WO2013133198A1 - 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法 - Google Patents

研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法 Download PDF

Info

Publication number
WO2013133198A1
WO2013133198A1 PCT/JP2013/055801 JP2013055801W WO2013133198A1 WO 2013133198 A1 WO2013133198 A1 WO 2013133198A1 JP 2013055801 W JP2013055801 W JP 2013055801W WO 2013133198 A1 WO2013133198 A1 WO 2013133198A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
acid
abrasive grains
compound semiconductor
Prior art date
Application number
PCT/JP2013/055801
Other languages
English (en)
French (fr)
Inventor
雅之 芹川
智美 秋山
Original Assignee
株式会社 フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フジミインコーポレーテッド filed Critical 株式会社 フジミインコーポレーテッド
Priority to US14/381,373 priority Critical patent/US9796881B2/en
Priority to JP2014503829A priority patent/JP6042407B2/ja
Publication of WO2013133198A1 publication Critical patent/WO2013133198A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a polishing composition used for polishing a polishing object made of a compound semiconductor, and a method for producing a compound semiconductor substrate using the polishing composition.
  • a compound semiconductor is a semiconductor composed of a plurality of elements.
  • a compound semiconductor containing silicon carbide, gallium nitride, gallium arsenide, or the like is known.
  • a compound semiconductor substrate containing silicon carbide or gallium nitride is used as a material for manufacturing an LED or a power device.
  • various polishing compositions are used (see, for example, Patent Documents 1 and 2).
  • silicon carbide and gallium nitride have excellent corrosion resistance against acids and alkalis, that is, high chemical stability, and the second highest hardness after diamond. Therefore, much time is required for polishing the compound semiconductor substrate containing silicon carbide or gallium nitride. Therefore, an important point in the polishing composition used for polishing the compound semiconductor substrate is to realize a high polishing rate.
  • the polishing rate is improved by incorporating an oxidizing agent such as orthoperiodic acid or metaperiodic acid and colloidal silica abrasive grains into the polishing composition for a silicon carbide substrate.
  • the polishing rate is improved by incorporating an oxidizing agent such as tungstate or molybdate, an oxygen donor, abrasive grains, and a pH adjuster in the polishing composition.
  • the oxidant is a transition metal salt
  • the transition metal element can take a plurality of oxidation numbers, so that the valence of the oxidant changes in the oxidation reaction.
  • the oxygen donor can maintain the high oxidizing power of the oxidizing agent by returning the changed valence of the oxidizing agent to the original value.
  • an increase in polishing rate is provided.
  • the present inventor is a polishing composition containing abrasive grains and water, wherein 50% by mass or more of the abrasive grains is composed of particles A having a particle diameter of 40 nm to 80 nm, and the abrasive grains. It has been found that a polishing rate for a compound semiconductor substrate can be increased by a polishing composition comprising 10% by mass or more of particles B having a particle diameter of 150 nm to 300 nm.
  • An object of the present invention is to provide a polishing composition capable of polishing a compound semiconductor substrate, particularly a compound semiconductor substrate having a high hardness (for example, a Vickers hardness of 1,500 Hv or more) at a high polishing rate.
  • a further object of the present invention is to provide a method for producing a compound semiconductor substrate using the polishing composition.
  • a polishing composition containing abrasive grains and water, wherein 50% by mass or more of the abrasive grains is composed of particles A having a particle diameter of 40 nm or more and 80 nm or less, and 10% by mass of the abrasive grains. %, A polishing composition comprising particles B having a particle diameter of 150 nm or more and 300 nm or less is provided.
  • the abrasive grains are preferably at least one selected from silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, manganese oxide, iron oxide, chromium oxide and diamond.
  • the polishing composition preferably further contains an oxidizing agent, and preferably further contains a pH adjuster.
  • a method for producing a compound semiconductor substrate comprising a polishing step of polishing the compound semiconductor substrate using the polishing composition.
  • a compound semiconductor substrate particularly a high-hardness compound semiconductor substrate having a Vickers hardness of 1,500 Hv or more can be polished at a high polishing rate.
  • the polishing composition is used for polishing a compound semiconductor substrate in a manufacturing process of the compound semiconductor substrate.
  • the compound semiconductor substrate to be polished is a substrate made of a semiconductor composed of a plurality of elements. Examples of the material constituting the compound semiconductor include silicon carbide, gallium nitride, and gallium arsenide.
  • the polishing composition of the present embodiment is particularly suitable for use in polishing a compound semiconductor substrate having a high hardness (for example, a Vickers hardness of 1,500 Hv or more), specifically, a compound semiconductor substrate made of silicon carbide or gallium nitride. Can be used.
  • the polishing composition contains abrasive grains and water, and preferably further contains components such as an oxidizing agent and a pH adjuster.
  • the polishing composition is prepared by mixing each component such as abrasive grains with water.
  • the abrasive grains function to physically polish the surface of the compound semiconductor substrate.
  • the abrasive grains include particles made of silicon oxide, aluminum oxide, zirconium oxide, cerium oxide, titanium oxide, manganese oxide, iron oxide, chromium oxide, diamond, and the like.
  • particles made of silicon oxide or aluminum oxide are preferable, and particles made of silicon oxide are particularly preferable.
  • the particles made of silicon oxide include silica particles selected from colloidal silica, fumed silica, and sol-gel silica. Of these particles, colloidal silica is particularly preferable.
  • these abrasive grains one kind may be used alone, or two or more kinds may be used in combination.
  • the particle shape of the abrasive grains is preferably a shape close to a true sphere.
  • the average value of the major axis / minor axis ratio of the particles is preferably 1.2 or less, and more preferably 1.1 or less.
  • the major axis / minor axis ratio can be determined using, for example, an electron microscope image of abrasive grains. Specifically, in a scanning electron microscope image of a predetermined number (eg, 200) of particles, a minimum circumscribed rectangle is drawn for each particle. Next, for each minimum circumscribed rectangle, the length of the long side (the value of the major axis) is divided by the length of the short side (the value of the minor axis), and the average value thereof is calculated to obtain the major axis / minor axis The average value of the ratio can be determined. Calculation of the average value of the major axis / minor axis ratio based on such image analysis processing can be performed using general image analysis software.
  • the abrasive grains are contained so as to have a specific particle size distribution. Specifically, among all the abrasive grains contained in the polishing composition, the ratio of particles A (small particles) having a particle diameter of 40 nm or more and 80 nm or less on a mass basis is 50% or more. The ratio of particles B (large particles) having a diameter of 150 nm to 300 nm is 10% or more. Furthermore, among all the abrasive grains contained in the polishing composition, the total of the particles A and the particles B is 60% or more, preferably 80% or more, based on mass. By using abrasive grains having the above particle size distribution, a high polishing rate can be obtained when polishing a compound semiconductor substrate.
  • the above particle diameter is the aggregate particle diameter (secondary particle diameter) of the abrasive grains.
  • the particle size distribution can be measured, for example, by a dynamic light scattering method using UPA-EX250 manufactured by Nikkiso Co., Ltd.
  • the particle size distribution may be measured in a state where each particle is mixed. You may obtain
  • the total content of abrasive grains in the polishing composition is preferably 2% by mass or more, more preferably 10% by mass or more. As the total content of abrasive grains increases, a higher polishing rate is obtained.
  • the total content of abrasive grains in the polishing composition is preferably 50% by mass or less, and more preferably 40% by mass or less. As the total content of the abrasive grains decreases, the dispersion stability of the polishing composition improves and handling becomes easy.
  • Water becomes a dispersion medium or solvent for other components. It is preferable that water does not inhibit the function of other components contained in the polishing composition. Examples of such water include water having a total content of transition metal ions of 100 ppb or less.
  • the purity of water can be increased, for example, by removing impurity ions using an ion exchange resin, removing foreign matters using a filter, distillation, or the like. Specifically, for example, ion exchange water, pure water, ultrapure water, distilled water or the like is preferably used.
  • the polishing composition may contain an oxidizing agent.
  • the oxidizing agent serves to chemically polish the surface of the compound semiconductor substrate.
  • the oxidizing agent include permanganate, periodic acid, periodate, persulfate, vanadate, hydrogen peroxide, hypochlorite, iron oxide, peracetic acid, ozone, and the like. It is done.
  • permanganate and vanadate are preferable from the viewpoint of improving the polishing rate.
  • One of these oxidizing agents may be used alone, or two or more may be used in combination.
  • the oxidizing agent can be used by mixing with an oxygen donor such as peroxide or oxo acid.
  • the content of the oxidizing agent in the polishing composition is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. As the oxidant content increases, a higher polishing rate is obtained.
  • the content of the oxidizing agent in the polishing composition is preferably 10% by mass or less, more preferably 5% by mass or less. As the content of the oxidizing agent is decreased, the stability of the polishing composition is improved.
  • the pH range of the polishing composition is preferably 1.0 or more and less than 11.0, more preferably 2.0 or more and less than 8.0. When the pH of the polishing composition is within the above range, the polishing rate is improved.
  • the pH of the polishing composition can be adjusted, for example, by adding a pH adjuster.
  • a pH adjuster known acids, bases, or salts thereof can be used.
  • acids that can be used as a pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid and phosphoric acid, formic acid, acetic acid, propionic acid, Butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2 -Ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid,
  • bases that can be used as a pH adjuster include organic bases such as amines and quaternary ammonium hydroxides, alkali metal hydroxides, alkaline earth metal hydroxides, and ammonia.
  • a salt such as an ammonium salt or an alkali metal salt of the above acid can be used in place of the above acid or in combination with the above acid.
  • a salt of a weak acid and a strong base, a strong acid and a weak base, or a combination of a weak acid and a weak base is preferable.
  • Such salts are expected to exert a pH buffering effect.
  • polishing composition other components such as known additives generally contained in the polishing composition can be contained as necessary.
  • Other components include, for example, preservatives, antifungal agents, rust inhibitors, additives having an action of further increasing the polishing rate such as complexing agents and etching agents, dispersants that improve the dispersibility of abrasive grains, Examples thereof include a dispersion aid that facilitates redispersion of the aggregate.
  • polishing process for polishing a compound semiconductor substrate using the polishing composition will be described.
  • a polishing process for polishing a silicon carbide substrate which is a high-hardness compound semiconductor substrate will be described as an example.
  • the polishing of the silicon carbide substrate using the polishing composition can be performed using a general polishing apparatus.
  • the polishing apparatus include a single-side polishing apparatus and a double-side polishing apparatus.
  • a single-side polishing apparatus holds a substrate using a holder called a carrier, and while supplying a polishing composition, presses a surface plate (polishing pad) to which a polishing cloth is applied against one surface of the substrate and rotates the surface plate. Thus, one side of the substrate is polished.
  • the double-side polishing apparatus holds the substrate using a carrier and supplies a polishing composition from above while pressing a surface plate (polishing pad) to which a polishing cloth is attached against both sides of the substrate in a direction opposite to each other. By rotating, both sides of the substrate are polished. At this time, the substrate is polished by a physical action caused by friction between the polishing pad and the polishing composition and the substrate and a chemical action that the polishing composition brings to the substrate.
  • the polishing conditions in the above polishing step are not particularly limited, but it is preferable to set the polishing pressure and linear velocity for the substrate within a specific range from the viewpoint of improving the polishing rate.
  • the polishing pressure is preferably more than 400 g per 1 cm 2 processed area, more preferably 600 g or more per 1 cm 2 processed area.
  • the polishing pressure is preferably 1000 g or less per 1 cm 2 of processing area.
  • a polishing pressure of 400 g or less per 1 cm 2 of the processing area is usually applied. In the present embodiment, it is preferable to apply a pressure higher than the normal polishing pressure.
  • the linear velocity is generally a value that changes due to the influence of the number of revolutions of the polishing pad, the number of revolutions of the carrier, the size of the substrate, the number of substrates, and the like.
  • the linear velocity is high, the frictional force applied to the substrate becomes large, so that the mechanical polishing action on the substrate becomes large. Also, the heat generated by friction may enhance the chemical polishing action by the polishing composition.
  • the linear velocity is preferably 10 m / min or more, and more preferably 30 m / min or more.
  • the linear velocity is preferably 300 m / min or less, more preferably 200 m / min or less. As the linear velocity increases, a higher polishing rate is obtained. When the linear velocity is within the above range, a sufficiently high polishing rate can be achieved, and an appropriate frictional force can be applied to the substrate.
  • the supply rate of the polishing composition at the time of polishing depends on the type of substrate to be polished, the type of polishing apparatus, and other polishing conditions, but is sufficient to uniformly supply the entire surface of the substrate and polishing pad. Preferably it is speed.
  • the ratio of particles A (small particles) having a particle size of 40 nm or more and 80 nm or less is 50% by mass or more of the whole abrasive grains, and particles B (large particles) having a particle size of 150 nm or more and 300 nm or less ) Is contained so that it has a specific particle size distribution of 10 mass% or more of the whole abrasive grains.
  • the silicon carbide substrate can be polished at a high polishing rate under a particularly high polishing pressure. This is an effect that cannot be obtained with a conventional polishing composition used for a silicon carbide substrate or the like. In this respect, the polishing composition is clearly different from the prior art.
  • the detailed mechanism for obtaining the above effect is not clear, but is considered to be based on an increase in interaction energy generated between the abrasive grains and the object to be polished.
  • mechanical processing of an object to be polished with abrasive grains is caused by frictional force between the abrasive grains and the object to be polished.
  • the magnitude of this frictional force depends on the magnitude of interaction energy generated between the abrasive grains and the object to be polished.
  • the larger the particle diameter of the abrasive grains the larger the number of molecules in the abrasive grains that come into contact with the object to be polished, and the greater the interaction energy per abrasive grain.
  • the abrasive particles that come into contact with the object to be polished by entering the particles A that are small particles into the gap between the particles B that are large particles and the object to be polished. And the number of contact points between the abrasive grains and the object to be polished increases. As the contact point between the abrasive grains and the object to be polished increases, the frictional force between the abrasive grains and the object to be polished increases, and the polishing rate is improved.
  • the polishing pad is deformed under stress so as to reduce the gap between the polishing object. Then, the particles A (small particles) trapped in the gap between the polishing pad and the object to be polished before deformation under stress move to the gap between the particles B (large particles) and the object to be polished. As a result, the number of abrasive grains in contact with the object to be polished further increases. A higher frictional force can be generated by increasing the number of abrasive grains in contact with the object to be polished. That is, pressure energy can be converted to a high polishing rate.
  • a compound semiconductor substrate such as a silicon carbide substrate can be polished at a high polishing rate.
  • the abrasive is at least one selected from silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, manganese oxide, iron oxide, chromium oxide and diamond. In this case, the polishing rate is further improved.
  • the polishing composition contains an oxidizing agent. In this case, a higher polishing rate can be obtained.
  • the polishing composition contains a pH adjuster, and the polishing composition has a pH of 1.0 or more and less than 11.0. In this case, a higher polishing rate can be obtained.
  • the compound semiconductor substrate can be polished at a high polishing rate, the manufacturing time of the compound semiconductor substrate can be shortened. Thereby, the productivity of the compound semiconductor substrate is improved and the manufacturing cost is reduced.
  • the polishing composition may be a one-part type or a multi-part type including a two-part type.
  • the polishing composition contains an oxidizing agent and a component capable of causing alteration of the oxidizing agent
  • the polishing composition is prepared as a multi-dose type, and each component contains the component and the oxidizing agent separately. It is preferable. Thereby, it becomes easy to ensure the storage stability at the time of storage or transportation.
  • the polishing composition is a multi-drug type, in the polishing apparatus having a plurality of polishing composition supply paths, each agent constituting the polishing composition is supplied from separate supply paths. You may make it mix within.
  • the polishing composition is manufactured and sold in the form of a stock solution, and may be diluted at the time of use. That is, the polishing composition may be prepared by diluting a stock solution of the polishing composition with water.
  • the order of mixing and dilution of each agent is arbitrary. For example, a specific agent may be diluted with water and then mixed with the remaining agent. After mixing each agent, the mixture may be diluted with water.
  • the polishing pad used in the polishing step using the polishing composition is not particularly limited by the material, physical properties such as hardness and thickness.
  • any polishing pad of polyurethane type, non-woven fabric type, suede type, including abrasive grains, or not including abrasive grains may be used.
  • abrasive grains various colloidal silicas containing silica particles having a major axis / minor axis ratio of 1.1 or less in various particle size distributions were used.
  • the colloidal silica, sodium vanadate as an oxidizing agent and hydrogen peroxide water, and ion-exchanged water were mixed, and ammonia as a pH adjusting agent was added to the mixture to adjust the pH to 6.5.
  • polishing compositions of Examples 1 and 2 and Comparative Examples 1 to 8 having different abrasive particle size distributions were prepared.
  • Table 1 shows the common composition of each polishing composition.
  • Tables 3 and 4 show the particle size distribution of the abrasive grains in each polishing composition.
  • the particle size distribution of the abrasive grains was measured by a dynamic light scattering method using UPA-EX250 manufactured by Nikkiso Co., Ltd.
  • Test 1 Using the polishing compositions of Examples 1 and 2 and Comparative Examples 1 to 8, the surface of the silicon carbide substrate was polished under the conditions shown in Table 2.
  • the silicon carbide substrate used has a Si surface with an off angle of 0 °, a circular shape with a diameter of 50 mm (2 inches), and a Vickers hardness of 2200 Hv.
  • polishing rate was evaluated about each polishing composition.
  • the polishing rate was calculated by measuring the mass difference between the silicon carbide substrates before and after polishing, and dividing the obtained mass difference by the density, area, and polishing time of the silicon carbide substrate. The results are shown in the “Polishing rate” column of Table 3. Further, each polishing composition was determined based on the calculated polishing rate. The result is shown in the “determination” column of Table 3.
  • the criteria for determination are as follows.
  • polishing rate is 300 nm / hour or more.
  • polishing rate is 200 nm / hour or more and less than 300 nm / hour.
  • Test 2 Using the polishing composition of Example 1 and Comparative Example 4, the surface of a sapphire substrate, which is a semiconductor substrate other than the compound semiconductor substrate, was polished under the conditions shown in Table 2.
  • the used sapphire substrate is a circular C-plane substrate having a diameter of 50 mm (2 inches).
  • the polishing rate was calculated in the same manner as in Test 1 above. The results are shown in the “Polishing rate” column of Table 4.
  • the polishing examples of Comparative Examples 1 to 8 were used. An excellent polishing rate was obtained as compared with the case where the silicon carbide substrate was polished using the composition.
  • the polishing rate was higher than that of the polishing composition of Comparative Example 4.
  • the high polishing rate obtained by the polishing composition of the present invention is an effect particularly exhibited when a compound semiconductor substrate, particularly a silicon carbide substrate is used as a polishing object.
  • the compound semiconductor substrate is an object to be polished, this effect is obtained by applying a local pressure to the silicon carbide substrate from the large particles B under a high polishing pressure. This is presumably because the formation of strain is promoted and polishing is enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 研磨用組成物は、砥粒と水を含有する。砥粒のうち50質量%以上が粒子径40nm以上80nm以下の粒子Aからなり、且つ砥粒のうち10質量%以上が粒子径150nm以上300nm以下の粒子Bからなる。この研磨用組成物は、化合物半導体基板の表面を研磨する用途で使用される。

Description

研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法
 本発明は、化合物半導体からなる研磨対象物を研磨する用途に使用される研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法に関する。
 化合物半導体は、複数の元素から構成される半導体である。例えば、炭化ケイ素、窒化ガリウム、又はヒ化ガリウム等を含有する化合物半導体が知られている。炭化ケイ素や窒化ガリウムを含有する化合物半導体基板は、LEDやパワーデバイスを製造するための材料として用いられる。化合物半導体基板を各種材料として用いる際には、基板表面を超平滑面に研磨する必要がある。こうした化合物半導体基板の表面を研磨するために、種々の研磨用組成物が使用されている(例えば、特許文献1及び2参照)。
 ところで、炭化ケイ素や窒化ガリウムは、酸やアルカリに対して優れた耐食性、即ち高い化学的安定性をもち、且つダイヤモンドに次ぐ高い硬度を有する。そのため、炭化ケイ素や窒化ガリウムを含有する化合物半導体基板の研磨には多大な時間を必要とする。したがって、前記化合物半導体基板の研磨に使用される研磨用組成物において重要な点は、高い研磨速度を実現することである。
 特許文献1では、炭化ケイ素基板の研磨用組成物中に、オルト過ヨウ素酸やメタ過ヨウ素酸等の酸化剤と、コロイダルシリカ砥粒とを含有させることにより研磨速度の向上を図っている。また、特許文献2では、研磨用組成物中に、タングステン酸塩やモリブデン酸塩等の酸化剤と、酸素供与剤と、砥粒と、pH調整剤とを含有させることにより研磨速度の向上を図っている。詳述すると、酸化剤が遷移金属の塩である場合、遷移金属元素は複数の酸化数をとることができるため、酸化反応において酸化剤の価数は変化する。更に、酸素供与剤が、変化した酸化剤の価数を元に戻すことで、酸化剤の高い酸化力を維持することができる。研磨用組成物において酸素供与剤と遷移金属酸化剤との適正な組み合わせを使用することによって、研磨速度の向上がもたらされる。
特開2007-027663号公報 特開2010-284784号公報
 本発明者は、鋭意研究の結果、砥粒と水とを含有する研磨用組成物であって、砥粒のうち50質量%以上が粒子径40nm以上80nm以下の粒子Aからなり、且つ砥粒のうち10質量%以上が粒子径150nm以上300nm以下の粒子Bからなる研磨用組成物により、化合物半導体基板に対する研磨速度を高めることができることを見出した。本発明の目的は、化合物半導体基板、特に高硬度(例えば、ビッカース硬度が1,500Hv以上)の化合物半導体基板を高い研磨速度で研磨することができる研磨用組成物を提供することにある。本発明の更なる目的は、当該研磨用組成物を用いた化合物半導体基板の製造方法を提供することにある。
 本発明の一態様において、砥粒及び水を含有する研磨用組成物であって、砥粒のうち50質量%以上が粒子径40nm以上80nm以下の粒子Aからなり、且つ砥粒のうち10質量%以上が粒子径150nm以上300nm以下の粒子Bからなる研磨用組成物が提供される。
 砥粒は、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化マンガン、酸化鉄、酸化クロム及びダイヤモンドから選ばれる少なくとも1種であることが好ましい。
 研磨用組成物は、酸化剤を更に含有することが好ましく、pH調整剤を更に含有することが好ましい。
 また、本発明の別の態様において、上記研磨用組成物を用いて化合物半導体基板を研磨する研磨工程を含む、化合物半導体基板の製造方法が提供される。
 本発明によれば、化合物半導体基板、特にビッカース硬度が1,500Hv以上の高硬度の化合物半導体基板を高い研磨速度で研磨することができる。
 以下、本発明の一実施形態を説明する。
 研磨用組成物は、化合物半導体基板の製造工程等において、化合物半導体基板を研磨する用途に使用される。研磨される化合物半導体基板は、複数の元素から構成される半導体からなる基板である。化合物半導体を構成する材料としては、例えば、炭化ケイ素、窒化ガリウム、ヒ化ガリウム等が挙げられる。本実施形態の研磨用組成物は特に、高硬度(例えば、ビッカース硬度が1,500Hv以上)の化合物半導体基板、具体例としては炭化ケイ素や窒化ガリウムからなる化合物半導体基板を研磨する用途に好適に使用することができる。
 研磨用組成物は、砥粒及び水を含有し、好ましくは酸化剤及びpH調整剤等の成分を更に含有する。研磨用組成物は砥粒等の各成分を水に混合して調製される。
 (砥粒)
 砥粒は化合物半導体基板の表面を物理的に研磨する働きをする。砥粒としては、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、酸化チタン、酸化マンガン、酸化鉄、酸化クロム、ダイヤモンド等からなる粒子が挙げられる。これらの粒子のなかでも、研磨速度の向上の観点から、酸化ケイ素や酸化アルミニウムからなる粒子が好ましく、酸化ケイ素からなる粒子が特に好ましい。酸化ケイ素からなる粒子としては、例えば、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカから選ばれるシリカ粒子が挙げられる。これらの粒子のなかでも、コロイダルシリカが特に好ましい。これら砥粒のうち一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 砥粒の粒子形状は真球に近い形状であることが好ましい。具体的には、粒子の長径/短径比の平均値が1.2以下であることが好ましく、より好ましくは1.1以下である。
 上記長径/短径比は、例えば、砥粒の電子顕微鏡画像を用いて求めることができる。具体的には、所定個数(例えば200個)の粒子の走査型電子顕微鏡画像において、各々の粒子に対し最小外接矩形を描く。次に、各最小外接矩形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除し、それらの平均値を算出することにより、長径/短径比の平均値を求めることができる。こうした画像解析処理に基づく上記長径/短径比の平均値の算出は、一般的な画像解析ソフトウェアを用いて行うことができる。
 また、研磨用組成物中において、砥粒は特定の粒子径分布をもつように含有されている。具体的には、研磨用組成物中に含有される全ての砥粒のうち、質量基準で、粒子径が40nm以上80nm以下である粒子A(小粒子)の割合が50%以上であり、粒子径が150nm以上300nm以下である粒子B(大粒子)の割合が10%以上である。更に、研磨用組成物中に含有される全ての砥粒のうち、質量基準で、上記粒子A及び上記粒子Bの合計が60%以上であり、好ましくは80%以上である。上記の粒子径分布をもつ砥粒を使用することにより、化合物半導体基板を研磨する際に高い研磨速度が得られる。
 上記粒子径は砥粒の凝集粒子径(二次粒子径)である。上記粒子径分布は、例えば、日機装社製のUPA-EX250を用いた動的光散乱法により測定することができる。また、二種以上の粒子(例えば、酸化ケイ素の粒子と酸化アルミニウムの粒子)が混合されている場合には、各粒子が混合された状態で粒子径分布を測定してもよいし、粒子の種類毎に粒子径を別々に測定し、それらを各粒子の混合比率に従って合成することによって上記粒子径分布を求めてもよい。
 研磨用組成物中の砥粒の総含有量は、2質量%以上であることが好ましく、より好ましくは10質量%以上である。砥粒の総含有量の増大につれて、高い研磨速度が得られる。研磨用組成物における砥粒の総含有量は、50質量%以下であることが好ましく、より好ましくは40質量%以下である。砥粒の総含有量の減少につれて、研磨用組成物の分散安定性が向上して、取り扱いが容易となる。
 (水)
 水は他の成分の分散媒又は溶媒となる。水は、研磨用組成物に含有される他の成分の働きを阻害しないことが好ましい。このような水の例として、例えば遷移金属イオンの合計含有量が100ppb以下の水が挙げられる。水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルターによる異物の除去、蒸留等によって高めることができる。具体的には、例えば、イオン交換水、純水、超純水、蒸留水等を用いることが好ましい。
 (酸化剤)
 研磨用組成物は酸化剤を含有してもよい。酸化剤は化合物半導体基板の表面を化学的に研磨する働きをする。酸化剤としては、例えば、過マンガン酸塩、過ヨウ素酸、過ヨウ素酸塩、過硫酸塩、バナジン酸塩、過酸化水素水、次亜塩素酸塩、酸化鉄、過酢酸、オゾン等が挙げられる。これらの酸化剤のなかでも、研磨速度の向上の観点から、過マンガン酸塩やバナジン酸塩が好ましい。これらの酸化剤のうち一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。更に、酸化剤は、例えば過酸化物やオキソ酸等の酸素供与剤と混合して用いることもできる。
 研磨用組成物中の酸化剤の含有量は、0.2質量%以上であることが好ましく、より好ましくは0.5質量%以上である。酸化剤の含有量の増大につれて、高い研磨速度が得られる。研磨用組成物中の酸化剤の含有量は、10質量%以下であることが好ましく、より好ましくは5質量%以下である。酸化剤の含有量の減少につれて、研磨用組成物の安定性が向上する。
 (pH)
 研磨用組成物のpHの範囲は、1.0以上11.0未満であることが好ましく、より好ましくは2.0以上8.0未満である。研磨用組成物のpHが上記の範囲内にある場合、研磨速度が向上する。
 研磨用組成物のpHは、例えばpH調整剤を添加することにより調整することができる。pH調整剤としては、公知の酸、塩基、又はそれらの塩を用いることができる。
 pH調整剤として使用できる酸としては、例えば、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸及びリン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸及びフェノキシ酢酸等の有機酸が挙げられる。なお、研磨速度向上の観点から、上記無機酸のなかでも特にリン酸、硝酸、又は硫酸を用いることが好ましく、上記有機酸のなかでもクエン酸、シュウ酸、又は酒石酸を用いることが好ましい。
 pH調整剤として使用できる塩基としては、例えば、アミンや水酸化第四アンモニウム等の有機塩基、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物及びアンモニア等が挙げられる。
 上記酸のアンモニウム塩やアルカリ金属塩等の塩を、上記の酸に代えて、又は上記酸と組み合わせて用いることもできる。特に、弱酸と強塩基、強酸と弱塩基、又は弱酸と弱塩基の組み合わせの塩であることが好ましい。このような塩はpHの緩衝作用を発揮することが期待される。
 (その他成分)
 研磨用組成物中には、必要に応じて研磨用組成物に一般に含有されている公知の添加剤等のその他成分を含有させることができる。その他成分としては、例えば、防腐剤、防黴剤、防錆剤のほか、錯化剤やエッチング剤等の研磨速度をさらに高める作用を有する添加剤、砥粒の分散性を向上させる分散剤、凝集体の再分散を容易にする分散助剤が挙げられる。
 次に、上記研磨用組成物を用いて化合物半導体基板を研磨する研磨工程について記載する。ここでは、高硬度の化合物半導体基板である炭化ケイ素基板を研磨する研磨工程を一例として記載する。
 上記研磨用組成物を用いた炭化ケイ素基板の研磨は、一般的な研磨装置を用いて行うことができる。研磨装置としては、例えば、片面研磨装置や両面研磨装置がある。片面研磨装置は、キャリアと呼ばれる保持具を用いて基板を保持し、研磨用組成物を供給しながら、研磨布を貼付した定盤(研磨パッド)を基板の片面に押しつけ、定盤を回転させることにより基板の片面を研磨する。両面研磨装置は、キャリアを用いて基板を保持し、上方より研磨用組成物を供給しながら、研磨布が貼付された定盤(研磨パッド)を基板の両面に押しつけ、それらを相反する方向に回転させることにより基板の両面を研磨する。このとき、研磨パッド及び研磨用組成物と基板との間の摩擦による物理的作用と、研磨用組成物が基板にもたらす化学的作用によって基板が研磨される。
 なお、上記の研磨工程における研磨条件は特に限定されるものではないが、研磨速度の向上の観点から、基板に対する研磨圧力及び線速度を特定の範囲に設定することが好ましい。
 具体的には、研磨圧力は、加工面積1cmあたり400gを超えることが好ましく、より好ましくは、加工面積1cmあたり600g以上である。また、研磨圧力は、加工面積1cmあたり1000g以下であることが好ましい。研磨圧力の増大につれて、研磨時において、研磨用組成物中の砥粒と基板との接触点が増加し、摩擦力が大きくなる。そのため、高い圧力下では研磨速度は高くなる傾向にある。なお、炭化ケイ素基板の研磨においては、通常、加工面積1cmあたり400g以下の研磨圧力が加えられているが、本実施形態においては、こうした通常の研磨圧力よりも高い圧力を加えることが好ましい。
 線速度は、一般に研磨パッドの回転数、キャリアの回転数、基板の大きさ、基板の数等の影響により変化する値である。線速度が大きい場合は基板に加わる摩擦力が大きくなるため、基板に対する機械的研磨作用が大きくなる。また、摩擦によって発生する熱が、研磨用組成物による化学的研磨作用を高めることがある。
 本実施形態においては、線速度は10m/分以上であることが好ましく、より好ましくは30m/分以上である。また、線速度は300m/分以下であることが好ましく、より好ましくは200m/分以下である。線速度の増大につれて、高い研磨速度が得られる。線速度が上記の範囲内にある場合、十分に高い研磨速度が達成されることに加え、基板に対し適度な摩擦力を付与することができる。
 研磨時における研磨用組成物の供給速度は、研磨する基板の種類や、研磨装置の種類、他の研磨条件に依存するが、基板及び研磨パッドの表面全体に均一に供給されるのに十分な速度であることが好ましい。
 次に、炭化ケイ素基板の研磨時における上記研磨用組成物の作用について記載する。
 上記研磨用組成物中には、粒子径が40nm以上80nm以下である粒子A(小粒子)の割合が砥粒全体の50質量%以上、粒子径が150nm以上300nm以下である粒子B(大粒子)の割合が砥粒全体の10質量%以上という特定の粒子径分布をもつように砥粒が含有されている。上記研磨用組成物によれば、特に高い研磨圧力下において、炭化ケイ素基板を高い研磨速度で研磨することができる。これは、炭化ケイ素基板等に用いられる従来の研磨用組成物では得られない効果である。この点において、上記研磨用組成物は従来技術とは明確に異なる。
 上記の効果が得られる詳細な機構は明らかではないが、砥粒と研磨対象物との間に生じる相互作用エネルギーの増大に基づくものであると考えられる。一般的に、砥粒による研磨対象物の機械的加工は、砥粒と研磨対象物との間の摩擦力によってもたらされる。この摩擦力の大きさは、砥粒と研磨対象物との間に生じる相互作用エネルギーの大きさに依存する。砥粒の粒子径が大きいほど、研磨対象物に接触する砥粒中の分子の数が多くなるため、砥粒1個あたりの相互作用エネルギーは大きくなる。しかし、研磨用組成物中に粒子径の大きい砥粒を多数含有させた場合、研磨用組成物中における砥粒の分散安定性を確保することは難しい。その理由は、好適な相互作用エネルギーを得るために十分な大きさの粒子径をもつ砥粒を研磨用組成物中に多数含有させると、砥粒が凝集して研磨用組成物のゲル化を招くおそれがあるためである。そのため、砥粒の粒子径を大きくすることによって研磨速度を向上させる手法には限界がある。
 これに対して、上記研磨用組成物の場合には、大粒子である粒子Bと研磨対象物との間の隙間に小粒子である粒子Aが入り込むことにより、研磨対象物に接触する砥粒の数が増加するとともに、砥粒と研磨対象物との接触点が増加する。砥粒と研磨対象物との接触点の増加にともない、砥粒と研磨対象物との間の摩擦力が増大し、研磨速度が向上する。
 また、研磨圧力を高めた場合には、研磨パッドは研磨対象物との間の隙間を減少させるように応力下で変形する。すると、応力下での変形前に研磨パッドと研磨対象物との間の隙間に捕らわれていた粒子A(小粒子)が、粒子B(大粒子)と研磨対象物との間の隙間に移行し、研磨対象物に接触する砥粒の粒子数が更に増加する結果となる。研磨対象物に接触する砥粒の数の増加によって、更に高い摩擦力を生み出すことができる。つまり、圧力エネルギーを高い研磨速度に変換することができる。
 以上詳述した実施形態によれば、次のような効果が発揮される。
 (1)高い研磨速度で炭化ケイ素基板等の化合物半導体基板を研磨することができる。
 (2)好ましくは、砥粒は、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化マンガン、酸化鉄、酸化クロム及びダイヤモンドから選ばれる少なくとも1種である。この場合には、研磨速度がより向上する。
 (3)好ましくは、研磨用組成物は酸化剤を含有する。この場合には、より高い研磨速度が得られる。
 (4)好ましくは、研磨用組成物はpH調整剤を含有し、研磨用組成物のpHは1.0以上11.0未満である。この場合には、より高い研磨速度が得られる。
 (5)高い研磨速度で化合物半導体基板を研磨することができるため、化合物半導体基板の製造時間を短縮することができる。これにより、化合物半導体基板の生産性が向上するとともに製造コストが低減する。
 なお、前記実施形態は次のように変更されてもよい。
 ・ 研磨用組成物は、一剤型であってもよいし、二剤型を含む多剤型であってもよい。例えば、研磨用組成物が酸化剤及びその酸化剤の変質を惹起し得る成分を含有する場合、研磨用組成物を多剤型として調製し、各剤に当該成分及び酸化剤を別々に含有させることが好ましい。これにより、貯蔵時や輸送時における保存安定性を確保することが容易となる。また、研磨用組成物が多剤型である場合には、研磨用組成物の供給経路を複数有する研磨装置において、研磨用組成物を構成する各剤を、別々の供給経路から供給して装置内において混合されるようにしてもよい。
 ・ 研磨用組成物は、原液の形態で製造及び販売されるとともに、使用時に希釈されてもよい。つまり、研磨用組成物の原液を水で希釈することにより研磨用組成物を調製してもよい。研磨用組成物が多剤型の原液である場合には、各剤の混合及び希釈の順序は任意であり、例えば、特定の剤を水で希釈した後に残りの剤と混合してもよいし、各剤を混合した後に、その混合物を水で希釈してもよい。
 ・ 研磨用組成物を用いた研磨工程で使用される研磨パッドは、その材質、硬度や厚み等の物性等によって特に限定されるものではない。例えば、ポリウレタンタイプ、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもののいずれの研磨パッドを用いてもよい。
 実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
 砥粒として、長径/短径比が1.1以下のシリカ粒子を様々な粒子径分布で含む種々のコロイダルシリカを使用した。上記コロイダルシリカ、酸化剤としてのバナジン酸ナトリウム及び過酸化水素水、並びにイオン交換水を混合し、この混合物に、pH調整剤としてのアンモニアを添加してpHを6.5に調整した。このようにして、砥粒の粒子径分布が異なる実施例1~2及び比較例1~8の研磨用組成物を調製した。各研磨用組成物の共通組成を表1に示す。また、各研磨用組成物中の砥粒の粒子径分布を表3及び4に示す。砥粒の粒子径分布は、日機装社製のUPA-EX250を用いて動的光散乱法により測定した。
 (試験1)
 実施例1~2及び比較例1~8の研磨用組成物を用いて、炭化ケイ素基板の表面を表2に示す条件で研磨した。使用した炭化ケイ素基板は、Si面のオフ角0°、直径50mm(2インチ)の円形状、ビッカース硬度2200Hvのものである。そして、各研磨用組成物について研磨速度を評価した。研磨速度は、研磨前後における炭化ケイ素基板の質量差を測定し、得られた質量差を炭化ケイ素基板の密度、面積、及び研磨時間で除することにより算出した。その結果を表3の“研磨速度”欄に示す。また、算出した研磨速度に基づいて、各研磨用組成物の判定を行った。その結果を表3の“判定”欄に示す。なお、判定基準は以下のとおりである。
 A:研磨速度が300nm/時以上である場合。
 B:研磨速度が200nm/時以上300nm/時未満である場合。
 C:研磨速度が200nm/時未満である場合。
 (試験2)
 実施例1及び比較例4の研磨用組成物を用いて、化合物半導体基板以外の半導体基板であるサファイア基板の表面を表2に示す条件で研磨した。使用したサファイア基板は、直径50mm(2インチ)の円形状のC面基板である。そして、各研磨用組成物について、上記試験1と同様にして研磨速度を算出した。その結果を表4の“研磨速度”欄に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、特定の粒子径分布をもつ砥粒を含有する実施例1~2の研磨用組成物を用いて炭化ケイ素基板を研磨した場合には、比較例1~8の研磨用組成物を用いて炭化ケイ素基板を研磨した場合と比較して優れた研磨速度が得られた。一方で、表4に示すように、サファイア基板を研磨対象物とした場合においては、実施例1の研磨用組成物を用いても、比較例4の研磨用組成物と比較して高い研磨速度は得られなかった。この結果から、本発明の研磨用組成物により得られる高い研磨速度は、化合物半導体基板、中でも炭化ケイ素基板を研磨対象物とした場合に特に発揮される効果であることが示唆される。この効果は、化合物半導体基板を研磨対象物とした場合においては、高研磨圧力下で大粒子である粒子Bから炭化ケイ素基板に局所的な圧力が付与されることにより、炭化ケイ素基板中の格子ひずみの形成が促進され、研磨が増進するためと推測される。

Claims (5)

  1.  化合物半導体基板の研磨に用いられる研磨用組成物であって、
     砥粒と水とを含有し、砥粒のうち50質量%以上が粒子径40nm以上80nm以下の粒子Aからなり、且つ砥粒のうち10質量%以上が粒子径150nm以上300nm以下の粒子Bからなることを特徴とする研磨用組成物。
  2.  前記砥粒は、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化マンガン、酸化鉄、酸化クロム及びダイヤモンドから選ばれる少なくとも1種であることを特徴とする請求項1に記載の研磨用組成物。
  3.  酸化剤を更に含有することを特徴とする請求項1又は2に記載の研磨用組成物。
  4.  pH調整剤を更に含有することを特徴とする請求項1~3のいずれか1項に記載の研磨用組成物。
  5. 請求項1~4のいずれか1項に記載の研磨用組成物を用いて化合物半導体基板を研磨する研磨工程を含む化合物半導体基板の製造方法。
PCT/JP2013/055801 2012-03-05 2013-03-04 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法 WO2013133198A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,373 US9796881B2 (en) 2012-03-05 2013-03-04 Polishing composition and method using said polishing composition to manufacture compound semiconductor substrate
JP2014503829A JP6042407B2 (ja) 2012-03-05 2013-03-04 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-048269 2012-03-05
JP2012048269 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013133198A1 true WO2013133198A1 (ja) 2013-09-12

Family

ID=49116675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055801 WO2013133198A1 (ja) 2012-03-05 2013-03-04 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法

Country Status (4)

Country Link
US (1) US9796881B2 (ja)
JP (1) JP6042407B2 (ja)
TW (1) TWI566884B (ja)
WO (1) WO2013133198A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002705A1 (ja) * 2015-06-30 2017-01-05 株式会社フジミインコーポレーテッド 研磨用組成物
JP2018032785A (ja) * 2016-08-25 2018-03-01 山口精研工業株式会社 炭化珪素基板用研磨剤組成物
JP2018067591A (ja) * 2016-10-18 2018-04-26 山口精研工業株式会社 窒化物半導体基板用研磨剤組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI546371B (zh) * 2014-11-10 2016-08-21 盟智科技股份有限公司 研磨組成物
JP6825957B2 (ja) * 2017-03-28 2021-02-03 株式会社フジミインコーポレーテッド 研磨用組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165566A (ja) * 2005-12-13 2007-06-28 Fujifilm Corp 金属用研磨液及び研磨方法
JP2007208215A (ja) * 2006-02-06 2007-08-16 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167928B2 (ja) * 2003-04-23 2008-10-22 住友金属鉱山株式会社 Iii−v族化合物半導体ウェハ用の研磨液及びそれを用いたiii−v族化合物半導体ウェハの研磨方法
TWI364450B (en) * 2004-08-09 2012-05-21 Kao Corp Polishing composition
JP4752214B2 (ja) * 2004-08-20 2011-08-17 住友電気工業株式会社 エピタキシャル層形成用AlN結晶の表面処理方法
US20080171441A1 (en) * 2005-06-28 2008-07-17 Asahi Glass Co., Ltd. Polishing compound and method for producing semiconductor integrated circuit device
JP2007027663A (ja) 2005-07-21 2007-02-01 Fujimi Inc 研磨用組成物
JP2007165565A (ja) * 2005-12-13 2007-06-28 Tdk Corp 多層セラミック基板の製造方法
JP2008060460A (ja) * 2006-09-01 2008-03-13 Fujifilm Corp 金属研磨方法
US7678700B2 (en) * 2006-09-05 2010-03-16 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers
JP4523935B2 (ja) * 2006-12-27 2010-08-11 昭和電工株式会社 炭化珪素単結晶基板の研磨用水系研磨スラリー及び研磨法。
JP2008181955A (ja) * 2007-01-23 2008-08-07 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2009155469A (ja) * 2007-12-26 2009-07-16 Kao Corp 研磨液組成物
JP5469809B2 (ja) * 2007-12-26 2014-04-16 花王株式会社 研磨液組成物
JP2009231365A (ja) * 2008-03-19 2009-10-08 Sumitomo Electric Ind Ltd 半導体基板の表面処理のモニター方法およびマーカ付半導体基板
JP5658443B2 (ja) 2009-05-15 2015-01-28 山口精研工業株式会社 炭化ケイ素基板用研磨剤組成物
JP5819076B2 (ja) * 2010-03-10 2015-11-18 株式会社フジミインコーポレーテッド 研磨用組成物
JP5035387B2 (ja) * 2010-05-10 2012-09-26 住友電気工業株式会社 研磨剤、化合物半導体の製造方法および半導体デバイスの製造方法
JP2013165088A (ja) * 2010-06-03 2013-08-22 Asahi Glass Co Ltd 研磨剤および研磨方法
EP2587526A1 (en) * 2010-06-23 2013-05-01 Nissan Chemical Industries, Ltd. Composition for polishing silicon carbide substrate and method for polishing silicon carbide substrate
TWI605112B (zh) * 2011-02-21 2017-11-11 Fujimi Inc 研磨用組成物
EP3103851B1 (en) * 2014-02-06 2022-05-18 Asahi Kasei Kogyo Co., Ltd. Polishing abrasive particle, production method therefor, polishing method, polishing device, and slurry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165566A (ja) * 2005-12-13 2007-06-28 Fujifilm Corp 金属用研磨液及び研磨方法
JP2007208215A (ja) * 2006-02-06 2007-08-16 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002705A1 (ja) * 2015-06-30 2017-01-05 株式会社フジミインコーポレーテッド 研磨用組成物
JP2018032785A (ja) * 2016-08-25 2018-03-01 山口精研工業株式会社 炭化珪素基板用研磨剤組成物
JP2018067591A (ja) * 2016-10-18 2018-04-26 山口精研工業株式会社 窒化物半導体基板用研磨剤組成物

Also Published As

Publication number Publication date
TWI566884B (zh) 2017-01-21
US9796881B2 (en) 2017-10-24
JP6042407B2 (ja) 2016-12-14
TW201347905A (zh) 2013-12-01
JPWO2013133198A1 (ja) 2015-07-30
US20150050862A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP4053165B2 (ja) 研磨用組成物およびそれを用いた研磨方法
JP5614498B2 (ja) 非酸化物単結晶基板の研磨方法
WO2012165376A1 (ja) 研磨剤および研磨方法
WO2013035539A1 (ja) 研磨剤および研磨方法
JP6042407B2 (ja) 研磨用組成物、及び当該研磨用組成物を用いた化合物半導体基板の製造方法
JP2000160139A (ja) 研磨用組成物およびそれを用いた研磨方法
TWI576420B (zh) A polishing composition, a polishing method, and a method for producing a sapphire substrate
JP2012248569A (ja) 研磨剤および研磨方法
JPWO2013069623A1 (ja) 研磨用組成物
WO2017114309A1 (zh) 一种化学机械抛光液及其应用
TWI546371B (zh) 研磨組成物
JP6564638B2 (ja) 研磨用組成物、磁気ディスク基板製造方法および磁気ディスク基板
WO2016009629A1 (ja) 研磨用組成物
EP3263670A1 (en) Composition for polishing, polishing method and method for producing hard-brittle material substrate
JP6825957B2 (ja) 研磨用組成物
WO2013021946A1 (ja) 化合物半導体研磨用組成物
JP6279156B2 (ja) 研磨用組成物
JPWO2014119301A1 (ja) 表面選択性研磨組成物
KR102455159B1 (ko) 금속막 연마용 슬러리 조성물
WO2021124771A1 (ja) 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法
KR102544609B1 (ko) 텅스텐 막 연마 슬러리 조성물
JP2002047483A (ja) 研磨用組成物およびそれを用いた研磨方法
TW201715012A (zh) 研磨用組成物、研磨方法、及製造方法
KR101715050B1 (ko) 텅스텐 연마용 슬러리 조성물
KR101833218B1 (ko) 텅스텐 연마용 슬러리 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503829

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758420

Country of ref document: EP

Kind code of ref document: A1