WO2013129668A1 - マルチフィルム - Google Patents

マルチフィルム Download PDF

Info

Publication number
WO2013129668A1
WO2013129668A1 PCT/JP2013/055745 JP2013055745W WO2013129668A1 WO 2013129668 A1 WO2013129668 A1 WO 2013129668A1 JP 2013055745 W JP2013055745 W JP 2013055745W WO 2013129668 A1 WO2013129668 A1 WO 2013129668A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
titanium dioxide
calcium carbonate
acid
thickness
Prior art date
Application number
PCT/JP2013/055745
Other languages
English (en)
French (fr)
Inventor
勝利 西谷
山岸 孝則
伸二 中田
宗人 横田
Original Assignee
丸善石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸善石油化学株式会社 filed Critical 丸善石油化学株式会社
Priority to JP2014502418A priority Critical patent/JP6001638B2/ja
Publication of WO2013129668A1 publication Critical patent/WO2013129668A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Definitions

  • the present invention relates to a multi-film. More specifically, the present invention relates to a multi-film that can suppress an increase in the maximum ground temperature during the day, can prevent a decrease in the minimum ground temperature during the night, has a low raw material cost, and has a low environmental load.
  • biodegradable agricultural multifilms using biodegradable resins as raw materials have been used instead of polyolefin agricultural multifilms (see Patent Documents 3 to 5).
  • a biodegradable agricultural multi-film it can be decomposed in the soil by pouring into the soil after use. This eliminates the need for stripping and collecting the film after use, thereby saving labor in farm work.
  • the films described in Patent Documents 1 and 2 can suppress the increase in the maximum ground temperature during the day, but cannot prevent the decrease in the minimum ground temperature during the night. That is, the films described in Patent Documents 1 and 2 cannot sufficiently achieve the suppression of excessive decrease in the ground temperature that has risen during the daytime at night. Therefore, when the films described in Patent Documents 1 and 2 are used, there is a problem that the growth of crops such as vegetables is slow.
  • the film described in Patent Document 2 is a film in which the upper limit of the total thickness of the film is 75 ⁇ m and the total thickness is thick.
  • the film described in Patent Document 2 is a film that satisfies the condition that the product of the total thickness ( ⁇ m) of the film and the titanium dioxide concentration (mass%) is 600 ⁇ m / mass% or more. That is, the film described in Patent Document 2 contains a large amount of expensive titanium dioxide. Therefore, the film described in Patent Document 2 becomes a large amount of resource waste after use, fish eyes are generated due to aggregation of titanium dioxide during production, the film is easily broken, and the price is increased. There was a problem.
  • Patent Documents 3 and 4 are biodegradable agricultural multi-films, the environmental load is low, and the maximum ground temperature during the day can be kept below the bare land temperature. However, at night, it has not been possible to suppress a decrease in the ground temperature that has risen during the day.
  • Patent Document 5 Since the film described in Patent Document 5 is a biodegradable agricultural multi-film, the environmental load is low, and it can be achieved that the earth temperature that has risen during the day at night is prevented from excessively decreasing. It is. However, it is difficult to sufficiently suppress the rise in daytime ground temperature.
  • An object of the present invention is to provide a multi-film that can suppress an increase in the maximum ground temperature during the day and can prevent a decrease in the minimum ground temperature at night, has a low raw material cost, and has a low environmental load.
  • thermoplastic resin, titanium dioxide, and calcium carbonate are contained, and the above-described problems are achieved by satisfying predetermined conditions for the contained components and thickness, and by setting the total thickness to a predetermined value. As a result, the present invention has been completed.
  • thermoplastic resin is high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, aliphatic polyester biodegradable resin, and aromatic-aliphatic copolymer polyester biodegradable.
  • the biodegradable resin (A) which is a polyester-based biodegradable resin having a structure in which the aliphatic dicarboxylic acid and the aliphatic diol are polycondensed and may have a crosslinked structure.
  • a biodegradable resin (B) which is a polyester-based biodegradable resin having a polycondensed structure of hydroxyalkyl carboxylic acid and may have a crosslinked structure, and aromatic dicarboxylic acid and aliphatic dicarboxylic acid;
  • the above-mentioned containing at least one selected from the group consisting of a biodegradable resin (C) which is a polyester-based biodegradable resin having a structure in which an aliphatic diol is polycondensed and may have a crosslinked structure
  • C which is a polyester-based biodegradable resin having a structure in which an aliphatic diol is polycondensed and may have a crosslinked structure
  • the multifilm as described in [2].
  • the multi-film of the present invention has the following: “The product of thickness and titanium dioxide content is 60 to 300 ⁇ m ⁇ mass%, and the product of thickness and calcium carbonate content is 250 to 1,000 ⁇ m ⁇ mass%. The total content of titanium dioxide and calcium carbonate is 55% by mass or less. Therefore, the multi-film of the present invention can prevent an increase in the maximum ground temperature during the day and can prevent a decrease in the minimum ground temperature during the night. Moreover, since the multifilm of the present invention does not use a large amount of expensive titanium dioxide, the raw material cost is low. Furthermore, since the multi-film of the present invention is a thin film having a thickness of 8 to 30 ⁇ m, the amount of film that becomes a resource waste after use is small and the environmental load is low.
  • the multifilm of the present invention contains a thermoplastic resin, titanium dioxide, and calcium carbonate.
  • the product of the total thickness and the content of titanium dioxide is 60 to 300 ⁇ m ⁇ % by mass.
  • the product of the total thickness and the content of calcium carbonate is 250 to 1,000 ⁇ m ⁇ mass%.
  • the multifilm of the present invention has a total content of titanium dioxide and calcium carbonate of 55% by mass or less.
  • the multifilm of the present invention has an overall thickness of 8 to 30 ⁇ m.
  • the multi-film of the present invention is “the product of the thickness and the content of titanium dioxide, the product of the thickness and the content of calcium carbonate, the total content of titanium dioxide and calcium carbonate, and the total thickness”. Satisfies the prescribed conditions. Therefore, the multi-film of the present invention can prevent an increase in the maximum ground temperature during the day and can prevent a decrease in the minimum ground temperature during the night. Since it has such an effect, the multi-film of the present invention can prepare suitable conditions for growing crops that are susceptible to high temperature damage particularly in summer, and can further suppress the growth of weeds. Therefore, the multifilm of the present invention can not only suppress crop high temperature damage, but also promote crop growth and increase yield.
  • the multifilm of the present invention does not use a large amount of expensive titanium dioxide, the raw material cost is low. Furthermore, since the multi-film of the present invention is a thin film having an “total thickness of 8 to 30 ⁇ m”, the amount of film that becomes resource waste after use is small, and the environmental load is low.
  • the titanium dioxide and calcium carbonate dispersed in the multifilm of the present invention can each reflect sunlight.
  • the presence of both titanium dioxide and calcium carbonate synergistically suppress the increase in the daytime temperature in the daytime due to the combination of these functions.
  • the temperature of the soil warmed during the day is effectively prevented from decreasing.
  • the multi film of this invention can keep the temperature difference between daytime and nighttime small by containing both titanium dioxide and calcium carbonate. Therefore, not only can the high temperature damage of the crop be suppressed, but also the growth of the crop can be promoted and the yield can be increased.
  • the above effect depends on the relationship between the thickness ( ⁇ m) of the multi-film and “the respective contents (mass%) of titanium dioxide and calcium carbonate”. That is, the multi-film exhibiting the above effect can be defined by the product ( ⁇ m ⁇ mass%) of thickness (total thickness) ⁇ concentration (content of titanium dioxide and calcium carbonate).
  • the product of thickness and "the content rate of titanium dioxide and calcium carbonate” it is preferable to make the product of thickness and "the content rate of titanium dioxide and calcium carbonate” into a fixed value or more.
  • the product of the thickness and the “content ratio of titanium dioxide and calcium carbonate” is too large, the obtained effect will reach its peak, resulting in waste of raw materials such as titanium dioxide.
  • “Fish eye” refers to a defect in which a lump of resin, titanium dioxide, or calcium carbonate becomes poorly dispersed and aggregates are formed.
  • the molten resin is extruded from an annular die in a cylindrical shape, air is blown into the cylindrical molten film, and the cylindrical resin that changes from a molten state to a solidified state is called “bubble”. And this bubble's shaking and dancing is called “bubble instability”.
  • the multifilm of the present invention contains a thermoplastic resin, titanium dioxide and calcium carbonate.
  • the thermoplastic resin include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, polypropylene, vinyl chloride, aliphatic Examples thereof include polyester-based biodegradable resins and aromatic-aliphatic copolymerized polyester-based biodegradable resins.
  • the group consisting of high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, aliphatic polyester biodegradable resin, and aromatic-aliphatic copolymer polyester biodegradable resin It is preferable to contain at least one selected from the above. Among these, at least one polyester-based biodegradable resin selected from the group consisting of the following biodegradable resins (A) to (C) is more preferable.
  • the biodegradable resin (A) is a polyester-based biodegradable resin that has a structure in which an aliphatic dicarboxylic acid and an aliphatic diol are polycondensed and may have a crosslinked structure.
  • the biodegradable resin (B) is a polyester-based biodegradable resin that has a structure in which a hydroxyalkylcarboxylic acid is polycondensed and may have a crosslinked structure.
  • the biodegradable resin (C) is a polyester-based biodegradable resin that has a structure in which an aromatic dicarboxylic acid or aliphatic dicarboxylic acid and an aliphatic diol are polycondensed and may have a crosslinked structure.
  • thermoplastic resin is high-density polyethylene, medium-density polyethylene, low-density polyethylene, or linear low-density polyethylene, it is preferable from the viewpoint of reducing raw material costs and improving workability during stretching. Further, from the viewpoint of labor saving in farm work and prevention of soil and air pollution, the thermoplastic resin is preferably an aliphatic polyester biodegradable resin or an aromatic-aliphatic copolymer polyester biodegradable resin.
  • conventional multi-films include those having a polyolefin resin as a main component and those containing a biodegradable resin as a main component. And it was difficult for the conventional multi-film to keep the daytime maximum ground temperature below the bare ground temperature and to prevent the nighttime minimum ground temperature from falling below the bare ground temperature.
  • the multi-film of the present invention is excellent in that it suppresses the increase in the ground temperature during the day and further prevents the decrease in the ground temperature during the night, regardless of whether the thermoplastic resin contained is a polyolefin resin or a biodegradable resin. Has an effect.
  • the biodegradable resin (A) may be polymerized by crosslinking with a polyfunctional isocyanate compound, polyfunctional oxazoline or the like, and may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the biodegradable resin (A) include polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polyethylene adipate, biodegradable aliphatic polyester such as polybutylene adipate, and cross-linked products thereof. Is mentioned.
  • aliphatic dicarboxylic acid examples include oxalic acid, malonic acid, glutaric acid, succinic acid, adipic acid, sebacic acid, itaconic acid and the like.
  • the aliphatic dicarboxylic acid is preferably at least one selected from the group consisting of oxalic acid, malonic acid, glutaric acid, succinic acid, adipic acid, sebacic acid, and itaconic acid.
  • Examples of the aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, diethylene glycol, 1,4-butanediol, 2,3-butanediol, 1,3-butanediol, 1, Examples include 4-pentanediol, 2,4-pentanediol, 1,6-hexanediol, neopentyl glycol and the like.
  • Aliphatic diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, diethylene glycol, 1,4-butanediol, 2,3-butanediol, 1,3-butanediol, 1,4- It is preferably at least one selected from the group consisting of pentanediol, 2,4-pentanediol, 1,6-hexanediol, and neopentyl glycol.
  • the biodegradable resin (B) may have a high molecular weight by crosslinking with a polyfunctional isocyanate compound, a polyfunctional oxazoline, or the like.
  • Specific examples of the biodegradable resin (B) include biodegradable aliphatic polyesters such as polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, and polyhydroxyvalerate, and crosslinked products thereof. It is done.
  • any of D-form, L-form, and racemic form may be sufficient.
  • hydroxyalkyl carboxylic acids examples include lactic acid, glycolic acid, malic acid, citric acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 2-hydroxy3,3-dimethylbutyric acid, 2-hydroxy-3- Examples include methylbutyric acid and 2-hydroxyisocaproic acid.
  • Hydroxyalkyl carboxylic acids include lactic acid, glycolic acid, malic acid, citric acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid And at least one selected from the group consisting of 2-hydroxyisocaproic acid.
  • the biodegradable resin (C) may be polymerized by crosslinking with a polyfunctional isocyanate compound, polyfunctional oxazoline or the like, and may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the biodegradable resin (C) include aromatic-aliphatic copolymers such as polybutylene succinate terephthalate, polybutylene adipate terephthalate, polybutylene succinate adipate terephthalate, polyethylene succinate terephthalate, and polyethylene adipate terephthalate. Examples thereof include polyester and cross-linked products thereof.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, and isophthalic anhydride.
  • the aromatic dicarboxylic acid is preferably at least one selected from the group consisting of terephthalic acid, isophthalic acid, and isophthalic anhydride.
  • examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, glutaric acid, succinic acid, adipic acid, sebacic acid, itaconic acid and the like.
  • the aliphatic dicarboxylic acid is preferably at least one selected from the group consisting of oxalic acid, malonic acid, glutaric acid, succinic acid, adipic acid, sebacic acid, and itaconic acid.
  • Examples of the aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, diethylene glycol, 1,4-butanediol, 2,3-butanediol, 1,3-butanediol, 1, Examples thereof include 4-pentanediol, 2,4-pentanediol, 1,6-hexanediol, neopentyl glycol and the like.
  • Aliphatic diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, diethylene glycol, 1,4-butanediol, 2,3-butanediol, 1,3-butanediol, 1,4- It is preferably at least one selected from the group consisting of pentanediol, 2,4-pentanediol, 1,6-hexanediol, and neopentyl glycol.
  • the melt flow rate (MFR) of the thermoplastic resin is usually 0.01 to 50 g / 10 min when measured at 190 ° C. and a load of 2.16 kg. From the viewpoint of improving extrudability during molding, uniform kneadability of the composition, stability of the film thickness, etc., the melt flow rate is preferably 0.02 to 40 g / 10 min. 0.03 to 30 g / 10 min is more preferable.
  • titanium dioxide anatase type, rutile type, or a mixture thereof can be used. From the viewpoint of improving light shielding properties and weather resistance, it is preferable to use rutile type titanium dioxide.
  • the average particle diameter of titanium dioxide is preferably 0.05 to 2 ⁇ m, more preferably 0.1 to 1 ⁇ m. If the average particle diameter of titanium dioxide is too small, the titanium dioxide is difficult to disperse in the raw material and tends to aggregate and form coarse particles. On the other hand, if the average particle size is too large, the scattering efficiency of solar rays is lowered, and there is a possibility that the effect of suppressing the increase in the maximum ground temperature during the day cannot be sufficiently obtained.
  • the average particle size of calcium carbonate is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and particularly preferably 0.7 to 3 ⁇ m. When the average particle size of calcium carbonate is too small, calcium carbonate is difficult to disperse in the raw material and tends to aggregate with each other and form coarse particles. On the other hand, if the average particle size is too large, the strength of the resulting film may not be sufficiently obtained, and fish eyes may be generated.
  • calcium carbonate it is preferable to use a surface treated with a fatty acid, a fatty acid ester, or the like in order to improve dispersibility in the thermoplastic resin.
  • the multi-film of the present invention may contain an additive added for the purpose of adjusting molding processability and film physical properties as long as the effects of the present invention are not impaired.
  • additives include known plasticizers, fillers, heat stabilizers, antioxidants, lubricants, antiblocking agents, crystal nucleating agents, ultraviolet absorbers, light stabilizers, hydrolysis inhibitors, and the like. Additives can be mentioned.
  • the thickness of the multifilm of the present invention needs to be in the range of 8 to 30 ⁇ m, preferably in the range of 10 to 28 ⁇ m, more preferably in the range of 12 to 26 ⁇ m, and particularly preferably in the range of 14 to 24 ⁇ m. If the thickness of the multi-film is too thin, a hole is formed in the bubble during molding, and the moldability becomes unstable. Moreover, even if it can shape
  • the product of the total thickness of the multifilm and the content of titanium dioxide is 60 to 300 ⁇ m / mass%, preferably 70 to 290 ⁇ m / mass%, and preferably 80 to 280 ⁇ m / mass%. More preferably it is.
  • the “product of the thickness and the content of titanium dioxide” is within the above range, in addition to the high effect of suppressing an increase in the ground temperature during the day, the moldability of the film is improved, and further, the raw material Cost and resource waste can be reduced. If the product of the thickness and the content of titanium dioxide is less than 60 ⁇ m / mass%, the effect of suppressing the rise in the ground temperature during the day cannot be sufficiently obtained.
  • the product of the total thickness of the multifilm and the content of calcium carbonate is 250 to 1,000 ⁇ m ⁇ mass%, preferably 270 to 950 ⁇ m ⁇ mass%, preferably 300 to 900 ⁇ m. -More preferably, it is mass%.
  • the “product of thickness and calcium carbonate content” is within the above range, in addition to the effect of preventing a decrease in the ground temperature at night, the film formability is improved and the film strength is high. Become.
  • the “product of the thickness and the content of calcium carbonate” is less than 250 ⁇ m / mass%, the effect of preventing a decrease in the ground temperature at night cannot be sufficiently obtained. If it exceeds 1,000 ⁇ m ⁇ % by mass, the above-described problems during film formation and problems due to the strength reduction of the film itself will occur.
  • the total content of titanium dioxide and calcium carbonate is 55% by mass or less, preferably 53% by mass or less, and particularly preferably 52% by mass or less. If the total content (%) of titanium dioxide and calcium carbonate is too high, the film formability tends to be “bad”. Specifically, the bubble becomes unstable at the time of inflation molding, and a multifilm that can be stretched and evaluated cannot be obtained. That is, since the bubbles are shaken and become unstable, a film having a uniform thickness cannot be obtained. Moreover, since the strength of the film is lowered, problems such as the film being cut during the stretching work occur.
  • the lower limit of the total content of titanium dioxide and calcium carbonate is not particularly limited as long as it satisfies the range of the product of the thickness and content of the multifilm.
  • the multi-film of the present invention is a film having a single-layer structure containing each component as long as the multi-film thickness ( ⁇ m) and the “contents of titanium dioxide and calcium carbonate (mass%)” satisfy the above conditions. It may be a film having a multilayer structure. In the case of a film having a multilayer structure, a layer containing titanium dioxide and a layer containing calcium carbonate may be provided separately. Moreover, the multifilm of this invention may further have a layer which does not contain any of titanium dioxide and calcium carbonate. Examples of the layer containing neither titanium dioxide nor calcium carbonate include a colorless and transparent layer (transparent layer). A plurality of titanium dioxide, calcium carbonate, a layer containing both of these, and a transparent layer may be provided. The order of stacking these layers is not particularly limited. Here, the layer containing titanium dioxide, calcium carbonate, and both may be collectively referred to as “main constituent layer”.
  • the multi-film of the present invention may be provided with a “layer containing carbon black (black layer)” below the main constituent layer.
  • black layer may contain calcium carbonate.
  • a lower layer means the layer arrange
  • a layer disposed on the top surface side is referred to as an upper layer.
  • thermoplastic resin used for the film having such a multilayer structure can be appropriately selected from the thermoplastic resins described above.
  • additives can be appropriately selected from the above-mentioned additives and contained.
  • the carbon black used for the black layer can be appropriately selected from at least one selected from the group consisting of furnace black, channel black, acetylene black, and thermal black. Of these, furnace black is generally used. Carbon black having an average particle diameter of 3 to 500 nm can be used.
  • the content of carbon black is preferably 0.5 to 20% by mass, more preferably 0.7 to 15% by mass, and particularly preferably 1 to 10% by mass. If the content of carbon black is too large, the absorption of heat rays in sunlight increases, which may increase the rise in daytime land temperature. Furthermore, carbon black aggregates may be formed in the black layer. And when this agglomerate arises, there exists a possibility that problems, such as a hole opening in a bubble at the time of film forming, may generate
  • the multifilm of the present invention can be produced, for example, by the following method. First, the raw material composition is melted and kneaded with a kneader or the like to produce compound pellets. Next, the obtained compound pellets are dried by a dehumidifying dryer or the like as necessary, and then supplied to a film forming machine to produce a film. The obtained film may be seeded, planted, or drilled to give drainage into the soil.
  • a raw material component is mixed using a mixer to obtain a raw material composition, and then supplied to the kneader and melt-kneaded.
  • a constant volume without using the mixer Examples thereof include a method in which each raw material component is directly supplied to the kneading machine from a type feeder or a weight type feeder and melt kneaded.
  • a blender such as a cone blender or a ribbon blender, a Henschel mixer, or the like can be used.
  • a single screw extruder a twin screw extruder, a Banbury mixer, a pressure kneader, a mixing roll, or the like can be used.
  • a method for producing a film from compound pellets include a forming method such as an inflation method and a T-die method. Specific examples include air-cooled or water-cooled inflation molding having an extruder and a die, and T-die molding using a cooling roll.
  • the gap (lip) between the dies through which the resin is extruded is usually 0.5 to 3 mm, and the blow-up ratio is usually 1.5 to 5.0.
  • the molding temperature may be not lower than the melting point of the resin, but is usually 130 to 250 ° C., preferably 140 to 220 ° C.
  • thermoplastic resin in a powder form, and melt-kneading the thermoplastic resin at a high concentration to obtain a master batch
  • a method of melt-kneading a master batch and a thermoplastic resin can be employed.
  • Thermoplastic resin (A) Aliphatic polyester biodegradable resin: Polybutylene succinate (manufactured by Showa Polymer Co., Ltd., product name “Bionole 1001”) and polylactic acid (manufactured by Nature Works, product name “Nature Works 4042D”) are used as aliphatic polyester-based biodegradable resins. It was.
  • the MFR (190 ° C., 2.16 kg load) of the polybutylene succinate was 1.5 g / 10 minutes.
  • the MFR (190 ° C., 2.16 kg load) of polylactic acid was 2.4 g / 10 min.
  • Aromatic-aliphatic copolymer polyester-based biodegradable resin Polybutylene terephthalate adipate (manufactured by BASF, product name “Ecoflex”) was used as the aromatic-aliphatic copolyester resin.
  • the MFR (190 ° C., 2.16 kg load) of this resin was 4.3 g / 10 minutes.
  • Calcium carbonate (CaCO 3 ) As calcium carbonate, heavy calcium carbonate having an average particle diameter of 2 ⁇ m and surface-treated with stearic acid was used.
  • Titanium dioxide A masterbatch containing 60% by mass of titanium dioxide and an aromatic-aliphatic polyester-based biodegradable resin using rutile type (crystal structure is tetragonal) titanium dioxide having an average particle diameter of 0.23 ⁇ m as titanium dioxide. (Hereinafter referred to as “white masterbatch”). The produced white masterbatch was used as a source of “titanium dioxide”.
  • the aromatic-aliphatic polyester biodegradable resin is polybutylene terephthalate adipate (manufactured by BASF, product name “Ecoflex”). In Table 2, the white master batch is indicated as “WB1”.
  • a masterbatch (hereinafter referred to as “black masterbatch”) containing 35% by mass of carbon black and an aromatic-aliphatic polyester biodegradable resin was prepared.
  • the average particle size of carbon black was 24 nm.
  • the produced black masterbatch was used as a supply source of “carbon black”.
  • the aromatic-aliphatic polyester-based biodegradable resin is polybutylene terephthalate adipate (manufactured by BASF, product name “Ecoflex”).
  • the black master batch is indicated as “BB1”.
  • Ca-St Calcium stearate
  • Irganox 1010 manufactured by BASF Japan was used as an antioxidant
  • Tinuvin 326 manufactured by BASF Japan was used as a UV absorber.
  • Table 1 shows the compound composition (raw materials and blending amount (parts by mass)).
  • Example 1 The components shown in Table 1 were blended in the blending amounts shown in Table 1, and mixed using a Henschel mixer to obtain a mixture. Thereafter, the obtained mixture was kneaded using a twin-screw kneader (product name “TEM-35B” manufactured by Toshiba Machine Co., Ltd.) to produce compound pellets (CP1).
  • the kneading conditions were a barrel set temperature of 190 ° C., a screw speed of 200 min ⁇ 1 , and a feed rate of 12 kg / hour.
  • An inflation molding machine (manufactured by Tommy Machinery Co., Ltd.) equipped with a cylinder having a cylinder diameter of 65 mm and a die having a diameter of 200 mm and a lip of 1.5 mm was prepared.
  • Compound pellets (CP1) were molded using this inflation molding machine to produce a cylindrical film.
  • the molding conditions of the compound pellet (CP1) were a die set temperature of 170 ° C. and an extrusion rate of 50 kg / hour.
  • the produced film had a thickness of 18 ⁇ m.
  • the value of “thickness ⁇ concentration of calcium carbonate” was 485 ⁇ m ⁇ mass%, and the value of “thickness ⁇ concentration of titanium dioxide” was 98 ⁇ m ⁇ mass%.
  • the “film moldability” was “good molding”. The results are shown in Table 2. In the column of “Film Formability” in Table 2, the case where the multi-film is well formed is indicated as “good forming”. The case where the bubble sometimes shakes and a film that can be evaluated for expansion without obtaining uniform thickness and width is indicated as “slightly defective”. The case where the bubble shakes so much that a film that can be stretched cannot be obtained is indicated as “forming defect”.
  • “Measured temperature” in the “Maximum ground temperature on a clear day in May” column represents an average value of the maximum ground temperature on a clear day in May.
  • the “measured temperature” in the “minimum ground temperature on May clear day” column indicates the average value of the minimum ground temperature on the clear day in May.
  • “Temperature difference between the highest ground temperature and the lowest ground temperature” indicates the difference between the average value of the highest ground temperature on a clear day in May and the average value of the lowest ground temperature on a clear day in May.
  • the proportion (%) of the lettuce 50 balls that have been planted is larger than L size.
  • the evaluation criteria are “A” when the ratio of the L size or larger is 40% or more, “B” when 10% or more and less than 40%, and “C” when 10% or less. To do.
  • the average value of the highest ground temperature on a clear day in May is 27.5 ° C.
  • the temperature difference from the bare ground is 2.2 ° C.
  • the average value of the lowest ground temperature is 17.9 ° C.
  • the difference in temperature was 2.4 ° C
  • the temperature difference between the highest and lowest ground temperatures was 9.6 ° C.
  • the evaluation of the “lettuce large ball rate” was “A”
  • the evaluation of the “lettuce harvest rate” was “A”. The results are shown in Table 3.
  • Example 2 to 10 Compound pellets (CP2 to CP4) were produced in the same manner as in Example 1 except that the blending amounts and layer thicknesses shown in Table 2 were used, and then a multifilm was produced using the inflation molding machine. . While measuring the ground temperature when using the produced multifilm, the above lettuce cultivation was performed, and each of the above evaluations was performed. As a result of the ground temperature measurement, the thickness of the produced multifilm and the value of “thickness ⁇ concentration” are shown in Table 2. Table 3 shows the evaluation results of the above evaluations in lettuce cultivation.
  • molded consists of "substantially" a white layer (surface layer) and a black layer (back layer). The film becomes a layer.
  • each extruder for forming the surface layer (white layer) and the intermediate layer (white layer) of the film has 100 parts by weight of compound pellets (CP3) and 40 parts by weight of white masterbatch, respectively. (WB1) was supplied. And 100 mass parts compound pellets (CP3) and 10 mass parts black masterbatch (BB1) were supplied to the extruder which shape
  • surface layer in the column of “layer structure” indicates a layer composed of the “surface layer (white layer) and intermediate layer (white layer)”.
  • Table 2 shows the thickness of the produced multifilm and the value of “thickness ⁇ concentration”, and Table 3 shows the results of the ground temperature measurement and the evaluation results of the above evaluations in lettuce cultivation.
  • the multi-films of Examples 1 to 10 suppressed the increase in daytime maximum soil temperature in the soil temperature measurement performed in Chiba Prefecture compared to the multi-films of Comparative Examples 1 to 10, and It was confirmed that the minimum ground temperature at night could be prevented from decreasing. That is, the temperature difference between daytime and nighttime could be kept small. Therefore, in the cultivation of lettuce conducted in Gunma Prefecture, it can be confirmed that both the [lettuce large ball rate] and [lettuce harvest rate] have high evaluation, and the high temperature damage of the crop is suppressed, and the growth of the crop is suppressed. I found that it can be promoted. Moreover, expensive titanium dioxide is not used in large quantities. Therefore, the raw material cost can be reduced, and the environmental impact can be reduced because the film is thin (thickness: 8 to 30 ⁇ m).
  • the multi-film of the present invention is very useful as an agricultural multi-film used for cultivation of crops such as vegetables.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Protection Of Plants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 日中の最高地温の上昇を抑えるとともに、夜間の最低地温が低下することを防止することができるマルチフィルムであり、熱可塑性樹脂、二酸化チタン及び炭酸カルシウムを含有し、厚さが8~30μmであり、厚さと二酸化チタンの含有率との積が、60~300μm・質量%であり、厚さと炭酸カルシウムの含有率との積が、250~1,000μm・質量%であり、二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下であるマルチフィルムを提供する。

Description

マルチフィルム
 本発明は、マルチフィルムに関する。更に詳しくは、本発明は、日中の最高地温の上昇を抑えるとともに、夜間の最低地温の低下を防止することができ、原料コストが低廉であり、環境負荷が低いマルチフィルムに関する。
 従来、野菜等の栽培において農業用マルチフィルムが使用されている。この農業用マルチフィルムには、日中における地温の上昇や抑制、夜間における日中の地温の低下抑制、土壌の保湿、肥料流出の防止、雑草の繁茂抑制等の効果がある。そのため、野菜などの生産性の向上には欠かせない農業資材として普及している。
 野菜などの生産性を向上させるには、夏場に高温障害が出やすい作物の場合、日中の最高地温の上昇を抑制する必要がある。このような効果がある農業用マルチフィルムとしては、例えば、夏場における日中の最高地温の上昇を抑制するための白層と、雑草の繁茂を抑制するための黒層とを備えたポリオレフィン製の農業用マルチフィルムが知られている(特許文献1、2参照)。
 また、近年、ポリオレフィン製の農業用マルチフィルムに代えて、生分解性樹脂を原料とした生分解性の農業用マルチフィルムが使用されている(特許文献3~5参照)。生分解性の農業用マルチフィルムの場合、使用後に土壌中に鋤き込むことにより、土壌中で分解させることができる。そのため、使用後におけるフィルムの剥ぎ取りや回収作業が不要となり、農作業の省力化を図ることができる。また、フィルムの焼却や埋め立てなどの廃棄処理が不要となり、温暖化防止、土壌や大気の汚染防止を図ることができる。このような利点があることから、農業用マルチフィルムとして生分解性の農業用マルチフィルムの普及が進んでいる。
特開2001-45880号公報 特開2007-189986号公報 特開2003-191418号公報 特開2009-72113号公報 特開2001-323176号公報
 しかしながら、特許文献1,2に記載のフィルムは、日中の最高地温の上昇を抑えることができるが、夜間の最低地温の低下を防止することはできない。即ち、特許文献1,2に記載のフィルムは、夜間において、日中に上昇した地温が低下し過ぎてしまうことを抑制することが十分に達成できない。そのため、特許文献1,2に記載のフィルムを使用した場合、野菜などの作物の生育が遅いという問題があった。
 また、特許文献1に記載のフィルムは、孔径1mm以下の孔を有するものであるため、土壌中の保湿や雑草の繁茂抑制の効果が十分に得られない。特許文献2に記載のフィルムは、フィルムの全体の厚さの上限が75μmであり、全体の厚さが厚いフィルムである。また、特許文献2に記載のフィルムは、フィルムの全体の厚さ(μm)と二酸化チタン濃度(質量%)の積が600μm・質量%以上となる条件を満たすフィルムである。即ち、この特許文献2に記載のフィルムは、高価な二酸化チタンが大量に配合されていることになる。そのため、特許文献2に記載のフィルムは、使用後に大量の資源廃棄物となること、製造に際して二酸化チタンの凝集によるフィッシュアイが発生してフィルムが破れ易くなること、価格が高くなってしまうことなどの問題があった。
 特許文献3,4に記載のフィルムは、生分解性の農業用マルチフィルムであるため環境負荷が低く、また、日中の最高地温を裸地温度以下に抑えることができる。しかしながら、夜間において、日中に上昇した地温が低下することを抑制することは達成できていない。
 特許文献5に記載のフィルムは、生分解性の農業用マルチフィルムであるため環境負荷が低く、また、夜間において日中に上昇した地温が低下し過ぎてしまうことを抑制することを達成できるものである。しかしながら、日中の地温の上昇を十分に抑制することが困難である。
 本発明は、上述のような従来技術の課題を解決するためになされたものである。本発明は、日中の最高地温の上昇を抑えるとともに、夜間の最低地温の低下を防止することができ、原料コストが低廉であり、環境負荷が低いマルチフィルムを提供することを目的とする。
 本発明者らは上記課題を達成すべく鋭意検討した。その結果、熱可塑性樹脂、二酸化チタン、及び炭酸カルシウムを含有しており、含有成分と厚さが所定の条件を満たし、全体の厚さを所定の値とすることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。
 本発明により、以下のマルチフィルムが提供される。
[1]熱可塑性樹脂、二酸化チタン及び炭酸カルシウムを含有し、厚さが8~30μmであり、厚さと二酸化チタンの含有率との積が、60~300μm・質量%であり、厚さと炭酸カルシウムの含有率との積が、250~1,000μm・質量%であり、二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下であるマルチフィルム。
[2]前記熱可塑性樹脂が、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、脂肪族ポリエステル系生分解性樹脂、及び芳香族-脂肪族共重合ポリエステル系生分解性樹脂からなる群より選択される少なくとも1種を含有するものである前記[1]に記載のマルチフィルム。
[3]前記熱可塑性樹脂が、脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(A)、ヒドロキシアルキルカルボン酸が重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(B)、並びに、芳香族ジカルボン酸及び脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(C)からなる群より選択される少なくとも1種を含有する前記[2]に記載のマルチフィルム。
 本発明のマルチフィルムは、「厚さと二酸化チタンの含有率との積が、60~300μm・質量%であり、厚さと炭酸カルシウムの含有率との積が、250~1,000μm・質量%であり、二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下」である。そのため、本発明のマルチフィルムは、日中の最高地温の上昇を抑えるとともに、夜間の最低地温の低下を防止することができる。また、本発明のマルチフィルムは、高価な二酸化チタンを大量に使用していないため原料コストが低廉である。更に、本発明のマルチフィルムは、「厚さが8~30μm」である薄いフィルムであるため、使用後に資源廃棄物となるフィルムの量が少なく、環境負荷が低いものである。
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。
[1]マルチフィルム:
 本発明のマルチフィルムは、熱可塑性樹脂、二酸化チタン及び炭酸カルシウムを含有している。本発明のマルチフィルムは、全体の厚さと二酸化チタンの含有率との積が、60~300μm・質量%である。また、本発明のマルチフィルムは、全体の厚さと炭酸カルシウムの含有率との積が、250~1,000μm・質量%である。更に、本発明のマルチフィルムは、二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下である。そして、本発明のマルチフィルムは、全体の厚さが8~30μmである。
 このように本発明のマルチフィルムは、「厚さと二酸化チタンの含有率との積、厚さと炭酸カルシウムの含有率との積、二酸化チタンと炭酸カルシウムの含有率の合計、及び全体の厚さ」が所定の条件を満たしている。そのため、本発明のマルチフィルムは、日中の最高地温の上昇を抑えるとともに、夜間の最低地温の低下を防止することができる。このような効果を有するため、本発明のマルチフィルムは、特に夏場において高温障害が起り易い作物に対する生育に好適な条件を整えることができ、更に雑草の繁茂を抑えることができる。従って、本発明のマルチフィルムは、作物の高温障害を抑えるだけでなく、作物の生長を促進し、収穫量を増大させることができる。また、本発明のマルチフィルムは、高価な二酸化チタンを大量に使用していないため原料コストが低廉である。更に、本発明のマルチフィルムは、「全体の厚さが8~30μm」である薄いフィルムであるため、使用後に資源廃棄物となるフィルムの量が少なく、環境負荷が低い。
 本発明のマルチフィルム中に分散した二酸化チタン及び炭酸カルシウムは、それぞれ太陽光線を反射することができる。本発明においては、二酸化チタン及び炭酸カルシウムの両方を存在させることにより、これら機能が相俟って、日中における地温の上昇を相乗的に抑制している。更に、夜間においては、二酸化チタン及び炭酸カルシウムの両方を含有することにより、日中に暖まった土壌の温度が低下することを効果的に防止している。このように本発明のマルチフィルムは、二酸化チタン及び炭酸カルシウムの両方を含有することにより、日中と夜間の温度差を小さく保つことができる。そのため、作物の高温障害を抑えるだけでなく、作物の成長を促進し、収穫量を増大させることができる。
 より具体的には、上記効果は、マルチフィルムの厚さ(μm)と「二酸化チタン及び炭酸カルシウムのそれぞれの含有率(質量%)」との関係に依存する。即ち、上記効果を奏するマルチフィルムは、厚さ(全体の厚さ)×濃度(二酸化チタン及び炭酸カルシウムの含有率)の積(μm・質量%)により規定することができる。ここで、上記効果を得るためには、厚さと「二酸化チタン及び炭酸カルシウムの含有率」との積を一定値以上とすることが好ましい。しかし、厚さと「二酸化チタン及び炭酸カルシウムの含有率」との積は、大きすぎると、得られる効果が頭打ちとなるため、二酸化チタンなどの原料の無駄遣いとなる。更に、フィッシュアイの発生、インフレーション成形時におけるバブルの不安定化、高濃度過ぎる場合は溶融押出できないなどのフィルム成形時の問題、マルチフィルムの強度が低下して展張作業が困難になることなどの問題も発生する。なお、「フィッシュアイ」は、樹脂の塊や、二酸化チタン、炭酸カルシウムが分散不良になり凝集物が形成される不具合のことである。また、インフレーション法において、溶融樹脂を環状のダイから筒状の形で押出し、この筒状の溶融膜内にエアを吹き込み、溶融状態から固化状態に変わる筒状の樹脂を「バブル」という。そして、このバブルが揺れて踊ることを「バブル不安定」という。
 本発明のマルチフィルムは、上述したように、熱可塑性樹脂、二酸化チタン及び炭酸カルシウムを含有するものである。熱可塑性樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、ポリプロピレン、塩化ビニル、脂肪族ポリエステル系生分解性樹脂、芳香族-脂肪族共重合ポリエステル系生分解性樹脂などが挙げられる。
 これらの中でも、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、脂肪族ポリエステル系生分解性樹脂、及び、芳香族-脂肪族共重合ポリエステル系生分解性樹脂からなる群より選択される少なくとも1種を含有するものであることが好ましい。また、これらの中でも、下記生分解性樹脂(A)~(C)からなる群より選択される少なくとも1種のポリエステル系生分解性樹脂であることが更に好ましい。生分解性樹脂(A)は、脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である。生分解性樹脂(B)は、ヒドロキシアルキルカルボン酸が重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である。生分解性樹脂(C)は、芳香族ジカルボン酸及び脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である。
 熱可塑性樹脂が、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレンであると、原料コストを低減したり展張時の作業性が向上したりするという観点から好ましい。また、農作業の省力化や土壌及び大気の汚染防止の観点からは、熱可塑性樹脂は、脂肪族ポリエステル系生分解性樹脂、芳香族-脂肪族共重合ポリエステル系生分解性樹脂が好ましい。
 ここで、従来のマルチフィルムには、ポリオレフィン樹脂を主成分とするものと、生分解性樹脂を主成分として含有するものがある。そして、従来のマルチフィルムは、日中の最高地温を裸地温度以下に抑えるとともに、夜間の最低地温が裸地温度以下になることを防止することは困難であった。一方、本発明のマルチフィルムは、含有する熱可塑性樹脂が、ポリオレフィン樹脂及び生分解性樹脂のいずれの樹脂であっても、日中の地温上昇を抑え、更に夜間の地温低下を防止するという優れた効果を奏する。
 生分解性樹脂(A)は、多官能イソシアネート化合物、多官能オキサゾリンなどで架橋して高分子量化したものであってもよく、脂肪族オキシカルボン酸単位が含有されていてもよい。生分解性樹脂(A)としては、具体的には、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート等の生分解性脂肪族ポリエステル、これらの架橋体などが挙げられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、グルタル酸、コハク酸、アジピン酸、セバシン酸、イタコン酸などが挙げられる。脂肪族ジカルボン酸としては、シュウ酸、マロン酸、グルタル酸、コハク酸、アジピン酸、セバシン酸、及びイタコン酸からなる群より選択される少なくとも1種であることが好ましい。脂肪族ジオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジエチレングリコール、1,4-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどが挙げられる。脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジエチレングリコール、1,4-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、及びネオペンチルグリコールからなる群より選択される少なくとも1種であることが好ましい。
 生分解性樹脂(B)は、多官能イソシアネート化合物、多官能オキサゾリンなどで架橋させて高分子量化したものであってもよい。生分解性樹脂(B)としては、具体的には、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシブチレート、ポリヒドロキシバリレート等の生分解性脂肪族ポリエステル、これらの架橋体などが挙げられる。なお、ヒドロキシアルキルカルボン酸に光学異性体が存在する場合には、D体、L体、またはラセミ体のいずれでもよい。
 ヒドロキシアルキルカルボン酸としては、例えば、乳酸、グリコール酸、リンゴ酸、クエン酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、2-ヒドロキシ3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸などを挙げることができる。ヒドロキシアルキルカルボン酸としては、乳酸、グリコール酸、リンゴ酸、クエン酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、2-ヒドロキシ3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、及び2-ヒドロキシイソカプロン酸からなる群より選択される少なくとも1種であることが好ましい。
 生分解性樹脂(C)は、多官能イソシアネート化合物、多官能オキサゾリンなどで架橋して高分子量化したものであってもよく、脂肪族オキシカルボン酸単位が含有されていてもよい。生分解性樹脂(C)としては、具体的には、ポリブチレンサクシネートテレフタレート、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペートテレフタレート、ポリエチレンサクシネートテレフタレート、ポリエチレンアジペートテレフタレートなどの芳香族-脂肪族共重合ポリエステル、これらの架橋体などが挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、イソフタル酸無水物などを挙げることができる。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、及びイソフタル酸無水物からなる群より選択される少なくとも1種であることが好ましい。脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、グルタル酸、コハク酸、アジピン酸、セバシン酸、イタコン酸などを挙げることができる。脂肪族ジカルボン酸としては、シュウ酸、マロン酸、グルタル酸、コハク酸、アジピン酸、セバシン酸、及びイタコン酸からなる群より選択される少なくとも1種であることが好ましい。
 脂肪族ジオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジエチレングリコール、1,4-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどを挙げることができる。脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジエチレングリコール、1,4-ブタンジオール、2,3-ブタンジオール、1,3-ブタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールからなる群より選択される少なくとも1種であることが好ましい。
 熱可塑性樹脂のメルトフローレート(MFR)は、190℃、2.16kg荷重の条件で測定した場合、通常0.01~50g/10分である。そして、成形時の押出性、組成物の均一混練性、製膜厚さの安定性などが良好になるという観点から、上記メルトフローレートは、0.02~40g/10分であることが好ましく、0.03~30g/10分であることが更に好ましい。
 二酸化チタンとしては、アナターゼ型、ルチル型、またはこれらの混合物を用いることができる。遮光性や耐候性を向上させるという観点から、ルチル型の二酸化チタンを用いることが好ましい。二酸化チタンの平均粒径は、0.05~2μmが好ましく、0.1~1μmが更に好ましい。二酸化チタンの平均粒径が小さすぎると、二酸化チタンが原料中で分散し難く互いに凝集して粗大粒子を形成し易くなる傾向がある。一方、平均粒径が大きすぎると、太陽光線の散乱効率が低下し、日中における最高地温の上昇の抑制効果が十分に得られないおそれがある。
 炭酸カルシウムとしては、重質炭酸カルシウム、軽質炭酸カルシウム、または、これらの混合物を用いることができる。なお、通常、軽質炭酸カルシウムは、吸湿性が大きいため、成形する際に、水分の気化による発泡が生じてフィルムに孔が形成されてしまうおそれがある。一方、重質炭酸カルシウムは、水分の気化による発泡が生じ難いため、重質炭酸カルシウムを用いることが好ましい。炭酸カルシウムの平均粒径は、0.1~10μmであることが好ましく、0.5~5μmであることが更に好ましく、0.7~3μmであることが特に好ましい。炭酸カルシウムの平均粒径が小さすぎると、炭酸カルシウムが原料中で分散し難く互いに凝集して粗大粒子を形成し易くなる傾向がある。一方、平均粒径が大きすぎると、得られるフィルムの強度が十分に得られないおそれがあり、フィッシュアイが発生するおそれもある。
 また、炭酸カルシウムとしては、熱可塑性樹脂中における分散性を良好にするため、表面を脂肪酸、脂肪酸エステル類等で処理したものを用いることが好ましい。
 本発明のマルチフィルムは、本発明の効果を損なわない範囲において、成型加工性やフィルム物性を調整するなどの目的で添加された添加剤を含有していてもよい。このような添加剤としては、例えば、可塑剤、充填剤、熱安定剤、酸化防止剤、滑剤、ブロッキング防止剤、結晶核剤、紫外線吸収剤、光安定剤、加水分解抑制剤などの公知の添加剤を挙げることができる。
 本発明のマルチフィルムの厚さは、8~30μmの範囲とする必要があり、好ましくは10~28μmの範囲、より好ましくは12~26μmの範囲、特に好ましくは14~24μmの範囲である。マルチフィルムの厚さが薄すぎると、成形時にバブルに穴が開いて成形性が不安定になる。また、成形できたとしても夜間における地温を保持する効果が小さくなる。更に、フィルム強度が低くなって展張作業時に切れやすくなる。また、使用中にフィルムが裂けてしまうという問題がある。マルチフィルムの厚さが厚すぎると、熱可塑性樹脂及び二酸化チタンの使用量が増加することに伴い環境負荷が増加する。一方、日中における地温の上昇を抑制する効果や夜間における地温を保持する効果の向上が小さくなる。
 本発明のマルチフィルムは、マルチフィルム全体の厚さと二酸化チタンの含有率との積が60~300μm・質量%であり、70~290μm・質量%であることが好ましく、80~280μm・質量%であることが更に好ましい。上記「厚さと二酸化チタンの含有率との積」が上記範囲内であると、日中における地温の上昇を抑制する効果が高いことに加えて、フィルムの成形性が良好になり、更に、原料コスト及び資源廃棄物を低減できる。厚さと二酸化チタンの含有率との積が60μm・質量%未満では、日中における地温の上昇を抑制する効果が十分に得られない。300μm・質量%超では、日中における地温の上昇を抑制する効果が飽和状態になる。即ち、酸化チタンを無駄に使用することになる。そして、高価な酸化チタンを大量に使用することになり、経済的に好ましくない。更に、上述したようなフィルム成形時の問題やフィルム自体の強度低下による問題が発生する。
 また、本発明のマルチフィルムは、マルチフィルム全体の厚さと炭酸カルシウムの含有率との積が250~1,000μm・質量%であり、270~950μm・質量%であることが好ましく、300~900μm・質量%であることが更に好ましい。上記「厚さと炭酸カルシウムの含有率との積」が上記範囲内であると、夜間における地温の低下を防止する効果が高くなることに加えて、フィルムの成形性が良好になりフィルム強度が高くなる。上記「厚さと炭酸カルシウムの含有率との積」が250μm・質量%未満であると、夜間における地温の低下を防止する効果が十分に得られない。1,000μm・質量%超であると、上述したようなフィルム成形時の問題やフィルム自体の強度低下による問題が発生することになる。
 更に、本発明のマルチフィルムは、二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下であり、好ましくは53質量%以下、特に好ましくは52質量%以下である。二酸化チタンと炭酸カルシウムの含有率の合計(%)が高すぎると、フィルムの成形性が「不良」になり易い。具体的には、インフレーション成形時にバブルが不安定となり展張して評価可能なマルチフィルムを得ることができない。即ち、バブルが揺れて不安定になるため均一な厚さのフィルムが得られない。またフィルムの強度が低くなるため、展張作業時にフィルムが切れるなどの問題が発生する。なお、二酸化チタンと炭酸カルシウムの含有率の合計の下限は、マルチフィルムの厚さと含有率の積の範囲を満たせば特に制限されない。
 本発明のマルチフィルムは、マルチフィルムの厚さ(μm)と「二酸化チタン及び炭酸カルシウムのそれぞれの含有率(質量%)」とが上記条件を満たす限り各成分を含有する単層構造からなるフィルムであってもよいし、多層構造からなるフィルムであってもよい。多層構造からなるフィルムの場合、二酸化チタンを含む層と炭酸カルシウムを含む層を別々に設けても良い。また、本発明のマルチフィルムは、二酸化チタン及び炭酸カルシウムのいずれも含まない層を更に有してもよい。二酸化チタン及び炭酸カルシウムのいずれも含まない層としては、例えば、無色透明な層(透明層)などを挙げることができる。また、二酸化チタン、炭酸カルシウム、これらの両方を含む層、及び透明層は、それぞれ複数層設けてもよい。そして、これらの層の積層順は特に制限は無い。ここで、二酸化チタン、炭酸カルシウム、及びこれらの両方を含む層を総称して「主構成層」と記す場合がある。
 更に、本発明のマルチフィルムは、多層構造からなるフィルムの場合、主構成層よりも下層に「カーボンブラックを含む層(黒層)」を備えてもよい。下層に黒層を備えることにより、マルチフィルムとして使用した場合に夜間の最低地温の低下を更に効果的に防止することができる。この黒層は炭酸カルシウムを含んでも良い。なお、下層とは、マルチフィルムを使用する際に地面側に配置される層のことをいう。一方、天面側に配置される層を上層という。
 このような多層構造からなるフィルムに用いる熱可塑性樹脂は、前記した熱可塑性樹脂の中から適宜選択することができる。また、添加剤についても同様に、上述した添加剤の中から適宜選択して含有させることができる。
 黒層に用いるカーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、及びサーマルブラックからなる群より選択される少なくとも1種の中から適宣選択することができる。これらのうち、一般的にはファーネスブラックを使用する。カーボンブラックとしては、平均粒径が3~500nmであるものを用いることができる。
 カーボンブラックの含有率は、0.5~20質量%であることが好ましく、0.7~15質量%であることが更に好ましく、1~10質量%であることが特に好ましい。カーボンブラックの含有率が大きすぎると、太陽光中の熱線の吸収が大きくなるため日中の地温上昇が大きくなるおそれがある。更に、黒層中にカーボンブラックの凝集物が生じるおそれがある。そして、この凝集物が生じることにより、フィルム成形時にバブルに孔が開くなどの問題が発生するおそれがある。一方、カーボンブラックの含有率が小さすぎると、期待される夜間の最低地温の低下抑制の向上効果が得られなくなるおそれがある。
[2]マルチフィルムの製造方法:
 本発明のマルチフィルムは、例えば、以下の方法で製造することができる。まず、原料組成物を混練機などにより溶融、混練して、コンパウンドペレットを製造する。次に、得られたコンパウンドペレットを必要に応じて除湿乾燥機などで乾燥させた後、フィルム成形機に供給してフィルムを製造する。なお、得られたフィルムに播種、定植、土中への排水性を与えるための穴あけ加工などを行ってもよい。
 原料組成物を溶融混練する方法としては、混合機を用いて原料成分を混合して原料組成物を得た後、混練機に供給して溶融混練する方法、上記混合機を用いずに定容式フィーダーや重量式フィーダーから直接各原料成分を上記混練機に供給して溶融混練する方法などを挙げることができる。混合機としては、コーンブレンダー、リボンブレンダー等のブレンダー、ヘンシェルミキサー等を用いることができる。混練機としては、単軸スクリュー押出機、二軸スクリュー押出機、バンバリーミキサー、加圧ニーダー、ミキシングロール等を用いることができる。コンパウンドペレットからフィルムを製造する方法としては、インフレーション法、Tダイ法等の成形方法を挙げることができる。具体的には、押出機とダイスを有する空冷または水冷のインフレーション成形、冷却ロールを使用するTダイ成形を挙げることができる。
 インフレーション成形の場合、樹脂が押し出されてくるダイスの隙間(リップ)は通常0.5~3mmであり、ブローアップ比は通常1.5~5.0である。成形温度は樹脂の融点以上であればよいが、通常130~250℃であり、好ましくは140~220℃である。
 なお、二酸化チタン、炭酸カルシウムを溶融混練する方法としては、粉体のまま所定量の熱可塑性樹脂と溶融混練する方法、熱可塑性樹脂に高濃度で溶融混練してマスターバッチを得た後、このマスターバッチと熱可塑性樹脂とを溶融混練する方法などを採用することができる。
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。
 まず、実施例及び比較例に使用する原料組成物を調製した。この原料組成物の原料を以下に示す。
(1)熱可塑性樹脂:
(A)脂肪族ポリエステル系生分解性樹脂:
 脂肪族ポリエステル系生分解性樹脂として、ポリブチレンサクシネート(昭和高分子社製、製品名「ビオノーレ1001(Bionole1001)」)、ポリ乳酸(ネイチャーワークス社製、製品名「ネイチャーワークス4042D」)を用いた。ポリブチレンサクシネートのMFR(190℃、2.16kg荷重)は、1.5g/10分であった。ポリ乳酸のMFR(190℃、2.16kg荷重)は、2.4g/10分であった。
(B)芳香族-脂肪族共重合ポリエステル系生分解性樹脂:
 芳香族-脂肪族共重合ポリエステル系樹脂として、ポリブチレンテレフタレートアジペート(BASF社製、製品名「エコフレックス(Ecoflex)」)を用いた。この樹脂のMFR(190℃、2.16kg荷重)は、4.3g/10分であった。
(2)炭酸カルシウム(CaCO):
 炭酸カルシウムとしては、ステアリン酸で表面処理した平均粒径2μmの重質炭酸カルシウムを用いた。
(3)二酸化チタン:
 二酸化チタンとして、平均粒径0.23μmのルチル型(結晶構造が正方晶)の二酸化チタンを用い、60質量%の二酸化チタンと芳香族-脂肪族ポリエステル系生分解性樹脂とを含有するマスターバッチ(以下、「白マスターバッチ」と記す)を作製した。作製した白マスターバッチを「二酸化チタン」の供給源として用いた。上記芳香族-脂肪族ポリエステル系生分解性樹脂は、ポリブチレンテレフタレートアジペート(BASF社製、製品名「エコフレックス(Ecoflex)」)である。なお、表2中、白マスターバッチを「WB1」と示す。
(4)カーボンブラック:
 35質量%のカーボンブラックと芳香族-脂肪族ポリエステル系生分解性樹脂とを含有するマスターバッチ(以下、「黒マスターバッチ」と記す)を作製した。カーボンブラックの平均粒径は、24nmであった。作製した黒マスターバッチを「カーボンブラック」の供給源として用いた。上記芳香族-脂肪族ポリエステル系生分解性樹脂は、ポリブチレンテレフタレートアジペート(BASF社製、製品名「エコフレックス(Ecoflex)」)である。なお、表2中、黒マスターバッチを「BB1」と示す。
(5)添加剤:
 滑剤としてステアリン酸カルシウム(表1中、「Ca-St」と記す)を用いた。また、酸化防止剤としてBASFジャパン社製の製品名「Irganox1010」、UV吸収剤としてBASFジャパン社製の製品名「Tinuvin326」を用いた。
 なお、表1にコンパウンド組成(原料及び配合量(質量部))を示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 表1に示す各成分を表1に示す配合量で配合し、ヘンシェルミキサーを用いて混合して混合物を得た。その後、得られた混合物を、二軸混練機(東芝機械社製の製品名「TEM-35B」)を用いて、混練して、コンパウンドペレット(CP1)を製造した。混練条件は、バレル設定温度190℃、スクリュー回転数200min-1、フィード量12kg/時間とした。
 シリンダー径が65mmのシリンダー、及び、直径200mm、リップが1.5mmのダイスを備えるインフレーション成形機(トミー機械工業社製)を用意した。このインフレーション成形機を用いてコンパウンドペレット(CP1)を成形し、筒状のフィルムを作製した。コンパウンドペレット(CP1)の成形条件は、ダイス設定温度170℃、押出量50kg/時間とした。
 作製した上記フィルム(マルチフィルム)は、厚さが18μmであった。また、「厚さ×炭酸カルシウムの濃度」の値が485μm・質量%であり、「厚さ×二酸化チタンの濃度」の値が98μm・質量%であった。また、「フィルム成形性」は「成形良好」であった。結果を表2に示す。表2中の「フィルム成形性」の欄は、マルチフィルムが良好に成形された場合を「成形良好」と示す。バブルが時折揺れて、厚みや幅が均一にならずに展張評価の可能なフィルムが得られなかった場合を「成形やや不良」と示す。バブルの揺れが激しく、展張可能なフィルムが得られなかった場合を「成形不良」と示す。
 作製したマルチフィルムを用いて、以下に示す地温測定及び評価を行った。
(1)地温測定:
 まず、2011年5月に千葉県市原市の圃場にて畝を立て、この畝に上記マルチフィルムを展張する。次に、上記畝の頂部から10cmの深さに測温部が位置するように、T&D社製の温度計「おんどとり」を差し込み、2011年5月の晴天日における最高地温及び最低地温を測定する。なお、計測点は畝の長手方向の中央部での1点とする。その後、上記晴天日における最高地温の平均値、最低地温の平均値、及びこれらと裸地との温度差を算出する。算出結果を表3に示す。なお、表3中、「5月の晴天日における最高地温」欄における「実測温度」は、5月の晴天日における最高地温の平均値を示す。「5月の晴天日における最低地温」欄における「実測温度」は、5月の晴天日における最低地温の平均値を示す。「最高地温と最低地温との温度差」は、5月の晴天日における最高地温の平均値と5月の晴天日における最低地温の平均値との差の値を示す。
(2)レタス栽培:
 2011年5月に群馬県吾妻郡の圃場にて畝を立て、成形した上記マルチフィルムを展張する。その後、レタスの苗(タキイ種苗社製の商品名「カスケード」)を定植し、2ヶ月間栽培を行う。2ヶ月間栽培後、以下に示す評価を行った。
[レタス大玉率]
 定植したレタス50球のうちLサイズ以上の大きさのものの割合(%)を算出する。評価基準は、Lサイズ以上の大きさのものの割合が、40%以上の場合を「A」とし、10%以上40%未満の場合を「B」とし、10%以下の場合を「C」とする。
[レタス収穫率]
 定植したレタス50球中、完全に定着して収穫できたものの割合(%)を算出する。評価基準は、完全に定着して収穫できたものの割合が、70%以上の場合を「A」とし、40%以上70%未満の場合を「B」とし、40%未満の場合を「C」とする。
 本実施例においては、5月の晴天日における最高地温の平均値が27.5℃、裸地との温度差が2.2℃であり、最低地温の平均値が17.9℃、裸地との温度差が2.4℃であり、最高地温と最低地温との温度差が9.6℃であった。更に、「レタス大玉率」の評価が「A」であり、「レタス収穫率」の評価が「A」であった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3中、「フィルム状態」の欄における「生分解開始」は、レタス収穫時にフィルムが生分解を開始していることが確認されたことを示す。「展張できず」は、フィルムを畝に展張できなかったことを示す。
(実施例2~10、比較例1~4、6~10)
 表2に示す配合量及び層厚さとなるようにしたこと以外は、実施例1と同様にして、コンパウンドペレット(CP2~CP4)を製造した後、上記インフレーション成形機を用いてマルチフィルムを作製した。作製したマルチフィルムを用いたときの地温の測定を行うとともに、上記レタス栽培を行い、上記各評価を行った。地温測定の結果、作製したマルチフィルムの厚さ、及び「厚さ×濃度」の値を表2に示す。レタス栽培における上記各評価の評価結果を表3に示す。
(比較例5)
 まず、シリンダー径が40mm、65mm、40mmの3層押出機を備えるインフレーション成形機(トミー機械工業社製)、及び、直径180mm、リップ間隔1.2mmのダイス(トミー機械工業社製)を用意した。次に、上記インフレーション成形機及びダイスを用い、設定温度170℃、押出量50kg/時間の成形条件で、全体の厚みが18μmのフィルムを成形した。このフィルムは、実質的に白層と黒層とからなる2層フィルムであった。なお、後述するように、「表層」は、一の押出機から排出されるバブル(表層(白層))と他の押出機から排出されるバブル(中間層(白層))とが溶着して一体化したものである。そのため、本比較例では、上記3層押出機を備えるインフレーション成形機を用いているが、成形されるフィルムは、「実質的に」白層(表層)と黒層(裏層)とからなる2層のフィルムとなる。
 上記フィルムの成形に際して、上記フィルムの表面層(白層)と中間層(白層)を成形する各押出機には、それぞれ、100質量部のコンパウンドペレット(CP3)と40質量部の白マスターバッチ(WB1)を供給した。そして、裏面層(黒層)を成形する押出機には、100質量部のコンパウンドペレット(CP3)と10質量部の黒マスターバッチ(BB1)を供給した。なお、表2中、「層構成」の欄の「表層」とは、上記「表面層(白層)と中間層(白層)」からなる層を示す。
 次に、作製したマルチフィルムを用いたときの地温測定を行うとともに、上記レタス栽培を行い、上記各評価を行った。作製したマルチフィルムの厚さ、及び「厚さ×濃度」の値を表2に示し、地温測定結果及びレタス栽培における上記各評価の評価結果を表3に示す。
(比較例11)
 フィルムを展張せずにレタスの苗(タキイ種苗社製の商品名「カスケード」)を定植し、2ヶ月間栽培を行った。本比較例においては、マルチフィルムを使用しない場合の地温測定、及び、上記レタス栽培を行い、上記各評価を行った。地温測定の結果及びレタス栽培における上記各評価の評価結果を表3に示す。
 表3から明らかなように、実施例1~10のマルチフィルムは、比較例1~10のマルチフィルムに比べて、千葉県で行った地温測定において、日中の最高地温の上昇を抑えるとともに、夜間の最低地温が低下することを防止することができることが確認できた。即ち、日中と夜間の温度差を小さく保つことができた。そのため、群馬県で行ったレタスの栽培において、[レタス大玉率]及び[レタス収穫率]のいずれの評価も高く優位性があることが確認でき、作物の高温障害を抑えて、作物の生育を促進できることがわかった。また、高価な二酸化チタンを大量に使用していない。そのため、原料コストを低廉にすることができ、薄いフィルム(厚さが8~30μm)であるので環境負荷を低くできる。
 比較例1、2では、日中の地温が高すぎて定植したレタスが定着しなかった。比較例3、5では、夜間における地温の保温効果が十分に得られなかった。
 なお、比較例4,7,9,10では、二酸化チタンと炭酸カルシウムの含有量が55質量%を超えるため、フィルムの成形時においてバブルが不安定となり、展張して評価可能なフィルムを得ることができなかった。また、比較例11では、マルチフィルムを用いていないため夜間における土壌の保温ができなかった。更に、マルチフィルムを用いていないため保湿もできず、土壌表層が乾燥してしまった。その結果、比較例11では、[レタス大玉率]及び[レタス収穫率]のいずれの評価も各実施例の評価よりも劣るものであった。
 本発明のマルチフィルムは、野菜等の作物の栽培に使用される農業用のマルチフィルムとして非常に有用である。

Claims (3)

  1.  熱可塑性樹脂、二酸化チタン及び炭酸カルシウムを含有し、厚さが8~30μmであり、
     厚さと二酸化チタンの含有率との積が、60~300μm・質量%であり、
     厚さと炭酸カルシウムの含有率との積が、250~1,000μm・質量%であり、
     二酸化チタンと炭酸カルシウムの含有率の合計が55質量%以下であるマルチフィルム。
  2.  前記熱可塑性樹脂が、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、脂肪族ポリエステル系生分解性樹脂、及び芳香族-脂肪族共重合ポリエステル系生分解性樹脂からなる群より選択される少なくとも1種を含有するものである請求項1に記載のマルチフィルム。
  3.  前記熱可塑性樹脂が、脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(A)、ヒドロキシアルキルカルボン酸が重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(B)、並びに、芳香族ジカルボン酸及び脂肪族ジカルボン酸と脂肪族ジオールとが重縮合した構造を有し、架橋構造を有しても良いポリエステル系生分解性樹脂である生分解性樹脂(C)からなる群より選択される少なくとも1種を含有する請求項2に記載のマルチフィルム。
PCT/JP2013/055745 2012-03-01 2013-03-01 マルチフィルム WO2013129668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502418A JP6001638B2 (ja) 2012-03-01 2013-03-01 マルチフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045567 2012-03-01
JP2012-045567 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013129668A1 true WO2013129668A1 (ja) 2013-09-06

Family

ID=49082854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055745 WO2013129668A1 (ja) 2012-03-01 2013-03-01 マルチフィルム

Country Status (2)

Country Link
JP (1) JP6001638B2 (ja)
WO (1) WO2013129668A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048925A1 (en) * 2014-09-24 2016-03-31 The Chemours Company Tt, Llc Materials with enhanced protection of light sensitive entities
JP2020048511A (ja) * 2018-09-28 2020-04-02 ユニチカ株式会社 農業用マルチ資材
WO2020084945A1 (ja) * 2018-10-26 2020-04-30 株式会社Tbm 生分解性樹脂成形品、及びその製造方法並びにこれに用いられるペレット体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045880A (ja) * 1999-08-03 2001-02-20 Mikado Kako Kk 農業用フィルム
JP2001323176A (ja) * 2000-05-16 2001-11-20 Maruzen Polymer Kk マルチングフィルム用組成物及びマルチングフィルム
JP2003191418A (ja) * 2001-12-28 2003-07-08 C I Kasei Co Ltd 三層生分解性マルチフィルム
JP2007189986A (ja) * 2006-01-20 2007-08-02 Mikado Kako Kk 農業用マルチフィルム
JP2009072113A (ja) * 2007-09-20 2009-04-09 Mitsubishi Chemicals Corp 農業用マルチフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045880A (ja) * 1999-08-03 2001-02-20 Mikado Kako Kk 農業用フィルム
JP2001323176A (ja) * 2000-05-16 2001-11-20 Maruzen Polymer Kk マルチングフィルム用組成物及びマルチングフィルム
JP2003191418A (ja) * 2001-12-28 2003-07-08 C I Kasei Co Ltd 三層生分解性マルチフィルム
JP2007189986A (ja) * 2006-01-20 2007-08-02 Mikado Kako Kk 農業用マルチフィルム
JP2009072113A (ja) * 2007-09-20 2009-04-09 Mitsubishi Chemicals Corp 農業用マルチフィルム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367642B1 (ko) 2014-09-24 2022-02-28 더 케무어스 컴퍼니 에프씨, 엘엘씨 광 민감성 엔티티의 보호를 향상시키는 재료
KR20170060078A (ko) * 2014-09-24 2017-05-31 더 케무어스 컴퍼니 티티, 엘엘씨 광 민감성 엔티티의 보호를 향상시키는 재료
JP2017529444A (ja) * 2014-09-24 2017-10-05 ザ ケマーズ カンパニー ティーティー リミテッド ライアビリティ カンパニー 感光性実体の保護が強化された材料
AU2015321533B2 (en) * 2014-09-24 2019-01-17 The Chemours Company Fc, Llc Materials with enhanced protection of light sensitive entities
US10294343B2 (en) 2014-09-24 2019-05-21 The Chemours Company Fc, Llc Materials with enhanced protection of light sensitive entities
WO2016048925A1 (en) * 2014-09-24 2016-03-31 The Chemours Company Tt, Llc Materials with enhanced protection of light sensitive entities
JP2020048511A (ja) * 2018-09-28 2020-04-02 ユニチカ株式会社 農業用マルチ資材
WO2020084945A1 (ja) * 2018-10-26 2020-04-30 株式会社Tbm 生分解性樹脂成形品、及びその製造方法並びにこれに用いられるペレット体
KR20210005735A (ko) * 2018-10-26 2021-01-14 가부시키가이샤 티비엠 생분해성 수지 성형품 및 그 제조 방법, 및 이에 이용되는 펠렛체
CN112352021A (zh) * 2018-10-26 2021-02-09 株式会社Tbm 生物降解性树脂成形品及其制造方法、以及其中所使用的颗粒体
KR102244819B1 (ko) 2018-10-26 2021-04-27 가부시키가이샤 티비엠 생분해성 수지 성형품 및 그 제조 방법, 및 이에 이용되는 펠렛체
US11242441B2 (en) 2018-10-26 2022-02-08 Tbm Co., Ltd. Biodegradable resin molded product, method for producing the same, and pellets used therefor
JP2020066721A (ja) * 2018-10-26 2020-04-30 株式会社Tbm 生分解性樹脂成形品、及びその製造方法並びにこれに用いられるペレット体
CN112352021B (zh) * 2018-10-26 2022-06-03 株式会社Tbm 生物降解性树脂成形品及其制造方法、以及其中所使用的颗粒体

Also Published As

Publication number Publication date
JPWO2013129668A1 (ja) 2015-07-30
JP6001638B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP2013179881A (ja) マルチフィルム
KR101483464B1 (ko) 인조잔디용 충진칩 및 그 제조 방법
KR101525658B1 (ko) 식품부산물인 소맥피 또는 대두피를 활용한 바이오 매스 필름용 조성물 및 이를 이용한 바이오매스 필름
JP5925994B2 (ja) 生分解性マルチフィルム
JP6001638B2 (ja) マルチフィルム
JP6056368B2 (ja) フィルム
JP4766019B2 (ja) 農業用マルチフィルム
CN117795004A (zh) 可生物降解的树脂组合物及分别使用其的可生物降解膜和可生物降解地膜
JP2014158465A (ja) 農業用フィルム
JP2013172678A (ja) 生分解性マルチフィルム
JP2011241347A (ja) ポリ乳酸系樹脂組成物、ポリ乳酸系耐熱シートおよび成形体
JP2001348498A (ja) 改良されたマルチングフィルム用組成物及びマルチングフィルム
JP3897237B2 (ja) 三層生分解性マルチフィルム
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
CN115873384A (zh) 一种聚乙醇酸增强聚酯材料、抗撕裂可降解地膜及其制备方法
JPH09278998A (ja) 乳酸系ポリマーフィルム
JPS6210124B2 (ja)
JP2004057016A (ja) 生分解性農業用マルチ
JP2005139395A (ja) マルチングフィルム
JP5371253B2 (ja) 液状添加剤を含有する熱可塑性樹脂組成物の製造方法
JP2008195834A (ja) 樹脂組成物及びそれを成形してなる包装用フィルム
JP2018009107A (ja) 脂肪族ポリエステル樹脂組成物の製造方法
JP2002146070A (ja) ポリプロピレン系多孔質フィルム及びその製造方法
JP4811982B2 (ja) 梨地状外観を呈するポリ乳酸フィルムの製造方法
JP2016112013A (ja) 農業用生分解性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754238

Country of ref document: EP

Kind code of ref document: A1