WO2013136933A1 - 組合せ計量装置 - Google Patents

組合せ計量装置 Download PDF

Info

Publication number
WO2013136933A1
WO2013136933A1 PCT/JP2013/054203 JP2013054203W WO2013136933A1 WO 2013136933 A1 WO2013136933 A1 WO 2013136933A1 JP 2013054203 W JP2013054203 W JP 2013054203W WO 2013136933 A1 WO2013136933 A1 WO 2013136933A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
image
dispersion
radiation
weighing device
Prior art date
Application number
PCT/JP2013/054203
Other languages
English (en)
French (fr)
Inventor
玉井 裕
宮本 秀史
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Priority to US14/384,349 priority Critical patent/US9417115B2/en
Priority to CN201380012880.8A priority patent/CN104487811B/zh
Priority to BR112014022602A priority patent/BR112014022602B8/pt
Priority to DK13760661.2T priority patent/DK2827114T3/en
Priority to EP13760661.2A priority patent/EP2827114B1/en
Publication of WO2013136933A1 publication Critical patent/WO2013136933A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/387Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for combinatorial weighing, i.e. selecting a combination of articles whose total weight or number is closest to a desired value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/387Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for combinatorial weighing, i.e. selecting a combination of articles whose total weight or number is closest to a desired value
    • G01G19/393Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for combinatorial weighing, i.e. selecting a combination of articles whose total weight or number is closest to a desired value using two or more weighing units

Definitions

  • the present invention relates to a combination weighing device that performs combination calculation of measurement values of a plurality of articles.
  • a camera may be provided in order to check the state of a dispersion unit and a feeder that have been supplied with articles.
  • a camera is provided directly above a dispersion part (dispersion feeder), in a direction along the circumferential direction of the feeder (drive feeder), and obliquely above the dispersion part and the feeder. The provided case is disclosed.
  • control panel for controlling the combination weighing device
  • the control panel for controlling the combination weighing device is often arranged at a position away from the dispersion unit and the feeder. Therefore, in particular, as in Patent Document 1, if a camera is provided directly above the dispersion unit and the worker can see an image looking down on the dispersion unit and the radiation feeder near the control panel, the worker operates the control panel. However, it is easy to grasp the state of the dispersion unit and feeder, which is very convenient.
  • An object of the present invention is to provide a combination weighing device that can easily grasp the state of a dispersion unit and a feeder when it is difficult to install a camera that can overlook the dispersion unit and the feeder directly above the dispersion unit of the combination weighing unit There is to do.
  • the combination weighing device includes a dispersion unit, a plurality of radiation feeders, a plurality of cameras, a processing unit, and an output unit.
  • the dispersion unit receives and distributes a large number of articles.
  • the radiation feeder is disposed so as to extend radially from the dispersion unit, receives the articles dispersed by the dispersion unit, and conveys the articles away from the dispersion unit.
  • the camera is disposed at a position deviating from the space immediately above the dispersion unit, and captures images of the dispersion unit and the radiation feeder.
  • the processing unit synthesizes images captured by the camera to generate a planar view image of the dispersion unit and the radiation feeder.
  • the output unit outputs a planar view image.
  • the combination weighing device includes a plurality of cameras that photograph the dispersion unit and the radiation feeder from a space other than directly above the dispersion unit, and generates a planar view image of the dispersion unit and the radiation feeder by combining the captured images of the cameras. ,Output. Since the planar view images of the dispersion unit and the radiation feeder are output, even when it is difficult to provide a camera in the space immediately above the dispersion unit, the operator can accurately and in real time know the state of the dispersion unit and the radiation feeder. Therefore, even when an abnormality occurs, it is easy for the worker to estimate the cause of the abnormality based on the planar view image and take necessary actions immediately.
  • a planar view image is generated by combining the captured images of a plurality of cameras, even if a blind spot that does not appear in the camera occurs in an image captured by one camera due to a shielding object such as an article supply conveyor, It is easy to grasp the state of the dispersion part and the radiation feeder without being affected by the shielding object.
  • the combination weighing device further includes a setting unit.
  • the setting unit preferably performs setting for generating a planar view image using the image captured by the camera in the second period based on the image captured by the camera in the first period.
  • the setting unit performs settings for generating a planar view image based on an image taken by the camera during the first period (initial setting, maintenance, etc.). That is, even if the position of the camera is changed, a planar view image can be generated based on the image of the camera taken at that position in the first period. As a result, the installation position of the camera can be changed according to the field situation. That is, even when the installation position of the camera is limited, it is easy to obtain a planar view image of the dispersion unit and the radiation feeder.
  • the combination weighing device further includes an input unit.
  • the setting unit desirably performs setting based on the reference point information input to the input unit.
  • the setting for generating the planar view image is accurately executed. As a result, it is easy to obtain an accurate plan view image.
  • the operating state of the dispersion unit and / or the radiation feeder is output to the output unit of the combination weighing device according to the present invention simultaneously with the planar view image.
  • planar view image and the operating state of the dispersion unit and / or the radiation feeder are displayed at the same time, it is possible to recognize whether the dispersion unit and the radiation feeder are operating properly on one screen. As a result, for example, when an abnormality occurs, it is easy to appropriately determine what measures the worker should take.
  • the output unit outputs the operating state of the dispersion unit and / or each radiation feeder at a position corresponding to the dispersion unit and / or each radiation feeder in the planar view image.
  • the combination weighing device further includes a plurality of weighing units and a calculation unit. It is desirable that the weighing units are respectively disposed below the front end portions in the direction away from the dispersion portion of the radiating feeder, receive articles from the radiating feeder, and weigh the received articles. It is desirable that the calculation unit calculates the transport amount for each radiation feeder based on the measurement result of the measurement unit. It is desirable for the output unit to output the calculation result of the calculation unit simultaneously with the planar view image.
  • the transport amount of the dispersion feeder is displayed together with the planar view image. Therefore, it is easy for the worker to grasp the planar view image and the conveyance state of the distributed feeder in association with each other. As a result, for example, when an abnormality occurs, it is easy to appropriately determine what measures the worker should take.
  • the output unit outputs a calculation result for each radiation feeder at a position corresponding to each radiation feeder in the planar view image.
  • a code for identifying each radiating feeder is attached to each radiating feeder. It is desirable that a code is output to the output unit at a position corresponding to each radiation feeder in the planar image simultaneously with the planar image.
  • the output unit outputs the planar image by rotating the planar image in the plane with the centroid of the dispersion unit in the planar image as the rotation center.
  • the combination weighing device according to the present invention further includes a support portion. It is desirable that the support unit supports the dispersion unit, the radiation feeder, and the camera. It is desirable that the camera is disposed above the support unit and in a space outside the radiation feeder.
  • the camera since the camera is arranged above the support portion, the camera is unlikely to obstruct the work and traffic of the worker.
  • a worker's work path is often arranged around the combination weighing device.
  • the camera if the camera is arranged above the support portion of the combination weighing device, the passage and operation of the worker are hardly affected. In addition, it is possible to prevent an accident such as a worker hitting the camera and being injured.
  • the camera desirably has a lens with a horizontal angle of view of 90 ° or more.
  • the combination weighing device includes a plurality of cameras that photograph the dispersion unit and the radiation feeder from a space other than directly above the dispersion unit, and generates a planar view image of the dispersion unit and the radiation feeder by combining the captured images of the cameras. And output. Since the planar view images of the dispersion unit and the radiation feeder are output, even when it is difficult to provide a camera in the space immediately above the dispersion unit, the operator can accurately and in real time know the state of the dispersion unit and the radiation feeder.
  • FIG. 6 It is a figure which shows an example of the display displayed on a touch panel. It is a figure which shows the condition where the display displayed on the touchscreen of FIG. 6 was changed (rotated) by pushing the image rotation button. It is a schematic plan view showing a linear type combination weighing device.
  • FIG. 1 shows a combination weighing device 1 according to an embodiment of the present invention.
  • the combination weighing device 1 performs a combination operation on the weighing values of the articles in the plurality of weighing hoppers 5, selects a combination of articles in which the result of the combination calculation is a value within a predetermined allowable range, and the weighing hopper included in the combination The articles in 5 are discharged out of the combination weighing device 1.
  • the combination weighing device 1 is installed above the gantry 91 so as to be arranged above a packaging device (not shown). Work passages 92 are provided on four sides of the combination weighing device 1 so that an operator can access the combination weighing device 1 when an abnormality occurs or during maintenance.
  • the combination weighing device 1 includes a dispersion table 2, 14 heads 40, a collective discharge chute 6, a touch panel 10, a control unit 30, and two cameras 60.
  • the number of heads 40 is an example, and is not limited to this.
  • the head 40 is arranged in a ring shape around the dispersion table 2 in plan view. Numbers 1 to 14 are assigned to the heads 40 as identification codes, respectively. As shown in FIG. 2, the heads 40-1 to 40-14 are arranged so that the reference numerals increase counterclockwise.
  • Each head 40 includes a radiation feeder 3, a pool hopper 4, and a weighing hopper 5. The radiation feeder 3, the pool hopper 4, and the weighing hopper 5 belonging to each of the heads 40-1 to 40 are assigned the same numbers as the heads 40-1 to 14 as identification codes.
  • the dispersion table 2 is a flat conical table-like member.
  • the distribution table 2 receives an article to be weighed from a supply conveyor 90 located above the distribution table 2.
  • the dispersion table 2 is vibrated by an electromagnet (not shown), thereby conveying the article received from the supply conveyor 90 in the radial direction while dispersing the article in the circumferential direction, and supplies the article to the radiation feeder 3.
  • the distribution table 2 is an example of a distribution unit.
  • the amount of articles conveyed from the dispersion table 2 to the radiation feeder 3 is mainly controlled by the vibration intensity of the dispersion table 2.
  • the vibration intensity of the dispersion table 2 is a numerical value related to the magnitude of the vibration amplitude of the dispersion table 2 generated by a vibration unit 35a of the control unit 30 described later using an electromagnet (not shown) of the dispersion table 2.
  • the initial setting value of the vibration intensity of the dispersion table 2 is stored in the storage unit 34 of the control unit 30 described later. The worker can update the vibration intensity of the distributed table 2 stored in the storage unit 34 from the touch panel 10 described later.
  • the radiation feeder 3 is arranged to extend radially around the dispersion table 2.
  • the radiation feeder 3 receives the articles dispersed by the dispersion table 2.
  • Each of the radiation feeders 3-1 to 14 is vibrated by an electromagnet (not shown), thereby conveying the article in the radial direction toward the outer edge of each of the radiation feeders 3-1 to 14.
  • each of the radiation feeders 3-1 to 3-14 conveys the article in a direction away from the dispersion table 2.
  • the articles conveyed by the radiation feeders 3-1 to -14 are supplied to pool hoppers 4-1 to 4-1 arranged below the outer edges of the radiation feeders 3-1 to -14.
  • the amount of articles conveyed by each of the radiation feeders 3-1 to 14 is controlled mainly by the vibration intensity and vibration time for each of the radiation feeders 3-1 to 14.
  • the vibration intensity of the radiating feeder 3 is a numerical value related to the magnitude of the vibration amplitude of the radiating feeder 3 generated by a vibration unit 35a of the control unit 30 described later using an electromagnet (not shown) of the radiating feeder 3.
  • the vibration time of the radiation feeder 3 is one cycle time from when a vibration unit 35a of the control unit 30 described later starts vibration of the radiation feeder 3 until the vibration is stopped.
  • the initial set values of the vibration intensity and vibration time of each of the radiation feeders 3-1 to 14 are stored in the storage unit 34 of the control unit 30 described later. The operator can update the vibration intensity and vibration time of each of the radiation feeders 3-1 to 14 stored in the storage unit 34 from the touch panel 10 described later.
  • Each pool hopper (PH) 4-1 to 14 is located below the outer edge side of each radiation feeder 3-1 to 14 of the heads 40-1 to 14 to which the pool hopper 4-1 to 14 belongs. Be placed. In each of the pool hoppers (PH) 4-1 to 14, articles supplied from the radiation feeders 3-1 to 14 disposed above are temporarily stored.
  • the pool hopper 4 has a PH gate 4a at its lower part.
  • the PH gate 4a opens and closes when a link mechanism (not shown) is operated by the stepping motors 40a-1 to 40-14 shown in FIG.
  • the stepping motors 40a-1 to 40a operate according to a command from a PH opening / closing unit 35d of the control unit 30 described later.
  • the opening / closing operation of each PH gate 4a is not interlocked with the opening / closing operations of other PH gates 4a. That is, the opening / closing operation of each PH gate 4a is independent.
  • the weighing hopper (WH) 5 is an example of a weighing unit.
  • the weighing hoppers 5-1 to -14 are arranged immediately below the pool hoppers 4-1 to 14 of the heads 40-1 to 14 to which the weighing hoppers 5-1 to 14 belong. In other words, the weighing hoppers 5-1 to 5-14 are arranged below the outer edges of the radiation feeders 3-1 to 3.
  • the weighing hoppers 5-1 to -14 each have the weight of the articles supplied from the pool hoppers 4-1 to 14, that is, the weight of the articles supplied from the radiation feeders 3-1 to 14 through the pool hoppers 4-1 to 14. Is weighed by load cells 20-1 to 14 shown in FIG.
  • the weighing hopper 5 has a WH gate 5a at its lower part.
  • the WH gate 5a opens and closes when a link mechanism (not shown) is operated by the stepping motors 50a-1 to 50-14 shown in FIG.
  • the stepping motors 50a-1 to 50a-14 operate according to a command from a WH opening / closing unit 35e of the control unit 30 described later.
  • the opening / closing operation of each WH gate 5a is not interlocked with the opening / closing operations of other WH gates 5a. That is, the opening / closing operation of each WH gate 5a is independent.
  • the load cells 20-1 to 14 shown in FIG. 3 weigh articles held by the weighing hoppers 5-1 to -14.
  • the weighing results of the articles in the load cells 20-1 to 14 are output as weighing signals.
  • the measurement signal is transmitted as needed to a multiplexer 31 of the control unit 30 described later via an amplifier (not shown).
  • the load cells 20-1 to 14 are load cells including strain gauges as described in Japanese Patent Application Laid-Open No. 2001-343294, and the displacement of the strain generating body having the movable part and the fixed part is measured with the strain gauge. And the detection result is transmitted to the multiplexer 31 as a measurement signal.
  • the collective discharge chute 6 collects articles supplied from the weighing hopper 5 and discharges them outside the combination weighing device 1. The discharged articles are supplied to a packaging machine or the like (not shown) disposed below the collective discharge chute 6.
  • control unit 30 includes a CPU, a storage unit 34, a multiplexer 31, an A / D converter 32, a DSP (digital signal processor) 33, and the like.
  • the storage unit 34 includes a ROM, a RAM, and the like.
  • the CPU takes control in the control unit 30, reads a program stored in the storage unit 34, and executes various controls as the arithmetic processing unit 35.
  • the arithmetic processing unit 35 includes an excitation unit 35a, a calculation unit 35b, a combination calculation unit 35c, a PH (pool hopper) opening / closing unit 35d, a WH (weighing hopper) opening / closing unit 35e, an image processing unit 35f, and an image. It functions as a setting unit 35g and an output rotation unit 35h.
  • the multiplexer 31 selects one weighing signal from the weighing signals of the load cells 20-1 to 14 in accordance with an instruction from the DSP 33, which will be described later, and transmits it to the A / D converter 32.
  • a / D Converter 32 converts the measurement signal, which is an analog signal received from the multiplexer 31, into a digital signal according to the timing signal transmitted from the DSP 33, and transmits the digital signal to the DSP 33. To do.
  • the DSP 33 performs filter processing on the digital signal transmitted from the A / D converter 32.
  • the weighing signal after the filter processing is transmitted to the calculation unit 35b described later, and then stored in the storage unit 34 for each weighing hopper 5 as the weight (measured value) of the article held in the weighing hopper 5.
  • the storage unit 34 stores programs that are read and executed by the CPU, and various information and data necessary for arithmetic processing.
  • the storage unit 34 includes a reference point position storage area 34a and a reference point input storage area 34b.
  • the reference point position storage area 34a stores three-dimensional position information of reference points used in the image setting unit 35g described later.
  • the information stored in the reference point position storage area 34a is stored in the image setting unit 35g when the image setting unit 35g derives parameters used by the image processing unit 35f to be described later to generate the planar view image 101. Called by the information calling unit 35ga.
  • the reference point is a predetermined part of the combination weighing device 1 and refers to a point where three-dimensional position information is registered as an initial value.
  • it indicates a corner portion on the outer edge side of the radiation feeder 3 (for example, the corner portions 3-1a, 3-5a, 3-12a, etc. in FIG. 4).
  • the reference point input storage area 34b stores the two-dimensional position information of the reference point with respect to the image captured by the camera 60.
  • the two-dimensional position information of the reference point with respect to the captured image of the camera 60 is reference point information and is input from the touch panel 10.
  • the information stored in the reference point input storage area 34b is called by the information calling unit 35ga when the image setting unit 35g derives parameters used by the image processing unit 35f for generating the planar view image 101. .
  • the two-dimensional position information of the reference point with respect to the captured image of the camera 60 is the position information of the reference point in the captured image of the camera 60 displayed on the touch panel 10 as shown in FIG.
  • the excitation unit 35a controls the vibration of the dispersion table 2 and the radiation feeder 3, thereby allowing the dispersion table 2 and the radiation feeder 3 to be controlled. Controls the conveyance of articles by
  • the vibration unit 35 a vibrates the dispersion table 2 and the radiation feeder 3 by intermittently generating electromagnetic force in an electromagnet (not shown) installed below the dispersion table 2 and each radiation feeder 3. .
  • the vibration unit 35a performs vibration control using the vibration intensity of the dispersion table 2 and the radiation feeders 3-1 to 14 and the vibration time of the radiation feeders 3-1 to 14 stored in the storage unit 34.
  • a predetermined amount of articles are conveyed to the radiation feeder 3 outward in the radial direction while being dispersed in the circumferential direction of the dispersion table 2.
  • a predetermined amount of articles is conveyed to the pool hoppers 4-1 to 14-14 in the outer edge direction of the radiation feeders 3-1 to 3.
  • the vibration unit 35a individually controls the starting and stopping of the radiation feeders 3-1 to -14. That is, the vibration unit 35a vibrates the radiation feeders 3-1 to -14 only when the pool hoppers 4-1 to 14 of the heads 40-1 to 14 to which the radiation feeders 3-1 to 14 belong is empty, The article is transported.
  • the calculation unit 35b receives the measurement signals of the load cells 20-1 to 14 filtered by the DSP 33 for each load cell 20-1 to 14.
  • the weighing signals for the load cells 20-1 to 14 are stored in the storage unit 34 as the weight values (measured values) of articles in the weighing hoppers 5-1 to 14 provided with the load cells 20-1 to 14, respectively.
  • the calculation unit 35b performs a process of calculating the transport amount for each of the radiation feeders 3-1 to -14.
  • the transport amount is obtained as an average value of the amount of articles transported by the radiation feeders 3-1 to 3-14. More specifically, the calculating unit 35b assigns the average value of the weight values obtained from the weight signals of the filtered load cells 20-1 to 14 to the weighing hoppers 5-1 to 14 (each of the load cells 20-1 to 14). It is calculated and stored in the storage unit 34 as the transport amount of the radiation feeders 3-1 to 14 of the heads 40-1 to 14 to which the weighing hoppers 5-1 to 14 belong.
  • the transport amount calculation method described above is an example, and the calculation unit 35b replaces the average transport amount with the weight value obtained every time obtained from the weighing signals of the filtered load cells 20-1 to 14-14. May be calculated as the transport amount.
  • the combination calculation unit 35c uses the combination calculation program stored in the storage unit 34 to perform combination calculation. More specifically, the combination calculation unit 35c is configured so that the sum of the weight values falls within a predetermined target weight range based on the weight values of the different articles stored in the storage unit 34. Perform a combination operation. Then, a plurality of weighing hoppers 5-1 to -14 are selected based on the result of the combination calculation. Information on the weighing hoppers 5-1 to -14 selected for the combination is transmitted to the WH opening / closing unit 35e. Of the weight value data of the articles stored in the storage unit 34, the weight value data of the weighing hoppers 5-1 to 14 selected for the combination is reset.
  • the PH opening / closing part 35d is disposed above the weighing hoppers 5-1 to -14 when any of the first weighing hoppers 5-1 to -14 is empty.
  • the PH gates 4a of the pool hoppers 4-1 to 14 are opened by operating the stepping motors 40a-1 to 40a. Thereafter, the stepping motors 40a-1 to 14a are operated again to close the PH gate 4a.
  • the WH opening / closing unit 35e receives information on the combination of the weighing hoppers 5-1 to 14 selected by the combination calculation from the combination calculation unit 35c, and is included in the selected combination.
  • the WH gates 5a of the weighing hoppers 5-1 to -14 are opened by operating the stepping motors 50a-1 to 14a. Thereafter, the stepping motors 50a-1 to 50a-14 are operated again to close the WH gate 5a-1.
  • the image processing unit 35f displays images (moving images) taken obliquely from above the dispersion table 2 and the radiation feeder 3 as shown in FIG. By combining these, a planar view image 101 (moving image) is generated by viewing the dispersion table 2 and the radiation feeder 3 as shown in FIG. The planar image 101 is displayed on the touch panel 10 to be described later.
  • the image of the camera 60 from obliquely above the dispersion table 2 and the radiation feeder 3 has a portion that becomes a blind spot, but was photographed by a plurality of (two in this embodiment) cameras 60.
  • a planar view image 101 without a blind spot.
  • the generation of the planar view image 101 is performed by the following principle, for example.
  • a projection image projected on a virtual horizontal plane is generated.
  • the projected image is subjected to coordinate transformation, and an upper viewpoint image viewed from a virtual camera (a virtual camera located above the central portion of the dispersion table 2) is generated.
  • the upper viewpoint image is superimposed on a plurality of (here, two) cameras 60 to generate a planar view image 101.
  • the image processing unit 35f does not perform coordinate conversion in two stages, but uses two parameters for coordinate conversion and image synthesis obtained by the image setting unit 35g described later.
  • An image captured by the camera 60 is directly converted into a planar view image 101 viewed from a virtual camera.
  • planar view image 101 is generated by a method described in, for example, Japanese Patent Laid-Open No. 2003-256874.
  • the present invention is not limited to this, and various methods for generating the planar view image 101 based on an image taken by the camera 60 can be applied.
  • the image setting unit 35g performs normal operation based on an image taken by the camera 60 when the camera 60 is installed or replaced, for example, at the time of initial setting or maintenance. Sometimes the image processing unit 35f derives parameters necessary for generating the planar view image 101. That is, the image setting unit 35g performs initial setting for the image processing unit 35f to generate the planar view image 101.
  • the image setting unit 35g includes an information calling unit 35ga and a parameter calculation unit 35gb.
  • the information calling unit 35ga is a timing at which parameters necessary for the image processing unit 35f to generate the planar view image 101 are derived by the image setting unit 35g. Recalls the reference point position information.
  • the reference point position information called by the information calling unit 35ga includes the three-dimensional position information of the reference point stored in the reference point position storage area 34a and the camera 60 stored in the reference point input storage area 34b. This is the two-dimensional position information of the reference point with respect to the captured image.
  • the parameter calculation unit 35gb is used for the image processing unit 35f to generate the planar view image 101 using the two types of position information called by the information calling unit 35ga. Calculate the necessary parameters.
  • the reference point is a point for which the three-dimensional information is known, if the reference point is seen in the image captured by the camera 60, the shooting position of the camera 60 can be calculated. If the shooting position of the camera 60 is calculated, it is possible to derive parameters for generating the planar view image 101.
  • the parameter calculation unit 35gb stores the parameters prepared for the shooting position of the camera 60 in the storage unit 34 instead of actually calculating the parameters, and the parameters are stored in the storage unit 34 according to the shooting position of the camera 60.
  • the parameter may be derived by calling. Even in this case, the calculation of the shooting position of the camera 60 is performed by the parameter calculation unit 35gb.
  • the output rotation unit 35 h rotates the planar view image 101 around the centroid of the distribution table 2 in the planar view image 101. The details of the rotation will be described in detail in the description related to the display on the touch panel 10.
  • the touch panel 10 includes various information relating to the heads 40-1 to 14 (codes for identifying the heads 40-1 to 40, the dispersion table 2, and the operating states of the radiation feeders 3-1 to 14).
  • the transport amount of each of the radiation feeders 3-1 to 14 is displayed, but the output rotating unit 35 h rotates these pieces of information so as to correspond to the planar view image 101.
  • the touch panel 10 is a liquid crystal display (LCD) that has both input and output functions, and functions as an input unit and an output unit.
  • the touch panel 10 receives inputs such as various settings related to combination weighing, and displays an operation state and the like of the combination weighing device 1.
  • FIG. 6 is an example of the display screen of the touch panel 10.
  • Information input to the touch panel 10 includes two-dimensional position information of a reference point with respect to a captured image of the camera 60 that is used in the image setting unit 35g.
  • the two-dimensional position information of the reference point with respect to the captured image of the camera 60 is an example of reference point information input from the touch panel 10.
  • the two-dimensional position information of the reference point with respect to the captured image of the camera 60 is input as follows. On the LCD of the touch panel 10, an actual image taken by one camera 60 at the time of initial setting or maintenance, for example, FIG. 4 is displayed. The operator uses the touch panel 10 to indicate the position of the reference point (corner portions 3-1a, 3-5a, 3-12a of the radiation feeder 3 in FIG. 4) in this image. By repeating this operation, the positions of at least three reference points are input to the image captured by one camera 60. The same input operation is performed for the other cameras 60. The two-dimensional position information of the reference point with respect to the captured image of the camera 60 input to the touch panel 10 is stored in the reference point input storage area 34b.
  • the camera 60 supports the support unit 7 of the combination weighing device 1 (that is, each unit of the combination weighing device 1 such as the dispersion table 2, the radiation feeder 3, the pool hopper 4, the weighing hopper 5, the collective discharge chute 6, and the camera 60). Two units are arranged in a space above the support portion 7) and out of the space immediately above the dispersion table 2 so as not to protrude above the work path 92.
  • the camera 60 is installed above the distribution table 2 and the radiation feeder 3 and at a position lower than the article discharge port 90 a formed in the supply conveyor 90. Further, the camera 60 is installed above the support portion 7 of the combination weighing device 1 as shown in FIG. 2 so as not to protrude into the space above the dispersion table 2 and the head 40. In addition, the camera 60 is fixed by the support
  • the arrangement, orientation, and number of cameras 60 are merely examples, and are not limited thereto.
  • the camera 60 is arranged so that the entire dispersion table 2 and the radiation feeder 3 are photographed by any one of the cameras 60.
  • the camera 60 may be three or more, it is desirable that the number is small from the viewpoint of installation cost.
  • the lens 60a of the camera 60 is a wide-angle lens having a horizontal angle of view of 90 ° or more.
  • the lens 60a having a horizontal angle of view of 90 ° or more is used in the space above the support portion 7 of the combination weighing device 1 and the article discharge port formed in the supply conveyor 90. This is to obtain an image necessary for generating a planar view image with a small number of cameras 60 when installed at a position lower than 90a (when installed close to the dispersion table 2 and the head 40 to be imaged).
  • a planar view image 101 is displayed side by side and a radar graph 102 is displayed side by side on the right side.
  • a numerical value 103 indicating the result of the combination calculation is displayed almost in real time.
  • display / non-display switching buttons 150 to 153, setting buttons 154 and 155, and an image rotation button 156 are displayed.
  • the plan view image 101 is a plan view image 101 generated by the image processing unit 35f, and shows the status of the dispersion table 2 and the radiation feeder 3 in almost real time.
  • the numeral 101a written around the planar image 101 is a code for identifying the heads 40-1 to 40 in the planar image 101.
  • the radiation feeders 3-1 to 14 and the weighing hopper 5-1 to 14 is a code for identifying 14.
  • the radar graph 102 has 14 fan-shaped areas 102b in which six circles with different radii arranged concentrically are divided by straight lines extending in the radial direction.
  • the radar graph 102 displays information related to the dispersion table 2, information related to the heads 40-1 to 14, and particularly information related to the radiation feeders 3-1 to 14.
  • Information regarding the radiation feeders 3-1 to -14 is displayed for each of the radiation feeders 3-1 to -14. Specifically, in each of the 14 areas 102b, information on one radiation feeder 3-1 to 14 is arranged in the same order as the actual radiation feeders 3-1 to 14 (counterclockwise from the radiation feeder 3-1). Displayed so that the number for identification increases).
  • the number 102a between the outermost circle and the inner circle of the area 102b indicates which heads 40-1 to 14 (radiation feeders 3-1 to 14) the area 102b has. Indicates whether
  • the display of the radar graph 102 will be described more specifically.
  • the vibration time of each radiation feeder 3-1 to 14 is indicated by a circle 104a
  • the vibration intensity of each radiation feeder 3-1 to 14 is indicated by a triangle mark 104b
  • the conveyance amount of each radiation feeder 3-1 to 14 is indicated.
  • the square mark 104c displays the vibration intensity of the dispersion table 2 as an inverted triangle mark 104d.
  • the vibration time and vibration intensity of each of the radiation feeders 3-1 to 14 and the vibration intensity of the dispersion table 2 are information stored in the storage unit 34.
  • the vibration time and vibration intensity of each radiation feeder 3-1 to 14 and the vibration intensity of the dispersion table 2 are initial values or values updated by input from the touch panel 10.
  • the carry amount is a value calculated by the calculation unit 35 b and stored in the storage unit 34. In the radar graph 102, the value increases as the distance from the center of the circle increases in the radial direction.
  • the numbers 101 a arranged around the planar image 101 and the numbers 102 a in the radar graph 102 have the same numbers written at the same positions.
  • the numeral 101 a located at the direction of about 3 o'clock with respect to the centroid of the dispersion table 2 in the planar view image 101 is 4 and is located at the direction of about 3 o'clock with respect to the center of the circle in the radar graph 102.
  • the number 102a to be is also 4.
  • the radiation feeders 3-1 to 14 in the planar image 101 and the information on the radiation feeders 3-1 to 14 in the radar graph 102 are displayed in correspondence with each other so that the correspondence can be grasped at a glance. Yes.
  • some of the figures displayed as the radar graph 102 also have a function as a button that receives an input from the operator.
  • the portion of the area 102b between the outermost circle where the numeral 102a is displayed and the inner circle is related to the radiation feeders 3-1 to 14 corresponding to the numeral 102a. It functions as a selection button 157 used for setting.
  • the selection button 157 When the operator presses the selection button 157, the setting regarding the radiation feeders 3-1 to 14 corresponding to the numeral 102a of the pressed selection button 157 portion, more specifically, the vibration time of the radiation feeders 3-1 to 14 and It is possible to set the vibration intensity. Details will be described later.
  • Display / non-display switching buttons Display / non-display switching buttons 150 to 153 are respectively displayed on the radar graph 102 for the vibration time, the vibration intensity, the transport amount, and the dispersion table 2 of the radiation feeders 3-1 to 14. It is a button used when displaying the vibration intensity of.
  • a corresponding symbol is displayed on the radar graph 102, and when the same display / non-display switching button is pressed again, the corresponding symbol is hidden.
  • the setting buttons 154 and 155 are buttons used when changing the setting values related to the radiation feeders 3-1 to 14 and the dispersion table 2. Specifically, it is possible to set the vibration time and vibration intensity of each of the radiation feeders 3-1 to 14 and the vibration intensity of the dispersion table 2 using the setting buttons 154 and 155.
  • the display / non-display switching button 150 is pressed to display the vibration time symbol on the radar graph 102.
  • a selection button 157 labeled with a symbol corresponding to the heads 40-1 to 14 to which the radiation feeders 3-1 to 14 whose vibration times are to be changed is pressed, and the radiation feeders 3-1 to -3 to be changed in vibration time are pressed. 14 is determined.
  • the setting button 154 is pressed, and when it is desired to decrease, the setting button 155 is pressed.
  • the vibration time of the radiation feeders 3-1 to 14 selected as the vibration time change target can be increased or decreased.
  • the vibration time can be changed simultaneously for the plurality of radiation feeders 3-1 to 3-14.
  • the display / non-display switching button 153 is pressed to display the vibration intensity symbol of the dispersion table 2 on the radar graph 102. If the user wants to increase the vibration intensity, he presses the setting button 154, and presses the setting button 155 to decrease it. As a result, the vibration intensity of the dispersion table 2 can be increased or decreased.
  • the radar graph 102 it is confirmed from the radar graph 102 that the conveyance amount of the articles of the radiation feeders 3-1 to 14 is smaller than a predetermined range, and the conveyance force of the radiation feeders 3-1 to 14 is confirmed from the planar image 101. If it is determined that there is a shortage, an operation to increase the vibration time and vibration intensity of the radiation feeders 3-1 to -14 can be performed from the touch panel 10. Further, the result of the operation can be confirmed from the touch panel 10 by the planar view image 101 and the radar graph 102.
  • an operation for increasing the vibration intensity of the dispersion table 2 can be performed from the touch panel 10, and the result of the operation Can be confirmed in the planar view image 101.
  • the image rotation button 156 is a button for rotating the display of the planar view image 101 and the radar graph 102. Specifically, pressing the image rotation button 156 rotates the plane view image 101 and the radar graph 102 counterclockwise by one head 40. That is, when the image rotation button 156 is pressed once, in the plan view image 101, the image of the head 40-1 is rotated counterclockwise so that the image of the head 40-1 is displayed in the portion where the image of the head 40-2 is currently displayed. The displayed image is displayed on the touch panel 10. In other words, since the number of heads 40 is 14 in the present embodiment, the head rotates about 25.7 ° counterclockwise each time the image rotation button 156 is pressed. Accordingly, as shown in the display of FIG.
  • the numeral 101a for identifying the head 40 is also shifted one by one counterclockwise from the display of FIG. Further, the display of the radar graph 102 also rotates counterclockwise correspondingly. That is, in FIG. 6, information relating to the head 40-1 (radiation feeder 3-1) is displayed in the area 102b where information relating to the head 40-2 (radiation feeder 3-2) is displayed as shown in FIG. Thus, the display rotates counterclockwise, and the numeral 102a is also displayed shifted by one counterclockwise.
  • processing for image rotation is performed by the output rotation unit 35h.
  • the combination weighing device 1 includes an image processing included in a dispersion table 2, which is a dispersion unit, 14 radiation feeders 3-1 to 14, two cameras 60, and a control unit 30 as a processing unit. 35 f and a touch panel 10 as an output unit.
  • the distribution table 2 receives and distributes a large number of articles supplied.
  • the radial feeders 3-1 to 3-14 are arranged so as to extend radially from the dispersion table 2, receive articles dispersed by the dispersion table 2, and transport them in a direction away from the dispersion table 2.
  • the camera 60 is disposed at a position outside the space immediately above the dispersion table 2, and takes images of the dispersion table 2 and the radiation feeders 3-1 to -14.
  • the image processing unit 35f combines the images taken by the camera 60 to generate the planar view image 101 of the dispersion table 2 and the radiation feeders 3-1 to -14.
  • the touch panel 10 outputs a planar view image 101.
  • the planar image 101 of the dispersion table 2 and the radiation feeders 3-1 to 14 is generated and output, so that even if it is difficult to provide a camera in the space immediately above the dispersion table 2, the worker can In addition, it is easy to accurately grasp the state of the radiation feeders 3-1 to 3-14. Therefore, even when an abnormality occurs, it is easy for the worker to estimate the cause of the abnormality based on the planar view image and take necessary actions immediately.
  • the abnormality is an abnormality of the combination weighing device 1 (for example, isn't there an article not being supplied from the supply conveyor 90) or whether it can be solved by operating the touch panel 10, the radiation feeder 3- It is easy to judge whether it is necessary to respond on site such as occurrence of clogging in 1-14.
  • a planar view image is generated by combining the captured images of a plurality of (two) cameras 60, the captured image of one camera 60 is blocked by the camera 60 due to an obstruction such as an article supply conveyor 90. Even when a blind spot that does not appear is generated, the states of the dispersion table 2 and the radiation feeder 3 can be grasped without being affected by the shielding object.
  • the combination weighing device 1 further includes an image setting unit 35g which is a setting unit.
  • the image setting unit 35g uses, for example, an image taken by the image processing unit 35f by the camera 60 during normal operation (second period) based on an image taken by the camera 60 during initial setting or maintenance. Settings for generating the planar view image 101 are performed.
  • the image setting unit 35g performs settings for generating the planar view image 101 based on an image photographed by the camera 60 at the time of initial setting or maintenance (first period). That is, even if the position of the camera 60 is changed, a planar view image can be generated based on the image of the camera 60 taken at that position in the first period. As a result, the installation position of the camera 60 can be changed according to the field situation. That is, even when the installation position of the camera 60 is limited, it is easy to obtain a planar view image of the dispersion table 2 and the radiation feeder 3.
  • the combination weighing device 1 further includes a touch panel 10 as an input unit.
  • the image setting unit 35g performs setting based on the two-dimensional position information (reference point information) of the reference point with respect to the captured image of the camera 60, which is input to the touch panel 10 and stored in the reference point input storage area 34b.
  • the operation status of the dispersion table 2 and the radiation feeders 3-1 to 14 is output to the touch panel 10 as well as the planar view image 101 by the radar graph 102.
  • the operation status of the radiation feeders 3-1 to 14 is output to the touch panel 10 at positions corresponding to the distribution table 2 and the radiation feeders 3-1 to -14. That is, the planar view image 101 and the radar graph 102 are output so as to correspond to each other.
  • the combination weighing device 1 further includes a plurality of weighing hoppers 5-1 to -14 and a calculating unit 35b as a plurality of weighing units.
  • the weighing hoppers 5-1 to -14 are respectively arranged below the front ends of the outer edges of the radiation feeders 3-1 to 14 (in the direction away from the dispersion table 2).
  • the goods are received through the hoppers 4-1 to 14 and the received goods are weighed.
  • the calculating unit 35b calculates the transport amount for each of the radiation feeders 3-1 to 14 based on the measurement results of the weighing hoppers 5-1 to -14.
  • the calculation result of the calculation unit 35 b is output to the touch panel 10 simultaneously with the planar view image 101.
  • the following measures can be taken based on the planar view image 101 displayed on the touch panel 10 and the transport amount of the radiation feeders 3-1 to -14.
  • the radiation feeders 3-1 to 14 of the corresponding head 40-1 to 14 are confirmed in the planar view image 101. If there are enough products on the radiation feeders 3-1 to 14, the vibration intensity or vibration time of the radiation feeders 3-1 to 14 is increased. On the other hand, if the products are only sparse on the radiation feeders 3-1 to 3-14, it can be determined that the supply of products from the dispersion table 2 to the radiation feeders 3-1 to 14 is insufficient. Increase the strength or vibration time or increase the product load on the distribution table 2. That is, an appropriate response can be easily selected.
  • the touch panel 10 outputs a calculation result of the conveyance amount for each of the radiation feeders 3-1 to 14 at a position corresponding to each of the radiation feeders 3-1 to 14 in the planar image 101.
  • the radiation feeders 3-1 to 14 are assigned the codes for identifying the radiation feeders 3-1 to 14, respectively.
  • a code is output at a position corresponding to each of the radiation feeders 3-1 to 14 in the planar image 101 at the same time as the planar image 101.
  • the touch panel 10 outputs the planar image 101 by rotating the planar image 101 within the plane with the centroid of the dispersion table 2 in the planar image 101 as the rotation center.
  • the combination weighing device 1 further includes a support portion 7.
  • the support unit 7 supports the dispersion table 2, the radiation feeders 3-1 to 14, and the camera 60.
  • the camera 60 is disposed above the support unit 7 and at a position off the top of the radiation feeders 3-1 to 3-14.
  • the camera 60 includes a lens 60a having a horizontal field angle of 90 ° or more.
  • the camera 60 is arranged near the object to be photographed (above the support portion 7 of the combination weighing device 1), the number of the cameras 60 is small (two in this embodiment), and the distribution table 2 and Images necessary for generating the planar images 101 of the radiation feeders 3-1 to -14 can be obtained, and the installation cost of the camera 60 can be suppressed.
  • the combination weighing device 1 has a circumferential shape in which 14 weighing hoppers 5 are arranged circumferentially below the radial feeder 3 extending radially as shown in FIG.
  • the invention can also be applied to a so-called linear type combination weighing device shown in the plan view of FIG.
  • the transport conveyor 290 drops an article to be weighed into a supply hopper 202 (dispersing part) having N supply holes 212-i.
  • the article is put into the weighing hopper 205-i arranged in a straight line through the drive feeder 203-i corresponding to each supply hole 212-i.
  • the camera 260 is installed at the position shown in FIG.
  • a plane view image is generated based on the captured image, and the image is displayed on an output unit such as a touch panel. It is easy to grasp the state of 202 and the drive feeder 203-i.
  • positioning, direction, and quantity of the camera 260 are illustrations, and are not limited to this.
  • the heads 40-1 to 14 (weighing hoppers 5-1 to 14) selected by the combination calculation unit 35c may be displayed.
  • the radar graph 102 may indicate that the combination calculation unit 35c has selected the combination by a method such as changing the color of the area 102b corresponding to the heads 40-1 to 14 selected for the combination.
  • the selection rate (probability of being selected for the combination) by the combination calculation unit 35c of the heads 40-1 to 14 (the weighing hoppers 5-1 to -14) may be displayed on the radar graph 102. Good.
  • planar view image 101 and the operating state of the combination weighing device 1 can be grasped in association with each other, which is effective for the worker to appropriately determine the response at the time of abnormality or the like.
  • the planar view image 101 and the radar graph 102 are displayed side by side on the touch panel 10, but the present invention is not limited to this.
  • the planar image 101 and the radar graph 102 may be displayed in an overlapping manner. This makes it easier to understand the information obtained by visual observation and the quantitative information in association with each other.
  • the radar graph 102 of the touch panel 10 displays the vibration time and vibration intensity and the conveyance amount of the radiation feeders 3-1 to 14 and the vibration intensity of the dispersion table 2.
  • the vibration time of the dispersion table 2 may be displayed.
  • the vibration time of the dispersion table 2 may be changed by an input from the touch panel 10.
  • the image setting unit 35g derives parameters for generating the planar image 101 of the image processing unit 35f based on the reference point information input to the touch panel 10. It is not limited.
  • the image setting unit 35g may automatically find the position of the reference point from the image taken by the camera 60, and derive parameters for generating the planar image 101 of the image processing unit 35f.
  • Combination weighing device 2 Dispersion table (distribution unit) 3 (3-1 to 14) Radiation feeder 5 (5-1 to 14) Weighing hopper 7 Support section 10 Touch panel (input section, output section) 20 (20-1 to 14) Load cell (weighing unit) 35b calculation unit 35f image processing unit (processing unit) 35g Image setting part (setting part) 60 Camera 60a Lens 101 Plane view image 101a Number (code for identification)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Control Of Conveyors (AREA)

Abstract

 組合せ計量部の分散部の直上に分散部およびフィーダを俯瞰できるカメラを設置することが困難な場合に、分散部およびフィーダの状態を容易に把握可能な組合せ計量装置を提供する。組合せ計量装置(1)は、分散テーブルと、複数の放射フィーダと、複数のカメラ(60)と、画像処理部(35f)と、タッチパネル(10)とを備える。分散テーブルは、多数の物品の供給を受けて分散させる。放射フィーダは、分散テーブルから放射状に延びるように配置され、分散テーブルにより分散された物品を受け、分散テーブルから遠ざかる方向に搬送する。カメラは、分散テーブルの直上の空間から外れた位置に配置され、分散テーブルおよび放射フィーダの画像を撮影する。画像処理部は、カメラの撮影した画像を合成して分散テーブルおよび放射フィーダの平面視画像を生成する。タッチパネルは、平面視画像を出力する。

Description

組合せ計量装置
 本発明は、複数の物品の計量値の組合せ演算を行う組合せ計量装置に関する。
 従来、組合せ計量装置において、物品の供給を受けた分散部およびフィーダの状態を確認するため、カメラが設けられる場合がある。例えば、特許文献1(特許第3325897号公報)には、分散部(分散フィーダ)の直上と、フィーダ(駆動フィーダ)の周方向に沿う方向と、分散部およびフィーダの斜め上方と、にカメラを設けた事例が開示されている。
 一般に、組合せ計量装置を制御する制御盤(制御部)は、分散部およびフィーダと離れた位置に配置されることが多い。そのため、特に、特許文献1のように分散部の直上にカメラを設け、分散部および放射フィーダを見下ろした画像を作業員が制御盤近くで見ることができれば、作業員は制御盤で操作を行いながら分散部およびフィーダの状態を容易に把握でき利便性が高い。
 しかし、実際には、分散部の直上にカメラを設置することは、製品への異物混入の観点から実現が難しい場合が多い。また、組合せ計量装置を設置する建屋の天井高さ等の問題で、分散部の直上にカメラを設置できないことも多い。さらに、分散部の直上には、分散部まで物品を移送する供給コンベア等が配置されるため、供給コンベア等によるカメラの死角が生じやすい。
 一方、分散部およびフィーダを斜め上方から又は水平方向から、分散部およびフィーダの状態をカメラで撮影することは可能な場合が多い。しかし、このような画像からは、物品の分散や搬送の概況は把握できても、物品の搬送量等を作業員が直感的に把握することは難しい。つまり、分散部およびフィーダを斜め上方から又は水平方向から撮影した画像では、作業員が十分な情報を得られるとは言い難い。
 本発明の課題は、組合せ計量部の分散部の直上に分散部およびフィーダを俯瞰できるカメラを設置することが困難な場合に、分散部およびフィーダの状態を容易に把握可能な組合せ計量装置を提供することにある。
 本発明に係る組合せ計量装置は、分散部と、複数の放射フィーダと、複数のカメラと、処理部と、出力部と、を備える。分散部は、多数の物品の供給を受けて分散させる。放射フィーダは、分散部から放射状に延びるように配置され、分散部により分散された物品を受け、分散部から遠ざかる方向に搬送する。カメラは、分散部の直上の空間から外れた位置に配置され、分散部および放射フィーダの画像を撮影する。処理部は、カメラの撮影した画像を合成して分散部および放射フィーダの平面視画像を生成する。出力部は、平面視画像を出力する。
 ここでは、組合せ計量装置は、分散部および放射フィーダを分散部の直上以外の空間から撮影する複数のカメラを備え、カメラの撮影画像を合成して分散部と放射フィーダの平面視画像を生成し、出力する。分散部および放射フィーダの平面視画像が出力されるので、分散部の直上の空間にカメラを設けることが難しい場合でも、作業員が分散部および放射フィーダの状態を正確にかつリアルタイムで把握できる。そのため、異常発生時にも、作業員が平面視画像をもとに異常原因を推定し、直ちに必要な対応をとることが容易になる。
 さらに、複数のカメラの撮影画像を合成することで平面視画像が生成されるので、物品の供給コンベア等の遮蔽物により1台のカメラの撮影した画像ではカメラに写らない死角が生じる場合でも、遮蔽物の影響を受けることなく分散部と放射フィーダの状態を把握しやすい。
 また、本発明に係る組合せ計量装置は、設定部をさらに備えることが望ましい。設定部は、第1期間にカメラによって撮影された画像を基に、第2期間に処理部がカメラにより撮影された画像を用いて平面視画像を生成するための設定を行うことが望ましい。
 ここでは、設定部が、第1期間(初期設定時やメンテナンス時等)にカメラによって撮影された画像を基に、平面視画像の生成のための設定を行う。つまり、カメラの位置を変えても、第1期間にその位置で撮影されたカメラの画像に基づいて、平面視画像を生成できる。その結果、カメラの設置位置を現場状況に応じて変更できる。すなわち、カメラの設置位置に制限がある場合でも、分散部と放射フィーダとの平面視画像を得ることが容易である。
 さらに、本発明に係る組合せ計量装置は、入力部をさらに備えることが望ましい。設定部は、入力部に入力された基準点情報に基づいて設定を行うことが望ましい。
 ここでは、入力部からの基準点情報を用いることで、平面視画像の生成のための設定が正確に実行される。その結果、正確な平面視画像を得ることが容易になる。
 また、本発明に係る組合せ計量装置の出力部には、平面視画像と同時に、分散部および/又は放射フィーダの稼働状態が出力されることが望ましい。
 ここでは、平面視画像と、分散部および/又は放射フィーダの稼働状態が同時表示されるため、分散部や放射フィーダが適切に稼働しているかを1つの画面で認識可能である。その結果、例えば異常時等に、作業員がどのような対策をとればよいかを適切に判断することが容易になる。
 さらに、出力部には、平面視画像内の分散部および/又は各放射フィーダに対応する位置に、分散部および/又は各放射フィーダの稼動状態が出力されることが望ましい。
 ここでは、平面視画像と、分散部および/又は各放射フィーダの稼動状態とを関連付けて把握することが容易で、作業員の利便性を高めることができる。
 また、本発明に係る組合せ計量装置は、複数の計量部と、算出部とをさらに備えることが望ましい。計量部は、放射フィーダの分散部から遠ざかる方向の前方側の端部の下方にそれぞれ配置され、放射フィーダから物品を受け、受けた物品の計量を行うことが望ましい。算出部は、計量部の計量結果を基に、放射フィーダ別の搬送量を算出することが望ましい。出力部には、平面視画像と同時に、算出部の算出結果が出力されることが望ましい。
 ここでは、分散フィーダの搬送量が平面視画像と共に表示される。そのため、作業員が平面視画像と分散フィーダの搬送状態とを関連付けて把握すること容易である。その結果、例えば異常時等に、作業員がどのような対策をとればよいかを適切に判断することが容易になる。
 さらに、出力部には、平面視画像内の各放射フィーダに対応する位置に、各放射フィーダに関する算出結果が出力されることが望ましい。
 ここでは、平面視画像と分散フィーダの搬送量とを関連付けて把握することがさらに容易で、作業員の利便性が高められる。
 また、放射フィーダには、各放射フィーダを識別するための符号がそれぞれ付されることが望ましい。出力部には、平面視画像と同時に、平面視画像内の各放射フィーダに対応する位置に、符号が出力されることが望ましい。
 ここでは、平面視画像の各放射フィーダに対応する位置に、放射フィーダを識別するための符号が同時表示されるため、平面視画像から、どの放射フィーダに問題が発生しているかが正確に把握できる。
 また、出力部は、平面視画像を、平面視画像内の分散部の図心を回転中心として平面内で回転させて出力することが望ましい。
 ここでは、作業員が、最も把握しやすい状態に平面視画像を回転させて出力することが可能である。その結果、作業員が平面視画像の内容を誤認することを防止できる。
 また、本発明に係る組合せ計量装置は、支持部を更に備えることが望ましい。支持部は、分散部、放射フィーダ、カメラを支持することが望ましい。カメラは、支持部の上方であって、放射フィーダの直上を外れた空間に配置されることが望ましい。
 ここでは、支持部の上方にカメラが配置されるため、カメラが作業員の作業や通行の邪魔になりにくい。組合せ計量装置の周囲には作業員の作業通路が配置されることが多いが、カメラを組合せ計量装置の支持部の上方に配置すれば、作業員の通行や作業に影響を与えることが少ない。また、作業員がカメラにぶつかり負傷する等の事故を未然に防ぐことができる。
 さらに、カメラは、水平画角が90°以上のレンズを有することが望ましい。
 ここでは、撮影対象の近くに(支持部の上方に)カメラを配置しても、少ないカメラの台数で、分散部および放射フィーダの平面視画像を生成するために必要な画像を得ることができ、カメラの設置費用を抑制できる。
 本発明に係る組合せ計量装置は、分散部および放射フィーダを分散部の直上以外の空間から撮影する複数のカメラを備え、カメラの撮影画像を合成して分散部と放射フィーダの平面視画像を生成し、出力する。分散部および放射フィーダの平面視画像が出力されるので、分散部の直上の空間にカメラを設けることが難しい場合でも、作業員が分散部および放射フィーダの状態を正確にかつリアルタイムで把握できる。
本発明の一実施形態に係る組合せ計量装置の縦断面概略図である。 組合せ計量装置の概略平面図である。放射フィーダ、プールホッパの参照符号の一部を省略している。 組合せ計量装置の制御ブロック図である。 カメラにより撮影される画像の一例を示す概要図である。カメラで撮影される画像は動画である。なお、本図面では、分散テーブルおよび放射フィーダの部分の画像のみを示している。 画像処理部で生成される平面視画像の一例を示す図である。平面視画像は動画である。ヘッド、放射フィーダ、プールホッパの参照符号の一部を省略している。 タッチパネルに表示される表示の一例を示す図である。 画像回転ボタンを押すことで、図6のタッチパネルに表示される表示が変更された(回転した)状況を示す図である。 リニアタイプの組合せ計量装置を示す概略平面図である。
 (1)全体構成
 本発明の一実施形態に係る組合せ計量装置1を図1に示す。組合せ計量装置1は、複数の計量ホッパ5内の物品の計量値を組合せ演算し、組合せ演算の結果が所定の許容範囲内の値となる物品の組合せを選択し、その組合せに含まれる計量ホッパ5内の物品を組合せ計量装置1外に排出する。
 組合せ計量装置1は、図示しない包装器等の上方に配置されるよう、架台91の上方に設置される。組合せ計量装置1の四方には、作業員が異常時やメンテナンス時等に組合せ計量装置1にアクセスできるよう作業通路92が設けられる。
 組合せ計量装置1は、分散テーブル2と、14個のヘッド40と、集合排出シュート6と、タッチパネル10と、制御部30と、2台のカメラ60と、を有する。ヘッド40の数は例示であり、これに限定されるものではない。
 ヘッド40は、図2のように、平面視において、分散テーブル2を中心として、環状に配置されている。ヘッド40には、それぞれ1~14の番号が識別のための符号として付されている。各ヘッド40-1~14は、図2のように、符号の番号が反時計回りに大きくなるように配置されている。それぞれのヘッド40は、放射フィーダ3、プールホッパ4、および計量ホッパ5を有する。各ヘッド40-1~14に属する放射フィーダ3、プールホッパ4、および計量ホッパ5には、識別のための符号として各ヘッド40-1~14と同じ番号が付されている。
 (2)詳細構成
 (2-1)分散テーブル
 分散テーブル2は、扁平な円錐テーブル状の部材である。分散テーブル2は、分散テーブル2の上方にある供給コンベア90から被計量物である物品を受ける。分散テーブル2は、図示しない電磁石により振動させられることで、供給コンベア90から受けた物品を周方向に分散させながら半径方向に搬送し、放射フィーダ3に物品を供給する。分散テーブル2は分散部の一例である。
 分散テーブル2から放射フィーダ3に搬送される物品の量は、主に分散テーブル2の振動強度により制御される。分散テーブル2の振動強度とは、後述する制御部30の加振部35aが、分散テーブル2の図示しない電磁石を用いて発生させる、分散テーブル2の振動の振幅の大きさに関する数値である。分散テーブル2の振動強度の初期設定値は、後述する制御部30の記憶部34に記憶されている。作業員は、後述するタッチパネル10から、記憶部34に記憶された分散テーブル2の振動強度を更新可能である。
 (2-2)放射フィーダ
 放射フィーダ3は、分散テーブル2の周囲に放射状に延びるように配置される。放射フィーダ3は、分散テーブル2により分散された物品を受ける。各放射フィーダ3-1~14は、図示しない電磁石により振動させられることで、物品を各放射フィーダ3-1~14の外縁に向かって半径方向に搬送する。すなわち、各放射フィーダ3-1~14は、分散テーブル2から遠ざかる方向に物品を搬送する。各放射フィーダ3-1~14により搬送された物品は、各放射フィーダ3-1~14の外縁側下方に配置されたプールホッパ4-1~14に供給される。
 各放射フィーダ3-1~14により搬送される物品の量は、主に放射フィーダ3-1~14別の振動強度と振動時間により制御される。放射フィーダ3の振動強度とは、後述する制御部30の加振部35aが、放射フィーダ3の図示しない電磁石を用いて発生させる、放射フィーダ3の振動の振幅の大きさに関する数値である。放射フィーダ3の振動時間とは、後述する制御部30の加振部35aが、放射フィーダ3の振動を開始させてから振動を停止させるまでの1サイクルの時間である。各放射フィーダ3-1~14の振動強度および振動時間の初期設定値は、後述する制御部30の記憶部34に記憶されている。作業員は、後述するタッチパネル10から、記憶部34に記憶された各放射フィーダ3-1~14の振動強度および振動時間を更新可能である。
 (2-3)プールホッパ
 各プールホッパ(PH)4-1~14は、そのプールホッパ4-1~14が属するヘッド40-1~14の各放射フィーダ3-1~14の外縁側下方に配置される。各プールホッパ(PH)4-1~14には、上方に配置された放射フィーダ3-1~14から供給される物品が一時的に貯留される。
 プールホッパ4は、その下部にPHゲート4aを有する。PHゲート4aが開くと、プールホッパ4の下方に配置された計量ホッパ5に物品が供給される。PHゲート4aは、図示しないリンク機構が、図3に示すステッピングモータ40a-1~14により動作させられることで開閉する。ステッピングモータ40a-1~14は、後述する制御部30のPH開閉部35dの指令により動作する。各PHゲート4aの開閉動作は、他のPHゲート4aの開閉動作と連動していない。つまり、各PHゲート4aの開閉動作は独立している。
 (2-4)計量ホッパ
 計量ホッパ(WH)5は計量部の一例である。各計量ホッパ5-1~14は、その計量ホッパ5-1~14が属するヘッド40-1~14の各プールホッパ4-1~14の直下に配される。つまり、計量ホッパ5-1~14は、放射フィーダ3-1~14の外縁側下方に配置される。各計量ホッパ5-1~14は、プールホッパ4-1~14から供給された物品の重量、すなわち放射フィーダ3-1~14からプールホッパ4-1~14を介して供給された物品の重量を、図3に示すロードセル20-1~14により計量する。
 計量ホッパ5は、その下部にWHゲート5aを有する。WHゲート5aは、図示しないリンク機構が、図3に示すステッピングモータ50a-1~14により動作させられることで開閉する。ステッピングモータ50a-1~14は、後述する制御部30のWH開閉部35eの指令により動作する。各WHゲート5aの開閉動作は、他のWHゲート5aの開閉動作と連動していない。つまり、各WHゲート5aの開閉動作は独立している。
 図3に示すロードセル20-1~14は、各計量ホッパ5-1~14に保持される物品を計量する。ロードセル20-1~14の物品の計量結果は計量信号として出力される。計量信号は、図示しない増幅器を介して後述する制御部30のマルチプレクサ31に随時送信される。ロードセル20-1~14は、特開2001-343294号公報に記載されているような歪みゲージを含むロードセルであり、可動部と固定部とを有する起歪体の荷重負荷に伴う変位を歪みゲージの抵抗変化によって検出し、その検出結果を計量信号としてマルチプレクサ31に送信する。
 (2-5)集合排出シュート
 集合排出シュート6は、計量ホッパ5から供給される物品を集合させて組合せ計量装置1外に排出する。排出された物品は、集合排出シュート6の下方に配置される図示しない包装機等に供給される。
 (2-6)制御部
 制御部30は、図3のように、CPU、記憶部34、マルチプレクサ31、A/D変換器32、DSP(デジタルシグナルプロセッサ)33等を備える。記憶部34はROMやRAM等からなる。
 CPUは、制御部30において制御を担い、記憶部34に記憶されているプログラムを読み出し、演算処理部35として各種制御を実行する。演算処理部35は、図3のように、加振部35a、算出部35b、組合せ演算部35c、PH(プールホッパ)開閉部35d、WH(計量ホッパ)開閉部35e、画像処理部35f、画像設定部35g、および出力回転部35hとして機能する。
 (2-6-1)マルチプレクサ
 マルチプレクサ31は、後述するDSP33の命令に従い、ロードセル20-1~14の計量信号から1の計量信号を選択し、A/D変換器32に送信する。
 (2-6-2)A/D変換器
 A/D変換器32は、マルチプレクサ31から受け取ったアナログ信号である計量信号を、DSP33から送信されるタイミング信号に従いデジタル信号に変換し、DSP33に送信する。
 (2-6-3)DSP
 DSP33は、A/D変換器32から送信されたデジタル信号に対してフィルタ処理を行う。フィルタ処理後の計量信号は、後述する算出部35bに送信され、その後計量ホッパ5に保持されている物品の重量(計量値)として、計量ホッパ5別に記憶部34に記憶される。
 (2-6-4)記憶部
 記憶部34には、CPUが読み出して実行するためのプログラムや、演算処理のために必要な各種情報やデータ等が記憶される。また、記憶部34は、基準点位置記憶領域34aと、基準点入力記憶領域34bとを有する。
 (2-6-4-1)基準点位置記憶領域
 基準点位置記憶領域34aには、後述する画像設定部35gにおいて使用される基準点の3次元の位置情報が記憶される。基準点位置記憶領域34aに記憶された情報は、画像設定部35gにより、後述する画像処理部35fが平面視画像101の生成のために使用するパラメータが導出される際に、画像設定部35gの情報呼出部35gaにより呼び出される。
 なお、基準点とは、組合せ計量装置1の所定の部分であり、3次元の位置情報が初期値として登録されている点を指す。ここでは、放射フィーダ3の外縁側の角部(例えば、図4の角部3-1a,3-5a,3-12a等を指す)を指す。
 (2-6-4-2)基準点入力記憶領域
 基準点入力記憶領域34bには、カメラ60の撮影画像に対する基準点の2次元の位置情報が記憶される。カメラ60の撮影画像に対する基準点の2次元の位置情報は、基準点情報であり、タッチパネル10から入力される。基準点入力記憶領域34bに記憶された情報は、画像設定部35gにより、画像処理部35fが平面視画像101の生成のために使用するパラメータが導出される際に、情報呼出部35gaにより呼び出される。
 なお、カメラ60の撮影画像に対する基準点の2次元の位置情報とは、例えば図4のようにタッチパネル10に表示されるカメラ60の撮影画像内での基準点の位置情報である。
 (2-6-5)演算処理部
 (2-6-5-1)加振部
 加振部35aは、分散テーブル2および放射フィーダ3の振動を制御することで、分散テーブル2および放射フィーダ3による物品の搬送を制御する。
 具体的には、加振部35aは、分散テーブル2および各放射フィーダ3の下方に設置された図示しない電磁石に電磁力を間欠的に発生させることで、分散テーブル2および放射フィーダ3を振動させる。加振部35aは、記憶部34に記憶された、分散テーブル2および放射フィーダ3-1~14の振動強度と、放射フィーダ3-1~14の振動時間を用いて振動の制御を行う。その結果、分散テーブル2では、所定の量の物品が分散テーブル2の周方向に分散させられながら、半径方向外向きに放射フィーダ3まで搬送される。各放射フィーダ3-1~14では、所定の量の物品が放射フィーダ3-1~14の外縁方向にプールホッパ4-1~14まで搬送される。
 なお、加振部35aは、各放射フィーダ3-1~14の起動および停止を個別に制御する。つまり、加振部35aは、放射フィーダ3-1~14の属するヘッド40-1~14のプールホッパ4-1~14が空の場合にのみ、その放射フィーダ3-1~14を振動させ、物品を搬送させる。
 (2-6-5-2)算出部
 算出部35bは、ロードセル20-1~14別に、DSP33によりフィルタ処理されたロードセル20-1~14の計量信号を受ける。そしてロードセル20-1~14別の計量信号を、各ロードセル20-1~14の設けられた計量ホッパ5-1~14内の物品の重量値(計測値)として記憶部34に記憶させる。
 また、算出部35bでは、放射フィーダ3-1~14別の搬送量を算出する処理を行う。ここでは、搬送量を、放射フィーダ3-1~14が搬送する物品の量の平均値として求める。より具体的には、算出部35bは、フィルタ処理されたロードセル20-1~14の計量信号から求まる重量値の平均値を計量ホッパ5-1~14別(ロードセル20-1~14別)に算出し、その計量ホッパ5-1~14の属するヘッド40-1~14の放射フィーダ3-1~14の搬送量として記憶部34に記憶させる。
 なお、上記の搬送量の算出方法は一例であり、算出部35bは、搬送量の平均を算出することに代えて、フィルタ処理されたロードセル20-1~14の計量信号から求まる毎回の重量値を、搬送量として算出してもよい。
 (2-6-5-3)組合せ演算部
 組合せ演算部35cは、記憶部34に記憶された組合せ演算プログラムを使用し、組合せ演算を行う。より具体的には、組合せ演算部35cは、記憶部34に記憶されている計量ホッパ5-1~14別の物品の重量値を基に、重量値の合計が所定の目標重量範囲になるように組合せ演算を行う。そして、組合せ演算の結果に基づき、複数の計量ホッパ5-1~14を選択する。組合せに選択された計量ホッパ5-1~14の情報は、WH開閉部35eに送信される。記憶部34に記憶されていた物品の重量値のデータのうち、組合せに選択された計量ホッパ5-1~14の重量値のデータはリセットされる。
 (2-6-5-4)PH開閉部
 PH開閉部35dは、いずれかの第1計量ホッパ5-1~14が空である場合に、その計量ホッパ5-1~14の上方に配置されるプールホッパ4-1~14のPHゲート4aを、ステッピングモータ40a-1~14を動作させて開く。その後、再びステッピングモータ40a-1~14を動作させて、PHゲート4aを閉じる。
 (2-6-5-5)WH開閉部
 WH開閉部35eは、組合せ演算部35cから、組合せ演算により選択された計量ホッパ5-1~14の組合せの情報を受け、選択された組合せに含まれる計量ホッパ5-1~14のWHゲート5aを、ステッピングモータ50a-1~14を動作させて開く。その後、再びステッピングモータ50a-1~14を動作させて、WHゲート5a-1を閉じる。
 (2-6-5-6)画像処理部
 画像処理部35fは、2台のカメラ60により撮影された、図4のような分散テーブル2および放射フィーダ3の斜め上方からの画像(動画)を合成して、図5のような分散テーブル2および放射フィーダ3を分散テーブル2の中心部上方から見た平面視画像101(動画)を生成する。平面視画像101は、後述するタッチパネル10に表示される。
 図4に示すように、分散テーブル2および放射フィーダ3の斜め上方からのカメラ60の画像では死角になる部分が存在するが、複数の(本実施例では2台の)カメラ60により撮影された画像を合成することで、死角のない平面視画像101を得ることができる。
 平面視画像101の生成は、例えば以下のような原理で行われる。
 まず、カメラ60により撮影された画像の座標変換が行われ、仮想の水平面に投影された投影画像が生成される。次に、この投影画像が座標変換され、仮想のカメラ(分散テーブル2の中心部上方に位置する仮想のカメラ)から見た上方視点画像が生成される。この上方視点画像を複数の(ここでは2台の)カメラ60について重ね合わされることで、平面視画像101が生成される。
 なお、実際には、画像処理部35fは、座標変換を2段階で実施するのではなく、後述する画像設定部35gにより求められた座標変換および画像合成のためのパラメータを用いて、2台のカメラ60により撮影された画像を仮想のカメラから見た平面視画像101に直接変換する。
 具体的には、例えば特開2003-256874号公報に記載されるような方法で平面視画像101が生成される。ただし、これに限定されるものではなく、カメラ60により撮影された画像を基に、平面視画像101を生成する様々な手法を適用可能である。
 (2-6-5-7)画像設定部
 画像設定部35gは、例えば初期設定時やメンテナンス時等、カメラ60が設置又交換される際にカメラ60によって撮影された画像を基に、通常運転時に画像処理部35fが平面視画像101を生成するために必要なパラメータを導出する。すなわち、画像設定部35gは、画像処理部35fが平面視画像101を生成するための初期設定を行う。
 画像設定部35gは、情報呼出部35gaとパラメータ算出部35gbとを有する。
 (2-6-5-7-1)情報呼出部
 情報呼出部35gaは、画像設定部35gにより、画像処理部35fが平面視画像101を生成するために必要なパラメータが導出されるタイミングで、基準点の位置情報を呼び出す。情報呼出部35gaに呼び出される基準点の位置情報は、基準点位置記憶領域34aに記憶されている基準点の3次元の位置情報と、基準点入力記憶領域34bに記憶されている、カメラ60の撮影画像に対する基準点の2次元の位置情報とである。
 (2-6-5-7-2)パラメータ算出部
 パラメータ算出部35gbは、情報呼出部35gaが呼び出した2種類の位置情報を用いて、画像処理部35fが平面視画像101を生成するために必要なパラメータを算出する。
 上述のように基準点は3次元情報が既知の点であるため、基準点がカメラ60の撮影した画像の中でどのように見えるかが分かれば、カメラ60の撮影位置が算出可能である。カメラ60の撮影位置が算出されれば、平面視画像101を生成するためのパラメータの導出が可能である。
 なお、パラメータ算出部35gbは、パラメータを実際に算出する代わりに、カメラ60の撮影位置に対して準備されたパラメータを記憶部34に記憶し、カメラ60の撮影位置に応じて記憶部34からパラメータを呼び出すことでパラメータを導出してもよい。この場合でも、カメラ60の撮影位置の算出は、パラメータ算出部35gbで実施される。
 (2-6-5-8)出力回転部
 出力回転部35hは、タッチパネル10に出力される画像を回転させる。
 具体的には、後述するタッチパネル10の画像回転ボタン156が押されると、出力回転部35hは、平面視画像101を、平面視画像101内の分散テーブル2の図心を中心として回転させる。回転の詳細については、タッチパネル10の表示に関する説明の中で詳述する。
 また、後述するように、タッチパネル10にはヘッド40-1~14に関する種々の情報(ヘッド40-1~14を識別するための符号、分散テーブル2および各放射フィーダ3-1~14の稼動状態、各放射フィーダ3-1~14の搬送量等)が表示されるが、出力回転部35hは、これらの情報についても、平面視画像101と対応するように回転させる。
 (2-7)タッチパネル
 タッチパネル10は、入力と出力の両機能を兼ね備えた液晶ディスプレイ(LCD)であり、入力部および出力部として機能する。タッチパネル10は、組合せ計量に関する各種設定等の入力を受けると共に、組合せ計量装置1の運転状態等を表示する。図6は、タッチパネル10の表示画面の一例である。
 ユーザは、タッチパネル10に表示されるボタン等を押すことで、組合せ計量装置1に各種入力を行う。タッチパネル10に入力される情報には、画像設定部35gに使用される、カメラ60の撮影画像に対する基準点の2次元の位置情報が含まれる。カメラ60の撮影画像に対する基準点の2次元の位置情報は、タッチパネル10から入力される基準点情報の一例である。
 カメラ60の撮影画像に対する基準点の2次元の位置情報は、以下のようにして入力される。タッチパネル10のLCDには、初期設定時やメンテナンス時に1のカメラ60により撮影された実際の画像、例えば図4が表示される。作業者は、この画像の中の基準点(図4の放射フィーダ3の角部3-1a,3-5a,3-12a)の位置を、タッチパネル10により指示する。この操作を繰り返し行って、1のカメラ60の撮影した画像に対して最低3つの基準点の位置を入力する。他のカメラ60についても同様の入力操作を行う。タッチパネル10に入力された、カメラ60の撮影画像に対する基準点の2次元の位置情報は、基準点入力記憶領域34bに記憶される。
 タッチパネル10の表示および操作については後述する。
 (2-8)カメラ
 カメラ60は、分散テーブル2および放射フィーダ3の画像(動画)を撮影する。
 カメラ60は、組合せ計量装置1の支持部7(すなわち、分散テーブル2、放射フィーダ3、プールホッパ4、計量ホッパ5、集合排出シュート6、及びカメラ60等の組合せ計量装置1の各部を支持する支持部7)の上方の空間であって、分散テーブル2の直上の空間から外れた位置に、作業通路92の上空にはみ出さないように2台配置される。
 より具体的には、カメラ60は、図1のように、分散テーブル2および放射フィーダ3より上方であって、供給コンベア90に形成された物品排出口90aよりも低い位置に設置される。また、カメラ60は、分散テーブル2およびヘッド40の上方の空間にはみ出さないよう、図2のように組合せ計量装置1の支持部7の上方に設置される。なお、カメラ60は、図1のように、支持部7から上方に延びる支柱7aにより固定される。また、2台のカメラ60は、図2のように、平面視において、分散テーブル2の中心に対し、点対称に配置される。カメラ60のレンズ60aは、分散テーブル2の中心方向を向いている。
 なお、カメラ60の配置、向き、および台数は例示であり、これに限定されるものではない。ただし、欠けのない平面視画像101を生成するため、分散テーブル2および放射フィーダ3の全体がいずれかのカメラ60では撮影されるようにカメラ60は配置される。また、カメラ60は3台以上であってもよいが、設置費用の観点から台数は少ない方が望ましい。
 カメラ60のレンズ60aは、水平画角が90°以上の広画角レンズである。水平画角が90°以上のレンズ60aが使用されるのは、分散テーブル2およびヘッド40を、組合せ計量装置1の支持部7の上方空間であって、供給コンベア90に形成された物品排出口90aよりも低い位置に設置する場合(撮影対象である分散テーブル2およびヘッド40に近づけて設置する場合)に、少ない台数のカメラ60で平面視画像の生成に必要な画像を得るためである。
 (3)タッチパネルの表示および操作
 タッチパネル10の表示および操作について、特に平面視画像101と関連する内容について説明する。
 タッチパネル10の液晶画面には、左側に平面視画像101が、右側にレーダーグラフ102が、並べて表示される。平面視画像101の上方には、組合せ演算の結果を示す数値103がほぼリアルタイムに表示される。さらにタッチパネル10には、表示/非表示切替ボタン150~153と、設定ボタン154,155と、画像回転ボタン156とが表示される。
 (3-1)平面視画像
 平面視画像101は、画像処理部35fにより生成された平面視画像101であり、分散テーブル2および放射フィーダ3の状況をほぼリアルタイムに示している。平面視画像101の周囲に記載される数字101aは平面視画像101内のヘッド40-1~14を識別するための符号であるが、同時に放射フィーダ3-1~14および計量ホッパ5-1~14を識別する符号となっている。
 (3-2)レーダーグラフ
 レーダーグラフ102は、同心円状に配置された半径の異なる6つの円が半径方向に延びる直線により分割された、14個の扇形形状のエリア102bを有する。
 レーダーグラフ102には、分散テーブル2に関する情報と、ヘッド40-1~14に関する情報、特には放射フィーダ3-1~14に関する情報とが表示される。放射フィーダ3-1~14に関する情報は、放射フィーダ3-1~14別に情報が表示される。具体的には、14個のエリア102bそれぞれに、1の放射フィーダ3-1~14に関する情報が、実際の放射フィーダ3-1~14と同じ並びで(放射フィーダ3-1から反時計回りに識別のための数字が大きくなるように)表示される。エリア102bの、1番外側の円とその1つ内側の円との間の数字102aは、そのエリア102bがどのヘッド40-1~14の(放射フィーダ3-1~14の)情報を表示しているかを示す。
 レーダーグラフ102の表示についてより具体的に説明する。
 図6では、レーダーグラフ102内に、分散テーブル2および各放射フィーダ3-1~14の運転および停止の表示の他、各放射フィーダ3-1~14の振動強度および振動時間(これらの情報を各放射フィーダ3-1~14の稼動状態に関する情報と呼ぶ)、各放射フィーダ3-1~14の搬送量、分散テーブル2の振動強度が表示されている。
 図6では、各放射フィーダ3-1~14の振動時間が丸印104aで、各放射フィーダ3-1~14の振動強度が三角印104bで、各放射フィーダ3-1~14の搬送量が四角印104cで、分散テーブル2の振動強度が逆三角印104dで表示される。前述のように、各放射フィーダ3-1~14の振動時間および振動強度と、分散テーブル2の振動強度とは、記憶部34に記憶されている情報である。各放射フィーダ3-1~14の振動時間および振動強度と、分散テーブル2の振動強度とは、初期値、又は、タッチパネル10からの入力により更新された値である。搬送量は、算出部35bにより算出され、記憶部34に記憶されている値である。なお、レーダーグラフ102では、円の中心から径方向に遠ざかる程大きい値を意味している。
 なお、図6から分かるように、平面視画像101の周囲に配される数字101aと、レーダーグラフ102内の数字102aとは、同じ位置に同じ数字が記載されている。例えば、平面視画像101内の分散テーブル2の図心に対しておおよそ3時の方角に位置する数字101aは4であり、レーダーグラフ102内の円の中心に対しておおよそ3時の方角に位置する数字102aも4である。言い換えれば、平面視画像101内の放射フィーダ3-1~14と、レーダーグラフ102内の放射フィーダ3-1~14に関する情報とは、一目で対応が把握できるように、対応させて表示されている。
 また、レーダーグラフ102として表示される一部の図形は、作業者の入力を受けるボタンとしての機能も有する。具体的には、エリア102bの、数字102aの表示される1番外側の円とその1つ内側の円との間の部分は、作業員が数字102aに対応する放射フィーダ3-1~14に関する設定を行う際に使用する選択ボタン157として機能する。作業員が選択ボタン157を押すと、押された選択ボタン157部分の数字102aに対応する放射フィーダ3-1~14に関する設定、より具体的には、放射フィーダ3-1~14の振動時間および振動強度の設定を行うことが可能となる。詳細は後述する。
 (3-3)表示/非表示切替ボタン
 表示/非表示切替ボタン150~153は、それぞれ、レーダーグラフ102に各放射フィーダ3-1~14の振動時間、振動強度、搬送量、および分散テーブル2の振動強度を表示させる際に使用されるボタンである。作業員が各表示/非表示切替ボタン150~153を押すとそれに対応するシンボルがレーダーグラフ102上に表示され、再度同じ表示/非表示切替ボタンを押すと、対応するシンボルは非表示となる。
 (3-4)設定ボタン
 設定ボタン154,155は、各放射フィーダ3-1~14および分散テーブル2に関する設定値を変更する際に使用されるボタンである。具体的には、設定ボタン154,155を用いて、各放射フィーダ3-1~14の振動時間及び振動強度と、分散テーブル2の振動強度と、の設定を行うことが可能である。
 各放射フィーダ3-1~14の振動時間を設定する場合には、まず表示/非表示切替ボタン150を押して振動時間のシンボルをレーダーグラフ102上に表示させる。次に、振動時間を変更したい放射フィーダ3-1~14の属するヘッド40-1~14に対応した符号が付された選択ボタン157を押し、振動時間の変更対象となる放射フィーダ3-1~14を決定する。そして、振動時間を増加させたい場合には設定ボタン154を押し、減少させたい場合には設定ボタン155を押す。これによって、振動時間の変更対象に選ばれた放射フィーダ3-1~14の振動時間を増加又は減少させることができる。なお、振動時間の変更は複数の放射フィーダ3-1~14に対して同時に行うことも可能である。
 放射フィーダ3-1~14の振動強度を設定する場合についても同様である。
 分散テーブル2の振動強度を設定する場合には、まず表示/非表示切替ボタン153を押して分散テーブル2の振動強度のシンボルをレーダーグラフ102上に表示させる。そして、振動強度を増加させたい場合には設定ボタン154を押し、減少させたい場合には設定ボタン155を押す。これによって、分散テーブル2の振動強度を増加又は減少させることができる。
 例えば、タッチパネル10において、レーダーグラフ102からある放射フィーダ3-1~14の物品の搬送量が所定の範囲より少ないことが確認され、平面視画像101からその放射フィーダ3-1~14の搬送力不足と判断された場合には、タッチパネル10からその放射フィーダ3-1~14の振動時間や振動強度を大きくする操作を行うことができる。また、操作の結果についても平面視画像101とレーダーグラフ102とによりタッチパネル10から確認できる。
 また、例えば、平面視画像101から分散テーブル2の搬送力が不足していると判断された場合には、タッチパネル10から分散テーブル2の振動強度を大きくする操作を行うことができ、操作の結果を平面視画像101で確認できる。
 (3-5)画像回転ボタン
 画像回転ボタン156は、平面視画像101およびレーダーグラフ102の表示を回転させるためのボタンである。具体的には、画像回転ボタン156を押すことでヘッド40ひとつ分ずつ、平面視画像101およびレーダーグラフ102が反時計回りに回転する。つまり、画像回転ボタン156が1回押されると、平面視画像101においては、現在ヘッド40-2の画像が表示されている部分にヘッド40-1の画像が表示されるよう反時計回りに回転した画像がタッチパネル10に表示される。言い換えれば、本実施例ではヘッド40の数は14なので、画像回転ボタン156が押されるたびに約25.7°反時計回りに回転する。これにあわせて、図7の表示のように、ヘッド40を識別する数字101aも図6の表示からの反時計回りに1つずつずれる。また、レーダーグラフ102についても、これに対応して反時計回りに表示が回転する。つまり、図6においてはヘッド40-2(放射フィーダ3-2)に関する情報が表示されているエリア102bに、図7のようにヘッド40-1(放射フィーダ3-1)に関する情報が表示されるように反時計回りに表示が回転し、数字102aも反時計回りに1つずつずれて表示される。
 ただし、分散テーブル2の振動強度に関する逆三角印104dは、回転すると逆に認識しづらいため、画像回転ボタン156を押しても回転しない。
 なお、画像回転のための処理は、出力回転部35hにより行われる。
 (4)組合せ計量装置の特徴
 (4-1)
 本実施形態に係る組合せ計量装置1は、分散部である分散テーブル2と、14個の放射フィーダ3-1~14と、2台のカメラ60と、処理部としての制御部30の有する画像処理部35fと、出力部としてのタッチパネル10と、を備える。分散テーブル2は、多数の物品の供給を受け付けて分散させる。放射フィーダ3-1~14は、分散テーブル2から放射状に延びるように配置され、分散テーブル2により分散された物品を受け付け、分散テーブル2から遠ざかる方向に搬送する。カメラ60は、分散テーブル2の直上の空間から外れた位置に配置され、分散テーブル2および放射フィーダ3-1~14の画像を撮影する。画像処理部35fは、カメラ60の撮影した画像を合成して分散テーブル2および放射フィーダ3-1~14の平面視画像101を生成する。タッチパネル10は、平面視画像101を出力する。
 これにより、分散テーブル2および放射フィーダ3-1~14の平面視画像101が生成され出力されるので、分散テーブル2の直上の空間にカメラを設けることが難しい場合でも、作業員が分散テーブル2および放射フィーダ3―1~14の状態を正確に把握しやすい。そのため、異常発生時にも、作業員が平面視画像をもとに異常原因を推定し、直ちに必要な対応をとることが容易になる。例えば、その異常が、組合せ計量装置1の異常であるのか(例えば、物品が供給コンベア90から供給されていないということはないか)、タッチパネル10の操作で解消できるものなのか、放射フィーダ3-1~14でのつまり発生等現場での対応が必要なものなのか等が判断しやすい。
 また、複数の(2台)のカメラ60の撮影画像を合成することで平面視画像が生成されるので、物品の供給コンベア90等の遮蔽物により1台のカメラ60の撮影画像ではカメラ60に写らない死角が生じる場合でも、遮蔽物の影響を受けることなく分散テーブル2と放射フィーダ3の状態を把握できる。
 (4-2)
 本実施形態に係る組合せ計量装置1は、設定部である画像設定部35gをさらに備える。画像設定部35gは、例えば、初期設定時、メンテナンス時等にカメラ60によって撮影された画像を基に、通常運転時(第2期間)に画像処理部35fがカメラ60により撮影された画像を用いて平面視画像101を生成するための設定を行う。
 つまり、画像設定部35gが、初期設定時やメンテナンス時等(第1期間)にカメラ60によって撮影された画像を基に、平面視画像101の生成のための設定を行う。つまり、カメラ60の位置を変えても、第1期間にその位置で撮影されたカメラ60の画像に基づいて、平面視画像が生成できる。その結果、カメラ60の設置位置を現場状況に応じて変更できる。すなわち、カメラ60の設置位置に制限がある場合でも、分散テーブル2と放射フィーダ3との平面視画像を得やすい。
 (4-3)
 本実施形態に係る組合せ計量装置1では、入力部としてのタッチパネル10をさらに備える。画像設定部35gは、基準点入力記憶領域34bに記憶された、タッチパネル10に入力された、カメラ60の撮影画像に対する基準点の2次元の位置情報(基準点情報)に基づいて設定を行う。
 これにより、平面視画像の生成のための設定が正確に実行される。その結果、正確な平面視画像を得ることが容易になる。
 (4-4)
 本実施形態に係る組合せ計量装置1では、タッチパネル10に、平面視画像101と同時に、分散テーブル2および放射フィーダ3-1~14の稼働状態がレーダーグラフ102で出力される。
 これにより、分散テーブル2や放射フィーダ3が適切に稼働しているかを1つの画面で認識可能である。その結果、例えば異常時等に、作業員がどのような対策をとればよいかを適切に判断することが容易になる。
 (4-5)
 さらに、タッチパネル10には、分散テーブル2および各放射フィーダ3-1~14に対応する位置に放射フィーダ3-1~14の稼働状態が出力される。つまり、平面視画像101とレーダーグラフ102とが対応するように出力される。
 これにより、平面視画像101と、各放射フィーダ3-1~14の稼動状態とを関連付けて把握することが容易で、作業員の利便性を高めることができる。
 (4-6)
 本実施形態に係る組合せ計量装置1は、複数の計量部として複数の計量ホッパ5-1~14と、算出部35bとをさらに備える。計量ホッパ5-1~14は、放射フィーダ3-1~14の外縁側(分散テーブル2から遠ざかる方向)の前方側の端部の下方にそれぞれ配置され、放射フィーダ3-1~14から、プールホッパ4-1~14を介して、物品を受け、受けた物品の計量を行う。算出部35bは、計量ホッパ5-1~14の計量結果を基に、放射フィーダ3-1~14別の搬送量を算出する。タッチパネル10には、平面視画像101と同時に、算出部35bの算出結果が出力される。
 これにより、作業員が平面視画像101と放射フィーダ3-1~14の搬送量とを関連付けて把握すること容易である。その結果、例えば異常時等に、作業員がどのような対策をとればよいかを適切に判断することが容易になる。
 また、タッチパネル10に表示される平面視画像101および放射フィーダ3-1~14の搬送量を基に、以下のような対応をとることができる。
 あるヘッド40-1~14における搬送量が少ないときに、平面視画像101で該当ヘッド40-1~14の放射フィーダ3-1~14を確認する。そして、もし、その放射フィーダ3-1~14上に商品が十分にあれば、その放射フィーダ3-1~14の振動強度または振動時間を増加させる。一方、もし、その放射フィーダ3-1~14上に商品がまばらにしかないときには、分散テーブル2から放射フィーダ3-1~14への商品の供給が不十分と判断できるので、分散テーブル2の振動強度または振動時間を増加させるか、分散テーブル2上の商品積載量を多くする。つまり、適切な対応が容易に選択できる。
 (4-7)
 さらに、タッチパネル10には、平面視画像101内の各放射フィーダ3-1~14に対応する位置に、各放射フィーダ3-1~14に関する搬送量の算出結果が出力される。
 これにより、平面視画像101と放射フィーダ3-1~14の搬送量とを関連付けて把握することがさらに容易になり、作業員の利便性が高められる。
 (4-8)
 また、本実施形態に係る組合せ計量装置1では、放射フィーダ3-1~14には、各放射フィーダ3-1~14を識別するための符号がそれぞれ付される。タッチパネル10には、平面視画像101と同時に、平面視画像101内の各放射フィーダ3-1~14に対応する位置に符号が出力される。
 これにより、平面視画像101から、どの放射フィーダ3-1~14に問題が発生しているかが正確に把握できる。
 (4-9)
 また、本実施形態に係る組合せ計量装置1では、タッチパネル10は、平面視画像101を、平面視画像101内の分散テーブル2の図心を回転中心として平面内で回転させて出力する。
 これにより、作業員が、最も把握しやすい状態に平面視画像101を回転させて出力することが可能である。その結果、作業員が平面視画像101の内容を誤認することを防止できる。
 (4-10)
 また、本実施形態に係る組合せ計量装置1は、支持部7を更に備える。支持部7は、分散テーブル2、放射フィーダ3-1~14、及びカメラ60を支持する。カメラ60は、支持部7の上方であって、放射フィーダ3-1~14の直上を外れた位置に配置される。
 これにより、カメラ60が作業員の作業や通行の邪魔になりにくい。組合せ計量装置1の周囲に作業員の作業通路92が設置されていても、カメラ60を組合せ計量装置1の支持部7の上方に配置すれば、作業員の通行や作業に影響を与えることが少ない。また、カメラ60に作業員がぶつかり負傷する等の事故を未然に防ぐことができる。
 (4-11)
 さらに、本実施形態に係る組合せ計量装置1では、カメラ60は水平画角が90°以上のレンズ60aを有する。
 これにより、撮影対象の近くに(組合せ計量装置1の支持部7の上方に)カメラ60を配置していても、少ないカメラ60の台数で(本実施形態では2台で)、分散テーブル2および放射フィーダ3-1~14の平面視画像101を生成するために必要な画像を得ることができ、カメラ60の設置費用を抑制できる。
 (5)変形例
 (5-1)変形例A
 上記実施形態に係る組合せ計量装置1は、図1に示すように放射状に延びた放射フィーダ3の下方に、円周状に14個の計量ホッパ5を配置した円周形であったが、本発明は、図8の平面図に示すいわゆるリニアタイプの組合せ計量装置にも適用できる。図8において、搬送コンベア290は、N個の供給孔212-iをもつ供給ホッパ202(分散部)に被計量物である物品を落下させる。物品は、各供給孔212-iに対応した駆動フィーダ203-iを経て、直線状に配置された計量ホッパ205-iに投入される。この場合でも、例えば、図8に示す位置にカメラ260を設置してその撮影画像を基に平面視画像を生成し、その画像をタッチパネル等の出力部に表示することで、作業員が供給ホッパ202および駆動フィーダ203-iの状態を把握しやすい。なお、カメラ260の配置、向き、および数量は例示であり、これに限定されるものではない。
 (5-2)変形例B
 上記の実施形態に係る組合せ計量装置1では、タッチパネル10に、平面視画像101と同時に、分散テーブル2および放射フィーダ3-1~14に関する情報が表示されたがこれに限定されるものではない。
 例えば、平面視画像101と同時に、組合せ演算部35cにより組合せに選ばれたヘッド40-1~14(計量ホッパ5-1~14)が表示されてもよい。例えば、レーダーグラフ102において、組合せ演算部35cにより組合せに選ばれたヘッド40-1~14に対応するエリア102bの色が変わる等の方法で組合せに選ばれたことが示されてもよい。
 また、例えば、平面視画像101と同時に、ヘッド40-1~14(計量ホッパ5-1~14)の組合せ演算部35cによる選択率(組合せに選ばれる確率)がレーダーグラフ102に表示されてもよい。
 この場合でも、平面視画像101と、組合せ計量装置1の稼動状態とを関連付けて把握することができ、作業員が異常時等の対応を適切に判断する上で有効である。
 (5-3)変形例C
 上記の実施形態に係る組合せ計量装置1では、タッチパネル10に、平面視画像101とレーダーグラフ102とが左右に並べて表示されるが、これに限定されるものではない。例えば、平面視画像101とレーダーグラフ102とを重ねて表示してもよい。これにより、目視による得られる情報と定量的な情報とを関連付けて理解することが更に容易になる。
 (5-4)変形例D
 上記の実施形態に係る組合せ計量装置1では、タッチパネル10に、レーダーグラフ102により放射フィーダ3-1~14の振動時間、振動強度、および搬送量が表示されるが、これに限定されるものではなく、数字でこれらの情報が表示されてもよい。
 (5-5)変形例E
 上記の実施形態に係る組合せ計量装置1では、タッチパネル10のレーダーグラフ102には、放射フィーダ3-1~14の振動時間及び振動強度および搬送量と、分散テーブル2の振動強度が表示されたが、これに限定されるものではなく、例えば、分散テーブル2の振動時間等が表示されてもよい。
 この場合、タッチパネル10からの入力により、分散テーブル2の振動時間等が変更されてもよい。
 (5-6)変形例F
 上記の実施形態に係る組合せ計量装置1では、タッチパネル10に入力された基準点情報を基に画像設定部35gが画像処理部35fの平面視画像101生成のためのパラメータを導出するが、これに限定されるものではない。
 例えば、画像設定部35gは、カメラ60により撮影された画像から自動で基準点の位置を見つけ出し、画像処理部35fの平面視画像101生成のためのパラメータを導出してもよい。
1 組合せ計量装置
2 分散テーブル(分散部)
3(3-1~14) 放射フィーダ
5(5-1~14) 計量ホッパ
7 支持部
10 タッチパネル(入力部、出力部)
20(20-1~14) ロードセル(計量部)
35b 算出部
35f 画像処理部(処理部)
35g 画像設定部(設定部)
60 カメラ
60a レンズ
101 平面視画像
101a 数字(識別のための符号)
特許第3325897号公報

Claims (11)

  1.  多数の物品の供給を受けて分散させる分散部と、
     前記分散部から放射状に延びるように配置され、前記分散部により分散された前記物品を受け、前記分散部から遠ざかる方向に搬送する、複数の放射フィーダと、
     前記分散部の直上の空間から外れた位置に配置され、前記分散部および前記放射フィーダの画像を撮影する複数のカメラと、
     前記カメラの撮影した前記画像を合成して前記分散部および前記放射フィーダの平面視画像を生成する処理部と、
     前記平面視画像を出力する出力部と、
    を備えた組合せ計量装置。
  2.  設定部をさらに備え、
     前記設定部は、第1期間に前記カメラによって撮影された前記画像を基に、第2期間に前記処理部が前記カメラにより撮影された前記画像を用いて前記平面視画像を生成するための設定を行う、
    請求項1に記載の組合せ計量装置。
  3.  入力部をさらに備え、
     前記設定部は、前記入力部に入力された基準点情報に基づいて前記設定を行う、
    請求項2に記載の組合せ計量装置。
  4.  前記出力部には、前記平面視画像と同時に、前記分散部および/又は前記放射フィーダの稼働状態が出力される、
    請求項1から3のいずれか1項に記載の組合せ計量装置。
  5.  前記出力部には、前記平面視画像内の前記分散部および/又は各前記放射フィーダに対応する位置に、前記分散部および/又は各前記放射フィーダに関する稼動状態が出力される、
    請求項4に記載の組合せ計量装置。
  6.  前記放射フィーダの前記方向の前方側の端部の下方にそれぞれ配置され、前記放射フィーダから前記物品を受け、受けた前記物品の計量を行う、複数の計量部と、
     前記計量部の計量結果を基に、前記放射フィーダ別の搬送量を算出する算出部と、
    をさらに備え、
     前記出力部には、前記平面視画像と同時に、前記算出部の算出結果が出力される、
    請求項1から5のいずれか1項に記載の組合せ計量装置。
  7.  前記出力部には、前記平面視画像内の各前記放射フィーダに対応する位置に、各前記放射フィーダに関する前記算出結果が出力される、請求項6に記載の組合せ計量装置。
  8.  前記放射フィーダには、各前記放射フィーダを識別するための符号がそれぞれ付され、
     前記出力部には、前記平面視画像と同時に、前記平面視画像内の各前記放射フィーダに対応する位置に、前記符号が出力される、
    請求項1から8のいずれか1項に記載の組合せ計量装置。
  9.  前記出力部は、前記平面視画像を、前記平面視画像内の前記分散部の図心を回転中心として平面内で回転させて出力する、
    請求項1から8のいずれか1項に記載の組合せ計量装置。
  10.  前記分散部、前記放射フィーダ、及び前記カメラを支持する支持部を更に備え、
     前記カメラは、前記支持部の上方であって、前記放射フィーダの直上を外れた位置に配置される、
    請求項1から9のいずれか1項に記載の組合せ計量装置。
  11.  前記カメラは、水平画角が90°以上のレンズを有する、
    請求項10に記載の組合せ計量装置。
PCT/JP2013/054203 2012-03-16 2013-02-20 組合せ計量装置 WO2013136933A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/384,349 US9417115B2 (en) 2012-03-16 2013-02-20 Combination weighing device with imaging system
CN201380012880.8A CN104487811B (zh) 2012-03-16 2013-02-20 组合计量装置
BR112014022602A BR112014022602B8 (pt) 2012-03-16 2013-02-20 dispositivo de pesagem de combinação
DK13760661.2T DK2827114T3 (en) 2012-03-16 2013-02-20 The combination weighing device
EP13760661.2A EP2827114B1 (en) 2012-03-16 2013-02-20 Combination weighing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060243A JP5785123B2 (ja) 2012-03-16 2012-03-16 組合せ計量装置
JP2012-060243 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013136933A1 true WO2013136933A1 (ja) 2013-09-19

Family

ID=49160851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054203 WO2013136933A1 (ja) 2012-03-16 2013-02-20 組合せ計量装置

Country Status (7)

Country Link
US (1) US9417115B2 (ja)
EP (1) EP2827114B1 (ja)
JP (1) JP5785123B2 (ja)
CN (1) CN104487811B (ja)
BR (1) BR112014022602B8 (ja)
DK (1) DK2827114T3 (ja)
WO (1) WO2013136933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108117A1 (ja) * 2014-01-20 2015-07-23 株式会社イシダ 組合せ計量装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827115B1 (en) * 2012-03-16 2016-09-21 Ishida Co., Ltd. Combination weighing device
EP2887029B1 (de) * 2013-12-20 2016-03-09 Multipond Wägetechnik GmbH Befüllungsvorrichtung und Verfahren zum Erfassen einer Befüllung
US10151622B2 (en) * 2014-01-30 2018-12-11 Ishida Co., Ltd. Combination weighing device for weighing articles conveyed to a hopper
US20160110791A1 (en) * 2014-10-15 2016-04-21 Toshiba Global Commerce Solutions Holdings Corporation Method, computer program product, and system for providing a sensor-based environment
JP3197141U (ja) * 2015-02-09 2015-04-23 株式会社イシダ 組合せ計量装置
WO2017109543A1 (en) 2015-12-22 2017-06-29 Arcelormittal Method and system for determining the mass of feedstock on a conveyor
JP2019040469A (ja) * 2017-08-25 2019-03-14 株式会社イシダ 作業支援システム
DE102017124895B3 (de) * 2017-10-24 2019-03-28 CLK GmbH Fremdkörpererkennung in einer Mehrkopfwaage
JP7130335B2 (ja) * 2018-12-14 2022-09-05 大和製衡株式会社 組合せ計量装置
JP2020153776A (ja) * 2019-03-19 2020-09-24 株式会社イシダ 組合せ計量装置
EP3933354B1 (de) 2020-06-30 2022-10-19 Multipond Wägetechnik GmbH Verbesserte überwachung von kombinationswaagen durch einen 3d-sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031702A1 (fr) * 1994-05-13 1995-11-23 Ishida Co., Ltd. Appareil pour peser une combinaison d'objets
JP2001343294A (ja) 2000-05-31 2001-12-14 Ishida Co Ltd ロードセル及び秤
JP2002206963A (ja) * 2001-01-11 2002-07-26 Ishida Co Ltd 組合せ計量装置
JP2003256874A (ja) 2002-03-04 2003-09-12 Matsushita Electric Ind Co Ltd 画像合成変換装置
JP2005121512A (ja) * 2003-10-17 2005-05-12 Ishida Co Ltd 組合せ計量装置
JP2010078491A (ja) * 2008-09-26 2010-04-08 Yamato Scale Co Ltd 組合せ秤及び計量包装システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270495A (en) * 1992-02-28 1993-12-14 Package Machinery Company Combination weighing machine with feed control
CN2557582Y (zh) * 2002-06-27 2003-06-25 华南理工大学 基于数字图像技术的沥青拌和机集料计量控制装置
JP5102100B2 (ja) 2008-05-09 2012-12-19 株式会社イシダ 組合せ計量装置
JP2011043463A (ja) * 2009-08-24 2011-03-03 Ishida Co Ltd 組合せ計量装置
CN101881647A (zh) 2010-06-04 2010-11-10 新余钢铁集团有限公司 一种远程自动称重计量系统
CN102155961A (zh) * 2011-03-25 2011-08-17 北京建筑工程学院 排水管道流量和流速同步测定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031702A1 (fr) * 1994-05-13 1995-11-23 Ishida Co., Ltd. Appareil pour peser une combinaison d'objets
JP3325897B2 (ja) 1994-05-13 2002-09-17 株式会社イシダ 組合せ計量装置
JP2001343294A (ja) 2000-05-31 2001-12-14 Ishida Co Ltd ロードセル及び秤
JP2002206963A (ja) * 2001-01-11 2002-07-26 Ishida Co Ltd 組合せ計量装置
JP2003256874A (ja) 2002-03-04 2003-09-12 Matsushita Electric Ind Co Ltd 画像合成変換装置
JP2005121512A (ja) * 2003-10-17 2005-05-12 Ishida Co Ltd 組合せ計量装置
JP2010078491A (ja) * 2008-09-26 2010-04-08 Yamato Scale Co Ltd 組合せ秤及び計量包装システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2827114A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108117A1 (ja) * 2014-01-20 2015-07-23 株式会社イシダ 組合せ計量装置
EP3098580A4 (en) * 2014-01-20 2017-03-08 Ishida Co., Ltd. Combination weighing apparatus
JPWO2015108117A1 (ja) * 2014-01-20 2017-03-23 株式会社イシダ 組合せ計量装置
US10132675B2 (en) 2014-01-20 2018-11-20 Ishida Co., Ltd. Combination weighing device including conveyors and cameras

Also Published As

Publication number Publication date
JP2013195125A (ja) 2013-09-30
EP2827114B1 (en) 2016-09-28
BR112014022602B8 (pt) 2021-05-04
EP2827114A1 (en) 2015-01-21
CN104487811A (zh) 2015-04-01
DK2827114T3 (en) 2017-01-09
US20150021103A1 (en) 2015-01-22
BR112014022602B1 (pt) 2021-01-12
JP5785123B2 (ja) 2015-09-24
CN104487811B (zh) 2016-11-09
US9417115B2 (en) 2016-08-16
EP2827114A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5785123B2 (ja) 組合せ計量装置
EP3101398B1 (en) Combination weighing apparatus
JP6437274B2 (ja) 物品処理装置
JP5926618B2 (ja) 組合せ計量装置
WO2015108117A1 (ja) 組合せ計量装置
CN105599994B (zh) 挑选包装系统以及挑选包装系统的切换作业管理装置
JP2010175514A (ja) 組合せ秤及び計量システム
JP2010078491A (ja) 組合せ秤及び計量包装システム
EP1498793A1 (en) Commodity manufacturing device
JP2010043974A (ja) 計量機器用情報処理装置
JP5123075B2 (ja) 計量機器用情報処理装置
CN111033408A (zh) 作业辅助系统
JP2011043463A (ja) 組合せ計量装置
JP5154380B2 (ja) 半自動式組合せ秤
JP4768157B2 (ja) 計量装置
JP5203997B2 (ja) 組合せ秤及びそれを用いた被計量物の計量方法
JP5289204B2 (ja) 半自動式組合せ秤
JP2002206963A (ja) 組合せ計量装置
JP6294719B2 (ja) 表示装置およびそれを備えた重量検査システム
JP2017198461A (ja) 組合せ秤
JP2019024093A (ja) 物品処理装置
CN109448334A (zh) 一种报警系统
JP2006170644A (ja) 組合せ計量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14384349

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013760661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013760661

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022602

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014022602

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140912