provided on the back side of the substrate W.
  • the shower head 116 is provided in the ceiling portion of the chamber C.
  • the shower head 116 has a main body 116a and an upper top plate 116b that forms an electrode plate.
  • the shower head 116 is supported on the upper part of the chamber C through an insulating member 145.
  • the main body 116a is made of a conductive material, for example, aluminum whose surface is anodized, and supports the upper top plate 116b in a detachable manner at the lower portion thereof.
  • a gas diffusion chamber 16a is provided inside the main body 116a, and a large number of gas flow holes 116d are formed at the bottom of the main body 116a so as to be positioned below the diffusion chamber 16a.
  • the upper top plate 116b is provided with a gas introduction hole 116e that communicates with the gas flow hole 116d so as to penetrate the upper top plate 116b in the thickness direction.
  • the gas supplied to the diffusion chamber 16a is introduced into the plasma processing space in the chamber C through the gas flow hole 116d and the gas introduction hole 116e in a shower shape.
  • the main body 116a and the like are provided with a pipe (not shown) for circulating the refrigerant, and the shower head 116 is cooled and adjusted to a desired temperature.
  • the main body 116a is formed with a gas inlet 116g for introducing gas into the diffusion chamber 16a.
  • a gas adjusting unit 115b is connected to the gas introduction port 116g through a gas supply pipe 115a.
  • a variable DC voltage source 152 is electrically connected to the shower head 116 via a low pass filter (LPF) 151.
  • the variable DC voltage source 152 can be turned on / off by an on / off switch 153.
  • the variable DC voltage source 152 and the on / off switch 153 are controlled by the control device 60.
  • the control device 60 turns on / off switch 153 as necessary. To control. As a result, a predetermined DC voltage is applied to the shower head 116.
  • a cylindrical grounding conductor 101a is provided so as to extend upward from the side wall of the chamber C above the height position of the shower head 116.
  • the cylindrical ground conductor 101a has a top plate on the top thereof.
  • An exhaust port 171 is formed at the bottom of the chamber C.
  • An exhaust device 173 is connected to the exhaust port 171.
  • the exhaust device 173 includes a vacuum pump, and depressurizes the inside of the chamber C to a predetermined degree of vacuum by operating the vacuum pump.
  • a gate valve 175 for loading or unloading the substrate W from the loading / unloading port 174 is provided by opening and closing.
  • a dipole ring magnet 124 extending annularly or concentrically is disposed around the chamber C corresponding to the vertical position at the time of processing of the mounting table 102.
  • the dipole ring magnet 124 has a plurality of (for example, 16) anisotropic segment columnar magnets 125 fixed in the circumferential direction in a casing 126 made of a ring-shaped magnetic body. Arrange at intervals of. In FIG. 13, by uniformly shifting the magnetization direction of each anisotropic segment columnar magnet 125 in accordance with the circumferential direction of the casing 126, a uniform horizontal magnetic field B extending in one direction as a whole can be formed.
  • a vertical RF field is formed by the first high-frequency power source 110a, and a horizontal magnetic field B is formed by the dipole ring magnet 124.
  • the control device 60 controls the semiconductor manufacturing apparatus 30 according to the recipe.
  • the control device 60 includes a CPU, and includes a process controller 61 that controls each part of the semiconductor manufacturing apparatus 30, a user interface 62, and a storage unit 63.
  • the user interface 62 includes a keyboard for inputting commands to manage the process manager and the semiconductor manufacturing apparatus 30, a display for visualizing and displaying the operating status of the semiconductor manufacturing apparatus 30, and the like.
  • the storage unit 63 stores various control programs and data executed by the semiconductor manufacturing apparatus 30 as recipes.
  • the process controller 61 reads out a necessary recipe from the storage unit 63 and executes it according to an instruction from the user interface 62, thereby performing a desired process on the substrate W in the chamber C.
  • the recipe may be stored in a computer-readable storage medium or the like, or may be available using communication.
  • the semiconductor manufacturing apparatus is applied to a three-dimensional wiring technique for electrically connecting upper and lower semiconductor chips using electrodes of through holes (TSV: Through-Silicon Via) penetrating the inside of the semiconductor chip. 30 is used.
  • TSV Through-Silicon Via
  • FIG. 14 a through hole (TSV) 405 is formed inside the upper semiconductor chip 400.
  • a wiring is passed through the through hole 405, and the pad electrode 410 of the upper semiconductor chip 400 and the pad electrode 510 of the lower semiconductor chip 500 are electrically connected through the through hole 405 and the bump 505.
  • the through hole 405 is formed by the semiconductor manufacturing apparatus 30 using the gas supply system 10 according to the present embodiment. According to this 3D wiring, a through hole 405 can be formed for a TSV having a diameter of 30 ⁇ m to 50 ⁇ m.
  • the gas switching time can be shortened by performing the pressurizing step and the exhausting step by plasma treatment in which the deposition step and the etching step are repeated.
  • the fifth valve may be opened simultaneously with the start of the etching process and the deposition process, or the fifth valve provided in the exhaust pipe at any timing immediately before or just after the start.
  • the valve may be opened.
  • the first pressurizing process may be performed during or after the deposition process being performed immediately before.
  • the first gas is supplied to the chamber through the first gas pipe through the diffusion chamber, and the second gas is supplied to the diffusion chamber through the first step and the second gas pipe for plasma processing the object to be processed.
  • the fifth valve may be opened at the same time as the start of the second step of supplying the plasma into the chamber and plasma-treating the object to be processed, at the timing immediately before or just after the start.
  • the first pressurizing step may be executed during the second step executed immediately before or after the second step executed immediately before.
  • the second pressurizing step may be executed during the first step executed immediately before or after the first step executed immediately before.
  • the first step may be a deposition step
  • the second step may be an etching step
  • the etching step may have a processing time up to five times that of the deposition step.
  • the first gas may include SiF 4 gas and O 2 gas.
  • the second gas may include SF 6 gas and O 2 gas.
  • the semiconductor manufacturing apparatus is not limited to a capacitively coupled plasma processing apparatus that generates capacitively coupled plasma (CCP: Capacitively Coupled Plasma) by high-frequency discharge generated between parallel plate electrodes in the chamber.
  • CCP capacitively coupled plasma
  • An inductively coupled plasma processing device that generates an inductively coupled plasma (ICP) under a high frequency induction electromagnetic field by placing an antenna on or around the surface of the substrate, generates plasma waves using microwave power
  • ICP inductively coupled plasma
  • the present invention can also be applied to a microwave plasma processing apparatus.
  • the object to be processed may be any silicon substrate, semiconductor wafer, large substrate for flat panel display (FPD: Flat Panel Display), EL element or solar cell substrate. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 第1及び第2のバルブにより第1及び第2ガス配管と拡散室との連通を制御し、第1及び第2ガス配管の第1及び第2のバルブよりも上流側に接続した第3及び第4のバルブにより第1及び第2ガス配管内のガスの排出を制御し、第5のバルブにより排気用配管と拡散室との連通を制御し、第1工程の前に第1のバルブを閉じかつ第3のバルブを閉め、第1ガス配管内の第1のガスの圧力を上昇させる第1の加圧工程と、第2工程の前に、第2のバルブを閉じかつ前記第4のバルブを閉め、第2ガス配管内の第2のガスの圧力を上昇させる第2の加圧工程と、第1工程及び第2工程の開始に応じて第5のバルブを開き、拡散室内のガスを排気する排気工程と、を含むガス供給方法が提供される。

Description

半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置
 本発明は、半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置に関する。
 半導体製造装置の製造分野では、微細加工により集積度を上げることが求められている。例えば、10~20μm程度の比較的小さい直径寸法を有し、深さが100μm以上の穴をシリコン(Si)基板に形成するエッチング工程が必要とされている。
 また、近年、三次元実装と呼ばれる半導体チップの積層によって単位面積当たりの集積度を上げる技術が提案されている。三次元実装の一例としては、例えば半導体チップの内部を貫通するスルーホール(TSV:Through-Silicon Via)の電極を用いて、上下の半導体チップ間を電気的に接続する立体配線技術がある。この場合にも、チップ上に穴を形成し、深く掘り下げてチップ内を貫通させるエッチング工程が必要になる。
 このようなプラズマエッチング装置等によるエッチング工程では、処理チャンバ内に供給する混合ガスのうち、エッチングを進行させるSFの供給を一時的に短時間断続的に停止し、この間のエッチングの進行を停止した状態で表面に窒化膜を形成し、これによってアンダーカットを生じることなくシリコンをエッチングするプラズマ処理方法が知られている(例えば、特許文献1参照)。
 しかし、100μm以上の深さ寸法を有する穴部を形成するためには、プラズマエッチングを長時間にわたって行うことが必要となる。さらには、最近の半導体製造装置には更なる微細化が要求されているため、10~20μm程度の比較的小さい直径寸法を有する穴部を形成することが求められている。しかし、半導体製造装置の微細化に伴い、形状精度を確保するためにはレジスト膜の厚さを薄くしなくてはならない。一方、レジスト膜のエッチング速度に対するシリコン層のエッチング速度、すなわち選択比はあまり高くない。そのため、プラズマエッチングを長時間行うと、マスクが除去されてしまうという問題が生じる。
 このような要求に対して、堆積成分が高いガスを供給して基板をプラズマ処理する堆積工程と、エッチング成分が高いガスを供給して基板をプラズマ処理するエッチング工程とを交互に繰り返し行うプラズマ処理方法が知られている(例えば、特許文献2参照)。
 このような堆積工程とエッチング工程を繰り返し行うプラズマ処理は、通常のプラズマエッチングのプロセスと比較して、レジスト膜に対するシリコン基板の選択比が高く、高エッチングレートを維持しながら良好なエッチング形状を効率よく形成できる。
特開平4-73287号公報 特表2010-510669号公報
 しかしながら、従来の堆積工程とエッチング工程を繰り返し行うプラズマ処理では、堆積工程とエッチング工程とが切り替わるタイミングで直前の工程のガスを排気しながら、次工程のガスを導入する。その際、ガスはガス供給管を通り、拡散室にて拡散された後、チャンバ内に導入される。したがって、2つの工程が切り替わるとき、拡散室内では前の工程の処理ガスが残留して、次工程の処理ガスとして新たに供給されるガスと混ざり合うことで、処理ガスの成分比が変化してしまうことになる。特に、前工程の残留ガスの残存量は処理室内の圧力等の処理条件により変動を受けるため、各工程の切り替え初期の段階で各ガス成分比を所定の比率とすることが難しくなり所望のエッチング結果を得ることの妨げとなる。
 一側面によれば、堆積工程とエッチング工程を繰り返し行うプラズマ処理において、ガス供給管内の処理ガスの圧力を制御する工程(加圧工程及び排気工程)を加えることで、ガス供給管内にて前工程で生じた残留ガス成分が新たに供給されるガスと混じり合うことを抑制することが可能な半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置を提供することを目的とする。
 上記課題を解決するために、本発明のある観点によれば、
 第1ガス配管を通じて第1のガスを拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第1工程と、第2ガス配管を通じて第2のガスを前記拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第2工程と、を交互に繰り返す半導体製造装置のガス供給方法であって、
 第1のバルブにより前記第1ガス配管と前記拡散室との連通を制御し、
 第2のバルブにより前記第2ガス配管と前記拡散室との連通を制御し、
 前記第1ガス配管の第1のバルブよりも上流側に接続した第3のバルブにより第1ガス配管内のガスの排出を制御し、
 前記第2ガス配管の第2のバルブよりも上流側に接続した第4のバルブにより第2ガス配管内のガスの排出を制御し、
 第5のバルブにより排気用配管と前記拡散室との連通を制御し、
 前記第1工程の前に、前記第1のバルブを閉じかつ前記第3のバルブを閉め、前記第1のガスにより前記第1ガス配管内の前記第1のガスの圧力を上昇させる第1の加圧工程と、
 前記第2工程の前に、前記第2のバルブを閉じかつ前記第4のバルブを閉め、前記第2のガスにより前記第2ガス配管内の前記第2のガスの圧力を上昇させる第2の加圧工程と、
 前記第1工程の開始及び前記第2工程の開始に応じて前記第5のバルブを開き、前記拡散室内のガスを排気する排気工程と、
 を含むことを特徴とする半導体製造装置のガス供給方法が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、
 第1ガス配管を通じて第1のガスを拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第1工程と、第2ガス配管を通じて第2のガスを前記拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第2工程と、を交互に繰り返す半導体製造装置のガス供給システムであって、
 前記第1ガス配管と前記拡散室との連通を制御する第1のバルブと、
 前記第2ガス配管と前記拡散室との連通を制御する第2のバルブと、
 前記第1ガス配管の第1のバルブよりも上流側に接続され、第1ガス配管内のガスの排出を制御する第3のバルブと、
 前記第2ガス配管の第2のバルブよりも上流側に接続され、第2ガス配管内のガスの排出を制御する第4のバルブと、
 排気用配管と前記拡散室との連通を制御する第5のバルブと、
 前記第1工程の前に、前記第1のバルブを閉じかつ前記第3のバルブを閉め、前記第1のガスにより前記第1ガス配管内の前記第1のガスの圧力を上昇させる第1のガス供給機構と、
 前記第2工程の前に、前記第2のバルブを閉じかつ前記第4のバルブを閉め、前記第2のガスにより前記第2ガス配管内の前記第2のガスの圧力を上昇させる第2のガス供給機構と、
 前記第1工程の開始及び前記第2工程の開始に応じて前記第5のバルブを開き、前記拡散室内のガスを排気する排気機構と、
 を含むことを特徴とするガス供給システムが提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、
 前記ガス供給システムを用いて被処理体にプラズマ処理を施す半導体製造装置が提供される。
 一の態様によれば、堆積工程とエッチング工程を繰り返し行うプラズマ処理において、ガス供給管内の処理ガスの圧力を制御する工程(加圧工程及び排気工程)を加えることで、ガス供給管内にて前工程で生じた残留ガス成分が新たに供給されるガスと混じり合うことを抑制し、工程間の処理ガスの切り替え時間を短縮することができる。
一実施形態に係るガス供給システムの全体構成図。 一実施形態に係るガス供給システムのガスの流れを説明するための図。 一実施形態に係るガス供給システムを用いた堆積工程とエッチング工程を繰り返し行うプラズマ処理のフローチャート。 一実施形態に係るガス供給システムを用いた堆積工程とエッチング工程を繰り返し行うプラズマ処理のシーケンスチャート。 一実施形態に係るガス供給システム内の状態を示す変数を示した図。 一実施形態に係るガス供給システムの配管径と排気状態との関係を示した図。 一実施形態に係るガス供給システムの配管径と排気状態との関係を示した図。 一実施形態に係るガス供給システムの切り替え後の拡散室の圧力と排気側及びチャンバ側へ流出するモル数を示した図。 一実施形態に係る加圧工程の実験結果を示した図。 一実施形態に係る排気工程の実験結果を示した図。 一実施形態に係る加圧工程及び排気工程の実験結果をグラフ化した図。 一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理の実験結果を示した図。 一実施形態に係るガス供給システムが使用される半導体製造装置。 一実施形態に係るダイポールリング磁石の水平断面を示す図。 一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理の応用例を示した図。 一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理を説明するための図。 一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチング結果の一例を示す図。
 以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、圧力値については、1Torrを133.322Paとして換算することができる。
 <はじめに>
 一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理について、図15及び図16を参照しながら説明する。図15は、一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理によるプラズマ発光強度の一例を示す図である。図16は、一実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチング結果の一例を示す図である。
 図15に示した堆積工程とエッチング工程を繰り返し行うプラズマ処理の一例では、堆積性ガスがエッチングガスより多く混合されたガスを導入する堆積工程と、エッチングガスが堆積性ガスより多く混合されたガスを導入するエッチング工程とを概ね10秒間隔で繰り返している。また、図15に示すように、堆積工程とエッチング工程を繰り返し行うプラズマ処理では、堆積工程とエッチング工程の遷移点とプラズマ発光強度の変化点とを意図的にずらすようにして、堆積工程からエッチング工程へと遷移しても、しばらく堆積工程のプラズマ発光強度が維持されるようにプラズマの発生条件が制御される。同様にして、エッチング工程から堆積工程へと遷移しても、しばらくエッチング工程のプラズマ発光強度が維持されるようにプラズマの発生条件が制御される。このようにして、プラズマの過渡状態を意図的に形成した。
 これに対して、図16の堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチング結果を得る工程、及び後述する本実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチング結果を得る工程では、堆積工程とエッチング工程との切り替えのタイミングを一致させている。
 図16に示した堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチング結果の一例について説明する。本実施形態の堆積工程とエッチング工程を繰り返し行うプラズマ処理におけるプロセス条件は、以下の通りである。
・プロセス条件
圧力       :250(mTorr)
高周波電力    :プラズマ生成用HF 2500(W)/バイアス用LF 0(W)
堆積主体ガス   :SiF/O=1000/500(sccm)
エッチング主体ガス:Ar/SF=640/860(sccm)
各工程時間    :1(min)
 以上のプロセス条件に基づき、堆積ガスとエッチングガスとの混合比率を混合比率A、Bと変えてエッチングした結果を示す。図16の左側に示した混合比率Aは、堆積ガス(成膜用ガス)91%、エッチングガス9%の混合比率である。この場合において、堆積工程とエッチング工程とを繰り返し行うプラズマ処理を実行した結果、膜厚は0.873μmとなり、期待通りの厚さの保護膜が形成されている。
 一方、図16の右側に示した混合比率Bは、堆積ガス(成膜用ガス)80%、エッチングガス20%の混合比率である。この場合において、堆積工程とエッチング工程とを繰り返し行うプラズマ処理を実行した結果、膜厚は0.446μmとなった。つまり、堆積ガス比を91%から80%に下げたところ、膜の厚さが約45%低下した。
 また、顕微鏡写真を見ると、図16の左側に示した混合比率Aの場合では穴底の形状が良好であるのに対して、図16の右側に示した混合比率Bの場合では穴底でエッチングが進んでいる。以上から、堆積ガス80%、エッチングガス20%の混合比率で堆積工程とエッチング工程を繰り返し行うプラズマ処理を実行した場合には、膜厚が薄く保護膜として機能していないことがわかる。
 さらに、堆積ガス80%、エッチングガス20%の混合比率で堆積工程とエッチング工程を繰り返し行うプラズマ処理を実行した場合のエッチングレートは3μm/min以下となり、エッチング性能が悪くなっていることがわかる。
 以上の考察から、上記2工程の切り替え時間を減らし、各工程のガスが極力混ざり合わないガス切り替え方法が構築できれば、エッチング性能を向上させ、良好なエッチング形状を得ることができる。以下に説明する本発明の一実施形態に係るガス供給システムでは、上記2工程の切り替え時間を減らすために、(1)~(3)の特徴を有する。
(1)ガス供給源から拡散室内の経路として、堆積主体ガス(堆積性ガスをエッチング性ガスより多く混合した第1のガスに相当)をチャンバ内に供給するための第1のガス供給機構と、エッチング主体ガス(エッチング性ガスを堆積性ガスより多く混合した第2のガスに相当)をチャンバ内に供給するための第2のガス供給機構とを有するガス供給ラインを構成する。このようにガス供給ラインを複数に分け、ガスが混合されるガス拡散室の容積を極力小さくし、各工程間の切り替えの際に前工程で発生する残留ガスの混合を軽減する。
(2)各ガス供給ラインには制御装置により制御されるバルブを設け、バルブの開閉によりガス供給ラインの配管内圧力を制御する。ガスをチャンバ内に供給する前に、バルブを閉じ、ガス供給ラインの配管内圧力を上昇させて、チャンバ圧力との圧力勾配を生じさせる。ガス供給ラインの切り替え時、すなわち、バルブが開かれるときに、圧力勾配によりガスがチャンバ内の拡散室に短時間で移動する。これにより、拡散室内に残留した前工程のガスを拡散室外に押し出す効果も得られる。
(3)さらに、拡散室内に残留した前工程のガスを効率的に入れ替えるため排気ラインを持つ。
 以上の(1)~(3)の機構を有する一実施形態に係るガス供給システムによれば、堆積工程とエッチング工程を繰り返し行うプラズマ処理の2工程で使用されるガス同士が切り替え時にほとんど混ざり合わない。これにより、それぞれの工程にて効率よく保護膜の成膜処理及びエッチング処理が実行され、堆積工程での性能及びエッチング工程での性能を改善することができる。また、堆積工程とエッチング工程を繰り返し行うプラズマ処理の周期を短縮することができ、エッチングレート及びレジスト膜に対するシリコン基板の選択比を高め、良好なエッチング形状を得ることができる。以下、本発明の一実施形態に係るガス供給システムについて詳細に説明する。
 [ガス供給システムの全体構成]
 まず、本発明の一実施形態に係るガス供給システムの全体構成について、図1を参照しながら説明する。
 本実施形態に係るガス供給システム10は、半導体製造装置30にて使用される。半導体製造装置30は、堆積性ガスをエッチング性ガスより多く混合した堆積主体ガス(第1のガス)を拡散室16aに通してチャンバC内に供給し、シリコン基板Wをプラズマ処理する堆積工程と、エッチング性ガスを堆積性ガスより多く混合したエッチング主体ガス(第2のガス)を拡散室16aに通してチャンバC内に供給し、シリコン基板Wをプラズマ処理するエッチング工程と、を交互に所定回数繰り返すプラズマ処理を実行する。これにより、例えば、載置台102に載置されたシリコン基板Wに所望の深穴が形成される。本実施形態では、堆積主体ガスは、SiFガス及びOガスを含んだ混合ガスである。また、本実施形態では、エッチング主体ガスは、SFガス及びOガスを含んだ混合ガスである。
 本実施形態に係るガス供給システム10は、ガス調整部115bを有している。ガス調整部115bは、ガス供給源20、半導体製造装置30、制御装置60、排気装置115cに連結されている。
 ガス調整部115bは、堆積工程用のガス供給ラインとしての第1のガス供給機構F1と、エッチング工程用のガス供給ラインとしての第2のガス供給機構F2とを有している。第1のガス供給機構F1により、堆積工程にて、堆積主体ガスがチャンバC内に供給される。また、第2のガス供給機構F2により、エッチング工程にて、エッチング主体ガスがチャンバC内に供給される。ガス調整部115bは、ガス供給源20から半導体製造装置30に堆積主体ガス及びエッチング主体ガスを所定のタイミングで交互に繰り返し供給する。ガス調整部115bは、第1のガス供給機構F1及び第2のガス供給機構F2の2つのガス供給ラインに加え、ガス排気ラインとしての排気機構F3を有している。
 第1のガス供給機構F1は、第1のガス供給用配管41、第1のガス導入用配管42及び第1のバルブ11を有している。第1のガス供給用配管41は、ガス供給源20に設けられた流量制御装置(FCS:Flow Control System)21から所定の流量に制御された堆積主体ガスを供給するための配管である。第1のガス供給用配管41には、第3のバルブ13を介して第1のバイパス配管45が連結されている。第1のバイパス配管45は、堆積主体ガスをバイパスさせ、排気させる。第1のバイパス配管45には、オリフィス48が設けられている。オリフィス48により第1のバイパス配管45内のガス流路を絞ることによって、エッチング工程と堆積工程との切り替わりのタイミングに第1のバイパス配管45内の急激な圧力変動を回避する。また、第1のバイパス配管45内の圧力をある程度高くすることによって、後程詳述する第1の加圧工程前後での第1のバイパス配管45内の圧力変動を低減させる。
 第1のバルブ11が開いているとき堆積工程が実行されている。堆積主体ガスは、第1のガス供給用配管41を通って第1のガス導入用配管42を流れ、チャンバC内のガスシャワーヘッド116に設けられた拡散室16aを介してチャンバC内に導入される。第1のバルブ11が閉じているとき、通常、第3のバルブ13は開に制御され、堆積主体ガスは、第1のバイパス配管45を通って排気装置115cにより排気される。排気装置115cの一例としては、ドライポンプ(Dry Pump)やターボモレキュラーポンプTMP(Turbo Molecular Pump)等が挙げられる。
 第1の加圧工程は、堆積工程前に堆積主体ガスをバイパスさせるための第1のバイパス配管45に設けられた第3のバルブ13を閉じ、堆積主体ガスをチャンバ内に供給するための第1のガス供給用配管41内に溜めて第1のガス供給用配管41内を加圧する工程である。
 通常、第1の加圧工程前に第1のガス導入用配管42に設けられた第1のバルブ11は閉じられている。このとき、第2のバルブ12は開き、エッチング工程が実行されている。第1の加圧工程では、第1のバルブ11が閉に制御されている状態で堆積工程前に第3のバルブ13を閉に制御し、ガス供給源20から供給される堆積主体ガスを第1のガス供給用配管41内に溜める。これにより、第1のガス供給用配管41内を加圧する(図2参照)。その状態で、エッチング工程から堆積工程への切り替えのタイミングに第1のバルブ11が開に制御されたとき、第1のガス供給用配管41内の堆積主体ガスは一気に拡散室16aへと流れる。
 第2のガス供給機構F2は、第2のガス供給用配管43、第2のガス導入用配管44及び第2のバルブ12を有している。
 第2のガス供給用配管43は、ガス供給源20に設けられた流量制御装置(FCS)22から所定の流量に制御されたエッチング主体ガスを供給するための配管である。第2のガス供給用配管43には、第4のバルブ14を介して第2のバイパス配管46が連結されている。第2のバイパス配管46は、堆積工程中にエッチング主体ガスをバイパスさせ、排気させる。第2のバイパス配管46には、オリフィス49が設けられている。オリフィス49により第2のバイパス配管46内のガス流路を絞ることによって、エッチング工程と堆積工程との切り替わりのタイミングに第2のバイパス配管46内の急激な圧力変動を回避する。また、第2のバイパス配管46内の圧力をある程度高くすることによって、後程詳述する第2の加圧工程前後での第2のバイパス配管46内の圧力変動を低減させる。
 第2のバルブ12が開いているときエッチング工程が実行されている。エッチング主体ガスは、第2のガス供給用配管43を通って第2のガス導入用配管44を流れ、拡散室16aを介してチャンバC内に導入される。第2のバルブ12が閉じているとき、通常、第4のバルブ14は開に制御されるため、エッチング主体ガスは、第2のバイパス配管46を通って排気装置115cにより排気される。
 第2の加圧工程は、エッチング工程前にエッチング主体ガスをバイパスさせるための第2のバイパス配管46に設けられた第4のバルブ14を閉じ、エッチング主体ガスをチャンバ内に供給するための第2のガス供給用配管43内に溜めて第2のガス供給用配管43内を加圧する工程である。
 通常、第2の加圧工程前に第2のガス導入用配管44に設けられた第2のバルブ12は閉じられている。このとき、第1のバルブ11が開き、堆積工程が実行されている。第2の加圧工程では、第2のバルブ12が閉に制御されている状態でエッチング工程前に第4のバルブ14を閉に制御し、ガス供給源20から供給されるエッチング主体ガスを第2のガス供給用配管43内に溜める。これにより、第2のガス供給用配管43内を加圧する。その状態で、堆積工程からエッチング工程への切り替えのタイミングに第2のバルブ12が開に制御されたとき、第2のガス供給用配管43内のエッチング主体ガスは一気に拡散室16aへと流れる。
 排気機構F3は、拡散室16aに連通する排気用配管47を有し、排気用配管47には第5のバルブ15が設けられている。排気機構F3の第5のバルブ15は、堆積工程とエッチング工程を繰り返し行うプラズマ処理の各工程の切り替え時に開に制御される。これにより、拡散室16a内に存在する前工程のガスを強制的に排気する(排気工程)。
 制御装置60は、図示しないCPU等を有し、堆積工程及びエッチング工程の切り替えのタイミングに応じて、ガス供給源20から出力されるガス種及びガス流量の制御及び第1のバルブ11~第5のバルブ15の開閉の制御を行う。本実施形態に係るガス供給システム10では、制御装置60によりバルブの開閉をコンピュータ制御することができる。なお、半導体製造装置30の具体的構成例については後程図12を参照して説明する。
 以上に説明したように、かかる構成のガス供給システム10では、堆積工程とエッチング工程とを交互に繰り返すプラズマ処理に加圧工程と排気工程を追加する。加圧工程では、第3のバルブ13又は第4のバルブ14を堆積工程とエッチング工程との切り替えのタイミングより早く閉じる。これにより、切り替え時まで次工程のガスが第1のガス供給用配管41又は第2のガス供給用配管43内に溜まる。これにより、切り替え時に第1のガス供給用配管41又は第2のガス供給用配管43内に溜まったガスを拡散室16aに向けて高速に流すことができる。排気工程では、切り替え時に排気ラインの第5のバルブ15を開く。これにより、ガスシャワー内に存在する前工程のガスを強制的に排気することができる。このようにして本実施形態では、堆積工程及びエッチング工程の切り替えの際、加圧工程及び排気工程を行うことにより、拡散室16a内のガスを高速に入れ替え、ガスの切り替え時間を短縮することができる。これにより2工程で使用されるガス同士が切り替え時にほとんど混ざり合わないため、高いエッチングレートを維持しつつ選択比を高め、良好なエッチング形状を効率よく形成できる。
 [ガス供給システムの動作]
 次に、本発明の一実施形態に係るガス供給システムの動作について、図3及び図4を参照しながら説明する。図3は、一実施形態に係るガス供給システムを用いた堆積工程とエッチング工程を繰り返し行うプラズマ処理のフローチャートである。図4は、一実施形態に係るガス供給システムを用いた堆積工程とエッチング工程を繰り返し行うプラズマ処理のシーケンスチャートである。制御装置60は、ROMやRAM等の記憶部に記憶されたレシピに従い、以下のフローチャートに示すガスの切り替えやバルブの開閉を制御する。
 本実施形態に係る堆積工程とエッチング工程を繰り返し行うプラズマ処理が開始されると、制御装置60は、堆積工程を実行する(ステップS100)。なお、ステップS100の堆積工程の前にエッチング工程が実行されてもよい。この時点は、図4に「レシピ/オン」として示したタイミングであり、第1のバルブ11は開、第2のバルブ12は閉、第3のバルブ13は閉、第4のバルブ14は開となっている。これにより、堆積主体ガスは、第1のガス供給用配管41を通って第1のガス導入用配管42を流れ、チャンバC内のガスシャワーヘッド116に設けられた拡散室16aを介してチャンバC内に導入される(図1参照)。
 また、このタイミングで第5のバルブ15が閉から開へ切り替えられ(ステップS120)、予め定められた排気時間経過後、開から閉へ切り替えられる(ステップS122)。これにより、拡散室16a内に存在する前工程のガスは強制的に排気される(排気工程)。
 制御装置60は、エッチング工程の実行前(ステップS102)の所定のタイミングに、第4のバルブ14を開から閉へ切り替える(ステップS110:第2の加圧工程)。この時点は、図4に「切り替え前1」として示したタイミングである。これにより、エッチング工程前に第2のバルブ12が閉に制御されている状態で第4のバルブ14が閉に制御される。これにより、ガス供給源20から供給されるエッチング主体ガスは第2のガス供給用配管43内に溜まり、第2のガス供給用配管43内を加圧する。
 予め定められた堆積時間経過後、制御装置60は、エッチング工程を実行する(ステップS102)。この時点は、図4に「切り替え1」として示したタイミングである。これにより、堆積工程からエッチング工程に切り替わる。このとき、第2のバルブ12が閉から開に制御され(ステップS112)、第1のバルブ11が閉に制御される。これにより、堆積主体ガスの供給は停止され、第2のガス供給用配管43内に溜まったエッチング主体ガスは一気に拡散室16aへと流れる。これにより、拡散室16a内のガス雰囲気は、瞬時に堆積主体ガスからエッチング主体ガスへと変わり、ガス切り替えのタイミングを短縮するとともに、前工程のガスと次工程のガスとの混合を極力回避ことができる。
 更に、「切り替え1」のタイミングには、第5のバルブ15が閉から開へ切り替えられ(ステップS124)、予め定められた排気時間経過後、開から閉へ切り替えられる(ステップS126)。これにより、拡散室16a内に存在する前工程のガス(ここでは、堆積主体ガス)は強制的に排気される。また、「切り替え1」のタイミングには、第3のバルブ13が閉から開に制御される。これにより、第1のガス供給用配管41内の堆積主体ガスは、第1のバイパス配管45から排気される。
 次に、制御装置60は、堆積工程及びエッチング工程を所定回数実行したかを判定する(ステップS104)。所定回数実行していれば本処理を終了する。所定回数実行していなければ、ステップS100に戻る。その際、制御装置60は、予め定められたエッチング時間経過後、エッチング工程から堆積工程に切り替え、堆積工程を実行するが(ステップS100)、その前に第3のバルブ13を開から閉へ切り替える(ステップS114:第1の加圧工程)。この時点は、図4に「切り替え前2」のタイミングである。これにより、堆積工程前に第1のバルブ11が閉に制御されている状態で第3のバルブ13が閉に制御される。これにより、ガス供給源20から供給される堆積主体ガスは第1のガス供給用配管41内に溜まり、第1のガス供給用配管41内を加圧する。
 次に、制御装置60は、堆積工程を実行する(ステップS100)。この時点は、図4に「切り替え2」として示したタイミングである。これにより、エッチング工程から堆積工程に切り替わる。このとき、第1のバルブ11が閉から開に制御され(ステップS116)、第2のバルブ12が閉に制御される。これにより、エッチング主体ガスの供給は停止され、第1のガス供給用配管41内の堆積主体ガスが一気に拡散室16aへと流れる。これにより、拡散室16a内のガス雰囲気は、瞬時にエッチング主体ガスから堆積主体ガスへと変わり、ガス切り替えのタイミングを短縮するとともに、前工程のガスと次工程のガスとの混合を極力回避ことができる。
 更に、「切り替え2」のタイミングには、第5のバルブ15が閉から開へ切り替えられ(ステップS120)、予め定められた排気時間経過後、開から閉へ切り替えられる(ステップS122)。これにより、拡散室16a内に存在する前工程のガス(ここでは、エッチング主体ガス)は強制的に排気される。また、「切り替え2」のタイミングには、第4のバルブ14が閉から開に制御される。これにより、第2のガス供給用配管43内のエッチング主体ガスは、第2のバイパス配管46から排気される。
 以上に説明したように、本実施形態に係るガス供給システム10によれば、堆積工程とエッチング工程を繰り返し行うプラズマ処理の2工程で使用されるガス同士が切り替え時にほとんど混ざり合わない。これにより、各工程にて効率よく保護膜の成膜処理及びエッチング処理が実行され、堆積工程での性能及びエッチング工程での性能を改善することができる。
 [加圧工程の開始と圧力の変動]
 本実施形態に係るガス供給システム10では、2工程のガス切り替え前に加圧工程を設ける。そこで、以下では加圧工程の開始と圧力の変動について説明する。なお、流量制御装置(FCS)22に連結した第2のガス供給機構F2の流路系は、流量制御装置21に連結した第1のガス供給機構F1の流路系と同様である。よって、ここでは、第1のガス供給機構F1の流路系の加圧工程の開始と圧力変動について説明し、第2のガス供給機構F2の流路系についての説明は省略する。また、以下の説明ではモル数を用いて圧力変動を算出する。モル数は、質量/分子量で表され、ガス種によらない表現が可能であるため、異なる混合ガスにおいても統一的に説明することができる。
 図5に示したように、第3のバルブ13が開のときの第1のガス供給用配管41内のモル数nは状態方程式を用いて以下の式により算出される。
=P/RT
 ここで、第1のガス供給用配管41内の圧力をP、体積をVとする。
 流量制御装置21から出力されるガス流量(1000sccm)をQとする。第3のバルブを閉じた加圧工程開始からt秒後の第1のガス供給用配管41内の総モル数nは、流量制御装置21から第1のガス供給用配管41内に流入されるガス流量Qのモル数に時間tを乗算した値と、第1のガス供給用配管41内に存在していたモル数nとを加算した値となる。加圧工程開始からt秒後の第1のガス供給用配管41内の総モル数nを次式(1)に示す。
=Q/RT×t+P/RT・・・(1)
 よって、加圧工程開始からt秒後の第1のガス供給用配管41内の圧力Pは、式(1)及び上記状態方程式(n=P/RT)を用いて次式(2)のように算出される。
=Q/V×t+P・・・(2)
 [切り替えバルブを開いた後の圧力]
 次に、ガス切り替え後、拡散室16aの容積A中のガスが入れ替わるために必要なモル数を計算する。算出した必要モル数を加圧工程中に第1のガス供給用配管41内に貯えることができれば、2つの工程の切り替え時に拡散室16a内を瞬時に前工程のガス種から次工程のガス種に切り替えることができる。
 まず、第1のガス供給用配管41内を流れるガスが粘性流の場合、ハーゲン・ポアズイユの法則が成立する。このときの流量Qは次式で与えられる。
 Q=(5.236×10-4/η)×(a/l)×P(Pu2-Pu1)(mTorr・l/sec)
ただし、P=(Pu2+Pu1)/2
ここで、Pu1は管の出口の圧力(mTorr)であり、Pu2は管の入口の圧力(mTorr)であり、Pは平均圧力(mTorr)である。aは管の半径(cm)、lは管の長さ、ηはそのときの気体及び管の温度における気体の粘性係数(ポアズ、dyn/sec・cm)である。25℃の空気を例にとると、η25=1.845×10-4である。
 ハーゲン・ポアズイユの法則に基づき、切り替えバルブである図4の第1のバルブ11を開いた後、第1のガス供給用配管41内では次式(3)の流体の時間変化を表す式が成り立つ。
 VdP/dt=-C(P -P )+Q・・・(3)
ここで、Pは第1のガス供給用配管41内の圧力であり、Vは第1のガス供給用配管41内の体積である。また、Cは第1のガス供給用配管41内のコンダクタンスであり、Pは拡散室16aの圧力であり、Qは流量制御装置21から流入されるガス流量である。式(3)は、第1のバルブ11を開けてから第1のガス供給用配管41内に流入又は流出するガスの状態を示す。
 同様にして、ハーゲン・ポアズイユの法則に基づき、第1のバルブ11を開いた後、拡散室16a内では次式(4)が成り立つ。
 VdP/dt=C(P -P )-Q-Q・・・(4)
ここで、Pは拡散室16a内の圧力であり、Vは拡散室16a内の体積である。また、Cは第1のガス供給用配管41内のコンダクタンスであり、Pは第1のガス供給用配管41内の圧力である。また、Qは拡散室16aからチャンバC内へ導入されるガス流量であり、Qは拡散室16aから排気用配管47を通って大気側へ流出するガス流量である。式(4)の状態方程式は、第1のバルブ11を開けてから拡散室16a内に流入又は流出するガスの状態を示す。
 式(3)に基づき第1のガス供給用配管41内の圧力の時間的変化は式(5)にて表される。
 dP/dt=-C(P -P )/V+Q/V・・・(5)
 また、式(4)に基づき拡散室16a内の圧力の時間的変化は式(6)にて表される。
 dP/dt=C(P -P )/V-C(P -P )/V-C(P -P )/V・・・(6)
ここで、Pは、チャンバ内の圧力であり、Pは、排気側の圧力である。
 第1のガス供給用配管41内の圧力の時間的変化dP/dtを示した式(5)及び拡散室16a内の圧力の時間的変化dP/dtを示した式(6)の方程式を解くと、拡散室16a側に流入するガスのモル数と拡散室16aから流出するガスのモル数とが算出される。排気側に流出するガスのモル数とチャンバC内に流出するガスのモル数との和が、拡散室16a内の容積Aに達したとき、第1のガス供給用配管41側から同量のモル数のガスが拡散室16a内に流入していることになる。このとき、前工程のガスから次工程のガスへの切り替えが完全に完了したことになる。
 実際に式(5)及び式(6)の方程式を解くと、以下の結果が得られる。
 拡散室16a内の総モル数のガスが拡散室16aから流出するまでの時間は0.017秒であると算出される。つまり、0.017秒で拡散室16a内のガスはすべて流出し、前工程のガスから次工程のガスへの切り替えが完全に完了する。拡散室16a内のガスがほぼ瞬時に入れ替わることを示している。
 2つの工程の切り替えの際、拡散室16a内の残留ガスが、チャンバ内へ流出される量を極力減らし、排気ライン側へ流出される量を増やしたい。ここでは、拡散室16a内の総モル数は0.000409molである。図6Aを参照すると、配管径3/8(インチ)、内径φ7.52(mm)の場合、拡散室16aからチャンバC内へ流出する総モル数は、0.000175mol(0.017秒時)、拡散室16aから排気ラインへ流出する総モル数は、0.000235mol(0.017秒時)である。この結果、拡散室16aの残留ガスの約43%がチャンバC側に流出されてしまっていることがわかる。
 配管径1/4(インチ)、内径φ4.3(mm)の場合、拡散室16aからチャンバC内へ流出する総モル数は、0.000358mol(0.031秒時)、拡散室16aから排気ラインへ流出する総モル数は、0.000051mol(0.031秒時)である。この結果、拡散室16aの残留ガスの約88%がチャンバC側に流出され、配管径3/8の場合より更に悪い結果となっている。
 一方、配管径1/2(インチ)、内径φ10.4(mm)の場合、拡散室16aからチャンバC内へ流出する総モル数は、0.00007mol(0.009秒時)、拡散室16aから排気ラインへ流出する総モル数は、0.000342mol(0.009秒時)である。この結果、拡散室16aの残留ガスの約17%がチャンバC側に流出され、配管径3/8及び配管径1/4(の場合に比べて良好な結果となっていることがわかる。
 また、図6Bを参照すると、排気工程を設けない場合より、排気工程を設けた場合には切り替え時間が短縮され、配管径1/2(インチ)の場合、切り替え時間が最も短縮されていることがわかる。
 なお、第1のガスの設定流量は1000sccmである。これは、一秒毎に0.000693モルが流量制御装置21から流出することを示す。拡散室16a内に残留する総ガスが拡散室16aから流出するまでの時間0.017秒に、0.000011781モルが流量制御装置21から流出することになる。
 排気ラインを設けない一般的なシステムでは、拡散室16aの残留ガスが100%チャンバC内に流出され、プロセスによくない影響を及ぼす。
 [切り替えバルブ開放後の拡散室の圧力]
 本実施形態では堆積工程及びエッチング工程の切り替え前に加圧工程を設け、第1のガス供給用配管41(第2のガス供給用配管43も同じ)内を加圧状態にしている。このため、第1のバルブ11を開いた瞬間、堆積主体ガスが圧力の高い第1のガス供給用配管41から圧力の低い拡散室16aに流れる。このため、拡散室16aの圧力は上昇する。よって、拡散室16aの圧力を通常状態でガスを流しているときの圧力まで早く降下させ、拡散室16aからチャンバCへのガスの導入速度を安定させたい。これにより、良好なプラズマ制御が可能となる。図7では、切り替え時の第1のバルブ11の開放後の拡散室16aの圧力P(Torr)、排気ライン側へ流出するガスの流量をモル数で表した線、チャンバ側へ導入されるガスの流量をモル数で表した線、拡散室16a内の残ガスの流量をモル数で表した線が示されている。
 図7に示した結果から、排気ラインの配管径を大きくすれば、排気ライン側へ流出するガスのモル数が多くなるため、拡散室16aの圧力をより早く通常状態の圧力まで降下させることができることが予測される。
 ただし、排気ラインの配管径を大きくしすぎると、排気しすぎて、図7の位置Pdで示したように、拡散室16aの圧力が一旦低下しすぎてしまう。一方、排気ラインの配管径を小さくしすぎると、拡散室16aの圧力を通常の圧力まで降下させるまでの時間が多くかかってしまう。そこで、排気しながら、通常の圧力まで降下してきたところ(図7の位置Pa、ここでは0.3秒)で排気ラインの第5のバルブ15を閉じる。これにより、図7の位置Pdで示したような拡散室16aの過度な圧力低下を防止し、拡散室16a内の圧力を通常の圧力まで迅速に降下させて安定させることができる。なお、拡大図に示しているように、約3/100秒で拡散室16a内のモル数は0になると推定される。
 [評価結果]
 次に、本発明の一実施形態に係るガス供給システム10による堆積工程とエッチング工程を繰り返し行うプラズマ処理の実験結果について、図8~11を参照しながら説明する。図8は、本実施形態に係る加圧工程の実験結果を示した図である。図9は、本実施形態に係る排気工程の実験結果を示した図である。図10は、図8及び図9の実験結果をグラフ化した図である。図11は、本実施形態に係る加圧工程及び排気工程を加えた堆積工程とエッチング工程を繰り返し行うプラズマ処理の実験結果を示した図である。
 (加圧工程評価/図8)
 まず、堆積工程とエッチング工程を繰り返し行うプラズマ処理中に本実施形態に係る加圧工程を追加した場合の効果について説明する。図8は、以下のプロセス条件に基づき堆積工程とエッチング工程を繰り返し行うプラズマ処理を実行中における、加圧工程の有無による深穴のエッチング結果の相違を示す。図8の左側には加圧工程を実行しなかった場合が示され、図8の中央には加圧工程を1秒間実行した場合が示され、図8の右側には加圧工程を2秒間実行した場合が示されている。このときのプロセス条件は、以下の通りである。
1.堆積工程
圧力     :200(mTorr)
高周波電力  :プラズマ生成用HF 2500(W)/バイアス用LF 0(W)
堆積ガス   :SiF/O=400/300(sccm)
温度     :20℃
工程時間   :0.02(min)
2.エッチング工程
圧力     :200(mTorr)
高周波電力  :プラズマ生成用HF 2500(W)/バイアス用LF 0(W)
エッチングガス:O/SF=100/600(sccm)
温度     :20℃
工程時間   :0.05(min)
 また、本実験では、口径10μmのフォトレジスト膜5.5μmをマスクとして用いてシリコン基板上に深穴を形成した。
 この結果によれば、加圧工程が1秒又は2秒間実行された場合には、加圧工程が実行されなかった場合に比べて、レジスト膜に対するシリコン基板の選択比(sel)が向上していることを確認できた。
 (排気工程評価/図9)
 次に、堆積工程とエッチング工程を繰り返し行うプラズマ処理中に本実施形態に係る排気工程を追加した場合の効果について説明する。図9は、上記のプロセス条件に基づき堆積工程とエッチング工程を繰り返し行うプラズマ処理を実行中における、排気工程の有無による深穴のエッチング結果の相違を示す。図9の左側には排気工程を実行しなかった場合が示され、図9の中央には排気工程を0.5秒間実行した場合が示され、図9の右側には排気工程を1秒間実行した場合が示されている。
 この結果によれば、排気工程が0.5秒又は1秒間実行された場合には、排気工程が実行されなかった場合に比べて、レジスト膜に対するシリコン基板の選択比(sel)が向上していることを確認できた。
 図8及び図9の実験結果をグラフ化した図10を参照すると、特に、選択比を高めるためには、図10の左側の加圧工程において1秒~2秒程度の加圧時間が好ましく、図10の右側の排気工程において0.5秒前後の排気時間が好ましいことがわかる。
 これらの結果から、加圧工程及び排気工程ともに拡散室16aでのガスの切り替え時間を短縮する効果があり、堆積工程で保護膜を生成する性能が向上したため、期待通りの保護膜が成膜され、エッチング工程においてレジスト膜の減りが抑えられ、選択比が向上したと推測される。
 (加圧工程+排気工程評価/図11)
 次に、堆積工程とエッチング工程を繰り返し行うプラズマ処理中に本実施形態に係る加圧工程及び排気工程を追加した場合の効果について説明する。図11は、上記のプロセス条件に基づき堆積工程とエッチング工程を繰り返し行うプラズマ処理の実行中において、加圧工程及び排気工程の有無による深穴のエッチング結果の相違を示す。図11の左側には、バルブ制御なし(加圧工程及び排気工程なし)の場合が示され、図11の右側には、バルブ制御あり(加圧工程及び排気工程あり)の場合が示されている。各工程時間は次の通りである。
・バルブ制御なし(加圧工程及び排気工程なし)の場合
堆積工程    :2秒
エッチング工程 :5秒
・バルブ制御あり(加圧工程及び排気工程あり)の場合
堆積工程    :1秒
エッチング工程 :5秒
加圧工程    :1秒
排気工程    :0.5秒
 この結果によれば、バルブ制御あり(加圧工程及び排気工程あり)の場合には、バルブ制御なし(加圧工程及び排気工程なし)の場合に比べて、レジスト膜に対するシリコン基板の選択比(sel)が約6%向上し、さらにエッチングレート(E/R)が約6%向上していることを確認できた。また、スキャロップが軽減され、良好なエッチング形状が得られた。
 また、バルブ制御なし(加圧工程及び排気工程なし)の場合には、堆積工程2秒、エッチング工程5秒の7秒周期で堆積工程とエッチング工程を繰り返し行うプラズマ処理を実行していた。これに対して、バルブ制御あり(加圧工程及び排気工程あり)の場合には、エッチング工程5秒に対して堆積工程1秒というように堆積工程を短くしても、良好な保護膜を形成できることがわかった。この場合、切り替え時間は1秒(加圧工程1秒、排気工程0.5秒)である。実験結果から、本実施形態によるガス供給システム10によれば、加圧工程及び排気工程を設けることによって、堆積工程に対するエッチング工程の時間を長くすることができ、エッチング工程の処理時間を堆積工程の処理時間より最大で5倍とすることが可能になる。
 以上に説明したように、本実施形態に係るガス供給システム10によれば、加圧工程と排気工程とを設けたことによりガスの切り替え時間を短縮し、また、切り替え時、前後工程のガスの混合を抑制することができる。これにより、堆積工程の時間を短縮しても適切な膜厚の保護膜を生成することができる。よって、堆積時間に対するエッチング時間を長くすることができ、より深く穴をエッチングすることができる。堆積時間に対するエッチング時間を長くすることができるため、エッチングレート(E/R)を高く維持することができる。さらに、選択比も改善され、良好なエッチング形状を得ることができる。また、堆積工程を短縮できるため、堆積工程とエッチング工程を繰り返し行うプラズマ処理の周期を短縮することができる。
 [半導体製造装置の全体構成]
 最後に、本実施形態に係るガス供給システム10を使用する半導体製造装置30の一例について、図12を参照しながら説明する。
 図12は、ガス供給システム10を使用する半導体製造装置30の全体構成を模式的に示す。半導体製造装置30は、内部が気密に保持され、電気的に接地されたチャンバCを有している。半導体製造装置30は、チャンバC外にて本実施形態に係るガス供給システム10と連結されている。ガス供給システム10は、所定の切り替えタイミングにチャンバC内に堆積主体ガスとエッチング主体ガスとを交互に繰り返し供給する。これにより、半導体製造装置30のチャンバC内にて生成されるプラズマによって、被処理体であるシリコン基板Wに堆積工程とエッチング工程を繰り返し行うプラズマ処理のエッチングが施されシリコン基板Wに所望の径の深穴を形成することができる。
 チャンバCは、円筒状であり、例えば表面を陽極酸化処理されたアルミニウム等から構成される。チャンバC内には、シリコン基板Wを水平に支持する載置台102が設けられている。載置台102は、例えば表面を陽極酸化処理されたアルミニウム等から構成され、下部電極としても機能する。載置台102は、導体の支持台104に支持されており、絶縁板103を介して昇降機構107により昇降可能となっている。昇降機構107は、チャンバCに配設され、ステンレス鋼よりなるベローズ108により覆われている。ベローズ108の外側にはベローズカバー109が設けられている。載置台102の上方の外周には、例えば単結晶シリコンで形成されたフォーカスリング105が設けられている。更に、載置台102及び支持台104の周囲を囲むように、例えば石英等からなる円筒状の内壁部材103aが設けられている。
 載置台102には、第1の整合器111aを介して第1の高周波電源110aが接続され、第1の高周波電源110aから所定周波数(27MHz以上例えば40MHz)のプラズマ生成用の高周波電力が供給されるようになっている。また、載置台102には、第2の整合器111bを介して第2の高周波電源110bが接続され、第2の高周波電源110bから所定周波数(13.56MHz以上例えば2MHz)のバイアス用の高周波電力が供給されるようになっている。一方、載置台102の上方には、載置台102と平行に対向するように上部電極として機能するシャワーヘッド116が設けられており、シャワーヘッド116と載置台102とは一対の電極として機能するようになっている。
 載置台102の上面には、基板Wを静電吸着するための静電チャック106が設けられている。静電チャック106は、絶縁体106bの間に電極106aを介在している。電極106aには直流電圧源112が接続され、直流電圧源112から電極106aに直流電圧が印加されることにより、クーロン力によって基板Wが吸着される。
 支持体104の内部には、冷媒流路104aが形成されている。冷媒流路104aには、冷媒入口配管104b、冷媒出口配管104cが接続されている。冷媒流路104a中に適宜冷媒として例えば冷却水等を循環させることにより、基板Wを所定の温度に制御する。基板Wの裏面側にヘリウムガス(He)等の冷熱伝達用ガス(バックサイドガス)を供給するための配管130が設けられている。
 シャワーヘッド116は、チャンバCの天井部分に設けられている。シャワーヘッド116は、本体部116aと電極板をなす上部天板116bとを有している。シャワーヘッド116は、絶縁性部材145を介してチャンバCの上部に支持されている。本体部116aは、導電性材料、例えば表面が陽極酸化処理されたアルミニウムからなり、その下部に上部天板116bを着脱可能に支持する。
 本体部116aの内部には、ガスの拡散室16aが設けられ、拡散室16aの下部に位置するように、本体部116aの底部には多数のガス通流孔116dが形成されている。上部天板116bには、上部天板116bを厚さ方向に貫通するようにガス導入孔116eがガス通流孔116dと連通するように設けられている。このような構成により、拡散室16aに供給されたガスは、ガス通流孔116d及びガス導入孔116eを介してチャンバC内のプラズマ処理空間にシャワー状に導入される。なお、本体部116a等には、冷媒を循環させるための図示しない配管が設けられ、シャワーヘッド116を冷却して所望の温度に調整する。
 本体部116aには、拡散室16aへガスを導入するためのガス導入口116gが形成されている。ガス導入口116gには、ガス供給配管115aを介してガス調整部115bが接続されている。
 シャワーヘッド116には、ローパスフィルタ(LPF)151を介して可変直流電圧源152が電気的に接続されている。可変直流電圧源152は、オン・オフスイッチ153により給電のオン・オフが可能となっている。可変直流電圧源152、オン・オフスイッチ153は、制御装置60によって制御される。第1の高周波電源110a及び第2の高周波電源110bから高周波が載置台102に印加され、プラズマ処理空間にプラズマが発生する際には、必要に応じて制御装置60がオン・オフスイッチ153をオンに制御する。これにより、シャワーヘッド116に所定の直流電圧が印加される。
 チャンバCの側壁からシャワーヘッド116の高さ位置よりも上方に延びるように円筒状の接地導体101aが設けられている。この円筒状の接地導体101aは、その上部に天板を有している。チャンバCの底部には、排気口171が形成されている。排気口171には、排気装置173が接続されている。排気装置173は、真空ポンプを有し、真空ポンプを作動させることによりチャンバC内を所定の真空度まで減圧する。一方、チャンバCの側壁には、開閉により搬入出口174から基板Wを搬入又は搬出するためのゲートバルブ175が設けられている。
 載置台102の処理時における上下方向の位置に対応するチャンバCの周囲には、環状又は同心状に延在するダイポールリング磁石124が配置されている。ダイポールリング磁石124は、図13の横断面図に示したように、リング状の磁性体からなるケーシング126内に、複数個(例えば16個)の異方性セグメント柱状磁石125を周方向に一定の間隔で配列する。図13において、各異方性セグメント柱状磁石125の磁化の方向をケーシング126の周方向に従って少しずつずらすことにより、全体として一方向に向かう一様な水平磁界Bを形成することができる。
 したがって、載置台102とシャワーヘッド116との間の空間には、第1の高周波電源110aにより鉛直方向のRF電界が形成されるとともに、ダイポールリング磁石124により水平磁界Bが形成される。これらの直交電磁界を用いるマグネトロン放電により、載置台102の表面近傍に高密度のプラズマを生成することができる。
 再び図12に戻り、制御装置60は、レシピに従い半導体製造装置30を制御する。制御装置60は、CPUを備え、半導体製造装置30の各部を制御するプロセスコントローラ61とユーザインターフェース62と記憶部63とを有する。ユーザインターフェース62は、工程管理者や半導体製造装置30を管理するためにコマンドの入力操作を行うキーボードや、半導体製造装置30の稼動状況を可視化して表示するディスプレイ等から構成されている。
 記憶部63には、半導体製造装置30にて実行される各種制御プログラムやデータがレシピとして格納されている。プロセスコントローラ61は、ユーザインターフェース62からの指示に従い、必要なレシピを記憶部63から読み出して実行することにより、チャンバC内で基板Wに所望のプロセスが施される。レシピは、コンピュータ読取可能な記憶媒体等に格納された状態であっても良く、通信を利用して利用可能な状態であってもよい。
 [応用例]
 以上、本実施形態に係るガス供給システム10により基板Wに深穴を形成するエッチング処理を例に挙げて説明した。以下では応用例について、図14を参照しながら説明する。
 応用例では、半導体チップの内部を貫通するスルーホール(TSV:Through-Silicon Via)の電極を用いて、上下の半導体チップ間を電気的に接続する立体配線技術に本実施形態に係る半導体製造装置30を使用する。図14では、上部半導体チップ400の内部にスルーホール(TSV)405が形成されている。このスルーホール405に配線を通し、スルーホール405及びバンプ505を介して上部半導体チップ400のパッド電極410と下部半導体チップ500のパッド電極510とを導通する。
 ここでは、上記スルーホール405を、本実施形態に係るガス供給システム10を使用した半導体製造装置30により形成する。この3D配線によれば、径が30μm~50μmのTSVに対してスルーホール405を形成することができる。
 これによれば、TSVの電極において、小型化、処理の高速化、消費電力の低下を図ることができる。また、TSVの製造過程において、堆積工程とエッチング工程を繰り返し行うプラズマ処理にて加圧工程及び排気工程を行うことによりガスの切り替え時間を短縮することができる。
 <おわりに>
 以上、添付図面を参照しながら本発明に係る半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置の好適な実施形態について詳細に説明したが、本発明に係る半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置は、かかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明に係る半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置の技術的範囲に属するものと了解される。
 例えば、本発明の排気工程は、エッチング工程及び堆積工程の開始と同時に第5のバルブを開いてもよいし、開始直前又は開始直後のいずれかのタイミングに排気用配管に設けられた第5のバルブを開いてもよい。
 また、第1の加圧工程は、直前に実行されている堆積工程中又は工程後に実行してもよい。
 前記排気工程は、第1ガス配管を通じて第1のガスを拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第1工程及び第2ガス配管を通じて第2のガスを前記拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第2工程の開始と同時、開始直前又は開始直後のいずれかのタイミングに前記第5のバルブを開いてもよい。
 前記第1の加圧工程は、直前に実行されている前記第2工程中又は直前に実行された前記第2工程後に実行されてもよい。
 前記第2の加圧工程は、直前に実行されている前記第1工程中又は直前に実行された前記第1工程後に実行されてもよい。
 前記第1工程は、堆積工程であり、前記第2工程は、エッチング工程であり、前記エッチング工程は、前記堆積工程より最大で5倍の処理時間を有してもよい。
 前記第1のガスは、SiFガス及びOガスを含んでもよい。
 前記第2のガスは、SFガス及びOガスを含んでもよい。
 また、本発明に係る半導体製造装置は、チャンバ内の平行平板電極間に生じる高周波の放電により容量結合プラズマ(CCP:Capacitively Coupled Plasma)を生成する容量結合型プラズマ処理装置に限られず、例えば、チャンバの上面または周囲にアンテナを配置して高周波の誘導電磁界の下で誘導結合プラズマ(ICP:Inductively Coupled Plasma)を生成する誘導結合型プラズマ処理装置、マイクロ波のパワーを用いてプラズマ波を生成するマイクロ波プラズマ処理装置等にも適用可能である。
 本発明においてプラズマ処理を施される被処理体は、シリコン基板、半導体ウエハ、フラットパネルディスプレイ(FPD:Flat Panel Display)用の大型基板、EL素子又は太陽電池用の基板等いかなるものであってもよい。
 本国際出願は、2012年3月16日に出願された日本国特許出願2012-060636号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。
 10      ガス供給システム
 11      第1のバルブ
 12      第2のバルブ
 13      第3のバルブ
 14      第4のバルブ
 15      第5のバルブ
 16a     拡散室
 20      ガス供給源
 21,22   流量制御装置
 30      半導体製造装置
 41      第1のガス供給用配管
 42      第1のガス導入用配管   
 43      第2のガス供給用配管
 44      第2のガス導入用配管
 45      第1のバイパス配管
 46      第2のバイパス配管
 47      排気用配管
 60      制御装置
 115b    ガス調整部
 115c    排気装置
 F1      第1のガス供給機構
 F2      第2のガス供給機構
 F3      排気機構

Claims (9)

  1.  第1ガス配管を通じて第1のガスを拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第1工程と、第2ガス配管を通じて第2のガスを前記拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第2工程と、を交互に繰り返す半導体製造装置のガス供給方法であって、
     第1のバルブにより前記第1ガス配管と前記拡散室との連通を制御し、
     第2のバルブにより前記第2ガス配管と前記拡散室との連通を制御し、
     前記第1ガス配管の第1のバルブよりも上流側に接続した第3のバルブにより第1ガス配管内のガスの排出を制御し、
     前記第2ガス配管の第2のバルブよりも上流側に接続した第4のバルブにより第2ガス配管内のガスの排出を制御し、
     第5のバルブにより排気用配管と前記拡散室との連通を制御し、
     前記第1工程の前に、前記第1のバルブを閉じかつ前記第3のバルブを閉め、前記第1のガスにより前記第1ガス配管内の前記第1のガスの圧力を上昇させる第1の加圧工程と、
     前記第2工程の前に、前記第2のバルブを閉じかつ前記第4のバルブを閉め、前記第2のガスにより前記第2ガス配管内の前記第2のガスの圧力を上昇させる第2の加圧工程と、
     前記第1工程の開始及び前記第2工程の開始に応じて前記第5のバルブを開き、前記拡散室内のガスを排気する排気工程と、
     を含むことを特徴とする半導体製造装置のガス供給方法。
  2.  前記排気工程は、前記第1工程及び前記第2工程の開始と同時、開始直前又は開始直後のいずれかのタイミングに前記第5のバルブを開くことを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  3.  前記第1の加圧工程は、直前に実行されている前記第2工程中又は直前に実行された前記第2工程後に実行されることを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  4.  前記第2の加圧工程は、直前に実行されている前記第1工程中又は直前に実行された前記第1工程後に実行されることを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  5.  前記第1工程は、堆積工程であり、前記第2工程は、エッチング工程であり、
     前記エッチング工程は、前記堆積工程より最大で5倍の処理時間を有することを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  6.  前記第1のガスは、SiFガス及びOガスを含むことを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  7.  前記第2のガスは、SFガス及びOガスを含むことを特徴とする請求項1に記載の半導体製造装置のガス供給方法。
  8.  第1ガス配管を通じて第1のガスを拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第1工程と、第2ガス配管を通じて第2のガスを前記拡散室に通してチャンバ内に供給し、被処理体をプラズマ処理する第2工程と、を交互に繰り返す半導体製造装置のガス供給システムであって、
     前記第1ガス配管と前記拡散室との連通を制御する第1のバルブと、
     前記第2ガス配管と前記拡散室との連通を制御する第2のバルブと、
     前記第1ガス配管の第1のバルブよりも上流側に接続され、第1ガス配管内のガスの排出を制御する第3のバルブと、
     前記第2ガス配管の第2のバルブよりも上流側に接続され、第2ガス配管内のガスの排出を制御する第4のバルブと、
     排気用配管と前記拡散室との連通を制御する第5のバルブと、
     前記第1工程の前に、前記第1のバルブを閉じかつ前記第3のバルブを閉め、前記第1のガスにより前記第1ガス配管内の前記第1のガスの圧力を上昇させる第1のガス供給機構と、
     前記第2工程の前に、前記第2のバルブを閉じかつ前記第4のバルブを閉め、前記第2のガスにより前記第2ガス配管内の前記第2のガスの圧力を上昇させる第2のガス供給機構と、
     前記第1工程の開始及び前記第2工程の開始に応じて前記第5のバルブを開き、前記拡散室内のガスを排気する排気機構と、
     を含むことを特徴とするガス供給システム。
  9.  前記請求項8のガス供給システムを用いて被処理体にプラズマ処理を施す半導体製造装置。
PCT/JP2013/056525 2012-03-16 2013-03-08 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置 WO2013137152A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147019506A KR102039759B1 (ko) 2012-03-16 2013-03-08 반도체 제조 장치의 가스 공급 방법, 가스 공급 시스템 및 반도체 제조 장치
US14/377,898 US9460895B2 (en) 2012-03-16 2013-03-08 Gas supply method for semiconductor manufacturing apparatus, gas supply system, and semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-060636 2012-03-16
JP2012060636A JP5937385B2 (ja) 2012-03-16 2012-03-16 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置

Publications (1)

Publication Number Publication Date
WO2013137152A1 true WO2013137152A1 (ja) 2013-09-19

Family

ID=49161061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056525 WO2013137152A1 (ja) 2012-03-16 2013-03-08 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置

Country Status (5)

Country Link
US (1) US9460895B2 (ja)
JP (1) JP5937385B2 (ja)
KR (1) KR102039759B1 (ja)
TW (1) TW201401368A (ja)
WO (1) WO2013137152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146543A1 (ja) * 2014-03-26 2015-10-01 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびコンピュータ読み取り可能な記録媒体
CN110137069A (zh) * 2013-12-30 2019-08-16 中微半导体设备(上海)股份有限公司 一种控制反应气体进入真空反应腔的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287593A1 (en) * 2013-03-21 2014-09-25 Applied Materials, Inc. High throughput multi-layer stack deposition
JP6158111B2 (ja) * 2014-02-12 2017-07-05 東京エレクトロン株式会社 ガス供給方法及び半導体製造装置
KR20160012302A (ko) * 2014-07-23 2016-02-03 삼성전자주식회사 기판 제조 방법 및 그에 사용되는 기판 제조 장치
JP6324870B2 (ja) 2014-10-08 2018-05-16 東京エレクトロン株式会社 ガス供給機構及び半導体製造装置
GB201420935D0 (en) 2014-11-25 2015-01-07 Spts Technologies Ltd Plasma etching apparatus
JP6516666B2 (ja) * 2015-04-08 2019-05-22 東京エレクトロン株式会社 ガス供給制御方法
JP6546874B2 (ja) 2016-04-13 2019-07-17 東京エレクトロン株式会社 ガス供給機構及び半導体製造システム
GB201608926D0 (en) * 2016-05-20 2016-07-06 Spts Technologies Ltd Method for plasma etching a workpiece
JP7037397B2 (ja) * 2018-03-16 2022-03-16 キオクシア株式会社 基板処理装置、基板処理方法、および半導体装置の製造方法
JP7296699B2 (ja) * 2018-07-02 2023-06-23 東京エレクトロン株式会社 ガス供給システム、プラズマ処理装置およびガス供給システムの制御方法
KR20210111356A (ko) * 2019-01-31 2021-09-10 램 리써치 코포레이션 급속 교번 프로세스들에서 균일도를 개선하기 위한 복수-위치 가스 주입
JP7068230B2 (ja) * 2019-05-22 2022-05-16 東京エレクトロン株式会社 基板処理方法
CN114429903A (zh) * 2022-01-20 2022-05-03 长鑫存储技术有限公司 一种半导体结构及其形成方法、制造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266207A (ja) * 1996-03-29 1997-10-07 Nec Corp 半導体装置およびその製造方法
JP2008091651A (ja) * 2006-10-03 2008-04-17 Hitachi High-Technologies Corp プラズマエッチング装置およびプラズマエッチング方法
JP2008210952A (ja) * 2007-02-26 2008-09-11 Sanyo Electric Co Ltd 半導体装置の製造方法、シリコンインターポーザの製造方法および半導体モジュールの製造方法
JP2009130108A (ja) * 2007-11-22 2009-06-11 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2010510669A (ja) * 2006-11-17 2010-04-02 ラム リサーチ コーポレーション 高速ガス切り替えプラズマ処理装置
JP2012023221A (ja) * 2010-07-15 2012-02-02 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050923A (ja) 1983-08-31 1985-03-22 Hitachi Ltd プラズマ表面処理方法
JPH0473287A (ja) 1990-07-11 1992-03-09 Mitsubishi Electric Corp 抄紙機の制御装置
US7708859B2 (en) * 2004-04-30 2010-05-04 Lam Research Corporation Gas distribution system having fast gas switching capabilities
JP5226438B2 (ja) * 2008-09-10 2013-07-03 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
US8574447B2 (en) * 2010-03-31 2013-11-05 Lam Research Corporation Inorganic rapid alternating process for silicon etch
JP6043046B2 (ja) * 2010-08-12 2016-12-14 東京エレクトロン株式会社 エッチングガスの供給方法及びエッチング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266207A (ja) * 1996-03-29 1997-10-07 Nec Corp 半導体装置およびその製造方法
JP2008091651A (ja) * 2006-10-03 2008-04-17 Hitachi High-Technologies Corp プラズマエッチング装置およびプラズマエッチング方法
JP2010510669A (ja) * 2006-11-17 2010-04-02 ラム リサーチ コーポレーション 高速ガス切り替えプラズマ処理装置
JP2008210952A (ja) * 2007-02-26 2008-09-11 Sanyo Electric Co Ltd 半導体装置の製造方法、シリコンインターポーザの製造方法および半導体モジュールの製造方法
JP2009130108A (ja) * 2007-11-22 2009-06-11 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2012023221A (ja) * 2010-07-15 2012-02-02 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137069A (zh) * 2013-12-30 2019-08-16 中微半导体设备(上海)股份有限公司 一种控制反应气体进入真空反应腔的方法
CN110137069B (zh) * 2013-12-30 2021-07-09 中微半导体设备(上海)股份有限公司 一种控制反应气体进入真空反应腔的方法
WO2015146543A1 (ja) * 2014-03-26 2015-10-01 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびコンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
KR102039759B1 (ko) 2019-11-01
TWI560771B (ja) 2016-12-01
US20140361102A1 (en) 2014-12-11
US9460895B2 (en) 2016-10-04
JP5937385B2 (ja) 2016-06-22
KR20140134265A (ko) 2014-11-21
TW201401368A (zh) 2014-01-01
JP2013197183A (ja) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5937385B2 (ja) 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置
KR101384589B1 (ko) 반도체 장치의 제조 방법
US20170330759A1 (en) Etching method
CN100517563C (zh) 等离子体处理装置和等离子体处理方法
JP4912907B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
JPWO2012002232A1 (ja) プラズマ処理装置及び方法
JP6017928B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
WO2013051282A1 (ja) 半導体装置の製造方法
TWI778064B (zh) 電漿處理裝置、處理系統及蝕刻多孔質膜之方法
TWI446439B (zh) 電漿處理方法
JP2014003085A (ja) プラズマエッチング方法及びプラズマ処理装置
KR102661835B1 (ko) 플라즈마 에칭 방법 및 플라즈마 에칭 장치
US7452823B2 (en) Etching method and apparatus
JP2014220387A (ja) プラズマエッチング方法
JP4684924B2 (ja) プラズマエッチング方法、プラズマエッチング装置及びコンピュータ記憶媒体
JP6529943B2 (ja) 半導体素子の製造方法及びその製造方法に用いられるプラズマエッチング装置
JP5804978B2 (ja) プラズマエッチング方法及びコンピュータ記録媒体
JP4541193B2 (ja) エッチング方法
JP2012227334A (ja) プラズマ処理方法
JP5918886B2 (ja) プラズマ処理方法
US20070218698A1 (en) Plasma etching method, plasma etching apparatus, and computer-readable storage medium
JP2007251044A (ja) プラズマエッチング方法、プラズマエッチング装置及びコンピュータ記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019506

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760659

Country of ref document: EP

Kind code of ref document: A1