WO2013129659A1 - 成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置 - Google Patents

成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置 Download PDF

Info

Publication number
WO2013129659A1
WO2013129659A1 PCT/JP2013/055724 JP2013055724W WO2013129659A1 WO 2013129659 A1 WO2013129659 A1 WO 2013129659A1 JP 2013055724 W JP2013055724 W JP 2013055724W WO 2013129659 A1 WO2013129659 A1 WO 2013129659A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molded body
foaming agent
plating film
block copolymer
Prior art date
Application number
PCT/JP2013/055724
Other languages
English (en)
French (fr)
Inventor
遊佐 敦
智史 山本
哲也 阿野
寛紀 太田
大嶋 正裕
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to EP13753253.7A priority Critical patent/EP2821195A4/en
Priority to US14/016,861 priority patent/US9421704B2/en
Publication of WO2013129659A1 publication Critical patent/WO2013129659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5681Covering the foamed object with, e.g. a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/52Non-return devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/45Axially movable screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/565Screws having projections other than the thread, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/681Barrels or cylinders for single screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/687Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having projections with a short length in the barrel direction, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/422Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw sections co-operating, e.g. intermeshing, with elements on the wall of the surrounding casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1722Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles injecting fluids containing plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws
    • B29C2045/605Screws comprising a zone or shape enhancing the degassing of the plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0011Biocides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/046Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • B29K2503/06Metal powders, metal carbides or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0092Other properties hydrophilic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Definitions

  • the present invention relates to a method for producing a molded article, a method for producing a molded article having a plated film, a method for producing a resin pellet, and a foam molded article having a plated film.
  • the present invention further relates to a foam injection molding method, a nozzle unit, and an injection molding apparatus.
  • An electroless plating method is known as a method for forming a metal film on a molded body at low cost.
  • a pretreatment for roughening the surface of the molded body is performed using an etching solution containing an oxidizing agent such as hexavalent chromic acid or permanganic acid in order to ensure adhesion of the metal film to the molded body. Therefore, an ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) that is eroded by an etching solution has been mainly used in the electroless plating method.
  • the butadiene rubber component is selectively eroded by the etching solution, and irregularities are formed on the surface.
  • a plating grade in which a component that is selectively oxidized to an etching solution such as an ABS resin or an elastomer is mixed in order to enable electroless plating has a problem of high environmental load because hexavalent chromic acid, permanganic acid or the like is used.
  • a method for forming a metal film on a molded body without passing through the pretreatment etching step use of a surface modification method of the molded body using pressurized carbon dioxide such as supercritical carbon dioxide has been proposed. Yes.
  • the present inventors have proposed a method in which surface modification treatment using pressurized carbon dioxide is performed simultaneously with injection molding, and metal fine particles such as palladium serving as a catalyst core for electroless plating are dispersed on the surface of the molded body. (Patent Documents 1 to 3).
  • a plating film can be formed on the surface of the molded body without performing an etching step by performing electroless plating on the surface of the molded body containing metal fine particles.
  • Patent Document 4 in the surface modification method of a molded body using pressurized carbon dioxide such as supercritical carbon dioxide, the surface of the molded body is modified by using another functional material instead of metal fine particles. It has been proposed to improve functionality.
  • Patent Document 5 a foam injection molding method using a nitrogen or carbon dioxide physical foaming agent in a supercritical state has been studied and put into practical use.
  • This method is, for example, the following method. First, in a sealed plasticizing cylinder, a physical foaming agent is brought into contact with and compatibilized with a plasticized and melted resin. Next, the molten resin in which the physical foaming agent is dissolved is weighed and injected into the mold while maintaining the inside of the plasticizing cylinder at such a high pressure that the physical foaming agent can maintain the supercritical state. At the time of injection filling, the supercritical fluid compatible with the molten resin is rapidly decompressed and gasified. Bubbles are formed inside the molded body by the solidification of the molten resin.
  • Foam injection molding using supercritical fluid is clean and does not leave foaming agent residue compared to foam molding using chemical foaming agent. Moreover, since the foamed cell diameter is reduced, the mechanical strength of the molded body is unlikely to decrease. Furthermore, since the high-pressure physical foaming agent functions as a plasticizer for the molten resin, the viscosity of the resin during injection filling is reduced and fluidity is improved. Sinking due to shrinkage when the resin is solidified by the gas pressure during foaming is suppressed. Further, there is an advantage that cooling distortion is reduced and warpage is reduced by depriving latent heat inside the molten resin during foaming.
  • an injection molding apparatus 4000 using a physical foaming agent such as a general supercritical fluid has a cylinder 922 that supplies a physical foaming agent of nitrogen or carbon dioxide, and pressurizes the physical foaming agent to increase the feed amount.
  • a high-pressure device 918 for controlling, and a plasticizing cylinder 907 for plasticizing and melting the resin and mixing the resin and a physical foaming agent are provided.
  • the physical foaming agent is sent from the cylinder 922 to the high pressure device 918, boosted by the high pressure device 918, and then introduced into the plasticizing cylinder 907 through the injection adjusting mechanism 917 through the introduction valve 920 that is opened and closed intermittently.
  • the amount of physical foaming agent introduced into the plasticizing cylinder 907 is adjusted by, for example, the following method.
  • the physical foaming agent circulates between the high pressure device 918 and the injection adjusting mechanism 917 at all times.
  • the pressure in the circulation system is higher than the pressure inside the plasticizing cylinder 907 and maintains a constant differential pressure with respect to the pressure inside the plasticizing cylinder 907.
  • the flow rate of the circulation system is controlled to be constant by an orifice or the like incorporated in the high pressure device 918.
  • opening / closing the introduction valve 920 the physical foaming agent is taken out from the above-described circulation system and introduced into the plasticizing cylinder 907.
  • the introduction amount of the physical foaming agent is controlled by the opening time of the introduction valve 920 based on the flow rate of the circulation system described above.
  • the system of the high pressure device 918 is complicated in order to keep the flow rate of the physical foaming agent supplied to the plasticizing cylinder 907 constant. Further, in order to obtain a stable flow rate of the physical foaming agent, it is necessary to prepare a physical foaming agent having a pressure several times the introduction pressure (for example, 30 to 40 MPa). Therefore, the injection molding apparatus 4000 requires a high capacity pump and is uneconomical.
  • the plasticizing cylinder 907 of the injection molding apparatus 4000 will be described.
  • the plasticizing cylinder 907 includes a screw 921 provided in the inside thereof so as to be able to rotate and advance / retreat, a shut-off valve 915 provided at the tip thereof, and an inlet 919 into which resin pellets are introduced.
  • a die (not shown) is provided in close contact with the tip of the plasticizing cylinder 907.
  • the plasticizing cylinder 907 includes a plasticizing and melting zone 925 for plasticizing and melting the resin charged from the charging port 919, a physical foaming agent kneading zone 926 for kneading the plasticized and melted resin and the physical foaming agent, And a re-pressurization zone 927 in which the molten resin in which the foaming agent is dissolved is measured.
  • the introduction valve 920 into which the above physical foaming agent is introduced is provided in the physical foaming agent kneading zone 926.
  • a sealing mechanism is provided between the plasticizing and melting zone 925 and the physical foaming agent kneading zone 926 so that the high-pressure physical foaming agent does not flow backward in the right-hand direction in FIG.
  • the physical foaming agent introduced into the plasticizing cylinder 907 is kneaded with a resin by, for example, a method described below, and foam injection molding is performed.
  • the resin pellets supplied from the inlet 919 are plasticized and melted in the plasticizing and melting zone 925.
  • the physical foaming agent kneading zone 926 the physical foaming agent introduced from the introduction valve 920 is uniformly dissolved in the molten resin by shearing by the rotation of the screw.
  • the re-pressurization zone 927 while adjusting the pressure with the back pressure, the molten resin in which the physical foaming agent is dissolved is sent to the front of the screw 921 and weighed.
  • the screw 921 moves backward in the right hand direction in FIG. 15 and stops at the metering position so that a predetermined amount of molten resin stays in front of the screw 921. Thereafter, the shut-off valve 915 is opened, the screw is moved forward (in the left-hand direction in FIG. 15) while controlling the speed, and the resin in which the physical foaming agent is dissolved is injected and filled into a mold (not shown).
  • the physical foaming agent that has been rapidly depressurized in the mold expands in volume in the molten resin to form bubbles, and when the resin solidifies, fine closed cells of several to hundred microns are formed inside the molded product. .
  • a physical foaming agent having a low viscosity and a low molecular weight is partially separated and gasified from the surface of the molten resin during injection filling, and is released into the mold before the molten resin.
  • the molten resin injected into the mold first cools the resin flowing at the front end of the resin flow called flow front on the mold wall surface to form a skin layer of the molded body.
  • a part of the gasified physical foaming agent is re-dissolved in the skin layer of the molten resin, but the skin layer of the molded body is in contact with the mold surface and instantly cools and solidifies so that the viscosity is high and it is difficult to re-dissolve the gas. .
  • the gas that has not been re-dissolved remains in the gap between the mold wall surface and the skin layer of the molded body to form a dent on the surface of the molded body.
  • the dent on the surface is called a swirl mark and has been a problem as an appearance defect of the foamed molded product.
  • the inventors of the present invention have a foam plating molded body in which metal fine particles, which are catalyst nuclei for plating simultaneously with physical foaming, are segregated on the surface of the molded product and plating can be performed without using chemicals with a large environmental load.
  • metal fine particles which are catalyst nuclei for plating simultaneously with physical foaming
  • plating can be performed without using chemicals with a large environmental load.
  • Patent Document 6 proposes a method for avoiding swirl marks by insulating the mold surface.
  • the surface of the mold is formed of a base material having a low thermal conductivity and is thermally insulated, thereby suppressing the growth of the skin layer and promoting gas remelting, thereby avoiding swirl marks.
  • a method of controlling the growth of the skin layer by increasing the temperature of the mold surface during injection filling has been proposed.
  • the swirl mark is remelted in the skin layer to disappear, and then the mold is cooled to solidify the molded body.
  • the foaming molding which has a foaming layer inside and whose surface is smooth can be formed.
  • a method for heating the mold surface a method of flowing steam into a temperature control channel, a method of embedding a heater, a method of heating a cavity by an electromagnetic induction heating method, and the like have been studied.
  • Patent Documents 1 to 3 the method described in Patent Documents 1 to 3 for forming a metal film on a molded body without an etching process as a pretreatment requires a dedicated molding machine. Therefore, in the methods proposed in Patent Documents 1 to 3, a molded body that can be electrolessly plated without an etching process with high environmental load cannot be molded using a general-purpose molding machine. The inability to use a general-purpose molding machine is considered to be an obstacle to the spread of the methods of Patent Documents 1 to 3.
  • a plating film grows from the inside of the molded body toward the surface of the molded body using palladium in the molded body as a catalyst.
  • the plating solution penetrates deeper in search of a catalyst, and a plating film grows from a deep portion inside the molded body.
  • the resin is stretched inside the molded body, brittle fracture occurs, and the adhesion of the plating film decreases.
  • a uniform plating film cannot be formed, which may cause poor appearance such as uneven plating and pinholes.
  • the functional material is unevenly distributed on the surface of the molded body in order to increase the functionality of the surface of the molded body.
  • the present invention solves the above first problem and provides a method for producing a molded body that can be electrolessly plated without an etching process having a high environmental load using a general-purpose molding machine. Also provided is a method for producing a molded body containing a functional material such as metal fine particles, wherein the functional material is efficiently arranged in the vicinity of the surface of the molded body to promote surface modification of the molded body.
  • Patent Document 6 for preventing the occurrence of defective appearance of the molded body in the foam injection molding method is that the heat-insulating layer is formed of a low-strength film such as ceramic or resin, so that the durability of the mold is low. Become. Furthermore, although the method of Patent Document 6 can suppress the growth of the skin layer, it is difficult to uniformly control the growth speed and viscosity of the skin layer in a large area, and there is a problem that the application range is narrow. Further, the method of increasing the temperature of the mold surface during injection filling has a problem that initial capital investment is required and the cost for each mold is high.
  • the present invention provides a physical foam injection molding method capable of overcoming the second problem, smoothing the surface of a foamed molded article and suppressing appearance defects, a nozzle unit used therefor, and an injection molding apparatus having the nozzle unit.
  • the purpose is to do.
  • a method for producing a molded body wherein a functional material is mixed with a block copolymer containing a hydrophilic segment, and the block copolymer containing the functional material is mixed.
  • a method for producing a molded body which comprises mixing a polymer with a thermoplastic resin and molding a thermoplastic resin in which the functional material and the block copolymer are mixed.
  • the mixing of the functional material into the block copolymer may be performed by bringing pressurized carbon dioxide in which the functional material is dissolved or dispersed into contact with the block copolymer. Further, the functional material is mixed with the block copolymer by plasticizing and melting the block copolymer, and by pressurizing dioxide dioxide in which the functional material is dissolved in the plasticized and melted block copolymer. It may include mixing carbon and extruding the block copolymer mixed with the functional material and then pulverizing to obtain pellets.
  • a solution in which the block copolymer is dissolved is brought into contact with the surface of the molded body, and a part of the block copolymer contained in the molded body is dissolved and removed. May be included.
  • the hydrophilic segment of the block copolymer may be a polyether, and further may be polyethylene oxide.
  • the thermoplastic resin may contain an amide group, and may be 6 nylon or 6,6 nylon. Furthermore, a heat conductive material may be dispersed in the thermoplastic resin.
  • the molding of the thermoplastic resin may be molding by injection molding or extrusion molding. Further, the molding of the thermoplastic resin includes plasticizing and melting the thermoplastic resin, and adding at least one physical foaming agent of pressurized carbon dioxide or pressurized nitrogen to the thermoplastic resin that has been plasticized and melted. It may include mixing and foaming the thermoplastic resin containing the physical foaming agent to form a foam molded article.
  • the functional material may be metal fine particles, and may further be palladium or silver.
  • a method for producing a molded body having a plated film wherein the molded body is produced by the method for producing a molded body according to the first aspect, and the molded body has no surface.
  • a plating film is formed by bringing an electrolytic plating solution into contact therewith, a method for producing a molded body having a plating film including the plating film is provided.
  • the plating film may contain nickel.
  • a method for producing resin pellets comprising plasticizing and melting a block copolymer including a hydrophilic segment, and functionalizing the plasticized and melted block copolymer.
  • a method for producing resin pellets comprising mixing pressurized carbon dioxide in which a material is dissolved, and extruding and then pulverizing the block copolymer mixed with the functional material.
  • the functional material may be fine metal particles, and may further contain silver or palladium.
  • the hydrophilic segment of the block copolymer may be a polyether or may be polyethylene oxide.
  • a method for producing a molded body having a plating film comprising preparing resin pellets in which metal fine particles are dispersed in a thermoplastic resin, and plasticizing and melting the resin pellets.
  • a method for producing a molded body having a plated film comprising forming the molded body, and contacting the molded body with an electroless plating solution to form a plated film on the surface of the molded body.
  • the molding is performed by mixing at least one physical foaming agent of pressurized carbon dioxide or pressurized nitrogen with the plasticized and melted resin pellets, and foaming the resin pellets containing the physical foaming agent. And forming a foamed molded product.
  • a method for producing resin pellets comprising plasticizing and melting a thermoplastic resin, and pressurized carbon dioxide in which metal fine particles are dissolved in the plasticized and melted thermoplastic resin. And a method for producing resin pellets, which includes extruding and then pulverizing a thermoplastic resin mixed with the metal fine particles.
  • a foamed molded article having a plated film produced by the method for producing a molded article having a plated film of the fourth aspect.
  • the foamed molded article having the plated film has a foamed molded article having independent foam cells inside and a plated film formed on the surface of the foamed molded article, and the plated film of the foamed molded article was formed.
  • a metal region made of the same type of metal as the plating film is formed at a depth within 10 ⁇ m from the surface, and the metal region exists in a range where the metal film is present from the surface on which the plating film of the foam molded body is formed.
  • the foamed cell may be substantially absent.
  • the specific gravity may be 1.2 g / cm 3 or less, and the weight change due to water absorption after being immersed in water at 23 ° C. for 24 hours may be 0.5% or less.
  • the foam molded article may be formed from a thermoplastic resin containing an amide group, and may further be formed from 6 nylon or 6,6 nylon.
  • the plating film may contain nickel, and the metal fine particles may contain palladium.
  • the heat conductive material may be disperse
  • a foam injection molding method using an injection molding apparatus having a plasticizing cylinder, a mold, and a nozzle unit positioned between the plasticizing cylinder and the mold. And plasticizing and melting the resin in the plasticizing cylinder, mixing a physical foaming agent into the plasticized and melted resin, and cooling the resin mixed with the physical foaming agent in the nozzle unit. Discharging the physical foaming agent from the cooled resin in the nozzle unit; heating the resin from which the physical foaming agent has been discharged in the nozzle unit; and putting the heated resin into the mold. There is provided a foam injection molding method comprising injection filling to obtain a foam molded article.
  • the discharging of the physical foaming agent from the resin may be discharging the physical foaming agent from the flow front portion of the resin.
  • a resin flow path extending from the plasticizing cylinder to the mold is formed inside, and when the physical foaming agent is discharged from the resin, the cooled resin A gap may be provided between the resin wall and the wall surface forming the resin flow path.
  • the resin may be heated by an electromagnetic induction heating method.
  • the physical foaming agent may be pressurized nitrogen or pressurized carbon dioxide.
  • the mixing of the physical foaming agent into the resin may include dissolving or dispersing metal fine particles in the physical foaming agent and mixing the metal fine particles together with the physical foaming agent into the resin.
  • a method for producing a molded body having a plated film wherein the foam molded body is molded by the foam injection molding method of the seventh aspect,
  • a method for producing a molded body having a plated film which comprises contacting an electrolytic plating solution to form a plated film on the surface of the foamed molded body.
  • the plating film may contain nickel.
  • the nozzle unit is a plasticizing cylinder that plasticizes and melts a resin and introduces a physical foaming agent into the resin, and the plastic foaming and physical foaming agent is introduced.
  • the nozzle unit is positioned between the plasticizing cylinder and the mold, and the resin flow from the plasticizing cylinder to the mold is used.
  • a nozzle unit including a temperature control mechanism that controls the temperature of the resin in the resin flow path and a physical foaming agent discharge mechanism that discharges the physical foaming agent from the resin in the resin flow path. Is provided.
  • a part of the wall surface forming the resin flow path may be provided to be drivable so as to widen the cross-sectional area of the resin flow path.
  • the cross-sectional area of the resin flow path of the nozzle unit may be smaller than the cross-sectional area of the plasticizing cylinder.
  • the temperature control mechanism may include an electromagnetic induction heating mechanism.
  • an injection molding apparatus having the nozzle unit of the ninth aspect is provided.
  • the method for producing a molded article of the present invention can produce a molded article whose surface has been modified with a functional material using a molding machine such as a general-purpose injection molding machine or an extrusion molding machine. Therefore, it is not necessary to make capital investment such as introducing a new molding machine. Further, since the functional material can be unevenly distributed near the surface of the molded body, the amount of the functional material used for surface modification of the molded body can be reduced, and the material cost can be reduced. Furthermore, the manufacturing method of the molded object of this invention can manufacture the molded object containing metal microparticles using shaping machines, such as a general purpose injection molding machine and an extrusion molding machine. The molded body containing metal fine particles does not need to be provided with a catalyst on the surface of the molded body in order to perform electroless plating. Therefore, it is not necessary to perform a surface treatment using a chemical having a high environmental load for applying the catalyst.
  • a molding machine such as a general-purpose injection molding machine or an extrusion molding machine
  • a foamed molded article is manufactured using a molding apparatus equipped with the nozzle unit of the present invention, the surface of the foamed molded article can be smoothed, and occurrence of poor appearance such as swirl marks can be suppressed.
  • the foamed molded product can be easily applied to decorative plating and the like, and high added value can be achieved.
  • FIG. 1 is a schematic view of a resin pellet manufacturing apparatus used in Example 1.
  • FIG. It is sectional drawing of the vent vicinity of the plasticization cylinder of the resin pellet manufacturing apparatus shown in FIG. 2, (a) is a figure of the state which the vent and the exhaust hole of the vent up prevention cover oppose, (b) is opposition It is a figure of the state which has not been carried out.
  • FIG. 2 It is a schematic sectional drawing of the plasticization cylinder of the resin pellet manufacturing apparatus shown in FIG. 2, and is a figure which shows the state by which the connection of the plasticization zone, the high pressure kneading zone, and the pressure reduction zone was interrupted
  • FIG. 12 It is the schematic of the injection molding apparatus used in 5th Embodiment.
  • A is the schematic of the nozzle unit used in 5th Embodiment
  • (b) is sectional drawing in the A-A 'cross section of this schematic. It is a partial enlarged view of the nozzle unit shown in FIG. 12,
  • (a) is a figure which shows the state by which the resin flow path and the exterior of the nozzle unit were interrupted
  • (b) is a figure which shows the state connected It is.
  • 10 is a schematic view of a nozzle unit used in Example 9.
  • FIG. It is the schematic of the conventional injection molding apparatus.
  • a method for producing the molded body shown in FIG. 1 will be described.
  • a functional material is mixed with a block copolymer including a hydrophilic segment (hereinafter, referred to as “block copolymer” as appropriate) (step S1), and a block in which the functional material is mixed.
  • step S1 a block copolymer including a hydrophilic segment
  • step S3 a block in which the functional material is mixed.
  • a functional material is mixed with a block copolymer including a hydrophilic segment (step S1).
  • the block copolymer used in the present embodiment has a hydrophilic segment and another segment different from the hydrophilic segment (hereinafter referred to as “other segment” as appropriate).
  • This block copolymer moves with the functional material toward the surface of the molded body in the molding process of the thermoplastic resin in step S3 or after molding, and tends to segregate near the surface of the molded body together with the functional material. is there.
  • the block copolymer of this embodiment is arbitrary as long as it is a polymer that segregates in the vicinity of the surface of the molded body, but an anionic segment, a cationic segment, and a nonionic segment can be used as the hydrophilic segment.
  • an anionic segment include polystyrene sulfonic acid
  • the cationic segment includes a quaternary ammonium base-containing acrylate polymer system
  • the nonionic segment includes a polyether ester amide system, a polyethylene oxide-epichlorohydrin system, and a polyether ester system. It is done.
  • the hydrophilic segment is a nonionic segment having a polyether structure because the heat resistance of the molded body is easily secured.
  • the polyether structure include an oxyalkylene group having 2 to 4 carbon atoms of alkylene, such as an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group, a polyether diol, a polyether diamine, and these Modified products and polyether-containing hydrophilic polymers are included, and polyethylene oxide is particularly preferable.
  • the other segment of the block copolymer of the present embodiment is arbitrary as long as it is a segment that is more hydrophobic than the hydrophilic segment, and the type suitable for the purpose can be selected.
  • the block copolymer when a material compatible with the thermoplastic resin mixed in step S2 is used for other segments, there is an advantage that phase separation can be suppressed during mixing with the thermoplastic resin and inside the molded body after molding. is there.
  • the block copolymer has a strong function of moving to bleed out to the surface of the molded body, and is easily segregated near the surface of the molded body. There is.
  • thermoplastic resin As a material compatible with the thermoplastic resin, a resin having the same structure as the thermoplastic resin or a similar structure is preferable.
  • the other segment is preferably nylon containing a polyamide component.
  • polyolefin resins such as a polypropylene
  • the material incompatible with the thermoplastic resin is preferably a resin having a structure different from that of the thermoplastic resin or a different property.
  • the thermoplastic resin is a polyolefin such as hydrophobic polypropylene, nylon or the like having relatively high hydrophilicity can be used for the other segments.
  • a commercially available block copolymer may be used as the block copolymer of the present embodiment.
  • the block copolymer of this embodiment may be commercially available as a resin-kneaded polymer type antistatic agent because it segregates (orients) near the surface of the molded body.
  • Pelestat registered trademark
  • Peletron registered trademark
  • Pelestat NC6321 manufactured by Sanyo Chemical Industries is a block copolymer obtained by copolymerizing a polyether of a hydrophilic segment and nylon of another segment with an ester bond.
  • the functional material of the present embodiment is arbitrary as long as it modifies the surface of the molded body, and various materials can be selected according to the purpose.
  • a plating film can be formed on the surface of the molded body using these metal fine particles as a catalyst for electroless plating.
  • a metal fine particle such as Pd, Ni, Pt, or Cu
  • a metal oxide precursor such as a metal complex
  • a metal alkoxide as the metal fine particle.
  • the type of metal complex is arbitrary, but more specifically, hexafluoroacetylacetonato palladium (II), platinum dimethyl (cyclooctadiene), bis (cyclopentadienyl) nickel, bis (acetylacetonate) palladium. Etc. are preferred. As will be described later, when metal fine particles are dissolved in pressurized carbon dioxide, it is preferable to use a metal complex having high solubility in pressurized carbon dioxide.
  • the surface of the molded body can be made antibacterial, and the electrical conductivity and antistatic effect can be improved. Specifically, heptafluorobutyric acid silver salt (I) etc. are mentioned. Furthermore, when a dye is used as the functional material, the surface or the inside of the thermoplastic resin can be dyed. When polyalkyl glycol is used as the functional material, the thermoplastic resin can be hydrophilized. When silicon oil or a fluorine compound is used as the functional material, the thermoplastic resin can be subjected to a hydrophobic treatment.
  • the method of mixing the functional material with the block copolymer is arbitrary.
  • a functional material may be dissolved in a solvent such as ethanol to prepare a solution, the block copolymer may be immersed in the prepared solution, and the functional material may be impregnated into the block copolymer.
  • a solvent for dissolving the block copolymer an aqueous solvent such as water, isopropyl alcohol, hexane, acetone, or an organic solvent may be used.
  • the functional material is mixed with the block copolymer by contacting the block copolymer with pressurized carbon dioxide (hereinafter referred to as “mixed pressurized fluid” if necessary) in which the functional material is dissolved or dispersed.
  • pressurized carbon dioxide is a solvent for the functional material, and also acts as a plasticizer for the block copolymer, promoting uniform dispersion of the functional material in the block copolymer.
  • the particle size of the metal fine particles can be remarkably reduced. It is considered that when the functional material is uniformly dispersed without agglomeration, it becomes easier to move to the surface of the molded body along with the block copolymer.
  • the functional material is mixed into the block copolymer by compressing and melting the block copolymer in a plasticizing cylinder of an extruder, and pressurizing carbon dioxide in which the functional material is dissolved in the plasticizing cylinder ( Mixed pressurized fluid) is introduced, and the block copolymer is brought into contact with pressurized carbon dioxide in which the functional material is dissolved in the plasticizing cylinder.
  • pressurized fluid a plasticizing cylinder of an extruder
  • pressurizing carbon dioxide in which the functional material is dissolved in the plasticizing cylinder Mixed pressurized fluid
  • the block copolymer of the present embodiment is a polymer, unlike a normal low molecular surfactant, it has a high viscosity that can be molded after plasticizing and melting, and is thus extruded and pelletized. Can do.
  • batch processing is mentioned as another method using pressurized carbon dioxide.
  • the block copolymer may be contacted with pressurized carbon dioxide (mixed pressurized fluid) in which the functional material is dissolved, and the functional resin may be infiltrated into the block copolymer.
  • resin pellet means a small lump (pellet) so that the resin can be easily processed, and the size and shape vary depending on the use of the pellet. For example, particles of about 3 to 5 mm And cylindrical resin pieces.
  • the method for producing a molded body includes a step of producing pellets, first, a functional material is dispersed in the block copolymer under heating to produce resin pellets. Further, in step S2, a thermoplastic resin and a resin are produced. The pellets are mixed, heated and melted to form a molded body. Usually, such a long heat history agglomerates the functional material and may adversely affect the surface modification of the molded body.
  • the use of pressurized carbon dioxide in the production of pellets suppresses the aggregation of the functional material, and further, the function of the block copolymer allows the molding of the functional material to be performed. Surface modification is promoted. Thereby, even if the manufacturing method of the molded object of this embodiment includes the process of manufacturing a resin pellet, it does not have a bad influence on the function of a molded object.
  • pressurized carbon dioxide used in mixing the functional material into the block copolymer
  • pressurized carbon dioxide in a liquid state, a gas state, or a supercritical state can be used.
  • These pressurized carbon dioxides are harmless to the human body, have excellent diffusibility into the molten block copolymer, and can be easily removed from the molten block copolymer. This is because it also functions as a plasticizer.
  • the pressure and temperature of the pressurized carbon dioxide introduced into the plasticizing cylinder are arbitrary, but liquid carbon dioxide or supercritical carbon dioxide is preferably used because of its high density and stability.
  • the temperature of the pressurized carbon dioxide is preferably in the range of 5 ° C to 50 ° C.
  • the pressure of the pressurized carbon dioxide is desirably in the range of 4 to 25 MPa. From the viewpoint of obtaining an appropriate solvent effect because the solvent effect is difficult to be expressed when the pressure is low, 4 MPa or more is preferable, and from the viewpoint of suppressing the cost because the high pressure equipment is costly when the pressure is high. 25 MPa or less is preferable.
  • the pressurized carbon dioxide may contain a solvent that dissolves the metal fine particles.
  • a fluorine-based organic solvent such as perfluoropentylamine may be used to increase the concentration of the metal complex in the pressurized carbon dioxide.
  • the concentration of the functional material in the pressurized carbon dioxide can be appropriately selected in consideration of the type of the functional material, and is not particularly limited. Considering the permeability to the molten resin and the aggregation of the functional material in the pressurized carbon dioxide, it is preferably not more than the saturation solubility. In particular, since the density of carbon dioxide rapidly decreases in the plasticizing cylinder of a molding machine that reaches a high temperature, the concentration of the functional material in the pressurized carbon dioxide is preferably about 1 to 50% of the saturation solubility.
  • the method for preparing pressurized carbon dioxide is not particularly limited, and a conventionally known method can be used.
  • the method of supplying the mixed pressurized fluid to the plasticizing cylinder is arbitrary.
  • the mixed pressurized fluid may be intermittently introduced into the plasticizing cylinder or may be continuously introduced. Further, the introduction of the mixed pressurized fluid may be controlled by using, for example, a syringe pump capable of stable liquid feeding shown in FIG.
  • the ratio of the functional material to the mixture of the block copolymer and the functional material is arbitrary, and the type of the block copolymer, the type of the functional material, the type of the thermoplastic resin, It can be appropriately determined in consideration of the intended use.
  • the ratio of the functional material to the mixture of the block copolymer and the functional material may be 10 ppm to 10% by weight. preferable.
  • the ratio of the functional material is within this range, it is desirable from the viewpoint of cost because the thickening of the block copolymer can be suppressed and the bleed performance can be maintained.
  • a block copolymer obtained by mixing the obtained functional material (hereinafter referred to as “functional material-containing block copolymer” as appropriate) is mixed with a thermoplastic resin (step S2 in FIG. 1), and molded. (Step S3).
  • thermoplastic resin for example, polypropylene, polymethyl methacrylate, polyamide, polycarbonate, amorphous polyolefin, polyetherimide, polyethylene terephthalate, polyethylene terephthalate, ABS resin, polyphenylene sulfide, polyamideimide, polylactic acid, polycaprolactone, etc. are used. I can. Moreover, various inorganic fillers, such as glass fiber, a talc, a carbon fiber, etc. can also be knead
  • the thermoplastic resin is preferably a resin containing an amide group having high water absorption and plating reactivity. Nylon such as 6,6 nylon is preferred.
  • the thermoplastic resin may be used as one kind of material or as a mixture of two or more kinds of materials, but when two or more kinds of materials are used as a mixture, nylon is the main component. Preferably there is.
  • the ratio of the functional material-containing block copolymer to the mixture of the thermoplastic resin and the functional material-containing block copolymer is arbitrary, and the type of the thermoplastic resin, the type of the functional material, the type of the block copolymer It can be determined as appropriate based on the type and intended use of the molded body.
  • the ratio of the functional material-containing block copolymer to the mixture of the thermoplastic resin and the functional material-containing block copolymer is 1 to
  • the proportion of the functional material in the molded body is preferably 10 ppm to 10 wt% by weight concentration.
  • the ratio of the polymeric surfactant and the functional material is within this range, the physical properties such as heat resistance and mechanical strength of the thermoplastic resin are not greatly impaired, and the viscosity of the block copolymer is suppressed, Since bleed performance can be maintained, it is desirable from the viewpoint of cost.
  • the method of mixing the functional material-containing block copolymer with the thermoplastic resin and the method of molding the thermoplastic resin are arbitrary.
  • a plasticizing cylinder of a general-purpose injection molding machine or an extrusion molding machine a thermoplastic resin and pellets of a functional material-containing block copolymer are plasticized and melted and mixed.
  • the molded body may be obtained by molding by an extrusion molding method.
  • the production method of the present embodiment can perform the surface modification of the molded body and the molded body at the same time using a general-purpose molding machine by using the functional material-containing block copolymer, There is no need for capital investment such as purchasing a new molding machine.
  • the “block copolymer mixed with the functional material” corresponds to a master batch
  • the thermoplastic resin corresponds to a base resin into which the master batch is blended.
  • a masterbatch is a resin pellet containing functional materials such as dyes, pigments, and other additives at a high concentration, and is mixed with a base resin not containing a functional material and molded together with the base resin.
  • the block copolymer tends to move along with the functional material toward the surface of the molded body and segregate near the surface of the molded body together with the functional material. This occurs because the hydrophilic segment of the block copolymer moves to bleed out from the molded body.
  • the present inventors have found that when the functional material is mixed with the block copolymer in this way, the functional material also moves to the vicinity of the surface of the molded body along with the block copolymer. By utilizing this phenomenon, the functional material can be unevenly distributed near the surface of the molded body, and the surface modification of the molded body can be efficiently performed from the inside.
  • “near the surface of the molded body” means an area inside the molded body and close to the surface.
  • the extent to which “near the surface of the molded body” means the region from the surface of the molded body depends on the type of thermoplastic resin, block copolymer and functional material used in the molded body. Is a region having a depth of 0.1 to 10 ⁇ m from the surface of the molded body, for example.
  • the block copolymer of the present embodiment is a polymer, unlike a normal low molecular surfactant.
  • low molecular surfactants also have the property of segregating on the surface of the molded product
  • the block copolymer of this embodiment has a large molecular weight, so it is near the surface of the molded product with a functional material to be mixed. It is thought that it can move to.
  • it since it is a polymer, even if it is unevenly distributed at a high concentration on the surface of the molded body, the heat resistance and mechanical strength of the molded body are not reduced.
  • it since it has a sufficient viscosity in a plasticized and melted state, it can be extruded and pelletized.
  • the functional material of this embodiment When the functional material of this embodiment is mixed with the block copolymer, it moves to the vicinity of the surface of the molded body along with the block copolymer, and the concentration of the functional material near the surface of the molded body is increased efficiently.
  • the surface of the molded body can be modified.
  • the concentration of the functional material inside the molded body that does not contribute to the surface modification can be relatively lowered, so that waste of material can be saved and material cost can be suppressed.
  • the functional material is a plating catalyst
  • the catalyst is unevenly distributed in the vicinity of the surface of the molded body, so that a decrease in the adhesion of the plating film is suppressed, and appearance defects such as uneven plating reaction and pinholes can be reduced.
  • concentration of the plating catalyst inside the molded object which does not contribute to a plating reaction falls, material cost can be held down.
  • a solution for dissolving the block copolymer such as an acidic or basic solution is brought into contact with the surface of the obtained molded body, and a part of the block copolymer contained in the molded body is brought into contact with the surface of the molded body. It may be dissolved and removed.
  • the hydrophilic segment portion can be dissolved in an acidic solution, a basic solution, or alcohol to form pores on the surface of the molded body. A part of the functional material that is unevenly distributed near the surface of the molded body is considered to be exposed on the surface of the molded body, but more functions can be achieved by removing the block copolymer and providing a large number of pores.
  • the exposed material can be exposed to the surface of the molded body, and the surface of the molded body can be more activated.
  • the functional material when metal fine particles serving as a plating catalyst are used as the functional material, a larger amount of metal fine particles are exposed on the surface of the molded body, so that a plating film can be easily formed.
  • metal fine particles containing silver when metal fine particles containing silver are used as the functional material, the antibacterial action on the surface of the molded body can be enhanced by exposing more metal fine particles containing silver to the surface of the molded body.
  • the block copolymer of the present embodiment is a polymer, unlike a normal low molecular surfactant, it can form sufficiently large pores after removal from the surface of the molded body.
  • a reagent having a high environmental load such as hexavalent chromic acid or permanganic acid
  • a solution for dissolving the block copolymer for example, Acidic solutions such as hydrochloric acid, acetic acid and hypophosphorous acid, basic solutions such as sodium hydroxide, or alcohols such as 1,3 butanediol, propanol, methoxyethanol, and ethylene glycol can be used. . These solutions have a low environmental impact and are easy to handle.
  • the acidic solution, the basic solution, or the alcohol may be contacted with the molded body once, or may be performed a plurality of times by changing the kind of the solution, if necessary.
  • an electroless plating solution may be brought into contact with the surface of the obtained molded body to form a plating film on the surface of the molded body.
  • the electroless plating solution a known one can be used, but an electroless nickel phosphorous plating solution is preferable from the viewpoint that the catalyst activity is high and the solution is stable.
  • the molded product of this embodiment containing metal fine particles does not need to be subjected to a plating catalyst application treatment.
  • the electroless plating solution penetrates from the surface of the molded body and comes into contact with the metal fine particles contained in the molded body, and the plating film grows using the metal fine particles as a catalyst. Accordingly, the plating film is formed on the molded body in a state where it is bitten into the molded body (a state in which a part of the plating film has penetrated into the molded body).
  • the contact of the plating solution with the molded body may be performed without removing the block copolymer from the surface of the molded body, or may be performed after removing the block copolymer from the surface of the molded body.
  • a plating film is formed by bringing the plating solution into contact with the surface of the molded body after the block copolymer is removed, an anchor effect is generated by the pores formed on the surface of the molded body, and the adhesion strength of the plated film is improved. preferable.
  • the surface of the molded body is hydrophilized by the hydrophilic segment of the block copolymer.
  • the plating solution penetrates from the surface of the molded body into contact with the metal fine particles, and the plated film is formed while spreading the molded body from the inside of the molded body. grow up.
  • the surface of the molded body of the present embodiment is hydrophilized, it is considered that the penetration of the plating solution and the growth of the plating film are promoted.
  • the molded body of the present embodiment has a good throwing power of the plating film, and the plating film is formed in a short time. By shortening the plating film formation time, defects in the plating film such as pinholes are less likely to occur.
  • the block copolymer is unevenly distributed in the vicinity of the surface of the molded body, only the vicinity of the surface of the molded body is made hydrophilic, and the influence on the water absorption (macroscopic water absorption) of the entire molded body is small. Therefore, the brittle fracture of the molded body in the plating solution can be suppressed, and the mechanical strength of the molded body is not reduced. As a result, the molded body has sufficient thermal shock resistance even after the plating film is formed.
  • the block copolymer of this embodiment is a polymer, unlike a normal low molecular surfactant, it stays in the vicinity of the surface without dropping off from the surface of the molded body, and the vicinity of the surface of the molded body as described above. Can be hydrophilized.
  • a normal low molecular surfactant has a high possibility of falling off the surface of the molded body, and an effect equivalent to that of the block copolymer of the present invention cannot be expected.
  • thermoplastic resin for example, the same thermoplastic resin used in the first embodiment can be used.
  • the thermoplastic resin of the present embodiment includes carbon materials such as carbon fiber and nanocarbon, metal fine particles such as aluminum, copper and iron, fine particles of low melting point alloy such as copper-tin and aluminum-tin, boron nitride, It is preferable to mix a heat conductive material such as a ceramic material such as aluminum nitride or alumina. By mixing the heat conductive material with the thermoplastic resin as the raw material, the molded body having the plated film contains the heat conductive material, and the heat dissipation performance of the molded body can be improved.
  • the metal fine particles function as a plating catalyst in an electroless plating step (step S13) described later, and for example, the same metal fine particles used as the functional material in the first embodiment can be used.
  • the resin pellets are obtained by plasticizing and melting a thermoplastic resin, mixing pressurized carbon dioxide in which metal fine particles are dissolved in the plasticized and melted thermoplastic resin, and extruding a thermoplastic resin containing the metal fine particles. Then, you may manufacture with the manufacturing method of the resin pellet including pulverizing and obtaining the said resin pellet. For example, a thermoplastic resin is plasticized and melted in a plasticizing cylinder of an extrusion machine, pressurized carbon dioxide in which metal fine particles are dissolved is introduced into the plasticizing cylinder, and the molten resin and pressurized carbon dioxide are introduced in the plasticizing cylinder. Contact.
  • the pressurized carbon dioxide is a solvent for the metal fine particles and also acts as a plasticizer for the thermoplastic resin, and promotes the uniform dispersion of the metal fine particles in the thermoplastic resin. Accordingly, when a molded body having a plating film is manufactured using resin pellets manufactured using pressurized carbon dioxide, a uniform and high-quality plating film can be obtained. Although it is possible to produce resin pellets by mixing only thermoplastic resin and metal fine particles without using pressurized carbon dioxide, it is preferable to use pressurized carbon dioxide for the above reasons.
  • the pressurized carbon dioxide may be the same as the pressurized carbon dioxide used in mixing the functional material to the block copolymer in the first embodiment.
  • the pressurized carbon dioxide may contain a solvent that dissolves the same metal fine particles as in the first embodiment.
  • the concentration of the metal fine particles in the pressurized carbon dioxide can be appropriately selected in consideration of the type of the metal fine particles, and is not particularly limited. Considering the permeability to the molten resin and the aggregation of the metal fine particles in the pressurized carbon dioxide, it is preferably not more than the saturation solubility. In particular, since the density of carbon dioxide rapidly decreases in a plasticizing cylinder of a molding machine that reaches a high temperature, the concentration of metal fine particles in pressurized carbon dioxide is preferably about 1 to 50% of the saturation solubility.
  • the method for preparing pressurized carbon dioxide is not particularly limited, and a conventionally known method similar to that of the first embodiment can be used.
  • the pressurized fluid supply apparatus 300 manufactures pressurized carbon dioxide (hereinafter referred to as “mixed pressurized fluid” if necessary) in which metal fine particles are mixed at a predetermined ratio, and this mixed pressurization. Supply fluid to the plasticizing cylinder.
  • the method of supplying the mixed pressurized fluid to the plasticizing cylinder is arbitrary.
  • the mixed pressurized fluid may be intermittently introduced into the plasticizing cylinder or may be continuously introduced.
  • the introduction of the mixed pressurized fluid may be controlled by using, for example, a syringe pump capable of stable liquid feeding shown in FIG.
  • thermoplastic resin containing metal fine particles After mixing the mixed pressurized fluid with the thermoplastic resin, a thermoplastic resin containing metal fine particles can be extruded and pulverized to obtain resin pellets.
  • the molded body of the present embodiment can be molded by a general-purpose molding method using a molding machine such as a general-purpose injection molding machine or an extrusion molding machine using resin pellets in which metal fine particles are dispersed. Therefore, the manufacturing method of this embodiment can manufacture the molded object containing the metal fine particle which is a plating catalyst, without investing in facilities, such as purchasing a new molding machine.
  • the molded body containing the metal fine particles does not need to impart a catalyst to the surface of the molded body, and does not need to be subjected to a surface treatment using a chemical having a high environmental load for imparting the catalyst.
  • the metal fine particles contained in the compact are unevenly distributed in the vicinity of the surface of the compact. If the metal fine particles as the plating catalyst are unevenly distributed near the surface of the molded body, it becomes easy to form a plating film on the surface of the molded body, and the plating reaction on the surface of the molded body becomes uniform. As a result, the adhesion of the plating film is improved, plating appearance defects such as pinholes are reduced, and a high-quality plating film can be formed. Further, the metal fine particles contributing to the plating reaction are only near the surface of the molded body. Therefore, by making the metal fine particles unevenly distributed in the vicinity of the surface of the molded body, the metal fine particles at the center of the molded body that do not contribute to the plating reaction can be reduced, and the cost can be reduced.
  • the “near the surface of the molded body” means an area inside the molded body and close to the surface as described above. A region where the plating solution permeates from the surface and causes a plating reaction when the molded product is brought into contact with the plating solution is “near the surface of the molded product”.
  • the extent to which “near the surface of the molded body” means the region from the surface of the molded body depends on the thermoplastic resin used in the molded body, but from the surface of the molded body, A region having a depth of up to 10 ⁇ m is preferred.
  • resin pellets containing metal fine particles are plasticized and melted, and the plastic pellets are subjected to at least pressurized carbon dioxide or pressurized nitrogen. It is preferable to mix one of the physical foaming agents and form a foamed molded article using a molten resin containing the physical foaming agent.
  • the use of pressurized nitrogen or pressurized carbon dioxide as a physical foaming agent makes it easy for metal fine particles to be unevenly distributed near the surface. This is presumed that when the physical foaming agent contained in the molded body escapes to the surface layer portion of the molded body, the physical foaming agent becomes a driving force and the metal fine particles existing inside the molded body are unevenly distributed near the surface.
  • the electroless plating film grows within a range of 10 ⁇ m or less from the surface of the molded body. The presence of the metal fine particles in this range makes it easy to form a plating film on the surface of the molded body, suppresses a decrease in adhesion of the plating film, and reduces appearance defects such as uneven plating reaction and pinholes.
  • pressurized nitrogen or pressurized carbon dioxide used as a physical foaming agent functions as a physical foaming agent and also acts as a plasticizer for a thermoplastic resin, so that metal fine particles are uniformly dispersed in the thermoplastic resin.
  • a physical foaming agent functions as a physical foaming agent and also acts as a plasticizer for a thermoplastic resin, so that metal fine particles are uniformly dispersed in the thermoplastic resin.
  • the particle diameter of the metal fine particles serving as catalyst nuclei can be remarkably reduced, and a molded article having high plating reactivity can be produced.
  • metal pellets are dispersed in a thermoplastic resin under heating to produce resin pellets, and further, the resin pellets are heated to form a molded body by resin melting.
  • a long heat history inherently aggregates metal fine particles and may adversely affect the formation of the plating film.
  • the metal fine particles are unevenly distributed near the surface of the molded body, and the dispersion of the metal fine particles is promoted. it can. Thereby, even if it is a manufacturing method using the resin pellet containing metal microparticles
  • an electroless plating solution is brought into contact with the molded body containing the obtained metal fine particles to form a plating film (step S13 in FIG. 6).
  • the electroless plating solution a known one can be used, but an electroless nickel phosphorous plating solution is preferable from the viewpoint that the catalyst activity is high and the solution is stable.
  • the metal fine particles acting as a plating catalyst are dispersed inside, so that it is not necessary to perform a plating catalyst application treatment.
  • the electroless plating solution penetrates from the surface of the molded body and comes into contact with the metal fine particles contained in the molded body, and the plating film grows using the metal fine particles as a catalyst. Accordingly, the plating film is formed on the molded body in a state where it is bitten into the molded body (a state in which a part of the plating film has penetrated into the molded body).
  • resin pellets are prepared in which a block copolymer including a hydrophilic segment is dispersed together with metal fine particles in a thermoplastic resin (step S11 in FIG. 6).
  • the method of preparing the resin pellet containing the block copolymer including the hydrophilic segment is arbitrary, and the thermoplastic resin and the block copolymer are mixed in the manufacturing process of the resin pellet described in the second embodiment.
  • resin pellets may be manufactured.
  • a block copolymer is plasticized and melted together with a thermoplastic resin in a plasticizing cylinder of an extruder, and pressurized carbon dioxide in which metal fine particles are dissolved is introduced into the plasticizing cylinder. And the block copolymer is brought into contact with pressurized carbon dioxide.
  • the block copolymer of the present embodiment can be the same as the block copolymer used in the first embodiment.
  • the block copolymer and the thermoplastic resin are preferably mixed so that the mixing ratio of the block copolymer to the resin pellets is 1 to 30 wt%.
  • the mixing ratio of the block copolymer is preferably 1 wt% or more in order to sufficiently increase the permeability of the plating solution into the molded body, and in order to maintain the mechanical strength of the molded body and the thermal shock performance after forming the plating film, 30 wt% or less is preferable.
  • the mixing ratio of the block copolymer is more preferably 5 to 15 wt%.
  • step S12 in FIG. 6 the obtained resin pellet containing the metal fine particles and the block copolymer is plasticized and melted to form a molded body
  • an electroless plating solution is brought into contact with the molded body to form a plating film.
  • step S13 The method for forming the formed body and the method for forming the plating film are the same as those described in the first embodiment.
  • the present inventors have found that when a molded body is produced using resin pellets containing a block copolymer together with metal fine particles, the block copolymer promotes the growth of the plating film and further improves the quality of the plating film. It was. The reason for this is not clear, but is presumed as follows.
  • the block copolymer contained in the molded body moves so that the hydrophilic segment bleeds out to the surface of the molded body. Therefore, the block copolymer is unevenly distributed near the surface of the molded body, and only the vicinity of the surface of the molded body is hydrophilized by the hydrophilic segment of the block copolymer.
  • the plating solution when the electroless plating solution is brought into contact with the molded body, the plating solution penetrates from the surface of the molded body to contact with the metal fine particles, and the plating film is formed while spreading the molded body from the inside of the molded body. grow up.
  • the surface vicinity of the molded body of this embodiment is hydrophilized by the block copolymer, it is considered that the penetration of the plating solution and the growth of the plating film are promoted.
  • the molded body of the present embodiment has a good throwing power of the plating film, and the plating film can be formed in a short time. By shortening the plating film formation time, defects in the plating film such as pinholes are less likely to occur.
  • the block copolymer since the block copolymer is segregated near the surface of the molded body, only the vicinity of the surface of the molded body is hydrophilized by the block copolymer.
  • the block copolymer partially improves the hydrophilicity of the molded body, but has little influence on the water absorption (macroscopic water absorption) of the entire molded body. Therefore, the brittle fracture of the molded body in the plating solution can be suppressed, and the mechanical properties of the molded body are not deteriorated. As a result, the molded body has sufficient thermal shock resistance even after the plating film is formed.
  • the metal fine particles also move to the vicinity of the surface and are likely to be unevenly distributed near the surface.
  • the reason for this phenomenon is not clear, but the metal fine particles are unevenly distributed near the surface, making it easier to form a plating film on the surface of the resin, suppressing a decrease in the adhesion of the plating film, plating reaction unevenness, pinholes, etc. The appearance defect is reduced.
  • the block copolymer by using the block copolymer, only the vicinity of the surface of the molded body that is the object to be plated can be made hydrophilic, and the above-described effects can be achieved.
  • a random copolymer composed of the same constituent components a polymer composed only of hydrophilic segments, etc., it is difficult to hydrophilize only the vicinity of the surface of the molded body, and the same effect as the present invention cannot be obtained. .
  • metal fine particles are dispersed in a thermoplastic resin under heating to produce resin pellets, and further, the resin pellets are heated to form a molded body by melting the resin. .
  • a long heat history inherently aggregates metal fine particles and may adversely affect the formation of the plating film.
  • a block copolymer containing a hydrophilic segment in the resin pellet growth of the plating film can be promoted and the quality of the plating film can be improved. Thereby, even if it is a manufacturing method using the resin pellet containing metal microparticles
  • this embodiment may shape
  • physical foaming agent such as pressurized nitrogen
  • the molded body of the present embodiment is a foam molded body, and can be manufactured by a method using a physical foaming agent in the manufacturing method of the second embodiment described above.
  • the molded body having a plating film of the present embodiment includes, for example, a foam molded body having independent foam cells inside, and a plating film formed on the surface of the foam molded body.
  • a metal region made of the same type of metal as the plating film is formed at a depth within 10 ⁇ m from the surface on which the metal layer is formed, and the metal region is present from the surface on which the plating film of the foam molded body is formed.
  • the foam cell is not present in the range.
  • the plating solution When the electroless plating solution is brought into contact with a molded body containing metal fine particles serving as an electroless plating catalyst, the plating solution penetrates from the surface of the molded body into contact with the metal fine particles, and from the inside of the molded body.
  • the plating film grows while spreading the compact. Therefore, a metal region made of the same type of metal as the plating film, for example, nickel phosphorus is formed inside the molded body.
  • the metal fine particles are unevenly distributed in the vicinity of the surface of the molded body.
  • the range is a depth within 10 ⁇ m from the surface of the molded body on which the plating film is formed. Therefore, a metal region is formed in this range.
  • the range in which this metal region is formed from the surface of the molded body is a range where plating reaction occurs. If the foamed cell exists in this range, there is a possibility that an acidic nickel phosphorus plating solution is mixed inside the foamed cell and remains during plating. Since the remaining plating solution causes corrosion of the plating film, it is preferable that the foam cell does not exist in the range where the metal region exists. Since the molded body having the plating film of the present embodiment has no foamed cell in the range where the metal region exists from the surface, corrosion of the plating film can be suppressed.
  • the molded body of this embodiment is molded by the following method, for example.
  • the molded body molded by injection molding is divided into a layer forming the inside of the resin called the core layer and a layer forming the outermost layer part of the molded body called the skin layer, and the core layer is covered with the skin layer.
  • the core layer is covered with the skin layer.
  • the resin flowing at the tip of the resin flow called flow front is first cooled by the mold wall surface to form a skin layer, and then the central part of the fluid resin The resin flowing through forms a core layer.
  • the molten resin containing the high-pressure physical foaming agent is decompressed when filling the cavity, thereby forming foamed cells inside the resin.
  • foaming of the skin layer is suppressed by pressing the resin forming the skin layer against the mold wall surface by the filling pressure of the resin forming the core layer that flows later and making it difficult to reduce the pressure.
  • the mold temperature, injection speed, resin temperature, etc. are adjusted so that the thickness of the skin layer in the foamed molded product is about 10 to 100 ⁇ m.
  • a foam cell does not exist in the range in which the metal area
  • the “range where the metal region exists” means a region where a metal region made of the same type of metal as the plating film occupies a volume of 20 vol% or more. Further, the “foamed cell” in the present embodiment does not mean that even a minute defect of the molded body is included. Therefore, “the foam cell is not substantially present in the range where the metal region exists” means that, for example, in the region where the metal region occupies a volume of 20 vol% or more, closed cells having a foam cell size of 5 ⁇ m or more are present. It means not existing.
  • the molded body 800 of the present embodiment includes a foam molded body 801 having independent foam cells inside, and a plating film 802 formed on the surface of the foam molded body 801.
  • a metal region made of the same type of metal as the plating film 802 is formed in the region 801b having a depth within 10 ⁇ m from the surface on which the plating film 802 of the foamed molded body 801 is formed, and the plating film 802 is formed.
  • the skin layer thickness of the molded object of this embodiment shown in FIG. 8 is about 100 micrometers.
  • FIG. 9 in the region 801a inside the region 801b, there are many foam cells 801c having a diameter of about 50 ⁇ m, and there is no metal region formed by the plating reaction.
  • the specific gravity of the molded object which has a plating film of this embodiment is 1.2 g / cm ⁇ 3 > or less.
  • the molded body of the present embodiment can be used as a lightweight heat radiating member.
  • the conventional heat-dissipating resin material has a problem that when the thermal conductivity is 5 W / m ⁇ K or more, the specific gravity is 1.4 g / cm 3 or more and the specific gravity is large.
  • the foamed molded product can be reduced in weight by reducing the foamed resin material and foaming, but there is a problem that the heat dissipation efficiency is lowered.
  • the molded body of the embodiment has a high-quality plated film with high adhesion on the surface, the decrease in heat dissipation efficiency of the foamed molded body can be supplemented by the plated film.
  • the molded object of this embodiment can make specific gravity 1.2g / cm ⁇ 3 > or less, without reducing heat dissipation efficiency.
  • the weight change by water absorption after the molded object which has a plating film of this embodiment is immersed in 23 degreeC water for 24 hours is 0.5% or less.
  • a foamed molded body that does not form a plating film has a larger water absorption than a normal non-foamed molded body, which also increases the linear expansion coefficient, so that it can be used in a high temperature and high humidity environment. There was a problem of low reliability.
  • the molded body having the plating film of this embodiment has a high-quality plating film with high adhesion on the surface, water absorption into the molded body can be suppressed.
  • the molded body having the plated film of the present embodiment has a coefficient of linear expansion that is reduced by reducing the weight change due to water absorption after being immersed in water at 23 ° C. for 24 hours under a high-temperature and high-humidity environment. Can withstand use.
  • the molded body having the plating film of the present embodiment since the molded body having the plating film of the present embodiment has a high-quality plating film with high adhesion on the surface, it is lightweight and high-temperature and high-humidity while maintaining the performance of metal parts such as heat dissipation performance.
  • the molded body has high reliability in the environment, and can be used as, for example, a lightweight heat radiating member.
  • the molded object which has a plating film of this embodiment suppresses shrinkage
  • the foam injection molding method of the present embodiment includes, for example, an injection molding apparatus 3000 having a plasticizing cylinder 710, a mold 955, and a nozzle unit 750 positioned between the plasticizing cylinder 710 and the mold 955 shown in FIG. Use.
  • the resin is plasticized and melted, and a physical foaming agent is mixed with the plasticized and melted resin (step S21).
  • the resin various resins can be used depending on the type of the desired foamed molded article.
  • the same thermoplastic resin used in the first embodiment can be used.
  • the resin pellets of the block copolymer containing the functional material described in the first to third embodiments, or the resin pellets in which metal fine particles are dispersed in a thermoplastic resin may be used. it can.
  • the physical foaming agent is preferably a pressurized fluid such as pressurized nitrogen or pressurized carbon dioxide. It is suitable as a physical foaming agent because it is inexpensive, clean and hardly remains, and is easily compatible with a thermoplastic resin.
  • the pressure and temperature at which the physical foaming agent is introduced into the plasticizing cylinder vary depending on the type of physical foaming agent and are arbitrary. It is not always necessary to use a high-pressure physical foaming agent such as a supercritical state, but a liquid state or a supercritical state is preferable because of its high density and stability.
  • the pressure is preferably 3 to 25 MPa, and the temperature is preferably 10 ° C. to 100 ° C. If the pressure is 3 MPa or more, it can be stably introduced into the plasticizing cylinder 210, and if it is 25 MPa or less, the load on the apparatus is reduced. If the temperature is in the range of 10 ° C.
  • the physical foaming agent in the system can be easily controlled.
  • the pressurized nitrogen and pressurized carbon dioxide used as the physical foaming agent in the present embodiment instantaneously become high temperature in the plasticizing cylinder and the pressure also fluctuates. Therefore, the above-described state, temperature and pressure of the physical foaming agent are values of the state, pressure and temperature of the physical foaming agent in a stable state before being introduced into the pressure cylinder.
  • the method of preparing and supplying the physical foaming agent to the plasticizing cylinder is not particularly limited, and a conventional method may be used, and the physical foaming agent may be intermittently introduced into the plasticizing cylinder or continuously. It may be introduced.
  • the physical foaming agent can be prepared and supplied to the plasticizing cylinder using a physical foaming agent supply device 600 provided with a syringe pump for sucking and feeding the physical foaming agent as in the syringe shown in FIG. .
  • a syringe pump is used as in the physical foaming agent supply device 600, the amount of physical foaming agent introduced can be controlled easily and stably.
  • the physical foaming agent may be prepared and supplied using a commercially available supercritical fluid supply device for MuCell (registered trademark) molding machine.
  • metal fine particles may be dissolved or dispersed in a physical foaming agent, and the metal fine particles may be mixed with the plasticized and melted resin together with the physical foaming agent.
  • the metal fine particles are included in the foamed molded article molded in the present embodiment. Since the metal fine particles act as a catalyst for electroless plating, as will be described later, an electroless plating solution is brought into contact with the foam molded body molded in this embodiment to form a plating film on the surface of the foam molded body. May be.
  • the metal fine particles for example, the same metal fine particles used as the functional material in the first embodiment can be used.
  • thermoplastic resin is plasticized and melted in a plasticizing cylinder of an injection molding apparatus, a physical foaming agent in which fine metal particles are dissolved is introduced into the plasticized cylinder, and the molten resin is then melted in the plasticizing cylinder.
  • a physical foaming agent in which fine metal particles are dissolved is introduced into the plasticized cylinder, and the molten resin is then melted in the plasticizing cylinder.
  • Mix physical blowing agent when metal fine particles are dispersed in the thermoplastic resin using a physical foaming agent, the metal fine particles can be unevenly distributed to a depth of about 1 to 5 ⁇ m from the outermost surface of the resin molded body.
  • the metal fine particles existing in the deep region from the surface of the resin molded body cannot participate in the electroless plating reaction, the metal fine particles are unevenly distributed near the surface of the resin molded body, thereby increasing the utilization efficiency of expensive metal fine particles and reducing the cost. Can be reduced. Furthermore, when a physical foaming agent is used, the particle diameter of the metal fine particles serving as catalyst nuclei can be remarkably reduced, and a molded article having high plating reactivity can be produced.
  • the physical foaming agent may contain a solvent that dissolves the metal fine particles.
  • a fluorine-based organic solvent such as perfluoropentylamine may be used to increase the concentration of the metal complex in the physical foaming agent.
  • the concentration of the metal fine particles in the physical foaming agent can be appropriately selected in consideration of the type of the metal fine particles, and is not particularly limited. Considering the permeability to the molten resin and the aggregation of the metal fine particles in the physical foaming agent, it is preferably not more than the saturation solubility. In particular, since the density of the physical foaming agent suddenly decreases in the plasticizing cylinder of the injection molding apparatus at a high temperature, the concentration of the metal fine particles in the physical foaming agent is preferably about 1 to 50% of the saturation solubility.
  • the resin in which the physical foaming agent is dissolved is sent to the nozzle unit 750 located between the plasticizing cylinder 710 and the mold 955, and the resin is cooled in the nozzle unit 750 (step S22 in FIG. 10).
  • the physical foaming agent is discharged (step S23).
  • a resin flow path 6 extending from the plasticizing cylinder 710 to the mold 955 is formed inside the nozzle unit 750.
  • the physical foaming agent is discharged from the flow front portion of the resin immediately before being injected into the mold 955 by exhausting the physical foaming agent in the nozzle unit 750 located between the plasticizing cylinder 710 and the mold 955.
  • the physical foaming agent concentration contained in the flow front part is reduced. Thereby, it can suppress that a physical foaming agent gasifies from a flow front part, and is discharge
  • the flow front portion of the fluid resin in the mold 955 forms a surface layer (skin layer) of the molded body while being pulled on the surface of the mold 955 due to a fountain flow phenomenon (fountain effect).
  • the physical foaming agent is exhausted from the flow front portion of the resin in the nozzle unit 750 to reduce the physical foaming agent concentration, but the physical foaming agent concentration in other parts of the molten resin is not greatly affected. Portions other than the flow front portion of the molten resin form a core layer that is the inside of the foamed molded body. Since a sufficient physical foaming agent can remain in the resin of the portion that forms the core layer, in this embodiment, a foamed molded article having a smooth surface, no appearance defects, and sufficient foam cells inside can be formed.
  • the nozzle unit 750 by using the nozzle unit 750, a general-purpose mold can be used as the mold 955, and the mold cost can be suppressed. Further, the nozzle unit 750 of this embodiment may have a structure integrated with the plasticizing cylinder 710 or may be used by being attached to a plasticizing cylinder of a general-purpose injection molding apparatus.
  • the phenomenon of resin vent-up can be suppressed.
  • Bent-up is a phenomenon in which molten resin leaks simultaneously from an exhaust port that exhausts the physical foaming agent. It is considered that the main cause of the vent-up is that the resin foam is in a state where the physical foaming agent is kneaded, and that the resin is volume-expanded due to rapid decompression for exhaust. If an attempt is made to discharge a physical foaming agent from a plasticized and melted resin having a low viscosity, it is difficult to suppress rapid volume expansion of the resin, which causes a vent-up.
  • the resin in which the physical foaming agent is dissolved is cooled and solidified or increased in viscosity. Thereby, only the physical foaming agent can be discharged from the exhaust port, and vent-up can be suppressed.
  • a screw 70 having a function of plasticizing and melting the resin and injecting and filling the resin into the mold is provided so as to freely rotate and retreat.
  • resin cooling is performed in the nozzle unit 750 that is outside the movable region of the screw 70, so that there is no burden on driving the screw 70.
  • the cross-sectional area of the resin flow path 6 of the nozzle unit 750 is preferably smaller than the cross-sectional area of the screw 70 so that the screw 70 does not enter the resin flow path 6 of the nozzle unit 750 to be cooled.
  • the method for cooling the plasticized and melted resin is arbitrary.
  • the resin is cooled by circulating water through the temperature control flow path 2 inside the nozzle unit 750.
  • the temperature after cooling varies depending on the type of resin, but is preferably 50 to 150 ° C.
  • the purpose of cooling the resin is to increase the viscosity of the resin containing a physical foaming agent (gas), which has been reduced in viscosity. By cooling to this temperature range, the molten resin is discharged at the same time as the physical foaming agent is discharged. Is suppressed.
  • the discharging method of the physical foaming agent mixed in the resin is arbitrary.
  • the physical foaming agent is discharged by the physical foaming agent discharge mechanism 3 provided in the nozzle unit 750.
  • the physical foaming agent discharge mechanism 3 includes a resin pressing portion 10 that forms part of the wall surface of the resin flow path 6,
  • the piston 4 that is connected to the resin pressing portion 10 and retracts the resin pressing portion 10 so as to widen the resin flow path 6, and the exhaust that causes the resin flow path 6 and the outside of the nozzle unit 750 to communicate with each other when the piston 4 moves backward.
  • Consists of Road 5 As shown in FIG. 12B, the surface forming a part of the wall surface of the resin flow path 6 of the resin pressing portion 10 is a curved surface so that the resin flow path 6 has a cylindrical shape.
  • the physical foaming agent is discharged as follows. After cooling and solidifying or increasing the viscosity of the resin 9 located in the flow path L where the cooling and heating of the resin flow path 6 shown in FIGS. 13A and 13B are performed, the resin shown in FIG. From the state where the flow path 6 and the outside of the nozzle unit 300 are blocked, the piston 4 is driven to retract the resin pressing portion 10, and the resin flow path 6 and the outside of the nozzle unit 750 communicate with each other through the exhaust path 5 (FIG. 13 ( The state is b). In the state of FIG. 13B, the pressure in the resin flow path 6 is reduced by communication between the resin flow path 6 and the outside of the nozzle unit 750 that is at atmospheric pressure, and the physical foaming agent in the resin 9 is gas. And discharged.
  • the gap D is arbitrary, but is preferably in the range of about 0.01 to 10 mm. If it is too narrow, the discharging efficiency of the foaming agent is reduced, and if it is too wide, the load on the drive unit for providing the gap D increases, and the sealing performance is reduced.
  • the method of retracting a part of the wall surface of the resin flow path 6 is arbitrary, and a method of moving the piston and cam up and down by a driving source such as air, hydraulic pressure, and electric power can be used.
  • the physical foaming agent is obtained by communicating the resin flow path 6 and the outside of the nozzle unit 750 that is at atmospheric pressure through the exhaust path 5.
  • the physical foaming agent can be discharged by any method.
  • the physical foaming agent discharge mechanism 745 shown in FIG. 14 is provided with a back pressure valve 743, a pressure reducing valve 742, a flow rate control device 741 and the like at the tip of the exhaust passage 5, and discharges the physical foaming agent while controlling the pressure and flow rate. be able to.
  • the physical foaming agent discharge amount from the tip of the nozzle unit 760 hardly changes.
  • the physical foaming agent may be discharged by a method of forcibly exhausting the physical foaming agent by providing a vacuum pump or the like at the end of the exhaust passage 5 of the nozzle unit.
  • the amount of the physical foaming agent to be exhausted can be controlled by the physical foaming agent discharge time, the pressure of the physical foaming agent to be exhausted, the flow rate, and the like.
  • the resin from which a predetermined amount of the physical foaming agent has been discharged is heated (step S24 in FIG. 10).
  • the physical foaming agent is exhausted while the molten resin is cooled and solidified. If injection molding is performed on a mold while a part of the resin is solidified, a large load is applied to the injection molding apparatus. Therefore, the solidified resin of the nozzle unit is heated and remelted before injection filling.
  • the resin is preferably heated to 150 to 400 ° C. By being heated to this temperature, the viscosity of the resin increased in viscosity when the physical foaming agent (gas) is discharged, and the flow resistance of the nozzle is decreased. Thereby, injection filling of the molten resin into the mold can be performed smoothly.
  • the heating method of the resin is arbitrary, and a heater or hot air heating can be adopted.
  • an electromagnetic induction heating method capable of heating and heating in a short time.
  • the temperature can be raised in a short time by passing a current through the coil, and the heating can be easily stopped by stopping the current.
  • the power source of the electromagnetic induction heating method requires a large output, but in this embodiment, it is only necessary to heat the resin flow path 6 of the nozzle unit 750 having a small cross-sectional area and volume, so that the power source can be reduced in size and cost can be reduced.
  • the copper tube 1 is provided so as to be wound around the piston 4, and electromagnetic induction heating is performed by passing an electric current through the copper tube 1, thereby heating the resin.
  • the resin is cooled in the resin flow path 6 of the nozzle unit 750 (step S22 in FIG. 10), and then the resin is heated (step S24).
  • the cooling and heating of the resin are repeated alternately. Therefore, in the resin flow path 6 of the nozzle unit 750, it is preferable that the volume of the resin to be cooled and solidified is small. This is because if the volume of the resin to be cooled and solidified is small, the heating / cooling cycle time can be shortened and less energy is required. Therefore, it is preferable that the cross-sectional area of the resin flow path 6 is as narrow as possible, and the length of the resin to be solidified in the flow direction is minimized.
  • At least the cross-sectional area of the resin flow path 6 is preferably smaller than the cross-sectional area of the plasticizing cylinder 710. However, if the volume of the resin to be solidified is too small, the resin may be pushed out by the surrounding molten resin and vent-up may occur. Considering these, for example, when the resin flow path 6 is cylindrical, the circular cross section of the resin flow path 6 is preferably ⁇ 2 to 100 mm, and the length of the solidified resin in the flow direction is preferably 1 to 100 mm.
  • the heated resin is injected and filled into the mold 955 to form a foam molded body (step S25).
  • the mold is slightly opened without applying pressure (core back) to complete the molded body.
  • resin containing a physical foaming agent is rapidly decompressed within a metal mold
  • metal fine particles may be dissolved or dispersed in a physical foaming agent, and the metal fine particles may be mixed with the plasticized and melted resin together with the physical foaming agent. Included in the molded body. Since the metal fine particles act as a catalyst for electroless plating, an electroless plating solution may be brought into contact with the foamed molded body molded in this embodiment to form a plating film on the surface of the foamed molded body.
  • the nozzle unit 750 of the present embodiment is provided in the injection molding apparatus 3000 and is positioned between the plasticizing cylinder 710 and the mold 955.
  • the resin is plasticized and melted, and a physical foaming agent is introduced into the resin.
  • the resin plasticized and melted and introduced with the physical foaming agent is injected and filled into the mold 955 through the nozzle unit 750.
  • the nozzle unit 750 has a resin flow path 6 that continues from the plasticizing cylinder 710 to the mold 955 inside, and further includes a temperature control mechanism 7 that controls the temperature of the resin in the resin flow path 6, And a physical foaming agent discharge mechanism 3 for discharging the physical foaming agent from the resin.
  • the physical foaming agent discharge mechanism 3 is the same as that described in the fifth embodiment. It is preferable that a part of the wall surface forming the resin flow path 6 is provided so as to be able to be driven so as to widen the cross-sectional area of the resin flow path 6, that is, to increase the volume. In the nozzle unit 750 of the present embodiment, the resin pressing portion 10 that forms part of the wall surface of the resin flow path 6 is provided so as to be able to retreat so as to widen the cross-sectional area of the resin flow path 6.
  • the cross-sectional area of the resin flow path 6 of the nozzle unit 750 is preferably smaller than the cross-sectional area of the screw 70. This is because there is no possibility that the screw 70 enters the resin flow path 6 of the nozzle unit 750.
  • the cross-sectional area of the resin flow path 6 is preferably as narrow as possible, and the length in the flow direction is preferably minimized. This is to reduce the heating / cooling cycle time by reducing the volume of the resin flow path 6 and to suppress the energy required for this.
  • the circular cross section of the resin flow path 6 is preferably ⁇ 2 to 100 mm, and the length of the flow path L for cooling and heating is preferably 1 to 100 mm.
  • the flow path L for cooling and heating coincides with the portion where the resin pressing portion 10 forms the wall surface of the flow path, as shown in FIGS. .
  • the temperature control mechanism 7 of the present embodiment is arbitrary as long as it is a mechanism that controls the temperature of the resin in the resin flow path 6.
  • the temperature control mechanism 7 according to the present embodiment includes a temperature adjustment flow path 2 that circulates water provided inside the nozzle unit 750 and a copper tube 1 that flows a current provided so as to be wound around the piston 4.
  • the temperature control flow path 2 is a mechanism for cooling the resin
  • the copper tube 1 is an electromagnetic induction heating mechanism for heating the resin by an electromagnetic induction heating method.
  • an electromagnetic induction heating mechanism capable of heating and heating in a short time is preferable.
  • the nozzle unit 750 of this embodiment may be formed integrally with the plasticizing cylinder 710 and may form a part of the plasticizing cylinder. Further, the nozzle unit of the present embodiment may be a detachable unit that is separate from the plasticizing cylinder 710. In the case of a separate body from the plasticizing cylinder, the nozzle unit of the present embodiment can be used by being attached to the tip portion of the plasticizing cylinder of a general-purpose injection molding apparatus.
  • the foam injection molding apparatus 3000 of this embodiment includes a plasticizing cylinder 710 that plasticizes and melts a resin and introduces a physical foaming agent into the resin, and a plasticizing and melted physical foaming agent is introduced.
  • a nozzle unit 750 which is located between the mold 955 into which the resin is injected and filled, and between the plasticizing cylinder 710 and the mold 955, and in which the resin flow path 6 extending from the plasticizing cylinder 710 to the mold 955 is formed.
  • Have The nozzle unit 750 is the same as that described in the sixth embodiment.
  • the nozzle unit 750 may be formed integrally with the plasticizing cylinder 710 and may form a part of the plasticizing cylinder, or may be a detachable unit separate from the plasticizing cylinder 710. Also good.
  • the foam injection molding method of the fifth embodiment can be carried out using the injection molding apparatus of the present embodiment, and a foam molded body having a smooth surface and hardly causing poor appearance can be obtained.
  • Example 1 In Example 1, using the pellet manufacturing apparatus shown in FIG. 2, a functional material was mixed with a block copolymer to produce a pellet, and the manufactured pellet was mixed with a thermoplastic resin to obtain a molded body.
  • a block copolymer polyether ester amide block copolymer (Sanyo Chemical Industries, Pelestat NC6321) is used, and as the functional material, palladium complex (hexafluoroacetylacetonato palladium (II)) which is metal fine particles is used.
  • the thermoplastic resin glass fiber reinforced polyamide resin (nylon 6) (Amilan CM1011G30 manufactured by Toray Industries, Inc.) was used.
  • the plating film was formed on the obtained molded object.
  • the pellet manufacturing apparatus 1000 includes an extrusion apparatus 200 that extrudes a block copolymer, and a pressurized carbon dioxide (mixed pressurized fluid) containing metal fine particles supplied to the extrusion apparatus 200.
  • a pressurized fluid supply device 100 and a control device are provided. The control device controls the operation of the pressurized fluid supply device 100 and the extrusion molding device 200.
  • the pressurized fluid supply apparatus 100 includes a siphon type pressurized carbon dioxide cylinder 101, two syringe pumps 102 and 112, and four air operated valves 104.
  • the liquid phase portion of the pressurized carbon dioxide cylinder 101 is a mixed pressurized fluid in which a palladium complex as a functional material is dissolved at a saturation solubility or less.
  • a temperature control mechanism (not shown) is used. The temperature is adjusted from the outside of the cylinder.
  • the two syringe pumps 102 and 112 alternately repeat suction, pressurization, and supply of the mixed pressurized fluid from the cylinder 101 to the extrusion apparatus 200, and continuously supply the mixed pressurized fluid to the extrusion apparatus 200. Supply.
  • the syringe pumps 102 and 112 can be taken into the pump while maintaining a constant concentration of the palladium complex in the mixed pressurized fluid, and are supplied to the extrusion apparatus 200 while controlling the flow rate of the mixed pressurized fluid. be able to.
  • the mixed pressurized fluid is supplied through the back pressure valve 120.
  • the suction and supply of these syringe pumps 102 and 112 are automatically controlled by the four air operated valves 104.
  • the extrusion molding apparatus 200 includes a plasticizing cylinder 210, a screw 20 rotatably disposed in the plasticizing cylinder 210, upstream seal mechanisms S1a and S1b, and a downstream seal mechanism disposed in the plasticizing cylinder 210.
  • S2a and S2b and ring-shaped vent-up prevention covers 29a and 29b through which the screw 20 passes are provided.
  • the plasticized and melted block copolymer flows in the plasticizing cylinder 210 from the right hand to the left hand in FIGS. Therefore, in the plasticizing cylinder 210 of the present embodiment, the right hand in FIGS. 2, 4 and 5 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
  • a rotational driving means such as a rotational motor for rotating the screw 20 is connected to a rear end portion on the upstream side of the plasticizing cylinder 210.
  • the extrusion molding apparatus 200 in this example is a block copolymer that is melted when the screw 20 is rotated counterclockwise when viewed from the rear side of the plasticizing cylinder 210. Is forwardly rotated forward (nozzle part side), and is reversely rotated when rotated clockwise.
  • a resin supply port 201 for supplying the block copolymer to the plasticizing cylinder 210, and an introduction for introducing the mixed pressurized fluid into the plasticizing cylinder 210.
  • a vent 203a for discharging gasified carbon dioxide from the inside of the port 202a and the plasticizing cylinder 210 is formed. Furthermore, an inlet 202b and a vent 203b are provided downstream of the vent 203a.
  • mixed pressurized fluid is introduced into the plasticizing cylinder 210 from two places of the inlet ports 202a and 202b, and gasified carbon dioxide is discharged from two places of the vents 203a and 203b.
  • the resin supply port 201 and the introduction ports 202a and 202b are provided with a resin supply hopper 211 and introduction valves 212a and 212b, respectively.
  • the introduction valves 212a and 212b are connected to the mixed pressurized fluid supply apparatus 100 described above.
  • the block copolymer is supplied from the resin supply port 201 into the plasticizing cylinder 210, and plasticized by a band heater (not shown) disposed on the outer wall surface of the plasticizing cylinder 210 to be molten resin.
  • the screw 20 is sent downstream as it rotates forward.
  • the molten resin sent to the vicinity of the inlet 202a is contact-kneaded with the introduced mixed pressurized fluid under high pressure.
  • the gasified carbon dioxide is separated from the molten resin and discharged from the vent 203a.
  • the plasticizing zone 21 that plasticizes the block copolymer to form a molten resin in order from the upstream side, the molten resin and the mixed pressurized fluid introduced from the introduction port 202a are subjected to high pressure.
  • the high pressure kneading zone 22a for contact kneading and the pressure reducing zone 23a for discharging the carbon dioxide separated from the molten resin from the vent 203a are formed by lowering the resin internal pressure of the molten resin contact kneaded with the mixed pressurized fluid.
  • a repressurization zone 24a is provided downstream of the depressurization zone 23a. In the repressurization zone 24a, the depth of the screw flight is reduced to physically increase the pressure of the thermoplastic resin and improve the density. Is done.
  • the high-pressure kneading zone 22a, the decompression zone 23a, and the re-pressurization zone 24a form a first kneading part 220a.
  • the plasticizing cylinder 210 of the present embodiment has a second kneading part 220b formed from a high-pressure kneading zone 22b, a decompression zone 23b, and a re-pressurization zone 24b downstream of the first kneading part 220a. Since the first kneading unit 220a and the second kneading unit 220b have the same mechanism, the first kneading unit 220a will be described below.
  • the zones 21, 22a and 23a are in communication with each other between the plasticizing zone 21, the high pressure kneading zone 22a and the decompression zone 23a of the first kneading section 220a.
  • An upstream side seal mechanism S1a and a downstream side seal mechanism S2a are provided for temporarily blocking the above.
  • the upstream side and the downstream side of the high-pressure kneading zone 22a are mechanically sealed to ensure that the zones 21, 23a adjacent to the high-pressure kneading zone 22a are reliably sealed. Can be shut off.
  • the pressure in the high-pressure kneading zone 22a is maintained at a high pressure, so that the palladium complex can effectively penetrate into the molten resin.
  • Various upstream sealing mechanisms S1a and downstream sealing mechanisms S2a can be used as long as they block communication between the zones 21, 22a, and 23a. In this embodiment, the rotation of the screw 20 described below is used. What cut off the communication of these zones according to the state was used.
  • the plasticizing screw 20 has a reduced diameter portion 50 that is reduced in diameter in the boundary region between the high-pressure kneading zone 22a and the decompression zone 23a as compared with the region adjacent to the boundary region. is doing.
  • a downstream seal ring 60 is externally fitted to the reduced diameter portion 50 in a loosely fitted state so as to be movable in the axial direction (front-rear direction) within the range of the reduced diameter portion 50.
  • the reduced diameter portion 50 and the downstream seal ring 60 constitute a downstream seal mechanism S2a.
  • the reduced diameter portion 30 and the upstream side seal ring 40 constitute an upstream side seal mechanism S1a.
  • the upstream side seal mechanism S1a and the downstream side seal mechanism S2a have basically the same configuration.
  • a metal outer seal member 70 is fitted on the outer peripheral surface of the downstream seal ring 60 so as to protrude from the outer peripheral surface of the downstream seal ring 60. Thereby, the sealing performance between the downstream seal ring 60 and the plasticizing cylinder 210 is ensured.
  • an outer seal member 80 is fitted on the outer peripheral surface of the upstream seal ring 40.
  • the reduced diameter portion 50 of the plasticizing screw 20 includes a truncated cone portion (seal portion) 51 having a tapered surface inclined toward the front (downstream), and a horizontal plane that is connected to the truncated cone portion 51 and extends horizontally in the axial direction. And a cylindrical portion 52 having the same.
  • the reduced diameter portion 30 also includes a truncated cone portion (seal portion) 31 and a cylindrical portion 32.
  • the upstream side seal mechanism S1b and the downstream side seal mechanism S2b of the second kneading part 220b are the same as the upstream side seal mechanism S1a and the downstream side seal mechanism S2a of the first kneading part 220a described above.
  • vent-up prevention covers 29a and 29b suppress resin vent-up.
  • the vent-up prevention covers 29a and 29b are ring-shaped members provided in the decompression zone 23a of the first kneading part 220a and the decompression zone 23b of the second kneading part 220b, respectively.
  • the screw 20 penetrates, is connected to the screw 20 by a pin (not shown), and rotates in synchronization with the rotation of the screw 20.
  • the melted block copolymer 292 passes through the cylinders of the vent-up prevention covers 29 a and 29 b through which the screw 20 passes. Since the vent-up prevention covers 29a and 29b have the same structure, only the vent-up prevention cover 29a will be described below.
  • vent-up prevention cover 29a two exhaust holes 291a are provided at positions facing each other with the screw 20 therebetween.
  • the vent-up prevention cover 29a rotates with the screw 20, and the melted block copolymer 292 faces the vent 203a through the exhaust hole 291a only when one of the two exhaust holes 291a faces the vent 203a.
  • Pressurized carbon dioxide is discharged.
  • the carbon dioxide is intermittently discharged by the vent-up prevention cover 29a while the melted block copolymer is retained in the vicinity of the vent 203a for a predetermined time by repeating forward and reverse rotation of the screw 20. In this way, venting up of the melted block copolymer can be suppressed by intermittently discharging the pressurized carbon dioxide.
  • the mixed pressurized fluid was sucked from the pressurized carbon dioxide cylinder 101 by the syringe pump 102 or 112 and pressurized to a predetermined pressure.
  • the syringe pump 102 or 112 was switched from pressure control to flow control, and the system up to the introduction valves 212 a and 212 b for introducing the mixed pressurized fluid into the plasticizing cylinder 210 was pressurized.
  • the system from the syringe pumps 102 and 112 to the introduction valves 212a and 212b was cooled to 10 ° C., and the pressure was 10 MPa.
  • the set pressure of the back pressure valve 120 was also set to 10 MPa.
  • the block copolymer is supplied from the resin supply hopper 211, the plasticizing zone 21 is heated by a band heater (not shown) provided on the outer wall surface of the plasticizing zone 21, and the screw 20. Was rotated. Thereby, the block copolymer was plasticized and melted and flowed to the kneading zone 22a of the first kneading part 220a downstream. And in order to interrupt
  • the upstream and downstream seal rings 40, 60 are moved upstream to bring the upstream and downstream seal rings 40, 60 into close contact with the reduced diameter portions 30, 50 of the screw 20, and the high pressure kneading zone 22a.
  • the high pressure kneading zone 22a was cut off from the vacuum zone 23 a and the plasticization zone 21.
  • the mixed pressurized fluid is continuously supplied at a constant flow rate into the plasticizing cylinder 210 through the inlet port 202a by the inlet valve 212a, and the screw 20 is rotated.
  • the mixed pressurized fluid was dispersed and kneaded into molten resin (molten block copolymer).
  • the screw 20 After the mixed pressurized fluid is dispersed in the molten resin in a high pressure state in the high pressure kneading zone 22a, the screw 20 is rotated in the forward direction (rotating direction in which the screw is plasticized), or the rotational speed of the screw 20 is rotated in the reverse direction. As a result, the high-pressure kneading zone 22a and the decompression zone 23a were brought into communication. When the high-pressure kneading zone 22a and the decompression zone 23a are communicated, the molten resin (block copolymer) and the pressurized mixed fluid flow into the decompression zone 23a, but the moving speed of the pressurized carbon dioxide is faster than the flow of the molten resin.
  • the molten resin mixed with the mixed pressurized fluid was caused to flow into the decompression zone 23a by increasing the time of forward rotation of the screw 20.
  • the pressure of the molten resin and the mixed pressurized fluid that have flowed to the decompression zone 23a decreases, and excess pressurized carbon dioxide is gasified and separated from the molten resin.
  • the separated carbon dioxide is discharged from the vent 203a of the plasticizing cylinder 210.
  • component analysis of the gas discharged from the vent 203a was performed, no palladium complex was detected. It is considered that this is because the solubility of the palladium complex with respect to the pressurized carbon dioxide was remarkably reduced by reducing the pressure and that the palladium complex was reduced and became insoluble in the pressurized carbon dioxide.
  • the molten block copolymer is retained in the decompression zone 23a, and from the vent 203a through the exhaust hole 291a of the vent-up prevention cover 29a. Carbon dioxide was emitted intermittently. Thus, the vent-up of the melted block copolymer could be suppressed by intermittently discharging carbon dioxide.
  • the molten resin from which the pressurized carbon dioxide was discharged was caused to flow into the re-pressurization zone 24a by extending the time of the positive rotation of the screw 20.
  • the pressure of the thermoplastic resin was increased to increase the density.
  • the first kneading section 220a repeats normal rotation and reverse rotation of the screw 20, thereby using the upstream seal mechanism S1a and the downstream seal mechanism S2a, The communication and blocking of the decompression zone 23a were repeated. And carbon dioxide was discharged
  • the molten resin was caused to flow from the first kneading part 220a to the second kneading part 220b by increasing the forward rotation time of the screw 20.
  • the second kneading unit 220b intermittently discharged carbon dioxide in the decompression zone 23b while introducing the pressurized mixed fluid in the high pressure kneading zone 22b.
  • the first kneading part 220a and the second kneading part 220a and the second complex so that the palladium complex concentration in the mixture of the block copolymer and the palladium complex, that is, the palladium complex concentration in the resin pellets, is 500 ppm by weight.
  • the mixed pressurized fluid was introduced from two locations of the kneading part 220b.
  • the block copolymer mixed with the palladium complex was extruded from the tip of the plasticizing cylinder 210 in a string shape by extending the screw 20 in the forward rotation time. After the extruded mixture was cooled and solidified, it was cut into an arbitrary size by a general-purpose cutting machine (pelletizer) to obtain resin pellets made of a block copolymer containing a palladium complex.
  • a general-purpose cutting machine pelletizer
  • Sample (I) A plated film was formed on the molded body obtained in this example by the following method to prepare Sample (I). First, the molded body was exposed to an alkaline aqueous solution (60 ° C., 0.5N sodium hydroxide aqueous solution) for 5 minutes, washed with water, and then immersed in a 40 ° C. 3N hydrochloric acid aqueous solution for 5 minutes. Then, it was immersed in an electroless nickel phosphorus plating solution (Okuno Pharmaceutical Co., Ltd., Top Nicolon RCH) at 85 ° C.
  • an electroless nickel phosphorus plating solution Okuno Pharmaceutical Co., Ltd., Top Nicolon RCH
  • Example sample (I) was obtained.
  • sample evaluation The sample (I) was subjected to a heat shock test in which a cycle test of alternately exposing to an environment of ⁇ 40 ° C. and an environment of 120 ° C. was performed 10 cycles. As a result, it was found that the plating film did not bulge or peel off from the sample (I), and the plating film had high reliability.
  • the plating film grew from the inside of the molded body, and was formed on the molded body in a state of being bitten into the molded body (a state where a part of the plating film penetrated into the molded body). This is presumably because the electroless plating solution penetrated from the surface of the molded body and contacted with palladium contained in the molded body to grow a plating film.
  • Pressurized carbon dioxide which is a solvent for the metal fine particles, acts as a compatibilizer for the resin to suppress the aggregation of the metal complex, the metal complex is thermally reduced in the molten resin, and the nanoparticles are synthesized in-situ. I guess that. As described above, since the ultrafine metal particles are unevenly distributed in the vicinity of the surface of the molded body, even if the concentration of the metal microparticles in the molded body is as small as about 50 ppm, a sufficient plating reaction can be achieved. Presumed to have occurred.
  • a molded body containing metal fine particles can be produced using a general-purpose molding machine, and the environmental load
  • the metal fine particles are unevenly distributed in the vicinity of the surface of the molded body, and further, by using pressurized carbon dioxide for dispersing the metal fine particles in the block copolymer, Metal fine particles could be dispersed as ultrafine particles. Thereby, the content of metal fine particles as an electroless plating catalyst could be reduced.
  • the plating film before forming the plating film, contact the acidic and basic solution with the molded body to dissolve and remove a part of the block copolymer, and form pores on the molded body surface, forming on it
  • the adhesion of the plated film can be enhanced by the anchor effect by the pores.
  • Example 2 In Example 2, unlike Example 1, resin pellets formed from a block copolymer were not produced.
  • the block copolymer the same polyether ester amide block copolymer as in Example 1 (Pelestat NC6321 manufactured by Sanyo Chemical Industries) was used.
  • the functional material a silver complex (silver heptafluorobutyrate (I)) as metal fine particles was used, and as the thermoplastic resin, an ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) was used.
  • a silver complex was dissolved in ethanol at room temperature to prepare an ethanol solution, and the block copolymer was immersed in the prepared ethanol solution for 1 hour to impregnate the block copolymer with the silver complex.
  • the block copolymer impregnated with the silver complex was dried, and the concentration of the silver complex in the block copolymer impregnated with the silver complex was calculated from the change in weight.
  • the silver complex concentration was 1000 ppm by weight.
  • the block copolymer impregnated with the obtained silver complex was mixed with a thermoplastic resin and injection molded to obtain a molded body.
  • the block copolymer impregnated with the silver complex was mixed so that the ratio with respect to the mixture of the thermoplastic resin and the block copolymer impregnated with the silver complex was 10 wt%.
  • the cross section near the surface of the obtained molded product was observed with an SEM. As a result, it was confirmed that silver particles having a particle size of about 100 nm were dispersed in the vicinity of the surface of the molded body.
  • the obtained molded product was subjected to antibacterial evaluation by a unified test method (JIS Z 2911) using Staphylococcus aureus and Escherichia coli. As a result, it was confirmed that the molded body had a high antibacterial action, and the silver particles were present in the vicinity of the surface of the molded body at a concentration sufficient to exhibit the antibacterial action.
  • Example 3 In Example 3, unlike Example 1, resin pellets formed from the block copolymer were not manufactured. However, the block copolymer, the functional material, and the thermoplastic resin were the same as those in Example 1. Using.
  • a palladium complex which is a functional material, is dissolved in ethanol at room temperature to prepare an ethanol solution, and the block copolymer is immersed in the prepared ethanol solution for 1 hour to impregnate the block copolymer with the palladium complex. It was.
  • the block copolymer impregnated with the palladium complex was dried, and the concentration of the palladium complex in the block copolymer impregnated with the palladium complex was calculated from the change in weight.
  • the palladium complex concentration was about 0.1 wt%.
  • the block copolymer impregnated with the palladium complex was annealed at 150 ° C., and the palladium complex was thermally reduced.
  • the block copolymer impregnated with the palladium complex was mixed with a thermoplastic resin and injection molded to obtain a molded body.
  • the block copolymer impregnated with the palladium complex was mixed so that the ratio with respect to the mixture of the thermoplastic resin and the block copolymer impregnated with the palladium complex was 10 wt%.
  • a similar plating film was formed on the obtained molded body in the same manner as the sample (I) of Example 1 to obtain a sample (III). Moreover, the same plating film was formed by the same method as that of the sample (II) of Example 1, and the sample (IV) was obtained.
  • the sample (III) was subjected to a heat shock test in the same manner as in Example 1, and the adhesion evaluation (peel test) of the plating film of the sample (IV) was performed.
  • peel test the adhesion of the plating film was 8 N / cm, which was slightly lower than the target of 10 N / cm.
  • heat shock test it was found that the plating film did not swell or peel off in the sample (III), and the plating film had high reliability.
  • Example 1 by dispersing metal fine particles in the block copolymer, a molded body containing metal fine particles can be produced using a general-purpose molding machine, and the environment A plating film could be formed on the molded body without performing a surface treatment with a high load. Further, in this example, by using the block copolymer, the metal fine particles were unevenly distributed in the vicinity of the surface of the molded body, and the plating film could be efficiently formed.
  • Example 1 In this comparative example, the same functional material and thermoplastic resin as in Example 1 were used, but no block copolymer was used. The functional material (palladium complex) was not mixed with the block copolymer, but instead, the palladium complex was directly mixed with the thermoplastic resin. Other than that, the molded body was molded by the same method as in Example 1.
  • the nickel phosphorous plating film was formed on the molded body of this comparative example by the same method as in Example 1, but no plating reaction occurred.
  • the cause is presumed as follows.
  • the content of the palladium complex in the molded body is very small.
  • the block copolymer was not used, palladium was not unevenly distributed in the surface vicinity of the molded object. Therefore, it is considered that there was not a sufficient amount of catalyst for the plating reaction to occur in the vicinity of the surface of the molded body, and the plating reaction did not occur.
  • the manufacturing method of the molded object of this invention has been concretely demonstrated by the Example, this invention is not limited to these Examples.
  • the molded body is molded by injection molding, but the molded body may be molded by extrusion molding.
  • the foam molded article may be molded by a foam injection molding method using a physical foaming agent such as pressurized carbon dioxide or pressurized nitrogen.
  • Example 4 resin pellets were manufactured using the resin pellet manufacturing apparatus 2000 shown in FIG.
  • a thermoplastic resin a material containing carbon material, which is a heat conductive material, and dry blended 6 nylon and non-reinforced 6 nylon in a weight ratio of 1: 2 (Unitika, TNEG-5C) is used as metal fine particles. Hexafluoroacetylacetonato palladium (II) metal complex was used.
  • the thermal conductivity of nylon containing the carbon material used in this example is 5 W / m ⁇ K as measured by the laser flash method.
  • a physical foaming agent was mixed to form a foamed molded product, and a plated film was formed on the foamed molded product.
  • a resin pellet manufacturing apparatus 2000 includes an extrusion apparatus 400 that extrudes a thermoplastic resin mixed with metal fine particles, and an apparatus for extruding pressurized carbon dioxide (mixed pressurized fluid) containing metal fine particles. 400, a pressurized fluid supply device 300 for supplying to 400, a resin cooling device 500 for cooling the thermoplastic resin extruded by the extrusion molding device 400, and a control device (not shown). The control device controls operations of the pressurized fluid supply device 300, the extrusion molding device 400, and the resin cooling device 500.
  • pressurized fluid supply device 300 for supplying to 400
  • a resin cooling device 500 for cooling the thermoplastic resin extruded by the extrusion molding device 400
  • the control device controls operations of the pressurized fluid supply device 300, the extrusion molding device 400, and the resin cooling device 500.
  • the pressurized fluid supply device 300 prepares a mixed pressurized fluid by mixing pressurized carbon dioxide and a solution C in which metal fine particles are dissolved in a solvent, and supplies the prepared mixed pressurized fluid to the extrusion molding device 400. To do.
  • the pressurized fluid supply apparatus 300 includes a siphon-type carbon dioxide cylinder 301, a carbon dioxide syringe pump 302 that supplies liquid carbon dioxide after suction of liquid carbon dioxide from the carbon dioxide cylinder 301, and a solution tank 311. It is comprised from the syringe pump 312 for solutions which pressurizes and supplies the metal fine particle containing liquid C of the inside. Each syringe pump 302, 312 is capable of pressure control and flow rate control.
  • the prepared mixed pressurized fluid is supplied to the extrusion molding apparatus 200 via the back pressure valve 420.
  • the extrusion molding apparatus 400 includes a first cylinder (plasticizing cylinder) 410 having a screw 40 disposed therein so as to be rotatable and movable back and forth, and a second cylinder having a screw 45 disposed therein so as to be freely rotated and advanced and retracted. 420, servo motors 48 and 49 that are connected to the screws 40 and 45, respectively, and rotate the screws 40 and 45, and a connecting portion 430 that connects the first cylinder 410 and the second cylinder 420.
  • the plasticized and melted molten resin flows from the right hand to the left hand in FIG.
  • the right hand in FIG. 7 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
  • the first cylinder (plasticizing cylinder) 410 is provided with a ring-shaped seal member 46 through which the screw 40 passes, and a ring-shaped member 44 through which the screw 40 passes, provided downstream of the seal member 46.
  • the second cylinder 420 has a nozzle 47 at its tip.
  • a resin supply port 401 for supplying thermoplastic resin to the plasticizing cylinder 410 in order from the upstream side, and an introduction port for introducing the mixed pressurized fluid into the first cylinder 410. 402 is formed.
  • a vent 403 is formed on the upper side surface of the second cylinder 420 to exhaust carbon dioxide gasified from the second cylinder 420.
  • the resin supply port 401 and the introduction port 402 are provided with a resin supply hopper 411 and an introduction valve 412, respectively.
  • a band heater (not shown) is disposed on the outer wall surface of the first cylinder 410, whereby the plasticizing cylinder 410 is heated and the thermoplastic resin is plasticized and melted.
  • thermoplastic resin is supplied from the resin supply port 401 into the first cylinder 410, and the thermoplastic resin is plasticized by a band heater to become molten resin. It is done.
  • the molten resin sent to the vicinity of the introduction port 402 is contact-kneaded with pressurized carbon dioxide (mixed pressurized fluid) containing the introduced metal fine particles under high pressure.
  • the molten resin containing the mixed pressurized fluid is sent from the first cylinder 410 to the downstream connecting portion 430. Then, the resin of the connecting portion 430 is extruded into the resin sequentially supplied from the first cylinder 410 and is further sent to the second cylinder 420 downstream.
  • the gasified carbon dioxide is separated from the molten resin and exhausted from the vent 403 by reducing the internal pressure of the molten resin kneaded in contact with the mixed pressurized fluid. After the carbon dioxide is exhausted, the molten resin is sent downstream as the screw 45 rotates, and is pushed out of the second cylinder 420 from the nozzle 47.
  • the plasticizing zone 41 that plasticizes and melts the thermoplastic resin to form the molten resin, and the mixed pressurized fluid introduced from the molten resin and the inlet 402.
  • a kneading zone 42 is formed in which these are contact-kneaded under high pressure.
  • a reduced pressure zone 43 is formed in which the carbon dioxide separated from the molten resin is exhausted from the vent 403 by lowering the internal pressure of the molten resin kneaded in contact with the mixed pressurized fluid.
  • the ring-shaped seal member 46 described above is located at the boundary between the plasticizing zone 41 and the kneading zone 42, and the ring-shaped member 44 is located in the kneading zone 42.
  • mixing zone 42 of the screw 40 has a shape where the diameter becomes large as it goes downstream.
  • the resin cooling device 500 is a device that cools and solidifies the resin extruded from the nozzle 47 of the second cylinder 420, and may be any mechanism as long as the resin is sufficiently solidified by cooling water or the like. Then, the belt conveyor apparatus 501 made from aluminum which does not use cooling water was used. By not using cooling water, it is possible to prevent excessive water absorption of the resin even when a thermoplastic resin with high water absorption such as polyamide is used as the raw material of the molded body, eliminating the need for difficult dehydration work in the subsequent process. It becomes. As shown in FIG.
  • the aluminum belt conveyor device 501 is a belt conveyor that rotates a ring-shaped aluminum belt, and the resin extruded from the extrusion molding device 400 is placed on the aluminum belt, Transport from upstream to downstream (from right hand to left hand) in FIG. By being placed on an aluminum belt with high heat dissipation performance, the extruded resin is cooled and solidified while being transported.
  • the carbon dioxide syringe pump 302 and the solution syringe pump 312 were switched from pressure control to flow rate control, and were flowed so that the flow rate ratio between the carbon dioxide syringe pump 302 and the solution syringe pump 312 was 10: 1. .
  • the pressurized carbon dioxide and the solution C were mixed in the pipe, and the system up to the introduction valve 412 for introducing the mixed pressurized fluid into the first cylinder 410 was pressurized.
  • the system from the syringe pumps 302 and 312 to the introduction valve 412 was cooled to 10 ° C., and the pressure was 10 MPa.
  • the set pressure of the back pressure valve 420 was also set to 10 MPa.
  • the concentration of the metal fine particles in the mixed pressurized fluid was controlled to about 10 to 20% of the saturation solubility.
  • thermoplastic resin is supplied from the resin supply hopper 411, and the plasticizing zone 41 is heated by a band heater (not shown) provided on the outer wall surface of the plasticizing zone 41. Was rotated. As a result, the thermoplastic resin was plasticized and melted and flowed to the downstream kneading zone 42.
  • the mixed pressurized fluid was continuously supplied at a constant flow rate into the plasticizing cylinder 410 through the inlet 402 by the inlet valve 412. Then, the mixed pressurized fluid was dispersed and kneaded in the molten resin by rotating the screw 40. At this time, the ring-shaped sealing member 46 prevents carbon dioxide and metal fine particles introduced into the kneading zone 42 from leaking into the upstream plasticizing zone 41.
  • the rotation of the screw 40 caused the resin in the kneading zone 42 to flow to the downstream connecting portion 430.
  • the shape of the screw 40 and the presence of the ring-shaped member 44 that the diameter increases as it goes downstream becomes the flow resistance of the molten resin, and the internal pressure of the resin in the kneading zone 42 is reduced. As a result, the pressure in the first cylinder 410 increases.
  • the kneading zone 42 is provided with a pressure sensor (not shown) so that the cylinder pressure in the kneading zone 42 can be monitored.
  • a pressure sensor not shown
  • the rotation speed of the servo motor 48 is increased to increase the amount of molten resin supplied to the kneading zone 42 and Increase pressure.
  • the rotational speed of the servo motor 48 is lowered to reduce the resin supply amount, and the pressure in the cylinder is lowered.
  • the 1st cylinder of a present Example has a mechanism which can keep cylinder internal pressure constant by adjusting screw rotation speed.
  • the introduction amount of the mixed pressurized fluid supplied from the syringe pumps 302 and 312 is not stable and varies, but in this embodiment, in the kneading zone 42 The introduction amount is stabilized by keeping the pressure in the cylinder constant.
  • the rotational speed of the screw 40 is set so that the cylinder internal pressure in the kneading zone 42 is maintained at 8 MPa.
  • the screw 40 was continuously rotated, and the resin in the first cylinder 410 was continuously supplied to the downstream connecting portion 430.
  • the molten resin in the connecting portion 430 flowed into the decompression zone 43 of the downstream second cylinder 420 while being pushed out by the resin supplied from the first cylinder.
  • the molten resin was decompressed, and only carbon dioxide dissolved in the molten resin was separated and discharged from a vent 403 provided in the second cylinder 420.
  • the molten resin from which carbon dioxide had been discharged was pushed out by the rotation of the screw 45 from the nozzle 47 provided at the tip of the second cylinder.
  • the extrusion amount of the molten resin from the nozzle 47 was adjusted by a servo motor 49.
  • the servo motor 49 can be controlled independently from the servo motor 48.
  • the resin extruded from the nozzle 47 was placed on the aluminum belt conveyor 501 of the cooling device 500 and conveyed from upstream to downstream in FIG.
  • the extruded molten resin was cooled and solidified during transportation.
  • the solidified resin was cut into an arbitrary size by a general-purpose cutting machine to obtain resin pellets containing palladium metal fine particles.
  • the formation process of the electroless nickel phosphorus plating film was visually observed. After immersing the foamed molded article in an electroless nickel plating solution, it was confirmed that a plating film was formed on the entire surface of the molded article without losing the film within 10 minutes. Further, three samples were randomly extracted from the sample (i) in which only the nickel phosphorus plating film was formed, that is, the sample (i) before the electrolytic plating, and the nickel phosphorus plating film was visually observed. As a result, the number of pinholes per unit area (1 cm 2 ) was very small, 0-3.
  • the adhesion evaluation (peel test) of the sample (i) on which the electrolytic plating film was formed was performed.
  • the adhesion of the plating film was 10 N / cm, and it was found that a plating film with high adhesion was formed.
  • the sample (i) was subjected to a heat shock test in which three cycles of a cycle test in which the sample was alternately exposed to an environment of ⁇ 35 ° C. and an environment of 90 ° C. were performed. As a result, no swelling or peeling of the plated film occurred on the sample.
  • the highest temperature reached by the LED light source was as high as 120 ° C. This is due to the fact that the heat dissipation material contained in the resin is small and the heat insulating effect of the foamed cells present inside the molded body. It was found that the sample (ii) of this example can complement the low heat dissipation performance of the foamed molded product with a high-quality plated film.
  • the sample (ii) is placed on an aluminum metal plate heated to 80 ° C., and heated until the sample (ii) is uniformly at the same temperature as the aluminum plate.
  • the dimensional change due to the change was measured with a tool microscope.
  • the linear expansion coefficient of the substrate was obtained from the dimensional change, it was found that the linear expansion coefficient of the sample (ii) was as small as 2.3 ⁇ 10 ⁇ 5 .
  • the specific gravity of the sample (ii) was as light as 1.1 g / cm 3 .
  • foamed cells having a cell diameter of 5 ⁇ m or more could not be observed in the range of 100 ⁇ m depth from the surface of the molded body.
  • the foamed cells existed at a cell diameter of 10 to 50 ⁇ m in the interior of the molded body with a depth of 100 ⁇ m or more.
  • a molded body containing metal fine particles can be manufactured using a general-purpose molding machine, and the surface has a high environmental load.
  • a plating film could be formed on the molded body without any treatment.
  • a physical foaming agent it was possible to form a high-quality plated film with high adhesion and few appearance defects such as pinholes.
  • the molded body having the obtained plated film has a high-quality plated film with high adhesion on the surface, it is lightweight and reliable in a high-temperature and high-humidity environment while maintaining the performance of metal parts such as heat dissipation performance. It was a molded product with high properties.
  • Example 5 In this example, a resin pellet production apparatus similar to that of Example 4 was used, except that a resin pellet containing a block copolymer containing a hydrophilic segment was produced together with metal fine particles. Then, resin pellets containing metal fine particles and a block copolymer were prepared. In this example, a non-foamed molded body was molded using the pellets.
  • a polyether ester amide block copolymer (Pelestat NC6321 manufactured by Sanyo Chemical Industries, Ltd.) in which polyethylene oxide and a polyamide component are ester-bonded was used.
  • the hydrophilic segment in the polyetheresteramide block copolymer is polyethylene oxide, which is a polyether.
  • the resin filling rate into the mold of the molten resin is 100% with respect to the volume of the mold cavity Except having set, it shape
  • the formation process of the nickel phosphorus plating film was visually observed. After immersing the foamed molded article in the electroless nickel plating solution, it was confirmed that the plating film was formed on the entire surface within 10 minutes without film loss. Further, three samples were randomly extracted from the sample (iii) in a state where only the nickel phosphorus plating film was formed, that is, the sample (iii) before the electrolytic plating, and the nickel phosphorus plating film was visually observed. As a result, the number of pinholes per unit area (1 cm 2 ) was as small as 0 to 3.
  • the adhesion evaluation (peel test) of the sample (iii) on which the electrolytic plating film was formed was performed.
  • the adhesion of the plating film was 10 N / cm, and it was found that a plating film with high adhesion was formed.
  • a heat shock test was performed on the sample (iii) in the same manner as in Example 4. As a result, no swelling or peeling of the plating film occurred on the sample (iii).
  • the specific gravity of the sample (iv) which is a non-foamed material of this example was 1.4 g / cm 3 , which was larger than that of the sample (ii) of Example 4 which was a foamed material.
  • a molded body containing metal fine particles can be manufactured using a general-purpose molding machine, and the surface has a high environmental load.
  • a plating film could be formed on the molded body without any treatment.
  • resin pellets containing block copolymers as well as metal fine particles as the thermoplastic resin it was possible to form a high-quality plated film with high adhesion and few appearance defects such as pinholes.
  • the molded body having the obtained plated film is a non-foamed molded body, the specific gravity is large compared to the sample of Example 4, but it has a high-quality plated film with high adhesion on the surface, The molded product had high heat dissipation performance and high reliability under high temperature and high humidity.
  • Example 6 In this example, 20 plate-shaped non-foamed molded articles were molded under the same conditions as in Example 5 except that the resin pellets produced in Example 4 were used.
  • the adhesion evaluation (peel test) of the sample (v) on which the electrolytic plating film was formed was performed.
  • the adhesion of the plating film was 6 N / m, which was lower than that of the sample (i) of Example 4.
  • the sample (v) of this example was subjected to a heat shock test in the same manner as in Example 4.
  • the sample (v) of this example had some problems such as film swelling.
  • the thermal expansion coefficient was 2.5 ⁇ 10 ⁇ 5
  • the weight change after the water absorption test was 0.1%, confirming the same performance as the sample (ii) of Example 4.
  • the sample of this example which was a non-foamed material, had a specific gravity of 1.4, which was larger than that of the sample (ii) of Example 4 which was a foam.
  • a molded body containing metal fine particles can be manufactured using a general-purpose molding machine, and the surface has a high environmental load.
  • a plating film could be formed on the molded body without any treatment.
  • the quality of the plating film was slightly lowered.
  • the molded object which has the obtained plating film was a non-foaming molded object, although the heat dissipation performance, the thermal expansion coefficient, and the weight change after a water absorption test were equivalent to the sample of Example 4, it is Example 4.
  • the specific gravity was larger than that of the sample.
  • Comparative Example 2 This comparative example does not use resin pellets containing metal fine particles, but instead uses a plate shape under the same conditions as in Example 5 except that 6 nylon containing a carbon material which is a thermally conductive material is used as a thermoplastic resin. A non-foamed molded article was molded.
  • the nickel phosphorus plating film was tried to be formed on the molded body of this example by the same method as in Example 4. However, no plating reaction occurred and the nickel phosphorus plating film could not be formed. In this comparative example, since a molded body was not manufactured using resin pellets containing metal fine particles, there was no electroless plating catalyst in the molded body, and no plating reaction occurred.
  • Example 4 A heat dissipation performance test was performed on the sample of this comparative example having no plating film in the same manner as in Example 4. As a result, the maximum temperature reached by the LED light source was 82 ° C., and the same performance as the sample of Example 4 was confirmed. However, the sample of this comparative example had a specific gravity of 1.5, which was larger than the sample (ii) of Example 4. Moreover, in this comparative example, the filling pressure at the time of injection molding of a molded object was also high, and the moldability also deteriorated.
  • Example 7 In this embodiment, by using the injection molding apparatus 3000 shown in FIG. 11 and introducing the metal fine particles into the resin while performing foam molding, the nano-sized metal particles are dispersed in the vicinity of the surface, and the independent foam cell is inside.
  • a foam-plated molded body having the following was produced. Pressurized carbon dioxide as the physical foaming agent, 6 nylon (Toray CM1011G30) mixed with 30% glass fiber as the resin, and hexafluoroacetylacetonato palladium (II) palladium complex as an organometallic complex as the metal fine particles was used.
  • the injection molding apparatus 3000 used in this embodiment supplies pressurized carbon dioxide (hereinafter referred to as “mixed pressurized fluid” as needed) to the plasticizing cylinder 710 as a physical foaming agent containing metal fine particles.
  • the control device controls the operations of the physical foaming agent supply device 600, the plasticizing cylinder 710, the mold clamping unit 950, and the nozzle unit 750.
  • the physical foaming agent supply apparatus 600 prepares a mixed pressurized fluid by mixing pressurized carbon dioxide and a solution C in which metal fine particles are dissolved in a solvent, and supplies the prepared mixed pressurized fluid to the plasticizing cylinder 710. Supply.
  • a shutoff valve 36 that opens and closes by driving the air cylinder 12 is provided at the tip of the nozzle unit 750, and the inside of the nozzle unit 750 and the plasticizing cylinder 710 can be held at a high pressure.
  • a die 955 is in close contact with the tip of the nozzle unit 750, and molten resin is injected and filled from the nozzle unit 750 into a cavity 953 formed by the die 955.
  • the nozzle unit 750 is as described above. Further, in the nozzle unit of this embodiment, a temperature sensor 8 is embedded at a position facing the resin restraining portion 10 on the surface where the resin flow path 6 is formed.
  • the circular cross section of the resin flow path 6 of the nozzle unit 750 used in this example was ⁇ 6 mm, and the length L in the resin flow direction of the resin pressing portion 10 was 20 mm.
  • the configuration of the injection molding apparatus 3000 other than the nozzle unit 750 will be described.
  • the physical foaming agent supply device 600 is arbitrary as long as it is a mechanism that dissolves or disperses metal fine particles in pressurized carbon dioxide and introduces them into the plasticizing cylinder 710, but in this embodiment, pressurized carbon dioxide like a syringe is used. A supply device equipped with a syringe pump for sucking and feeding the liquid and the like was used.
  • the physical foaming agent supply device 600 of the present embodiment is a device that supplies a mixture of pressurized carbon dioxide and metal fine particles, and after sucking liquid carbon dioxide from a siphon type carbon dioxide cylinder 601, pressurizes the liquid carbon dioxide.
  • a carbon dioxide syringe pump 602 that supplies carbon and a solution syringe pump 612 that pressurizes and supplies the metal fine particle-containing liquid C are configured.
  • Each syringe pump 602, 612 is capable of pressure control and flow rate control.
  • a pipe connecting the liquid carbon dioxide cylinder 601 and the carbon dioxide syringe pump 602 and a pipe connecting the carbon dioxide syringe pump 602 and the plasticizing cylinder 710 are respectively provided with a suction air operated valve 604 and a supply air operated valve. 605 is disposed.
  • a pipe connecting the solution tank 611 and the solution syringe pump 612 and a pipe connecting the solution syringe pump 612 and the plasticizing cylinder 710 have a suction air operated valve 614 and a supply air operated valve 615, respectively. It is arranged.
  • the plasticizing cylinder 710 includes a screw 70 that is rotatably and reciprocally disposed inside, and an upstream seal mechanism S1 and a downstream seal mechanism S2 that are disposed inside.
  • the plasticized and melted molten resin flows from the right hand to the left hand in FIGS. Therefore, in the plasticizing cylinder 710 of this embodiment, the right hand in FIGS. 11 to 13 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
  • a rotation driving means such as a rotation motor for rotating the screw 70, a ball screw for moving the screw 70 forward and backward, a motor for driving the same, etc. Is connected to the moving means.
  • a rotation driving means such as a rotation motor for rotating the screw 70, a ball screw for moving the screw 70 forward and backward, a motor for driving the same, etc.
  • the moving means when viewed from the rear side of the plasticizing cylinder 710, when the screw 70 is rotated counterclockwise, the molten resin is forwardly rotated forward (nozzle part side) and rotated clockwise. And is configured to rotate in reverse.
  • the resin supply port 701 and the introduction port 702 are provided with a resin supply hopper 711 and an introduction valve 712, respectively, and the vent 703 has a fine connected pore having a pore shape of about 0.1 to 5 ⁇ m.
  • a sintered body 720 made of a body is installed, and a pressure gauge 721 and a back pressure valve 722 are further provided at the tip.
  • the introduction valve 712 is connected to the physical foaming agent supply device 600 described above.
  • a band heater (not shown) is disposed on the outer wall surface of the plasticizing cylinder 710, whereby the plasticizing cylinder 710 is heated and the thermoplastic resin is plasticized and melted. Further, sensors 75 and 76 for monitoring pressure and temperature are provided at a position facing the inlet 702 on the lower side surface of the plasticizing cylinder 710 and a position facing the vent 703, respectively.
  • thermoplastic resin is supplied from the resin supply port 701.
  • the thermoplastic resin is plasticized by a band heater to become a molten resin, and is sent downstream when the screw 70 rotates forward.
  • the molten resin sent to the vicinity of the inlet 702 is contact-kneaded with pressurized carbon dioxide containing the introduced metal fine particles under high pressure.
  • the gasified carbon dioxide is separated from the molten resin, and the gasified carbon dioxide is exhausted from the vent 703.
  • the molten resin sent further forward is pushed out to the tip of the screw 70, the pressure of the molten resin becomes a reaction force against the screw 70, and the screw 70 is moved back by the reaction force, and the molten resin is measured.
  • the plasticizing cylinder 710 in order from the upstream side, the plasticizing zone 71 that plasticizes the thermoplastic resin to form a molten resin, and the molten resin and the mixed pressurized fluid introduced from the inlet 702 are contact-kneaded under high pressure.
  • the high-pressure kneading zone 72 and the decompression zone 73 that exhausts carbon dioxide separated from the molten resin from the vent 703 are formed. Further, a repressurization zone 74 is provided downstream of the decompression zone 73. In the re-pressurization zone 74, the molten resin in which the physical foaming agent is dissolved is sent to the front of the screw and is measured.
  • the upstream side sealing mechanism S1 that temporarily blocks the communication state of these zones 71, 72, 73, respectively.
  • a downstream seal mechanism S2 is provided.
  • upstream sealing mechanisms S1 and downstream sealing mechanisms S2 can be used as long as they block communication between the zones 21, 22, and 23.
  • the screw 20 is rotated as described later. Accordingly, the one that cut off the communication between these zones was used.
  • the structures of the upstream seal mechanism S1 and the downstream seal mechanism S2 are similar to the upstream seal mechanism S1a and the downstream seal mechanism S2a provided in the pellet manufacturing apparatus 1000 shown in FIG. .
  • the portion of the screw 70 located in the decompression zone 73 has a shape in which the axis is thin and the flight is deep, as shown in FIG. With this screw shape, the decompression of the resin is promoted in the decompression zone 73, and excess physical foaming agent is discharged from the vent 703.
  • the sintered body 720 provided in the vent 703 functions as a filter, and selectively discharges only pressurized carbon dioxide to prevent the molten resin from being vented up.
  • the exhaust amount of pressurized carbon dioxide from the vent 703 is controlled by setting the back pressure valve 722 provided at the tip of the vent 703 to a predetermined pressure. Thereby, while surplus physical foaming agent is exhausted, the pressure of the decompression zone 73 can be controlled to be constant.
  • the amount of pressurized carbon dioxide introduced into the plasticizing cylinder 710 can be controlled stably every shot. Furthermore, vent-up at the time of exhausting carbon dioxide and unnecessary foaming of the resin molded body can be prevented.
  • the suction air operated valve 614 on the solution syringe pump 612 side is opened, and the solution C in which metal fine particles are dissolved in the solvent is sucked from the solution tank 611 through the filter 613 at room temperature, and the solution syringe pump 612 is sucked.
  • the solution C was pressurized to a predetermined pressure by controlling the pressure.
  • the fluorocarbon organic solvent perfluoropentylamine was used as the solvent of the solution C, and the solution C was pressurized to 10 MPa.
  • the carbon dioxide syringe pump 602 and the solution syringe pump 612 are switched from the pressure control to the flow rate control, and the pressurized carbon dioxide and the pressurized solution C are predetermined. It is made to flow so that it may become the flow rate ratio.
  • the pressurized carbon dioxide and the solution C are mixed in the pipe, and the system up to the introduction valve 712 for introducing the mixed pressurized fluid into the plasticizing cylinder 710 is pressurized.
  • the concentration of fine metal particles in the mixed pressurized fluid was controlled to about 10 to 20% of the saturation solubility.
  • the physical foaming agent supply device 600 of this embodiment can control the flow rate of pressurized carbon dioxide with high accuracy while being a simple system.
  • this system since it is necessary to supply a metal complex in a fixed quantity every shot, this system is useful because highly accurate flow rate management is required.
  • foam molding is performed using only a physical foaming agent without using a metal complex (for example, in the case of Example 8 to be described later), a surplus physical foaming agent that becomes insoluble in the resin is discharged from the resin before injection. However, it is not always necessary to control the amount of the introduced liquid for the physical foaming agent.
  • resin pellets are supplied from the resin supply hopper 711 to the plasticizing cylinder 710, and the plasticizing zone 71 is heated by a band heater (not shown) provided on the outer wall surface of the plasticizing zone 71.
  • the resin was rotated in the forward direction to plasticize and melt the resin.
  • the temperature of the plasticizing cylinder 710 was adjusted with a band heater (not shown).
  • the set temperatures of each zone were 240 to 260 ° C. in the plasticizing zone 71, 260 ° C. in the high pressure kneading zone 72, 220 to 230 ° C. in the decompression zone 73, and 260 ° C. in the re-pressurization zone 74.
  • the molten resin was caused to flow from the plasticizing zone 71 to the high-pressure kneading zone 72 by rotating the screw 70 forward. Then, in order to shut off the high-pressure kneading zone 72, the decompression zone 73, and the plasticizing zone 71, the rotation of the screw 70 is temporarily stopped 20 mm before (the mold side position) before the plasticizing measurement completion position, and then the screw 70 was rotated in reverse (rotation speed: 50 rpm). As a result, the upstream and downstream seal rings 40 and 60 are moved to the upstream side, and the upstream and downstream seal rings 40 and 60 and the reduced diameter portions 30 and 50 of the screw 70 are brought into close contact with each other. Was cut off from the decompression zone 73 and the plasticization zone 71 (see FIGS. 4 and 5).
  • an introduction valve 712 for introducing a pressurized flow is provided at the introduction port 702 of the plasticizing cylinder 710.
  • the introduction valve 712 has a fluid supply port 718 at the base end connected to the introduction port 702 of the plasticizing cylinder 710 and an introduction piston 717 inside. Therefore, by opening the fluid supply port 718 with the introduction piston 717, the mixed pressurized fluid is introduced into the plasticizing cylinder 710 from the physical foaming agent supply device 600 at an arbitrary timing.
  • the fluid supply port 718 is opened to introduce the mixed pressurized fluid in accordance with the driving of the syringe pumps 602 and 612.
  • the pressure inside the plasticizing cylinder 710 monitored by the pressure sensor 75 provided immediately below the introduction valve 712 was 4 MPa before the mixed pressurized fluid was introduced, and increased to a maximum of 8 MPa after the mixed pressurized fluid was introduced.
  • the metal complex contained in the high-pressure mixed fluid was dispersed in the high-temperature molten resin by continuing the reverse rotation for 2 seconds. At this time, the metal complex contained in a trace amount in the high-pressure mixed fluid is presumed to be reduced by heat to be metallized to form nanoparticles in the resin.
  • the pressure in the decompression zone 73 was controlled to a constant pressure by setting the back pressure valve 722 to a predetermined pressure and limiting the displacement of carbon dioxide gas.
  • the set pressure of the decompression zone 73 is arbitrary, but when the metal fine particles are dissolved in the pressurized carbon dioxide, they are discharged from the vent port 703 together with the pressurized carbon dioxide. A pressure is preferred. If the set pressure in the decompression zone 73 is too low, the pressure change when the mixed pressurized fluid is introduced becomes large, and the variation between shots becomes large.
  • the appropriate pressure of the decompression sone 73 is preferably 0.5 to 6 MPa. More preferably, it is 1 to 4 MPa. In this example, the back pressure valve 722 was set to 4 MPa, and the pressure in the decompression zone 73 was always controlled to 4 MPa.
  • the screw 70 is rotated forward (rotation direction for plasticizing the screw), or the screw 70
  • the high-pressure kneading zone 72 and the decompression zone 73 were made to communicate with each other by reducing the number of reverse rotations.
  • the number of reverse rotations of the screw 70 is decreased (the number of rotations: 30 rpm), and the upstream and downstream seal rings 40 and 60 are returned to their original downstream positions, and the upstream and downstream seals are returned.
  • the rings 40 and 60 and the reduced diameter portions 30 and 50 of the screw 70 were separated to form a gap G, and the high-pressure kneading zone 72 and the decompression zone 73 were communicated (see FIGS. 4 and 5). In this way, the pressure in the high-pressure kneading zone 72 was gradually reduced by reducing the reverse rotation speed of the screw 70. Next, the screw 70 was returned to the normal rotation, and the molten resin was flowed to the decompression zone 73.
  • excess physical foaming agent was gasified and separated from the molten resin, and then exhausted from the vent 703 of the plasticizing cylinder 710.
  • 4 MPa is below the critical pressure of the pressurization carbon dioxide which is a physical foaming agent.
  • the density can be increased.
  • concentration in resin is higher is suitable for refinement
  • the surplus physical foaming agent is phase-separated and discharged in the decompression zone 73, so that the excess physical foaming agent can be introduced and dissolved in the plasticizing cylinder.
  • the physical foaming agent can be dissolved in the resin at a concentration close to the saturation solubility. For this reason, in the method of the present embodiment, a good physical foamed molded article can be obtained at a relatively low pressure.
  • the screw 70 was rotated forward, and the molten resin was sent to the re-pressurization zone 74 of the plasticizing cylinder 710 and the nozzle unit 750, and plasticization measurement of the molten resin was started.
  • the physical foaming agent was discharged in accordance with the procedure described below simultaneously with the plasticization measurement.
  • the physical foaming agent was discharged with the shot-off valve 36 of the nozzle unit 750 closed.
  • a temperature controller not shown
  • water at a discharge pressure of 4 kg / cm 2 and 30 ° C. is circulated through the temperature control flow path 2 inside the piston 4, and the piston 4 and the resin restraining portion 10 are rapidly cooled. Water was passed until the detected temperature decreased from 260 ° C to 180 ° C.
  • the resin 9 in contact with the surface of the resin restraining portion 10 in the resin flow path 6 was solidified.
  • the piston 4 is driven to move the resin pressing portion 10 backward, so that the resin flow path 6 and the nozzle unit 750
  • the clearance gap D was provided between the resin restraining part 10 and the solidified resin 9.
  • the gap D is 2 mm.
  • the pressure in the resin flow path 6 was reduced by communicating with the outside of the nozzle unit 750, and the physical foaming agent in the resin was gasified and discharged. In this example, it took about 30 seconds to reduce the concentration of carbon dioxide in the resin in the flow front part staying in the nozzle unit 750.
  • the piston 4 was driven to move the resin restraining portion 10 in the direction of the resin flow path 6, and the resin flow path 6 and the outside of the nozzle unit 750 were shut off.
  • the resin holding part 10 and the solidified resin contacted each other and the gap D disappeared, and the state shown in FIG.
  • an AC power source was passed through the copper tube 1 wound around the piston 4, and the piston 4 and the resin restraining portion 10 were rapidly heated by high frequency induction heating.
  • the frequency of the AC power supply used was 200 kHz, and the output was 100 kW.
  • the temperature detected by the resin temperature sensor 8 reached 260 ° C., and the resin located in the resin flow path 6 was in a molten state.
  • shut-off valve 36 was opened and the mold 955 was injected and filled with resin.
  • foam cells were formed inside the molded body by a core back molding method in which the thickness of the mold cavity was increased by 2 to 3 mm to obtain a foam molded body.
  • the surface of the foamed molded body in this example was glossy, and swirl marks were not confirmed.
  • the specific gravity reduction rate when compared with a non-foamed molded body made of the same material was 25%.
  • the foam cell of the cross section of the foam molded body was observed by SEM.
  • the foam cell diameter averaged about 30 ⁇ m, and no bubble breakage was observed. Further, there was no significant difference in the foam cell diameter between the vicinity of the gate and the portion located at the flow end in the mold. From the above results, it was found that a molded body having a smooth surface and having fine and uniform foam cells inside can be formed by the method of this example.
  • a bright electrolytic plating film 20 ⁇ m, an electrolytic nickel plating film 20 ⁇ m, and an electrolytic chromium plating film 0.3 ⁇ m were sequentially formed on the electroless nickel phosphorous film to produce a decorative plated part.
  • the surface of the obtained decorative plated part was glossy, and a texture equivalent to that of a commercially available gloss plated part was obtained.
  • the foamed molded product of this example was cut in half and similarly electroless plated. As a result, no plating growth was observed on the cut surface. From this, it was found that the metal palladium which is the catalyst nucleus of plating segregates in the vicinity of the surface of the foam molded body, and the amount contained in the foam molded body is small. According to the study by the present inventors, it is known that palladium metal becomes nano to sub-nano ultrafine particles according to the molding method using pressurized carbon dioxide of this example. For this reason, it is presumed that fine particles (palladium metal) which are low molecules at the time of injection filling bleed out on the surface and are unevenly distributed on the surface of the foamed molded product.
  • the present inventors have found that in the foam injection molding using a physical foaming agent, the foaming gas is directed to the surface of the molded body, so that the palladium concentration on the surface of the molded body is increased and the plating reactivity is increased. From this, in the molding method of the present embodiment, the pressurized carbon dioxide functions as a foaming agent that forms foam cells inside the molded body, and as a gas that plays a role of pushing the dispersion solvent of metal fine particles and the surface of the molded body. Also works.
  • the surface of the decorative plated part produced in this example is glossy and has a texture equivalent to that of a commercially available brightly plated part.
  • the specific gravity of the decorative plated part was as light as 0.8 g / cm 3 . In the case of a plated part using a conventional ABS resin, the specific gravity is about 1.1 to 1.2 g / cm 3 , so the decorative plated part of this embodiment is about 30% lighter than the conventional plated part. It was found that
  • Example 8 pressurized nitrogen was used as the physical foaming agent, and the physical foaming agent was supplied to the plasticizing cylinder 710 from a nitrogen cylinder instead of the physical foaming agent supply device 600 provided with a syringe pump. That is, in this example, the amount of physical foaming agent introduced was not measured and supplied to the plasticizing cylinder 710. In this example, only the physical foaming agent was introduced into the resin, and the metal fine particles were not dissolved in the physical foaming agent. Otherwise, the same injection molding apparatus as in Example 7 was used, and foam injection molding was performed by the same method.
  • Example 7 the thermoplastic resin was plasticized and melted with a screw 710, and the molten resin was fluidized in the high-pressure kneading zone 72.
  • the screw 70 is rotated in the reverse direction, and the high-pressure kneading zone 72, the decompression zone 73, and the plasticizing zone 71 are shut off by the upstream and downstream sealing mechanisms S1, S2, and the screw 70 is removed.
  • the physical foaming agent was supplied to the high-pressure kneading zone 72. Nitrogen as a physical foaming agent was supplied from a nitrogen cylinder (not shown) having a pressure of 14 MPa when fully filled.
  • the physical foaming agent was reduced to a pressure reducing valve setting pressure of 10 MPa by a pressure reducing valve (not shown) between the nitrogen cylinder and the plasticizing cylinder 710 and then introduced into the plasticizing cylinder 710 from the introduction valve 712.
  • the opening time of the introduction valve 712 was increased to about 5 seconds, and a large amount of nitrogen gas was introduced into the plasticizing cylinder 710.
  • the pressure inside the high-pressure kneading zone 72 was increased from 4 MPa to 9 to 10 MPa.
  • the amount of physical foaming agent introduced was not measured.
  • the molten resin and the physical foaming agent that flowed to the decompression zone 73 were decompressed in the same manner as in Example 7, and excess physical foaming agent was exhausted from the vent 703. Further, similarly to the seventh embodiment, the molten resin is sent to the downstream re-pressurization zone 74 and plasticized and measured, and in parallel with the molten resin measurement, the physical foaming agent exhaust mechanism of the nozzle unit 750 is processed in the same manner as in the seventh embodiment. From 3, the physical foaming agent was discharged. Thereafter, in the same manner as in Example 7, the resin was injected and filled into a mold 955 and foamed by a core back molding method to obtain a foamed molded product.
  • the surface of the foamed molded product obtained in this example was glossy and no swirl marks were confirmed.
  • the specific gravity reduction rate when compared with the non-foamed molded body made of the same material was 28%.
  • the foam cell of the cross section of the foam molded body was observed by SEM.
  • the foam cell diameter was about 25 ⁇ m on average, and no bubble breakage was observed. Further, there was no significant difference in the foam cell diameter between the vicinity of the gate and the portion located at the flow end in the mold. From the above results, it was found that a foamed molded article having a smooth surface and having fine and uniform foamed cells can be formed by the method of this example.
  • nitrogen gas in a nitrogen cylinder was not pressurized as a physical foaming agent and introduced into the plasticizing cylinder 710 without strict flow rate control.
  • excess physical foaming agent is exhausted in the decompression zone 73, so that it is not necessary to strictly control the amount of introduction of the physical foaming agent into the plasticizing cylinder 710, and the introduction pressure is reduced. There is no need for high pressure. Therefore, it is not necessary to have a flow control device and a pressurizing device, and cost can be reduced.
  • the physical foaming agent was exhausted not only in the nozzle unit 750 but also in the vent 703 of the plasticizing cylinder 710.
  • the present invention is not limited to this, and exhaust may be performed only in the nozzle unit 750 in the injection molding apparatus 3000. In this case, the vent 703 of the plasticizing cylinder 710 becomes unnecessary, and the apparatus configuration can be simplified.
  • Example 9 foam molding was performed by replacing the tip of the plasticizing cylinder of a general-purpose physical foam injection molding apparatus with the nozzle unit of the present invention.
  • pressurized nitrogen was used as the physical foaming agent
  • polycarbonate mixed with 30% glass fiber was used as the resin.
  • the nozzle unit 760 used in this example is composed of a plasticizing cylinder (not shown) and a mold (general physical foam injection molding apparatus (J40ELIII-DK-MuCell, manufactured by Nippon Steel Works).
  • the resin flow path 6 is formed in the interior from the plasticizing cylinder to the mold.
  • the nozzle unit 760 includes a temperature control mechanism 7 that controls the temperature of the resin in the resin flow path 6 and a physical foaming agent discharge mechanism 745 that discharges the physical foaming agent from the resin in the resin flow path.
  • the flow path 6 of the nozzle unit 760 was cylindrical, and the circular cross section was ⁇ 4 mm.
  • the physical foaming agent discharge mechanism 745 has a function of controlling the flow rate and pressure of the physical foaming agent to be discharged.
  • the physical foaming agent discharge mechanism 745 is connected to the resin pressing part 10 that forms a part of the wall surface of the resin flow path 6 and the piston that retreats the resin pressing part 10 so as to widen the resin flow path 6. 4 and the piston 4 retreats, thereby having an exhaust passage 5 communicating with the resin passage 6.
  • a back pressure valve 743, a pressure reducing valve 742, and a flow rate control device 741 are provided downstream of the exhaust passage 5.
  • Pressure gauges 739 and 740 are provided for displaying the pressure controlled by the back pressure valve 743 and the pressure reducing valve 742.
  • the temperature control mechanism 7 of the present embodiment is composed of a temperature control channel 2 that circulates water provided inside the nozzle unit 760 and a copper tube 1 that is provided so as to be wound around the channel 6.
  • the temperature control flow path 2 is a cooling mechanism that cools the resin
  • the copper tube 1 is an electromagnetic induction heating mechanism that heats the resin by electromagnetic induction heating.
  • the resin was plasticized and melted in the plasticizing cylinder and the physical foaming agent was introduced into the resin by a general method using the general-purpose physical foam injection molding apparatus. Then, resin was sent to the screw front and the nozzle unit 760, and measurement of resin was started.
  • the introduction pressure of the physical foaming agent was 20 MPa, and the introduction amount of the physical foaming agent was 0.1 wt% with respect to the amount of resin for one shot.
  • the internal pressure of the resin during measurement was 18 MPa, and the pressure was controlled by the back pressure.
  • the piston 4 was driven to retract the resin pressing portion 10 so that the resin flow path 6 and the exhaust path 5 communicated. Thereby, a gap of 3 mm was provided between the resin holding part 10 and the solidified resin.
  • the pressure of nitrogen discharged through the exhaust passage 5 was first controlled to 3 MPa by the back pressure valve 743 and then controlled to 0.5 MPa by the pressure reducing valve 742. Thereafter, nitrogen was discharged while controlling the flow rate with a flow rate control device 741 provided further downstream. In this example, it took about 40 seconds to reduce the nitrogen concentration in the flow front portion of the molten resin staying in the sull unit 760.
  • the discharge method of the high-pressure physical foaming agent of the present embodiment since the discharge is performed while controlling the pressure and flow rate, there is an advantage that the discharge amount of the physical foaming agent from the tip of the nozzle unit does not easily vary.
  • the physical foaming agent in the flow front part is discharged by the physical foaming agent discharge mechanism 745 to reduce the physical foaming agent concentration in the flow front part, but the physical foaming agent dissolved in the flow front part is used. Was not completely discharged.
  • the piston 4 was driven to move the resin pressing portion 10 and the communication between the resin flow path 6 and the exhaust path 5 was blocked.
  • a high-frequency current was passed through the copper tube 1 embedded in the nozzle unit 760, and the resin in the resin flow path 6 was re-melted by high-frequency induction heating in the same manner as in Example 7.
  • the resin temperature rose to 300 ° C. in about 10 seconds.
  • shut-off valve 36 was opened, and a mold (not shown) was injected and filled with resin. After holding the pressure, foam cells were formed inside the molded body by a core back molding method in which the thickness of the mold cavity was increased by 1.5 to 3 mm to obtain a foam molded body.
  • the surface of the foamed molded product obtained in this example was glossy and no swirl marks were confirmed.
  • the specific gravity reduction rate when compared with a non-foamed molded body made of the same material was 25%.
  • the foam cell of the cross section of the foam molded body was observed by SEM.
  • the foam cell diameter averaged about 20 ⁇ m, and no bubble breakage was observed. Further, there was no significant difference in the foam cell diameter between the vicinity of the gate and the portion located at the flow end in the mold. From the above results, it was found that a molded body having a smooth surface and having fine and uniform foam cells inside can be formed by the method of this example.
  • the surface property of the foamed molded article was improved without completely discharging the physical foaming agent from the flow front part of the resin. This is because the amount of gas intervening in the gap between the mold and the surface of the molded body is reduced by reducing the concentration of the physical foaming agent in the flow front part, and it becomes possible to remelt the resin in the mold in the middle of molding. This is probably because of this.
  • foamed molded articles were formed using general-purpose thermoplastic resin pellets.
  • the blocks containing functional materials described in the first to third embodiments of the present invention It is also possible to form a foam molded article using copolymer resin pellets or resin pellets in which metal fine particles are dispersed in a thermoplastic resin.
  • the foam molded body molded in this comparative example had a swirl mark on the surface, and the surface roughness was remarkably deteriorated as compared with the foam molded products obtained in Examples 7 to 9.
  • the average foamed cell diameter inside the molded body was about 18 to 20 ⁇ m, and the specific gravity reduction rate was 28% when compared with the non-foamed molded body made of the same material. According to this comparative example, it is confirmed that the physical foaming agent is not discharged from the flow front part is slightly advantageous for reducing the foam cell diameter and improving the foaming ratio, but it is unavoidable that the surface property is deteriorated. It was.
  • block copolymer resin pellets containing the functional material of the present invention or resin pellets in which metal fine particles are dispersed in a thermoplastic resin
  • a general-purpose injection molding machine a molding machine such as an extrusion molding machine can be used.
  • a molding machine such as an extrusion molding machine
  • a foamed molded article is manufactured using a molding apparatus equipped with the nozzle unit of the present invention, the surface of the foamed molded article can be smoothed, and occurrence of poor appearance such as swirl marks can be suppressed.
  • the foamed molded product can be easily applied to decorative plating and the like, and high added value can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 汎用の射出成形機、押出成形機等の成形機を使用して、機能性材料によって表面改質された成形体を製造できる製造方法を提供する。 成形体の製造方法であって、親水性セグメントを含むブロック共重合体に機能性材料を混合することと、前記機能性材料が混合された前記ブロック共重合体を熱可塑性樹脂に混合することと、前記機能性材料及び前記ブロック共重合体が混合された熱可塑性樹脂を成形することを含む。

Description

成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置
 本発明は、成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法及びメッキ膜を有する発泡成形体に関する。更に、本発明は、発泡射出成形方法、ノズルユニット及び射出成形装置に関する。
 成形体に安価に金属膜を形成する方法として、無電解メッキ法が知られている。無電解メッキ法では、金属膜の成形体への密着性確保のため、六価クロム酸や過マンガン酸等の酸化剤を含むエッチング液を用いて成形体表面を粗化する前処理を行う。そのため、無電解メッキ法には、エッチング液により侵食されるABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)が主に用いられてきた。ABS樹脂は、ブタジエンゴム成分がエッチング液に選択的に侵食され、表面に凹凸が形成される。一方、ABS樹脂以外の樹脂、例えば、ポリカーボネート等では、無電解メッキを可能にするため、ABS樹脂やエラストマー等、エッチング液に選択的に酸化される成分を混合したメッキグレードが市販されている。しかし、このような無電解メッキ法の前処理は、六価クロム酸や過マンガン酸等を使用することから、環境負荷が高いという問題があった。
 一方、前処理であるエッチング工程を経ずに、成形体に金属膜を形成する方法として、超臨界二酸化炭素等の加圧二酸化炭素を用いた成形体の表面改質法の利用が提案されている。本発明者らは、加圧二酸化炭素を用いた表面改質処理を射出成形と同時に行い、成形体の表面に無電解メッキの触媒核となるパラジウム等の金属微粒子を分散させる方法を提案している(特許文献1~3)。この方法では、金属微粒子を含む成形体の表面に無電解メッキを施すことにより、エッチング工程を経ずに成形体表面にメッキ膜を形成できる。
 また、特許文献4では、超臨界二酸化炭素等の加圧二酸化炭素を用いた成形体の表面改質法において、金属微粒子の代わりに他の機能性材料を用い、成形体の表面を改質して高機能化させることが提案されている。
 更に、近年、超臨界状態の窒素や二酸化炭素の物理発泡剤を用いた発泡射出成形方法が研究及び実用化されている(例えば、特許文献5)。この方法は、例えば、以下のような手法である。まず、密閉された可塑化シリンダにおいて、可塑化溶融した樹脂に物理発泡剤を接触させ相溶させる。次に、可塑化シリンダ内を物理発泡剤が超臨界状態を維持できる程度に高圧に維持しつつ、物理発泡剤の溶解した溶融樹脂を計量し、金型内に射出充填する。射出充填時、溶融樹脂に相溶していた超臨界流体は急減圧され、ガス化する。溶融樹脂が固化することで気泡が成形体内部に形成される。
 超臨界流体を用いた発泡射出成形は、化学発泡剤を用いた発泡成形と比較して、クリーンであり発泡剤の残渣が残らない。また、発泡セル径が微細化するため成形体の機械強度が低下しにくい。更に、高圧の物理発泡剤は溶融樹脂の可塑剤として機能するため、射出充填時の樹脂粘度が低下し流動性が向上する、発泡時のガス圧力により樹脂が固化した際の収縮によるヒケが抑制される、発泡時に溶融樹脂内部の潜熱を奪うことにより冷却歪が小さくなり反りが小さくなる、といった利点を有する。
 図15に示すように、一般的な超臨界流体等の物理発泡剤を利用した射出成形装置4000は、窒素や二酸化炭素の物理発泡剤を供給するボンベ922、物理発泡剤を昇圧し送り量を制御する高圧装置918、樹脂を可塑化溶融し、該樹脂と物理発泡剤を混合する可塑化シリンダ907を備える。物理発泡剤はボンベ922から高圧装置918に送られ、高圧装置918で昇圧された後、注入調整機構917を経て、間欠式に開閉される導入バルブ920より可塑化シリンダ907に導入される。可塑化シリンダ907への物理発泡剤の導入量は、例えば、下記の方法により調整される。物理発泡剤は、常時、高圧装置918と注入調整機構917の間を循環している。その循環系の圧力は、可塑化シリンダ907内部の圧力より高く、可塑化シリンダ907内部の圧力に対して一定の差圧を保持している。循環系の流量は、高圧装置918内に組み込まれたオリフィス等により一定に制御される。そして、導入バルブ920の開閉により、物理発泡剤が上述の循環系から取り出され、可塑化シリンダ907内に導入される。物理発泡剤の導入量は、上述の循環系の流量等に基づき、導入バルブ920の開放時間等により制御される。
 このように、従来の射出成形装置4000では、可塑化シリンダ907に供給する物理発泡剤の流量を一定にするため、高圧装置918のシステムは複雑であった。また、安定な物理発泡剤の流量を得るため、導入圧力の何倍かの圧力(例えば30~40MPa)の物理発泡剤を用意する必要があった。そのため、射出成形装置4000は、高い能力のポンプを必要とし、不経済であった。
 次に、射出成形装置4000の可塑化シリンダ907について説明する。図15に示すように、可塑化シリンダ907は、その内部に回転及び進退退自在に設けられたスクリュ921と、その先端に設けられたシャットオフバルブ915と、樹脂ペレットが投入される投入口919とを備える。可塑化シリンダ907の先端には、図示しない金型が密着して設けられる。更に、可塑化シリンダ907は、投入口919から投入された樹脂を可塑化溶融する可塑化溶融ゾーン925と、可塑化溶融された樹脂と物理発泡剤を混練する物理発泡剤混練ゾーン926と、物理発泡剤の溶解した溶融樹脂の計量が行われる再昇圧ゾーン927とを有する。上述の物理発泡剤が導入される導入バルブ920は、物理発泡剤混練ゾーン926に設けられる。また、可塑化溶融ゾーン925と物理発泡剤混練ゾーン926との間には、高圧の物理発泡剤が、図15における右手方向に逆流しないように半割のシールリン924等によるシール機構が設けられる。
 可塑化シリンダ907に導入された物理発泡剤は、例えば、以下に説明する手法により樹脂と混練され、発泡射出成形が行われる。まず、投入口919より供給された樹脂ペレットを可塑化溶融ゾーン925にて可塑化溶融する。次に、物理発泡剤混練ゾーン926にて、導入バルブ920から導入された物理発泡剤をスクリュの回転による剪断により、溶融した樹脂に均一相溶させる。次に、再昇圧ゾーン927にて、圧力を背圧にて調整しつつ、スクリュ921前方に物理発泡剤の溶解した溶融樹脂を送りだし計量する。計量時は、スクリュ921は、図15における右手方向に後退し、計量位置にて停止して所定量の溶融樹脂をスクリュ921前方に滞留させる。その後、シャットオフバルブ915を開き、スクリュを前方(図15における左手方向)に速度を制御しながら移動し、物理発泡剤が溶解した樹脂を金型(不図示)内に射出充填する。金型内にて急減圧された物理発泡剤は溶融樹脂中で体積膨脹し気泡を形成し、樹脂が固化することにより成形品内部に数ミクロンから百ミクロン程度の微細な独立気泡が形成される。
 上述の発泡射出成形では、射出充填時に、粘度が低く低分子である物理発泡剤は溶融樹脂表面から一部分離及びガス化し、溶融樹脂よりも先に金型内に放出される。金型内に射出された溶融樹脂は、まずフローフロントと呼ばれる樹脂流動の先端部を流れる樹脂が金型壁面で冷却され成形体のスキン層を形成する。ガス化した物理発泡剤の一部は溶融樹脂のスキン層に再溶解するが、成形体のスキン層は、金型表面に接して瞬時に冷却固化するため粘度が高く、ガスを再溶解しにくい。そのため、再溶解しなかったガスは金型壁面と成形体のスキン層の隙間に残存して成形体表面に凹みを形成する。表面の凹みはスワルマークと呼ばれ、発泡成形体の外観不良として問題となっていた。
 一方、本発明者らは、上述のように、物理発泡と同時にメッキの触媒核となる金属微粒子を成形品表面に偏析させ、環境負荷の大きい化学薬品を用いることなくメッキを施せる発泡メッキ成形体の製造方法を提案している(例えば、特許文献4)。この方法においても、メッキ触媒核の分散した発泡成形体の表面を平滑に製造することが課題となっていた。
 発泡成形体の表面を平滑とし、外観不良の発生を防ぐ手法として、金型の改良が提案されている。例えば、特許文献6では、金型表面を断熱化してスワルマークを回避する方法が提案されている。この方法では、金型表面を熱伝導率の低い母材で形成し断熱化することにより、スキン層の成長を抑制し、ガスの再溶解を促すことで、スワルマークを回避する。
 その他の金型の改良としては、射出充填時に金型表面の温度を高くしておき、スキン層の成長を制御する手法も提案されている。この手法では、スワルマークをスキン層に再溶融させて消滅させた後、金型を冷却し成形体を固化させる。これにより、内部に発泡層を有し、且つ表面が平滑な発泡成形体が形成できる。金型表面の加熱方法として、スチームを温調流路に流す方法、ヒーターを埋め込む方法、電磁誘導加熱法でキャビティを加熱する方法等が検討されている。
特開2005-280362公報 特開2010-30106公報 特許第4160623号公報 特開2007-130982公報 特許第2625576号公報 特許第3845191号公報
 ところで、特許文献1~3に記載される、前処理であるエッチング工程を経ずに成形体に金属膜を形成する方法は、専用の成形機を必要とする。そのため、特許文献1~3で提案される方法では、環境負荷が高いエッチング工程を経ずに無電解メッキを施せる成形体を、汎用の成形機を用いて成形することができない。汎用の成形機を使用できないことが、特許文献1~3の方法の普及の妨げになっていると考えられる。
 また、特許文献1~3の方法では、成形体内のパラジウムを触媒として、成形体内部から成形体の表面に向かってメッキ膜が成長する。このとき、パラジウムが表面近傍に偏在していないと、メッキ液は触媒を求めより深く浸透し、成形体内部の深い箇所からメッキ膜が成長する。これにより、成形体内部で樹脂が引き伸ばされ、脆性破壊が発生し、メッキ膜の密着力が低下する。また、成形体の表面近傍のパラジウム密度が低下すると、均一なメッキ膜が形成できず、メッキムラやピンホール等といった外観不良の原因にもなる。
 特許文献4においても、成形体の表面を高機能化するためには、機能性材料は成形体の表面に偏在している方が好ましい。
 本発明は、上記第1の課題を解決するものであり、環境負荷が高いエッチング工程を経ずに無電解メッキを施せる成形体を、汎用の成形機を用いて製造する方法を提供する。また、金属微粒子等の機能性材料を含む成形体の製造方法であって、機能性材料を効率的に成形体表面近傍に配置させ、成形体の表面改質を促進する製造方法を提供する。
 一方、特許文献6に開示されている、発泡射出成形方法における成形体の外観不良の発生を防ぐ手法は、断熱層をセラミックや樹脂等強度の低い膜で形成するため金型の耐久性が低くなる。更に、特許文献6の手法は、スキン層の成長を抑制できるが、スキン層の成長スピードや粘度を大面積で均一に制御することは困難であり、適用範囲が狭いという課題があった。また、射出充填時に金型表面の温度を高くする手法は、初期の設備投資が必要な上、金型毎のコストも高いという問題があった。
 このため、金型の改良は実際には採用されず、成形物の外観不良は塗装によって修正されることが多かった。発泡成形体の表面を平滑にし、外観不良の発生を抑制する手法や装置の開発は強く望まれていたが、本質的な解決策がなく、物理発泡射出成形法の普及の妨げとなっていた。
 本発明は、上記第2の課題を克服し、発泡成形体の表面を平滑にし、外観不良の発生を抑制できる物理発泡射出成形法、それに用いるノズルユニット及び該ノズルユニットを有する射出成形装置を提供することを目的とする。
 本発明の第1の態様に従えば、成形体の製造方法であって、親水性セグメントを含むブロック共重合体に機能性材料を混合することと、前記機能性材料が混合された前記ブロック共重合体を熱可塑性樹脂に混合することと、前記機能性材料及び前記ブロック共重合体が混合された熱可塑性樹脂を成形することを含む成形体の製造方法が提供される。
 前記ブロック共重合体への前記機能性材料の混合は、前記機能性材料が溶解又は分散した加圧二酸化炭素を前記ブロック共重合体に接触させることにより行ってもよい。また、前記ブロック共重合体への機能性材料の混合は、前記ブロック共重合体を可塑化溶融することと、前記可塑化溶融したブロック共重合体に、前記機能性材料が溶解した加圧二酸化炭素を混合することと、前記機能性材料を混合した前記ブロック共重合体を押出成形した後、粉砕し、ペレットを得ることを含んでもよい。更に、成形体の製造方法は、前記成形体の表面に、前記ブロック共重合体が溶解する溶液を接触させ、前記成形体が含有する前記ブロック共重合体の一部を溶解し、除去することを含んでもよい。
 前記ブロック共重合体の親水性セグメントは、ポリエーテルであってもよく、更にポリエチレンオキシドであってもよい。また、前記熱可塑性樹脂は、アミド基を含んでもよく、更に6ナイロン又は6,6ナイロンであってもよい。更に、前記熱可塑性樹脂に、熱伝導性材料が分散されていてもよい。
 前記熱可塑性樹脂を成形することは、射出成形又は押出成形により成形することであってもよい。また、前記熱可塑性樹脂を成形することは、前記熱可塑性樹脂を可塑化溶融することと、可塑化溶融した前記熱可塑性樹脂に、加圧二酸化炭素又は加圧窒素の少なくとも一方の物理発泡剤を混合することと、前記物理発泡剤を含む前記熱可塑性樹脂を発泡させて発泡成形体を成形することを含んでもよい。
 前記機能性材料は、金属微粒子であってもよく、更にパラジウム又は銀であってもよい。
 本発明の第2の態様に従えば、メッキ膜を有する成形体の製造方法であって、第1の態様の成形体の製造方法により成形体を製造することと、前記成形体の表面に無電解メッキ液を接触させ、メッキ膜を形成するとこを含むメッキ膜を有する成形体の製造方法が提供される。
 前記メッキ膜は、ニッケルを含んでもよい。
 本発明の第3の態様に従えば、樹脂ペレットの製造方法であって、親水性セグメントを含むブロック共重合体を可塑化溶融することと、前記可塑化溶融したブロック共重合体に、機能性材料が溶解した加圧二酸化炭素を混合することと、前記機能性材料を混合した前記ブロック共重合体を押出成形した後、粉砕することを含む樹脂ペレットの製造方法が提供される。
 前記機能性材料は、金属微粒子であってもよく、更に、銀又はパラジウムを含んでもよい。
 前記ブロック共重合体の親水性セグメントは、ポリエーテルであってもよく、更に、ポリエチレンオキシドであってもよい。
 本発明の第4の態様に従えば、メッキ膜を有する成形体の製造方法であって、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用意することと、前記樹脂ペレットを可塑化溶融して成形体を成形することと、前記成形体に無電解メッキ液を接触させて、前記成形体の表面にメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法が提供される。
 前記成形体を成形することは、前記可塑化溶融した樹脂ペレットに、加圧二酸化炭素又は加圧窒素の少なくとも一方の物理発泡剤を混合することと、前記物理発泡剤を含む前記樹脂ペレットを発泡させて発泡成形体を成形することを含んでもよい。
 本発明の第5の態様に従えば、樹脂ペレットの製造方法であって、熱可塑性樹脂を可塑化溶融することと、前記可塑化溶融した熱可塑性樹脂に、金属微粒子が溶解した加圧二酸化炭素を混合することと、前記金属微粒子を混合した熱可塑性樹脂を押出成形した後、粉砕することを含む樹脂ペレットの製造方法が提供される。
 本発明の第6の態様に従えば、第4の態様のメッキ膜を有する成形体の製造方法によって製造されたメッキ膜を有する発泡成形体が提供される。
 前記メッキ膜を有する発泡成形体は、内部に独立した発泡セルを有する発泡成形体と、該発泡成形体の表面に形成されたメッキ膜を有し、前記発泡成形体のメッキ膜が形成された表面から10μm以内の深さには、前記メッキ膜と同じ種類の金属からなる金属領域が形成されており、前記発泡成形体のメッキ膜が形成された表面から前記金属領域が存在する範囲には、前記発泡セルが実質的に存在しなくてもよい。また、比重が1.2g/cm以下であってもよく、23℃の水中に24時間浸漬した後の吸水による重量変化が、0.5%以下であってもよい。前記発泡成形体が、アミド基を含む熱可塑性樹脂から形成されてもよく、更に6ナイロン又は6,6ナイロンから形成されてもよい。前記メッキ膜は、ニッケルを含んでもよく、前記金属微粒子は、パラジウムを含んでよもよい。また、前記発泡成形体の内部に熱伝導性材料が分散されていてもよい。
 本発明の第7の態様に従えば、発泡射出成形方法であって、可塑化シリンダと、金型と、前記可塑化シリンダと前記金型の間に位置するノズルユニットを有する射出成形装置を用いることと、前記可塑化シリンダにおいて、樹脂を可塑化溶融し、該可塑化溶融した樹脂に物理発泡剤を混合することと、前記ノズルユニットにおいて、前記物理発泡剤が混合した樹脂を冷却することと、前記ノズルユニットにおいて、前記冷却した樹脂から前記物理発泡剤を排出することと、前記ノズルユニットにおいて、前記物理発泡剤を排出した樹脂を加熱することと、前記加熱した樹脂を前記金型内に射出充填し、発泡成形体を得ることを含む発泡射出成形方法が提供される。
 前記樹脂から前記物理発泡剤を排出することは、前記樹脂のフローフロント部から前記物理発泡剤を排出することであってもよい。前記ノズルユニットは、前記可塑化シリンダから前記金型へ続く樹脂流路が内部に形成されており、前記樹脂からの前記物理発泡剤の排出の際は、前記樹脂流路において、前記冷却した樹脂と前記樹脂流路を形成する壁面との間に隙間を設けてもよい。前記樹脂の加熱は、電磁誘導加熱法により行なわれてもよい。前記物理発泡剤は、加圧窒素又は加圧二酸化炭素であってもよい。前記樹脂への前記物理発泡剤の混合は、金属微粒子を前記物理発泡剤に溶解又は分散し、前記金属微粒子を前記物理発泡剤と共に前記樹脂に混合することを含んでもよい。
 本発明の第8の態様に従えば、メッキ膜を有する成形体の製造方法であって、第7の態様の発泡射出成形方法により、発泡成形体を成形することと、前記発泡成形体に無電解メッキ液を接触させ、前記発泡成形体の表面にメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法が提供される。
 前記メッキ膜は、ニッケルを含んでもよい。
 本発明の第9の態様に従えば、ノズルユニットであって、樹脂を可塑化溶融し、該樹脂に物理発泡剤を導入する可塑化シリンダと、前記可塑化溶融され物理発泡剤が導入された樹脂が射出充填される金型とを有する射出成形装置において用いられ、前記ノズルユニットは、前記可塑化シリンダと前記金型との間に位置し、前記可塑化シリンダから前記金型へ続く樹脂流路が内部に形成され、 前記樹脂流路内の樹脂の温度制御を行う温度制御機構と、前記樹脂流路内の樹脂から、前記物理発泡剤を排出する物理発泡剤排出機構とを備えるノズルユニットが提供される。
 前記樹脂流路を形成する壁面の一部は、前記樹脂流路の断面積を広げるように駆動可能に設けられていてもよい。前記ノズルユニットの前記樹脂流路の断面積は、前記可塑化シリンダの断面積より小さくてもよい。前記温度制御機構は、電磁誘導加熱機構を含んでもよい。
 本発明の第10の態様に従えば、第9の態様のノズルユニットを有する射出成形装置が提供される。
 本発明の成形体の製造方法は、汎用の射出成形機、押出成形機等の成形機を使用して、機能性材料によって表面改質された成形体を製造できる。したがって、新たな成形機を導入する等の設備投資をする必要がない。また、機能性材料を成形体の表面近傍に偏在させることができるので、成形体の表面改質に使用する機能性材料の量を低減でき、材料コストを削減することができる。更に、本発明の成形体の製造方法は、汎用の射出成形機、押出成形機等の成形機を使用して、金属微粒子を含む成形体を製造することができる。金属微粒子を含む成形体は、無電解メッキを行うために、成形体表面に触媒を付与する必要がない。したがって、触媒付与のために環境負荷が高い薬品を用いた表面処理を行う必要がない。
 本発明のノズルユニットを備える成形装置を用いて発泡成形体を製造すると、発泡成形体の表面を平滑にし、スワルマーク等の外観不良の発生を抑制できる。外観不良の問題を解決することで、発泡成形体は装飾メッキ等に容易に適用できるようになり、高付加価値化が図れる。
第1の実施形態の成形体の製造方法を説明するフローチャートである。 実施例1で使用した樹脂ペレット製造装置の概略図である。 図2に示す樹脂ペレット製造装置の可塑化シリンダのベント付近の断面図であり、(a)はベントと、ベントアップ防止カバーの排気穴とが対向した状態の図であり、(b)は対向していない状態の図である。 図2に示す樹脂ペレット製造装置の可塑化シリンダの概略断面図であり、可塑化ゾーン、高圧混練ゾーン及び減圧ゾーンが連通した状態を示す図である。 図2に示す樹脂ペレット製造装置の可塑化シリンダの概略断面図であり、可塑化ゾーン、高圧混練ゾーン及び減圧ゾーンの連通が遮断された状態を示す図である。 第2の実施形態の製造方法を説明するフローチャートである。 実施例4で使用した樹脂ペレット製造装置の概略図である。 第4の実施形態の発泡成形体の表面近傍の断面SEM写真である。 第4の実施形態の発泡成形体の発泡成形体の樹脂内部の断面SEM写真である。 第5の実施形態の発泡射出成形方法を示すフローチャートである。 第5の実施形態で使用する射出成形装置の概略図である。 (a)は、第5の実施形態で使用するノズルユニットの概略図であり、(b)は、該概略図のA-A’断面における断面図である。 図12に示すノズルユニットの一部拡大図であり、(a)は、樹脂流路とノズルユニットの外部とが遮断された状態を示す図であり、(b)は連通された状態を示す図である。 実施例9で使用したノズルユニットの概略図である。 従来の射出成形装置の概略図である。
[第1の実施形態]
 本発明の実施形態として、図1に示す成形体の製造方法を説明する。本実施形態は、親水性セグメントを含むブロック共重合体(以下、適宜「ブロック共重合体」と記載する)に機能性材料を混合すること(ステップS1)と、機能性材料が混合されたブロック共重合体を熱可塑性樹脂に混合することと(ステップS2)、ブロック共重合体が混合された熱可塑性樹脂を成形すること(ステップS3)を含む。以下、各ステップについて順に説明する。
 まず、親水性セグメントを含むブロック共重合体に機能性材料を混合する(ステップS1)。本実施形態で使用するブロック共重合体は、親水性セグメントと、親水性セグメントとは異なる他のセグメント(以下、適宜「他のセグメント」と記載する)を有する。このブロック共重合体は、ステップS3の熱可塑性樹脂の成形過程、又は成形後において成形体表面に向って機能性材料を伴って移動し、機能性材料と共に成形体の表面近傍に偏析する傾向がある。
 本実施形態のブロック共重合体は、成形体の表面近傍に偏析するポリマーであれば任意であるが、親水性セグメントには、アニオン性セグメント、カチオン性セグメント、ノニオン性セグメントを用いることができる。アニオン性セグメントとしては、ポリスチレンスルホン酸系、カチオン性セグメントとしては、四級アンモニウム塩基含有アクリレート重合体系、ノニオン性セグメントとしては、ポリエーテルエステルアミド系、ポリエチレンオキシド-エピクロルヒドリン系、ポリエーテルエステル系が挙げられる。
 本実施形態のブロック共重合体としては、成形体の耐熱性を確保しやすいことから、親水性セグメントがポリエーテル構造を有するノニオン性セグメントであることが好ましい。ポリエーテル構造としては、例えばアルキレンの炭素数が2~4のオキシアルキレン基であるエチレン基、プロピレン基、トリメチレン基、テトラメチレン基等のオキシアルキレン基、ポリエーテルジオール、ポリエーテルジアミン、及びこれらの変性物、並びにポリエーテル含有親水性ポリマーが含まれ、特にポリエチレンオキシドが好ましい。
 本実施形態のブロック共重合体の他のセグメントは、親水性セグメントより疎水性のセグメントであれば任意であり、目的にあった種類を選択できる。例えば、他のセグメントに、ステップS2において混合される熱可塑性樹脂と相溶する材料を用いると、熱可塑性樹脂との混合時及び、成形後の成形体内部での相分離を抑制できるという利点がある。一方、他のセグメントに熱可塑性樹脂と非相溶の材料を用いると、ブロック共重合体は成形体表面にブリードアウトしようと移動する働きが強くなり、成形体の表面近傍に偏析しやすいという利点がある。熱可塑性樹脂と相溶する材料としては、熱可塑性樹脂と同じ構造又は、類似の構造を有する樹脂が好ましい。例えば、熱可塑性樹脂にナイロン等のポリアミド樹脂を用いる場合には、他のセグメントはポリアミド成分を含むナイロン等が好ましい。また、熱可塑性樹脂にポリプロピレン等のポリオレフィン樹脂を用いる場合には、他のセグメントはポリオレフィン成分を含むことが好ましい。反対に、熱可塑性樹脂と非相溶の材料としては、熱可塑性樹脂と異なる構造や、異なる性質を有する樹脂が好ましい。例えば、熱可塑性樹脂が疎水性のポリプロピレン等のポリオレフィンであれは、他のセグメントには比較的親水性の高いナイロン等を用いることができる。
 本実施形態のブロック共重合体は、市販品を用いてもよい。本実施形態のブロック共重合体は、成形体の表面近傍に偏析する(配向する)という性質から、樹脂練りこみ型の高分子型帯電防止剤として市販されている場合がある。例えば、三洋化成工業製ペレスタット(登録商標)、ペレクトロン(登録商標)等を本実施形態のブロック共重合体として用いることができる。三洋化成工業製ペレスタットNC6321は、親水性セグメントのポリエーテルと、他のセグメントのナイロンをエステル結合でコポリマー化したブロック共重合体である。
 本実施形態の機能性材料は、成形体の表面を改質するものであれば任意であり、目的の応じて種々な材料を選択できる。例えば、機能性材料として金属微粒子を用いた場合、これらの金属微粒子を無電解メッキの触媒として、成形体の表面にメッキ膜を形成することができる。この場合、金属微粒子としては、Pd、Ni、Pt、Cu等の金属微粒子、金属錯体、金属アルコキシド等の金属酸化物の前駆体を用いることが好ましい。金属錯体の種類は任意であるが、より具体的には、ヘキサフルオロアセチルアセトナトパラジウム(II)、白金ジメチル(シクロオクタジエン)、ビス(シクロペンタジエニル)ニッケル、ビス(アセチルアセトネート)パラジウム等が好ましい。また、後述するように、金属微粒子を加圧二酸化炭素に溶解する場合には、加圧二酸化炭素への溶解性が高い金属錯体を用いることが好ましい。
 機能性材料として、Agを含む金属微粒子を用いれば、成形体表面を抗菌化でき、また電気伝導性や帯電防止効果を向上することができる。具体的には、ヘプタフルオロ酪酸銀塩(I)等が挙げられる。更に、機能性材料として染料を用いた場合には、熱可塑性樹脂の表面あるいは内部を染色できる。機能性材料としてポリアルキルグリコールを用いた場合には、熱可塑性樹脂を親水化処理することができる。機能性材料としてシリコンオイルやフッソ系化合物を用いた場合には、熱可塑性樹脂を疎水化処理することができる。
 ブロック共重合体に機能性材料を混合する方法は任意である。例えば、エタノール等の溶媒に機能性材料を溶解して溶液を調製し、その調製した溶液にブロック共重合体を浸漬し、ブロック共重合体へ機能性材料を含浸させてもよい。ブロック共重合体を溶解させる溶媒としては水、イソプロピルアルコール、ヘキサン、アセトン等の水系溶媒や有機溶媒を用いてもよい。
 ブロック共重合体への機能性材料の混合は、機能性材料が溶解又は分散した加圧二酸化炭素(以下、必要により「混合加圧流体」と記載する)をブロック共重合体に接触させることにより行うことが好ましい。このとき、加圧二酸化炭素は、機能性材料の溶媒であると共に、ブロック共重合体の可塑剤としても作用し、機能性材料のブロック共重合体への均一な分散を促進し、例えば、機能性材料に金属微粒子を用いた場合には、金属微粒子の粒径を著しく小さくすることができる。機能性材料が凝集せず均一に分散することで、ブロック共重合体に伴って成形体表面へより移動し易くなると考えられる。
 ブロック共重合体への機能性材料の混合は、例えば、押出成形機の可塑化シリンダ内でブロック共重合体を可塑化溶融し、その可塑化シリンダへ機能性材料が溶解した加圧二酸化炭素(混合加圧流体)を導入し、可塑化シリンダ内でブロック共重合体と、機能性材料が溶解した加圧二酸化炭素とを接触させる。そして、機能性材料を混合したブロック共重合体を押出成形した後、粉砕し、機能性材料の混合したブロック共重合体から形成される樹脂ペレットを得ても良い。本実施形態のブロック共重合体は、通常の低分子の界面活性剤とは異なりポリマーであるので、可塑化溶融後に成形可能な高い粘度を有し、このように押出成形し、ペレット化することができる。また、加圧二酸化炭素を用いる他の方法として、バッチ処理が挙げられる。例えば、高圧容器内において、ブロック共重合体に、機能性材料が溶解した加圧二酸化炭素(混合加圧流体)を接触させ、ブロック共重合体に機能性樹脂を浸透させてもよい。
 ここで、「樹脂ペレット」とは、樹脂を加工し易いように小さな塊(ペレット)としたものを意味し、サイズ及び形状はペレットの用途により様々であるが、例えば、3~5mm程度の粒子状、円柱状の樹脂の小片である。
 成形体の製造方法にペレットを製造する工程を含むと、まず、加熱下においてブロック共重合体に機能性材料を分散して樹脂ペレットを製造し、更に、ステップS2において、熱可塑性樹脂と、樹脂ペレットとを混合、加熱、溶融して成形体を成形することとなる。通常、このような長い熱履歴は機能性材料を凝集させ、成形体の表面改質に悪影響を与える恐れがある。しかし、上述のように、本実施形態では、ペレットの製造において加圧二酸化炭素を用いることで機能性材料の凝集が抑制され、更に、ブロック共重合体の働きにより、機能性材料による成形体の表面改質が促進される。これにより、本実施形態の成形体の製造方法において、樹脂ペレットを製造する工程を含んでも、成形体の機能に悪影響がない。
 ブロック共重合体への機能性材料の混合において用いる加圧二酸化炭素としては、液体状態、ガス状態、又は超臨界状態の加圧二酸化炭素を用いることができる。これらの加圧二酸化炭素は、人体に無害であり、また溶融したブロック共重合体への拡散性に優れ、しかも溶融したブロック共重合体から容易に除去可能であり、更に、ブロック共重合体の可塑剤としても機能するからである。可塑化シリンダへ導入する加圧二酸化炭素の圧力、温度は任意であるが、密度が高く安定であることから液体二酸化炭素もしくは超臨界二酸化炭素を用いることが好ましい。加圧二酸化炭素の温度は5℃~50℃の範囲が好ましい。加圧二酸化炭素の温度は、低いほど高密度となり溶媒効果が高くなるので好ましいが、冷却制御が容易であるという観点から5℃以上が好ましい。また、加圧二酸化炭素の温度が高くなると密度が低くなり液送が不安定になる虞があるので、安定に液送するという観点から、50℃以下が好ましい。加圧二酸化炭素の圧力は、4~25MPaの範囲が望ましい。圧力が低いと溶媒効果が発現しにくくなるので、適度な溶媒効果を得るという観点から、4MPa以上が好ましく、また、圧力が高いと高圧設備の維持にコストが係るので、コストを抑えるという観点から、25MPa以下が好ましい。尚、機能性材料を溶解又は分散させた加圧二酸化炭素は、可塑化シリンダ内で瞬時に高温になり圧力も変動する。よって、上述の加圧二酸化炭素の状態、温度及び圧力は、可塑化シリンダに導入する前の安定な状態の加圧二酸化炭素の状態、圧力及び温度の値である。
 更に、機能性材料として金属微粒子を用いる場合、加圧二酸化炭素は金属微粒子を溶解する溶媒を含有してもよい。例えば、金属微粒子として金属錯体を使用する場合、加圧二酸化炭素中の金属錯体の濃度を高めるため、パーフルオロペンチルアミンなどのフッ素系有機溶媒を用いてもよい。
 加圧二酸化炭素中の機能性材料の濃度は、機能性材料の種類を考慮して適宜選択することができ、特に制限されない。溶融樹脂への浸透性や加圧二酸化炭素中の機能性材料の凝集を考慮すれば、好ましくは飽和溶解度以下である。特に高温になる成形機の可塑化シリンダ内では急激に二酸化炭素の密度が低下するので、加圧二酸化炭素中の機能性材料の濃度は、飽和溶解度の1~50%程度が好ましい。
 加圧二酸化炭素を調製する方法としては、特に限定されず、従来公知の方法を使用することができる。例えば、図2に示す注射器のように加圧二酸化炭素を吸引、送液するシリンジポンプを備えた加圧流体供給装置100を用いてもよい。また、混合加圧流体を可塑化シリンダに供給する方法は任意である。例えば、混合加圧流体を可塑化シリンダに間欠的に導入してもよいし、連続的に導入してもよい。また、混合加圧流体の導入は、例えば、図2に示す安定な送液が行えるシリンジポンプを利用し、導入量を制御してもよい。
 本実施形態において、ブロック共重合体と機能性材料との混合物に対する、機能性材料の割合は任意であり、ブロック共重合体の種類、機能性材料の種類、熱可塑性樹脂の種類、成形体の使用用途等を考慮して適宜決定することができる。例えば、機能性材料が無電解メッキの触媒となる金属微粒子である場合、ブロック共重合体と機能性材料との混合物に対する、機能性材料の割合は、重量濃度で10ppm~10%であることが好ましい。機能性材料の割合が、この範囲であると、ブロック共重合体の増粘を抑制でき、且つ、ブリード性能も維持できるため、コストの観点から望ましい。
 次に、得られた機能性材料を混合したブロック共重合体(以下、適宜「機能性材料含有ブロック共重合体」と記載する)を熱可塑性樹脂に混合し(図1のステップS2)、成形する(ステップS3)。
 熱可塑性樹脂は、例えば、ポリプロピレン、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリテーテルエーテルケトン、ABS系樹脂、ポリフェニレンサルファイド、ポリアミドイミド、ポリ乳酸、ポリカプロラクトン等を用いることできる。また、熱可塑性樹脂には、ガラス繊維、タルク、カーボン繊維等、各種無機フィラー等を混練させることもできる。後述するように、成形体の表面に無電解メッキ法によりメッキ膜を形成する場合には、熱可塑性樹脂は、吸水性及びメッキ反応性が高いアミド基を含む樹脂が好ましく、特に、6ナイロン、6,6ナイロン等のナイロンが好ましい。また、熱可塑性樹脂は、―種類の材料を用いても、又は、二種類以上の材料を混合して用いても良いが、二種類以上の材料を混合して用いる場合、ナイロンが主成分であることが好ましい。
 熱可塑性樹脂と機能性材料含有ブロック共重合体との混合物に対する、機能性材料含有ブロック共重合体の割合は、任意であり、熱可塑性樹脂の種類、機能性材料の種類、ブロック共重合体の種類、成形体の使用用途等に基づき、適宜決定できる。例えば、機能性材料が無電解メッキの触媒となる金属微粒子である場合、熱可塑性樹脂と機能性材料含有ブロック共重合体との混合物に対する、機能性材料含有ブロック共重合体の割合は、1~30wt%であり、成形体中の機能性材料の割合は、重量濃度で10ppm~10wt%であることが好ましい。高分子界面活活性剤や機能性材料の割合がこの範囲であると、熱可塑性樹脂の耐熱や機械強度等の物性を大きく損なうことがなく、また、ブロック共重合体の増粘を抑制し、ブリード性能が維持できるので、コストの観点から望ましい。
 熱可塑性樹脂に機能性材料含有ブロック共重合体を混合する方法、及び熱可塑性樹脂を成形する方法は任意である。例えば、汎用の射出成形機又は、押出成形機の可塑化シリンダ内で、熱可塑性樹脂と、機能性材料含有ブロック共重合体のペレットとを可塑化溶融して混合し、汎用の射出成形方法又は、押出成形方法により成形して成形体を得てもよい。また、加圧二酸化炭素、加圧窒素等の物理発泡剤を用いた発泡射出成形方法により、発泡成形体を成形してもよい。この様に、本実施形態の製造方法は、機能性材料含有ブロック共重合体を用いることにより、汎用の成形機を使用して、成形と成形体の表面改質を同時に行うことができるので、新たな成形機を購入する等の設備投資をする必要がない。
 尚、本実施形態の「機能性材料が混合されたブロック共重合体を含有する樹脂ペレット」を熱可塑性樹脂に混合して成形する方法において、「機能性材料が混合されたブロック共重合体を含有する樹脂ペレット」は、マスターバッチに相当し、熱可塑性樹脂は、マスターバッチが配合されるベース樹脂に相当する。マスターバッチとは、染料、顔料、その他の添加剤等の機能性材料を高濃度に含有した樹脂ペレットであり、機能性材料を含有しないベース樹脂に混合され、ベース樹脂と共に成形される。マスターバッチを用いると、機能性材料を直接ベース樹脂に添加して成形することと比較して、材料の取り扱い性が容易で秤量精度も向上する。また、マスターバッチを用いると、汎用の成形機を用いて、機能性材料を含有する成形体を製造できるという利点も有する。
 以上説明した本実施形態の成形体の製造方法において、ブロック共重合体は成形体表面に向って機能性材料を伴って移動し、機能性材料と共に成形体の表面近傍に偏析する傾向がある。これは、ブロック共重合体の親水性セグメントが成形体からブリードアウトしようと移動することにより起こる。本発明者らは、このように機能性材料をブロック共重合体に混合すると、機能性材料もブロック共重合体に伴って成形体表面近傍へ移動することを見出した。この現象を利用することで、機能性材料を成形体の表面近傍に偏在させることができ、成形体の表面改質を内部から効率的に行うことができる。
 尚、本明細書において、「成形体の表面近傍」とは、成形体の内部であって、且つ、表面に近い領域を意味する。「成形体の表面近傍」が、成形体の表面から、どの程度の深さまでの領域を意味するかは、成形体に用いられる熱可塑性樹脂、ブロック共重合体及び機能性材料の種類によっても異なるが、例えば、成形体の表面から、0.1~10μmまでの深さの領域である。
 また、本実施形態のブロック共重合体は、通常の低分子の界面活性剤とは異なり、ポリマーである。低分子の界面活性剤も成形体表面に偏析する性質を有しているが、本実施形態のブロック共重合体は、大きな分子量有するため、混合される機能性材料を伴って成形体の表面近傍に移動できると考えられる。また、ポリマーであるので、成形体の表面に高濃度に偏在しても、成形体の耐熱性や機械的強度を低下させない。更に、可塑化溶融した状態で十分な粘度を有するので押出成形が可能であり、ペレット化することができる。
 本実施形態の機能性材料は、ブロック共重合体に混合されることで、ブロック共重合体に伴って成形体表面近傍に移動し、成形体表面近傍の機能性材料濃度を上げて効率的に成形体の表面を改質できる。また、相対的に、表面改質に寄与しない成形体内部の機能性材料の濃度を下げ、材料の無駄を省き材料コストを抑えることができる。例えば、機能性材料がメッキ触媒である場合、成形体の表面近傍に触媒が偏在するため、メッキ膜の密着力低下が抑制され、メッキ反応ムラやピンホール等の外観不良を低減できる。また、メッキ反応に寄与しない成形体内部のメッキ触媒の濃度が低下するので、材料コストを抑えることができる。
 更に、本実施形態では、得られた成形体の表面に、酸性又は塩基性の溶液のようなブロック共重合体を溶解する溶液を接触させ、成形体が含有するブロック共重合体の一部を溶解し、除去してもよい。本実施形態のブロック共重合体は、親水性セグメント部分が、酸性の溶液、塩基性の溶液、又はアルコールに溶解し、成形体の表面に細孔を形成することができる。成形体表面近傍に偏在している機能性材料の一部は、成形体表面に露出していると考えられるが、ブロック共重合体を除去し多数の細孔を設けることで、更に多くの機能性材料を成形体表面に露出させることができ、成形体表面をより活性化できる。例えば、機能性材料としてメッキ触媒となる金属微粒子を用いた場合、より多くの金属微粒子が成形体表面に露出することで、メッキ膜が形成し易くなる。また、機能性材料として銀を含む金属微粒子を用いた場合、より多くの銀を含む金属微粒子が成形体表面に露出すことで、成形体表面の抗菌作用を強めることができる。また、本実施形態のブロック共重合体は、通常の低分子の界面活性剤とは異なりポリマーであるので、成形体表面から除去した後に、十分な大きさの細孔を形成することができる。
 従来の成形体表面を粗化するメッキ前処理としては、ABS樹脂、エラストマー、ミネラル等を樹脂に含有させ、これらをエッチング液により成形体表面から除去する方法が知られている。本実施形態のブロック共重合体は、上述のように成形体表面に偏在するので、従来のミネラル等と比較して少ない含有量で成形体表面の細孔を形成できる。また、従来の方法では、エッチング液として、六価クロム酸や過マンガン酸等の環境負荷の高い試薬を用いる必要があったが、本実施形態では、ブロック共重合体を溶解する溶液として、例えば、塩酸、酢酸、次亜リン酸、等の酸性の溶液、水酸化ナトリウム、等の塩基性の溶液、又は、1,3ブタンジオール、プロパノール、メトキシエタノール、エチレングリコール等のアルコールを用いることができる。これらの溶液は環境負荷が低く、取扱いも容易である。また、成形体への酸性の溶液、塩基性の溶液又は、アルコールの接触は、1回でも良いし、必要により、溶液の種類を変えて複数回行っても良い。
 本実施形態では、機能性材料として無電解メッキの触媒となる金属微粒子を用いた場合、得られた成形体の表面に無電解メッキ液を接触させ、成形体表面にメッキ膜を形成してもよい。無電解メッキ液としては、公知のものを使用できるが、触媒活性が高く液が安定であるという点から、無電解ニッケルリンメッキ液が好ましい。
 金属微粒子を含む本実施形態の成形体は、メッキ触媒付与処理を行う必要がない。また、本実施形態では、無電解メッキ液が成形体の表面から浸透して成形体に含まれる金属微粒子に接触し、金属微粒子を触媒としてメッキ膜が成長する。したがって、メッキ膜は成形体に食い込んだ状態(メッキ膜の一部が成形体に浸透した状態)で成形体上に形成される。
 成形体へのメッキ液の接触は、成形体表面からブロック共重合体を除去せずに行っても良いし、成形体表面からブロック共重合体を除去した後に行っても良い。ブロック共重合体を除去した後の成形体表面にメッキ液を接触させてメッキ膜を形成すると、成形体表面に形成された細孔によるアンカー効果が発生し、メッキ膜の密着強度が向上するので好ましい。
 また、本実施形態の成形体は、表面近傍にブロック共重合体が偏在しているため、ブロック共重合体の親水性セグメントにより、成形体表面が親水化される。上述のように、成形体に無電解メッキ液を接触させると、メッキ液は成形体の表面から内部に浸透して金属微粒子と接触し、成形体の内部から成形体を押し広げながらメッキ膜が成長する。このとき、本実施形態の成形体は表面近傍が親水化されているため、メッキ液の浸透とメッキ膜の成長が促されると考えられる。これにより、本実施形態の成形体は、メッキ膜の付きまわり性が良好で、短時間でメッキ膜が形成される。メッキ膜形成時間が短くなることで、ピンホール等のメッキ膜の欠陥も生じにくくなる。
 一方、ブロック共重合体は、成形体の表面近傍に偏在するため、成形体の表面近傍のみを親水化し、成形体全体の吸水性(マクロ的吸水性)へ与える影響は小さい。よって、メッキ液中での成形体の脆性破壊を抑制でき、成形体の機械的強度を低下させない。この結果、メッキ膜形成後も成形体は十分な耐熱衝撃性能を有する。
 また、本実施形態のブロック共重合体は、通常の低分子の界面活性剤とは異なりポリマーであるので、成形体表面から脱落することなく表面近傍に留まり、上述のように成形体表面近傍を親水化できる。通常の低分子の界面活性剤は、成形体表面から脱落する可能性が高く、本発明のブロック共重合体と同等の効果は期待できない。
 上述のように、成形体の表面にブロック共重合体を溶解する溶液を接触させて、ブロック共重合体を除去すると、成形体の表面近傍を親水化する効果の低下が懸念される。しかし、成形体に含有されるブロック共重合体の一部を残存させることで、成形体の表面を親水化したまま、細孔を表面に形成することは可能であり、表面を親水化し更に細孔を設けることで、メッキ膜の成形体表面への密着性を高めることができる。
[第2の実施形態]
 第2の実施形態として、図6に示すメッキ膜を有する成形体の製造方法を説明する。まず、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用意する(ステップS11)。
 熱可塑性樹脂は、例えば、第1の実施形態に用いる熱可塑性樹脂と同様のものを用いることができる。また、本実施形態の熱可塑性樹脂には、カーボン繊維、ナノカーボン等の炭素材料、アルミや銅、鉄等の金属微粒子、銅―錫、アルミ―錫等の低融点合金の微粒子、窒化ホウ素や窒化アルミ、アルミナ等のセラミック材料等の熱伝導性材料を混合させることが好ましい。原材料である熱可塑性樹脂に熱伝導性材料を混合することで、メッキ膜を有する成形体が熱伝導材料を含むこととなり、成形体の放熱性能を向上させることができる。
 金属微粒子は、後述する無電解メッキ工程(ステップS13)においてメッキ触媒として機能し、例えば、第1の実施形態において機能性材料として用いる金属微粒子と同様のものを用いることができる。
 樹脂ペレットは、熱可塑性樹脂を可塑化溶融することと、可塑化溶融した熱可塑性樹脂に、金属微粒子が溶解した加圧二酸化炭素を混合することと、金属微粒子を含む熱可塑性樹脂を押出成形した後、粉砕して前記樹脂ペレットを得ることを含む樹脂ペレットの製造方法により、製造してもよい。例えば、押出成形機の可塑化シリンダ内で熱可塑性樹脂を可塑化溶融し、その可塑化シリンダへ金属微粒子が溶解した加圧二酸化炭素を導入し、可塑化シリンダ内で溶融樹脂と加圧二酸化炭素を接触させる。加圧二酸化炭素は、金属微粒子の溶媒であると共に、熱可塑性樹脂の可塑剤としても作用し、金属微粒子が熱可塑性樹脂に均一に分散することを促進する。したがって、加圧二酸化炭素を用いて製造された樹脂ペレットを用いて、メッキ膜を有する成形体を製造すると、均一で高品質なメッキ膜を得ることができる。加圧二酸化炭素を用いずに、熱可塑性樹脂と金属微粒子のみを混合することで樹脂ペレットを製造することも可能であるが、以上の理由から加圧二酸化炭素を用いることが好ましい。
 上述の樹脂ペレットの製造方法において、加圧二酸化炭素としては、第1の実施形態において、ブロック共重合体への機能性材料の混合において用いる加圧二酸化炭素と同様のものを用いることができる。
 更に、加圧二酸化炭素は、第1の実施形態と同様の金属微粒子を溶解する溶媒を含有してもよい。
 加圧二酸化炭素中の金属微粒子の濃度は、金属微粒子の種類を考慮して適宜選択することができ、特に制限されない。溶融樹脂への浸透性や加圧二酸化炭素中の金属微粒子の凝集を考慮すれば、好ましくは飽和溶解度以下である。特に高温になる成形機の可塑化シリンダ内では急激に二酸化炭素の密度が低下するので、加圧二酸化炭素中の金属微粒子の濃度は、飽和溶解度の1~50%程度が好ましい。
 加圧二酸化炭素を調製する方法としては、特に限定されず、第1の実施形態と同様の従来公知の方法を使用することができる。例えば、図7に示す注射器のように加圧二酸化炭素を吸引、送液するシリンジポンプを備えた加圧流体供給装置300を用いてもよい。本実施形態では、加圧流体供給装置300において、所定の割合で金属微粒子を混合した加圧二酸化炭素(以下、必要により、「混合加圧流体」と記載する)を製造し、この混合加圧流体を可塑化シリンダへ供給する。
 混合加圧流体を可塑化シリンダに供給する方法は任意である。例えば、混合加圧流体を可塑化シリンダに間欠的に導入してもよいし、連続的に導入してもよい。また、混合加圧流体の導入は、例えば、図7に示す安定な送液が行えるシリンジポンプを利用し、導入量を制御してもよい。
 混合加圧流体を熱可塑性樹脂に混合した後、金属微粒子を含む熱可塑性樹脂を押出成形し、粉砕して樹脂ペレットを得ることができる。
 次に、得られた金属微粒子を含む樹脂ペレットを可塑化溶融して成形体を成形する(図6のステップS12)。本実施形態の成形体は、金属微粒子が分散された樹脂ペレットを用いて、汎用の射出成形機、押出成形機等の成形機を使用し、汎用の成形方法により、成形することができる。したがって、本実施形態の製造方法は、新たな成形機を購入する等の設備投資をすることなく、メッキ触媒である金属微粒子を含む成形体を製造することができる。金属微粒子が含まれる成形体は、成形体表面に触媒を付与する必要がなく、触媒付与のために環境負荷が高い薬品を用いた表面処理を行う必要がない。
 本実施形態の製造方法では、成形体に含まれる金属微粒子を成形体表面近傍に偏在させることが好ましい。メッキ触媒である金属微粒子が成形体の表面近傍に偏在すると、メッキ膜を成形体表面に形成し易くなり、成形体表面でのメッキ反応が均一化する。これにより、メッキ膜の密着力が向上し、ピンホール等のメッキ外観不良が低減され、質の高いメッキ膜を形成できる。また、メッキ反応に寄与する金属微粒子は成形体表面近傍のみである。したがって、金属微粒子を成形体表面近傍に偏在させることで、メッキ反応に寄与しない成形体中心部の金属微粒子を減らし、コストを削減することができる。
 尚、本明細書において、「成形体の表面近傍」とは、上述のように、成形体の内部であって、且つ、表面に近い領域を意味する。そして、成形体をメッキ液に接触させたときに表面からメッキ液が浸透してメッキ反応が起きる領域は、「成形体の表面近傍」である。「成形体の表面近傍」が、成形体の表面から、どの程度の深さまでの領域を意味するかは、成形体に用いられる熱可塑性樹脂によっても異なるが、成形体の表面から、0.1~10μmまでの深さの領域であることが好ましい。
 成形体に含まれる金属微粒子を成形体表面近傍に偏在させる方法としては、例えば、金属微粒子を含む樹脂ペレットを可塑化溶融させ、可塑化溶融した樹脂ペレットに加圧二酸化炭素もしくは加圧窒素の少なくともどちらか一方の物理発泡剤を混合し、物理発泡剤を含む溶融樹脂を用いて発泡成形体を成形することが好ましい。
 本発明者らの検討によれば、加圧窒素や加圧二酸化炭素を物理発泡剤として用いることで、金属微粒子は表面近傍に偏在化し易くなる。これは成形体の内部に含まれる物理発泡剤が成形体表層部へ抜けでる際に、物理発泡剤がドライビングフォースとなり成形体内部に存在する金属微粒子を表面近傍に偏在化させると推定される。本実施形態の方法では、無電解メッキ膜は、成形体表面から10μm以内の範囲で成長する。金属微粒子がこの範囲内に存在することで、メッキ膜を成形体表面に形成し易くなり、メッキ膜の密着力低下が抑制され、メッキ反応ムラやピンホール等の外観不良が低減される。
 また、物理発泡剤として用いられる加圧窒素や加圧二酸化炭素は、物理発泡剤として機能すると共に、熱可塑性樹脂の可塑剤としても作用し、金属微粒子が熱可塑性樹脂に均一に分散することを促進する。これにより触媒核となる金属微粒子の粒子径を著しく小さくでき、メッキ反応性の高い成形体を製造できる。
 本実施形態の製造方法では、まず、加熱下において熱可塑性樹脂に金属微粒子を分散して樹脂ペレットを製造し、更に、樹脂ペレットを加熱して樹脂溶融として成形体を成形する。このような長い熱履歴は、本来、金属微粒を凝集させ、メッキ膜の形成に悪影響を与える恐れがある。しかしながら、上述のように、加圧窒素や加圧二酸化炭素を物理発泡剤として用いて発泡成形を行うことで、金属微粒子を成形体の表面近傍に偏在化させ、かつ、金属微粒子の分散を促進できる。これにより、金属微粒子を含む樹脂ペレットを用いた製造方法であっても、密着力が高く、ピンホール等の外観不良が少ない、質の高いメッキ膜を形成できる。
 次に、得られた金属微粒子を含む成形体に無電解メッキ液を接触させ、メッキ膜を形成する(図6のステップS13)。無電解メッキ液としては、公知のものを使用できるが、触媒活性が高く液が安定であるという点から、無電解ニッケルリンメッキ液が好ましい。
 本実施形態の成形体は、メッキ触媒として働く金属微粒子が内部に分散されているので、メッキ触媒付与処理を行う必要がない。また、本実施形態では、無電解メッキ液が成形体の表面から浸透して成形体に含まれる金属微粒子に接触し、金属微粒子を触媒としてメッキ膜が成長する。したがって、メッキ膜は成形体に食い込んだ状態(メッキ膜の一部が成形体に浸透した状態)で成形体上に形成される。それゆえ、従来の無電解メッキ法のように成形体の表面をエッチングで粗化する必要がなく、多様な種類の成形体に対しても容易に密着性の優れたメッキ膜を形成することができる。また、本実施形態では、従来の無電解メッキ法のように成形体の表面を粗化しないので、表面粗度の非常に小さい(ナノオーダー)メッキ膜を形成することができる。
[第3の実施形態]
 第3の実施形態として、メッキ膜を有する成形体の製造方法を説明する。本実施例の製造方法は、金属微粒子と共に親水性セグメントを含むブロック共重合体を含有する樹脂ペレットを用意すること以外は、第2の実施形態と同様である。
 まず、熱可塑性樹脂に金属微粒子と共に、親水性セグメントを含むブロック共重合体を分散した樹脂ペレットを用意する(図6のステップS11)。親水性セグメントを含むブロック共重合体を含有する樹脂ペレットを用意する方法は任意であり、第2の実施形態において説明した、樹脂ペレットの製造過程において、熱可塑性樹脂とブロック共重合体を混合して、樹脂ペレットを製造してもよい。例えば、押出成形機の可塑化シリンダ内で熱可塑性樹脂と共にブロック共重合体を可塑化溶融し、その可塑化シリンダへ金属微粒子が溶解した加圧二酸化炭素を導入し、可塑化シリンダ内で溶融樹脂及びブロック共重合体と、加圧二酸化炭素とを接触させる。
 本実施形態のブロック共重合体は、第1の実施形態で用いるブロック共重合体と同様のものを用いることができる。
 本実施形態では、ブロック共重合体の樹脂ペレットに対する混合比が1~30wt%となるように、ブロック共重合体と熱可塑性樹脂とを混合することが好ましい。ブロック共重合体の混合比は、成形体へのメッキ液の浸透性を十分に高めるために1wt%以上が好ましく、成形体の機械強度及びメッキ膜形成後の耐熱衝撃性能を維持するために、30wt%以下が好ましい。また、ブロック共重合体の混合比は、5~15wt%とすることが更に好ましい。
 次に、得られた金属微粒子及びブロック共重合体を含む樹脂ペレットを可塑化溶融して成形体を成形し(図6のステップS12)、成形体に無電解メッキ液を接触させ、メッキ膜を形成する(ステップS13)。成形体を成形する方法及び、メッキ膜を形成する方法は、第1の実施形態で説明したものと同様である。
 本発明者らは、金属微粒子と共にブロック共重合体を含有する樹脂ペレットを用いて成形体を製造すると、ブロック共重合体がメッキ膜の成長を促し、更にメッキ膜の質を向上させることを見出した。この理由は定かではないが、以下のように推察される。
 樹脂ペレットを用いた成形体の成形過程、又は成形後において、成形体に含まれるブロック共重合体は、親水性セグメントが成形体表面にブリードアウトしようと移動する。よって、ブロック共重合体は、成形体の表面近傍に偏在し、ブロック共重合体の親水性セグメントにより、成形体は表面近傍のみが親水化される。
 本実施形態では、成形体に無電解メッキ液を接触させると、メッキ液は成形体の表面から内部に浸透して金属微粒子と接触し、成形体の内部から成形体を押し広げながらメッキ膜が成長する。このとき、本実施形態の成形体はブロック共重合体により表面近傍が親水化されているため、メッキ液の浸透とメッキ膜の成長が促されると考えられる。本実施形態の成形体は、メッキ膜の付きまわり性が良好で、短時間でメッキ膜が形成される。メッキ膜形成時間が短くなることで、ピンホール等のメッキ膜の欠陥も生じにくくなる。
 一方、ブロック共重合体は、成形体の表面近傍に偏析するため、ブロック共重合体により親水化されるのは成形体の表面近傍のみである。ブロック共重合体は成形体の親水性を部分的に向上させるが、成形体全体の吸水性(マクロ的吸水性)へ与える影響は小さい。よって、メッキ液中での成形体の脆性破壊を抑制でき、成形体の機械的特性を低下させない。この結果、メッキ膜形成後も成形体は十分な耐熱衝撃性能を有する。
 更に、本実施形態において、ブロック共重合体が成形体の表面近傍へ移動するのに伴って、金属微粒子も表面近傍へ移動し表面近傍に偏在化し易くなると推察される。この現象の理由は定かではないが、金属微粒子が表面近傍に偏在化することで、メッキ膜を樹脂表面に形成し易くなり、メッキ膜の密着力低下が抑制され、メッキ反応ムラやピンホール等の外観不良が低減される。
 尚、本実施形態では、ブロック共重合体を用いることによって、被メッキ体である成形体の表面近傍のみを親水化し、上述の効果を奏することができる。例えば、同じ構成成分からなるランダム共重合体や、親水性セグメントのみから構成される重合体等では、成形体の表面近傍のみを親水化することは難しく、本発明と同等の効果は得られない。
 上述のように、本実施形態の製造方法では、まず、加熱下において熱可塑性樹脂に金属微粒子を分散して樹脂ペレットを製造し、更に、樹脂ペレットを加熱して樹脂溶融として成形体を成形する。このような長い熱履歴は、本来、金属微粒を凝集させ、メッキ膜の形成に悪影響を与える恐れがある。しかしながら、上述のように、樹脂ペレット中に親水性セグメントを含むブロック共重合体を含有させることで、メッキ膜の成長を促し、メッキ膜の質を向上させることができる。これにより、金属微粒子を含む樹脂ペレットを用いた製造方法であっても、密着力が高く、ピンホール等の外観不良が少ない、質の高いメッキ膜を形成できる。
 尚、本実施形態は、第2の実施形態と同様に、加圧窒素等の物理発泡剤を用いて、発泡成形体を成形してもよい。物理発泡剤を用いることで、更に、成形体上のメッキ膜の成長を促すことができる。
[第4の実施形態]
 次に、第2の実施形態のメッキ膜を有する成形体の製造方法によって製造される、メッキ膜を有する成形体について説明する。本実施形態の成形体は発泡成形体あり、上述の第2の実施形態の製造方法において、物理発泡剤を用いる方法によって製造できる。
 本実施形態のメッキ膜を有する成形体は、例えば、内部に独立した発泡セルを有する発泡成形体と、該発泡成形体の表面に形成されたメッキ膜を有し、前記発泡成形体のメッキ膜が形成された表面から10μm以内の深さに、前記メッキ膜と同じ種類の金属からなる金属領域が形成されており、前記発泡成形体のメッキ膜が形成された表面から前記金属領域が存在する範囲には、前記発泡セルが存在しない。
 無電解メッキの触媒となる金属微粒子を内部に含んだ成形体に無電解メッキ液を接触させると、メッキ液は成形体の表面から内部に浸透して金属微粒子と接触し、成形体の内部から成形体を押し広げながらメッキ膜が成長していく。したがって、成形体内部には、メッキ膜と同じ種類の金属、例えばニッケルリンからなる金属領域が形成される。上述のように、金属微粒子は成形体の表面近傍に偏在し、例えば、その範囲は、成形体のメッキ膜が形成された表面から10μm以内の深さである。したがって、この範囲に金属領域が形成される。
 成形体表面からこの金属領域が形成される範囲は、メッキ反応が生じる範囲である。この範囲に発泡セルが存在するとメッキ時に酸性のニッケルリンメッキ液が発泡セル内部に混入し、残存する虞がある。残存したメッキ液は、メッキ膜の腐食の要因となるので、発泡セルは金属領域が存在する範囲には存在しないことが好ましい。本実施形態のメッキ膜を有する成形体は、表面から金属領域が存在する範囲には発泡セルが存在しないため、メッキ膜の腐食を抑制することができる。
 表面から金属領域が存在する範囲に発泡セルを形成しないために、本実施形態の成形体は、例えば、以下の方法によって成形される。射出成形によって成形される成形体は、コア層と呼ばれる樹脂内部を形成する層と、スキン層とよばれる成形体の最表層部を形成する層に分けられ、コア層がスキン層で覆われている。射出成形において、溶融樹脂が金型キャビティに充填される際には、まずフローフロントと呼ばれる樹脂流動の先端部を流れる樹脂が金型壁面で冷却されスキン層を形成し、次いで流動樹脂の中央部を流れる樹脂がコア層を形成する。そして、物理発泡剤を用いた発泡射出成形では、高圧の物理発泡剤を含んだ溶融樹脂はキャビティに充填される際に減圧され、樹脂内部に発泡セルを形成する。
 本実施形態では、スキン層を形成する樹脂を、後から流れるコア層を形成する樹脂の充填圧力によって金型壁面に押し付け、減圧され難くすることでスキン層の発泡を抑制する。これにより、コア層には発泡セルが存在するがスキン層の発泡は存在しない成形体を成形することができる。本実施形態では、発泡成形体におけるスキン層の厚みが10~100μm程度となるように金型温度や射出速度、樹脂温度等を調整する。これにより、本実施形態における成形体では、無電解メッキで形成される金属領域が存在する範囲、即ち、成形体の樹脂表面から10μm以内の領域には発泡セルが存在しない。
 尚、本実施形態における「金属領域が存在する範囲」とは、メッキ膜と同じ種類の金属からなる金属領域が20vol%以上の体積を占める領域を意味する。また、本実施形態における「発泡セル」とは、成形体の微小な欠陥までも含むことを意味しない。したがって、「金属領域が存在する範囲には、前記発泡セルが実質的に存在しない」とは、例えば、金属領域が20vol%以上の体積を占める領域において、発泡セルサイズが5μm以上の独立気泡が存在しないことを意味する。
 図8に示すように、本実施形態の成形体800は、内部に独立した発泡セルを有する発泡成形体801と、該発泡成形体801の表面に形成されたメッキ膜802を有する。発泡成形体801のメッキ膜802が形成された表面から10μm以内の深さの領域801bには、メッキ膜802と同じ種類の金属からなる金属領域が形成されており、メッキ膜802が形成された表面から金属領域が存在する範囲には発泡セルは存在しない。尚、図8に示す本実施形態の成形体のスキン層厚みは、約100μmである。また、図9に示すように、領域801bより内部の領域801aには、直径50μm程度の発泡セル801cが多数存在し、メッキ反応により形成される金属領域は存在しない。
 また、本実施形態のメッキ膜を有する成形体は、比重が1.2g/cm以下であることが好ましい。比重を1.2g/cm以下とすることで、本実施形態の成形体は、軽量な放熱部材として利用できる。例えば、従来の放熱樹脂材料は、熱伝導率が5W/m・K以上の場合、比重が1.4g/cm以上となり、比重が大きいことが問題であった。一方、発泡成形体では、放熱樹脂材料を減らし発泡させることにより軽量化が可能であるが、放熱効率が低下するという問題があった。実施形態の成形体は、密着性の高い高品質のメッキ膜を表面に有するので、発泡成形体の放熱効率の低下をメッキ膜により補完することができる。これにより、本実施形態の成形体は、放熱効率を下げることなく、比重を1.2g/cm以下とすることができる。
 また、本実施形態のメッキ膜を有する成形体は、23℃の水中に24時間浸漬した後の吸水による重量変化が、0.5%以下であることが好ましい。本発明者らの検討によれば、メッキ膜を形成しない発泡成形体は、通常の非発泡成形体に比べて吸水が大きく、これにより線膨張係数も大きくなるため、高温多湿環境下での使用において信頼性が低いという問題があった。
 しかし、本実施形態のメッキ膜を有する成形体は、密着性の高い高品質のメッキ膜を表面に有するので、成形体への吸水を抑制できる。本実施形態のメッキ膜を有する成形体は、23℃の水中に24時間浸漬した後の吸水による重量変化を0.5%以下とすることで、線膨張係数も小さくなり、高温多湿環境下での使用にも耐えられる。
 以上説明したように、本実施形態のメッキ膜を有する成形体は、密着性の高い高品質のメッキ膜を表面に有するので、放熱性能といった金属部品の性能を維持しつつ、軽量で且つ高温多湿環境下での信頼性が高い成形体であり、例えば、軽量な放熱部材として利用できる。また、本実施形態のメッキ膜を有する成形体は、内部発泡により成形品の収縮が抑制されるので、寸法精度も向上する。
[第5の実施形態]
 第5の実施形態として、図10に示す発泡射出成形方法(発泡成形体の製造方法)について説明する。本実施形態の発泡射出成形方法は、例えば図11に示す、可塑化シリンダ710と、金型955と、可塑化シリンダ710と金型955の間に位置するノズルユニット750を有する射出成形装置3000を用い行う。まず、射出成形装置の可塑化シリンダ710において、樹脂を可塑化溶融し、該可塑化溶融した樹脂に物理発泡剤を混合する(ステップS21)。
 樹脂としては、目的とする発泡成形体の種類に応じて種々の樹脂を使用することができる。例えば、第1の実施形態に用いる熱可塑性樹脂と同様のものを用いることができる。また、本実施形態の樹脂としては、第1~3の実施形態で説明した、機能性材料を含有するブロック共重合体の樹脂ペレット、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いることもできる。
 本実施形態において、物理発泡剤は、加圧窒素や加圧二酸化炭素等の加圧流体が好ましい。安価、クリーンでかつ残渣が残りにくく、熱可塑性樹脂に相溶しやすいため、物理発泡剤として好適である。
 物理発泡剤の可塑化シリンダへの導入圧力及び温度は、物理発泡剤の種類によっても適切な条件は異なり、任意である。必ずしも超臨界状態等の高圧の物理発泡剤を用いる必要はないが、密度が高く安定であることから液体状態もしくは超臨界状態が好ましい。加圧窒素又は加圧二酸化炭素を用いる場合には、圧力は3~25MPa、温度は10℃~100℃であることが好ましい。圧力が3MPa以上であれば安定して可塑化シリンダ210へ導入でき、25MPa以下であれば装置への負荷が小さくなる。また、温度が10℃~100℃の範囲であれば、系内での物理発泡剤の制御が容易となる。尚、本実施形態において物理発泡剤として用いる加圧窒素及び加圧二酸化炭素は、可塑化シリンダ内で瞬時に高温になり圧力も変動する。よって、上述の物理発泡剤の状態、温度及び圧力は、加圧シリンダに導入する前の安定な状態の物理発泡剤の状態、圧力及び温度の値である。
 物理発泡剤を調製及び可塑化シリンダに供給する方法は、特に限定されず、従来の方法を使用してよく、物理発泡剤を可塑化シリンダに間欠的に導入してもよいし、連続的に導入してもよい。例えば、後述するように、図11示す注射器のように物理発泡剤を吸引、送液するシリンジポンプを備えた物理発泡剤供給装置600を用いて、物理発泡剤を調製及び可塑化シリンダに供給できる。物理発泡剤供給装置600のように、シリンジポンプを利用すると、物理発泡剤の導入量の制御が容易で安定な送液が行える。また、物理発泡剤の調製及び供給は、MuCell(登録商標)成形機用の市販の超臨界流体供給装置を用いて行ってもよい。
 更に、本実施形態では、金属微粒子を物理発泡剤に溶解又は分散し、金属微粒子を物理発泡剤と共に前記可塑化溶融した樹脂に混合してもよい。この場合、金属微粒子は、本実施形態で成形される発泡成形体に含まれることになる。そして、金属微粒子は無電解メッキの触媒として作用するので、後述するように、本実施形態で成形される発泡成形体に無電解メッキ液を接触させ、発泡成形体の表面にメッキ膜を形成してもよい。金属微粒子としては、例えば、第1の実施形態において機能性材料として用いる金属微粒子と同様のものを用いることができる。
 具体的には、例えば、射出成形装置の可塑化シリンダ内で熱可塑性樹脂を可塑化溶融し、その可塑化シリンダへ金属微粒子が溶解した物理発泡剤を導入し、可塑化シリンダ内で溶融樹脂と物理発泡剤を混合する。物理発泡剤を用いて熱可塑性樹脂に金属微粒子を分散させると、金属微粒子を樹脂成形体の最表面より1~5μm程度の深さに偏在させることができる。樹脂成形体の表面から深い領域に存在する金属微粒子は無電解メッキ反応に関与できないので、金属微粒子を樹脂成形体の表面近傍に偏在させることにより高価である金属微粒子の利用効率を上げ、コストを削減できる。更に、物理発泡剤を用いると、触媒核となる金属微粒子の粒子径を著しく小さくでき、メッキ反応性の高い被メッキ成形体が製造できる。
 さらに、物理発泡剤は金属微粒子を溶解する溶媒を含有してもよい。例えば、金属微粒子として金属錯体を使用する場合、物理発泡剤中の金属錯体の濃度を高めるため、パーフルオロペンチルアミンなどのフッ素系有機溶媒を用いてもよい。
 物理発泡剤中の金属微粒子の濃度は、金属微粒子の種類を考慮して適宜選択することができ、特に制限されない。溶融樹脂への浸透性や物理発泡剤中の金属微粒子の凝集を考慮すれば、好ましくは飽和溶解度以下である。特に高温になる射出成形装置の可塑化シリンダ内では急激に物理発泡剤の密度が低下するので、物理発泡剤中の金属微粒子の濃度は、飽和溶解度の1~50%程度が好ましい。
 次に、可塑化シリンダ710と金型955の間に位置するノズルユニット750に物理発泡剤が溶解した樹脂を送り、ノズルユニット750において樹脂を冷却し(図10のステップS22)、冷却した樹脂から物理発泡剤を排出する(ステップS23)。図12(a)及び(b)に示すように、ノズルユニット750の内部には、可塑化シリンダ710から金型955へ続く樹脂流路6が形成されている。
 本実施形態では、物理発泡剤の排気を可塑化シリンダ710と金型955の間に位置するノズルユニット750において行うことにより、金型955に射出される直前の樹脂のフローフロント部から物理発泡剤を排気し、フローフロント部に含まれる物理発泡剤濃度を低下させる。これにより、フローフロント部から物理発泡剤がガス化し、溶融樹脂に先立って金型内955に放出されることを抑制できる。また、金型955内における流動樹脂のフローフロント部は、ファウンテンフロー現象(噴水効果)により、金型955表面に引っ張られながら成形体の表面層(スキン層)を形成していく。フローフロント部の物理発泡剤濃度を低下させること、成形体のスキン層からガス化し金型内へ放出される物理発泡剤も抑制できる。このように、本実施形態では、成形体表面のスワルマークの原因となる、ガス化した物理発泡剤の金型内への放出を抑制し、成形体の外観不良の発生を防ぐことができる。
 本実施形態では、ノズルユニット750において樹脂のフローフロント部から物理発泡剤を排気し物理発泡剤濃度を低下させるが、溶融樹脂のその他の部分の物理発泡剤濃度には大きな影響を与えない。溶融した樹脂のフローフロント部以外の部分は、発泡成形体の内部であるコア層を形成する。コア層を形成する部分の樹脂に十分な物理発泡剤を残存できることで、本実施形態では、表面が平滑で外観不良がなく、且つ内部に十分は発泡セルを有する発泡成形体を形成できる。
 本実施形態はノズルユニット750を用いることで、金型955として汎用の金型を使用でき、金型コストを抑えることができる。また、本実施形態のノズルユニット750は、可塑化シリンダ710と一体の構造でもよいし、汎用の射出成形装置の可塑化シリンダに取り付けて使用してもよい。
 本実施形態では、ノズルユニット750において樹脂を冷却してから、物理発泡剤を排出するので、樹脂のベントアップという現象を抑制することができる。ベントアップとは、物理発泡剤を排気する排気口から溶融樹脂が同時に漏れる現象である。ベントアップの主原因は、物理発泡剤が混錬されることで樹脂粘度が低下した状態になり、更に排気のため急減圧されることで樹脂が体積膨張することだと考えられる。粘度の低い可塑化溶融した樹脂から物理発泡剤を排出しようとすると、樹脂の急激な体積膨脹の抑制が難しく、ベントアップの原因となる。本実施形態では、物理発泡剤が溶解した樹脂を冷却し、固化、又は、高粘度化させる。これにより、排気口から物理発泡剤のみの排出が可能となり、ベントアップを抑制することができる。
 また、可塑化シリンダ710内には、樹脂を可塑化溶融し、樹脂を金型内へ射出充填する機能を有するスクリュ70が、回転及び進退自在に設けられている。スクリュ70と接触する部分の樹脂が冷却され粘度が上昇すると、スクリュ70が回転駆動した際、大きな負荷がかかる。本実施形態では、スクリュ70の可動領域外であるノズルユニット750において樹脂の冷却が行われるため、スクリュ70の駆動に負担がかからない。そして、冷却が行われるノズルユニット750の樹脂流路6内へスクリュ70が進入しないよう、ノズルユニット750の樹脂流路6の断面積は、スクリュ70の断面積より小さい方が好ましい。
 可塑化溶融した樹脂の冷却方法は任意である。本実施形態では、図12(a)、(b)及び図13(a)、(b)に示すように、ノズルユニット750内部の温度調節流路2に水を循環させることによって樹脂を冷却する。冷却後の温度は、樹脂の種類によっても異なるが、50~150℃が好ましい。樹脂の冷却は、物理発泡剤(ガス)を含んで低粘度化した樹脂の粘度を高めることを目的としており、この温度範囲に冷却することで、物理発泡剤の排出時に溶融樹脂が同時に排出されることが抑制される。
 樹脂に混合している物理発泡剤の排出方法は任意である。本実施形態では、ノズルユニット750に設けられた物理発泡剤排出機構3により物理発泡剤の排出を行う。図12(a)、(b)及び図13(a)、(b)に示すように、物理発泡剤排出機構3は、樹脂流路6の壁面の一部を形成する樹脂押さえ部10と、樹脂押さえ部10に接続し、樹脂流路6を広げるように樹脂押さえ部10を後退させるピストン4と、ピストン4が後退することにより、樹脂流路6とノズルユニット750の外部とを連通させる排気路5からなる。図12(b)に示すように、樹脂押さえ部10の樹脂流路6の壁面の一部を形成する面は、樹脂流路6が円筒形となるように曲面である。
 物理発泡剤の排出は、例えば、次のように行う。図13(a)及び(b)に示す樹脂流路6の冷却及び加熱が行わる流路Lに位置する樹脂9を冷却し固化又は高粘度化させた後、図13(a)に示す樹脂流路6とノズルユニット300の外部が遮断された状態から、ピストン4を駆動して樹脂押さえ部10を後退させ、樹脂流路6とノズルユニット750の外部が排気路5により連通する図13(b)の状態とする。図13(b)の状態において、樹脂流路6と大気圧であるノズルユニット750の外部とが連通することで、樹脂流路6内の圧力は低下し、樹脂9内の物理発泡剤はガス化し排出される。
 図13(b)に示すように、物理発泡剤の排出の際は、冷却固化させた樹脂9と、樹脂9と接触する樹脂流路6の壁面との間に隙間Dを設けることが好ましい。冷却固化した樹脂9と樹脂流路6の壁面との間に十分な隙間を設けることで、ガス化した物理発泡剤が排出される樹脂部分の面積が拡大し、物理発泡剤を短時間で効率よく排出できる。隙間Dの大きさは任意であるが、0.01~10mm程度の範囲にすることが好ましい。狭すぎると、発泡剤の排出効率が低下し、広すぎると隙間Dを設けるための駆動部の負担が増大し、シール性能が低下する。尚、樹脂流路6の壁面の一部を後退させる方法は任意であり、エアーや油圧、電動等の駆動源によりピストンやカムを上下させる手法等を用いることができる。
 以上説明したように、本実施形態では、図13(b)に示すように、樹脂流路6と大気圧であるノズルユニット750の外部とを排気路5により連通させることで、物理発泡剤を自然排気する。しかし、物理発泡剤の排出方法は任意であり、例えば、図14に示すノズルユニット760の物理発泡剤排出機構745を用いて、排出する物理発泡剤の圧力や流量を制御しながら排出してもよい。図14に示す物理発泡剤排出機構745は、排気路5の先に、背圧弁743、減圧弁742、流量制御装置741等を設けており、圧力や流量を制御しながら物理発泡剤を排出することができる。このように、物理発泡剤排出機構により物理発泡剤の圧力や流量を制御しながら排出すると、ノズルユニット760先端からの物理発泡剤の排出量に変動が生じにくい。更に、物理発泡剤の排出方法は、ノズルユニットの排気路5の先に真空ポンプ等を設け、物理発泡剤を強制排気する方法でもよい。尚、排気する物理発泡剤の量は、物理発泡剤の排出時間、排気する物理発泡剤の圧力、流量等により制御できる。
 次に、ノズルユニット750において、物理発泡剤を所定量排出した樹脂を加熱する(図10のステップS24)。上述のように、物理発泡剤の排気は溶融樹脂を冷却し固化した状態で行われる。樹脂の一部が固化したまま金型へ射出充填すると、射出成形装置に大きな負荷がかかるため、射出充填前にノズルユニットの固化した樹脂を加熱し再溶融する。樹脂は、150~400℃に加熱されることが好ましい。この温度に加熱されることで、物理発泡剤(ガス)排出時に粘度上昇した樹脂粘度、及びノズルの流動抵抗が低下する。それにより溶融樹脂の金型への射出充填を円滑に行うことができる。
 樹脂の加熱方法は任意であり、ヒーターや熱風加熱を採用することもできるが、短時間で加熱昇温可能な電磁誘導加熱法を用いることが好ましい。電磁誘導加熱法は、コイルに電流を流すことにより短時間で昇温でき、電流停止により容易に加熱停止が可能である。通常、電磁誘導加熱法の電源は大きな出力が必要だが、本実施形態では、断面積及び容積の小さいノズルユニット750の樹脂流路6を加熱できればよいので、電源を小型化できコストを抑えられる。本実施形態では、銅管1をピストン4の周囲に巻くように設け、銅管1に電流を流すことで電磁誘導加熱を行い、樹脂の加熱を行った。
 以上説明したように、本実施形態では、ノズルユニット750の樹脂流路6において樹脂の冷却(図10のステップS22)が行われ、続いて樹脂の加熱(ステップS24)が行われる。そして、発泡射出成形が連続して複数ショット行われる場合には、この樹脂の冷却と加熱が、交互に繰り返されることになる。よって、ノズルユニット750の樹脂流路6において、冷却され固化される樹脂の容積は少ない方が好ましい。冷却され固化される樹脂の容積が少なければ、加熱冷却サイクル時間が短縮でき、これに要するエネルギーが少なくて済むからである。したがって、樹脂流路6の断面積は極力狭く、固化する樹脂の流動方向における長さは最低限とすることが好ましい。少なくとも樹脂流路6の断面積は、可塑化シリンダ710の断面積より小さい方が好ましい。しかし、固化させる樹脂の容積が小さすぎると、周囲の溶融樹脂に押し出されてベントアップが生じる恐れがある。これらを考慮し、例えば、樹脂流路6が円筒状の場合には、樹脂流路6の円形の断面はΦ2~100mmで、固化する樹脂の流動方向における長さは1~100mmが好ましい。
 次に、加熱した樹脂を金型955内に射出充填し、発泡成形体を形成する(ステップS25)。例えば、樹脂を金型に射出した後、保圧をかけずに金型をわずかに開き(コアバック)成形体を完成させる。これにより、物理発泡剤を含む樹脂が金型内で急減圧され、発泡セルが形成された成形体(発泡成形体)が成形される。
 本実施形態では、上述のように、金属微粒子を物理発泡剤に溶解又は分散して、金属微粒子を物理発泡剤と共に前記可塑化溶融した樹脂に混合してもよく、この場合、金属微粒子が発泡成形体に含まれる。金属微粒子は無電解メッキの触媒として作用するので、本実施形態で成形される発泡成形体に無電解メッキ液を接触させ、発泡成形体の表面にメッキ膜を形成してもよい。
[第6の実施形態]
 第6の実施形態として、第5の実施形態の発泡射出成形方法に用いるノズルユニットについて説明する。図11から図13に示すように、本実施形態のノズルユニット750は、射出成形装置3000に設けられ、可塑化シリンダ710と金型955との間に位置する。可塑化シリンダ710では、樹脂が可塑化溶融され、該樹脂に物理発泡剤が導入される。そして、可塑化溶融され物理発泡剤が導入された樹脂は、ノズルユニット750を介して金型955へ射出充填される。ノズルユニット750は、内部に可塑化シリンダ710から金型955へ続く樹脂流路6が形成され、更に、樹脂流路6内の樹脂の温度制御を行う温度制御機構7と、樹脂流路6内の樹脂から、物理発泡剤を排出する物理発泡剤排出機構3とを有する。
 物理発泡剤排出機構3は、第5の実施形態で説明したものと同様である。樹脂流路6を形成する壁面の一部は、記樹脂流路6の断面積を広げるように、即ち、容積を増やすように駆動可能に設けられていることが好ましい。本実施形態のノズルユニット750は、樹脂流路6の壁面の一部を形成する樹脂押さえ部10が、樹脂流路6の断面積を広げるように後退可能に設けられている。これにより、樹脂に溶解していた物理発泡剤を排出するとき、冷却固化した樹脂と、樹脂流路6の壁面(樹脂押さえ10)との間に隙間を設け、短時間で効率よく物理発泡剤を排出できる。
 また、ノズルユニット750の樹脂流路6の断面積は、スクリュ70の断面積より小さいことが好ましい。ノズルユニット750の樹脂流路6内へスクリュ70が進入する虞がないからである。また、樹脂流路6の断面積は極力狭く、流動方向における長さは最低限にすることが好ましい。樹脂流路6の容積を小さくすることで加熱冷却サイクル時間を短縮し、これに要するエネルギーを抑えるためである。例えば、樹脂流路6が円筒状の場合、樹脂流路6の円形の断面はΦ2~100mmで、冷却及び加熱が行わる流路Lの長さは1~100mmが好ましい。尚、本実施形態において、冷却及び加熱が行わる流路Lは、図13(a)及び(b)に示すように、樹脂押さえ部10が流路の壁面を形成する部分と一致している。
 本実施形態の温度制御機構7は、樹脂流路6において樹脂の温度を制御する機構であれば任意である。本実施形態の温度制御機構7は、ノズルユニット750内部に設けられた水を循環させる温度調節流路2と、ピストン4周囲に巻くように設けた電流を流す銅管1から構成される。温度調節流路2は樹脂を冷却する機構であり、銅管1は電磁誘導加熱法により樹脂を加熱する電磁誘導加熱機構である。樹脂を加熱する機構としては、短時間で加熱昇温可能な電磁誘導加熱機構が好ましい。
 尚、本実施形態のノズルユニット750は、可塑化シリンダ710と一体に形成され、可塑化シリンダの一部を形成してもよい。また、本実施形態のノズルユニットは、可塑化シリンダ710とは別個体の取り外し可能なユニットであってもよい。可塑化シリンダと別個体である場合、本実施形態のノズルユニットを汎用の射出成形装置の可塑化シリンダの先端部分に取り付けて使用することが可能である。
[第7の実施形態]
 第7の実施形態として、第6の実施形態のノズルユニットを用いた射出成形装置について説明する。図11に示すように、本実施形態の発泡射出成形装置3000は、樹脂を可塑化溶融し、該樹脂に物理発泡剤を導入する可塑化シリンダ710と、可塑化溶融され物理発泡剤が導入された樹脂が射出充填される金型955と、可塑化シリンダ710と金型955との間に位置し、可塑化シリンダ710から金型955へ続く樹脂流路6が内部に形成されたノズルユニット750を有する。ノズルユニット750は、第6の実施形態で説明したものと同様である。上述のように、ノズルユニット750は、可塑化シリンダ710と一体に形成され、可塑化シリンダの一部を形成してもよいし、可塑化シリンダ710とは別個体の取り外し可能なユニットであってもよい。本実施形態の射出成形装置を用いて第5の実施形態の発泡射出成形方法を実施でき、表面が平滑で外観不良の発生し難い発泡成形体を得ることができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。
[実施例1]
 実施例1では、図2に示すペレット製造装置を用いて、ブロック共重合体に機能性材料を混合してペレットを製造し、製造したペレットを熱可塑性樹脂に混合して成形体を得た。ブロック共重合体としては、ポリエーテルエステルアミドブロック共重合体(三洋化成工業製、ペレスタットNC6321)を、機能性材料としては、金属微粒子であるパラジウム錯体(ヘキサフルオロアセチルアセトナトパラジウム(II))を、熱可塑性樹脂としては、ガラス繊維強化ポリアミド樹脂(ナイロン6)(東レ製、アミランCM1011G30)を用いた。また、本実施例では、得られた成形体上にメッキ膜を形成した。
[ペレット製造装置]
 まず、本実施例で樹脂ペレットの製造に用いた装置について説明する。図2に示すように、ペレット製造装置1000は、ブロック共重合体を押出成形する押出成形装置200と、金属微粒子を含む加圧二酸化炭素(混合加圧流体)を押出成形装置200に供給する加圧流体供給装置100と、制御装置(不図示)を備える。制御装置は、加圧流体供給装置100、押出成形装置200を動作制御する。
 加圧流体供給装置100は、サイフォン式の加圧二酸化炭素ボンベ101と、2台のシリンジポンプ102、112、4台のエアオペレートバルブ104より構成される。加圧二酸化炭素ボンベ101の液相部分は、機能性材料であるパラジウム錯体が飽和溶解度以下で溶解した混合加圧流体であり、圧力及び密度を一定に維持するため、図示しない温度調節機構にてボンベ外部から温度が調節される。2台のシリンジポンプ102、112は、それぞれ交互に、ボンベ101からの混合加圧流体の吸引、加圧、及び押出成形装置200への供給を繰り返し、混合加圧流体を押出成形装置200へ連続供給する。シリンジポンプ102、112は、混合加圧流体中のパラジウム錯体の濃度を一定に維持したままポンプ内に取り込むことができ、また、混合加圧流体の流量制御を行いながら押出成形装置200へ供給することができる。混合加圧流体の供給は、背圧弁120を介して行われる。これらシリンジポンプ102、112の吸引及び供給は、4台のエアオペレートバルブ104にて自動制御される。
 押出成形装置200は、可塑化シリンダ210と、可塑化シリンダ210内に回転自在に配設されたスクリュ20と、可塑化シリンダ210内に配置される上流側シール機構S1a、S1b及び下流側シール機構S2a、S2bと、スクリュ20が貫通するリング状のベントアップ防止カバー29a、29bを備える。本実施例では、可塑化シリンダ210内において、可塑化溶融されたブロック共重合体は、図2、図4及び図5における右手から左手に向かって流動する。したがって、本実施例の可塑化シリンダ210の内部においては、図2、図4及び図5における右手を「上流」又は「後方」、左手を「下流」又は「前方」と定義する。
 更に、図示しないが、可塑化シリンダ210の上流側の後端部には、スクリュ20を回転させる回転モータなどの回転駆動手段が接続されている。なお、図4及び図5に示すように、本実例の押出成形装置200は、可塑化シリンダ210の後方側から見た場合に、スクリュ20を反時計回りに回転させると溶融したブロック共重合体を前方(ノズル部側)に送る正回転をし、時計回りに回転させると逆回転するように構成されている。
 可塑化シリンダ210の上部側面には、上流側から順に、ブロック共重合体を可塑化シリンダ210に供給するための樹脂供給口201、混合加圧流体を可塑化シリンダ210内に導入するための導入口202a、及び可塑化シリンダ210内からガス化した二酸化炭素を排出するためのベント203aが形成されている。更に、ベント203aの下流には、導入口202b、及びベント203bが設けられている。本実施例の可塑化シリンダ210では、導入口202a、202bの2か所から混合加圧流体を可塑化シリンダ210内に導入し、ベント203a、203bの2か所からガス化した二酸化炭素を排出する。これらの樹脂供給口201、及び導入口202a、202bにはそれぞれ、樹脂供給用ホッパ211、及び導入バルブ212a、212bが配設されている。また導入バルブ212a、212bは、上述の混加圧流体供給装置100と接続される。
 押出成形装置200では、樹脂供給口201から可塑化シリンダ210内にブロック共重合体が供給され、可塑化シリンダ210の外壁面に配設されたバンドヒータ(不図示)によって可塑化されて溶融樹脂となり、スクリュ20が正回転することにより下流に送られる。そして、導入口202a近傍まで送られた溶融樹脂は、導入された混合加圧流体と高圧下、接触混練される。次いで、混合加圧流体と接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化した二酸化炭素が溶融樹脂から分離し、ベント203aから排出される。これにより、可塑化シリンダ210内では、上流側から順に、ブロック共重合体を可塑化して溶融樹脂とする可塑化ゾーン21、溶融樹脂と導入口202aから導入される混合加圧流体とを高圧下、接触混練する高圧混練ゾーン22a、及び混合加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離された二酸化炭素をベント203aから排出する減圧ゾーン23aが形成される。更に、減圧ゾーン23aの下流には、再昇圧ゾーン24aが設けられ、再昇圧ゾーン24aでは、スクリュフライトの深さを浅くすることで、熱可塑性樹脂を物理的に昇圧し、密度を向上することが行われる。
 高圧混練ゾーン22a、減圧ゾーン23a及び再昇圧ゾーン24aは、第1混練部220aを形成する。更に、本実施例の可塑化シリンダ210は、第1混練部220aの下流に、高圧混練ゾーン22b、減圧ゾーン23b及び再昇圧ゾーン24bから形成される第2混練部220bを有する。第1混練部220aと第2混練部220bは、同様の機構であるので、以下、第1混練部220aについて説明する。
 図2、図4及び図5に示すように、第1混練部220aの可塑化ゾーン21、高圧混練ゾーン22a、及び減圧ゾーン23aの間にはそれぞれ、これらのゾーン21、22a、23aの連通状態を一時的に遮断する上流側シール機構S1a及び下流側シール機構S2aが配設されている。これにより、例えば、混合加圧流体を高圧混練ゾーン22aに導入する際には、機械的に高圧混練ゾーン22aの上流側及び下流側がシールされ、確実に高圧混練ゾーン22aと隣接するゾーン21、23aとを遮断できる。この結果、高圧混練ゾーン22aの圧力は高圧に維持されるので、パラジウム錯体を溶融樹脂に効果的に浸透可能となる。上流側シール機構S1a及び下流側シール機構S2aは、ゾーン21、22a、23aの連通を遮断するものであれば、種々のものを利用できるが、本実施例では、以下に説明するスクリュ20の回転状態に応じてこれらのゾーンの連通を遮断するものを用いた。
 第1混練部220aの上流側シール機構S1a及び下流側シール機構S2aについて説明する。図4及び図5に示すように、可塑化スクリュ20は、高圧混練ゾーン22aと減圧ゾーン23aとの境界領域において、この境界領域と隣接する領域に比べて縮径された縮径部50を有している。縮径部50には、縮径部50の範囲で軸方向(前後方向)に移動可能となるように遊嵌状態で下流側シールリング60が外嵌している。これら縮径部50と下流側シールリング60とで、下流側シール機構S2aが構成されている。同様に、可塑化ゾーン21と高圧混練ゾーン22aとの境界領域において、縮径部30と上流側シールリング40とで、上流側シール機構S1aが構成されている。本実施例においては、上流側シール機構S1aと下流側シール機構S2aとは基本的に同一の構成である。下流側シールリング60の外周面には、下流側シールリング60の外周面から突出するように金属製の外側シール部材70が嵌合している。これにより、下流側シールリング60と可塑化シリンダ210との間のシール性が確保される。同様に、上流側シールリング40の外周面には、外側シール部材80が嵌合している。
 可塑化スクリュ20の縮径部50は、前方(下流)に向かって傾斜するテーパ面を有する円錐台部(シール部)51と、円錐台部51から連接し、軸方向に水平に延びる水平面を有する円筒部52とで構成されている。同様に、縮径部30も、円錐台部(シール部)31と、円筒部32から構成される。
 図4に示すように、スクリュ20を正回転(反時計回り)させると、上流側及び下流側シールリング40、60はそれぞれ縮径部30、50の範囲を下流側に移動する。スクリュ20に対して下流側シールリング60が下流側に移動すると、縮径部50のシール部51と下流側シールリング60とが離間して、溶融樹脂及び加圧二酸化炭素の湯道となる隙間Gが形成され、これにより、高圧混練ゾーン22aと減圧ゾーン23aが連通する。同様に、スクリュ20を正回転(反時計回り)させると、上流側シール機構S1aに隙間Gが形成され、可塑化ゾーン21と高圧混練ゾーン22aが連通する。
 一方、図5に示すように、スクリュ20を所定回転数以上で逆回転(時計回り)させると、スクリュ20に対して下流側シールリング60が上流側に移動する。スクリュ20に対して下流側シールリング60が上流側に移動すると、縮径部50のシール部51と下流側シールリング60とが当接して、隙間Gは消滅する。これにより、高圧混練ゾーン22aと減圧ゾーン23aとの連通が遮断される。同様に、スクリュ20を逆回転(時計回り)させると、上流側シール機構S1aの隙間Gが消滅し、可塑化ゾーン21と高圧混練ゾーン22aの連通が遮断される。尚、第2混練部220bの上流側シール機構S1b及び下流側シール機構S2bも、以上説明した第1混練部220aの上流側シール機構S1a及び下流側シール機構S2aと同様の機構である。
 次に、ベントアップ防止カバー29a、29bについて説明する。ベントアップ防止カバー29a、29bは、樹脂のベントアップを抑制する。
 図2及び図3が示すように、ベントアップ防止カバー29a、29bは、それぞれ、第1混練部220aの減圧ゾーン23a、第2混練部220bの減圧ゾーン23bに設けられているリング状の部材で、スクリュ20が貫通し、スクリュ20と図示しないピンにより連結され、スクリュ20の回転に同期して回転する。図3に示すように、溶融したブロック共重合体292は、スクリュ20の貫通しているベントアップ防止カバー29a、29bの筒内を通過する。ベントアップ防止カバー29aと29bの構造は同一なので、以下、ベントアップ防止カバー29aについてのみ説明する。ベントアップ防止カバー29aには、2個の排気穴291aがスクリュ20を挟んで対向する位置に設けられている。ベントアップ防止カバー29aはスクリュ20と共に回転し、2個の排気穴291aのどちらかが、ベント203aに対向したときにのみに、溶融したブロック共重合体292が排気穴291aを通じてベント203aと対向し、加圧二酸化炭素が排出される。本実施例では、スクリュ20の正転、逆転を繰り返すことで、溶融したブロック共重合体をベント203a近傍に所定時間滞留させながら、ベントアップ防止カバー29aにより、断続的に二酸化炭素を排出する。このように、断続的に加圧二酸化炭素を排出することで、溶融したブロック共重合体のベントアップを抑制することができる。
[樹脂ペレットの製造]
 上で説明した図2に示すペレット製造装置1000を用いて、以下に説明する方法により、ブロック共重合体から形成される樹脂ペレットを製造した。
 まず、シリンジポンプ102又は112により、加圧二酸化炭素ボンベ101から混合加圧流体を吸引して所定圧力まで加圧した。次に、シリンジポンプ102又は112を圧力制御から流量制御に切替え、可塑化シリンダ210内に混合加圧流体を導入する導入バルブ212a、212bまでの系内を加圧した。本実施例において、シリンジポンプ102、112から導入バルブ212a、212bまでの系内は10℃に冷却し、圧力は10MPaとした。背圧弁120の設定圧力も10MPaとした。
 一方、押出成形装置200において、樹脂供給用ホッパ211からブロック共重合体を供給し、可塑化ゾーン21の外壁面に設けられたバンドヒータ(不図示)により可塑化ゾーン21を加熱し、スクリュ20を回転させた。これにより、ブロック共重合体を可塑化溶融し、下流の第1混練部220aの混練ゾーン22aへ流動させた。そして、高圧混練ゾーン22aと、減圧ゾーン23a及び可塑化ゾーン21とを遮断するため、スクリュ20の回転を一旦停止した後、スクリュ20を逆回転させた。これにより、上流側及び下流側シールリング40、60を上流側に移動させて、上流側及び下流側シールリング40、60とスクリュ20の縮径部30、50とを密着させ、高圧混練ゾーン22aを、減圧ゾーン23a及び可塑化ゾーン21から遮断した。遮断後、高圧混練ゾーン22aにおいて、導入バルブ212aにより、導入口202aを介して可塑化シリンダ210内へ、混合加圧流体を一定流量で連続的に供給し、スクリュ20を回転されることにより、混合加圧流体を溶融樹脂(溶融したブロック共重合体)に分散混練した。
 高圧混練ゾーン22aで、混合加圧流体を溶融樹脂中に高圧状態で分散させた後、スクリュ20を正回転(スクリュを可塑化する回転方向)する、又はスクリュ20の逆回転の回転数を低減させることで、高圧混練ゾーン22aと減圧ゾーン23aとを連通させた。高圧混練ゾーン22aと減圧ゾーン23aを連通させると、溶融樹脂(ブロック共重合体)及び加圧混合流体は減圧ゾーン23aに流動するが、溶融樹脂の流動よりも加圧二酸化炭素の移動速度が速いため、先に余剰な加圧二酸化炭素が減圧ゾーン23aに移動する。したがって、高圧混練ゾーン22aの減圧が進む前に再度、スクリュ20の逆回転を行って高圧混練ゾーン22aと減圧ゾーン23aの連通を遮断することで、高圧混練ゾーン22aに溶融樹脂の多くを滞留させたまま、余剰な加圧二酸化炭素を減圧ゾーン23に移動させ排出することができる。本実施例では、スクリュ20の正回転及び逆回転を繰り返すことで、溶融樹脂(ブロック共重合体)を高圧混練ゾーン22aに滞留させたまま、加圧二酸化炭素を排出し、同時に、混合加圧流体を導入し続けた。これにより、溶融樹脂(ブロック共重合体)に、より多くの機能性材料(パラジウム錯体)を混合することできた。
 次いで、スクリュ20を正回転の時間を長くすることで、混合加圧流体を混合させた溶融樹脂を減圧ゾーン23aへ流動させた。減圧ゾーン23aへ流動した溶融樹脂及び混合加圧流体は圧力が低下し、余剰な加圧二酸化炭素がガス化して溶融樹脂から分離される。分離した二酸化炭素は、可塑化シリンダ210のベント203aより排出される。ベント203aから排出されるガスの成分分析を行ったところ、パラジウム錯体は検出されなかった。これは、減圧されることで、加圧二酸化炭素に対するパラジウム錯体の溶解度が著しく低下したことと、パラジウム錯体が還元されて加圧二酸化炭素に不溶になったことが主な要因と考えられる。また、本実施例では、スクリュ20の正転、逆転を繰り返すことで、溶融したブロック共重合体を減圧ゾーン23aに滞留させながら、ベントアップ防止カバー29aの排気穴291aを介して、ベント203aから断続的に二酸化炭素を排出した。このように、断続的に二酸化炭素を排出することで、溶融したブロック共重合体のベントアップを抑制できた。
 次いで、スクリュ20を正回転の時間を長くすることで、加圧二酸化炭素を排出した溶融樹脂を再昇圧ゾーン24aへ流動させた。再昇圧ゾーン24aでは、熱可塑性樹脂を昇圧し密度を高めた。
 以上説明したように、本実施例では、第1混練部220aにおいて、スクリュ20の正回転及び逆転を繰り返すことにより、上流側シール機構S1aと下流側シール機構S2aを用いて、高圧混練ゾーン22aと減圧ゾーン23aの連通、及び遮断を繰り返した。そして、高圧混練ゾーン22aにおいて加圧混合流体を導入しながら、減圧ゾーン23aにおいて、断続的に二酸化炭素の排出を行った。
 続いて、スクリュ20の正回転の時間を長くすることにより、溶融樹脂を第1混練部220aから第2混練部220bへ流動させた。第2混練部220bでは、第1混練部220aと同様に、高圧混練ゾーン22bにおいて加圧混合流体を導入しながら、減圧ゾーン23bにおいて、断続的に二酸化炭素の排出を行った。尚、本実施例では、ブロック共重合体とパラジウム錯体との混合物中のパラジウム錯体濃度、即ち、樹脂ペレット中のパラジウム錯体濃度が、重量濃度で500ppmとなるように、第1混練部220a及び第2混練部220bの2箇所から混合加圧流体を導入した。
 次に、スクリュ20を正回転の時間を長くすることで、可塑化シリンダ210の先端から、パラジウム錯体が混合したブロック共重合体を紐状に押出した。押出された混合物を冷却、固化した後、汎用の裁断機(ペレタイザー)によって任意のサイズに裁断し、パラジウム錯体を含むブロック共重合体からなる樹脂ペレットを得た。
[成形体の成形]
 汎用の射出成形機(日本製鋼所製、J180AD‐2M‐300H)を用いて、得られた樹脂ペレットを熱可塑性樹脂に混合して射出成形し、成形体を得た。樹脂ペレットは、熱可塑性樹脂と樹脂ペレットとの混合物に対する割合が、10wt%となるように混合した。したがって、得られた成形体中のパラジウムの濃度は、約50ppmと極微量である。
[メッキ膜の形成]
(1)試料(I)
 本実施例で得られた成形体に以下の方法によりメッキ膜を形成し、試料(I)を作製した。まず、成形体をアルカリ水溶液である60℃の0.5Nの水酸化ナトリウム水溶液に5分間曝した後、水洗し、その後、40℃の3Nの塩酸水溶液に5分間浸漬した。その後、85℃の無電解ニッケルリンメッキ液(奥野製薬工業製、トップニコロンRCH)に浸漬した。成形体を無電解ニッケルリンメッキ液に浸漬すると、直ちにメッキ反応が開始し、5分間でニッケルリンメッキ膜が成形体の全面を被覆した。次に、12時間、80℃でアニールした後、ニッケルリンメッキ膜上に、汎用の方法により、電解銅メッキ膜20μm、電解ニッケルメッキ膜20μm、電解クロムメッキ膜0.5μmを順に形成し、本実施例の試料(I)を得た。
(2)試料(II)
 本実施例で得られた成形体に、試料(I)と同様の方法によりニッケルリンメッキ膜を形成し、ニッケルリンメッキ膜上に、汎用の方法により、電解銅メッキ膜40μm形成し、試料(II)を得た。
 [試料の評価]
 試料(I)に、-40℃の環境と120℃の環境に交互に曝すサイクル試験を10サイクル実施するヒートショック試験を行った。この結果、試料(I)にメッキ膜の膨れ、剥が等は生じず、メッキ膜は高い信頼性を有することがわかった。
 試料(II)のメッキ膜の密着性評価(ピール試験)を行った。この結果、メッキ膜の密着力は、25N/cmであり、目標の10N/cmを大幅に超える密着性の高いメッキ膜が形成されていることがわかった。
 次に、試料(I)及び(II)の成形体表面近傍の断面をSEMにて観察した。その結果、試料(I)及び(II)のどちらの試料においても、成形体の表面に深さ500nm~2μm程度の細孔が形成されており、更に、細孔内にもメッキ膜の一部が浸入している様子が観察された。これは、無電解メッキ処理の前に、成形体にアルカリ溶液及び酸溶液を接触させたことにより、ブロック共重合体の一部が成形体表面から除去されて細孔が形成され、更に、細孔内部においてメッキ反応が生じてメッキ膜が成長したと考えられる。本実施例のメッキ膜は、成形体表面に形成された細孔によるアンカー効果により高い密着性を有すると推測される。
 また、メッキ膜は成形体の内部から成長しており、成形体に食い込んだ状態(メッキ膜の一部が成形体に浸透した状態)で成形体上に形成されていることが確認された。これは、無電解メッキ液が成形体の表面から浸透し、成形体に含まれるパラジウムに接触してメッキ膜が成長したためと考えられる。
 次に、試料(I)及び(II)の成形体表面近傍の断面をTEMにて観察した。その結果、試料(I)及び(II)のどちらの試料においても、粒子径が最大3nm程度のパラジウムが成形体の表面近傍に偏在していることが確認された。本発明者らの検討によれば、加圧二酸化炭素や超臨界二酸化炭素を用いて金属微粒子を樹脂中に分散すると、金属粒子を直径がサブナノ~ナノの超微粒子として分散でき、TEMでは観察できない1nm以下の粒子径も存在することが確認されている。金属微粒子の溶媒である加圧二酸化炭素が、樹脂への相溶化剤として働いて金属錯体が凝集するのを抑制し、溶融樹脂中で金属錯体が熱還元され、ナノ粒子がin-situ合成されたと推測される。このように、超微粒子化した金属微粒子が成形体の表面近傍に偏在していることで、成形体中の金属微粒子の含有濃度が、約50ppmと極微量であっても、十分なメッキ反応が生じたと推測される。
 以上説明したように、本実施例では、金属微粒子が混合されたブロック共重合体からなる樹脂ペレットを用いることにより、汎用の成形機を使用して金属微粒子を含む成形体が製造でき、環境負荷が高い表面処理を行うことなく、成形体上にメッキ膜を形成することができた。また、本実施例では、ブロック共重合体を用いることにより、金属微粒子を成形体の表面近傍に偏在させ、更に、ブロック共重合体への金属微粒子の分散に加圧二酸化炭素を用いることで、金属微粒子を超微粒子として分散させることができた。これにより、無電解メッキ触媒としての金属微粒子の含有量を低減させることができた。更に、メッキ膜形成前に、成形体に酸性及び塩基性の溶液を接触させてブロック共重合体の一部を溶解及び除去し、成形体表面に細孔を形成することで、その上に形成されるメッキ膜の密着性を細孔によるアンカー効果により高めることができた。
[実施例2]
 実施例2では、実施例1とは異なり、ブロック共重合体から形成される樹脂ペレットは製造しなかった。ブロック共重合体としては、実施例1と同様のポリエーテルエステルアミドブロック共重合体(三洋化成工業製、ペレスタットNC6321)を用いた。機能性材料としては、金属微粒子である銀錯体(ヘプタフルオロ酪酸銀塩(I))を、熱可塑性樹脂としては、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を用いた。
 まず、エタノールに銀錯体を常温にて溶解させてエタノール溶液を調製し、調製したエタノール溶液にブロック共重合体を1時間浸漬させて、ブロック共重合体に銀錯体を含浸させた。銀錯体が含浸したブロック共重合体を乾燥させ、重量変化から、銀錯体が含浸したブロック共重合体中の銀錯体濃度を算出した。銀錯体濃度は、重量濃度で1000ppmであった。
 実施例1と同様の射出成形機を用いて、得られた銀錯体が含浸したブロック共重合体を熱可塑性樹脂に混合して射出成形し、成形体を得た。銀錯体が含浸したブロック共重合体は、熱可塑性樹脂と銀錯体が含浸したブロック共重合体との混合物に対する割合が、10wt%となるように混合した。
 得られた成形品の表面近傍の断面をSEMで観察した。その結果、成形体の表面近傍には、粒子径が100nm程度の銀粒子が分散していることが確認できた。次に、得られた成形体について、黄色ブドウ球菌及び大腸菌を用い、統一試験法(JIS Z 2911)により抗菌評価を行った。その結果、成形体は高い抗菌作用を有しており、銀粒子が抗菌作用を発現するのに十分な濃度で成形体表面近傍に存在していることが確認できた。
[実施例3]
 実施例3では、実施例1と異なり、ブロック共重合体から形成される樹脂ペレットは製造しなかったが、ブロック共重合体、機能性材料及び熱可塑性樹脂は、実施例1と同様のものを用いた。
 まず、エタノールに機能性材料であるパラジウム錯体を常温にて溶解させてエタノール溶液を調製し、調製したエタノール溶液にブロック共重合体を1時間浸漬して、ブロック共重合体にパラジウム錯体を含浸させた。パラジウム錯体が含浸したブロック共重合体を乾燥させ、重量変化から、パラジウム錯体が含浸したブロック共重合体中のパラジウム錯体濃度を算出した。パラジウム錯体濃度は、約0.1wt%であった。その後、パラジウム錯体が含浸したブロック共重合体を150℃にてアニールし、パラジウム錯体を熱還元した。
 次に、実施例1と同様の射出成形機を用いて、パラジウム錯体が含浸したブロック共重合体を熱可塑性樹脂に混合して射出成形し、成形体を得た。パラジウム錯体が含浸したブロック共重合体は、熱可塑性樹脂とパラジウム錯体が含浸したブロック共重合体との混合物に対する割合が、10wt%となるように混合した。
 得られた成形体に、実施例1の試料(I)と同様の方法で、同様のメッキ膜を形成し、試料(III)を得た。また、実施例1の試料(II)と同様の方法で、同様のメッキ膜を形成し、試料(IV)を得た。
 試料(III)及び(IV)共に、成形体を無電解ニッケルメッキ液に浸漬後、10分間でニッケルリンメッキ膜が成形体の全面を被覆した。実施例1と比較すると、メッキ膜形成時間はやや長かった。
 実施例1と同様の方法で、試料(III)にヒートショック試験を行い、試料(IV)のメッキ膜の密着性評価(ピール試験)を行った。ピール試験の結果、メッキ膜の密着力は、8N/cmであり、目標の10N/cmよりやや低かった。一方、ヒートショック試験の結果では、試料(III)にメッキ膜の膨れ、剥が等は生じず、メッキ膜は高い信頼性を有することがわかった。
 次に、試料(III)及び(IV)の成形体表面近傍の断面をTEMにて観察した。その結果、試料(III)及び(IV)のどちらの試料においても、粒子径が50~100nm程度のパラジウムが成形体の表面近傍に偏在していることが確認された。パラジウムの粒径は、実施例1と比較して肥大化していた。
 以上説明したように、本実施例では、実施例1と同様に、ブロック共重合体に金属微粒子を分散することにより、汎用の成形機を使用して金属微粒子を含む成形体が製造でき、環境負荷が高い表面処理を行うことなく、成形体上にメッキ膜を形成することができた。また、本実施例では、ブロック共重合体を用いることにより、金属微粒子を成形体の表面近傍に偏在させ、効率よくメッキ膜を形成することができた。一方、本実施例では、実施例1と異なり、ブロック共重合体への金属微粒子の分散に加圧二酸化炭素を用いなかったため、実施例1と比較して金属微粒子の分散性が低く、メッキ膜の密着強度が低下したものと考えられる。
[比較例1]
 本比較例では、実施例1と同様の機能性材料及び熱可塑性樹脂を用いたが、ブロック共重合体は用いなかった。ブロック共重合体への機能性材料(パラジウム錯体)の混合を行わず、代わりに、熱可塑性樹脂にパラジウム錯体を直接混合した。それ以外は、実施例1と同様の方法により成形体を成形した。
 本比較例の成形体上に、実施例1と同様の方法により、ニッケルリンメッキ膜を形成しようとしたが、メッキ反応は生じなかった。この原因は、以下のように推察される。本比較例では、成形体中のパラジウム錯体の含有量が微量である。そして、ブロック共重合体を用いなかったため、成形体の表面近傍にパラジウムが偏在しなかった。そのため、成形体の表面近傍にメッキ反応が生じるのに十分な量の触媒が存在せず、メッキ反応が生じなかったと考えられる。
 以上、本発明の成形体の製造方法を実施例により具体的に説明してきたが、本発明はこれらの実施例に限定されない。例えば、実施例1~3では、射出成形により成形体を成形したが、成形体を押出成形によって成形してもよい。また、加圧二酸化炭素、加圧窒素等の物理発泡剤を用いた発泡射出成形方法により、発泡成形体を成形してもよい
[実施例4]
 実施例4では、図7に示す樹脂ペレット製造装置2000を用いて樹脂ペレットを製造した。熱可塑性樹脂として、熱伝導性材料である炭素材料を含み、6ナイロンと非強化の6ナイロンを1:2の重量比でドライブレンドした材料(ユニチカ製、TNEG-5C)を用い、金属微粒子としてヘキサフルオロアセチルアセトナトパラジウム(II)金属錯体を用いた。本実施例で用いた炭素材料を含むナイロンの熱伝導率は、レーザーフラッシュ法による測定で5W/m・Kとなる。また、本実施例では、該ペレットを可塑化溶融した後に、物理発泡剤を混合して発泡成形体を成形し、該発泡成形体上にメッキ膜を形成した。
[樹脂ペレット製造装置]
 まず、本実施例で樹脂ペレットの製造に用いた装置について説明する。図7に示すように、樹脂ペレット製造装置2000は、金属微粒子を混合した熱可塑性樹脂を押出成形する押出成形装置400と、金属微粒子を含む加圧二酸化炭素(混合加圧流体)を押出成形装置400に供給する加圧流体供給装置300と、押出成形装置400により押出成形された熱可塑性樹脂を冷却する樹脂冷却装置500と、制御装置(不図示)を備える。制御装置は、加圧流体供給装置300、押出成形装置400、及び樹脂冷却装置500を動作制御する。
 加圧流体供給装置300は、加圧二酸化炭素と、金属微粒子を溶媒に溶解させた溶液Cとを混合して混合加圧流体を調製し、調製した混合加圧流体を押出成形装置400に供給する。加圧流体供給装置300は、サイフォン式の二酸化炭素ボンベ301と、二酸化炭素ボンベ301より液体二酸化炭素を吸引した後、加圧して液体二酸化炭素を供給する二酸化炭素用シリンジポンプ302と、溶液槽311内の金属微粒子含有液体Cを加圧して供給する溶液用シリンジポンプ312より構成される。各シリンジポンプ302、312は圧力制御と流量制御が可能である。調製された混合加圧流体は、背圧弁420を介して押出成形装置200に供給される。
 押出成形装置400は、内部に回転及び進退自在に配設されたスクリュ40を有する第1シリンダ(可塑化シリンダ)410と、内部に回転及び進退自在に配設されたスクリュ45を有する第2シリンダ420と、スクリュ40、45それぞれに連結し、スクリュ40、45を回転動作させるサーボモータ48、49と、第1シリンダ410と第2シリンダ420とを連結する連結部430から構成される。本実施例では、第1及び第2シリンダ410、420内において、可塑化溶融された溶融樹脂は、図7における右手から左手に向かって流動する。したがって、第1及び第2シリンダ410、420の内部においては、図7における右手を「上流」又は「後方」、左手を「下流」又は「前方」と定義する。第1シリンダ(可塑化シリンダ)410は、スクリュ40が貫通するリング形状のシール部材46と、シール部材46よりも下流に設けられ、スクリュウ40が貫通するリング形状部材44が設けられる。また、第2シリンダ420は、その先端部にノズル47有する。
 第1シリンダ410の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ410に供給するための樹脂供給口401、混合加圧流体を第1シリンダ410内に導入するための導入口402が形成される。また、第2シリンダ420の上部側面には、第2シリンダ420内からガス化した二酸化炭素を排気するためのベント403が形成されている。これらの樹脂供給口401、及び導入口402にはそれぞれ、樹脂供給用ホッパ411、及び導入バルブ412が配設されている。第1シリンダ410の外壁面には、バンドヒータ(図示せず)が配設されており、これにより可塑化シリンダ410が加熱され、熱可塑性樹脂が可塑化溶融される。
 押出成形装置400では、樹脂供給口401から第1シリンダ410内に熱可塑性樹脂が供給され、熱可塑性樹脂がバンドヒータによって可塑化されて溶融樹脂となり、スクリュ40が正回転することにより下流に送られる。そして、導入口402近傍まで送られた溶融樹脂は、導入された金属微粒子を含む加圧二酸化炭素(混合加圧流体)と高圧下、接触混練される。混合加圧流体を含む溶融樹脂は、第1シリンダ410から、下流の連結部430へ送られる。そして、連結部430の樹脂は、第1シリンダ410から順次供給される樹脂に押出されて、更に下流の第2シリンダ420へ送られる。第2シリンダ420では、混合加圧流体と接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化した二酸化炭素が溶融樹脂から分離し、ベント403から排気される。二酸化炭素が排気された後、溶融樹脂は、スクリュ45が回転することにより下流に送られ、ノズル47から第2シリンダ420の外部へ押し出される。
 以上説明したように、第1シリンダ410内では、上流側から順に、熱可塑性樹脂を可塑化溶融して溶融樹脂とする可塑化ゾーン41、溶融樹脂と導入口402から導入される混合加圧流体とを高圧下、接触混練する混練ゾーン42が形成される。そして、第2シリンダ420内では、混合加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離された二酸化炭素をベント403から排気する減圧ゾーン43が形成される。第1シリンダ410においては、上述のリング形状のシール部材46は、可塑化ゾーン41と混練ゾーン42の境界に位置しており、リング形状部材44は混練ゾーン42に位置している。そして、スクリュ40の混練ゾーン42に位置する部分は、その直径が下流に向かうに従い大きくなる形状を有する。
 樹脂冷却装置500は、第2シリンダ420のノズル47から押出された樹脂を冷却し固化する装置であり、冷却水等により樹脂が十分に固化される機構であれば任意であるが、本実施形態では、冷却水を用いないアルミ製のベルトコンベア装置501を用いた。冷却水を用いないことで、成形体原料にポリアミド等の吸水性が高い熱可塑性樹脂を用いた場合にも、樹脂の過剰な吸水を防ぐことができ、後工程での困難な脱水作業が不要となる。図7に示すように、アルミベルトコンベア装置501は、輪状にしたアルミ製のベルトを回転させるベルトコンベアであり、アルミ製のベルトの上に、押出成形装置400から押し出される樹脂を裁置し、図7の上流から下流へ(右手から左手へ)運搬する。放熱性能の高いアルミ製のベルトの上に裁置されることで、押出された樹脂は運搬されながら冷却され、固化する。
[樹脂ペレットの製造]
 上で説明した図7に示す樹脂ペレット製造装置2000を用いて、以下に説明する方法により、樹脂ペレットを製造した。まず、液体二酸化炭素ボンベ301から液体二酸化炭素を吸引し、二酸化炭素用シリンジポンプ302の圧力制御により所定圧力まで液体二酸化炭素を加圧した。また、溶液用シリンジポンプ312により、溶液槽311から溶媒に金属微粒子を溶解させた溶液Cを吸引し、溶液用シリンジポンプ312の圧力制御により所定圧力まで溶液Cを加圧する。本実施例では、溶液Cの溶媒としてパーフルオロペンチルアミンのフッ素系有機溶媒を用いた。
 次に、二酸化炭素用シリンジポンプ302及び溶液用シリンジポンプ312を圧力制御から流量制御に切替え、二酸化炭素用シリンジポンプ302と溶液用シリンジポンプ312の流量比が10:1となるように流動させた。これにより、配管内で加圧二酸化炭素と溶液Cとが混合され、かつ、第1シリンダ410内に混合加圧流体を導入する導入バルブ412までの系内を加圧した。本実施例において、シリンジポンプ302、312から導入バルブ412までの系内は10℃に冷却し、圧力は10MPaとした。背圧弁420の設定圧力も10MPaとした。また、本実施例において、混合加圧流体中の金属微粒子の濃度は、飽和溶解度の10~20%程度に制御した。
 一方、押出成形装置400において、樹脂供給用ホッパ411から熱可塑性樹脂を供給し、可塑化ゾーン41の外壁面に設けられたバンドヒータ(図示せず)により可塑化ゾーン41を加熱し、スクリュ40を回転させた。これにより、熱可塑性樹脂を可塑化溶融し、下流の混練ゾーン42へ流動させた。
 混練ゾーン42において、導入バルブ412により、導入口402を介して可塑化シリンダ410内へ、混合加圧流体を一定流量で連続的に供給した。そして、スクリュ40を回転されることにより、混合加圧流体を溶融樹脂中に分散混練した。このとき、リング形状のシール部材46によって、混練ゾーン42に導入した二酸化炭素や金属微粒子が上流側の可塑化ゾーン41に漏れることが防止される。
 次に、スクリュ40の回転により、混練ゾーン42の樹脂を下流の連結部430へ流動させた。混練ゾーン42において、樹脂の下流への流動の際、直径が下流に向かうに従い大きくなるというスクリュ40の形状及びリング形状部材44の存在が溶融樹脂の流動抵抗となり、混練ゾーン42内の樹脂内圧が上がり、第1シリンダ410の圧力が上昇する。
 混練ゾーン42には、図示しない圧力センサが設けられており、混練ゾーン42のシリンダ圧力を監視できる。樹脂粘性などの変化により混練ゾーン42のシリンダ内の圧力が低下した際には、サーボモータ48の回転数を上げて混練ゾーン42への溶融樹脂の供給量を増やし、混練ゾーン42のシリンダ内の圧力を上昇させる。反対に、シリンダ内の圧力が上昇した際には、サーボモータ48の回転数を下げて樹脂供給量を減らし、シリンダ内の圧力を低下させる。このように、本実施例の第1シリンダは、スクリュ回転数を調整することで、シリンダ内圧を一定に保つことができる機構を有する。混練ゾーン42のシリンダ内の圧力の変動が大きいと、シリンジポンプ302、312から供給される混合加圧流体の導入量が安定せず、ばらつきが発生するが、本実施例では、混練ゾーン42のシリンダ内の圧力を一定に保つことで導入量が安定する。本実施例においては、混練ゾーン42のシリンダ内圧が8MPaを保つように、スクリュ40の回転数を設定した。
 スクリュ40を継続して回転させ、第1シリンダ410の樹脂を下流の連結部430へ供給し続けた。連結部430の溶融樹脂は、第1シリンダから供給される樹脂に押し出される形で、下流の第2シリンダ420の減圧ゾーン43に流動した。減圧ゾーン43において、溶融樹脂の減圧を行い、溶融樹脂中に溶解した二酸化炭素のみを分離し、第2シリンダ420に設けられたベント403から排出した。
 次に、二酸化炭素を排出した溶融樹脂を、第2シリンダの先端部に設けられたノズル47から、スクリュ45の回転により押し出した。ノズル47からの溶融樹脂の押出し量は、サーボモータ49により調節した。尚、サーボモータ49は、サーボモータ48と独立制御が可能である。
 ノズル47から押し出された樹脂を冷却装置500のアルミベルトコンベア501の上に裁置し、図7における上流から下流へ運搬した。押し出された溶融樹脂は、運搬される間に冷却され、固化した。固化した樹脂を汎用の裁断機によって任意のサイズに裁断し、パラジウム金属微粒子を含む樹脂ペレットを得た。
[成形体の成形]
 本実施例で得られたパラジウム金属微粒子を含む樹脂ペレットを用いて、汎用の発泡射出成形機(日本製鋼所製、J40EL3-DK MUCELL)を用いて、汎用の発泡成形方法により、平板形状の発泡成形体を20個成形した。本実施例では、物理発泡剤として加圧窒素ガスを使用し、溶融樹脂の金型への樹脂充填率を金型キャビティの容積に対して65%に設定した。発泡成形体は、樹脂の内部発泡により所望の形状が得られた。
[メッキ膜の形成及び評価]
(1)試料(i)
 本実施例で得られた20個の発泡成形体のうち、10個に以下の方法によりメッキ膜を形成し、試料(i)を作製した。まず、発泡成形体を40℃の2.5N塩酸水溶液に1分浸漬した後、85℃の1,3-ブタンジオール水溶液(75vol%)に10分間浸漬させ、その後、85℃の無電解ニッケルメッキ液に15分浸漬し、ニッケルリンメッキ膜を形成した。次に、ニッケルリンメッキ膜上に、汎用の方法により、電解Cuメッキ膜20μm、光沢電解Niメッキ膜20μmを順に形成し、本実施例の試料(i)を得た。
 無電解ニッケルリンメッキ膜の形成過程を目視で観察した。発泡成形体を無電解ニッケルメッキ液に浸漬した後、10分以内に成形体全面に膜抜けなくメッキ膜が形成したことが確認された。また、ニッケルリンメッキ膜のみを形成した状態の試料(i)、即ち、電解メッキを行う前の試料(i)から、無作為に3個を抽出し、ニッケルリンメッキ膜を目視で観察した。その結果、単位面積(1cm)あたりのピンホール数は0~3個と非常に少なかった。
 次に、電解メッキ膜を形成した試料(i)の密着性評価(ピール試験)を行った。この結果、メッキ膜の密着力は、10N/cmであり、密着性の高いメッキ膜が形成されていることがわかった。更に、試料(i)に、-35℃の環境と90℃の環境に交互に曝すサイクル試験を3サイクル実施するヒートショック試験を行った。この結果、試料にメッキ膜の膨れ、剥が等は生じなかった。
(2)試料(ii)
 次に、本実施例で得られた20個の発泡成形体のうち、3個に試料(i)と同様の方法により、ニッケルリンメッキ膜を形成し、ニッケルリンメッキ膜上に、汎用の方法により、電解Cuメッキ膜20μm形成して、試料(ii)を得た。試料(ii)の中央部にLEDの光源を設置し、点灯後のLED光源の最高到達温度を赤外線サーモグラフィ(アピステ製、FSV-1200-L8)で観察する放熱性能試験を行った。その結果、LED光源の最高到達温度は84℃であった。一方、本実施例で得られた発泡成形体にメッキ膜を形成せずに同様の放熱性能試験を行った場合、LED光源の最高到達温度は120℃と高温であった。この原因は、樹脂中に含まれる放熱材料が少ないこと、及び成形体内部に存在する発泡セルの断熱効果である。本実施例の試料(ii)は、発泡成形体の低い放熱性能を質の高いメッキ膜により補完できることがわかった。
 また、試料を80℃に加熱したアルミ製の金属プレート上に試料(ii)を設置して、試料(ii)が一様にアルミプレート同じ温度になるまで加熱し、試料の加熱前後での温度変化による寸法変化を工具顕微鏡にて測定した。寸法変化量から基材の線膨張係数を求めたところ、試料(ii)の線膨張係数は 2.3×10-5と小さいことがわかった。
 更に、試料(ii)を23℃の水中に24hr時間浸漬する吸水試験を行い、浸漬前後での重量変化を測定した。その結果、23℃の水中に24時間浸漬した後の吸水による重量変化は、0.1%であった。一方、本実施例で得られた発泡成形体にメッキ膜を形成せずに同様の吸水試験を行ったところ、浸漬前後での重量変化は2.5%であった。この結果から、メッキ膜を形成することにより、発泡成形体の吸水を大きく抑制できることがわかった。このように吸水を抑制することで、本実施例の試料(ii)は、上述の低い線膨張係数を有するものと推察される。本実施例では、緻密なメッキ膜を形成することで、発泡成形体の吸水膨張による寸法変化を抑制することができた。
 尚、試料(ii)の比重は1.1g/cmと軽量であった。
 次に、本実施例における試料(ii)の断面のSEM観察を行った。ニッケルリンメッキ膜が形成された表面から深さ5μm以内には、メッキ膜と同じ種類の金属からなる金属領域、即ちニッケルリンからなる金属領域が形成されていた。表面から深さ5μm以内において、金属領域は成形体の20vol%以上を占有していた。そして、成形体のメッキ膜が形成された表面から金属領域が存在する範囲、即ち、成形体の表面から深さ5μmの範囲には、セル径が0.5μm以上の発泡セルは観察されず、発泡セルは実質的に存在しなかった。更に、成形体の表面から深さ100μmの範囲には、セル径5μm以上の発泡セルは観察できなかった。発泡セルは成形体表面から深さ100μm以上の内部に、10~50μmのセル径で存在していた。
 以上説明したように、本実施例では、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いることにより、汎用の成形機を使用して金属微粒子を含む成形体が製造でき、環境負荷が高い表面処理を行うことなく、成形体上にメッキ膜を形成することができた。更に、物理発泡剤を用いることにより、密着力が高く、ピンホール等の外観不良が少ない、質の高いメッキ膜を形成することができた。また、得られたメッキ膜を有する成形体は、密着性の高い高品質のメッキ膜を表面に有するので、放熱性能といった金属部品の性能を維持しつつ、軽量で且つ高温多湿環境下での信頼性が高い成形体であった。
[実施例5]
 本実施例では、金属微粒子と共に、親水性セグメントを含むブロック共重合体を含有した樹脂ペレットを製造した以外は、実施例4と同様の樹脂ペレット製造装置を用い、実施例4と同様の方法により、金属微粒子及びブロック共重合体を含む樹脂ペレットを作製した。また、本実施例では、該ペレット用いて、非発泡成形体を成形した。尚、ブロック共重合体としては、ポリエチレンオキシドとポリアミド成分をエステル結合させたポリエーテルエステルアミドブロック共重合体(三洋化成工業製、ペレスタットNC6321)を用いた。ポリエーテルエステルアミドブロック共重合体における親水性セグメントは、ポリエーテルであるポリエチレンオキシドである。
[樹脂ペレットの製造]
 図7に示す押出成形装置400において、樹脂供給用ホッパ411から熱可塑性樹脂と共にブロック共重合体のペレットを供給し、第1シリンダ410内において、熱可塑性樹脂とブロック共重合体を混合したこと以外は、実施例4と同様の方法により、樹脂ペレットを製造した。尚、ブロック共重合体は、樹脂ペレット中の濃度が、5wt%となるように、熱可塑性樹脂に混合した。
[成形体の成形]
 本実施例で得られた金属微粒子及びブロック共重合体を含む樹脂ペレットを用い、物理発泡剤を用いず、溶融樹脂の金型への樹脂充填率を金型キャビティの容積に対して100%に設定したこと以外は、実施例4と同じ条件にて成形を行い、板形状の非発泡成形体を20個成形した。
[メッキ膜の形成及び評価]
(1)試料(iii)
 本実施例で得られた20個の非発泡成形体のうち、10個に実施例4の試料(i)と同様の方法により、無電解ニッケルリンメッキ膜、電解Cuメッキ膜20μm、光沢電解Niメッキ膜20μmを順に形成し、本実施例の試料(iii)を得た。
 ニッケルリンメッキ膜の形成過程を目視で観察した。発泡成形体を無電解ニッケルメッキ液に浸漬した後、10分以内に全面に膜抜けなくメッキ膜が形成したことが確認された。また、ニッケルリンメッキ膜のみを形成した状態の試料(iii)、即ち、電解メッキを行う前の試料(iii)から、無作為に3個を抽出し、ニッケルリンメッキ膜を目視で観察した。その結果、単位面積(1cm)あたりのピンホール数は0~3個と少なかった。
 次に、電解メッキ膜を形成した試料(iii)の密着性評価(ピール試験)を行った。この結果、メッキ膜の密着力は、10N/cmであり、密着性の高いメッキ膜が形成されていることがわかった。更に、試料(iii)に、実施例4と同様にヒートショック試験を行った。この結果、試料(iii)にメッキ膜の膨れ、剥が等は生じなかった。
(2)試料(iv)
 次に、本実施例で得られた20個の非発泡成形体のうち、3個に試料(ii)と同様の方法により、ニッケルリンメッキ膜を形成し、ニッケルリンメッキ膜上に、汎用の方法により、電解Cuメッキ膜20μm形成して、試料(iv)を得た。実施例4と同様の方法により、試料(iv)の放熱性能試験を行った。その結果、LED光源の最高到達温度は84℃であり、実施例4と同等の性能を有していた。
 更に、実施例4と同様の方法により、試料(iv)の線膨張係数の測定と、吸水性試験を行った。その結果、試料の線膨張係数は2.3×10-5であり、吸水試験後の重量変化は、0.1%であり、実施例4と同等の性能を有していた。
 尚、本実施例の非発泡体である試料(iv)の比重は1.4g/cmであり、発泡体である実施例4の試料(ii)より大きかった。
 以上説明したように、本実施例では、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いることにより、汎用の成形機を使用して金属微粒子を含む成形体が製造でき、環境負荷が高い表面処理を行うことなく、成形体上にメッキ膜を形成することができた。更に、熱可塑性樹脂に、金属微粒子と共にブロック共重合体を含む樹脂ペレットを用いることにより、密着力が高く、ピンホール等の外観不良が少ない、質の高いメッキ膜を形成することができた。また、得られたメッキ膜を有する成形体は、非発泡成形体であるため、実施例4の試料と比較して比重は大きいが、密着性の高い高品質のメッキ膜を表面に有し、放熱性能が高く、高温多湿環境下での信頼性が高い成形体であった。
[実施例6] 
 本実施例では、実施例4で作製した樹脂ペレットを用いた以外は、実施例5と同じ条件にて板形状の非発泡成形体を20個成形した。
[メッキ膜の形成及び評価]
(1)試料(v)
 本実施例で得られた20個の発泡成形体のうち、10個に、実施例4と同様の方法により、無電解ニッケルリンメッキ膜、電解Cuメッキ膜20μm、光沢電解Niメッキ膜20μmを順に形成し、本実施例の試料(v)を得た。但し、実施例4と同様に、成形体を無電解ニッケルメッキ液に15分浸漬した時点では、成形体表面に形成されたメッキ膜は不均一でムラが生じていた。そこで、本実施例では、更に、成形体の無電解メッキ液への浸漬時間を延ばした。成形体を無電解メッキ液へ30分浸漬することにより、成形体の表面全体に無電解ニッケルリンメッキ膜を形成できた。
 本実施例のニッケルリンメッキ膜を形成した状態の試料(v)、即ち、電解メッキを行う前の試料(v)から、無作為に3個を抽出し、ニッケルリンメッキ膜を目視で観察した。その結果、単位面積(1cm)あたりのピンホール数は10~15個と、実施例4の試料(i)と比較して多かった。
 次に、電解メッキ膜を形成した試料(v)の密着性評価(ピール試験)を行った。この結果、メッキ膜の密着力は、6N/mであり、実施例4の試料(i)と比較して低かった。更に、本実施例の試料(v)に、実施例4と同様の方法によりヒートショック試験を行った。この結果、本実施例の試料(v)には、一部膜膨れ等の問題が生じた。
(2)試料(vi)
 次に、本実施例で得られた20個の非発泡成形体のうち、10個に試料(v)と同様の方法により、ニッケルリンメッキ膜を形成し、ニッケルリンメッキ膜上に、汎用の方法により、電解Cuメッキ膜20μm形成して、試料(vi)を得た。試料(vi)に対して、実施例4の試料(ii)と同様の方法により、放熱性能試験を行った。その結果、LED光源の最高到達温度は83℃であった。また、実施例4と同様の方法により、線膨張係数を測定し、吸水試験を行った。その結果、熱膨張係数は2.5×10-5、吸水試験後の重量変化は、0.1%であり、実施例4の試料(ii)と同等の性能が確認された。しかし、非発泡体である本実施例の試料は比重が1.4であり、発泡体である実施例4の試料(ii)と比較して大きかった。
 以上説明したように、本実施例では、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いることにより、汎用の成形機を使用して金属微粒子を含む成形体が製造でき、環境負荷が高い表面処理を行うことなく、成形体上にメッキ膜を形成することができた。但し、実施例4及び実施例5と比較すると、メッキ膜の質は、やや低下した。また、得られたメッキ膜を有する成形体は、放熱性能、熱膨張係数及び吸水試験後の重量変化は実施例4の試料と同等であったが、非発泡成形体であるため、実施例4の試料と比較して比重が大きかった。
[比較例2]
 本比較例は、金属微粒子を含む樹脂ペレットを用いず、代わりに、熱可塑性樹脂として熱伝導性材料である炭素材料を含む6ナイロンを用いた以外は、実施例5と同じ条件にて板形状の非発泡成形体を成形した。
 本実施例の成形体上に、実施例4と同様の方法により、ニッケルリンメッキ膜を形成しようとしたが、メッキ反応は生じず、ニッケルリンメッキ膜は形成できなかった。本比較例は、金属微粒子を含む樹脂ペレットを用いて成形体を製造していないため、成形体内部に無電解メッキの触媒が存在せず、メッキ反応が生じなかった。
 メッキ膜を有さない本比較例の試料に対して、実施例4と同様に、放熱性能試験を行った。その結果、LED光源の最高到達温度は82℃であり、実施例4の試料と同等の性能が確認された。しかし、本比較例の試料は比重が1.5と、実施例4の試料(ii)と比較して大きかった。また、本比較例では、成形体の射出成形時の充填圧力も高く、成形性も悪化した。
[実施例7]
 本実施例では、図11に示す射出成形装置3000を用いて、発泡成形を行いながら樹脂中に金属微粒子を導入することで、表面近傍にナノサイズの金属粒子が分散し、内部に独立発泡セルを有する発泡メッキ成形体を作製した。物理発泡剤としては加圧二酸化炭素を、樹脂としてはガラス繊維を30%混合した6ナイロン(東レ製CM1011G30)を、金属微粒子としては有機金属錯体であるヘキサフルオロアセチルアセトナトパラジウム(II)パラジウム錯体を用いた。
[射出成形装置]
 まず、本実施例で用いた射出成形装置3000について説明する。図11に示すように、射出成形装置3000は、金属微粒子を含む物理発泡剤である加圧二酸化炭素(以下、必要に応じて、「混合加圧流体」と記す)を可塑化シリンダ710に供給する物理発泡剤供給装置600と、可塑化シリンダ710と、金型955が設けられた型締めユニット950と、可塑化シリンダ710と金型955との間に位置するノズルユニット750と、制御装置(不図示)を備える。制御装置は、物理発泡剤供給装置600、可塑化シリンダ710、型締めユニット950及びノズルユニット750を動作制御する。物理発泡剤供給装置600は、加圧二酸化炭素と、金属微粒子を溶媒に溶解させた溶液Cとを混合して混合加圧流体を調製し、調製された混合加圧流体を可塑化シリンダ710に供給する。また、ノズルユニット750の先端にエアーシリンダ12の駆動により開閉するシャットオフバルブ36が設けられ、ノズルユニット750及び可塑化シリンダ710の内部を高圧に保持できる。ノズルユニット750の先端には、金型955が密着し、金型955が形成するキャビティ953内に、ノズルユニット750から溶融樹脂が射出充填される。
 ノズルユニット750については、上で説明したとおりである。更に、本実施例のノズルユニットは、樹脂流路6を形成する面において、樹脂抑え部10に対向する位置に温度センサ8が埋設されている。本実施例で用いたノズルユニット750の樹脂流路6の円形の断面はΦ6mmであり、樹脂押さえ部10の樹脂流動方向における長さLは20mmであった。以下、ノズルユニット750以外の射出成形装置3000の構成について説明する。
 物理発泡剤供給装置600は、加圧二酸化炭素に金属微粒子を溶解もしくは分散させて可塑化シリンダ710に導入する機構であれば任意であるが、本実施例においては注射器のように加圧二酸化炭素等を吸引、送液するシリンジポンプを備えた供給装置を用いた。本実施例の物理発泡剤供給装置600は、加圧二酸化炭素と金属微粒子を混合して供給する装置であり、サイフォン式の二酸化炭素ボンベ601より液体二酸化炭素を吸引した後、加圧して液体二酸化炭素を供給する二酸化炭素用シリンジポンプ602と、金属微粒子含有液体Cを加圧して供給する溶液用シリンジポンプ612より構成される。各シリンジポンプ602、612は圧力制御と流量制御が可能である。液体二酸化炭素ボンベ601と二酸化炭素用シリンジポンプ602とを接続する配管及び二酸化炭素用シリンジポンプ602と可塑化シリンダ710とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ604及び供給用エアオペレートバルブ605が配設されている。また、溶液槽611と溶液用シリンジポンプ612とを接続する配管及び溶液用シリンジポンプ612と可塑化シリンダ710とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ614及び供給用エアオペレートバルブ615が配設されている。
 可塑化シリンダ710は、内部に回転及び進退自在に配設されたスクリュ70と、内部に配置される上流側シール機構S1及び下流側シール機構S2とを備える。本実施例では、可塑化シリンダ710内において、可塑化溶融された溶融樹脂は、図11から図13における右手から左手に向かって流動する。したがって、本実施例の可塑化シリンダ710の内部においては、図11から図13における右手を「上流」又は「後方」、左手を「下流」又は「前方」と定義する。
 更に、図示しないが、可塑化シリンダ710の上流側の後端部には、スクリュ70を回転させる回転モータなどの回転駆動手段と、スクリュ70を前後進させるためのボールネジ及びそれを駆動させるモータなどの移動手段とが接続されている。なお、本実例では、可塑化シリンダ710の後方側から見た場合に、スクリュ70を反時計回りに回転させると溶融樹脂を前方(ノズル部側)に送る正回転をし、時計回りに回転させると逆回転するように構成されている。
 可塑化シリンダ710の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ710に供給するための樹脂供給口701、混合加圧流体を可塑化シリンダ710内に導入するための導入口702、及び可塑化シリンダ710内から余剰な二酸化炭素をガス化して排気するためのベント703が形成されている。これらの樹脂供給口701、及び導入口702にはそれぞれ、樹脂供給用ホッパ711、及び導入バルブ712が配設されており、ベント703には、孔形0.1~5μm程度の微細な連結多孔体からなる焼結体720が設置され、更にその先には、圧力計721及び背圧弁722が設けられている。導入バルブ712は、上述の物理発泡剤供給装置600と接続される。
 可塑化シリンダ710の外壁面には、バンドヒータ(図示せず)が配設されており、これにより可塑化シリンダ710が加熱されて、熱可塑性樹脂が可塑化溶融される。さらに、可塑化シリンダ710の下部側面の導入口702と対向する位置及びベント703に対向する位置にはそれぞれ、圧力及び温度をモニターするセンサ75、76が設けられている。
 可塑化シリンダ710では、樹脂供給口701から熱可塑性樹脂が供給され、熱可塑性樹脂は、バンドヒータによって可塑化されて溶融樹脂となり、スクリュ70が正回転することにより下流に送られる。そして、導入口702近傍まで送られた溶融樹脂は、導入された金属微粒子を含む加圧二酸化炭素と高圧下、接触混練される。次いで、混合加圧流体と接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化した二酸化炭素が溶融樹脂から分離し、ベント703からこのガス化した二酸化炭素が排気される。そして、さらに前方に送られた溶融樹脂はスクリュ70の先端部に押し出され、溶融樹脂の圧力がスクリュ70に対する反力となり、反力でスクリュ70が後退することにより溶融樹脂が計量される。可塑化シリンダ710内では、上流側から順に、熱可塑性樹脂を可塑化して溶融樹脂とする可塑化ゾーン71、溶融樹脂と導入口702から導入される混合加圧流体とを高圧下、接触混練する高圧混練ゾーン72、及び混合加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離された二酸化炭素をベント703から排気する減圧ゾーン73が形成される。更に、減圧ゾーン73の下流には、再昇圧ゾーン74が設けられる。再昇圧ゾーン74では、スクリュ前方に物理発泡剤の溶解した溶融樹脂が送りだされ計量が行われる。
 図11に示すように、上記可塑化ゾーン71、高圧混練ゾーン72、及び減圧ゾーン73の間にはそれぞれ、これらのゾーン71、72、73の連通状態を一時的に遮断する上流側シール機構S1及び下流側シール機構S2が配設されている。これにより、例えば、混合加圧流体を高圧混練ゾーン72に導入する際には、機械的に高圧混練ゾーン72の上流側及び下流側がシールされ、確実に高圧混練ゾーン72と隣接するゾーン71、73とを遮断できる。この結果、高圧混練ゾーン72の圧力は高圧に維持されるので、金属微粒子を溶融樹脂に効果的に浸透可能となる。上流側シール機構S1及び下流側シール機構S2は、ゾーン21、22、23の連通を遮断するものであれば、種々のものを利用できるが、本実施例では、後述するスクリュ20の回転状態に応じてこれらのゾーンの連通を遮断するものを用いた。上流側シール機構S1及び下流側シール機構S2の構造は、実施例1において用いた図2に示すペレット製造装置1000に設けられた上流側シール機構S1a及び下流側シール機構S2aと同様の構造である。
 スクリュ70の減圧ゾーン73に位置する部分は、図11に示すように、軸が細くフライトが深い形状を有する。このスクリュ形状により、減圧ゾーン73において樹脂の減圧は促進され、過剰な物理発泡剤はベント703から排出される。ベント703に設けられた焼結体720は、フィルタとして機能し、加圧二酸化炭素のみを選択的に排出し、溶融樹脂のベントアップを防ぐ。また、本実施例では、ベント703の先に設けられた背圧弁722を所定の圧力に設定することで、ベント703からの加圧二酸化炭素の排気量を制御した。これにより、余剰な物理発泡剤を排気すると共に、減圧ゾーン73の圧力を一定に制御できる。減圧ゾーンの圧力を一定に保持することで、可塑化シリンダ710内に導入する加圧二酸化炭素の量を毎ショット安定に制御することができる。更に、二酸化炭素排気時のベントアップ及び、樹脂成形体の不要な発泡等も防ぐことができる。
[成形方法]
 上で説明した図11に示す射出成形装置3000を用いて、以下に説明する方法により、発泡成形体を成形した。まず、吸引用エアオペレートバルブ604を開放して、液体二酸化炭素ボンベ601から液体二酸化炭素を吸引する。次に、二酸化炭素用シリンジポンプ602の圧力制御により所定圧力まで液体二酸化炭素を加圧する。本実施例では、二酸化炭素用シリンジポンプ602のヘッドと途中の経路を10℃に冷却し、圧力が13MPa、温度が10℃の加圧二酸化炭素を調製した。
 また、溶液用シリンジポンプ612側の吸引用エアオペレートバルブ614を開放して、溶液槽611から溶媒に金属微粒子を溶解させた溶液Cをフィルタ613を介して常温で吸引し、溶液用シリンジポンプ612の圧力制御により所定圧力まで溶液Cを加圧した。本実施例では、溶液Cの溶媒としてフッ素系有機溶媒であるパーフルオロペンチルアミンを用い、溶液Cを10MPaに加圧した。
 次に、供給用エアオペレートバルブ605、615を開放した後、二酸化炭素用シリンジポンプ602及び溶液用シリンジポンプ612を圧力制御から流量制御に切替え、加圧二酸化炭素と加圧した溶液Cとを所定の流量比となるように流動させる。これにより、配管内で加圧二酸化炭素と溶液Cとが混合され、かつ、可塑化シリンダ710内に混合加圧流体を導入する導入バルブ712までの系内を加圧する。本実施例において、混合加圧流体中の金属微粒子の濃度は、飽和溶解度の10~20%程度に制御した。
 本実施例の物理発泡剤供給装置600は、簡便なシステムでありながら、加圧二酸化炭素の流量を高精度に制御可能である。本実施例の場合、金属錯体を毎ショット定量供給する必要があるため、高精度な流量管理が必要となるため、本システムは有用である。一方、金属錯体を用いず、物理発泡剤のみにより発泡成形を行う場合(例えば、後述する実施例8の場合)、樹脂に不溶となる余乗な物理発泡剤は射出前に樹脂から排出するので、必ずしも物理発泡剤の導入送液量の管理は必要としない。
 一方、可塑化シリンダ710に樹脂供給用ホッパ711から樹脂のペレットを供給し、可塑化ゾーン71の外壁面に設けられたバンドヒータ(図示せず)により可塑化ゾーン71を加熱し、スクリュ70を正回転させ、樹脂を可塑化溶融した。本実施例では、可塑化シリンダ710は、図示しないバンドヒータで温調した。各ゾーンの設定温度は、可塑化ゾーン71で240~260℃、高圧混練ゾーン72で260℃、減圧ゾーン73で220~230℃、再昇圧ゾーン74で260℃とした。
 スクリュ70を正回転することにより、溶融樹脂を可塑化ゾーン71から高圧混練ゾーン72に流動させた。そして、高圧混練ゾーン72と、減圧ゾーン73及び可塑化ゾーン71とを遮断するため、可塑化計量完了位置よりも20mm手前(金型側位置)でスクリュ70の回転を一旦停止した後、スクリュ70を逆回転させた(回転数:50rpm)。これにより、上流側及び下流側シールリング40、60を上流側に移動させて、上流側及び下流側シールリング40、60とスクリュ70の縮径部30、50とを密着させ、高圧混練ゾーン72を、減圧ゾーン73及び可塑化ゾーン71から遮断した(図4及び図5参照)。
 図11に示すように、可塑化シリンダ710の導入口702には、加圧流を導入するための導入バルブ712が設けられている。この導入バルブ712は、可塑化シリンダ710の導入口702と連結された基端部に流体供給口718を有するとともに、内部に導入ピストン717を有している。従って、導入ピストン717で流体供給口718を開放することによって、物理発泡剤供給装置600から可塑化シリンダ710に混合加圧流体が任意のタイミングで導入される。本実施例では、上流側及び下流側シール機構S1、S2によって高圧混練ゾーン72をシールした後、シリンジポンプ602、612の駆動にあわせて、流体供給口718を開放して混合加圧流体を導入した。本実施例では、圧力10MPa、温度10℃とした混合加圧流体を、射出成形1ショット(重量75g)に3wt%導入した。これにより、射出成形1ショットの樹脂に対して、金属微粒子の溶液Cを0.3wt%導入し、金属錯体を設定量で100ppm分散させた。
 導入バルブ712直下に設けた圧力センサ75のモニターした可塑化シリンダ710の内部の圧力は、混合加圧流体の導入前は4MPaであり、混合加圧流体の導入後は、最高8MPaに上昇した。
 高圧混合流体を導入した後、2秒間逆回転を継続して高圧混合流体に含まれる金属錯体を高温の溶融樹脂中にて分散させた。この際に、高圧混合流体中に微量に含まれる金属錯体は熱で還元され金属化し樹脂中にてナノ粒子化するものと推測される。
 一方、背圧弁722を所定圧力に設定し、二酸化炭素ガスの排気量を制限することにより、減圧ゾーン73の圧力を一定の圧力に制御した。減圧ゾーン73の設定圧力は任意であるが、金属微粒子が加圧二酸化炭素に溶解する状態であると、加圧二酸化炭素と一緒にベント口703より排出されてしまうので、金属微粒子の溶解度以下の圧力であることが好ましい。減圧ゾーン73の設定圧力が低すぎると、混合加圧流体を導入した際の圧力変化が大きくなり、ショット間のばらつきが大きくなる。金属微粒子が減圧ゾーン73において変質しない場合、以上を鑑みて、減圧ソーン73の適正圧力は0.5~6MPaが好ましい。より好ましくは、1~4MPaである。本実施例では、4MPaに背圧弁722を設定し、減圧ゾーン73の圧力を、常時、4MPaに制御した。
 高圧混練ゾーン72に導入された混合加圧流体を、高圧混練ゾーン72で溶融樹脂中に高圧状態で分散させた後、スクリュ70を正回転(スクリュを可塑化する回転方向)する、又はスクリュ70の逆回転の回転数を低減させることで、高圧混練ゾーン72と減圧ゾーン73とを連通させた。本実施例では、スクリュ70の逆回転の回転数を低下させて(回転数:30rpm)、上流側及び下流側シールリング40、60を元の下流側の位置に戻し、上流側及び下流側シールリング40、60とスクリュ70の縮径部30、50とを離間させ、隙間Gを形成し、高圧混練ゾーン72と減圧ゾーン73を連通させた(図4及び図5参照)。このように、スクリュ70の逆回転の回転数を低下させることで、高圧混練ゾーン72の圧力を徐減圧した。次いで、スクリュ70を正回転に戻し、溶融樹脂を減圧ゾーン73へ流動させた。
 減圧ゾーン73へ流動した溶融樹脂及び混合加圧流体は、減圧ゾーンの設定圧力、4MPaまで圧力が低下した。これにより、余剰な物理発泡剤はガス化して溶融樹脂から分離した後、可塑化シリンダ710のベント703より排気された。尚、4MPaは、物理発泡剤である加圧二酸化炭素の臨界圧力以下である。
 ベント703から排気されるガスの成分分析を行ったところ、金属錯体は検出されなかった。これにより、ベント703から金属錯体が排出されていないことが確認された。これは、減圧ゾーン73において減圧されることで、物理発泡剤に対する金属錯体の溶解度が著しく低下したこと、及び金属錯体が還元されて物理発泡剤に不溶になったことが主な要因と考えられる。
 尚、加圧流体である物理発泡を用いる発泡射出成形では、樹脂中の発泡剤溶解濃度が高いほうが、樹脂充填後の金型内にて発泡剤濃度が過飽和になりやすく、発泡セル発生の核密度を高くすることができる。このため、樹脂中の発泡剤溶解濃度が高いほうが、発泡セルの微細化や密度向上のために好適である。本実施例の方法では、余乗な物理発泡剤は減圧ゾーン73で相分離して排出されるため、可塑化シリンダ内に過剰な物理発泡剤を導入及び溶解させることができる。また物理発泡剤の溶解した樹脂圧力は減圧されるため、飽和溶解度に近い濃度で物理発泡剤を樹脂に溶解させることができる。このため、本実施例の方法では、比較的低い圧力で良好な物理発泡成形体を得ることができる。
 次に、スクリュ70を正回転させ、溶融樹脂を可塑化シリンダ710の再昇圧ゾーン74及びノズルユニット750に送り、溶融樹脂の可塑化計量を開始した。
 一方、ノズルユニット750では、可塑化計量と同時に以下説明する手順で物理発泡剤を排出した。尚、物理発泡剤の排出は、ノズルユニット750のショットオフバルブ36を閉鎖した状態で行った。まず、図示しない温調機より、吐出圧力4kg/cmで30℃の水をピストン4内部の温度調節流路2に循環させ、ピストン4及び樹脂抑え部10を急速冷却し、温度センサ8の検知温度が260℃から180℃に低下するまで通水を行った。これにより、樹脂流路6において樹脂抑え部10の表面に接触する樹脂9を固化させた。尚、射出成形を連続して複数ショット行う場合には、ノズルユニット750における樹脂の冷却は、1回前のショットの樹脂が金型955へ充填され保圧が完了した直後に開始する。
 次に、図13(a)に示す樹脂流路6とノズルユニット750の外部が遮断された状態から、ピストン4を駆動して樹脂押さえ部10を後退させ、樹脂流路6とノズルユニット750の外部が排気路5により連通する図13(b)の状態とした。これにより、樹脂抑え部10と固化した樹脂9との間に隙間Dを設けた。本実施例においては、隙間Dは2mmとした。図13(b)の状態において、ノズルユニット750の外部と連通することで樹脂流路6内の圧力は低下し、樹脂内の物理発泡剤をガス化し排出した。本実施例において、ノズルユニット750に滞留するフローフロント部における樹脂中の二酸化炭素濃度を低下させるまでに約30秒を要した。
 その後、ピストン4を駆動させて樹脂抑え部10を樹脂流路6の方向へ移動させ、樹脂流路6とノズルユニット750の外部とを遮断した。樹脂抑え部10と固化した樹脂は接触して隙間Dは消滅し、図13(a)に示す状態となった。その直後、ピストン4周囲に巻いた銅管1に交流電源を流し、高周波誘導加熱によりピストン4及び樹脂抑え部10を急速加熱した。用いた交流電源の周波数は200kHz、出力は100kWとした。約10秒で樹脂温度センサ8の検知温度が260℃となり、樹脂流路6に位置する樹脂が溶融状態となった。
 その後、シャットオフバルブ36を開き、金型955に樹脂を射出充填した。保圧をかけた後、金型キャビティの厚みを2~3mm開くコアバック成形法により成形体内部に発泡セルを形成し、発泡成形体を得た。
 本実施例における発泡成形体の表面は光沢があり、スワルマークは確認されなかった。同材料で作製した無発泡成形体と比較した場合の比重低減率は、25%であった。次に、発泡成形体断面の発泡セルをSEMにより観察した。発泡セル径は平均約30μmであり、破泡は認められなかった。また、金型におけるゲート近傍と流動末端部に位置した部分の発泡セル径に大きな差異は認められなかった。以上の結果から、本実施例の方法により、表面が平滑で、内部に微細で均一な発泡セルを有する成形体を成形できることがわかった。
[無電解メッキ処理]
 次いで、本実施例の発泡成形体にメッキ処理を施した。2.5Nの塩酸溶液に発泡成形体を5分間浸漬させた後、80℃の1,3-ブタンジオール水溶液(濃度70vol.%)に5分浸漬させた。その後、80℃の無電解メッキ液(奥野製薬工業製 トップニコロンRCH)中に発泡成形体を浸漬し、5分間で全面に無電解ニッケルリン膜を形成した。その後、無電解ニッケルリン膜上に光沢電解メッキ膜20μm、電解ニッケルメッキ膜20μm、電解クロムメッキ膜0.3μmを順に形成し、装飾メッキ部品を作製した。得られた装飾メッキ部品の表面は光沢があり、一般に市販される光沢メッキ部品と同等の質感が得られた。
 一方、本実施例の発泡成形体を半分に切断して同様に無電解メッキを施した。その結果、切断面にメッキ成長は認められなかった。これより、メッキの触媒核である金属パラジウムは発泡成形体の表面近傍に偏析し、発泡成形体の内部に含まれる量は少量である事がわかった。本発明者らの検討によれば、本実施例の加圧二酸化炭素を用いた成形手法によると、パラジウム金属がナノ~サブナノの超微粒子となることがわかっている。そのため、射出充填時に低分子である微粒子(パラジウム金属)が表面にブリードアウトし、発泡成形体の表面に偏在するものと推察している。
 また、本発明者らは、物理発泡剤を用いた発泡射出成形では発泡ガスが成形体の表面に向かうため、成形体表面のパラジウムの濃度が高まり、メッキ反応性が高まることを見出している。これから、本実施例の成形方法において、加圧二酸化炭素は、成形体内部に発泡セルを形成する発泡剤として機能すると共に、金属微粒子の分散溶媒及びそれを成形体表面に押し上げる役目を担うガスとしても機能する。
[装飾メッキ部品の評価]
 上述のように、本実施例で作製した装飾メッキ部品の表面は光沢があり、一般に市販される光沢メッキ部品と同等の質感であった。また、装飾メッキ部品の比重は0.8g/cmと軽量であった。従来のABS樹脂を用いたメッキ部品の場合、比重は約1.1~1.2g/cmであるため、従来のメッキ部品と比較して、本実施例の装飾メッキ部品は約30%軽量化されることがわかった。
 次に、本実施例の装飾メッキ部品のヒートショック試験を行った。試験は、-35℃の環境と120℃の環境に交互に曝すサイクル試験を50サイクル行った。この結果、本実施例の装飾メッキ品にメッキ膜の膨れ、剥が等は生じなかった。以上の結果から、本実施例の装飾メッキ部品は、軽量であり意匠性に優れる上、耐熱性や信頼も有することがわかった。
[実施例8]
 本実施例では、物理発泡剤に加圧窒素を用い、シリンジポンプを備えた物理発泡剤供給装置600の代わりに、窒素ボンベから物理発泡剤を可塑化シリンダ710へ供給した。即ち、本実施例においては、物理発泡剤の導入量を計測して可塑化シリンダ710へ供給することは行なわなかった。また、本実施例では物理発泡剤のみを樹脂へ導入し、物理発泡剤への金属微粒子の溶解は行なわなかった。それ以外は、実施例7と同様の射出成形装置を用い、同様の方法により、発泡射出成形を行なった。
 まず、実施例7と同様に、スクリュ710で熱可塑性樹脂を可塑化溶融し、溶融樹脂を高圧混練ゾーン72流動させた。次に、実施例7と同様に、スクリュ70を逆回転させて、上流及び下流シール機構S1、S2により、高圧混練ゾーン72と、減圧ゾーン73及び可塑化ゾーン71とを遮断し、スクリュ70を停止させた後、次いで、高圧混練ゾーン72に物理発泡剤を供給した。物理発泡剤である窒素は、満充填時の圧力は14MPaの窒素ボンベ(不図示)から供給した。物理発泡剤は、窒素ボンベと可塑化シリンダ710の間にある減圧弁(不図示)により、減圧弁設定圧力の10MPaまで減圧した後、導入バルブ712から可塑化シリンダ710へ導入した。導入バルブ712の開放時間は5秒程度と長くし、多量の窒素ガスを可塑化シリンダ710内部に導入した。その際、高圧混練ゾーン72内部の圧力は、4MPaから9~10MPaに昇圧した。尚、物理発泡剤の導入量は計量しなかった。
 次に、実施例7と同様に、下流側シール機構S2により高圧混練ゾーン72と減圧ゾーン73とを連通させ、物理発泡剤が導入された溶融樹脂を下流の減圧ゾーン73へ流動させた。
 減圧ゾーン73へ流動した溶融樹脂及び物理発泡剤は、実施例7と同様に、減圧され、余剰な物理発泡剤をベント703より排気した。更に、実施例7と同様に、溶融樹脂を下流の再昇圧ゾーン74に送り可塑化計量し、溶融樹脂計量と並行して、実施例7と同様な方法でノズルユニット750の物理発泡剤排気機構3より物理発泡剤を排出した。その後、実施例7と同様な方法で、樹脂を金型955に射出充填し、コアバック成形法により発泡させ、発泡成形体を得た。
 本実施例で得られた発泡成形体の表面は光沢があり、スワルマークは確認されなかった。同材料で作製した無発泡成形体と比較した場合の比重低減率は、28%であった。次に、発泡成形体断面の発泡セルをSEMにより観察した。発泡セル径は平均約25μmであり、破泡は認められなかった。また、金型におけるゲート近傍と流動末端部に位置した部分の発泡セル径に大きな差異は認められなかった。以上の結果から、本実施例の方法により、表面が平滑で、内部に微細で均一な発泡セルを有する発泡成形体を形成できることがわかった。
 また、本実施例では、物理発泡剤として、窒素ボンベの窒素ガスを加圧せず、且つ厳密な流量制御を行わずに可塑化シリンダ710へ導入した。本実施例では、減圧ゾーン73において過剰な物理発泡剤を排気するので、物理発泡剤の可塑化シリンダ710への導入段階で、その導入量を厳密に制御する必要がなく、また、導入圧力を高圧とする必要もない。よって、流量制御装置及び加圧装置を有する必要がなく低コスト化が図れる。
 尚、以上説明した実施例7及び実施例8では、ノズルユニット750における物理発泡剤の排気以外に、可塑化シリンダ710のベント703においても物理発泡剤の排気を行った。しかし、本発明はこれに限定されず、射出成形装置3000において、ノズルユニット750においてのみ排気を行ってもよい。この場合、可塑化シリンダ710のベント703は不要となり、装置構成を簡略化できる。
[実施例9]
 本実施例では、汎用の物理発泡射出成形装置の可塑化シリンダの先端部を本発明のノズルユニットに取り替えて発泡成形を行なった。本実施例では、物理発泡剤としては加圧窒素を、樹脂としてはガラス繊維を30%混合したポリカーボネートを用いた。
[ノズルユニット]
 本実施例に用いたノズルユニットについて説明する。図14に示すように、本実施例で用いたノズルユニット760は、汎用の物理発泡射出成形装置(日本製鋼所社製、J40ELIII-DK-MuCell)の可塑化シリンダ(不図示)と金型(不図示)との間に位置し、可塑化シリンダから金型へ続く樹脂流路6が内部に形成されている。ノズルユニット760は、樹脂流路6内の樹脂の温度制御を行う温度制御機構7と、樹脂流路内の樹脂から物理発泡剤を排出する物理発泡剤排出機構745を有する。ノズルユニット760の流路6は円筒形であり、その円形の断面はΦ4mmであった。
 物理発泡剤排出機構745は、排出する物理発泡剤の流量及び圧力を制御する機能を有する。物理発泡剤排出機構745は、樹脂流路6の壁面の一部を形成する樹脂押さえ部10と、樹脂押さえ部10に接続し、樹脂流路6を広げるように樹脂押さえ部10を後退させるピストン4と、ピストン4が後退することにより、樹脂流路6と連通する排気路5を有し、排気路5の下流には、背圧弁743、減圧弁742及び流量制御装置741が設けられ、更に、背圧弁743及び減圧弁742により制御された圧力を表示する圧力計739及び740が設けられる。
 本実施例の温度制御機構7は、ノズルユニット760内部に設けられた水を循環させる温度調節流路2と、流路6の周囲に巻くように設けられた銅管1から構成される。温度調節流路2は、樹脂を冷却する冷却機構であり、銅管1は電磁誘導加熱により樹脂を加熱する電磁誘導加熱機構である。
[成形方法]
 まず、上記汎用の物理発泡射出成形装置を用いて一般的な方法により、可塑化シリンダ内において樹脂の可塑化溶融、及び樹脂への物理発泡剤の導入をおこなった。その後、樹脂をスクリュ前方及びノズルユニット760へ送り、樹脂の計量を開始した。物理発泡剤の導入圧力は20MPaとし、物理発泡剤の導入量は1ショット分の樹脂量に対して、0.1wt%とした。計量時の樹脂内圧は18MPaとして背圧にて圧力制御した。
 実施例7と同様に、可塑化計量と同時に以下説明する手順で物理発泡剤の排出を開始した。まず、図示しない温調機より、吐出圧力4kg/cmで30℃の水を温調流路2に循環させ、ピストン4及び樹脂抑え部10を急速冷却し、樹脂温度が300℃から220℃に低下するまで通水を行った。これにより、樹脂流路6において樹脂抑え部10の表面に接触する樹脂を固化させた。尚、射出成形を連続して複数ショット行う場合には、ノズルユニット760における樹脂の冷却は、1回前のショットの樹脂が金型へ充填され保圧が完了した直後に開始する。
 次に、ピストン4を駆動して樹脂押さえ部10を後退させ、樹脂流路6と排気路5が連通する状態とした。これにより、樹脂抑え部10と固化した樹脂との間に3mmの隙間を設けた。排気路5を介して排出される窒素の圧力を、まず、背圧弁743にて3MPaに制御し、次に、減圧弁742により0.5MPaに制御した。その後、更に下流に設けられる流量制御装置741により流量を制御しつつ、窒素の排出を行った。本実施例において、ズルユニット760に滞留する溶融樹脂のフローフロント部中の窒素濃度を低下させるまでに約40秒を要した。
 本実施例の高圧の物理発泡剤の排出方法によれば、圧力や流量を制御しながら排出するので、ノズルユニット先端部からの物理発泡剤の排出量に変動が生じにくいという利点がある。尚、本実施例では、物理発泡剤排出機構745によりフローフロント部の物理発泡剤を排出し、フローフロント部の物理発泡剤濃度を低減させたが、フローフロント部に溶解している物理発泡剤を完全には排出しなかった。
 物理発泡剤を排出した直後、ピストン4を駆動して樹脂押さえ部10を移動し、樹脂流路6と排気路5との連通を遮断した。そして、ノズルユニット760に埋め込まれた銅管1に高周波数の電流を流し、実施例7と同様に高周波誘導加熱により、樹脂流路6の樹脂を再溶融させた。本実施例においては、約10秒で、樹脂温度が300℃まで上昇した。
 その後、シャットオフバルブ36を開き、金型(不図示)に樹脂を射出充填した。保圧をかけた後、金型キャビティの厚みを1.5~3mm開くコアバック成形法により成形体内部に発泡セルを形成し、発泡成形体を得た。
 本実施例で得られた発泡成形体の表面は光沢があり、スワルマークは確認されなかった。同材料で作製した無発泡成形体と比較した場合の比重低減率は、25%であった。次に、発泡成形体断面の発泡セルをSEMにより観察した。発泡セル径は平均約20μmであり、破泡は認められなかった。また、金型におけるゲート近傍と流動末端部に位置した部分の発泡セル径に大きな差異は認められなかった。以上の結果から、本実施例の方法により、表面が平滑で、内部に微細で均一な発泡セルを有する成形体が成形できることがわかった。
 また、樹脂のフローフロント部より、物理発泡剤を完全に排出しなくとも、発泡成形体の表面性が良好になることがわかった。これは、フローフロント部の物理発泡剤の濃度が低下することで、金型と成形体表面の隙間に介在するガスは量が減少し、金型内で成形途中の樹脂に再溶融可能となるためと推察される。
 尚、以上説明した実施例7~9では、汎用の熱可塑性樹脂ペレットを用いて発泡成形体を成形したが、本発明の第1~3の実施形態で説明した、機能性材料を含有するブロック共重合体の樹脂ペレット、熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いて発泡成形体を成形することもできる。
[比較例3]
 本比較例においては、ノズルユニット750を有さない以外は、実施例8と同様な射出成形装置を用いて、同様な方法により発泡射出成形を行なった。即ち、本比較例に用いた射出成形装置は、可塑化シリンダ710の先端にシャットオフバルブが設けられ、その可塑化シリンダ710の先端には金型955が密着して設けられる。
 本比較例で成形した発泡成形体は、表面にスワルマークが認められ、実施例7~9で得られた発泡成形品と比較して、表面粗さが著しく悪化した。成形体内部の平均発泡セル径は18~20μm程度であり、同材料で作製した無発泡成形体と比較した場合の比重低減率は28%であった。本比較例により、フローフロント部から物理発泡剤を排出しない方が、発泡セル径の微細化や発泡倍率向上にはやや有利であるが、表面性が悪化することは避けられないことが確認された。
 本発明の機能性材料を含有するブロック共重合体の樹脂ペレット、又は熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用いると、汎用の射出成形機、押出成形機等の成形機を使用して、環境負荷が高い薬品を用いることなくメッキ膜の形成が可能な成形体を製造できる。したがって、新たな成形機を導入する等の設備投資をせずに、環境に配慮した製造方法を提供できる。
 本発明のノズルユニットを備える成形装置を用いて発泡成形体を製造すると、発泡成形体の表面を平滑にし、スワルマーク等の外観不良の発生を抑制できる。外観不良の問題を解決することで、発泡成形体は装飾メッキ等に容易に適用できるようになり、高付加価値化が図れる。
20   スクリュ
29a、29b ベントアップ防止カバー
100  加圧流体供給装置
200  押出成形装置
210  可塑化シリンダ
1000 ペレット製造装置
S1a、S1b 上流側シール機構
S2a、S2b 下流側シール機構
 
300  加圧流体供給装置
400  押出成形装置
500  樹脂冷却装置
800  成形体
801  発泡成形体
802  メッキ膜
801a 成形体の内部の領域
801b 成形体の表面近傍の領域
801c 発泡セル
2000 樹脂ペレット製造装置
 
3    物理発泡剤排出機構
6    樹脂流路
7    温度制御機構
20   スクリュ
600  物理発泡剤供給装置
710  可塑化シリンダ
750  ノズルユニット
950  型締めユニット
955  金型
3000 射出成形装置
S1   上流側シール機構
S2   下流側シール機構

Claims (47)

  1.  成形体の製造方法であって、
     親水性セグメントを含むブロック共重合体に機能性材料を混合することと、
     前記機能性材料が混合された前記ブロック共重合体を熱可塑性樹脂に混合することと、
     前記機能性材料及び前記ブロック共重合体が混合された熱可塑性樹脂を成形することを含む成形体の製造方法。
  2.  前記ブロック共重合体への前記機能性材料の混合は、前記機能性材料が溶解又は分散した加圧二酸化炭素を前記ブロック共重合体に接触させることにより行うことを特徴とする請求項1に記載の成形体の製造方法。
  3.  前記ブロック共重合体への機能性材料の混合が、
     前記ブロック共重合体を可塑化溶融することと、
     前記可塑化溶融したブロック共重合体に、前記機能性材料が溶解した加圧二酸化炭素を混合することと、
     前記機能性材料を混合した前記ブロック共重合体を押出成形した後、粉砕し、ペレットを得ることを含む請求項1又は2に記載の成形体の製造方法。
  4.  更に、前記成形体の表面に、前記ブロック共重合体が溶解する溶液を接触させ、前記成形体が含有する前記ブロック共重合体の一部を溶解し、除去することを含む請求項1~3のいずれか一項に記載の成形体の製造方法。
  5.  前記ブロック共重合体の前記親水性セグメントが、ポリエーテルである請求項1~4のいずれか一項に記載の成形体の製造方法。
  6.  前記ブロック共重合体の親水性セグメントが、ポリエチレンオキシドである請求項5に記載の成形体の製造方法。
  7.  前記熱可塑性樹脂がアミド基を含む請求項1~6のいずれか一項に記載の成形体の製造方法。
  8.  前記アミド基を含む熱可塑性樹脂は、6ナイロン又は6,6ナイロンである請求項7に記載の成形体の製造方法。
  9.  前記熱可塑性樹脂に、熱伝導性材料が分散されている請求項1~8のいずれか一項に記載の成形体の製造方法。
  10.  前記熱可塑性樹脂を成形することが、射出成形又は押出成形により成形することである請求項1~9のいずれか一項に記載の成形体の製造方法。
  11.  前記熱可塑性樹脂を成形することが、
     前記熱可塑性樹脂を可塑化溶融することと、
    可塑化溶融した前記熱可塑性樹脂に、加圧二酸化炭素又は加圧窒素の少なくとも一方の物理発泡剤を混合することと、
     前記物理発泡剤を含む前記熱可塑性樹脂を発泡させて発泡成形体を成形することを含む請求項1~9のいずれか一項に記載の成形体の製造方法。
  12.  前記機能性材料が金属微粒子である請求項1~11のいずれか一項に記載の成形体の製造方法。
  13.  前記金属微粒子が、パラジウムを含む請求項12に記載の成形体の製造方法。
  14.  前記金属微粒子が銀を含む請求項12に記載の成形体の製造方法。
  15.  メッキ膜を有する成形体の製造方法であって、
     請求項12又は13に記載の成形体の製造方法により成形体を製造することと、
     前記成形体の表面に無電解メッキ液を接触させ、メッキ膜を形成するとこを含むメッキ膜を有する成形体の製造方法。
  16.  前記メッキ膜が、ニッケルを含む請求項15に記載のメッキ膜を有する成形体の製造方法。
  17.  樹脂ペレットの製造方法であって、
     親水性セグメントを含むブロック共重合体を可塑化溶融することと、
     前記可塑化溶融したブロック共重合体に、機能性材料が溶解した加圧二酸化炭素を混合することと、
     前記機能性材料を混合した前記ブロック共重合体を押出成形した後、粉砕することを含む樹脂ペレットの製造方法。
  18.  前記機能性材料が金属微粒子である請求項17に記載の樹脂ペレットの製造方法。
  19.  前記機能性材料が銀又はパラジウムを含むことを特徴とする請求項18に記載の樹脂ペレットの製造方法。
  20.  前記ブロック共重合体の親水性セグメントが、ポリエーテルである請求項17~19のいずれか一項に記載の樹脂ペレットの製造方法。
  21.  前記ブロック共重合体の親水性セグメントが、ポリエチレンオキシドである請求項20に記載の樹脂ペレットの製造方法。
  22.  メッキ膜を有する成形体の製造方法であって、
     熱可塑性樹脂に金属微粒子を分散した樹脂ペレットを用意することと、
     前記樹脂ペレットを可塑化溶融して成形体を成形することと、
     前記成形体に無電解メッキ液を接触させて、前記成形体の表面にメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法。
  23.  前記成形体を成形することが、
     前記可塑化溶融した樹脂ペレットに、加圧二酸化炭素又は加圧窒素の少なくとも一方の物理発泡剤を混合することと、
     前記物理発泡剤を含む前記樹脂ペレットを発泡させて発泡成形体を成形することを含む請求項22に記載のメッキ膜を有する成形体の製造方法。
  24.  樹脂ペレットの製造方法であって、
     熱可塑性樹脂を可塑化溶融することと、
     前記可塑化溶融した熱可塑性樹脂に、金属微粒子が溶解した加圧二酸化炭素を混合することと、
     前記金属微粒子を混合した熱可塑性樹脂を押出成形した後、粉砕することを含む樹脂ペレットの製造方法。
  25.  請求項23に記載のメッキ膜を有する成形体の製造方法によって製造されたメッキ膜を有する発泡成形体。
  26.  請求項25に記載のメッキ膜を有する発泡成形体であって、
     内部に独立した発泡セルを有する発泡成形体と、該発泡成形体の表面に形成されたメッキ膜を有し、
     前記発泡成形体のメッキ膜が形成された表面から10μm以内の深さには、前記メッキ膜と同じ種類の金属からなる金属領域が形成されており、前記発泡成形体のメッキ膜が形成された表面から前記金属領域が存在する範囲には、前記発泡セルが実質的に存在しないメッキ膜を有する発泡成形体。
  27.  比重が1.2g/cm以下である請求項25又は26に記載のメッキ膜を有する発泡成形体。
  28.  23℃の水中に24時間浸漬した後の吸水による重量変化が、0.5%以下である請求項25~27のいずれか一項に記載のメッキ膜を有する発泡成形体。
  29.  前記発泡成形体が、アミド基を含む熱可塑性樹脂からなる請求項25~28のいずれか一項に記載のメッキ膜を有する発泡成形体。
  30.  前記アミド基を含む熱可塑性樹脂が、6ナイロン又は6,6ナイロンである請求項29に記載のメッキ膜を有する発泡成形体。
  31.  前記メッキ膜が、ニッケルを含む請求項25~30のいずれか一項に記載のメッキ膜を有する発泡成形体。
  32.  前記金属微粒子が、パラジウムを含む請求項25~31のいずれか一項に記載のメッキ膜を有する発泡成形体。
  33.  前記発泡成形体の内部に熱伝導性材料が分散されている請求項25~31のいずれか一項に記載のメッキ膜を有する発泡成形体。
  34.  発泡射出成形方法であって、
     可塑化シリンダと、金型と、前記可塑化シリンダと前記金型の間に位置するノズルユニットを有する射出成形装置を用いることと、
     前記可塑化シリンダにおいて、樹脂を可塑化溶融し、該可塑化溶融した樹脂に物理発泡剤を混合することと、
     前記ノズルユニットにおいて、前記物理発泡剤が混合した樹脂を冷却することと、
     前記ノズルユニットにおいて、前記冷却した樹脂から前記物理発泡剤を排出することと、
     前記ノズルユニットにおいて、前記物理発泡剤を排出した樹脂を加熱することと、
     前記加熱した樹脂を前記金型内に射出充填し、発泡成形体を得ることを含む発泡射出成形方法。
  35.  前記樹脂から前記物理発泡剤を排出することが、前記樹脂のフローフロント部から前記物理発泡剤を排出することである請求項34に記載の発泡射出成形方法。
  36.  前記ノズルユニットは、前記可塑化シリンダから前記金型へ続く樹脂流路が内部に形成されており、
     前記樹脂からの前記物理発泡剤の排出の際は、前記樹脂流路において、前記冷却した樹脂と前記樹脂流路を形成する壁面との間に隙間を設ける請求項34又は35に記載の発泡射出成形方法。
  37.  前記樹脂の加熱は、電磁誘導加熱法により行なわれる請求項34~36のいずれか一項に記載の発泡射出成形方法。
  38.  前記物理発泡剤が、加圧窒素又は加圧二酸化炭素である請求項34~37のいずれか一項に記載の発泡射出成形方法。
  39.  前記樹脂への前記物理発泡剤の混合が、金属微粒子を前記物理発泡剤に溶解又は分散し、前記金属微粒子を前記物理発泡剤と共に前記樹脂に混合することを含む請求項34~38のいずれか一項に記載の発泡射出成形方法。
  40.  メッキ膜を有する成形体の製造方法であって、
     請求項39に記載の発泡射出成形方法により、発泡成形体を成形することと、
     前記発泡成形体に無電解メッキ液を接触させ、前記発泡成形体の表面にメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法。
  41.  前記メッキ膜が、ニッケルを含む請求項40に記載のメッキ膜を有する成形体の製造方法。
  42.  請求項34~39のいずれか一項に記載の発泡射出成形方法に用いられるノズルユニット。
  43.  ノズルユニットであって、
     樹脂を可塑化溶融し、該樹脂に物理発泡剤を導入する可塑化シリンダと、前記可塑化溶融され物理発泡剤が導入された樹脂が射出充填される金型とを有する射出成形装置において用いられ、
     前記ノズルユニットは、
     前記可塑化シリンダと前記金型との間に位置し、前記可塑化シリンダから前記金型へ続く樹脂流路が内部に形成され、
     前記樹脂流路内の樹脂の温度制御を行う温度制御機構と、
     前記樹脂流路内の樹脂から、前記物理発泡剤を排出する物理発泡剤排出機構とを備えるノズルユニット。
  44.  前記樹脂流路を形成する壁面の一部が、前記樹脂流路の断面積を広げるように駆動可能に設けられている請求項43に記載のノズルユニット。
  45.  前記ノズルユニットの前記樹脂流路の断面積は、前記可塑化シリンダの断面積より小さい請求項43又は44に記載のノズルユニット。
  46.  前記温度制御機構が、電磁誘導加熱機構を含む請求項43~45のいずれか一項に記載のノズルユニット。
  47.  請求項43~46のいずれか一項に記載のノズルユニットを有する射出成形装置。
     
PCT/JP2013/055724 2012-03-02 2013-03-01 成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置 WO2013129659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13753253.7A EP2821195A4 (en) 2012-03-02 2013-03-01 METHOD FOR PRODUCING MOLDED BODY, PROCESS FOR PRODUCING MOLDED BODY HAVING PLATING FILM, PROCESS FOR PRODUCING RESIN PELLETS, MOLDED FOAM HAVING PLATEING FILM, FOAM INJECTION MOLDING METHOD, NOZZLE UNIT, AND METHOD FOR PRODUCING RESIN PELLETS INJECTION MOLDING APPARATUS
US14/016,861 US9421704B2 (en) 2012-03-02 2013-09-03 Method for producing molded product, method for producing molded product having plating film, method for producing resin pellet, foam molded product having plating film, foam injection molding method, nozzle unit, and injection molding apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012046723 2012-03-02
JP2012-046723 2012-03-02
JP2012052230 2012-03-08
JP2012-052230 2012-03-08
JP2012-081870 2012-03-30
JP2012081870 2012-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/016,861 Continuation US9421704B2 (en) 2012-03-02 2013-09-03 Method for producing molded product, method for producing molded product having plating film, method for producing resin pellet, foam molded product having plating film, foam injection molding method, nozzle unit, and injection molding apparatus

Publications (1)

Publication Number Publication Date
WO2013129659A1 true WO2013129659A1 (ja) 2013-09-06

Family

ID=49082845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055724 WO2013129659A1 (ja) 2012-03-02 2013-03-01 成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置

Country Status (4)

Country Link
US (1) US9421704B2 (ja)
EP (1) EP2821195A4 (ja)
JP (1) JPWO2013129659A1 (ja)
WO (1) WO2013129659A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117859A (ja) * 2012-12-14 2014-06-30 Hitachi Maxell Ltd 金属微粒子含有樹脂ペレットの製造方法、成形体の製造方法及びメッキ膜を有する成形体の製造方法
JP2016028887A (ja) * 2014-07-14 2016-03-03 学校法人同志社 熱溶解積層型3次元プリンタ用フィラメントおよびその製造方法
CN106574369A (zh) * 2014-07-24 2017-04-19 日立麦克赛尔株式会社 镀覆部件的制造方法
JP2019181890A (ja) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 ガス分析方法及び装置
JP7030353B1 (ja) 2020-09-02 2022-03-07 欧特捷実業股▲ふん▼有限公司 混合方法及びそのシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120637A1 (ja) * 2011-03-08 2012-09-13 日立マクセル株式会社 混練装置、及び熱可塑性樹脂成形体の製造方法
CN109153162B (zh) * 2016-04-21 2021-08-24 英威达纺织(英国)有限公司 用于注塑中改进流动的树脂
JP6777553B2 (ja) * 2017-01-11 2020-10-28 マクセル株式会社 発泡成形体の製造方法及び製造装置
US10417976B2 (en) * 2017-03-22 2019-09-17 Wuhan China Star Optoelectronics Technology Co., Ltd. Pixel rendering method and pixel rendering device
BR102017012176A2 (pt) * 2017-06-08 2018-12-26 Tamam Trading DWC-LLC método, máquina e sistema integrado para reciclar refugo de desagregador em materia prima aplicável para produção em termoinjeção e produto obtido a partir do dito método e máquina
CN111716584A (zh) * 2020-05-18 2020-09-29 泰州市季氟隆塑胶制品有限公司 一种大尺寸pfa成型工艺

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625576B2 (ja) 1991-04-05 1997-07-02 マサチユーセツツ・インステイテユート・オブ・テクノロジー 超微孔質発泡材料
JP2002322288A (ja) * 2001-04-25 2002-11-08 Mitsui Chemicals Inc 熱可塑性樹脂組成物の製造方法
JP2003175533A (ja) * 2001-10-02 2003-06-24 Asahi Kasei Corp 射出成形法及び該成形品
JP2005280362A (ja) 2002-05-22 2005-10-13 Hitachi Maxell Ltd 成形品の製造方法
JP2006069215A (ja) * 1996-04-04 2006-03-16 Mitsui Chemicals Inc 熱可塑性樹脂発泡射出成形体
JP3845191B2 (ja) 1998-02-24 2006-11-15 株式会社プライムポリマー 成形用金型および軽量樹脂成形品の成形方法
JP2007130982A (ja) 2005-11-14 2007-05-31 Hitachi Maxell Ltd 超臨界流体を用いた熱可塑性樹脂の射出成形方法
JP2008144197A (ja) * 2006-12-07 2008-06-26 Hitachi Maxell Ltd ポリマー部材及びその製造方法
JP4160623B2 (ja) 2007-02-01 2008-10-01 日立マクセル株式会社 ポリマー部材の製造方法及び製造装置
JP2008247962A (ja) * 2007-03-29 2008-10-16 Hitachi Maxell Ltd プラスチックの表面改質方法及び金属膜の形成方法
JP2008255390A (ja) * 2007-04-02 2008-10-23 Hitachi Maxell Ltd メッキ膜の形成方法及び無電解メッキ液
JP2010030106A (ja) 2008-07-28 2010-02-12 Hitachi Maxell Ltd 樹脂成形体の製造方法
JP2010046952A (ja) * 2008-08-22 2010-03-04 Dic Corp プラスチックメッキ体の製造方法及びプラスチックメッキ体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098860A (en) * 1975-10-11 1978-07-04 Toyo Boseki Kabushiki Kaisha Production of biaxially drawn film of polyamide blend
US5997781A (en) * 1996-04-04 1999-12-07 Mitsui Chemicals, Inc. Injection-expansion molded, thermoplastic resin product and production process thereof
JPH09302212A (ja) * 1996-05-20 1997-11-25 Elf Atochem Japan Kk 熱可塑性樹脂組成物
JP2005088426A (ja) * 2003-09-18 2005-04-07 Auto Network Gijutsu Kenkyusho:Kk 添加剤を添加可能な射出成形機
JP3914961B2 (ja) * 2005-08-18 2007-05-16 日立マクセル株式会社 成形品の製造方法、押し出し成形装置及び成形品
KR100950189B1 (ko) * 2005-09-22 2010-03-29 미쓰비시 쥬시 가부시끼가이샤 다공 적층체의 제조 방법 및 다공 적층체
US20070264451A1 (en) 2006-05-11 2007-11-15 Hitachi Maxell, Ltd. Method of manufacturing polymer member and polymer member
JP4105753B2 (ja) * 2006-08-14 2008-06-25 日立マクセル株式会社 プラスチック部材の表面改質方法、金属膜の形成方法及びプラスチック部材の製造方法
JP4105214B1 (ja) * 2007-04-02 2008-06-25 日立マクセル株式会社 メッキ膜の形成方法並びにポリマー部材及びその製造方法
JP5638251B2 (ja) * 2009-01-30 2014-12-10 三洋化成工業株式会社 帯電防止剤
JP4746708B2 (ja) * 2010-09-13 2011-08-10 日立マクセル株式会社 成形品の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625576B2 (ja) 1991-04-05 1997-07-02 マサチユーセツツ・インステイテユート・オブ・テクノロジー 超微孔質発泡材料
JP2006069215A (ja) * 1996-04-04 2006-03-16 Mitsui Chemicals Inc 熱可塑性樹脂発泡射出成形体
JP3845191B2 (ja) 1998-02-24 2006-11-15 株式会社プライムポリマー 成形用金型および軽量樹脂成形品の成形方法
JP2002322288A (ja) * 2001-04-25 2002-11-08 Mitsui Chemicals Inc 熱可塑性樹脂組成物の製造方法
JP2003175533A (ja) * 2001-10-02 2003-06-24 Asahi Kasei Corp 射出成形法及び該成形品
JP2005280362A (ja) 2002-05-22 2005-10-13 Hitachi Maxell Ltd 成形品の製造方法
JP2007130982A (ja) 2005-11-14 2007-05-31 Hitachi Maxell Ltd 超臨界流体を用いた熱可塑性樹脂の射出成形方法
JP2008144197A (ja) * 2006-12-07 2008-06-26 Hitachi Maxell Ltd ポリマー部材及びその製造方法
JP4160623B2 (ja) 2007-02-01 2008-10-01 日立マクセル株式会社 ポリマー部材の製造方法及び製造装置
JP2008247962A (ja) * 2007-03-29 2008-10-16 Hitachi Maxell Ltd プラスチックの表面改質方法及び金属膜の形成方法
JP2008255390A (ja) * 2007-04-02 2008-10-23 Hitachi Maxell Ltd メッキ膜の形成方法及び無電解メッキ液
JP2010030106A (ja) 2008-07-28 2010-02-12 Hitachi Maxell Ltd 樹脂成形体の製造方法
JP2010046952A (ja) * 2008-08-22 2010-03-04 Dic Corp プラスチックメッキ体の製造方法及びプラスチックメッキ体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821195A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117859A (ja) * 2012-12-14 2014-06-30 Hitachi Maxell Ltd 金属微粒子含有樹脂ペレットの製造方法、成形体の製造方法及びメッキ膜を有する成形体の製造方法
JP2016028887A (ja) * 2014-07-14 2016-03-03 学校法人同志社 熱溶解積層型3次元プリンタ用フィラメントおよびその製造方法
CN106574369A (zh) * 2014-07-24 2017-04-19 日立麦克赛尔株式会社 镀覆部件的制造方法
JP2019181890A (ja) * 2018-04-17 2019-10-24 ポリプラスチックス株式会社 ガス分析方法及び装置
JP7078443B2 (ja) 2018-04-17 2022-05-31 ポリプラスチックス株式会社 ガス分析方法及び装置
JP7030353B1 (ja) 2020-09-02 2022-03-07 欧特捷実業股▲ふん▼有限公司 混合方法及びそのシステム
JP2022042458A (ja) * 2020-09-02 2022-03-14 欧特捷実業股▲ふん▼有限公司 混合方法及びそのシステム

Also Published As

Publication number Publication date
EP2821195A1 (en) 2015-01-07
EP2821195A4 (en) 2015-11-11
US9421704B2 (en) 2016-08-23
JPWO2013129659A1 (ja) 2015-07-30
US20140004335A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
WO2013129659A1 (ja) 成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体、発泡射出成形方法、ノズルユニット及び射出成形装置
JP3998374B2 (ja) 超臨界二酸化炭素の添加方法および当該添加方法を用いた熱可塑性樹脂発泡体の製造方法
JP6072599B2 (ja) メッキ膜を有する成形体の製造方法及びメッキ膜を有する成形体
JP5675956B2 (ja) 混練装置、及び熱可塑性樹脂成形体の製造方法
JP2013213276A (ja) メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、メッキ膜を有する発泡成形体及びメッキ膜を有する成形体
EP3126554B1 (en) Systems and methods for producing materials suitable for additive manufacturing using a hydrodynamic cavitation apparatus
JP2007130982A (ja) 超臨界流体を用いた熱可塑性樹脂の射出成形方法
JP2007321934A (ja) 貯蔵容器、樹脂の成形方法及びメッキ膜の形成方法
CN1864981A (zh) 可控制微气泡核于流体聚合物材料的生成方法及其装置
US20220111560A9 (en) Systems and methods for producing materials suitable for additive manufacturing using a hydrodynamic cavitation apparatus
KR20080015371A (ko) 플라스틱부재의 표면개질방법, 금속막의 형성방법 및플라스틱부재의 제조방법
JP5070152B2 (ja) 樹脂成形体の製造方法
KR20200011486A (ko) 발포 성형체의 제조 방법 및 발포 성형체
WO2018117160A1 (ja) メッキ成形体の製造方法及びメッキ成形体
KR20100135671A (ko) 도금막을 가지는 폴리머부재의 제조방법
JP2008188799A (ja) ポリマー部材の製造方法及び製造装置
JP4105214B1 (ja) メッキ膜の形成方法並びにポリマー部材及びその製造方法
JP6318001B2 (ja) メッキ膜を有する成形体の製造方法
JP4092360B1 (ja) ポリマー部材及びその製造方法
JP5138394B2 (ja) ポリマー部材
JP2009073994A (ja) 無機材料分散ポリマーにおける無機材料抽出方法、複合体の製造方法、ポリマー成形体、及び反射板
JP2014117859A (ja) 金属微粒子含有樹脂ペレットの製造方法、成形体の製造方法及びメッキ膜を有する成形体の製造方法
JP2014155972A (ja) ナノ粒子の製造方法、成形体の製造方法、メッキ膜を有する成形体の製造方法、樹脂ペレットの製造方法、ナノ粒子、成形体及び樹脂ペレット
JP2014105361A (ja) メッキ膜を有する成形体の製造方法
JP2015036432A (ja) メッキ膜を有する成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013538741

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013753253

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE