WO2013132550A1 - 溶接方法 - Google Patents

溶接方法 Download PDF

Info

Publication number
WO2013132550A1
WO2013132550A1 PCT/JP2012/006292 JP2012006292W WO2013132550A1 WO 2013132550 A1 WO2013132550 A1 WO 2013132550A1 JP 2012006292 W JP2012006292 W JP 2012006292W WO 2013132550 A1 WO2013132550 A1 WO 2013132550A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
molten pool
welding method
wire
arc
Prior art date
Application number
PCT/JP2012/006292
Other languages
English (en)
French (fr)
Inventor
篤寛 川本
康士 向井
潤司 藤原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12870708.0A priority Critical patent/EP2823926B1/en
Priority to JP2014503292A priority patent/JP6043969B2/ja
Priority to CN201280055003.4A priority patent/CN103930231B/zh
Priority to EP18182093.7A priority patent/EP3401049A1/en
Publication of WO2013132550A1 publication Critical patent/WO2013132550A1/ja
Priority to US14/220,597 priority patent/US10155276B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to an arc welding method in which arc welding is performed using a welding wire which is a consumable electrode.
  • FIG. 6 shows a cross-sectional view of a bead cross section when a galvanized steel sheet is welded by a general consumable electrode arc welding method as a welding method.
  • 7A and 7B are diagrams illustrating a conventional arc welding control method, FIG. 7A is a diagram illustrating a change in welding current with respect to time, and FIG. 7B is a diagram illustrating a change in wire feeding speed with respect to time.
  • the boiling point of zinc in the zinc plating 110 plated on the surfaces of the galvanized steel sheet 103 and the galvanized steel sheet 104 is 907 degrees, which is lower than the melting point of iron, 1536 degrees. Therefore, when arc welding is performed on the galvanized steel sheet 103 and the galvanized steel sheet 104, zinc is vaporized, and the vapor of this zinc (hereinafter referred to as “steam zinc”) diffuses outside through the molten pool. try to. However, when the solidification rate of the molten metal is high, the vapor zinc cannot be sufficiently diffused to the outside and remains as pores 120 in the weld bead 107 and on the surface of the weld bead 107.
  • the pore 120 When the pore 120 stays in the weld bead 107, it becomes a blow hole, and when it opens on the surface of the weld bead 107, it becomes a pit. Since both blowholes and pits impair the strength of the welded material after welding, for example, in the automobile industry, where galvanized steel sheets are often used, it is particularly necessary to suppress the occurrence of pits. Are often managed.
  • FIGS. 7A and 7B consider a case where pulse welding is performed using Ar (argon) or a gas in which carbon dioxide gas is mixed in Ar (argon) at a ratio of 25% or less.
  • the welding current Aw is applied with a swell cycle TW in which the sum of the first period TL and the second period TH is one cycle, and the wire feed speed Wf shown in FIG.
  • An arc welding control method for performing welding by feeding a wire is known (see, for example, Patent Document 1).
  • the first period TL of the undulation cycle TW has a current waveform in which the first average arc force FL acts on the molten pool.
  • a peak current IL having a time width tL is passed with a pulse period Tp.
  • the second period TH has a current waveform on which the second average arc force FH, which is an arc force larger than the first average arc force FL, acts.
  • a peak current IH having a time width tH is supplied with a pulse period Tp.
  • the swell frequency TW at this time is varied in the range of 10 Hz to 50 Hz.
  • the arc force acts as a force that pushes down the molten pool. Therefore, when the arc force fluctuates between the first average arc force FL and the second average arc force FH, the molten pool becomes in a wavy state. Even if pores 120 are generated from the galvanized layer in the molten pool due to this undulating state, the pores 120 reach the surface of the molten pool due to the flow of the molten pool and the buoyancy of the pores 120 and are released to the outside of the molten pool. .
  • the vapor zinc floats up in the molten pool and is released from the surface of the molten pool, the molten metal ejected at the time of discharge is scattered as it is to the outside as spatter.
  • the molten zinc ejected at the time of discharge of the vapor zinc is short-circuited with the wire and scattered as spatter by electric energy. For this reason, there is a problem that an abnormally large amount of spatter is generated.
  • the present invention provides a welding method that suppresses generation of pores such as blow holes and generation of spatter.
  • a welding method of the present invention is a welding method for welding a surface-treated member using a welding wire, and a droplet formed from the wire is bonded to the member side. And a step of welding the member so that the gas generated from the member escapes from the generation location by pushing the molten pool in the direction opposite to the welding progress direction.
  • the molten pool is pushed so that the overlapping portion of the member is exposed, and the gas generated from the member escapes from the exposed portion consisting of the overlapping portion of the member.
  • spatter can be suppressed.
  • FIG. 1 is a perspective view showing a state in which welding is performed by the welding method according to Embodiment 1 of the present invention.
  • FIG. 2A is a cross-sectional view of the welded portion during the short-circuit period in the first embodiment of the present invention as seen from the horizontal direction.
  • FIG. 2B is a cross-sectional view of the welded portion during the arc period in the first embodiment of the present invention as seen from the horizontal direction.
  • FIG. 2C is a diagram showing a time waveform of the welding current in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an AA cross section of FIG. 1 in Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a BB cross section of FIG. 1 in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing temporal changes in wire feed speed, welding voltage, and welding current in Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view showing a cross section of a weld bead when a galvanized steel sheet is welded by a conventional arc welding control method.
  • FIG. 7A is a diagram showing a change in welding current with respect to time in a conventional arc welding control method.
  • FIG. 7B is a diagram illustrating a change with respect to time of the wire feeding speed in the conventional arc welding control method.
  • FIG. 1 is a perspective view showing a state in which welding is performed by a welding method according to Embodiment 1 of the present invention, here, for example, by an arc welding method.
  • FIG. 2A is a cross-sectional view (CC cross-sectional view of FIG. 1) of welded portion 30 viewed from the horizontal direction during the short-circuit period according to Embodiment 1 of the present invention.
  • FIG. 2B is a cross-sectional view (CC cross-sectional view of FIG. 1) of welded portion 30 during the arc period in the first embodiment of the present invention viewed from the horizontal direction.
  • FIG. 1 is a perspective view showing a state in which welding is performed by a welding method according to Embodiment 1 of the present invention, here, for example, by an arc welding method.
  • FIG. 2A is a cross-sectional view (CC cross-sectional view of FIG. 1) of welded portion 30 viewed from the horizontal direction during the short-circuit period according to Embodiment 1 of the present invention.
  • FIG. 2C is a diagram showing a time waveform of a welding current when welding is performed by the arc welding method of Embodiment 1 of the present invention. And the short circuit period of FIG. 2A and the welding period of FIG. 2B are linked
  • a case where welding using a galvanized steel sheet is performed as the member subjected to the surface treatment will be described.
  • FIG. 3 is a diagram showing an AA cross section of FIG. 1 in Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a BB cross section of FIG. 1 in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing temporal changes in wire feed speed, welding voltage, and welding current in Embodiment 1 of the present invention.
  • a welding wire 2 is automatically fed by a wire feeding device via a welding torch 1 attached to a manipulator of an industrial robot, for example, by a welding device and a wire feeding device (not shown). To send. Along with the feeding of the wire 2, the wire 2 is energized by a welding device to generate an arc 5 between the wire 2 and the upper plate 3 and the lower plate 4 which are galvanized steel plates, and the wire 2, the upper plate 3 and the lower plate 4 is melted and welded.
  • This short-circuit state is a state at the timing of the short-circuit period in the time waveform of the welding current Aw in FIG. 2C.
  • the welding current during this short-circuiting period is to increase the welding current and apply electrical energy to cause the tip of the wire 2 to be moved in order to cause the short-circuited portion at the tip of the wire 2 to move to the molten pool 6 and generate an arc early. Melt.
  • the welding current is further increased, and the first welding current 14 is output for the first predetermined period 13 as shown in FIG. 2C.
  • the arc force of the arc 5 generated by the high welding current acts as a force that pushes the molten pool 6 in a direction opposite to the welding progress direction. Moves when pushed in the opposite direction.
  • the root portion 21 where the upper plate 3 and the lower plate 4 are overlapped is exposed.
  • the exposed state of the root portion 21 is shown as the exposed portion 9 in FIG. 2B.
  • the welding part 30 it becomes high temperature by arc heat and the heat conduction from the molten pool 6, and the upper board 3 and the lower board 4 will be in a molten state as shown in FIG.
  • the zinc on the surfaces of the upper plate 3 and the lower plate 4 is evaporated.
  • the molten pool 6 is pushed in the direction opposite to the welding progress direction to expose the root portion 21 between the upper plate 3 and the lower plate 4 as shown in FIG.
  • the vaporized zinc hereinafter referred to as “vapor zinc” 11
  • the zinc plating vaporized portion which is a plated portion where the zinc of the surface zinc plating 10 shown in FIG. No. 12 is in a state where zinc is not present.
  • the welding result is in a state in which no pores remain as in the weld bead 7 of FIG.
  • the arc 5 is formed so that the vapor zinc 11 generated from the upper plate 3 and the lower plate 4 has a thickness capable of breaking through the molten part 8 and the molten pool 6 covering the exposed part 9 by volume expansion. You may make it push the molten pool 6 with the arc force by. Then, as shown in FIG. 2B, only a part of the melting part 8 covers the exposed part 9 or the upper part of the exposed part 9 is exposed, and the steam zinc 11 is left as it is or one part of the melting part 8. You can break through the part. On the other hand, when there is no arc force due to the arc 5, as shown in FIG.
  • the molten pool 6 covers the region that becomes the exposed portion 9, and further, the molten pool 6 approaches the region that becomes the exposed portion 9, and covers a part thereof. As a result, the entire steam zinc 11 is not released to the outside, and at least a part thereof remains in the molten pool 6.
  • the wire 2 is fed toward the molten pool 6, so that the short circuit state described above is reached, and the state shown in FIG. 2B returns to the state shown in FIG. 2A.
  • the molten pool 6 moves from the state of FIG. 2B during the arc period toward the welding progress direction. That is, during the arc period, the molten pool 6 is pushed in the direction opposite to the welding progress direction by the arc force, and the root portion 21 that is in a high temperature state is exposed due to arc heat and heat conduction from the molten pool 6. As a result, the vapor zinc 11 easily diffuses from the exposed portion 9 to the outside.
  • the welding method of the first embodiment is a welding method in which the surface-treated member is welded using the welding wire 2.
  • the welding method of this Embodiment 1 produces
  • the molten pool 6 is pushed so that the overlapped portion of the member is exposed, and the gas generated from the member escapes from the exposed portion 9 formed of the overlapped portion of the member.
  • spatter can be suppressed.
  • the members may be overlapped and welded, and the molten pool may be pushed so that the overlapping portion of the members is exposed.
  • the gas generated from the member escapes from the exposed portion 9 formed by the overlapping portion of the member.
  • the thickness of the molten pool 6 can be reduced.
  • the arc force is applied so as to be thinner than about 0.5 mm. That is, in the step of welding the members, the members are overlapped and welded, and the thickness of the molten pool 6 located above the overlapped portion of the members breaks through the molten pool 6 due to the volume expansion of the gas generated from the members. Alternatively, the molten pool 6 may be pushed so as to have a thickness that can be removed from the occurrence location.
  • a first welding current 14 shown in FIG. 2C may be supplied to generate an arc force for pushing the molten pool 6.
  • the main force pushing the molten pool 6 is the arc force due to the welding current during the arc period.
  • the first welding current 14 pushes the molten pool 6 during the first predetermined period 13, and then the welding current is decreased during the arc period to The pushing force is reduced or zero, and the movement of the molten pool 6 in the welding progress direction is started early.
  • the first welding current 14 may be maintained at a predetermined magnitude during the first predetermined period 13.
  • a constant arc force is generated during a predetermined period of time during the arc period to push the molten pool 6, so that the steam zinc 11 can be easily released during this period.
  • spatter can be suppressed.
  • the molten pool 6 is pushed to move the molten pool 6 in the direction opposite to the welding progress direction. And after the 1st predetermined period 13, it is good also as a method of reducing the force which pushes the molten pool 6, or making the force which pushes the molten pool 6 into zero. As a result, the molten pool 6 that has moved in the welding progress direction, that is, the molten pool 6 that has returned to the welding progress direction, and the wire 2 are brought into contact with each other earlier, so that the next short circuit occurs earlier.
  • the short-circuit transition is performed smoothly by weakening the arc force during the arc period, and the stability of welding is improved. Furthermore, since the welding current is low, the occurrence of a short circuit is ensured and the occurrence of spatter is suppressed.
  • the transition form of the droplet 15 may be a transition form that repeats the separation transition and the short-circuit transition that drop and transition, or a method that is a transition form mainly composed of a short-circuit transition.
  • the 1st welding current 14 output during the 1st predetermined period 13 for pushing the molten pool 6 shown to FIG. 2C is a predetermined current value set beforehand, The value is, for example, , 300A or more and 600A or less. Further, the value of the first predetermined period 13 is, for example, in the range of 2 msec or more and 10 msec or less. These values relating to the first welding current 14 are experimentally studied values, and have a role of pushing the molten pool 6 as an arc force and a role of melting zinc.
  • the first welding current 14 outputs a welding current in the range of 300 A or more and 600 A or less during the arc period, and the first predetermined period 13 for outputting the first welding current 14 is 2 msec or more and 10 msec or less. It is good also as a method. By this method, zinc is appropriately melted, an arc force is generated, and the molten pool 6 is appropriately pushed, so that the vapor zinc 11 can be easily released. Thereby, generation
  • the first welding current 14 is set to a constant value, but it does not have to be constant as long as it is in the range of 300 A or more and 600 A or less. For example, it gradually increases or decreases. For example, it may be output in a sawtooth shape.
  • an increase slope which is an increase amount per unit time of the welding current that increases the current value from the short-circuit opening to the first welding current 14, is shown as an example of a sharp increase in FIG. It may be increased.
  • the shielding gas is carbon dioxide gas (hereinafter referred to as “CO 2 gas”)
  • CO2 gas carbon dioxide gas
  • a gas flow different from the welding shield gas may be supplied to the molten pool 6 in order to push the molten pool 6.
  • a gas having the same quality as the shield gas is supplied as a separate gas flow from a gas supply pipe provided behind the nozzle of the torch 1.
  • the first welding current 14 has an important role as supplying melting energy at the tip of the wire 2 in addition to the force pushing the melting pool 6. Therefore, the welding current during the arc period, particularly the first welding current 14, needs to satisfy both of the roles of a force for pushing the melting pool 6 and a role for melting the wire 2.
  • the first welding current 14 can be set mainly as the melting energy of the tip portion of the wire 2, and the degree of freedom of quantitative setting of the melting energy is expanded. .
  • the amount of melting energy can be changed in accordance with the welding conditions such as the welding material and the shape of the melted portion 8, so that the welding performance can be improved.
  • both the arc force and the gas flow may be used simultaneously to push the molten pool 6.
  • the melting pool 6 may be pushed by generating a magnetic field by an electromagnetic coil provided behind the nozzle of the torch 1 and deflecting the arc 5 in the direction opposite to the welding progress direction.
  • the molten pool 6 is pushed so that the overlapping portion of the member is exposed, and the gas generated from the member escapes from the exposed portion 9 including the overlapping portion of the member.
  • spatter can be suppressed.
  • the degree of freedom in quantitative setting of the melting energy is expanded, and the welding performance can be improved.
  • the distance between the wire 2 and the molten pool 6 is set to a predetermined distance (for example, The stability of the welding is improved by controlling the distance to be 1 mm or more and a distance of about 10 mm or less.
  • the welding current during the arc period in particular, the first welding current 14 has two major roles of generating a force that pushes the molten pool 6 and melting the wire 2.
  • the current density increases because the arc 5 is concentrated.
  • the molten pool 6 is pushed locally with a large force, a part of the pushed molten pool 6 is ejected to the outside, and a good weld bead 7 is not formed.
  • the wire 2 is melted by the welding current during the arc period, particularly the first welding current 14, and the distance between the tip end portion of the wire 2 and the melt pool 6 becomes long.
  • the distance can be increased by feeding the wire 2 backward as in the first embodiment.
  • the entire molten pool 6 can be pushed by the arc-shaped arc 5 spreading in an umbrella shape.
  • an arc can be thrown over a wide area in front of the melted portion 8, thereby facilitating the formation of the melted portion 8 and vaporizing zinc. Can be promoted.
  • the transition form of the droplet 15 is a transition form mainly of short-circuit transition, and the welding current is reduced to a welding current lower than the welding current at the time of short-circuit detection immediately after the occurrence of the short-circuit.
  • a method of reducing the current value may be used. This method makes it possible to ensure the occurrence of a short circuit and reduce spatter.
  • the constriction state of the wire 2 is detected immediately before the occurrence of the arc, and the value is sharply reduced to a value lower than the welding current immediately before the occurrence of the arc. That is, the constriction is sharply reduced to a value lower than the welding current when the constriction state is detected. By doing so, the spatter at the time of arc generation can be reduced.
  • the surface tension and the viscosity of the molten pool 6 greatly affect the alternate movement of the molten pool 6 in the opposite direction and the moving direction with respect to the welding direction. If the surface tension and the viscosity are too large, it is difficult to move the molten pool 6 and the exposed portion 9 is not formed. On the contrary, if the surface tension and the viscosity are too small, the molten pool 6 is ejected to the outside by the force pushing the molten pool 6. For this reason, appropriate surface tension and viscosity exist, and one of the influential factors is shielding gas.
  • the CO2 gas has a high oxygen (O2) content
  • the surface tension and viscosity of the molten pool 6 are in an appropriate state, and the surface tension and viscosity increase as the argon (Ar) ratio increases.
  • the shielding gas a gas in which CO2 gas is mixed with CO2 gas or argon (Ar) gas and the mixing ratio of CO2 gas is 20% or more and 90% or less is appropriate.
  • the molten metal of the molten pool 6 has appropriate surface tension and viscosity, generation
  • spatter can be suppressed.
  • the type (composition) of the wire 2 is the type (composition) of the wire 2. It has been experimentally confirmed by the inventors that when the shielding gas is 100% CO 2 gas, for example, when YGW 12 or YGW 11 is used, the surface tension and viscosity are good.
  • the moving frequency of the molten pool 6 formed by the combination of the shielding gas and the wire 2 within the above range is, for example, 30 Hz or more and 70 Hz or less, and can be synchronized with the short circuit frequency, so that the welding is stabilized.
  • the welding performance can be improved.
  • the advantages when the wire 2 is fed backward are described as described above.
  • the feeding speed in the case of the normal feeding can generate a short circuit at a higher speed than in the case of the constant feeding welding that is generally performed. This ensures the occurrence of a short circuit and has a spatter reduction effect.
  • the short circuit can be mechanically opened during reverse feeding, the short circuit can be reliably opened, and the short circuit (minute short circuit) that occurs immediately after the short circuit is released can be reduced, thereby reducing spatter. .
  • the forward feed control and the reverse feed control may be performed by periodically repeating the forward feed and the reverse feed of the wire feed speed with a predetermined cycle WF and a predetermined amplitude Wv.
  • FIG. 5 shows a case of a sinusoidal waveform as an example of periodic feeding.
  • the present invention is not limited to this, and a trapezoidal waveform or a sawtooth waveform may be used.
  • This method controls the periodic wire feeding, so that the generation period of the short circuit and the arc is synchronized with the control of the wire feeding, the arc periodicity is increased, and the arc stability is further improved.
  • This method changes the wire feed control according to the short-circuit and arc conditions, so that even if the protruding length changes greatly, the short-circuit condition can be opened reliably, further improving the arc stability. To do.
  • the molten pool is pushed so that the overlapping portion of the member is exposed.
  • the gas generated from the member escapes from the exposed portion, the generation of pores such as blowholes and the generation of spatter can be remarkably suppressed, and during welding such as a member subjected to surface treatment such as galvanized steel sheet This is industrially useful as a welding method for a base material that generates gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本発明の溶接方法は、表面処理が行われた部材を溶接用のワイヤを用いて溶接する溶接方法であって、前記ワイヤの溶滴を前記部材側に移行するステップと、前記部材を溶接することにより前記部材から発生した気体が発生箇所から抜けるように、溶融プールを溶接進行方向とは反対方向に押すステップとを備え、部材の重ね合わせ部分が露出するように溶融プールを押す。これにより、本発明は、前記部材から発生した気体が露出部から抜けるため、ブローホール等の気孔発生およびスパッタの発生を抑制する効果を有する。

Description

溶接方法
 本発明は、消耗電極である溶接ワイヤを用いてアーク溶接を行うアーク溶接方法に関する。
 亜鉛メッキ鋼板の溶接を行う場合、一般的に、短絡移行溶接(CO2溶接、MAG溶接)やパルスMAG溶接が広く用いられている。図6と図7A、図7Bは、亜鉛メッキ鋼板等の溶接を行う従来のアーク溶接制御方法を説明するための図である。図6は、溶接法として一般的な消耗電極式アーク溶接方法により亜鉛メッキ鋼板を溶接したときのビード断面の断面図を示している。図7A、図7Bは、従来のアーク溶接制御方法を示す図で、図7Aは、溶接電流の時間に対する変化を示す図、図7Bは、ワイヤ送給速度の時間に対する変化を示す図である。
 亜鉛メッキ鋼板103および亜鉛メッキ鋼板104の表面にメッキされている亜鉛メッキ110の亜鉛の沸点は907度であり、鉄の融点1536度より低い。したがって、亜鉛メッキ鋼板103および亜鉛メッキ鋼板104に対してアーク溶接を行うと、亜鉛が気化し、この亜鉛の蒸気(以下、「蒸気亜鉛」とする。)が溶融プールを通過して外部に拡散しようとする。しかし、溶融金属の凝固速度が速い場合、蒸気亜鉛が外部に十分に拡散しきれず、溶接ビード107内および溶接ビード107表面に気孔120として残存する。気孔120が溶接ビード107内に留まる場合はブローホールとなり、溶接ビード107表面に開口する場合はピットとなる。ブローホールやピットはいずれも溶接後の溶接物の強度を損なうため、例えば、亜鉛メッキ鋼板が多く使用されている自動車業界では、発生の抑制がとりわけ必要であり、特にピットの発生量を規定して管理する場合が多い。
 また、図7Aおよび図7Bに示すように、Ar(アルゴン)あるいはAr(アルゴン)に炭酸ガスを25%以下の割合で混合したガスを用いてパルス溶接を行う場合を考える。この場合に、図7Aに示すように第1の期間TLと第2の期間THとの和を1周期とするうねり周期TWにより溶接電流Awを印加し、図7Bに示すワイヤ送給速度Wfでワイヤを送給して溶接を行うアーク溶接制御方法が知られている(例えば、特許文献1参照)。図7Aに示すようにうねり周期TWの第1の期間TLは、第1の平均アーク力FLが溶融プールに作用する電流波形を有する。第1の期間TLは、パルス周期Tpで、時間幅tLのピーク電流ILが流されている。また、第2の期間THは、第1の平均アーク力FLより大きなアーク力とされた第2の平均アーク力FHが作用する電流波形を有する。第2の期間THは、パルス周期Tpで、時間幅tHのピーク電流IHが流されている。なお、この時のうねり周波数TWは、10Hz以上、50Hz以下の範囲で変動させている。
 アーク力は、溶融プールを押し下げる力として作用する。そのため、アーク力が、第1の平均アーク力FLと第2の平均アーク力FHとで変動することにより、溶融プールは波打つ状態となる。この波打つ状態により、溶融プール内に亜鉛メッキ層から気孔120が発生しても、この気孔120は溶融プールの流れおよび気孔120の浮力により溶融プールの表面に達し、溶融プールの外部に放出される。
 図7A、図7Bを用いて説明した従来のアーク溶接方法では、実施例として、板厚1.6mm、亜鉛目付け量45g/mでのブローホールの低減検討が記載されており、その効果が報告されている。しかし、この方法では、溶融プールを振動させることが主目的であり、重ね合わせたルート部121(図6参照)が露出する程度にまで溶融プールを移動させることはできない。このため、板厚が2.0mmあるいはそれ以上に厚くなると、必要となる溶け込み量も増加するので溶融プールの厚みも増加し、蒸気亜鉛が放出され難くなる。また、亜鉛目付け量が45g/mより増加した亜鉛メッキ鋼板を溶接すると、蒸気亜鉛の発生量自体が増加する。これらの蒸気亜鉛は、放出されずに溶接ビード107に残存するため、気孔120の発生量が多くなるという課題がある。
 また、蒸気亜鉛は、溶融プール内を浮上して溶融プール表面から放出されるため、放出の際に噴出した溶融金属がそのままスパッタとして外部に飛散する.あるいは、蒸気亜鉛は、放出の際に噴出した溶融金属がワイヤと短絡して電気エネルギーによりスパッタとして飛散する。そのため、スパッタが異常に多量発生するという課題も有していた。
特開平6-285643号公報
 本発明は、ブローホール等の気孔発生およびスパッタの発生を抑制する溶接方法を提供する。
 上記課題を解決するために、本発明の溶接方法は、表面処理が行われた部材を溶接用のワイヤを用いて溶接する溶接方法であって、上記ワイヤから形成された溶滴を上記部材側に移行するステップと、溶融プールを溶接進行方向とは反対方向に押して上記部材から発生した気体が発生箇所から抜けるように上記部材を溶接するステップと、を備えた方法からなる。
 この方法により、部材の重ね合わせ部分が露出するように溶融プールを押すことになり、部材から発生した気体がこの部材の重ね合わせ部分からなる露出部から抜ける。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。
図1は、本発明の実施の形態1における溶接方法で溶接を行っている状態を示す斜視図である。 図2Aは、本発明の実施の形態1における短絡期間中の溶接部を水平方向から見た断面図である。 図2Bは、本発明の実施の形態1におけるアーク期間中の溶接部を水平方向から見た断面図である。 図2Cは、本発明の実施の形態1における溶接電流の時間波形を示す図である。 図3は、本発明の実施の形態1における図1のA-A断面を示す図である。 図4は、本発明の実施の形態1における図1のB-B断面を示す図である。 図5は、本発明の実施の形態1におけるワイヤ送給速度、溶接電圧および溶接電流の時間変化を示す図である。 図6は、従来のアーク溶接制御方法により亜鉛メッキ鋼板を溶接した場合の溶接ビード断面を示す断面図である。 図7Aは、従来のアーク溶接制御方法における溶接電流の時間に対する変化を示す図である。 図7Bは、従来のアーク溶接制御方法におけるワイヤ送給速度の時間に対する変化を示す図である。
 以下、本発明の一実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。
 (実施の形態1)
 図1は、本発明の実施の形態1の溶接方法、ここでは、例えばアーク溶接方法により溶接を行っている状態を示す斜視図である。図2Aは、本発明の実施の形態1における短絡期間中の溶接部30を水平方向から見た断面図(図1のC-C断面図)である。図2Bは、本発明の実施の形態1におけるアーク期間中の溶接部30を水平方向から見た断面図(図1のC-C断面図)である。図2Cは、本発明の実施の形態1のアーク溶接方法で溶接を行った場合の溶接電流の時間波形を示す図である。そして、図2Aの短絡期間および図2Bの溶接期間は、図2Cの溶接電流の時間波形のタイミングに関連付けている。なお、本実施の形態1では、表面処理が行われた部材として、亜鉛メッキ鋼板を用いた溶接を行う場合について説明する。
 図3は、本発明の実施の形態1における図1のA-A断面を示す図である。図4は、本発明の実施の形態1における図1のB-B断面を示す図である。図5は、本発明の実施の形態1におけるワイヤ送給速度、溶接電圧および溶接電流の時間変化を示す図である。
 図1において、図示していない溶接装置およびワイヤ送給装置により、例えば産業用ロボットのマニピュレータに取り付けられた溶接用のトーチ1を介して、溶接用のワイヤ2をワイヤ送給装置により自動的に送給する。ワイヤ2の送給とともに、溶接装置によりワイヤ2に通電してワイヤ2と亜鉛メッキ鋼板である上板3と下板4との間にアーク5を発生させ、ワイヤ2と上板3および下板4とを溶融して溶接を行う。
 図2Aに示すように、送給されるワイヤ2は、溶融プール6に短絡する。この場合、アーク5は消滅しており、溶融プール6を押す力の大部分であるアーク力は発生していない。この短絡状態は、図2Cの溶接電流Awの時間波形では、短絡期間のタイミングでの状態である。
 この短絡期間中の溶接電流は、ワイヤ2の先端の短絡部分を溶融プール6に移行させて早期にアークを発生させるために、溶接電流を上昇させて電気エネルギーを与えてワイヤ2の先端部分を溶融させる。その後、短絡が開放してアーク5が発生すると、さらに溶接電流を上昇させて、図2Cに示すように、第1の溶接電流14を第1の所定期間13の間出力する。この場合、高い溶接電流によって生じるアーク5のアーク力は、図2Bに示すように、溶融プール6を溶接進行方向とは反対方向に押す力として作用し、溶融プール6は、溶接進行方向とは反対方向に押されて移動する。これにより、図3に示すように、上板3と下板4とを重ね合わせたルート部21が露出した状態になる。ルート部21の露出した状態として、図2Bに、露出部9として示している。
 なお、溶接部30では、アーク熱および溶融プール6からの熱伝導によって高温となり、上板3および下板4は、図3に示すように溶融状態となって溶融部8を生じ、亜鉛の沸点を越えて上板3および下板4の表面の亜鉛が気化する。そして、図1や図2Bに示すように、溶融プール6が溶接進行方向と反対方向に押され、図3に示すように上板3と下板4とのルート部21を露出させる。これにより、気化した亜鉛(以下、「蒸気亜鉛」11とする)が容易に外部に放出され、図3に示す表面の亜鉛メッキ10の亜鉛が気化して抜けたメッキ部である亜鉛メッキ気化部12は、亜鉛が存在しない状態となる。これにより、亜鉛が気体として溶融部8に残らないので、溶接結果は、図4の溶接ビード7のように気孔が残存しない状態となる。
 なお、アーク5のアーク力により、図2Bや図3に示す露出部9が完全に露出している場合には、蒸気亜鉛11の放出に際してはスパッタの発生等がなく、蒸気亜鉛11は容易に放出される。また、図2Bにおいて、溶融部8および溶融プール6の一部分が露出部9を覆っていても、その厚さが約0.5mm程度以下の薄い状態で覆っているのであれば、蒸気亜鉛11の放出を阻害することはない。したがって、ルート部21が亜鉛の体積膨張による放出により容易に露出し、容易に蒸気亜鉛11は外部に放出される。すなわち、上板3や下板4から発生した蒸気亜鉛11が、体積膨張により露出部9を覆っている溶融部8や溶融プール6を突き破って抜けることが可能な厚さとなるように、アーク5によるアーク力により溶融プール6を押すようにしても良い。そうすると、図2Bに示すように溶融部8の一部だけが、露出部9を覆う、または、露出部9の上部が露出する状態となり、蒸気亜鉛11が、そのまま、または、溶融部8の一部を突き破って抜けることができる。一方、アーク5によるアーク力がないと、図2Aに示すように溶融プール6が露出部9となる領域を覆い、さらに溶融プール6が露出部9となる領域に迫り、その一部を覆う。これにより、蒸気亜鉛11は、全部が外部に放出されず、少なくともその一部が溶融プール6の中に残存することになる。
 アーク期間が終わった後に、ワイヤ2は、溶融プール6に向けて送給されるので、上述した短絡状態となり、図2Bに示す状態から図2Aに示す状態に戻る。この場合、溶融プール6を押すアーク力が無いので、溶融プール6は、アーク期間中である図2Bの状態から、溶接進行方向に向かって移動する。つまり、アーク期間中は、アーク力によって溶融プール6が溶接進行方向とは反対方向に押されてアーク熱および溶融プール6からの熱伝導によって高温状態になったルート部21が露出する。その結果、露出部9から蒸気亜鉛11が容易に外部に拡散する。これにより、蒸気亜鉛11を含む気化した亜鉛の外部への放出が促進され、気化した亜鉛が溶融プール6を通過して放出する場合が低減されるので、溶接ビード7内に残存する気孔を著しく抑制することが可能となる。
 すなわち、本実施の形態1の溶接方法は、表面処理が行われた部材を溶接用のワイヤ2を用いて溶接する溶接方法である。そして、本実施の形態1の溶接方法は、ワイヤ2から形成された溶滴15を部材側に移行するステップと、溶融プール6を溶接進行方向とは反対方向に押して部材から発生した気体が発生箇所から抜けるように部材を溶接するステップと、を備えた方法である。この方法により、部材の重ね合わせ部分が露出するように溶融プール6を押すことになり、部材から発生した気体がこの部材の重ね合わせ部分からなる露出部9から抜ける。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。
 また、部材を溶接するステップにおいて、部材を重ねて溶接を行い、部材の重ね合わせ部分が露出するように溶融プールを押す方法としてもよい。この方法により、部材から発生した気体がこの部材の重ね合わせ部分からなる露出部9から抜ける。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。
 また、アーク5によりアーク力を与えていても、溶融部8および溶融プール6の一部分が露出部9を覆っており、ルート部21が露出しない場合であっても、溶融プール6の厚さが約0.5mm程度より薄くなるようにアーク力を与えている。すなわち、部材を溶接するステップにおいて、部材を重ねて溶接を行い、部材の重ね合わせ部分の上部に位置する溶融プール6の厚さが、部材から発生した気体が体積膨張して溶融プール6を突き破って発生箇所から抜けることが可能な厚さとなるように溶融プール6を押す方法としてもよい。この方法により、蒸気亜鉛11が体積膨張して溶融プール6を押し上げて放出される際に発生する、溶融金属によるスパッタや、溶融金属がワイヤ2と短絡することにより発生するスパッタを著しく抑制することができる。
 また、溶融プール6を押すためのアーク力を生じさせるために図2Cに示す第1の溶接電流14を供給する方法としてもよい。溶融プール6を押す主な力は、アーク期間中の溶接電流によるアーク力である。図2Cに示すように、アーク期間中において、第1の溶接電流14で第1の所定期間13の間は溶融プール6を押し、その後、アーク期間中において溶接電流を低下させ、溶融プール6を押す力を低減するあるいはゼロにして、溶融プール6の溶接進行方向への移動を早期に開始させる。
 また、第1の溶接電流14は、第1の所定期間13の間所定の大きさで維持されるものである方法としてもよい。この方法により、アーク期間中の所定の期間の間、一定のアーク力を発生させて溶融プール6を押すので、この間に蒸気亜鉛11を容易に放出できる。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。
 すなわち、溶滴15の移行から溶滴15の次の移行までの間の第1の所定期間13の間は、溶融プール6を押して溶融プール6を溶接進行方向とは反対方向に移動させる。そして、第1の所定期間13の後は、溶融プール6を押す力を低減する、あるいは、溶融プール6を押す力をゼロにする方法としてもよい。これにより、溶接進行方向に移動した、すなわち、溶接進行方向に戻った溶融プール6と、ワイヤ2とが接触するのが早まるので、次の短絡が早く発生する。このように、アーク期間中にアーク力を弱めることで短絡移行が円滑に行われ、溶接の安定性が向上する。さらに、溶接電流が低いので短絡発生が確実化され、スパッタ発生が抑制される。
 また、溶滴15の移行形態は、ドロップして移行する離脱移行と短絡移行とを繰り返す移行形態、あるいは、短絡移行主体の移行形態である方法としてもよい。この方法により、いずれの移行形態においても、移行後はアーク力で溶融プール6を押すことができるので、蒸気亜鉛11の放出を容易にする。
 また、図2Cに示す、溶融プール6を押すための第1の所定期間13の間に出力される第1の溶接電流14は、予め設定された所定の電流値であり、その値は、例えば、300A以上、600A以下の範囲である。また、第1の所定期間13の値は、例えば、2msec以上、10msec以下の範囲である。第1の溶接電流14に関するこれらの値は、実験的に検討した値であり、アーク力として溶融プール6を押す役割と、亜鉛を溶融する役割がある。
 また、第1の溶接電流14は、300A以上、600A以下の範囲の溶接電流をアーク期間中に出力し、第1の溶接電流14を出力する第1の所定期間13は、2msec以上、10msec以下である方法としてもよい。この方法により、適切に亜鉛を溶融し、アーク力を発生させて適切に溶融プール6を押すので、蒸気亜鉛11を容易に放出できる。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。
 なお、第1の溶接電流14の値が低く、第1の所定期間13が短い場合には、溶融プール6を押す作用が低く、露出部9が形成されないので、亜鉛の気化が促進されず、気孔が溶接ビード7に残存し易くなる。逆に、第1の溶接電流14の値が高く、第1の所定期間13の時間が長い場合には、亜鉛の気化は促進するが、溶融プール6を押しすぎて溶融プール6が溢れ、溶融金属が外部に吹き飛び、正常な溶接ビード7が形成されない。
 なお、図2Cでは、第1の溶接電流14を一定値とした例を示しているが、300A以上、600A以下の範囲であれば、一定である必要はなく、例えば、徐々に増加するあるいは減少するようにしても良く、例として、のこぎり歯状に出力するようにしても良い。
 また、短絡が開放してから第1の溶接電流14にまで電流値を高める溶接電流の単位時間当たりの増加量である増加傾きは、図2Cでは急峻に増加する例を示しているが、緩やかに増加させてもよい。なお、例えばシールドガスが炭酸ガス(以下、「CO2ガス」とする。)の場合、MAGガスの場合と比べ、増加傾きを緩やかにすることが望ましい。その理由は、CO2ガスの方がアーク5の集中性が高く、アーク力が強いためである。この増加傾きを緩やかにすることにより、アーク力を適正に調整し、適切に溶融プール6を押すので、蒸気亜鉛11を容易に放出できる。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。また、シールドガスとしてCO2ガスの混合ガスを使用する場合には、CO2の混合比率が高い程、溶接電流の増加傾きを緩やかにすることが望ましい。
 なお、上述の説明では、溶融プール6を溶接進行方向とは逆方向に押すために、アーク5によるアーク力を用いる例を示した。しかし、溶融プール6を押すために、溶接用のシールドガスとは別のガス流を溶融プール6に供給するようにしても良い。例えば、トーチ1のノズルの後方に設けたガス供給管からシールドガスと同質のガスを別のガス流として供給する。第1の溶接電流14は、溶融プール6を押す力以外に、ワイヤ2の先端部の溶融エネルギーを供給するものとして重要な役割がある。したがって、アーク期間中の溶接電流、特に第1の溶接電流14は、溶融プール6を押す力としての役割とワイヤ2を溶融する役割といった双方の役割を共に満足する必要がある。しかし、別のガス流で溶融プール6を押すことで、第1の溶接電流14は、主にワイヤ2の先端部の溶融エネルギーとして設定でき、溶融エネルギーの定量的な設定の自由度が拡大する。そのため、溶接材料や溶融部8の形状などの溶接条件に対応して溶融エネルギーの量を変えることができるため、溶接性能向上が可能となる。なお、アーク力とガス流の両方を同時に用いて溶融プール6を押すようにしても良い。
 また、例えば、トーチ1のノズルの後方に設けた電磁コイルにより磁界を発生させてアーク5を溶接進行方向の反対方向に偏向させることで、溶融プール6を押すようにしてもよい。
 この方法により、部材の重ね合わせ部分が露出するように溶融プール6を押すことになり、部材から発生した気体がこの部材の重ね合わせ部分からなる露出部9から抜ける。これにより、ブローホール等の気孔発生およびスパッタの発生を抑制できる。また、溶融エネルギーの定量的な設定の自由度が拡大し、溶接性能向上が可能となる。
 また、溶融プール6を溶接進行方向に対して反対方向に押すための力を与える前に、ワイヤ2の後退送給により、ワイヤ2と溶融プール6との間の距離を所定の距離(例えば、1mm以上、10mm程度以下の距離)となるように制御することで、溶接の安定性が向上する。上述の説明のように、アーク期間中の溶接電流、特に第1の溶接電流14は、溶融プール6を押す力を生じることとワイヤ2を溶融することの2つの大きな役割があり、双方を両立しなければならない。特に、ワイヤ2の先端部と溶融プール6との距離が短い場合、アーク5は集中しているので電流密度が高くなる。そうすると、溶融プール6を局部的に大きな力で押すことになり、押された溶融プール6の一部が外部に噴出し、良好な溶接ビード7が形成されなくなる。もちろん、アーク期間中の溶接電流、特に第1の溶接電流14によりワイヤ2が溶融し、ワイヤ2の先端部と溶融プール6との間の距離は長くなる。しかしながら、本実施の形態1のようにワイヤ2を後退送給するようにすることで、その距離を大きくすることが可能となる。この距離が大きくなると、傘状に広がるアーク形状のアーク5により溶融プール6全体を押すことができる。これにより、溶融プール6の外部への噴出が防止でき、また、図2Bに示すように溶融部8の前方等に広範囲にアークを投下できるので、溶融部8の形成が促進され、亜鉛の気化を促進することが可能となる。
 また、ワイヤ2の後退送給によりワイヤ2と溶融プール6との間の距離を所定の距離となるように制御した後で溶融プール6を押す例を示しているが、ワイヤ2を後退送給しながら徐々に溶接電流を増加させて溶融プール6を押すようにしても良い。
 また、図5の溶接電流の時間変化に示すように、溶滴15の移行形態は短絡移行主体の移行形態であり、短絡発生直後に短絡検出時の溶接電流よりも低い溶接電流に溶接電流の電流値を低減する方法としてもよい。この方法により、短絡発生の確実化が可能となり、スパッタを低減できる。さらに、アーク発生直前にワイヤ2のくびれ状態を検出してアーク発生直前の溶接電流よりも低い値に急峻に低減する、すなわち、くびれ状態を検出した時点の溶接電流よりも低い値に急峻に低減することで、アーク発生時のスパッタを低減できる。
 また、図1に示すように、トーチ1の角度を後退角にすることで、アーク5によるアーク力が溶融プール6を溶接進行方向と反対方向に押す作用を実現することが可能となり、図2Bに示す露出部9の形成を促進できる。特に、亜鉛目付け量が100g/mを越える亜鉛目付け量が多量な亜鉛メッキ鋼板においては、気化する亜鉛量が目付け量に比例して多量となる。そうすると、溶融プール6を押して溶接進行方向とは反対方向に移動させる必要がある。従って、トーチ1の角度を後退角として溶融プール6を移動させることで、気化した亜鉛の外部への放出を容易にすることが可能となる。
 また、溶接進行方向に対して反対方向および進行方向といった溶融プール6の交互の移動には、溶融プール6の表面張力および粘度が大きく影響する。表面張力および粘度が大きすぎると、溶融プール6の移動は困難となり、露出部9が形成されない。逆に、表面張力および粘度が小さすぎると、溶融プール6を押す力により溶融プール6が外部に噴出してしまう。このため、適正な表面張力および粘度が存在しており、影響を与える因子の一つとしてシールドガスがある。
 ここで、CO2ガスは、酸素(O2)含有量が多いので、溶融プール6の表面張力および粘度が適正な状態となり、アルゴン(Ar)比率が高まるに伴って表面張力および粘度が大きくなっていく。このため、シールドガスとしては、CO2ガスあるいはアルゴン(Ar)ガスにCO2ガスを混合しCO2ガスの混合比率が20%以上、90%以下のガスが適正である。これにより、溶融プール6の溶融金属は、適正な表面張力および粘度を有するので、ブローホール等の気孔発生およびスパッタの発生を抑制できる。なお、このような混合比のガスに、微量の添加ガスが加えられていても良好である。
 また、溶融プール6の表面張力および粘度に影響を与える別の因子として、ワイヤ2の種類(組成)がある。シールドガスがCO2ガス100%であれば、例えば、YGW12もしくはYGW11を使用すると良好な表面張力および粘度となることが、発明者らにより実験的に確認されている。
 上述の範囲内のシールドガスおよびワイヤ2の組み合わせで形成される溶融プール6の移動周波数は、例えば30Hz以上、70Hz以下となり、短絡周波数と同調でき、溶接が安定化する。
 また、ワイヤ2の送給制御として、溶接対象物の方向へ送給する正送(前進送給)と、その逆方向への送給である逆送(後退送給)とを繰り返すようにすることで、溶接性能を向上することができる。本実施の形態1の溶接方法において、ワイヤ2を後退送給する場合の長所は上述のように説明した。さらに、正送の場合の送給速度は、一般的に行われている一定送給溶接の場合と比べて高速度で短絡を発生することができる。これにより、短絡発生が確実化され、スパッタ低減効果を有する。また、逆送時では、機械的に短絡を開放できるので、短絡の開放を確実化でき、短絡解放直後に発生する短絡(微小短絡)を低減することができるので、スパッタの低減が可能となる。
 この正送制御および逆送制御は、図5に示すように、ワイヤ送給速度の正送と逆送の繰り返しを所定の周期WFと所定の振幅Wvで周期的に行うようにしてもよい。図5は、周期的な送給の例として正弦波状の場合を示しているが、これに限らず、台形波状やのこぎり波状としても良く、周期的な波形であれば問題ない。
 この方法により、周期的なワイヤ送給を制御するので、短絡およびアークの発生周期がワイヤ送給の制御と同期してアークの周期性が高まり、アークの安定性がさらに向上する。
 また、図示していないが、図5のような周期的な送給制御ではなく、溶接状態が短絡状態であることを検出すると逆送を行い、溶接状態がアーク状態であることを検出すると正送を行うように制御してもよい。
 この方法により、短絡およびアークの状態に応じてワイヤ送給の制御を変化させるので、突き出し長さ等が大きく変化する場合等、どんな短絡状態でも確実に開放するため、アークの安定性がさらに向上する。
 本発明によれば、亜鉛メッキ鋼板等の表面処理が行われた部材を溶接用のワイヤを用いて溶接する場合に、部材の重ね合わせ部分が露出するように溶融プールを押す。これにより、部材から発生した気体が露出部から抜けるため、ブローホール等の気孔発生およびスパッタの発生を著しく抑制することができ、亜鉛メッキ鋼板等の表面処理が行われた部材のような溶接時に気体が発生する母材に対して行う溶接方法として産業上有用である。
 1  トーチ
 2  ワイヤ
 3  上板(亜鉛メッキ鋼板)
 4  下板(亜鉛メッキ鋼板)
 5  アーク
 6  溶融プール
 7  溶接ビード
 8  溶融部
 9  露出部
 10  亜鉛メッキ
 11  蒸気亜鉛
 12  亜鉛メッキ気化部
 13  第1の所定期間
 14  第1の溶接電流
 15  溶滴
 21  ルート部
 30  溶接部

Claims (20)

  1. 表面処理が行われた部材を溶接用のワイヤを用いて溶接する溶接方法であって、
    前記ワイヤから形成された溶滴を前記部材側に移行するステップと、
    溶融プールを溶接進行方向とは反対方向に押して前記部材から発生した気体が発生箇所から抜けるように前記部材を溶接するステップと、
    を備えた溶接方法。
  2. 前記部材を溶接する前記ステップにおいて、
    前記部材を重ねて溶接を行い、前記部材の重ね合わせ部分が露出するように前記溶融プールを押す請求項1記載の溶接方法。
  3. 前記部材を溶接する前記ステップにおいて、
    前記部材を重ねて溶接を行い、前記部材の重ね合わせ部分の上部に位置する前記溶融プールの厚さが、前記部材から発生した気体が体積膨張して前記溶融プールを突き破って発生箇所から抜けることが可能な厚さとなるように前記溶融プールを押す請求項1記載の溶接方法。
  4. 前記溶滴の移行から前記溶滴の次の移行までの間の第1の所定期間の間は、前記溶融プールを押して前記溶融プールを溶接進行方向とは反対方向に移動させ、
    前記第1の所定期間の後は、前記溶融プールを押す力を低減する、あるいは、前記溶融プールを押す力をゼロにする請求項1から3のいずれか1項に記載の溶接方法。
  5. 前記溶融プールを押すためのアーク力を生じさせるために第1の溶接電流を供給する請求項1から4のいずれか1項に記載の溶接方法。
  6. 前記第1の溶接電流は、第1の所定期間の間所定の大きさで維持されるものである請求項5記載の溶接方法。
  7. 溶接電流を前記第1の溶接電流に増加させるまでの単位時間当たりの溶接電流の増加量である溶接電流の増加傾きは、シールドガスが、MAGガスの場合と比べ、炭酸ガスの場合の方が、前記増加傾きが緩やかである請求項5または6のいずれか1項に記載の溶接方法。
  8. 前記第1の溶接電流は、300A以上、600A以下の範囲の溶接電流をアーク期間中に出力し、前記第1の溶接電流を出力する第1の所定期間は、2msec以上、10msec以下である請求項5から7のいずれか1項に記載の溶接方法。
  9. 前記溶滴の移行形態は、離脱移行と短絡移行とを繰り返す移行形態、あるいは、短絡移行主体の移行形態である請求項1から8のいずれか1項に記載の溶接方法。
  10. 溶接用のシールドガスとは別のシールドガスによるガス流を前記溶融プールに供給する請求項1から9のいずれか1項に記載の溶接方法。
  11. 磁界発生機構を用いて、アークを偏向させる請求項1から10のいずれか1項に記載の溶接方法。
  12. 前記ワイヤの後退送給により前記ワイヤと前記溶融プールとの間の距離を所定の距離とした後に、前記溶融プールを押すための力を生じさせる請求項1から11のいずれか1項に記載の溶接方法。
  13. 前記溶滴の移行形態は短絡移行主体の移行形態であり、短絡発生直後に短絡検出時の溶接電流よりも低い溶接電流に溶接電流の電流値を低減する請求項1から12のいずれか1項に記載の溶接方法。
  14. アーク発生直前に前記ワイヤのくびれ状態を検出すると、溶接電流を、前記くびれ状態を検出した時点の溶接電流よりも低い値に低減する請求項1から13のいずれか1項に記載の溶接方法。
  15. 前記溶融プールの溶融金属の粘度が、溶接することにより部材から発生した気体が抜けるように前記溶融プールを押すことができる粘度であり、かつ、前記溶融プールを押すことにより前記溶融プールの溶融金属が前記溶融プールの外部に飛び散らない粘度となる成分のワイヤを用いる請求項1から14のいずれか1項に記載の溶接方法。
  16. 溶接用トーチのトーチ角度を後退角とした請求項1から15のいずれか1項に記載の溶接方法。
  17. シールドガスとして、アルゴンガスに混合比率が20%以上、90%以下の範囲の炭酸ガスを混合したシールドガスあるいは炭酸ガスを用いる請求項1から16のいずれか1項に記載の溶接方法。
  18. 正送と逆送とを繰り返すワイヤ送給速度で前記ワイヤの送給を行う請求項1から17のいずれか1項に記載の溶接方法。
  19. 前記ワイヤ送給速度の正送と逆送との繰り返しを、所定の周期と所定の振幅とで周期的に行う請求項18記載の溶接方法。
  20. 前記ワイヤ送給速度の正送と逆送との繰り返しは、周期的ではなく、溶接状態が短絡状態であることを検出すると逆送を行い、前記溶接状態がアーク状態であることを検出すると正送を行う請求項18記載の溶接方法。
PCT/JP2012/006292 2012-03-07 2012-10-02 溶接方法 WO2013132550A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12870708.0A EP2823926B1 (en) 2012-03-07 2012-10-02 Welding method
JP2014503292A JP6043969B2 (ja) 2012-03-07 2012-10-02 溶接方法
CN201280055003.4A CN103930231B (zh) 2012-03-07 2012-10-02 焊接方法
EP18182093.7A EP3401049A1 (en) 2012-03-07 2012-10-02 Welding method
US14/220,597 US10155276B2 (en) 2012-03-07 2014-03-20 Method of welding surface-treated members using a welding wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050058 2012-03-07
JP2012-050058 2012-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/220,597 Continuation US10155276B2 (en) 2012-03-07 2014-03-20 Method of welding surface-treated members using a welding wire

Publications (1)

Publication Number Publication Date
WO2013132550A1 true WO2013132550A1 (ja) 2013-09-12

Family

ID=49116066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006292 WO2013132550A1 (ja) 2012-03-07 2012-10-02 溶接方法

Country Status (5)

Country Link
US (1) US10155276B2 (ja)
EP (2) EP2823926B1 (ja)
JP (1) JP6043969B2 (ja)
CN (1) CN103930231B (ja)
WO (1) WO2013132550A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020185A (ja) * 2013-07-17 2015-02-02 株式会社ダイヘン アーク溶接用電源装置及びアーク溶接用電源装置の制御方法
JP2015205301A (ja) * 2014-04-18 2015-11-19 株式会社安川電機 パルスアーク溶接システムおよびパルスアーク溶接方法
WO2018079183A1 (ja) * 2016-10-31 2018-05-03 株式会社ダイヘン アーク溶接制御方法
WO2018159844A1 (ja) * 2017-03-02 2018-09-07 株式会社神戸製鋼所 アーク溶接方法
JP2018144103A (ja) * 2017-03-02 2018-09-20 株式会社神戸製鋼所 アーク溶接方法
JP2018164935A (ja) * 2017-03-28 2018-10-25 株式会社神戸製鋼所 アーク溶接方法
JP2020131273A (ja) * 2019-02-25 2020-08-31 株式会社神戸製鋼所 めっき鋼板の接合方法及び接合構造体
WO2022230904A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
WO2022230903A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
WO2022230905A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907675A (zh) * 2015-06-08 2015-09-16 上海江屹精密焊接设备有限公司 一种镀锌板材的单枪免除锌弧焊焊接工艺
WO2017169900A1 (ja) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 アーク溶接制御方法
EP3513897B1 (en) * 2016-09-15 2021-01-06 Panasonic Intellectual Property Management Co., Ltd. Arc welding device and arc welding control method
JP6385411B2 (ja) * 2016-10-28 2018-09-05 日新製鋼株式会社 溶接部材およびその製造方法
US11815127B2 (en) * 2016-12-23 2023-11-14 Posco Co., Ltd Welded member for plated steel plate excellent in weld zone porosity resistance and fatigue properties and method for manufacturing the same
US20190375038A1 (en) * 2017-03-02 2019-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Arc welding method
JP6788550B2 (ja) 2017-06-16 2020-11-25 株式会社神戸製鋼所 アーク溶接方法およびソリッドワイヤ
WO2021085544A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Mig溶接方法
JP7475218B2 (ja) * 2019-12-25 2024-04-26 株式会社ダイヘン アーク溶接方法及びアーク溶接装置
CN112025037B (zh) * 2020-08-26 2022-04-15 中车株洲车辆有限公司 一种基于深熔焊机的焊接方法
CN116213888A (zh) * 2022-12-30 2023-06-06 深圳市麦格米特焊接技术有限公司 熔化电极气体保护焊系统及其控制方法、控制器、介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140249A (en) * 1977-04-09 1978-12-07 Kobe Steel Ltd Method and apparatus for welding
JPS6448678A (en) * 1987-08-14 1989-02-23 Babcock Hitachi Kk Method and equipment for narrow gap welding
JPH06285643A (ja) * 1993-04-06 1994-10-11 Toyota Motor Corp 鋼材のアーク溶接方法
JPH08309533A (ja) * 1995-05-15 1996-11-26 Kobe Steel Ltd 亜鉛めっき鋼板のマグパルスアーク溶接方法
JPH1190629A (ja) * 1997-09-26 1999-04-06 Toyota Motor Corp パルスアーク溶接方法
JP2007216268A (ja) * 2006-02-17 2007-08-30 Matsushita Electric Ind Co Ltd アーク溶接制御方法およびアーク溶接装置
JP2010082641A (ja) * 2008-09-30 2010-04-15 Taiyo Nippon Sanso Corp 鋼板のガスシールドアークブレージング方法
JP2011098375A (ja) * 2009-11-06 2011-05-19 Panasonic Corp アーク溶接方法およびアーク溶接装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781511A (en) * 1972-03-23 1973-12-25 H Rygiol Method of welding employing square wave current pulses and causing the molten metal to resonate
JPS60130469A (ja) 1983-12-16 1985-07-11 Kobe Steel Ltd 溶接用電源の出力制御方法
JPS63144875A (ja) 1986-12-05 1988-06-17 Daido Steel Co Ltd 亜鉛被覆鋼板の溶接方法
JPH01133680A (ja) * 1987-11-19 1989-05-25 Babcock Hitachi Kk 非消耗電極溶接装置
JPH05329682A (ja) * 1992-05-26 1993-12-14 Sumitomo Metal Ind Ltd 亜鉛系めっき鋼板の溶接ワイヤおよび溶接方法
GB9227031D0 (en) 1992-12-29 1993-02-24 Ici Plc Polymeric sheet
US5473139A (en) 1993-01-18 1995-12-05 Toyota Jidosha Kabushiki Kaisha Pulsed arc welding apparatus having a consumable electrode wire
JP2007050426A (ja) * 2005-08-18 2007-03-01 Daihen Corp 交流ティグ溶接方法
JP2007098459A (ja) * 2005-10-07 2007-04-19 Nippon Steel Corp 亜鉛系めっき鋼板の高速ガスシールドアーク溶接方法
JP5036197B2 (ja) 2006-03-10 2012-09-26 株式会社神戸製鋼所 パルスアーク溶接方法
CN102149502A (zh) * 2008-09-30 2011-08-10 大阳日酸株式会社 钢板的气体保护电弧钎焊方法
US8723080B2 (en) 2009-07-10 2014-05-13 Panasonic Corporation Arc welding control method and arc welding apparatus
JP2011131243A (ja) 2009-12-24 2011-07-07 Nippon Steel Corp 亜鉛めっき鋼板のアーク溶接方法及びアーク溶接継手
CN101920376B (zh) * 2010-07-27 2012-10-24 唐山轨道客车有限责任公司 一种焊接方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140249A (en) * 1977-04-09 1978-12-07 Kobe Steel Ltd Method and apparatus for welding
JPS6448678A (en) * 1987-08-14 1989-02-23 Babcock Hitachi Kk Method and equipment for narrow gap welding
JPH06285643A (ja) * 1993-04-06 1994-10-11 Toyota Motor Corp 鋼材のアーク溶接方法
JPH08309533A (ja) * 1995-05-15 1996-11-26 Kobe Steel Ltd 亜鉛めっき鋼板のマグパルスアーク溶接方法
JPH1190629A (ja) * 1997-09-26 1999-04-06 Toyota Motor Corp パルスアーク溶接方法
JP2007216268A (ja) * 2006-02-17 2007-08-30 Matsushita Electric Ind Co Ltd アーク溶接制御方法およびアーク溶接装置
JP2010082641A (ja) * 2008-09-30 2010-04-15 Taiyo Nippon Sanso Corp 鋼板のガスシールドアークブレージング方法
JP2011098375A (ja) * 2009-11-06 2011-05-19 Panasonic Corp アーク溶接方法およびアーク溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2823926A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020185A (ja) * 2013-07-17 2015-02-02 株式会社ダイヘン アーク溶接用電源装置及びアーク溶接用電源装置の制御方法
JP2015205301A (ja) * 2014-04-18 2015-11-19 株式会社安川電機 パルスアーク溶接システムおよびパルスアーク溶接方法
KR102337622B1 (ko) * 2016-10-31 2021-12-08 가부시키가이샤 다이헨 아크 용접 제어 방법
WO2018079183A1 (ja) * 2016-10-31 2018-05-03 株式会社ダイヘン アーク溶接制御方法
US11305370B2 (en) 2016-10-31 2022-04-19 Daihen Corporation Arc welding control method
JPWO2018079183A1 (ja) * 2016-10-31 2019-09-12 株式会社ダイヘン アーク溶接制御方法
KR20190077336A (ko) * 2016-10-31 2019-07-03 가부시키가이샤 다이헨 아크 용접 제어 방법
CN110402177A (zh) * 2017-03-02 2019-11-01 株式会社神户制钢所 电弧焊方法
WO2018159844A1 (ja) * 2017-03-02 2018-09-07 株式会社神戸製鋼所 アーク溶接方法
CN110402177B (zh) * 2017-03-02 2021-12-21 株式会社神户制钢所 电弧焊方法
JP2018144103A (ja) * 2017-03-02 2018-09-20 株式会社神戸製鋼所 アーク溶接方法
JP2018164935A (ja) * 2017-03-28 2018-10-25 株式会社神戸製鋼所 アーク溶接方法
JP2020131273A (ja) * 2019-02-25 2020-08-31 株式会社神戸製鋼所 めっき鋼板の接合方法及び接合構造体
WO2020174883A1 (ja) * 2019-02-25 2020-09-03 株式会社神戸製鋼所 めっき鋼板の接合方法及び接合構造体
KR20210113386A (ko) * 2019-02-25 2021-09-15 가부시키가이샤 고베 세이코쇼 도금 강판의 접합 방법 및 접합 구조체
JP7267770B2 (ja) 2019-02-25 2023-05-02 株式会社神戸製鋼所 めっき鋼板の接合方法及び接合構造体
KR102588203B1 (ko) * 2019-02-25 2023-10-13 가부시키가이샤 고베 세이코쇼 도금 강판의 접합 방법 및 접합 구조체
JP7364088B2 (ja) 2021-04-28 2023-10-18 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JPWO2022230904A1 (ja) * 2021-04-28 2022-11-03
JPWO2022230905A1 (ja) * 2021-04-28 2022-11-03
JPWO2022230903A1 (ja) * 2021-04-28 2022-11-03
WO2022230905A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
WO2022230904A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
WO2022230903A1 (ja) * 2021-04-28 2022-11-03 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JP7364087B2 (ja) 2021-04-28 2023-10-18 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JP7364089B2 (ja) 2021-04-28 2023-10-18 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法

Also Published As

Publication number Publication date
US10155276B2 (en) 2018-12-18
EP2823926B1 (en) 2018-08-15
CN103930231B (zh) 2017-06-30
EP2823926A1 (en) 2015-01-14
EP2823926A4 (en) 2015-06-03
CN103930231A (zh) 2014-07-16
EP3401049A1 (en) 2018-11-14
JP6043969B2 (ja) 2016-12-14
JPWO2013132550A1 (ja) 2015-07-30
US20140202993A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6043969B2 (ja) 溶接方法
JP5934890B2 (ja) アーク溶接制御方法
JP3209369U (ja) クラッドパイプの内径のルートパス溶接のためにフィラーワイヤ送給と高強度エネルギー源との組み合わせを始動及び使用するシステム
JP5934891B2 (ja) アーク溶接装置およびアーク溶接制御方法
KR102102024B1 (ko) 교류 용접 파형을 이용하기 위한 방법 및 시스템 그리고 아연도금 공작물의 용접을 개선하기 위한 향상된 소모품
JP6089231B2 (ja) アーク溶接方法およびアーク溶接装置
CN109715336B (zh) 电弧焊接装置以及电弧焊接控制方法
EP2010353A2 (en) Metal cored electrode for open root pass welding
JP2007237225A (ja) 薄鋼板の高速ホットワイヤ多電極tig溶接方法
JP2019089099A (ja) 亜鉛系めっき鋼板の複合溶接方法
JP4538518B2 (ja) 鋼板のガスシールドアークブレージング方法
JP2002219571A (ja) 3電極アーク溶接制御方法
JP2010207855A (ja) 2電極アーク溶接のアークスタート制御方法
JP6268360B2 (ja) アーク溶接制御方法およびアーク溶接装置
WO2017033978A1 (ja) 溶接方法及びアーク溶接装置
JP6412817B2 (ja) 亜鉛めっき鋼板の溶接方法
JP2007237224A (ja) 薄鋼板のtig溶接方法
JP6101724B2 (ja) 亜鉛めっき鋼板の溶接方法
JP2004042121A (ja) 消耗電極ガスシールドアーク溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012870708

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014503292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE