JP6324870B2 - ガス供給機構及び半導体製造装置 - Google Patents

ガス供給機構及び半導体製造装置 Download PDF

Info

Publication number
JP6324870B2
JP6324870B2 JP2014207207A JP2014207207A JP6324870B2 JP 6324870 B2 JP6324870 B2 JP 6324870B2 JP 2014207207 A JP2014207207 A JP 2014207207A JP 2014207207 A JP2014207207 A JP 2014207207A JP 6324870 B2 JP6324870 B2 JP 6324870B2
Authority
JP
Japan
Prior art keywords
plate
gas
gas supply
valve
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207207A
Other languages
English (en)
Other versions
JP2016076649A (ja
Inventor
勇貴 保坂
勇貴 保坂
義弘 梅澤
義弘 梅澤
真代 宇田
真代 宇田
敬 久保
敬 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014207207A priority Critical patent/JP6324870B2/ja
Priority to PCT/JP2015/076922 priority patent/WO2016056390A1/ja
Priority to KR1020177005929A priority patent/KR102420760B1/ko
Priority to US15/508,054 priority patent/US10510514B2/en
Priority to TW104132763A priority patent/TWI669768B/zh
Publication of JP2016076649A publication Critical patent/JP2016076649A/ja
Application granted granted Critical
Publication of JP6324870B2 publication Critical patent/JP6324870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
    • F16K3/085Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres the axis of supply passage and the axis of discharge passage being coaxial and parallel to the axis of rotation of the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sliding Valves (AREA)
  • Plasma Technology (AREA)

Description

本発明の実施形態は、ガス供給機構及び半導体製造装置に関する。
半導体デバイスの製造においては、被処理体に微細なパターンを形成するために、被処理基体に対して成膜、及びエッチングといった種々の処理が行われる。このような処理は、例えば処理容器内においてガスのプラズマを生成し、被処理体を当該プラズマに晒すことによって行われる。近年、被処理体に形成されるパターンは、微細化される傾向にあり、これに伴って、益々精密な加工技術が要求されるようになっている。このような微細なパターンを形成するために、異なる種類のガスを交互に供給して被処理体にパターンを形成する技術が知られている。
例えば特許文献1には、堆積性ガスを供給して該ガスのプラズマを生成する工程と、エッチングガスを供給して該ガスのプラズマを生成する工程とを交互に繰り返すことで被処理体に深穴を形成することが記載されている。このような処理を行うために、特許文献1に記載の装置は、ガス供給源、シャワーヘッド、並びに、第1及び第2のガス供給ラインを備えている。第1のガス供給ラインは、ガス供給源から供給されたエッチングガスをシャワーヘッドの内部に形成されたガス拡散室に導入する。また、第2のガス供給ラインは、ガス供給源から供給された堆積性ガスをガス拡散室に導入する。第1のガス供給ライン及び第2のガス供給ラインのそれぞれには、ガス拡散室に対するガスの供給及び供給の停止を切り替えるバルブが設けられている。
特許文献1に記載の装置では、シャワーヘッドに供給するガスをエッチングガスから堆積性ガスに切り換える直前に、第2のガス供給ラインのバルブが閉鎖された状態で当該第2のガス供給ラインに堆積性ガスが供給される。これにより、バルブよりも上流側において第2のガス供給ラインの内部圧力が高められる。その結果、第2のガス供給ラインの内部(上流側の内部)とガス拡散室の内部との間に圧力差が生じる。そして、シャワーヘッドに供給するガスをエッチングガスから堆積性ガスに切り換えるときに、第2のガス供給ラインのバルブを開放することで堆積性ガスをガス拡散室に急速に流入させる。また、シャワーヘッドに供給するガスを堆積性ガスからエッチングガスに切り換える直前に、第1のガス供給ラインのバルブが閉鎖された状態で当該第1のガス供給ラインに堆積性ガスが供給される。これにより、バルブよりも上流側において第1のガス供給ラインの内部圧力が高められる。そして、シャワーヘッドに供給するガスを堆積性からエッチングガスに切り換えるときに、第1のガス供給ラインのバルブを開放することでエッチングガスをガス拡散室に急速に流入させる。このように、特許文献1に記載の装置では、ガス供給ライン内のガスを拡散室に急速に流入させることにより、堆積性ガスのプラズマを生成する工程とエッチングガスのプラズマを生成する工程との切り替え時間の短縮化を試みている。
特開2013−197183号公報
ガスの切り替え時間を短くするためには、被処理体が処理される処理空間の圧力を早期に安定させることが必要である。しかしながら、特許文献1に記載の装置のように、ガス供給ラインの内部とシャワーヘッドの拡散室の内部との間で圧力差を生じさせた場合には、処理容器の内部空間を早期に安定させることが困難となる。以下、図15を参照してその理由を説明する。
図15は、特許文献1と同様のプラズマ処理装置を用いて、処理空間にガスを供給したときの処理空間におけるガス圧力の時間変化を示すグラフである。図15の(a)は、ガス供給ラインと拡散室との間に圧力差を設けてから処理空間にガスを供給するという条件下での処理空間内のガス圧力の時間変化を示している。この条件下では、図15の(a)に示すように、ガス供給の初期において処理空間内のガス圧力が急激に上昇するが、その後、処理空間のガス圧力が目標圧力(図15の(a)の例では、140mTorr)を超えてしまう。即ち、ガス供給ラインと拡散室との間に圧力差を生じさせると、その圧力差によってガス供給ライン内のガスが処理空間に向けて過剰に押し出されるので、ガス圧力の制御にオーバーシュートが発生する。このようにオーバーシュートが発生すると、処理容器内のガスが排気されてガス圧力が目標値に安定するまでに長い時間を要することになる。よって、処理空間のガス圧力が安定するまでの時間を短縮化することが困難となる。
一方、発明者は、バルブの開閉を高速に切り替えながら処理容器内にガスを供給することで、処理空間の圧力を早期に目標圧力に安定させることができることを見出した。図15の(b)は、ガス供給ラインと拡散室との間に圧力差を生じさせ、且つ、バルブの開閉を高速に切り替えながら処理空間にガスを供給した条件下での処理空間のガス圧力の時間変化を示している。この条件下では、図15の(b)に示すように、オーバーシュートの発生を防止することができ、その結果、処理空間のガス圧力を早期に安定させることができることが確認された。
上述の結果から、特許文献1に記載の装置においても、ガス供給ラインのバルブを高速に開閉させながら処理容器内にガスを供給する制御を行えば、ガスの切り替え時間を短くすることが可能であると考えられる。しかしながら、一般的なダイヤフラム式のバルブは、耐久性が低く、高頻度で開閉を行うと接点部の摩耗等によって短期間で破損してしまうことがある。したがって、特許文献1に記載の装置において、高頻度でバルブを開閉させるような制御を行うと、装置の稼働率が低下する恐れがある。
よって、本技術分野では、処理空間の圧力を早期に安定させることができると共に、高い耐久性を有するガス供給機構及び半導体製造装置を提供することが要請されている。
一態様では、半導体製造装置にガスを供給するためのガス供給機構が提供される。このガス供給機構は、ガスソースと半導体製造装置とを接続する配管と、配管の途中に設けられたバルブと、を備え、バルブは、板厚方向に延びる軸線を中心に回転可能なプレートと、プレートを収容するようプレートに沿って該プレートに非接触に設けられたハウジングであり、配管と共にガス供給経路を提供する該ハウジングと、を有し、プレートには、軸線を中心に延在し且つガス供給経路と交差する円周上の位置において該プレートを貫通する貫通孔が形成されている。
一態様に係るガス供給機構では、プレートの貫通孔がガス供給経路上に位置するときには、ガスが貫通孔を介してバルブを通過可能となるので、ガス供給経路のコンダクタンスが増加する。一方、貫通孔がガス供給経路上に位置しないときには、プレートがガスの流れを阻害するので、ガス供給経路のコンダクタンスが低下する。即ち、本ガス供給機構では、ガス供給経路に対する貫通孔の位置の変化に応じて、ガス供給経路のコンダクタンスが変化する。したがって、このガス供給機構は、当該プレートを回転させることでバルブを高速に開閉させることと同等の機能を発揮する。故に、かかるガス供給機構によれば、半導体製造装置の処理空間の圧力を早期に安定させることが可能である。更に、このプレートは、ハウジングに対して非接触で設けられているので、高い耐久性を有している。
一実施形態では、プレートを回転させる駆動部と、プレートの回転角を制御するために駆動部を制御する制御部と、を更に備えていてもよい。また、一実施形態では、駆動部は、プレートを回転させるモータを含み、モータは、軸線上で延在しプレートに連結される出力軸を有していてもよい。かかる構成によれば、プレートを高速で回転させることができるので、半導体製造装置の処理空間の圧力を早期に安定させることができる。
一実施形態では、駆動部は、筒状の固定子と、固定子の内側において該固定子と同軸に設けられた筒状の回転子と、を有し、プレートは、回転子の内孔の中に設けられており、該回転子に結合されていてもよい。かかる構成によれば、ハウジングの外からモータの出力軸をハウジング内に挿入する必要がないので、ハウジングの密閉性を向上することができる。
一実施形態では、軸線に対して直交する方向における貫通孔の幅は、軸線に対して周方向において変化していてもよい。この構成によれば、バルブを通過するガスの流量を時間的に変化させることが可能となる。
処理空間の圧力を早期に安定させることができると共に、高い耐久性を有するガス供給機構及び半導体製造装置を提供することができる。
一実施形態に係るプラズマ処理装置を概略的に示す断面図である。 (a)は第1の動作モードに設定されたバルブの断面図であり、(b)は(a)に示すプレートの平面図である。 (a)は第2の動作モードに設定されたバルブの断面図であり、(b)は(a)に示すプレートの平面図である。 (a)は第3の動作モードに設定されたバルブの断面図であり、(b)は(a)に示すプレートの平面図である。 プレートと同一平面上での流路の断面積、及び、処理空間に供給されるガスの流量の時間変化を示す図である。 一実施形態に係るガス供給機構を用いたガス供給方法を示す流れ図である。 別の実施形態に係るバルブを概略的に示す断面図である。 更に別の実施形態に係るバルブを概略的に示す断面図である。 第1のプレート及び第2のプレートの平面図である。 更に別の実施形態に係るバルブを概略的に示す断面図である。 (a)はプレートの変形例を示す平面図であり、(b)プレートと同一平面上での流路の断面積、及び、処理空間に供給されるガスの流量の時間変化を示す図である。 (a)はプレートの別の変形例を示す平面図であり、(b)はプレートと同一平面上での流路の断面積、及び、処理空間に供給されるガスの流量の時間変化を示す図である。 (a)はプレートの更に別の変形例を示す平面図であり、(b)はプレートと同一平面上での流路の断面積、及び、処理空間に供給されるガスの流量の時間変化を示す図である。 (a)はプレートの更に別の変形例を示す図であり、(b)はプレートと同一平面上での流路の断面積、及び、処理空間に供給されるガスの流量の時間変化を示す図である。 処理空間のガス圧力の時間変化を示す図である。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1は、一実施形態に係る半導体製造装置を概略的に示す図である。図1には、半導体製造装置の一例であるプラズマ処理装置10の断面構造が概略的に示されている。プラズマ処理装置10は、容量結合型平行平板プラズマエッチング装置であり、略円筒状の処理容器12を備えている。処理容器12は、例えば、その表面は陽極酸化処理されたアルミニウムから構成されている。この処理容器12は保安接地されている。
処理容器12の側壁には被処理体Wの搬入出口12gが設けられている。この搬入出口12gはゲートバルブ54により開閉可能となっている。また、処理容器12の側壁上端には、当該側壁から上方に延びるように、接地導体12aが搭載されている。接地導体12aは、略円筒形状を有している。
処理容器12の底部上には、絶縁材料から構成された円筒状の支持部14が配置されている。この支持部14は、その内壁面において、下部電極16を支持している。下部電極16は、例えばアルミニウムといった金属から構成されており、略円盤形状を有している。
下部電極16には、整合器MU1を介して第1の高周波電源HFSが接続されている。第1の高周波電源HFSは、プラズマ生成用の高周波電力を発生する電源であり、27〜100MHzの周波数、一例においては40MHzの高周波電力を発生する。整合器MU1は、第1の高周波電源HFSの出力インピーダンスと負荷側(下部電極16側)の入力インピーダンスを整合させるための回路を有している。
また、下部電極16には、整合器MU2を介して第2の高周波電源LFSが接続されている。第2の高周波電源LFSは、被処理体Wにイオンを引き込むための高周波電力(高周波バイアス電力)を発生して、当該高周波バイアス電力を下部電極16に供給する。高周波バイアス電力の周波数は、400kHz〜13.56MHzの範囲内の周波数であり、一例においては3MHzである。整合器MU2は、第2の高周波電源LFSの出力インピーダンスと負荷側(下部電極16側)の入力インピーダンスを整合させるための回路を有している。
下部電極16上には、静電チャック18が設けられている。静電チャック18は、下部電極16と共に被処理体Wを支持するための載置台を構成している。静電チャック18は、導電膜である電極20を一対の絶縁層又は絶縁シート間に配置した構造を有している。電極20には、直流電源22が電気的に接続されている。この静電チャック18は、直流電源22からの直流電圧により生じたクーロン力等の静電力により被処理体Wを吸着保持することができる。
下部電極16の上面であって、静電チャック18の周囲には、フォーカスリングFRが配置されている。フォーカスリングFRは、エッチングの均一性を向上させるために設けられている。フォーカスリングFRは、被エッチング層の材料によって適宜選択される材料から構成されており、例えば、シリコン、又は石英から構成され得る。
下部電極16の内部には、冷媒室24が設けられている。冷媒室24には、外部に設けられたチラーユニットから配管26a,26bを介して所定温度の冷媒、例えば冷却水が循環供給される。このように循環される冷媒の温度を制御することにより、静電チャック18上に載置された被処理体Wの温度が制御される。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャック18の上面と被処理体Wの裏面との間に供給する。
一実施形態においてプラズマ処理装置10は、デポシールド46を更に備え得る。デポシールド46は、処理容器12の内壁に沿って着脱自在に設けられている。デポシールド46は、支持部14の外周にも設けられている。このデポシールド46は、処理容器12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。
また、処理容器12の内壁には、導電性部材(GNDブロック)56が設けられている。導電性部材56は、高さ方向において被処理体Wと略同じ高さに位置するように、処理容器12の内壁に取り付けられている。この導電性部材56は、グランドにDC的に接続されており、異常放電防止効果を発揮する。
また、処理容器12の底部側においては、支持部14と処理容器12の内壁との間に排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。この排気プレート48の下方において処理容器12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、ターボ分子ポンプなどの真空ポンプを有しており、処理容器12内を所望の真空度まで減圧することができる。
また、プラズマ処理装置10は、上部電極30を更に備えている。上部電極30は、下部電極16の上方において、当該下部電極16と対向配置されている。下部電極16と上部電極30とは、互いに略平行に設けられている。これら上部電極30と下部電極16との間には、被処理体Wにプラズマエッチングを行うための処理空間Sが画成されている。
上部電極30は、絶縁性遮蔽部材32を介して、処理容器12の上部に支持されている。上部電極30は、電極板34及び電極支持体36を含み得る。電極板34は、処理空間Sに面しており、複数のガス吐出孔34a及び複数のガス吐出孔34bを画成している。この電極板34は、ジュール熱の少ない低抵抗の導電体又は半導体から構成され得る。
電極支持体36は、電極板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この電極支持体36は、水冷構造を有し得る。また、電極支持体36の内部には、第1のガス拡散室38a及び第2のガス拡散室40aが設けられている。第1のガス拡散室38aからは、ガス吐出孔34aに連通する複数のガス流通孔38bが下方に延びている。また、第2のガス拡散室40aからは、ガス吐出孔34bに連通する複数のガス流通孔40bが下方に延びている。
第1のガス拡散室38aには、第1のガス供給機構1A及び第1の流量制御器FC1を介して第1のガスソースGS1が接続されている。第1のガスソースGS1は、例えば被処理体Wをエッチングするための第1のガスのガス源である。第1の流量制御器FC1は、その上流側において第1のガスソースGS1に接続されており、その下流側においては第1のガス供給機構1Aに接続されている。第1の流量制御器FC1は、第1のガス供給機構1Aの第1の配管42に対する第1のガスソースGS1からの第1のガスの供給及び供給の停止を制御し、また、第1の配管42に供給する第1のガスの流量を制御するように構成されている。この第1の流量制御器FC1は、バルブ及びマスフローコントローラを含み得る。
また、第2のガス拡散室40aには、第2のガス供給機構1B及び第2の流量制御器FC2を介して第2のガスソースGS2が接続されている。第2のガスソースGS2は、例えば被処理体Wの表面に対して堆積性を有する第2のガスのガス源である。第2の流量制御器FC2は、その上流側において第2のガスソースGS2に接続されており、その下流側においては第2のガス供給機構1Bに接続されている。第2の流量制御器FC2は、第2のガス供給機構1Bの第2の配管44に対する第2のガスソースGS2からの第2のガスの供給及び供給の停止を制御し、また、第2の配管44に供給する第2のガスの流量を制御するように構成されている。この第2の流量制御器FC2は、バルブ及びマスフローコントローラを含み得る。
第1の流量制御器FC1及び第2の流量制御器FC2には、ガス制御部67が接続されている。ガス制御部67は、第1の流量制御器FC1及び第2の流量制御器FC2のそれぞれに制御信号を送信し、第1の流量制御器FC1及び第2の流量制御器FC2を制御する。具体的に、ガス制御部67は、第1の流量制御器FC1に対して制御信号を送出することにより、第1のガスソースGS1からの第1のガスの供給及び供給の停止を制御し、また、第1のガスの流量を制御する。また、ガス制御部67は、第2の流量制御器FC2に対して制御信号を送出することにより、第2のガスソースGS2からの第2のガスの供給及び供給の停止を制御し、また、第2のガスの流量を制御する。
以下、図1〜4を参照して、第1のガス供給機構1A及び第2のガス供給機構1Bについて説明する。第1のガス供給機構1Aは、第1の配管42及び第1のバルブVL1を有している。第2のガス供給機構1Bは、第2の配管44及び第2のバルブVL2を有している。
第1の配管42は、第1のガスソースGS1と第1のガス拡散室38aとを接続している。具体的には、第1の配管42は第1の流量制御器FC1の下流側に接続されており、第1のガス拡散室38aの上流側に接続されている。また、第2の配管44は、第2のガスソースGS2と第2のガス拡散室40aとを接続している。具体的には、第2の配管44は第2の流量制御器FC2の下流側に接続されており、第2のガス拡散室40aの上流側に接続されている。第1の配管42及び第2の配管44の途中にはそれぞれ、第1のバルブVL1及び第2のバルブVL2が設けられている。第1のバルブVL1は、第1の配管42によって提供される第1のガス供給経路のコンダクタンスを増減する機能を有しており、第2のバルブVL2は、第2の配管44によって提供される第2のガス供給経路のコンダクタンスを増減する機能を有している。
図2(a)は、第1のバルブVL1を概略的に示す断面図である。図2(a)に示すように、第1のバルブVL1は、ハウジング60及びプレート62を有しており、第1の配管42の途中に設けられている。図2の(a)に示すように、第1の配管42は、ハウジング60よりも上流側に設けられた上流部42a、及び、ハウジングよりも下流側に設けられた下流部42bを有している。ハウジング60は、これら上流部42a、及び下流部42bに連結されている。このハウジング60は、第1の配管42が提供する第1のガス供給経路43と連続する内部空間を画成しており、上流部42aと下流部42bとの間において第1のガス供給経路43を部分的に提供している。
また、ハウジング60は、その内部空間にプレート62を収容しており、プレート62に沿って当該プレート62に対して非接触に設けられている。なお、ハウジング60は、プレート62に対して0.5mm以下の隙間を介して設けられていてもよい。ハウジング60の内壁とプレート62との間の隙間を0.5mm以下とすることで、第1の配管42の上流部42aからハウジング60内に供給されるガスが、後述の貫通孔64を介することなく下流部42bに流れることを抑制することができる。
図2(b)は、プレート62の平面図である。プレート62は、円盤形状を有しており、板厚方向に延びる軸線Zを中心に回転可能に構成されている。このプレート62には、図2(a)、(b)に示すように、貫通孔64が形成されている。貫通孔64は、円周C上の位置に形成されている。円周Cは、軸線Zを中心に延在し、且つ、ガス供給経路43と交差する円周である。即ち、プレート62の軸線Z中心の回転により、第1のガス供給経路43に対する貫通孔64の相対的な位置を調整することが可能となっている。
一実施形態では、貫通孔64は、直径dで規定される円形の平面形状を有している。貫通孔64の直径dと第1のガス供給経路43の直径Dとの関係は任意に設定され得る。例えば、貫通孔64の直径dが第1のガス供給経路43の直径D以上である場合には、第1のバルブVL1は、第1のガス供給経路43のコンダクタンスを低下させずに、第1のガス供給経路43を流れる第1のガスを第1のガス拡散室38aに供給することが可能である。一方、貫通孔64の直径dが第1のガス供給経路43の直径Dよりも小さい場合には、第1のバルブVL1は、第1のガス供給経路43のコンダクタンスを低下させる絞り弁として機能することができる。
また、プレート62には、当該プレート62を回転させる駆動部としてモータM1が接続されている。モータM1は、出力軸66を有している。出力軸66は、軸線Z上で延在している。即ち、出力軸66の中心軸線は軸線Zと一致している。この出力軸66は、ハウジング60を貫通してプレート62に連結されている。即ち、出力軸66は、その中心軸線上にプレート62の中心が位置するよう、プレート62に連結されている。この出力軸66とハウジング60との間にはシール材が設けられていてもよい。これにより、ハウジング60の気密性が向上される。
モータM1には、モータ制御部69が接続されている。モータM1は、モータ制御部69からの制御信号によってプレート62の回転角及び回転を制御し得る。モータ制御部69は、第1のバルブVL1のモータM1を制御することにより、第1のバルブVL1の動作モードを第1〜第4の動作モードのうち何れかの動作モードに切り替えることが可能である。なお、第1〜第3のモードは、プレート62の回転角がそれぞれのモードに固有の回転角に制御されるモードであり、第4のモードはプレート62を一定の角速度で回転させるモードである。以下、第1〜第4のモードについて詳細に説明する。
[第1の動作モード]
まず、図2(a)、(b)を参照して、第1の動作モードについて説明する。第1の動作モードは、モータ制御部69がモータM1を制御して、第1〜第3の動作モードのうち第1のガス供給経路43のコンダクタンスが最も高くなるようにプレート62の回転角を設定する動作モードである。図2(a)、(b)に示すように、この第1の動作モードでは、軸線Z方向に視たときの貫通孔64と第1のガス供給経路43との重複面積が最大となるようにプレート62が回転されて、当該プレート62の回転角が第1の回転角θ1に設定される。図2の(a)及び(b)に示す例では、貫通孔64の中心軸線と第1のガス供給経路43の中心軸線が一致するように、プレート62の回転角が第1の回転角θ1に設定される。なお、回転角とは、貫通孔64の中心軸線と軸線Zとを結ぶ線分が軸線Zに対して放射方向に延びる基準線RLとがなす角度であり、軸線Zに対して時計回り方向を正方向とする角度である。
図2(a)、(b)に示すように、第1の動作モードでは、軸線Z方向に視た貫通孔64と第1のガス供給経路43との重複面積(同図中、参照符号OPで示すハッチングされた領域の面積)が最大となり、第1の配管42を流れるガスの大部分は、プレート62の貫通孔64を通過することとなる。そして、貫通孔64を通過したガスは、第1のガス拡散室38a、ガス流通孔38b、ガス吐出孔34aを介して処理空間Sに供給される。
[第2の動作モード]
次に、図3を参照して、第2の動作モードについて説明する。図3(a)は、第2の動作モードに設定された第1のバルブVL1を示す断面図であり、図3(b)は図3(a)のプレート62の平面図である。第2の動作モードは、モータ制御部69がモータM1を制御して、第1〜第3の動作モードのうち第1のガス供給経路43のコンダクタンスが最も低くなるようにプレート62の回転角を設定する動作モードである。この第2の動作モードでは、貫通孔64が第1のガス供給経路43から外れた位置に配置される。
第2の動作モードでは、プレート62が回転されて当該プレート62の回転角が第2の回転角θ2に設定される。例えば、第2の回転角θ2は、第1の回転角θ1に対して周方向に180度の角度であり、貫通孔64を第1のガス供給経路43から最も離れた位置に配置したプレート62の回転角である。
図3(a)、(b)に示すように、第2の動作モードでは、貫通孔64が第1のガス供給経路43から離れた位置に配置されるので、軸線Z方向に視ると、貫通孔64と第1のガス供給経路43とは重複しない。即ち、第2の動作モードでは、第1のガス供給経路43上にプレート62が介在する。したがって、第2の動作モードでは、第1のガス供給経路43におけるガスの流れが遮られる。故に、この第2の動作モードでは、第1のガス供給経路43のコンダクタンスが低くなる。
なお、第1のバルブVL1が第2の動作モードに設定されているときに第1のガスが当該第1のバルブVL1の上流側まで流されると、当該第1のガスが第1の配管42の上流部42aに滞留する。その結果、上流部42aの内部圧力が高められる。したがって、第1のバルブVL1を第2の動作モードに設定されると、第1の配管42の上流部42aと処理空間Sとの間には圧力差が発生する。
[第3の動作モード]
次に、図4を参照して、第3の動作モードについて説明する。図4(a)は、第3の動作モードに設定された第1のバルブVL1を示す断面図であり、図4(b)は図4(a)のプレート62の平面図である。第3の動作モードは、モータ制御部69がモータM1を制御して、ガス供給経路43のコンダクタンスが第1の動作モードよりも低く、第2の動作モードよりは高くなるようにプレート62の回転角を設定する動作モードである。この第3の動作モードでは、貫通孔64の一部のみが第1のガス供給経路43上に位置するようにプレート62の回転角が第3の回転角θ3に設定される。
具体的には、図4(a)、(b)に示すように、第3の動作モードでは、第1のガス供給経路43がプレート62によって部分的に遮蔽される。したがって、軸線Z方向に視たと貫通孔64と第1のガス供給経路43の重複面積(同図中、参照符号OPで示すハッチングされた領域の面積)は、第1の動作モードにおける重複面積(図2の(a)、(b)におおいて参照符号OPで示すハッチングされた領域の面積)と比べて小さくなる。したがって、第3の動作モードでは、第1の動作モードに比べて第1のガス供給経路43のコンダクタンスが低下する。
[第4の動作モード]
第4の動作モードは、モータ制御部69がモータM1を制御してプレート62を一定の角速度で回転させるモードである。第4のモードでは、貫通孔64が一定の周期で第1のガス供給経路43上に位置する。これにより、第1のガス供給経路43のコンダクタンスが周期的に変化する。故に、第4の動作モードでは、処理空間Sにガスが間欠的に供給される。なお、ガスが供給される時間間隔はプレート62の回転速度を変化させることによって調整し得る。以下、具体的な一例を挙げて、モータ制御部69が第1のバルブVL1のプレート62を一定の角速度で回転させているときに、第1の配管42を介して処理空間Sに供給されるガスの流量の時間的変化について説明する。
図5は、プレート62を一定の角速度で回転させているときの、プレート62の同一平面上における第1のガス供給経路43の断面積、及び、処理空間Sに供給されるガスの流量の時間的変化を示している。なお、第1の配管42には第1のガスソースGS1から第1のガスが供給されているものとし、貫通孔64の直径dは、第1の配管42のガス供給経路43の直径Dと同一のものとした。
プレート62が一定の角速度で回転すると、プレート62の貫通孔64は、一定の時間間隔で第1のガス供給経路43上を通過する。したがって、図5に示すように、プレート62と同一平面上での流路の断面積は、貫通孔64がガス供給経路43上に配置されているときに増加し、貫通孔64がガス供給経路43上に配置されていないときに減少する。その結果、第1のガス供給経路43のコンダクタンスが周期的に増減する。これに伴って、図5に示すように、処理空間Sには第1のガスが間欠的に供給されることになる。
以上、第1のバルブVL1についてその構成要素及び第1〜第4の動作モードについて説明した。この第1のバルブVL1と同様に、第2のバルブVL2も、ハウジング60、プレート62、及びモータM1を有する。また、第2のバルブVL2も、モータ制御部69による当該第2のバルブVL2のモータM1の制御により第1〜第4の動作モードで動作することができ、第2の配管44によって提供される第2のガス供給経路のコンダクタンスを調整することが可能である。
図1の説明に戻り、プラズマ処理装置10は、メイン制御部65を更に備え得る。このメイン制御部65は、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータである。このメイン制御部65では、入力装置を用いて、オペレータがプラズマ処理装置10を管理するためにコマンドの入力操作等を行うことができ、また、表示装置により、プラズマ処理装置10の稼働状況を可視化して表示すことができる。また、メイン制御部65は、記憶部に記憶されたレシピに従って、プラズマ処理装置10の各部を統括制御することができる。例えば、メイン制御部65は、第1の流量制御器FC1、第2の流量制御器FC2、第1のバルブVL1、及び第2のバルブVL2が連動して動作するようにガス制御部67及びモータ制御部69を制御する。なお、第1の流量制御器FC1、第2の流量制御器FC2、第1のバルブVL1、及び第2のバルブVL2の連動における制御フローについては、後述する一実施形態のガス供給方法の説明と共に、詳細に説明する。
このプラズマ処理装置10では、第1のガスソースGS1から第1のガスが第1のガス供給機構1Aを介して処理容器12内に供給される。また、第2のガスソースGS2から第2のガスが第2のガス供給機構1Bを介して処理容器12内に供給される。第1のガスと第2のガスは処理容器12内に交互に供給され得る。そして、下部電極16にプラズマ生成用の高周波電力が与えられることにより、下部電極16と上部電極30との間に高周波電界が発生する。この高周波電界により、処理空間S内に供給されたガスのプラズマが生成される。これにより、被処理体Wがガスのプラズマによって処理される。
また、上述した第1のガス供給機構1A及び第2のガス供給機構1Bは、プレート62の回転角を変化させることによって、それぞれ第1のバルブVL1及び第2のバルブVL2のコンダクタンスを増減させることができる。さらに、プレート62を回転させた場合には、第1のバルブVL1及び第2のバルブVL2は、バルブを高速に開閉させることと同等の機能を発揮する。したがって、第1のガス供給機構1A及び第2のガス供給機構1Bによれば、処理空間Sの圧力を早期に安定させることが可能である。さらに、第1のガス供給機構1A及び第2のガス供給機構1Bでは、プレート62がハウジング60に対して非接触で設けられている。したがって、第1のガス供給機構1A及び第2のガス供給機構1Bの耐久性を高めることが可能である。
次に、図1のプラズマ処理装置10を用いたガス供給方法について説明する。図6は、一実施形態のガス供給方法MTを示す流れ図である。この方法MTでは、第1のガス及び第2のガスが、それぞれ第1のガス供給機構1A及び第2のガス供給機構1Bを介して交互に処理容器12内に供給される。
方法MTでは、まず工程ST1が行われる。この工程ST1では、処理容器12内に第1のガスが供給されると共に、第2のガスの供給が停止される。このために、メイン制御部65は、ガス制御部67に制御信号を送信する。ガス制御部67は、この制御信号を受信すると、第1のガスが第1の配管42に供給されるように第1の流量制御器FC1を制御すると共に、第2の配管44に対する第2のガスの供給が停止するように第2の流量制御器FC2を制御する。
また、工程ST1においてメイン制御部65は、モータ制御部69にも制御信号を送信する。モータ制御部69は、この制御信号を受信すると、第1のバルブVL1のプレート62が第1の回転角θ1になるように第1のバルブVL1のモータM1を制御する。さらに、モータ制御部69は、第2のバルブVL2のプレート62が第2の回転角θ2になるように第2のバルブVL2のモータM1を制御する。即ち、モータ制御部69は、第1のバルブVL1を第1の動作モードに設定し、第2のバルブVL2を第2の動作モードに設定する。
上記のように制御されることによって、工程ST1では、第1のガスが第1のガスソースGS1から第1の配管42に供給される。そして、当該第1のガスが第1のバルブVL1を通過し、第1のガス拡散室38a内で拡散された後に処理容器12内に供給される。一方、第2のガスソースGS2からの第2のガスは、第2の流量制御器FC2によって供給が停止される。そして、処理容器12内に供給された第1のガスを用いて被処理体Wが処理される。例えば、処理容器12内で第1のガスのプラズマが生成され、被処理体Wがエッチングされる。
方法MTでは、次いで工程ST2が行われる。工程ST2では、メイン制御部65は、ガス制御部67に制御信号を送信する。ガス制御部67は、この制御信号を受信すると、第2のガスが第2の配管44に供給されるように第2の流量制御器FC2を制御する。この際、第2のバルブVL2は工程ST1において第2の動作モードに設定されているので、第2のガスソースGS2からの第2のガスは、第2の配管44の上流部44a内に留められる。このため、工程ST2では、第2の配管44の上流部44aの内部圧力が高められる。
次いで、工程ST3が行われる。工程ST3では、処理容器12に対して供給されるガスが第1のガスから第2のガスに切り替えられる。このために、メイン制御部65は、ガス制御部67に制御信号を送信する。ガス制御部67は、この制御信号を受信すると、第1の配管42に対する第1のガスの供給が停止するように第1の流量制御器FC1を制御する。また、ガス制御部67は、第2のガスが第2の配管44に供給されるように第2の流量制御器FC2を制御する。
また、工程ST3においてメイン制御部65は、モータ制御部69にも制御信号を送信する。モータ制御部69は、この制御信号を受信すると、第1のバルブVL1のプレート62の回転角がθ2になるように第1のバルブVL1のモータM1を制御する。さらに、モータ制御部69は、第2のバルブVL2のプレート62が一定の角速度で回転するように第2のバルブVL2のモータM1を制御する。即ち、モータ制御部69は、第1のバルブVL1を第2の動作モードに設定し、第2のバルブVL2の動作モードを第4の動作モードに設定する。
このように制御されることによって、工程ST3では、処理容器12内への第1のガスの供給が第1の流量制御器FC1及び第1のバルブVL1によって停止される。一方、第2のガス供給経路のコンダクタンスは周期的に変化するので、処理容器12内に第2のガスソースGS2からの第2のガスが間欠的に供給される。ここで、工程ST2において、第2の配管44の上流部44aと処理空間Sとの間には圧力差が生じているので、第2のガスを処理容器12内に間欠的に供給することによって、処理容器12内のガス圧力が短時間で安定する。
次いで、工程ST4が行われる。工程ST4は、例えば工程ST3において処理容器12内の第2のガスの圧力が安定した後に行われる。この工程ST4では、メイン制御部65は、モータ制御部69に制御信号を送信する。モータ制御部69は、この制御信号を受信すると、第2のバルブVL2のプレート62が第1の回転角θ1になるよう、第2のバルブVL2のモータM1を制御する。これにより、第2のガスソースGS2からの第2のガスが処理容器12内に連続的に供給される。なお、工程ST4では、処理容器12内に給される第2のガスの流量を調整するために、第2のバルブVL2のプレートが第3の回転角θ3に設定されてもよい。
次いで、工程ST5が行われる。工程ST5では、終了条件を満たすか否かが判定される。終了条件を満たすか否かは、例えば処理空間Sに供給されるガスの切り替え回数が予め設定された回数に達したか否かによって判断されてもよい。工程ST5において終了条件を満たすと判定された場合には、方法MTを終了する。一方、工程ST5において終了条件を満たさないと判定された場合には、工程ST6が行われる。
工程ST6では、メイン制御部65からガス制御部67に制御信号が送信される。ガス制御部67は、この制御信号を受信すると、第1のガスが第1の配管42に供給されるように第1の流量制御器FC1を制御する。この際、工程ST3において第1のバルブVL1が第2の動作モードに設定されているので、第1のガスソースGS1からの第1のガスは、第1の配管42の上流部42a内に留められる。このため、工程ST6では、第1の配管42の上流部42aの内部圧力が高められる。
次いで、工程ST7が行われる。工程ST7では、処理容器12内に供給されるガスが第2のガスから第1のガスに切り替えられる。このために、メイン制御部65は、ガス制御部67に制御信号を送信する。ガス制御部67は、この制御信号を受信すると、第1のガスが第1の配管42に供給されるように第1の流量制御器FC1を制御する。また、ガス制御部67は、第2の配管44に対する第2のガスの供給が停止するように第2の流量制御器FC2を制御する。
さらに、工程ST7では、メイン制御部65は、モータ制御部69にも制御信号を送信する。モータ制御部69は、この制御信号を受信すると、第1のバルブVL1のプレート62が一定の角速度で回転するように第1のバルブVL1のモータM1を制御する。また、モータ制御部69は、第2のバルブVL2のプレート62が第2の回転角θ2になるように第2のバルブVL2のモータM1を制御する。即ち、モータ制御部69は、第1のバルブVL1の動作モードを第4の動作モードに設定し、第2のバルブVL2を第2の動作モードに設定する。
このように制御されることによって、工程ST7では、処理容器12内への第2のガスの供給が第2の流量制御器FC2及び第2のバルブVL2によって停止される。一方、第1のガス供給経路のコンダクタンスが周期的に変化するので、処理容器12内に第1のガスソースGS1からの第1のガスが間欠的に供給される。ここで、工程ST6において、第1の配管42の上流部42aと処理空間Sとの間には圧力差が生じているので、第1のガスを処理容器12内に間欠的に供給することによって、処理容器12内のガス圧力が短時間で安定する。
次いで、工程ST8が行われる。工程ST8は、例えば工程ST7において処理容器12内の第1のガスの圧力が安定した後に行われる。この工程ST8では、メイン制御部65は、モータ制御部69に制御信号を送信する。モータ制御部69は、この制御信号を受信すると、第1のバルブVL1のプレート62が第1の回転角θ1になるよう、第1のバルブVL1のモータM1を制御する。これにより、第1のガスソースGS1からの第1のガスが処理容器12内に連続的に供給される。なお、工程ST8では、処理容器12内に供給される第1のガスの流量を調整するために、第1のバルブVL1のプレートが第3の回転角θ3に設定されてもよい。この工程ST8の後、工程ST1が再び行われる。
上述のように、方法MTでは、処理容器12内に第1のガス及び第2のガスが交互に供給される。処理容器12内に供給されるガスが第1のガスから第2のガスに切り替えられた直後には、第2の配管44の内部と処理容器12の内部との間に圧力差を発生させた上で、第2のガスが処理容器12内に間欠的に供給される。反対に、処理容器12内に供給されるガスが第2のガスから第1のガスに切り替えられた直後には、第1の配管42の内部と処理容器12の内部との間に圧力差を発生させた上で、第1のガスが処理容器12内に間欠的に供給される。したがって、供給されるガスが切り替わる際に、処理容器12内のガス圧力を早期に安定させることができる。したがって、方法MTによれば、ガスの切り替えに要する時間を短縮することができるので、被処理体Wの処理スループットを向上させることが可能となる。
なお、上述の第1のバルブVL1及び第2のバルブVL2は上記形態に限定されない。以下では、別の実施形態に係るバルブについて説明する。
図7は、別の実施形態に係るバルブを概略的に示す断面図である。図7に示すバルブVL3は、プレート62を軸線Z回りに回転させるモータとして、中空モータを用いている点において、上述の第1のバルブVL1及び第2のバルブVL2と異なっている。
バルブVL3は、モータM1に代えて、中空モータMMを備えている。中空モータMMは、軸線Zを中心軸線とする筒状の固定子72と、固定子72の内側に固定子72に同軸に設けられた筒状の回転子70と、を有している。回転子70及び固定子72は、第1の配管42を取り囲むように配置されている。このバルブVL3では、プレート62は、回転子70の内孔の中に設けられており、回転子70に結合されている。プレート62は、回転子70が軸線Z回りに回転することによって、回転子70と共に軸線Zを中心に回転する。
上述のモータM1と同様に、中空モータMMには、モータ制御部69が接続されている。中空モータMMは、モータ制御部69からの制御信号によってプレート62の回転角を制御し得る。モータ制御部69は、バルブVL3の中空モータMMを制御することにより、バルブVL3を上述の第1〜第4の動作モードのうち何れかの動作モードに切り替えることが可能である。
かかるバルブVL3は、上述の第1のバルブVL1及び第2のバルブVL2と同様に、ガス供給経路のコンダクタンスを増減する機能を有している。さらに、バルブVL3では、モータの出力軸をハウジング内に挿入する必要がないので密閉性を向上することができる。
次に、更に別の実施形態に係るバルブについて説明する。
図8は、更に別の実施形態に係るバルブVL4を概略的に示す断面図である。図8に示すバルブVL4は、ハウジングの内部に複数のプレートが設けられている点で、上述の第1のバルブVL1及び第2のバルブVL2と異なっている。
バルブVL4では、ハウジング60の内部に第1のプレート82及び第2のプレート92が設けられている。図9を参照して、第1のプレート82及び第2のプレート92について説明する。
図9の(a)は第1のプレート82の平面図であり、図9の(b)は第2のプレート92の平面図である。第1のプレート82には、軸線Zを中心に延在し、且つ、ガス供給経路43と交差する円周Cに沿った位置において第1のプレート82を貫通する複数の貫通孔84が形成されている。これら複数の貫通孔84は、互いに同径の円形をなしている。また、第1のプレート82には、図8に示すように、モータM1が接続されている。モータM1の出力軸は、軸線Z上で延在しており、ハウジング60を貫通して第1のプレート82の回転中心軸線と一致するように連結されている。
一方、第2のプレート92には、軸線Zを中心に延在し、且つ、ガス供給経路43と交差する円周Cに沿った位置において第2のプレート92を貫通する複数の貫通孔94が形成されている。これら複数の貫通孔94は、何れも円形をなしているが、互いに異なる径を有している。第2のプレート92には、図8に示すように、モータM2が接続されている。モータM2の出力軸は、軸線Z上で延在しており、ハウジング60を貫通して第2のプレート92の回転中心軸線と一致するように連結されている。
また、図8に示すように、第1のプレート82及び第2のプレート92の間には、第1のプレート82及び第2のプレート92に沿って延在する仕切板60aが設けられている。この仕切板60aには、ガス供給経路43上の位置に開口60bが形成されている。
モータM1、M2のそれぞれには、モータ制御部69が接続されている。モータM1、M2は、モータ制御部69からの制御信号によってプレート62の回転角を制御し得る。モータ制御部69は、バルブVL4のモータM1、M2を制御することにより、バルブVL3を上述の第1〜第3の動作モードのうち何れかの動作モードに切り替えることが可能である。
また、モータ制御部69は、第1のプレート82及び第2のプレート92を同一方向又は逆方向に回転するようにモータM1及びモータM2を制御し得る。このように制御された場合には、第1のプレート82の貫通孔84及び第2のプレート92の貫通孔94の双方がガス供給経路43上に位置するときに、当該ガス供給経路43のコンダクタンスが最大となり、ガスソースからのガスが処理空間Sに供給される。
このようなバルブVL4は、第1のバルブVL1及び第2のバルブVL2と同様に、ガス供給経路43のコンダクタンスを増減する機能を有している。さらに、バルブVL4では、第1のプレート82及び第2のプレート92に異なる形状又は径の貫通孔を形成することができるので、処理空間Sに供給されるガスの流量の時間的変化を精密に制御することが可能となる。
さらに、バルブVL4において、第1のプレート82及び第2のプレート92を逆方向に回転させるように制御すれば、ガス供給経路43のコンダクタンスを高速に変化させることが可能である。また、バルブVL4のモータM1を高速に回転可能な高回転モータとし、モータM2を高精度に位置を制御可能な高分解能モータとしてもよい。このような構成では、例えば高回転モータで第1のプレート82を高速で回転させつつ、高分解能モータで第2のプレート92の同一平面上の流路の断面積を調整することより、コンダクタンスを高速に変化させつつ、処理空間Sに供給されるガスの流量を高精度に調整することできる。なお、モータM1を高分解能モータとし、モータM2を高回転モータとしてもよい。
次に、更に別の実施形態に係るバルブについて説明する。
図10は、更に別の実施形態に係るバルブVL5を概略的に示す断面図である。図10に示すバルブVL5は、第1の配管42の上流部42aを流れるガスがハウジングとプレートとの間の隙間を介して第1の配管42の下流部42b側に流れることを抑制するためにラビリンス構造を有している点で、上述の第1のバルブVL1及び第2のバルブVL2と異なっている。
バルブVL5は、プレート62に代えて、プレート100を備えている。プレート100には、軸線Zを中心に延在し、且つ、ガス供給経路と交差する円周上の位置にプレート100を貫通する貫通孔102が形成されている。また、プレート100には、板厚方向に突出する突出部104、106が設けられている。突出部104、106は、軸線Zを中心とする同軸の環状をなしている。突出部104は貫通孔102よりもプレート100の径方向外側に設けられており、突出部106は貫通孔102よりもプレート100の径方向内側に設けられている。
また、バルブVL5は、ハウジング60に代えて、ハウジング80を備えている。ハウジング80には、突出部104、108に対面する位置において、板厚方向に沿って延びる凹部80a、80bがそれぞれ形成されている。凹部80a、80bは、軸線Zを中心とする同軸の環状をなしている。これら凹部80a、80bには、それぞれ突出部104、106が挿入さている。
このバルブVL5は、第1のバルブVL1及び第2のバルブVL2と同様に、ガス供給経路のコンダクタンスを増減する機能を有している。さらに、バルブVL5は、ハウジング80とプレート100との隙間が複数回屈曲するラビリンス構造を有しているので、ハウジング80とプレート100との間のコンダクタンスが高められる。その結果、第1の配管42の上流部42aを流れるガスがハウジングとプレートとの間の隙間を介して第1の配管42の下流部42b側に流れることが抑制される。なお、一実施形態では、ハウジング側にプレートに向けて突出する突出部を形成し、プレートに該突出部が挿入される凹部を形成してもよい。このような構成としてもハウジングとプレートとの間のコンダクタンスを高めることが可能となる。
以上、種々の実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、上述の実施形態では、プレートに形成された貫通孔が円形の平面形状をなしていたが、貫通孔の平面形状は円形に限定されない。例えば、軸線Zに対して直交する方向における貫通孔の幅は、軸線Zに対して周方向において変化していてもよい。以下、具体的な例を示して説明する。
図11(a)は、プレートの変形例を示す平面図である。図11(a)に示すプレート110には、軸線Zに直交する方向の幅が、開口部分の端部から中央部分に向かって徐々に広くなるような略三日月形状の貫通孔112が形成されている。このプレート110を回転させた場合には、プレート110と同一平面上での流路の断面積の時間変化が緩やかになる。したがって、このプレート110を用いることよって、図11(b)に示すように、処理空間Sに供給されるガスの流量を緩やかに変化させることができる。
次いで、プレートの別の変形例について説明する。図12(a)は、プレートの別の変形例を示す平面図である。図12(a)に示すプレート120には、軸線Zに対して直交する方向の幅が、プレート120の周方向側の一方の端部において最も広く、他方の端部に向かうにつれて徐々に幅が狭くなるような貫通孔122が形成されている。このプレート120を回転させた場合には、図12(b)に示すように、プレート120と同一平面上での流路の断面積の時間変化が大きくなる。したがって、このプレート120を用いることよって、処理空間Sに供給されるガスの流量を急激に変化させることができる。
次いで、プレートの別の変形例について説明する。図13(a)は、プレートの別の変形例を示す平面図である。図13(a)に示すプレート130には、軸線Zに対して直交する方向の幅が、プレート130の周方向に沿って大、小、中の順で段階的に変化する貫通孔132が形成されている。このプレート130をハウジング内で回転させた場合には、図13(b)に示すように、プレート130と同一平面上での流路の断面積が段階的に変化する。これにより、処理空間Sに供給されるガスの流量を段階的に変化させることができる。特に、図13(b)に示すように、処理空間Sに供給されるガスの流量を、大、小、中の順で変化させることによって、処理空間Sのガス圧力を略一定に保つことが可能となる。
次いで、プレートの別の変形例について説明する。図14(a)は、プレートの別の変形例を示す平面図である。図14(a)に示すプレート140には、軸線Zに対して直交する方向の幅がプレート140の周方向に沿って一定な貫通孔142が形成されている。このプレート140を回転させた場合には、図14(b)に示すように、貫通孔132がガス供給経路と交差する間は、プレート140と同一平面上での流路の断面積が一定に保たれる。このようなプレート140によれば、貫通孔142の周方向に沿った幅を調整することにより、ガスの供給及び供給の停止のデューティー比(ガスの供給時間に対するガスの供給が停止される時間の比)を調整することが可能となる。具体的には、貫通孔132の周方向に沿った幅が大きい程、デューティー比を大きくすることが可能となる。
また、上述した実施形態では、種々の実施形態のガス供給機構を容量結合型平行平板プラズマエッチング装置に適用したが、ガス供給機構が適用される対象は容量結合型平行平板プラズマエッチング装置に限定されない。例えば、マイクロ波を用いるプラズマ処理装置、誘導結合型のプラズマ処理装置、熱処理装置等の半導体製造装置にも適用することができる。
さらに、図1に示すプラズマ処理装置10では、電極支持体36に第1のガス拡散室38a及び第2のガス拡散室40aが形成されているが、電極支持体36に単一のガス拡散室が形成されていてもよい。このような形態では、第1の配管42及び第2の配管44が、ガス拡散室とバルブとの間で互いに合流し、合流されたガス供給管がガス拡散室に接続されるような構成してもよい。
また、上述した種々の実施形態は、矛盾のない範囲で互いに組合わせることが可能である。
1A,1B…ガス供給機構、10…プラズマ処理装置、12…処理容器、34a,34b…ガス吐出孔、38a…第1のガス拡散室、40a…第2のガス拡散室、38b,40b…ガス流通孔、42…第1の配管、44…第2の配管、60,80…ハウジング、62,82,92,100,120,130…プレート、64,84,92,94,102,112,122,132…貫通孔、65…メイン制御部、66…出力軸、67…ガス制御部、69…モータ制御部、70…回転子、72…固定子、80a…凹部、104,106…突出部、Cnt…制御部、M1,M2…モータ、MM…中空モータ、S…処理空間、VL1…第1のバルブ、VL2…第2のバルブ、VL3,VL4,VL5…バルブ、W…被処理体、Z…軸線。

Claims (6)

  1. 半導体製造装置にガスを供給するためのガス供給機構であって、
    ガスソースと前記半導体製造装置とを接続する配管と、
    前記配管の途中に設けられたバルブと、
    を備え、
    前記バルブは、
    板厚方向に延びる軸線を中心に回転可能なプレートと、
    前記プレートを収容するよう前記プレートに沿って該プレートに非接触に設けられたハウジングであり、前記配管と共にガス供給経路を提供する該ハウジングと、
    を有し、
    前記プレートには、前記軸線を中心に延在し且つ前記ガス供給経路と交差する円周上の位置において該プレートを貫通する貫通孔が形成され
    前記プレートを回転させる駆動部と、
    前記プレートの回転角を制御するために前記駆動部を制御する制御部と、
    を更に備え、
    前記駆動部は、
    筒状の固定子と、
    前記固定子の内側において該固定子と同軸に設けられた筒状の回転子と、
    を有し、
    前記プレートは、前記回転子の内孔の中に設けられており、該回転子に結合されている、ガス供給機構。
  2. 前記駆動部は、前記プレートを回転させるモータを含み、
    前記モータは、前記軸線上で延在し前記プレートに連結される出力軸を有する、
    請求項に記載のガス供給機構。
  3. 前記軸線に対して直交する方向における前記貫通孔の幅は、前記軸線に対して周方向において変化している、請求項1又は2に記載のガス供給機構。
  4. 半導体製造装置にガスを供給するためのガス供給機構であって、
    ガスソースと前記半導体製造装置とを接続する配管と、
    前記配管の途中に設けられたバルブと、
    を備え、
    前記バルブは
    板厚方向に延びる軸線を中心に回転可能なプレートと、
    前記プレートを収容するよう前記プレートに沿って該プレートに非接触に設けられたハウジングであり、前記配管と共にガス供給経路を提供する該ハウジングと、
    を有し、
    前記プレートには、前記軸線を中心に延在し且つ前記ガス供給経路と交差する円周上の位置において該プレートを貫通する貫通孔が形成され、
    前記プレートには、前記軸線を中心とする環状をなし、前記軸線方向に向けて突出する複数の突出部が形成され、
    前記ハウジングには、前記軸線を中心とする環状をなし、前記軸線方向に向けて窪む複数の凹部が形成され、
    前記複数の突出部は、前記貫通孔よりも前記プレートの径方向の内側及び外側に設けられ、前記複数の凹部内にそれぞれ挿入されている、ガス供給機構。
  5. 半導体製造装置にガスを供給するためのガス供給機構であって、
    ガスソースと前記半導体製造装置とを接続する配管と、
    前記配管の途中に設けられたバルブと、
    を備え、
    前記バルブは
    板厚方向に延びる軸線を中心に回転可能なプレートと、
    前記プレートを収容するよう前記プレートに沿って該プレートに非接触に設けられたハウジングであり、前記配管と共にガス供給経路を提供する該ハウジングと、
    を有し、
    前記プレートには、前記軸線を中心に延在し且つ前記ガス供給経路と交差する円周上の位置において該プレートを貫通する貫通孔が形成され、
    前記プレートには、前記軸線を中心とする環状をなし、前記軸線方向に向けて窪む複数の凹部が形成され、
    前記ハウジングには、前記軸線を中心とする環状をなし、前記軸線方向に向けて突出する複数の突出部が形成され、
    前記複数の凹部は、前記貫通孔よりも前記プレートの径方向の内側及び外側に設けられ、
    前記複数の突出部は、前記複数の凹部内にそれぞれ挿入されている、ガス供給機構。
  6. 請求項1〜5の何れか一項に記載のガス供給機構を備える半導体製造装置。
JP2014207207A 2014-10-08 2014-10-08 ガス供給機構及び半導体製造装置 Active JP6324870B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014207207A JP6324870B2 (ja) 2014-10-08 2014-10-08 ガス供給機構及び半導体製造装置
PCT/JP2015/076922 WO2016056390A1 (ja) 2014-10-08 2015-09-24 ガス供給機構及び半導体製造装置
KR1020177005929A KR102420760B1 (ko) 2014-10-08 2015-09-24 가스 공급 기구 및 반도체 제조 장치
US15/508,054 US10510514B2 (en) 2014-10-08 2015-09-24 Gas supply mechanism and semiconductor manufacturing apparatus
TW104132763A TWI669768B (zh) 2014-10-08 2015-10-06 Gas supply mechanism and semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207207A JP6324870B2 (ja) 2014-10-08 2014-10-08 ガス供給機構及び半導体製造装置

Publications (2)

Publication Number Publication Date
JP2016076649A JP2016076649A (ja) 2016-05-12
JP6324870B2 true JP6324870B2 (ja) 2018-05-16

Family

ID=55653008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207207A Active JP6324870B2 (ja) 2014-10-08 2014-10-08 ガス供給機構及び半導体製造装置

Country Status (5)

Country Link
US (1) US10510514B2 (ja)
JP (1) JP6324870B2 (ja)
KR (1) KR102420760B1 (ja)
TW (1) TWI669768B (ja)
WO (1) WO2016056390A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050646A (ja) * 2014-09-01 2016-04-11 株式会社不二越 流量調整バルブ
KR102222183B1 (ko) * 2016-03-30 2021-03-02 도쿄엘렉트론가부시키가이샤 플라스마 전극 및 플라스마 처리 장치
US20210327686A1 (en) * 2018-03-01 2021-10-21 Applied Materials, Inc. Microwave Plasma Source For Spatial Plasma Enhanced Atomic Layer Deposition (PE-ALD) Processing Tool
KR102278081B1 (ko) * 2019-06-27 2021-07-19 세메스 주식회사 기판 처리 장치 및 방법
CN111249772B (zh) * 2020-02-29 2021-12-14 烟台沃尔姆真空技术有限公司 一种具有油水分离功能的真空泵系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888459A (en) * 1973-11-23 1975-06-10 Gen Motors Corp Flow control valve
JPS54144578A (en) * 1978-05-02 1979-11-10 Mikuni Kogyo Co Ltd Flow rate control mechanism
JPH01299379A (ja) * 1988-05-25 1989-12-04 Osaka Gas Co Ltd 制御弁
JPH08264521A (ja) * 1995-03-20 1996-10-11 Kokusai Electric Co Ltd 半導体製造用反応炉
JPH10184940A (ja) * 1996-12-20 1998-07-14 Sony Corp 間欠開放弁
US6227299B1 (en) * 1999-07-13 2001-05-08 Halliburton Energy Services, Inc. Flapper valve with biasing flapper closure assembly
JP2003303788A (ja) * 2002-04-11 2003-10-24 Mitsubishi Electric Corp エッチング装置
JP2004108764A (ja) * 2002-08-30 2004-04-08 Daikin Ind Ltd 電動膨張弁及び冷凍装置
JP3872027B2 (ja) * 2003-03-07 2007-01-24 株式会社東芝 クリーニング方法及び半導体製造装置
JP2004296490A (ja) * 2003-03-25 2004-10-21 Tokyo Electron Ltd 処理装置
US7318709B2 (en) * 2003-08-27 2008-01-15 Haldex Brake Corporation Pump valve assembly
JP2005315131A (ja) * 2004-04-28 2005-11-10 Aisan Ind Co Ltd 絞り弁装置
US7032884B2 (en) * 2004-05-26 2006-04-25 Honeywell International, Inc. Outflow valve butterfly plate retention pin
US7093818B2 (en) * 2004-08-03 2006-08-22 Harris Corporation Embedded control valve using homopolar motor
US20070095283A1 (en) * 2005-10-31 2007-05-03 Galewski Carl J Pumping System for Atomic Layer Deposition
CN102047013B (zh) * 2008-04-03 2014-06-11 莱文特有限责任公司 流动控制阀
JP2010138595A (ja) * 2008-12-11 2010-06-24 Toto Ltd 水栓装置
KR101310453B1 (ko) * 2010-02-18 2013-09-24 미쓰비시덴키 가부시키가이샤 밸브의 축 누설 저감 구조
US8460253B2 (en) * 2011-01-03 2013-06-11 Manuel Dugrot Magnetically sealed intravenous access valve
JP5937385B2 (ja) 2012-03-16 2016-06-22 東京エレクトロン株式会社 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置
JP6546874B2 (ja) * 2016-04-13 2019-07-17 東京エレクトロン株式会社 ガス供給機構及び半導体製造システム

Also Published As

Publication number Publication date
JP2016076649A (ja) 2016-05-12
WO2016056390A1 (ja) 2016-04-14
TW201624586A (zh) 2016-07-01
KR20170066324A (ko) 2017-06-14
US20170301518A1 (en) 2017-10-19
KR102420760B1 (ko) 2022-07-14
TWI669768B (zh) 2019-08-21
US10510514B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
JP6324870B2 (ja) ガス供給機構及び半導体製造装置
US20180053635A1 (en) Plasma processing apparatus
JP6546874B2 (ja) ガス供給機構及び半導体製造システム
JP5102706B2 (ja) バッフル板及び基板処理装置
JP6438320B2 (ja) プラズマ処理装置
WO2015155923A1 (ja) プラズマ処理装置及びプラズマ処理方法
TW202137821A (zh) 電漿處理裝置及電漿處理方法
US10840069B2 (en) Plasma processing apparatus and plasma control method
JP2001060581A (ja) プラズマ処理装置およびプラズマ処理方法
JP2018206935A (ja) プラズマ処理装置、静電吸着方法および静電吸着プログラム
JP2012004196A (ja) プラズマ処理装置及びその処理ガス供給構造
JP2018037584A (ja) プラズマ処理装置
US11967511B2 (en) Plasma processing apparatus
JP2021039924A (ja) プラズマ処理装置、処理方法、上部電極構造
KR102664176B1 (ko) 플라즈마 처리 장치
JP2005302878A (ja) プラズマ処理方法及びプラズマ処理装置
JP7390880B2 (ja) エッジリング及び基板処理装置
JP7357513B2 (ja) プラズマ処理装置
JP5150461B2 (ja) プラズマ処理装置
JP2021097065A (ja) リングアセンブリ、基板支持体及び基板処理装置
KR20070118481A (ko) 플라즈마 처리 장치 및 이를 이용한 기판 처리 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180411

R150 Certificate of patent or registration of utility model

Ref document number: 6324870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250