WO2013129399A1 - 強化電解質膜およびその製造方法 - Google Patents

強化電解質膜およびその製造方法 Download PDF

Info

Publication number
WO2013129399A1
WO2013129399A1 PCT/JP2013/054964 JP2013054964W WO2013129399A1 WO 2013129399 A1 WO2013129399 A1 WO 2013129399A1 JP 2013054964 W JP2013054964 W JP 2013054964W WO 2013129399 A1 WO2013129399 A1 WO 2013129399A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
yarn
reinforced
reinforced electrolyte
sacrificial
Prior art date
Application number
PCT/JP2013/054964
Other languages
English (en)
French (fr)
Inventor
泰 山木
草野 博光
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014502250A priority Critical patent/JP6270714B2/ja
Priority to DE112013001160.3T priority patent/DE112013001160B4/de
Priority to CN201380009729.9A priority patent/CN104114749B/zh
Priority to IN6873DEN2014 priority patent/IN2014DN06873A/en
Publication of WO2013129399A1 publication Critical patent/WO2013129399A1/ja
Priority to US14/467,192 priority patent/US9435044B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a reinforced electrolyte membrane reinforced with a woven fabric used as an ion exchange membrane or the like used in an alkali chloride electrolysis method and a method for producing the same.
  • Ion exchange groups (carboxylic acid type functional groups, sulfonic acid type functional groups, etc.) are used as ion exchange membranes used in the alkaline chloride electrolysis method that produces alkaline hydroxide and chlorine by electrolyzing an aqueous alkali chloride solution such as seawater.
  • An electrolyte membrane made of a fluorine-containing polymer is known.
  • the electrolyte membrane is usually a reinforced electrolyte membrane reinforced with a woven fabric made of reinforcing yarn (polytetrafluoroethylene (hereinafter referred to as PTFE) yarn) in order to maintain mechanical strength and dimensional stability.
  • PTFE polytetrafluoroethylene
  • a reinforced electrolyte membrane in which the electrolyte membrane is reinforced with a woven fabric made of PTFE yarn or the like has a problem that the membrane resistance increases and the electrolysis voltage increases.
  • PET yarn and sacrificial yarn soluble in an alkaline aqueous solution polyethylene terephthalate (hereinafter referred to as PET) yarn or the like) are woven is proposed (Patent Documents 1 and 2). .
  • the sacrificial yarn (i) hydrolyzes a precursor group by immersing a reinforced precursor film in which a precursor film containing a fluorine-containing polymer having a precursor group of an ion exchange group is reinforced with a woven fabric in an alkaline aqueous solution.
  • reinforced electrolyte membranes are produced by converting them to ion exchange groups, and (ii) when reinforced electrolyte membranes are placed in an electrolytic cell and conditioning operations are performed prior to the main operation of alkaline chloride electrolysis, they are eluted in an alkaline aqueous solution. Therefore, at the time of the main operation of the alkali chloride electrolysis using the reinforced electrolyte membrane, the membrane resistance is not affected.
  • cracks and the like are not damaged during the handling of the reinforced electrolyte membrane from the production of the reinforced electrolyte membrane to the time before the conditioning operation of alkaline chloride electrolysis or when the reinforced electrolyte membrane is installed in the electrolytic cell during the conditioning operation.
  • a reinforced electrolyte membrane that hardly generates and a method for producing the same are provided.
  • the reinforced electrolyte membrane of the present invention is a reinforced electrolyte membrane in which an electrolyte membrane containing a fluorine-containing polymer having an ion exchange group is reinforced with a woven fabric composed of a reinforcing yarn and a sacrificial yarn, and the electrolyte membrane includes The sacrificial yarn remains, and a gap is formed between the sacrificial yarn and the electrolyte membrane, and the sum of the cross-sectional area of the sacrificial yarn and the cross-sectional area of the gap is A, and the cross-sectional area of the sacrificial yarn.
  • B the following expressions (1) and (2) are satisfied. 2000 ⁇ m 2 ⁇ A ⁇ 6000 ⁇ m 2 ⁇ (1), 0.3 ⁇ B / A ⁇ 1.0 (2).
  • the reinforced electrolyte membrane of the present invention preferably satisfies the following formula (1 ′). 2000 ⁇ m 2 ⁇ A ⁇ 4000 ⁇ m 2 ⁇ (1 ').
  • the sacrificial yarn is preferably a yarn containing at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, rayon, and cellulose.
  • the sacrificial yarn is preferably a polyethylene terephthalate yarn, a yarn made of a mixture of polyethylene terephthalate and polybutylene terephthalate, a polybutylene terephthalate yarn, or a polytrimethylene terephthalate yarn.
  • the method for producing a reinforced electrolyte membrane according to the present invention is a method for producing the reinforced electrolyte membrane according to the present invention, wherein the precursor membrane containing a fluorine-containing polymer having a precursor group of an ion exchange group comprises a reinforcing yarn and a sacrificial yarn.
  • the precursor group is hydrolyzed to be converted into the ion exchange group, thereby forming the reinforced electrolyte film.
  • the reinforced electrolyte membrane of the present invention is cracked during the handling of the reinforced electrolyte membrane from the production of the reinforced electrolyte membrane to the time before the conditioning operation of alkaline chloride electrolysis or when the reinforced electrolyte membrane is installed in the electrolytic cell during the conditioning operation. It is difficult to cause damage.
  • the reinforced electrolyte membrane can be applied to the electrolytic cell during the handling or conditioning operation of the reinforced electrolyte membrane after the production of the reinforced electrolyte membrane and before the conditioning operation of alkali chloride electrolysis. At the time of installation, a reinforced electrolyte membrane in which breakage such as cracks hardly occurs can be manufactured.
  • FIG. 1 is a cross-sectional view showing an example of the reinforced electrolyte membrane of the present invention.
  • the reinforced electrolyte membrane 1 is obtained by reinforcing an electrolyte membrane 10 containing a fluorine-containing polymer having an ion exchange group with a woven fabric 20.
  • the electrolyte membrane 10 has a layer made of a fluorine-containing polymer having a carboxylic acid type functional group (hereinafter referred to as a first layer 12) as a functional layer that exhibits high current efficiency, and maintains mechanical strength. It is a laminate comprising a layer made of a fluorinated copolymer having a sulfonic acid type functional group (hereinafter referred to as the second layer 14).
  • Examples of the fluorinated polymer having a carboxylic acid type functional group include a copolymer of a unit derived from a fluorinated monomer having a carboxylic acid type functional group and a unit derived from a fluorinated olefin.
  • the carboxylic acid type functional group is a carboxylic acid group (—COOH) itself or —COOM (where M is an alkali metal or a quaternary ammonium base).
  • the fluoropolymer having a carboxylic acid type functional group converts the precursor group of the fluoropolymer having a precursor group of a carboxylic acid type functional group described later into a carboxylic acid type functional group in the step (b) described later. Can be obtained.
  • the thickness of the first layer 12 is preferably 5 to 50 ⁇ m, more preferably 10 to 35 ⁇ m. If the thickness of the 1st layer 12 is 5 micrometers or more, while being able to express high current efficiency, when electrolysis of sodium chloride is performed, the amount of sodium chloride in sodium hydroxide used as a product may be reduced. it can. When the thickness of the first layer 12 is 50 ⁇ m or less, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed.
  • the second layer 14 has a laminated structure of an upper layer and a lower layer in order to embed the woven fabric 20 in the second layer 14.
  • a woven fabric 20 is inserted between the upper layer and the lower layer of the second layer 14.
  • Examples of the fluorine-containing polymer having a sulfonic acid type functional group include a copolymer of a unit derived from a fluorine-containing monomer having a sulfonic acid type functional group and a unit derived from a fluorine-containing olefin.
  • the sulfonic acid type functional group is a sulfonic acid group (—SO 3 H) itself or —SO 3 M (where M is an alkali metal or a quaternary ammonium base).
  • the fluorine-containing polymer having a sulfonic acid type functional group converts the precursor group of the fluorine-containing polymer having a precursor group of a sulfonic acid type functional group described later into a sulfonic acid type functional group in the step (b) described later. Can be obtained.
  • the thickness of the lower layer of the second layer 14 is preferably 30 to 140 ⁇ m, and more preferably 30 to 100 ⁇ m.
  • the thickness of the lower layer of the second layer 14 is 30 ⁇ m or more, the mechanical strength of the electrolyte membrane 10 is sufficiently high.
  • the thickness of the lower layer of the first layer 12 is 140 ⁇ m or less, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed.
  • the thickness of the upper layer of the second layer 14 is preferably 10 to 60 ⁇ m, and more preferably 10 to 40 ⁇ m. If the thickness of the upper layer of the second layer 14 is 10 ⁇ m or more, the woven fabric 20 is accommodated in the electrolyte membrane 10, and the peeling resistance of the woven fabric 20 is improved, and the woven fabric 20 is formed on the surface of the electrolyte membrane 10. It does not approach too much, and it is difficult for cracks to enter the surface of the electrolyte membrane 10, and as a result, a decrease in mechanical strength is suppressed. If the thickness of the upper layer of the first layer 12 is 60 ⁇ m or less, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and the increase in electrolytic voltage can be sufficiently suppressed.
  • the woven fabric 20 is a reinforcing material that reinforces the electrolyte membrane 10 and is normally embedded in the second layer 14 in a state of being inserted between the upper layer and the lower layer of the second layer 14.
  • the woven fabric 20 is a woven fabric composed of reinforcing yarns 22 and sacrificial yarns 24.
  • the density (the number of driving) of the reinforcing yarn 22 is preferably 3 to 50 yarns / cm, and more preferably 8 to 30 yarns / cm.
  • the density of the reinforcing yarn 22 is 3 / cm or more, the mechanical strength as the reinforcing material is sufficiently high. If the density of the reinforcing yarns 22 is 50 pieces / cm or less, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed.
  • the density of the sacrificial yarn 24 is an even multiple of the density of the reinforcing yarn 22. In the case of an odd number of times, the warp yarns and the weft yarns of the reinforcing yarn 22 do not alternately cross up and down, so that the fabric structure is not formed after the sacrificial yarn 24 is eluted.
  • the density of the sacrificial yarn 24 is preferably an even multiple of 2 to 10 times the density of the reinforcing yarn 22.
  • the total density of the reinforcing yarn 22 and the sacrificial yarn 24 is preferably 20 to 100 yarns / cm from the viewpoint of ease of weaving and difficulty of misalignment.
  • the opening ratio of the woven fabric composed only of the reinforcing yarn 22 after the sacrificial yarn 24 is eluted is preferably 70 to 90%, more preferably 80 to 90%. If the opening ratio of the woven fabric is 70% or more, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and the increase in electrolytic voltage can be sufficiently suppressed. When the opening ratio of the woven fabric is 90% or less, the mechanical strength as the reinforcing material is sufficiently high.
  • the aperture ratio of the woven fabric can be obtained from an optical micrograph.
  • the thickness of the woven fabric 20 is preferably 5 to 40 ⁇ m or less, and more preferably 5 to 35 ⁇ m. When the thickness of the woven fabric 20 is 5 ⁇ m or more, the mechanical strength as the reinforcing material is sufficiently high. When the thickness of the woven fabric 20 is 40 ⁇ m or less, the thickness of the yarn intersection is suppressed, and the influence of the increase in electrolytic voltage due to the current shielding of the woven fabric 20 can be sufficiently suppressed.
  • the reinforcing yarn 22 maintains the mechanical strength and dimensional stability of the reinforced electrolyte membrane 1 as a residual yarn constituting the woven fabric after the sacrificial yarn is eluted.
  • the reinforcing yarn 22 preferably has resistance to high temperature, chlorine, sodium hypochlorite, and sodium hydroxide in alkali chloride electrolysis.
  • the reinforcing yarn 22 is preferably a yarn containing a fluorine-containing polymer, more preferably a yarn containing a perfluorocarbon polymer, more preferably a yarn containing PTFE, and only PTFE from the viewpoint of mechanical strength, heat resistance and chemical resistance.
  • a PTFE yarn made of is particularly preferred.
  • the reinforcing yarn 22 may be a monofilament or a multifilament.
  • a monofilament is preferable from the viewpoint of easy spinning, and a tape yarn obtained by slitting a PTFE film is more preferable.
  • the fineness of the reinforcing yarn 22 is preferably 25 to 400 denier, more preferably 50 to 200 denier. If the fineness of the reinforcing yarn 22 is 25 denier or more, the mechanical strength is sufficiently high. When the fineness of the reinforcing yarn 22 is 400 denier or less, the membrane resistance of the reinforced electrolyte membrane 1 can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed. In addition, the reinforcing yarn 22 does not come too close to the surface of the electrolyte membrane 10, and cracks are unlikely to enter the surface of the electrolyte membrane 10. As a result, a decrease in mechanical strength is suppressed.
  • the sacrificial yarn 24 is obtained by immersing a reinforced precursor film in which a precursor film containing a fluorine-containing polymer having a precursor group of an ion exchange group is reinforced with a woven fabric 20 in an alkaline aqueous solution.
  • a reinforced electrolyte membrane 1 is produced by hydrolysis and conversion into ion exchange groups, a part of the membrane is eluted into an alkaline aqueous solution, and (ii) the reinforced electrolyte membrane 1 is placed in an electrolytic cell, and chlorinated.
  • the conditioning operation before the main operation of alkaline electrolysis is performed, the remainder is completely eluted into the alkaline aqueous solution and removed.
  • the sacrificial yarn in the present invention is defined as one in which all of the sacrificial yarn is eluted into the aqueous sodium hydroxide solution by immersing the reinforced electrolyte membrane in a 32% by mass aqueous sodium hydroxide solution at 25 ° C. for 24 hours. If all of the sacrificial yarn elutes in the aqueous sodium hydroxide solution under these conditions, the sacrificial yarn is completely alkaline aqueous solution when the reinforced electrolyte membrane is placed in the electrolytic cell and the conditioning operation is performed before the main operation of alkali chloride electrolysis. To be removed.
  • the sacrificial yarn 24 is a yarn containing at least one selected from the group consisting of PET, polybutylene terephthalate (hereinafter referred to as PBT), polytrimethylene terephthalate (hereinafter referred to as PTT), rayon, and cellulose. More preferably, PET yarn made of PET alone, PET / PBT yarn made of a mixture of PET and PBT, PBT yarn made of PBT alone, or PTT yarn made of PTT alone is more preferred.
  • the sacrificial yarn 24 is preferably a PET yarn from the viewpoint of cost.
  • the sacrificial yarn 24 is preferably a PBT yarn or a PTT yarn, particularly preferably a PTT yarn, from the viewpoint of obtaining a reinforced electrolyte membrane 1 that is difficult to elute into an alkaline aqueous solution in (i) and has a sufficiently high mechanical strength.
  • the sacrificial yarn 24 is preferably a PET / PBT yarn from the viewpoint of the balance between cost and mechanical strength of the reinforced electrolyte membrane 1.
  • the sacrificial yarn 24 may be a multifilament in which a plurality of filaments 26 are gathered as shown in FIG. 1 or may be a monofilament.
  • a multifilament is preferable in that the contact area with the aqueous alkaline solution is widened and the sacrificial yarn 24 is easily eluted into the aqueous alkaline solution during (ii).
  • the number of filaments 26 per sacrificial yarn 24 is preferably 2 to 12, and more preferably 2 to 8. If the number of filaments 26 is two or more, the sacrificial yarn 24 is likely to be eluted into the alkaline aqueous solution during (ii). If the number of filaments 26 is 12 or less, the fineness of the sacrificial yarn 24 is not increased more than necessary.
  • the fineness of the sacrificial yarn 24 is preferably 1 to 20 denier, more preferably 3 to 9 denier before (i).
  • the fineness of the sacrificial yarn 24 is 1 denier or more, the mechanical strength is sufficiently high and the woven fabric property is sufficiently high. If the fineness of the sacrificial yarn 24 is 20 deniers or less, the holes formed after the sacrificial yarn 24 elutes do not come too close to the surface of the electrolyte membrane 10, and the surface of the electrolyte membrane 10 is not easily cracked. , A decrease in mechanical strength is suppressed.
  • the reinforced electrolyte membrane 1 satisfies the following formula (1) when the sum of the cross-sectional area of the filament 26 of the sacrificial yarn 24 and the cross-sectional area of the gap 28 is A, and the cross-sectional area of the filament 26 of the sacrificial yarn 24 is B. It is preferable that the following formula (1 ′) is satisfied. 2000 ⁇ m 2 ⁇ A ⁇ 6000 ⁇ m 2 ⁇ (1), 2000 ⁇ m 2 ⁇ A ⁇ 4000 ⁇ m 2 ⁇ (1 ').
  • the voids 28 will not be too close to the surface of the electrolyte membrane 10, and the surface of the electrolyte membrane 10 is difficult to crack, and as a result, a decrease in mechanical strength is suppressed. It is difficult to obtain a filament 26 having a cross-sectional area of 2000 ⁇ m 2 or less due to restrictions when spinning the filament 26, that is, it is impossible to form a hole having A of 2000 ⁇ m 2 or less.
  • the reinforced electrolyte membrane 1 satisfies the following formula (2), and preferably satisfies the following formula (2 ′). 0.3 ⁇ B / A ⁇ 1.0 (2), 0.6 ⁇ B / A ⁇ 0.95 (2 ′).
  • B / A is 0.3 or more, the sacrificial yarn 24 will remain sufficiently and the mechanical strength of the reinforced electrolyte membrane 1 will be sufficient.
  • B / A cannot be set to 1.0.
  • the cross-sectional area of the sacrificial yarn and the cross-sectional area of the voids were determined by observing the cross-section of the reinforced electrolyte membrane dried at 90 ° C. for 2 hours or more with a scanning electron microscope (hereinafter referred to as SEM) and using image software. Measures the cross-sectional area of the gap (filament in the case of multifilament) and the surrounding void, and averages the cross-sectional area of the four sacrificial yarns (four filaments in the case of multifilament) and the void around it. .
  • SEM scanning electron microscope
  • the sacrificial yarn 24 remains in the electrolyte membrane 10, and the sum of the cross-sectional area of the sacrificial yarn 24 and the cross-sectional area of the gap 28 formed around the sacrificial yarn 24 is A,
  • the cross-sectional area of the sacrificial yarn is B, the above formulas (1) and (2) are satisfied, so that the mechanical strength is excellent. Therefore, when the reinforced electrolyte membrane 1 is handled from the production of the reinforced electrolyte membrane 1 to before the alkali chloride electrolysis conditioning operation or when the reinforced electrolyte membrane 1 is installed in the electrolytic cell during the conditioning operation, damage such as cracks is caused. Is unlikely to occur.
  • the sacrificial yarn 24 is completely alkaline when the reinforced electrolyte membrane 1 is placed in the electrolytic cell and the conditioning operation before the main operation of the alkali chloride electrolysis is performed. Since it is eluted and removed in the aqueous solution, the membrane resistance is not affected at the time of the main operation of alkali chloride electrolysis using the reinforced electrolyte membrane 1. After the reinforced electrolyte membrane 1 is installed in the electrolytic cell, a large force does not act on the reinforced electrolyte membrane 1 from the outside. Therefore, even if the sacrificial yarn 24 is completely eluted and removed from the alkaline aqueous solution, the reinforced electrolyte membrane is removed. 1 is not easily damaged such as cracks.
  • the reinforced electrolyte membrane of the present invention is a reinforced electrolyte membrane in which an electrolyte membrane containing a fluorine-containing polymer having an ion exchange group is reinforced with a woven fabric composed of a reinforcing yarn and a sacrificial yarn. As long as the sacrificial yarn remains, a gap is formed between the sacrificial yarn and the electrolyte membrane, and the above formula (1) and formula (2) are satisfied. It is not limited to.
  • the electrolyte membrane 10 is not limited to a laminate composed of the first layer 12 and the second layer 14 as shown in the illustrated example, and may be a single-layer membrane, A laminated body having other layers other than the second layer 14 may be used.
  • the woven fabric 20 is not limited to the one embedded in the first layer 12 as in the illustrated example, and may be embedded in the second layer 14.
  • the sacrificial yarn 24 is not limited to the multifilament as shown in the illustrated example, and may be a monofilament.
  • the density of the sacrificial yarn 24 is not limited to twice the density of the reinforcing yarn 22 as in the illustrated example, and may be an even multiple of 4 times or more.
  • the reinforced electrolyte membrane 1 is manufactured through the following steps (a) and (b), for example.
  • (A) A step of obtaining a reinforced precursor film in which a precursor film containing a fluorine-containing polymer having a precursor group of an ion exchange group is reinforced with a woven fabric composed of a reinforcing yarn and a sacrificial yarn.
  • (B) A step of obtaining the reinforced electrolyte membrane 1 by bringing the reinforced precursor membrane into contact with an alkaline aqueous solution, thereby hydrolyzing the precursor groups and converting them into ion exchange groups.
  • a first precursor layer made of a fluorine-containing polymer having a precursor group of a carboxylic acid type functional group and a second precursor made of a fluorine-containing polymer having a precursor group of a sulfonic acid type functional group by a coextrusion method A laminate with the lower layer of the layer is obtained.
  • an upper layer of a second precursor layer made of a fluorine-containing polymer having a sulfonic acid type functional group precursor group is obtained by a single layer extrusion method.
  • the upper layer of the second precursor layer, the woven fabric 20, the laminated film of the lower layer of the second precursor layer and the first precursor layer are arranged in this order, and these are laminated using a laminating roll or a vacuum laminating apparatus. Laminate. At this time, the laminated film of the lower layer of the second precursor layer and the first precursor layer is arranged so that the lower layer of the second precursor layer is in contact with the woven fabric 20.
  • fluorine-containing polymer having a precursor group of a carboxylic acid type functional group examples include a copolymer of a unit derived from a fluorinated monomer having a carboxylic acid type functional group precursor group and a unit derived from a fluorinated olefin. Can be mentioned.
  • the fluorine-containing monomer having a carboxylic acid type functional group precursor group has one or more fluorine atoms in the molecule, an ethylenic double bond, and a carboxylic acid type functional group precursor group. If it is a compound which has this, it will not specifically limit, A conventionally well-known thing can be used.
  • the fluorine-containing monomer having a carboxylic acid type functional group precursor group is represented by the following formula (3) from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the resulting fluorine-containing polymer. Fluorovinyl ether is preferred.
  • CF 2 CF— (O) p — (CF 2 ) q — (CF 2 CFX) r — (O) s — (CF 2 ) t — (CF 2 CFX ′) u —A 1 (3) .
  • X is a fluorine atom or a trifluoromethyl group.
  • X ' is a fluorine atom or a trifluoromethyl group.
  • both X and X 'are present in one molecule each may be the same or different.
  • a 1 is a precursor group of a carboxylic acid type functional group.
  • the precursor group of a carboxylic acid type functional group is a functional group that can be converted into a carboxylic acid type functional group by hydrolysis.
  • Examples of the functional group that can be converted into a carboxylic acid type functional group include —CN, —COF, —COOR 1 (where R 1 is an alkyl group having 1 to 10 carbon atoms), —COONR 2 R 3 (wherein , R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 and R 3 may be the same or different.
  • p is 0 or 1
  • q is an integer from 0 to 12
  • r is an integer from 0 to 3
  • s is 0 or 1
  • t is an integer from 0 to 12
  • U is an integer of 0-3.
  • p and s are not 0 simultaneously, and r and u are not 0 simultaneously. That is, 1 ⁇ p + s and 1 ⁇ r + u.
  • CF 2 CF—O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 —CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—
  • fluorine-containing olefin a fluoroolefin having 1 to 3 carbon atoms and having 2 to 3 carbon atoms is used.
  • a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • another monomer in addition to the fluorine-containing monomer and fluorine-containing olefin having a carboxylic acid type functional group precursor group, another monomer may be copolymerized.
  • the ion exchange capacity of the fluoropolymer obtained by hydrolyzing the precursor group of the carboxylic acid type functional group is 0.5 to 2.0 meq / g when used as an ion exchange membrane used in an alkali chloride electrolysis method.
  • a dry resin is preferred.
  • the ion exchange capacity of the fluoropolymer obtained by hydrolyzing the precursor group of the carboxylic acid type functional group is 0.6 meq / g dry from the viewpoint of mechanical strength and electrochemical performance as an ion exchange membrane. Resin or higher is preferable, and 0.7 meq / g dry resin or higher is more preferable.
  • the molecular weight of the fluorine-containing polymer having a precursor group of a carboxylic acid type functional group is preferably 150 ° C. or higher, more preferably 170 to 340 ° C. in terms of mechanical strength and film forming property as an ion exchange membrane. 170 to 300 ° C. is more preferable.
  • the TQ value is a value related to the molecular weight of the polymer and is indicated by a temperature indicating a capacity flow rate: 100 mm 3 / sec.
  • the volume flow rate indicates the amount of polymer flowing out in the unit of mm 3 / second by melting and flowing out the polymer from a constant temperature orifice (diameter: 1 mm, length: 1 mm) under a pressure of 3 MPa.
  • the TQ value is an index of the molecular weight of the polymer, and the higher the TQ value, the higher the molecular weight.
  • fluorine-containing polymer having a precursor group of a sulfonic acid type functional group examples include a copolymer of a unit derived from a fluorine-containing monomer having a sulfonic acid type functional group precursor group and a unit derived from a fluorine-containing olefin. Can be mentioned.
  • the fluorinated monomer having a sulfonic acid type functional group precursor group has one or more fluorine atoms in the molecule, an ethylenic double bond, and a sulfonic acid type functional group precursor group. If it is a compound which has this, it will not specifically limit, A conventionally well-known thing can be used.
  • the fluorine-containing monomer having a precursor group of a sulfonic acid type functional group the following formula (4) or the following formula can be used from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the resulting fluorine-containing polymer.
  • the compound represented by (5) is preferred.
  • CF 2 CF—O—R f2 —A 2 (4)
  • CF 2 CF—R f2 —A 2 (5).
  • R f2 is a C 1-20 perfluoroalkylene group, may contain an etheric oxygen atom, and may be linear or branched.
  • a 2 is a precursor group of a sulfonic acid type functional group.
  • the precursor group of the sulfonic acid type functional group is a functional group that can be converted into a sulfonic acid type functional group by hydrolysis. Examples of the functional group that can be converted into the sulfonic acid type functional group include —SO 2 F, —SO 2 Cl, —SO 2 Br, and the like.
  • CF 2 CF [OCF 2 CF (CF 3 )] 1-5 SO 2 F.
  • CF 2 CF (CF 2) 0 ⁇ 8 -SO 2 F, CF 2 ⁇ CF—CF 2 —O— (CF 2 ) 1-8 —SO 2 F.
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) SO 2 F
  • CF 2 CFCF 2 CF 2 SO 2 F
  • CF 2 CFCF 2 CF 2 SO 2 F
  • CF 2 CF—CF 2 —O—CF 2 CF 2 —SO 2 F.
  • fluorinated olefin examples include those exemplified above, and TFE is particularly preferable from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the obtained fluorinated copolymer.
  • a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • another monomer in addition to the fluorine-containing monomer and fluorine-containing olefin having a sulfonic acid type functional group precursor group, another monomer may be copolymerized.
  • the other monomer include those exemplified above.
  • the proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
  • the ion exchange capacity of the fluorine-containing polymer obtained by hydrolyzing the precursor group of the sulfonic acid type functional group is 0.5 to 2.0 meq / g when used as an ion exchange membrane used in an alkali chloride electrolysis method.
  • a dry resin is preferred.
  • the ion exchange capacity of the fluoropolymer obtained by hydrolyzing the precursor group of the sulfonic acid type functional group is 0.6 meq / g dry from the viewpoint of mechanical strength and electrochemical performance as an ion exchange membrane. Resin or higher is preferable, and 0.7 meq / g dry resin or higher is more preferable.
  • the molecular weight of the fluorine-containing polymer having a precursor group of a sulfonic acid type functional group is preferably 150 ° C. or higher, more preferably 170 to 340 ° C. in terms of mechanical strength and film forming property as an ion exchange membrane. 170 to 300 ° C. is more preferable.
  • the precursor group of the carboxylic acid type functional group and the precursor group of the sulfonic acid type functional group are hydrolyzed to obtain the carboxylic acid type functional group and the sulfonic acid type functional group, respectively.
  • the reinforced electrolyte membrane 1 is obtained.
  • the hydrolysis method for example, a method using a mixture of a water-soluble organic compound and an alkali metal hydroxide as described in JP-A-1-140987 is preferable.
  • step (b) it is preferable that a part of the sacrificial yarn 24 is hydrolyzed and eluted into the alkaline aqueous solution so as to satisfy the above formula (2) by bringing the reinforced precursor film into contact with the alkaline aqueous solution.
  • a method of shortening the time for contacting the reinforced precursor film with an alkaline aqueous solution compared to the conventional method A method in which, as the sacrificial yarn 24, a yarn (PET / PBT yarn, PBT yarn, PTT yarn, etc.) that is more difficult to hydrolyze than the PET yarn is used, and the time for bringing the reinforcing precursor film into contact with the alkaline aqueous solution is about the same as the conventional method. And the like.
  • Examples of the present invention will be described below, but the present invention is not limited to these examples.
  • Examples 1 to 7 are examples, and examples 8 to 11 are comparative examples.
  • TQ value is a value related to the molecular weight of the polymer, and is represented by a temperature indicating a volume flow rate: 100 mm 3 / sec.
  • Capacitance flow rate is Shimadzu flow tester CFD-100D (manufactured by Shimadzu Corporation).
  • a fluorine-containing polymer having a precursor group of an ion exchange group is orificed at a constant temperature under a pressure of 3 MPa (diameter: 1 mm, length: 1 mm). ) And the outflow amount when melted and outflowed in units of mm 3 / sec.
  • the reinforced electrolyte membrane was immersed in a 32% by mass aqueous sodium hydroxide solution adjusted to 20 to 25 ° C. for 24 hours. After the reinforced electrolyte membrane is washed with exchange water, the cross section of the reinforced electrolyte membrane is observed with an SEM, the cross sectional area of the sacrificial yarn filament is measured using image software, and the cross sectional area of the four filaments is averaged. Asked.
  • test piece of No. 1 dumbbell size was cut out from the reinforced electrolyte membrane.
  • test specimens four specimens each having a length direction that coincides with a direction of 45 ° with respect to the direction through the roll were prepared. Attach one end of the test piece to the upper chuck of the tensile tester and the other end to the lower chuck, sandwich the chuck so that the distance between the chucks is 70 mm, set the test speed to 500 mm / min, set the upper limit set load to 12.5 N, At 25 ° C., a test for repeatedly applying a weight was performed, and an average value of the number of times of applying the load until the fracture occurred was determined and used as the number of repeated fractures.
  • the reinforced electrolyte membrane was placed in a test electrolytic cell having an electrolytic surface size of 150 mm ⁇ 100 mm so that the first layer faced the cathode, sodium hydroxide concentration: 32 mass%, sodium chloride concentration: 200 g / L, temperature : Electrolysis of an aqueous sodium chloride solution under the conditions of 90 ° C. and current density: 6 kA / m 2 , and the electrolysis voltage (V) and current efficiency (%) 3 to 10 days after the start of operation were measured.
  • Example 1 Fluorine-containing polymer having a carboxylic acid-type functional group precursor group by copolymerizing TFE and a fluorinated monomer having a carboxylic acid-type functional group precursor group represented by the following formula (3-1) Capacity: 1.06 meq / g dry resin, TQ: 225 ° C.) (hereinafter referred to as polymer C) was synthesized.
  • CF 2 CF—O—CF 2 CF 2 —CF 2 —COOCH 3 (3-1).
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F (4-1).
  • Polymer C and polymer S are molded by co-extrusion, and a first precursor layer (thickness: 12 ⁇ m) made of polymer C and a lower layer (thickness: 68 ⁇ m) of a second precursor layer made of polymer S A two-layer film A was obtained. Moreover, the polymer S was shape
  • a monofilament PTFE yarn obtained by slitting to a thickness of 100 denier, and a 30 denier multifilament PET yarn obtained by twisting 6 pieces of 5 denier PET filaments One PTFE yarn was plain woven with an alternating arrangement of two PET yarns to obtain a reinforcing woven fabric (density of PTFE yarn: 10 pieces / cm, density of PET yarn: 20 pieces / cm).
  • the obtained woven fabric and film were prepared in the order of film B, woven fabric, film A, release PET film (thickness: 100 ⁇ m), and the first precursor layer of film A was the release PET film side. It piled up so that it might become, and it laminated
  • Consists of 29.0% by mass of zirconium oxide (average particle size: 1 ⁇ m), 1.3% by mass of methylcellulose, 4.6% by mass of cyclohexanol, 1.5% by mass of cyclohexane and 63.6% by mass of water.
  • the paste was transferred to the upper layer side of the second precursor layer of the reinforced precursor film by a roll press, and a gas releasing coating layer was adhered.
  • the amount of zirconium oxide deposited was 20 g / m 2 .
  • the reinforced precursor film with a single-side gas-release coating layer was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 8 minutes, and then —COOCH 3 of polymer C and — SO 2 F was hydrolyzed and converted to an ion exchange group to obtain a reinforced electrolyte membrane with a single-sided gas-release coating layer.
  • a dispersion was prepared by dispersing zirconium oxide (average particle size: 1 ⁇ m) at a concentration of 13% by mass in an ethanol solution containing 2.5% by mass of an acid type polymer of polymer S.
  • the dispersion was sprayed on the first layer side of the reinforced electrolyte membrane with a single-sided gas-release coating layer, and the gas-release coating layer was adhered to obtain a reinforced electrolyte membrane with a double-side gas-release coating layer.
  • the amount of zirconium oxide deposited was 3 g / m 2 .
  • the obtained reinforced electrolyte membrane was evaluated. The results are shown in Table 1.
  • Example 2 to 11 A reinforced electrolyte membrane with a double-sided gas releasable coating layer was obtained in the same manner as in Example 1 except that the sacrificial yarn material, the fineness of the sacrificial yarn, and the conditions for hydrolysis treatment of the reinforced precursor membrane were changed as shown in Table 1. It was. The obtained reinforced electrolyte membrane was evaluated. The results are shown in Table 1.
  • the reinforced electrolyte membrane of the present invention can be used for alkali chloride electrolysis, diffusion dialysis, ozone generation electrolysis, electrolytic reduction, fuel cell membranes, polymer catalysts, etc., in particular, ion exchange membranes used in alkali chloride electrolysis, etc. Useful as.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2012-039532 filed on February 27, 2012 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

 強化電解質膜の製造後から塩化アルカリ電解のコンディショニング運転の前までの強化電解質膜の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜の設置時において、クラック等の破損が発生しにくい強化電解質膜およびその製造方法を提供する。 イオン交換基を有する含フッ素ポリマーを含む電解質膜10が補強糸22と犠牲糸24とからなる織布20で補強された強化電解質膜1であって、電解質膜10内に犠牲糸24が残存し、犠牲糸24のまわりには電解質膜10との間に空隙が形成され、犠牲糸24の断面積および空隙の断面積の合計をA、犠牲糸24の断面積をBとしたときに、2000μm<A<6000μmおよび0.3≦B/A<1.0を満足する。

Description

強化電解質膜およびその製造方法
 本発明は、塩化アルカリ電解法に用いられるイオン交換膜等として用いられる、織布で補強された強化電解質膜およびその製造方法に関する。
 海水等の塩化アルカリ水溶液を電解し、水酸化アルカリと塩素とを製造する塩化アルカリ電解法に用いられるイオン交換膜としては、イオン交換基(カルボン酸型官能基、スルホン酸型官能基等)を有する含フッ素ポリマーからなる電解質膜が知られている。
 該電解質膜としては、機械的強度や寸法安定性を維持する点から、通常、補強糸(ポリテトラフルオロエチレン(以下、PTFEと記す。)糸等)からなる織布で補強された強化電解質膜が用いられる。しかし、電解質膜をPTFE糸等からなる織布で補強した強化電解質膜は、膜抵抗が高くなり、電解電圧が上昇するという問題を有する。
 強化電解質膜の膜抵抗を低く抑え、電解電圧の上昇を抑えるためには、織布の開口率を大きくする必要がある。しかし、織布の開口率を大きくすると、織布開口部分の目ずれが生じ、織布の製造や電解質膜への挿入が困難となる。
 そこで、PTFE糸と、アルカリ性水溶液に可溶な犠牲糸(ポリエチレンテレフタレート(以下、PETと記す。)糸等)とを混織した織布を用いる方法が提案されている(特許文献1、2)。
 犠牲糸は、(i)イオン交換基の前駆体基を有する含フッ素ポリマーを含む前駆体膜が織布で補強された強化前駆体膜をアルカリ性水溶液に浸漬させることによって、前駆体基を加水分解してイオン交換基に変換して強化電解質膜を製造する際や、(ii)強化電解質膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う際に、アルカリ性水溶液に溶出し、除去されるため、強化電解質膜を用いた塩化アルカリ電解の本運転の時点では、膜抵抗に影響を及ぼさない。
日本特開平07-233267号公報 日本特開2000-256486号公報
 しかし、犠牲糸は、(i)の際にほとんどがアルカリ性水溶液に溶出し、除去されるため、強化電解質膜内の犠牲糸が存在していた部分に空孔が形成され、強化電解質膜の機械的強度が低下する。そのため、強化電解質膜の製造後からコンディショニング運転の前までの強化電解質膜の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜の設置時において、外部からの力によって強化電解質膜にクラック等の破損が発生しやすくなる。
 なお、電解槽に強化電解質膜を設置した後は、強化電解質膜に外部から大きな力が作用することはないため、(ii)の際に犠牲糸が完全にアルカリ性水溶液に溶出し、除去されても、強化電解質膜にクラック等の破損は発生しにくい。
 本発明は、強化電解質膜の製造後から塩化アルカリ電解のコンディショニング運転の前までの強化電解質膜の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜の設置時において、クラック等の破損が発生しにくい強化電解質膜およびその製造方法を提供する。
 本発明の強化電解質膜は、イオン交換基を有する含フッ素ポリマーを含む電解質膜が、補強糸と犠牲糸とからなる織布で補強された強化電解質膜であって、前記電解質膜内には、前記犠牲糸が残存し、前記犠牲糸のまわりには、前記電解質膜との間に空隙が形成され、前記犠牲糸の断面積および前記空隙の断面積の合計をA、前記犠牲糸の断面積をBとしたときに、下式(1)および下式(2)を満足することを特徴とする。
 2000μm<A<6000μm ・・・(1)、
 0.3≦B/A<1.0    ・・・(2)。
 本発明の強化電解質膜は、下式(1’)を満足することが好ましい。
 2000μm<A<4000μm ・・・(1’)。
 前記犠牲糸は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、レーヨン、およびセルロースからなる群から選ばれる少なくとも1種を含む糸であることが好ましい。
 前記犠牲糸は、ポリエチレンテレフタレート糸、ポリエチレンテレフタレートおよびポリブチレンテレフタレートの混合物からなる糸、ポリブチレンテレフタレート糸、またはポリトリメチレンテレフタレート糸であることが好ましい。
 本発明の強化電解質膜の製造方法は、本発明の強化電解質膜を製造する方法であって、イオン交換基の前駆体基を有する含フッ素ポリマーを含む前駆体膜が、補強糸と犠牲糸とからなる織布で補強された強化前駆体膜をアルカリ性水溶液に接触させることによって、前記前駆体基を加水分解して前記イオン交換基に変換し、前記強化電解質膜とすることを特徴とする。
 本発明の強化電解質膜の製造方法においては、前記強化前駆体膜をアルカリ性水溶液に接触させる際に、前記式(2)を満足するように前記犠牲糸の一部のみ加水分解してアルカリ性水溶液に溶出させることが好ましい。
 本発明の強化電解質膜は、強化電解質膜の製造後から塩化アルカリ電解のコンディショニング運転の前までの強化電解質膜の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜の設置時において、クラック等の破損が発生しにくい。
 本発明の強化電解質膜の製造方法によれば、強化電解質膜の製造後から塩化アルカリ電解のコンディショニング運転の前までの強化電解質膜の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜の設置時において、クラック等の破損が発生しにくい強化電解質膜を製造できる。
本発明の強化電解質膜の一例を示す断面図である。 図1の強化電解質膜の表面付近の拡大断面図である。
<強化電解質膜>
 図1は、本発明の強化電解質膜の一例を示す断面図である。強化電解質膜1は、イオン交換基を有する含フッ素ポリマーを含む電解質膜10が、織布20で補強されたものである。
(電解質膜)
 電解質膜10は、高い電流効率を発現する機能層としての、カルボン酸型官能基を有する含フッ素ポリマーからなる層(以下、第1の層12と記す。)と、機械的強度を保持する、スルホン酸型官能基を有する含フッ素共重合体からなる層(以下、第2の層14と記す。)とからなる積層体である。
(第1の層)
 カルボン酸型官能基を有する含フッ素ポリマーとしては、カルボン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。カルボン酸型官能基は、カルボン酸基(-COOH)そのもの、または-COOM(ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)である。
 カルボン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するカルボン酸型官能基の前駆体基を有する含フッ素ポリマーの前駆体基をカルボン酸型官能基に転換することによって得られる。
 第1の層12の厚さは、5~50μmが好ましく、10~35μmがより好ましい。第1の層12の厚さが5μm以上であれば、高い電流効率を発現できるとともに、塩化ナトリウムの電解を行った場合には、製品となる水酸化ナトリウム中の塩化ナトリウム量を少なくすることができる。第1の層12の厚さが50μm以下であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
(第2の層)
 第2の層14は、第2の層14内に織布20を埋設するために、上層と下層との積層構造とされる。第2の層14の上層と下層との層間には、織布20が挿入された状態にて埋設される。
 スルホン酸型官能基を有する含フッ素ポリマーとしては、スルホン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。スルホン酸型官能基は、スルホン酸基(-SOH)そのもの、または-SOM(ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)である。
 スルホン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するスルホン酸型官能基の前駆体基を有する含フッ素ポリマーの前駆体基をスルホン酸型官能基に転換することによって得られる。
 第2の層14の下層の厚さは、30~140μmが好ましく、30~100μmがより好ましい。第2の層14の下層の厚さが30μm以上であれば、電解質膜10の機械的強度が充分に高くなる。第1の層12の下層の厚さが140μm以下であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
 第2の層14の上層の厚さは、10~60μmが好ましく、10~40μmがより好ましい。第2の層14の上層の厚さが10μm以上であれば、織布20が電解質膜10中に収まり、織布20の耐剥離耐性が向上するとともに、電解質膜10の表面に織布20が近づきすぎることがなく、電解質膜10の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。第1の層12の上層の厚さが60μm以下であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
(織布)
 織布20は、電解質膜10を補強する補強材であり、通常、第2の層14の上層と下層との層間に挿入された状態にて第2の層14内に埋設される。
 織布20は、補強糸22と犠牲糸24とからなる織物である。
 補強糸22の密度(打ち込み数)は、3~50本/cmが好ましく、8~30本/cmがより好ましい。補強糸22の密度が3本/cm以上であれば、補強材としての機械的強度が充分に高くなる。補強糸22の密度が50本/cm以下であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
 犠牲糸24の密度は、補強糸22の密度の偶数倍とされる。奇数倍の場合、補強糸22の経糸と緯糸とが交互に上下に交差しないため、犠牲糸24が溶出した後に、織物組織が形成されない。犠牲糸24の密度は、補強糸22の密度の2~10倍のうちの偶数倍が好ましい。
 補強糸22および犠牲糸24の合計の密度は、製織のしやすさ、目ずれの起きにくさの点から、20~100本/cmが好ましい。
 犠牲糸24が溶出した後の補強糸22のみからなる織布の開口率は、70~90%が好ましく、80~90%がより好ましい。織布の開口率が70%以上であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。織布の開口率が90%以下であれば、補強材としての機械的強度が充分に高くなる。
 織布の開口率は、光学顕微鏡写真から求めることができる。
 織布20の厚さは、5~40μm以下が好ましく、5~35μmがより好ましい。織布20の厚さが5μm以上であれば、補強材としての機械的強度が充分に高くなる。織布20の厚さが40μm以下であれば、糸交点の厚みが抑えられ、織布20の電流遮蔽による電解電圧上昇の影響を充分に抑えられる。
(補強糸)
 補強糸22は、犠牲糸が溶出した後、織布を構成する残存糸として強化電解質膜1の機械的強度や寸法安定性を維持する。
 補強糸22としては、塩化アルカリ電解における高温、塩素、次亜塩素酸ナトリウム、水酸化ナトリウムに対する耐性を有するものが好ましい。
 補強糸22としては、機械的強度、耐熱性、および耐薬品性の点から、含フッ素ポリマーを含む糸が好ましく、ペルフルオロカーボンポリマーを含む糸がより好ましく、PTFEを含む糸がさらに好ましく、PTFEのみからなるPTFE糸が特に好ましい。
 補強糸22は、モノフィラメントであってもよく、マルチフィラメントであってもよい。補強糸22がPTFE糸の場合、紡糸が容易である点から、モノフィラメントが好ましく、PTFEフィルムをスリットして得られたテープヤーンがより好ましい。
 補強糸22の繊度は、25~400デニールが好ましく、50~200デニールがより好ましい。補強糸22の繊度が25デニール以上であれば、機械的強度が充分に高くなる。補強糸22の繊度が400デニール以下であれば、強化電解質膜1の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。また、電解質膜10の表面に補強糸22が近づきすぎることがなく、電解質膜10の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。
(犠牲糸)
 犠牲糸24は、(i)イオン交換基の前駆体基を有する含フッ素ポリマーを含む前駆体膜が織布20で補強された強化前駆体膜をアルカリ性水溶液に浸漬させることによって、前駆体基を加水分解してイオン交換基に変換して強化電解質膜1を製造する際に、その一部がアルカリ性水溶液に溶出するものであり、かつ(ii)強化電解質膜1を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う際に、残部が完全にアルカリ性水溶液に溶出し、除去されるものである。
 本発明における犠牲糸は、強化電解質膜を32質量%の水酸化ナトリウム水溶液に25℃24時間浸漬することによって犠牲糸の全部が水酸化ナトリウム水溶液に溶出するもの、と定義する。この条件にて犠牲糸の全部が水酸化ナトリウム水溶液に溶出すれば、強化電解質膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う際に、犠牲糸が完全にアルカリ性水溶液に溶出し、除去される。
 犠牲糸24としては、PET、ポリブチレンテレフタレート(以下、PBTと記す。)、ポリトリメチレンテレフタレート(以下、PTTと記す。)、レーヨン、およびセルロースからなる群から選ばれる少なくとも1種を含む糸が好ましく、PETのみからなるPET糸、PETおよびPBTの混合物からなるPET/PBT糸、PBTのみからなるPBT糸、またはPTTのみからなるPTT糸がより好ましい。
 犠牲糸24としては、コストの点からは、PET糸が好ましい。犠牲糸24としては、(i)の際にアルカリ性水溶液に溶出しにくく、機械的強度が充分に高い強化電解質膜1が得られる点からは、PBT糸、またはPTT糸が好ましく、PTT糸が特に好ましい。犠牲糸24としては、コストと、強化電解質膜1の機械的強度とのバランスの点からは、PET/PBT糸が好ましい。
 犠牲糸24は、図1に示すようにフィラメント26が複数集まったマルチフィラメントであってもよく、モノフィラメントであってもよい。アルカリ水溶液との接触面積が広くなり、(ii)の際に犠牲糸24が容易にアルカリ性水溶液に溶出する点から、マルチフィラメントが好ましい。
 犠牲糸24がマルチフィラメントの場合、犠牲糸24の1本あたりのフィラメント26の数は、2~12本が好ましく、2~8本がより好ましい。フィラメント26の数が2本以上であれば、(ii)の際に犠牲糸24がアルカリ性水溶液に溶出しやすい。フィラメント26の数が12本以下であれば、犠牲糸24の繊度が必要以上に大きくならない。
 犠牲糸24の繊度は、(i)の前において、1~20デニールが好ましく、3~9デニールがより好ましい。犠牲糸24の繊度が1デニール以上であれば、機械的強度が充分に高くなるとともに、織布性が充分高くなる。犠牲糸24の繊度が20デニール以下であれば、犠牲糸24が溶出した後に形成される孔が電解質膜10の表面に近づきすぎることがなく、電解質膜10の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。
(空隙)
 電解質膜10内には、(i)の後においても犠牲糸24が残存し、犠牲糸24のフィラメント26のまわりには、図2に示すように、電解質膜10との間に空隙28が形成される。
 強化電解質膜1は、犠牲糸24のフィラメント26の断面積および空隙28の断面積の合計をA、犠牲糸24のフィラメント26の断面積をBとしたときに、下式(1)を満足するものであり、下式(1’)を満足することが好ましい。
 2000μm<A<6000μm ・・・(1)、
 2000μm<A<4000μm ・・・(1’)。
 Aが6000μm未満であれば、空隙28が電解質膜10の表面に近づきすぎることがなく、電解質膜10の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。フィラメント26を紡糸する際の制約から断面積が2000μm以下のフィラメント26を得ることが困難である、すなわちAが2000μm以下の孔を形成できない。
 また、強化電解質膜1は、下式(2)を満足するものであり、下式(2’)を満足することが好ましい。
 0.3≦B/A<1.0 ・・・(2)、
 0.6≦B/A≦0.95 ・・・(2’)。
 B/Aが0.3以上であれば、犠牲糸24が充分に残存し、強化電解質膜1の機械的強度が充分となる。B/Aは大きければ大きいほどよいが、犠牲糸24は(i)の際に必ず一部がアルカリ性水溶液に溶出するため、B/A=1.0とすることはできない。
 犠牲糸の断面積および空隙の断面積は、90℃で2時間以上乾燥した強化電解質膜の断面を走査型電子顕微鏡(以下、SEMと記す。)にて観察し、画像ソフトを用いて犠牲糸(マルチフィラメントの場合はフィラメント)およびそのまわりの空隙の断面積を測定し、4本の犠牲糸(マルチフィラメントの場合は4本のフィラメント)およびそのまわりの空隙の断面積を平均したものである。
(作用効果)
 以上説明した強化電解質膜1にあっては、電解質膜10内に犠牲糸24が残存し、犠牲糸24の断面積および犠牲糸24のまわりに形成された空隙28の断面積の合計をA、犠牲糸の断面積をBとしたときに、前記式(1)および前記式(2)を満足するため、機械的強度に優れる。そのため、強化電解質膜1の製造後から塩化アルカリ電解のコンディショニング運転の前までの強化電解質膜1の取り扱い時やコンディショニング運転の際の電解槽への強化電解質膜1の設置時において、クラック等の破損が発生しにくい。
 なお、電解質膜10内に犠牲糸24が残存していても、強化電解質膜1を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う際に、犠牲糸24が完全にアルカリ性水溶液に溶出し、除去されるため、強化電解質膜1を用いた塩化アルカリ電解の本運転の時点では、膜抵抗に影響を及ぼさない。
 電解槽に強化電解質膜1を設置した後は、強化電解質膜1に外部から大きな力が作用することはないため、犠牲糸24が完全にアルカリ性水溶液に溶出し、除去されても、強化電解質膜1にクラック等の破損は発生しにくい。
(他の形態)
 なお、本発明の強化電解質膜は、イオン交換基を有する含フッ素ポリマーを含む電解質膜が、補強糸と犠牲糸とからなる織布で補強された強化電解質膜であって、電解質膜内には、犠牲糸が残存し、犠牲糸のまわりには、電解質膜との間に空隙が形成され、かつ前記式(1)および前記式(2)を満足するものであればよく、図示例のものに限定はされない。
 たとえば、電解質膜10は、図示例のような第1の層12と第2の層14とからなる積層体に限定はされず、単層の膜であってもよく、第1の層12および第2の層14以外の他の層を有する積層体であってもよい。
 また、織布20は、図示例のように第1の層12に埋設されたものに限定はされず、第2の層14に埋設されていてもよい。
 また、犠牲糸24は、図示例のようなマルチフィラメントに限定はされず、モノフィラメントであってもよい。
 また、犠牲糸24の密度は、図示例のように補強糸22の密度の2倍に限定はされず、4倍以上の偶数倍であってもよい。
<電解質膜の製造方法>
 強化電解質膜1は、たとえば、下記の工程(a)、工程(b)を経て製造される。
 (a)イオン交換基の前駆体基を有する含フッ素ポリマーを含む前駆体膜が、補強糸と犠牲糸とからなる織布で補強された強化前駆体膜を得る工程。
 (b)強化前駆体膜をアルカリ性水溶液に接触させることによって、前駆体基を加水分解してイオン交換基に変換し、強化電解質膜1を得る工程。
(工程(a))
 共押出法によって、カルボン酸型官能基の前駆体基を有する含フッ素ポリマーからなる第1の前駆体層と、スルホン酸型官能基の前駆体基を有する含フッ素ポリマーからなる第2の前駆体層の下層との積層体を得る。
 別途、単層押出法によって、スルホン酸型官能基の前駆体基を有する含フッ素ポリマーからなる第2の前駆体層の上層を得る。
 ついで、第2の前駆体層の上層、織布20、第2の前駆体層の下層と第1の前駆体層との積層膜の順に配置し、積層ロールまたは真空積層装置を用いてこれらを積層する。この際、第2の前駆体層の下層と第1の前駆体層との積層膜は、第2の前駆体層の下層が織布20に接するように配置する。
(カルボン酸型官能基の前駆体基を有する含フッ素ポリマー)
 カルボン酸型官能基の前駆体基を有する含フッ素ポリマーとしては、カルボン酸型官能基の前駆体基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
 カルボン酸型官能基の前駆体基を有する含フッ素モノマーとしては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつカルボン酸型官能基の前駆体基を有する化合物であれば、特に限定されず、従来から公知のものを用いることができる。
 カルボン酸型官能基の前駆体基を有する含フッ素モノマーとしては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、下式(3)で表わされるフルオロビニルエーテルが好ましい。
 CF=CF-(O)-(CF-(CFCFX)-(O)-(CF-(CFCFX’)-A ・・・(3)。
 Xは、フッ素原子またはトリフルオロメチル基である。また、X’は、フッ素原子またはトリフルオロメチル基である。1分子中にXおよびX’の両方が存在する場合、それぞれは同一であってもよく、異なっていてもよい。
 Aは、カルボン酸型官能基の前駆体基である。カルボン酸型官能基の前駆体基は、加水分解によってカルボン酸型官能基に変換し得る官能基である。カルボン酸型官能基に変換し得る官能基としては、-CN、-COF、-COOR(ただし、Rは炭素原子数1~10のアルキル基である。)、-COONR(ただし、RおよびRは、水素原子または炭素原子数1~10のアルキル基を示す。RおよびRは、同一であってもよく、異なっていてもよい。)等が挙げられる。
 pは、0または1であり、qは、0~12の整数であり、rは、0~3の整数であり、sは、0または1であり、tは、0~12の整数であり、uは、0~3の整数である。ただし、pおよびsが同時に0になることはなく、rおよびuが同時に0になることはない。すなわち、1≦p+sであり、1≦r+uである。
 式(3)で表わされるフルオロビニルエーテルの具体例としては、下記の化合物が挙げられ、製造が容易である点から、p=1、q=0、r=1、s=0~1、t=1~3、u=0~1である化合物が好ましい。
 CF=CF-O-CFCF-COOCH
 CF=CF-O-CFCF-CF-COOCH
 CF=CF-O-CFCF-CFCF-COOCH
 CF=CF-O-CFCF-O-CFCF-COOCH
 CF=CF-O-CFCF-O-CFCF-CF-COOCH
 CF=CF-O-CFCF-O-CFCF-CFCF-COOCH
 CF=CF-O-CF-CFCF-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CF-CFCF-COOCH
 含フッ素オレフィンとしては、分子中に1個以上のフッ素原子を有する炭素原子数が2~3のフルオロオレフィンが用いられる。フルオロオレフィンとしては、テトラフルオロエチレン(CF=CF)(以下、TFEと記す。)、クロロトリフルオロエチレン(CF=CFCl)、フッ化ビニリデン(CF=CH)、フッ化ビニル(CH=CHF)、ヘキサフルオロプロピレン(CF=CFCF)等が挙げられ、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、TFEが特に好ましい。含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明においては、カルボン酸型官能基の前駆体基を有する含フッ素モノマーおよび含フッ素オレフィンに加えて、さらに他のモノマーを共重合させてもよい。他のモノマーとしては、CF=CF-R、CF=CF-OR(ただし、Rは炭素原子数1~10のペルフルオロアルキル基である。)、CF=CFO(CFCF=CF(ただし、vは1~3の整数である。)等が挙げられる。他のモノマーを共重合させることによって、強化電解質膜1の可撓性や機械的強度を向上できる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。
 カルボン酸型官能基の前駆体基を加水分解して得られる含フッ素ポリマーのイオン交換容量は、塩化アルカリ電解法に用いられるイオン交換膜として用いる場合、0.5~2.0ミリ当量/グラム乾燥樹脂が好ましい。カルボン酸型官能基の前駆体基を加水分解して得られる含フッ素ポリマーのイオン交換容量は、イオン交換膜としての機械的強度や電気化学的性能の点から、0.6ミリ当量/グラム乾燥樹脂以上が好ましく、0.7ミリ当量/グラム乾燥樹脂以上がより好ましい。
 カルボン酸型官能基の前駆体基を有する含フッ素ポリマーの分子量は、イオン交換膜としての機械的強度および製膜性の点から、TQ値で150℃以上が好ましく、170~340℃がより好ましく、170~300℃がさらに好ましい。
 TQ値は、重合体の分子量に関係する値であって、容量流速:100mm/秒を示す温度で示したものである。容量流速は、ポリマーを3MPaの加圧下に一定温度のオリフィス(径:1mm、長さ:1mm)から溶融、流出させ、流出するポリマーの量をmm/秒の単位で示したものである。TQ値は、ポリマーの分子量の指標となり、TQ値が高いほど高分子量であることを示す。
(スルホン酸型官能基の前駆体基を有する含フッ素ポリマー)
 スルホン酸型官能基の前駆体基を有する含フッ素ポリマーとしては、スルホン酸型官能基の前駆体基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
 スルホン酸型官能基の前駆体基を有する含フッ素モノマーとしては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつスルホン酸型官能基の前駆体基を有する化合物であれば、特に限定されず、従来から公知のものを用いることができる。
 スルホン酸型官能基の前駆体基を有する含フッ素モノマーとしては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、下式(4)または下式(5)で表わされる化合物が好ましい。
 CF=CF-O-Rf2-A ・・・(4)、
 CF=CF-Rf2-A  ・・・(5)。
 Rf2は、炭素数1~20のペルフルオロアルキレン基であり、エーテル性の酸素原子を含んでいてもよく、直鎖状または分岐状のいずれでもよい。
 Aは、スルホン酸型官能基の前駆体基である。スルホン酸型官能基の前駆体基は、加水分解によってスルホン酸型官能基に変換し得る官能基である。スルホン酸型官能基に変換し得る官能基としては、-SOF、-SOCl、-SOBr等が挙げられる。
 式(4)で表わされる化合物としては、具体的には下記の化合物が好ましい。
 CF=CF-O-(CF1~8-SOF、
 CF=CF-O-CFCF(CF)O(CF1~8-SOF、
 CF=CF[OCFCF(CF)]1~5SOF。
 式(5)で表わされる化合物としては、具体的には下記の化合物が好ましい。
 CF=CF(CF0~8-SOF、
 CF=CF-CF-O-(CF1~8-SOF。
 スルホン酸型官能基の前駆体基を有する含フッ素モノマーとしては、工業的な合成が容易である点から、下記の化合物がより好ましい。
 CF=CFOCFCFSOF、
 CF=CFOCFCFCFSOF、
 CF=CFOCFCFCFCFSOF、
 CF=CFOCFCF(CF)OCFCFSOF、
 CF=CFOCFCF(CF)OCFCFCFSOF、
 CF=CFOCFCF(CF)SOF、
 CF=CFCFCFSOF、
 CF=CFCFCFCFSOF、
 CF=CF-CF-O-CFCF-SOF。
 含フッ素オレフィンとしては、先に例示したものが挙げられ、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素共重合体の特性に優れる点から、TFEが特に好ましい。含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明においては、スルホン酸型官能基の前駆体基を有する含フッ素モノマーおよび含フッ素オレフィンに加えて、さらに他のモノマーを共重合させてもよい。他のモノマーとしては、先に例示したものが挙げられる。他のモノマーを共重合させることによって、強化電解質膜1の可撓性や機械的強度を向上できる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。
 スルホン酸型官能基の前駆体基を加水分解して得られる含フッ素ポリマーのイオン交換容量は、塩化アルカリ電解法に用いられるイオン交換膜として用いる場合、0.5~2.0ミリ当量/グラム乾燥樹脂が好ましい。スルホン酸型官能基の前駆体基を加水分解して得られる含フッ素ポリマーのイオン交換容量は、イオン交換膜としての機械的強度や電気化学的性能の点から、0.6ミリ当量/グラム乾燥樹脂以上が好ましく、0.7ミリ当量/グラム乾燥樹脂以上がより好ましい。
 スルホン酸型官能基の前駆体基を有する含フッ素ポリマーの分子量は、イオン交換膜としての機械的強度および製膜性の点から、TQ値で150℃以上が好ましく、170~340℃がより好ましく、170~300℃がさらに好ましい。
(工程(b))
 このようにして得られた強化前駆体膜の、カルボン酸型官能基の前駆体基およびスルホン酸型官能基の前駆体基を、加水分解してそれぞれカルボン酸型官能基およびスルホン酸型官能基に転換することによって、強化電解質膜1が得られる。加水分解の方法としては、たとえば、特開平1-140987号公報に記載されているような、水溶性有機化合物とアルカリ金属の水酸化物との混合物を用いる方法が好ましい。
 工程(b)においては、強化前駆体膜をアルカリ性水溶液に接触させることによって、前記式(2)を満足するように犠牲糸24の一部を加水分解してアルカリ性水溶液に溶出させることが好ましい。
 前記式(2)を満足させる方法としては、たとえば、犠牲糸24として従来からよく用いられているPET糸を用いる場合は、強化前駆体膜をアルカリ性水溶液に接触させる時間を従来よりも短くする方法;犠牲糸24として、PET糸よりも加水分解しにくい糸(PET/PBT糸、PBT糸、PTT糸等)を用い、強化前駆体膜をアルカリ性水溶液に接触させる時間を従来と同程度とする方法;等が挙げられる。
 以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。
 例1~7は、実施例であり、例8~11は、比較例である。
(TQ値)
 TQ値は、ポリマーの分子量に関係する値であって、容量流速:100mm/秒を示す温度で示したものである。容量流速は、島津フローテスターCFD-100D(島津製作所社製)を用い、イオン交換基の前駆体基を有する含フッ素ポリマーを3MPaの加圧下に一定温度のオリフィス(径:1mm、長さ:1mm)から溶融、流出させたときの流出量をmm/秒の単位で示したものである。
(イオン交換容量)
 イオン交換基の前駆体基を有する含フッ素ポリマーの約0.5gをそのTQ値より約10℃高い温度にて平板プレスしてフィルム状にし、これを透過型赤外分光分析装置によって分析し、得られたスペクトルのCFピーク、CFピーク、OHピークの各ピーク高さを用いて、イオン交換容量を算出した。
(断面積)
 90℃で2時間以上乾燥した強化電解質膜の断面をSEMにて観察し、画像ソフトを用いて犠牲糸のフィラメントおよびそのまわりの空隙の断面積を測定し、4本のフィラメントおよびそのまわりの空隙の断面積を平均し、これら平均値からB、AおよびB/Aを求めた。
(犠牲糸溶出試験)
 強化電解質膜を、20~25℃に調温された32質量%の水酸化ナトリウム水溶液に24時間浸漬した。強化電解質膜を交換水で洗浄した後、強化電解質膜の断面をSEMにて観察し、画像ソフトを用いて犠牲糸のフィラメントの断面積を測定し、4本のフィラメント断面積を平均し、Bを求めた。
(繰り返し破断試験)
 強化電解質膜から1号ダンベルサイズの試験片を切り出した。試験片としては、長さ方向が、ロールを通した方向に対し45°の方向の方向に一致するものを4点ずつ用意した。
 試験片の一端を、引っ張り試験機の上部チャックに、他端を下部チャックに取り付け、チャック間が70mmになるように挟み、試験速度を500mm/分、上限設定加重を12.5Nとし、20~25℃にて、繰り返し加重を印加する試験を行い、破断するまでの加重印加回数の平均値を求め、繰り返し破断回数とした。
(寸法変化)
 強化電解質膜から、ロールを通した方向に直角の方向(TD方向)に長さ1300mm、ロールを通した方向(MD方向)に幅200mmの試験片を2点用意した。
 試験片を、25℃に調温された交換水中に2時間以上浸漬し、直定規でTD方向の寸法を測定した。さらに、25℃に調温された32質量%の水酸化ナトリウム水溶液に浸漬し、2時間経過後のTD方向の寸法を同様に直定規で測定した。2点の平均値を求め、下式(6)から寸法変化率(%)を算出した。
 寸法変化率(%)=((32%質量%の水酸化ナトリウム水溶液中の寸法(mm)-交換水中の寸法(mm))/交換水中の寸法(mm))×100 ・・・(6)。
(破断強度)
 強化電解質膜を、4.9Nの塩化ナトリウム水溶液に16時間以上浸漬した後、強化電解質膜から1号ダンベルサイズの試験片を切り出した。試験片としては、TD方向とMD方向のものを各5点ずつ用意した。
 試験片の一端を、引っ張り試験機の上部チャックに、他端を下部チャックに取り付け、チャック間が70mmになるように挟み、20~25℃にて50mm/分の速度でチャック間を広げ、最大となる引っ張り加重(N/cm)を測定した。10点の平均値を求め、破断強度とした。
(電解電圧、電流効率)
 強化電解質膜を、第1の層が陰極に面するように、電解面サイズ150mm×100mmの試験用電解槽に配置し、水酸化ナトリウム濃度:32質量%、塩化ナトリウム濃度:200g/L、温度:90℃、電流密度:6kA/mの条件で塩化ナトリウム水溶液の電解を行い、運転開始から3~10日後の電解電圧(V)および電流効率(%)を測定した。
〔例1〕
 TFEと下式(3-1)で表されるカルボン酸型官能基の前駆体基を有する含フッ素モノマーとを共重合してカルボン酸型官能基の前駆体基を有する含フッ素ポリマー(イオン交換容量:1.06ミリ当量/グラム乾燥樹脂、TQ:225℃)(以下、ポリマーCと記す。)を合成した。
 CF=CF-O-CFCF-CF-COOCH ・・・(3-1)。
 TFEと下式(4-1)で表されるスルホン酸型官能基の前駆体基を有する含フッ素モノマーとを共重合してスルホン酸型官能基の前駆体基を有する含フッ素ポリマー(イオン交換容量:1.0ミリ当量/グラム乾燥樹脂、TQ:235℃)(以下、ポリマーSと記す。)を合成した。
 CF=CF-O-CFCF(CF)-O-CFCF-SOF ・・・(4-1)。
 ポリマーCとポリマーSとを共押し出し法により成形し、ポリマーCからなる第1の前駆体層(厚さ:12μm)およびポリマーSからなる第2の前駆体層の下層(厚さ:68μm)の2層構成のフィルムAを得た。
 また、ポリマーSを溶融押し出し法により成形し、第2の前駆体層の上層となるフィルムB(厚さ:30μm)を得た。
 PTFEフィルムを急速延伸した後、100デニールの太さにスリットして得たモノフィラメントのPTFE糸と、5デニールのPETフィラメントを6本引きそろえて撚った30デニールのマルチフィラメントのPET糸とを、PTFE糸1本に対し、PET糸2本の交互配列で平織りし、補強用の織布(PTFE糸の密度:10本/cm、PET糸の密度:20本/cm)を得た。
 得られた織布およびフィルムを、フィルムB、織布、フィルムA、離型用PETフィルム(厚さ:100μm)の順に、かつフィルムAの第1の前駆体層が離型用PETフィルム側となるように重ね、ロールを用いて積層した。離型用PETフィルムを剥がし、強化前駆体膜を得た。
 酸化ジルコニウム(平均粒子径:1μm)の29.0質量%、メチルセルロースの1.3質量%、シクロヘキサノールの4.6質量%、シクロヘキサンの1.5質量%および水の63.6質量%からなるペーストを、強化前駆体膜の第2の前駆体層の上層側にロールプレスにより転写し、ガス開放性被覆層を付着させた。酸化ジルコニウムの付着量は、20g/mとした。
 片面ガス開放性被覆層付き強化前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に、95℃で8分間浸漬し、ポリマーCの-COOCHおよびポリマーSの-SOFを加水分解して、イオン交換基に転換し、片面ガス開放性被覆層付き強化電解質膜を得た。
 ポリマーSの酸型ポリマーを2.5質量%含むエタノール溶液に、酸化ジルコニウム(平均粒子径:1μm)を13質量%の濃度で分散させた分散液を調製した。該分散液を、片面ガス開放性被覆層付き強化電解質膜の第1の層側に噴霧し、ガス開放性被覆層を付着させ、両面ガス開放性被覆層付き強化電解質膜を得た。酸化ジルコニウムの付着量は3g/mとした。
 得られた強化電解質膜について評価を行った。結果を表1に示す。
〔例2~11〕
 犠牲糸の材料、犠牲糸の繊度、強化前駆体膜の加水分解処理の条件を表1に示すように変更した以外は、例1と同様にして両面ガス開放性被覆層付き強化電解質膜を得た。
 得られた強化電解質膜について評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表中、PEEKは、ポリエーテルエーテルケトンであり、犠牲糸の材料における2種の材料の混合比率は、質量比である。
 表1の結果から、式(1)および式(2)を満足する例1~7の強化電解質膜は、機械的強度に優れていることがわかる。一方、式(1)および式(2)を満足しない例8~10の強化電解質膜は、機械的強度に劣る。犠牲糸として、アルカリ性水溶液に溶解しないPEEKを用いた例11は、塩化アルカリ電解における電解電圧が高くなる。
 本発明の強化電解質膜は、塩化アルカリ電解、拡散透析、オゾン発生電解、電解還元、燃料電池の隔膜、高分子触媒等に用いることができ、特に、塩化アルカリ電解法に用いられるイオン交換膜等として有用である。
 なお、2012年2月27日に出願された日本特許出願2012-039532号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 強化電解質膜
 10 電解質膜
 12 第1の層
 14 第2の層
 20 織布
 22 補強糸
 24 犠牲糸
 26 フィラメント
 28 空隙

Claims (9)

  1.  イオン交換基を有する含フッ素ポリマーを含む電解質膜が、補強糸と犠牲糸とからなる織布で補強された強化電解質膜であって、
     前記電解質膜内には、前記犠牲糸が残存し、
     前記犠牲糸のまわりには、前記電解質膜との間に空隙が形成され、
     前記犠牲糸の断面積および前記空隙の断面積の合計をA、前記犠牲糸の断面積をBとしたときに、下式(1)および下式(2)を満足することを特徴とする強化電解質膜。
     2000μm<A<6000μm ・・・(1)、
     0.3≦B/A<1.0    ・・・(2)。
  2.  下式(1’)を満足する、請求項1に記載の強化電解質膜。
     2000μm<A<4000μm ・・・(1’)。
  3.  前記犠牲糸が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、レーヨン、およびセルロースからなる群から選ばれる少なくとも1種を含む糸である、請求項1または2に記載の強化電解質膜。
  4.  前記犠牲糸が、ポリエチレンテレフタレート糸である、請求項1~3のいずれか一項に記載の強化電解質膜。
  5.  前記犠牲糸が、ポリエチレンテレフタレートおよびポリブチレンテレフタレートの混合物からなる糸である、請求項1~3のいずれか一項に記載の強化電解質膜。
  6.  前記犠牲糸が、ポリブチレンテレフタレート糸である、請求項1~3のいずれか一項に記載の強化電解質膜。
  7.  前記犠牲糸が、ポリトリメチレンテレフタレート糸である、請求項1~3のいずれか一項に記載の強化電解質膜。
  8.  請求項1~7のいずれか一項に記載の強化電解質膜を製造する方法であって、
     イオン交換基の前駆体基を有する含フッ素ポリマーを含む前駆体膜が、補強糸と犠牲糸とからなる織布で補強された強化前駆体膜をアルカリ性水溶液に接触させることによって、前記前駆体基を加水分解して前記イオン交換基に変換し、前記強化電解質膜とする、強化電解質膜の製造方法。
  9.  前記強化前駆体膜をアルカリ性水溶液に接触させる際に、前記式(2)を満足するように前記犠牲糸の一部のみ加水分解してアルカリ性水溶液に溶出させる、請求項8に記載の強化電解質膜の製造方法。
PCT/JP2013/054964 2012-02-27 2013-02-26 強化電解質膜およびその製造方法 WO2013129399A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014502250A JP6270714B2 (ja) 2012-02-27 2013-02-26 強化電解質膜およびその製造方法
DE112013001160.3T DE112013001160B4 (de) 2012-02-27 2013-02-26 Verstärkte Elektrolytmembran und Verfahren für ihre Herstellung
CN201380009729.9A CN104114749B (zh) 2012-02-27 2013-02-26 强化电解质膜及其制造方法
IN6873DEN2014 IN2014DN06873A (ja) 2012-02-27 2013-02-26
US14/467,192 US9435044B2 (en) 2012-02-27 2014-08-25 Reinforced electrolyte membrane and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012039532 2012-02-27
JP2012-039532 2012-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/467,192 Continuation US9435044B2 (en) 2012-02-27 2014-08-25 Reinforced electrolyte membrane and process for producing same

Publications (1)

Publication Number Publication Date
WO2013129399A1 true WO2013129399A1 (ja) 2013-09-06

Family

ID=49082596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054964 WO2013129399A1 (ja) 2012-02-27 2013-02-26 強化電解質膜およびその製造方法

Country Status (6)

Country Link
US (1) US9435044B2 (ja)
JP (1) JP6270714B2 (ja)
CN (1) CN104114749B (ja)
DE (1) DE112013001160B4 (ja)
IN (1) IN2014DN06873A (ja)
WO (1) WO2013129399A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027862A1 (ja) * 2014-08-20 2016-02-25 旭硝子株式会社 塩化アルカリ電解用イオン交換膜および塩化アルカリ電解装置
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
WO2016141550A1 (en) * 2015-03-10 2016-09-15 General Electric Company Ion-exchange membrane with multi-layered support substrate
WO2016186084A1 (ja) * 2015-05-18 2016-11-24 旭化成株式会社 イオン交換膜
JP2017043700A (ja) * 2015-08-27 2017-03-02 株式会社Ihi 親水性フィルム、電解質膜、及びその親水性フィルムの製造方法
JPWO2016167220A1 (ja) * 2015-04-13 2018-02-08 旭硝子株式会社 電解用イオン交換膜の製造方法および電解用イオン交換膜
EP3219830A4 (en) * 2014-11-10 2018-05-16 Asahi Glass Company, Limited Ion-exchange membrane for alkali chloride electrolysis, manufacturing method, and alkali chloride electrolysis device
KR20210044859A (ko) * 2018-09-21 2021-04-23 아사히 가세이 가부시키가이샤 전해조의 제조 방법, 적층체, 전해조, 및 전해조의 운전 방법
US11135551B2 (en) 2017-03-20 2021-10-05 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate
WO2022085630A1 (ja) * 2020-10-22 2022-04-28 Agc株式会社 電解質膜、電解装置およびレドックスフロー電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429831B1 (ko) * 2009-10-26 2014-08-12 아사히 가세이 케미칼즈 가부시키가이샤 양이온 교환막, 이것을 이용한 전해조 및 양이온 교환막의 제조 방법
JP6324056B2 (ja) * 2013-12-19 2018-05-16 旭化成株式会社 アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
CN107406995B (zh) * 2015-03-03 2019-04-09 Agc株式会社 碱金属氯化物电解用离子交换膜及碱金属氯化物电解装置
JP6530233B2 (ja) * 2015-05-18 2019-06-12 旭化成株式会社 陽イオン交換膜用強化芯材、並び該強化芯材を用いて製造された陽イオン交換膜及び電解槽
EP3299495B1 (en) * 2015-05-18 2020-06-03 Asahi Kasei Kabushiki Kaisha Ion exchange membrane
WO2016186085A1 (ja) 2015-05-18 2016-11-24 旭化成株式会社 イオン交換膜
EP3348675B1 (en) 2015-09-08 2021-11-17 AGC Inc. Production method for ion exchange membrane for alkali chloride electrolysis and production method for alkali chloride electrolysis apparatus
CN107949664B (zh) * 2015-09-08 2020-04-10 Agc株式会社 碱金属氯化物电解用离子交换膜的制造方法以及碱金属氯化物电解装置的制造方法
EP3444385B1 (en) * 2016-04-13 2021-03-03 Agc Inc. Ion exchange membrane for alkali chloride electrolysis, production method therefor, and alkali chloride electrolysis device
ES2880422T3 (es) * 2017-01-27 2021-11-24 Asahi Chemical Ind Membrana de intercambio iónico y tanque de electrólisis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179477A (ja) * 1990-12-21 1993-07-20 E I Du Pont De Nemours & Co 多軸方向に強化された膜
JPH1149877A (ja) * 1997-07-31 1999-02-23 Asahi Glass Co Ltd 補強された含フッ素イオン交換膜及び製造方法
JP2002079114A (ja) * 2000-09-11 2002-03-19 Asahi Kasei Corp 補強された陽イオン交換膜の製造方法
JP2004043594A (ja) * 2002-07-10 2004-02-12 Asahi Glass Co Ltd イオン交換膜、およびその製造方法
WO2011052538A1 (ja) * 2009-10-26 2011-05-05 旭化成ケミカルズ株式会社 陽イオン交換膜、それを用いた電解槽及び陽イオン交換膜の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437951A (en) * 1981-12-15 1984-03-20 E. I. Du Pont De Nemours & Co. Membrane, electrochemical cell, and electrolysis process
JPS62103384A (ja) * 1985-10-29 1987-05-13 Asahi Glass Co Ltd フイルタ−プレス型電解槽の組立て方法
JP2688902B2 (ja) * 1987-08-26 1997-12-10 旭化成工業株式会社 強化されたイオン交換膜及びその製造法
JP2753731B2 (ja) 1989-06-05 1998-05-20 旭化成工業株式会社 フッ素系イオン交換膜の調整方法
JPH07233267A (ja) 1993-11-24 1995-09-05 E I Du Pont De Nemours & Co 織物で強化された膜
JP2000256486A (ja) 1999-03-09 2000-09-19 Asahi Chem Ind Co Ltd 補強された陽イオン交換膜
US20100098877A1 (en) 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
US20120074611A1 (en) 2010-09-29 2012-03-29 Hao Zhou Process of Forming Nano-Composites and Nano-Porous Non-Wovens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179477A (ja) * 1990-12-21 1993-07-20 E I Du Pont De Nemours & Co 多軸方向に強化された膜
JPH1149877A (ja) * 1997-07-31 1999-02-23 Asahi Glass Co Ltd 補強された含フッ素イオン交換膜及び製造方法
JP2002079114A (ja) * 2000-09-11 2002-03-19 Asahi Kasei Corp 補強された陽イオン交換膜の製造方法
JP2004043594A (ja) * 2002-07-10 2004-02-12 Asahi Glass Co Ltd イオン交換膜、およびその製造方法
WO2011052538A1 (ja) * 2009-10-26 2011-05-05 旭化成ケミカルズ株式会社 陽イオン交換膜、それを用いた電解槽及び陽イオン交換膜の製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661746A (zh) * 2014-08-20 2017-05-10 旭硝子株式会社 碱金属氯化物电解用离子交换膜和碱金属氯化物电解装置
US10865489B2 (en) 2014-08-20 2020-12-15 AGC Inc. Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus
CN106661746B (zh) * 2014-08-20 2018-11-13 Agc株式会社 碱金属氯化物电解用离子交换膜和碱金属氯化物电解装置
WO2016027862A1 (ja) * 2014-08-20 2016-02-25 旭硝子株式会社 塩化アルカリ電解用イオン交換膜および塩化アルカリ電解装置
JPWO2016027862A1 (ja) * 2014-08-20 2017-06-01 旭硝子株式会社 塩化アルカリ電解用イオン交換膜および塩化アルカリ電解装置
US20170218526A1 (en) * 2014-11-07 2017-08-03 Asahi Glass Company, Limited Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis apparatus
US11447881B2 (en) 2014-11-07 2022-09-20 AGC Inc. Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis apparatus
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
JPWO2016072506A1 (ja) * 2014-11-07 2017-08-17 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
US11020734B2 (en) 2014-11-10 2021-06-01 AGC Inc. Ion exchange membrane for alkali chloride electrolysis, production method, and alkali chloride electrolysis apparatus
EP3219830A4 (en) * 2014-11-10 2018-05-16 Asahi Glass Company, Limited Ion-exchange membrane for alkali chloride electrolysis, manufacturing method, and alkali chloride electrolysis device
JP2018511463A (ja) * 2015-03-10 2018-04-26 ゼネラル・エレクトリック・カンパニイ 多層支持基材を有するイオン交換膜
WO2016141550A1 (en) * 2015-03-10 2016-09-15 General Electric Company Ion-exchange membrane with multi-layered support substrate
US10486151B2 (en) 2015-03-10 2019-11-26 Bl Technologies, Inc. Ion-exchange membrane with multi-layered support substrate
JPWO2016167220A1 (ja) * 2015-04-13 2018-02-08 旭硝子株式会社 電解用イオン交換膜の製造方法および電解用イオン交換膜
JPWO2016186084A1 (ja) * 2015-05-18 2018-03-01 旭化成株式会社 イオン交換膜
KR101967087B1 (ko) 2015-05-18 2019-04-08 아사히 가세이 가부시키가이샤 이온 교환막
US10413896B2 (en) 2015-05-18 2019-09-17 Asahi Kasei Kabushiki Kaisha Ion exchange membrane
WO2016186084A1 (ja) * 2015-05-18 2016-11-24 旭化成株式会社 イオン交換膜
KR20170127538A (ko) * 2015-05-18 2017-11-21 아사히 가세이 가부시키가이샤 이온 교환막
JP2017043700A (ja) * 2015-08-27 2017-03-02 株式会社Ihi 親水性フィルム、電解質膜、及びその親水性フィルムの製造方法
US11135551B2 (en) 2017-03-20 2021-10-05 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate
US11766638B2 (en) 2017-03-20 2023-09-26 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate
JPWO2020059623A1 (ja) * 2018-09-21 2021-09-09 旭化成株式会社 電解槽の製造方法、積層体、電解槽、及び電解槽の運転方法
KR20210044859A (ko) * 2018-09-21 2021-04-23 아사히 가세이 가부시키가이샤 전해조의 제조 방법, 적층체, 전해조, 및 전해조의 운전 방법
JP7320520B2 (ja) 2018-09-21 2023-08-03 旭化成株式会社 電解槽の製造方法、積層体、電解槽、及び電解槽の運転方法
KR20230154087A (ko) * 2018-09-21 2023-11-07 아사히 가세이 가부시키가이샤 전해조의 제조 방법, 적층체, 전해조, 및 전해조의 운전 방법
KR102614977B1 (ko) * 2018-09-21 2023-12-15 아사히 가세이 가부시키가이샤 전해조의 제조 방법, 적층체, 전해조, 및 전해조의 운전 방법
KR102653282B1 (ko) * 2018-09-21 2024-03-29 아사히 가세이 가부시키가이샤 전해조의 제조 방법, 적층체, 전해조, 및 전해조의 운전 방법
WO2022085630A1 (ja) * 2020-10-22 2022-04-28 Agc株式会社 電解質膜、電解装置およびレドックスフロー電池

Also Published As

Publication number Publication date
DE112013001160T5 (de) 2014-11-27
US9435044B2 (en) 2016-09-06
DE112013001160B4 (de) 2024-05-23
IN2014DN06873A (ja) 2015-05-22
JP6270714B2 (ja) 2018-01-31
US20140360868A1 (en) 2014-12-11
CN104114749B (zh) 2016-10-12
CN104114749A (zh) 2014-10-22
JPWO2013129399A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6270714B2 (ja) 強化電解質膜およびその製造方法
EP2495044B1 (en) Cation-exchange membrane, electrolytic cell utilizing same and method for producing cation-exchange membrane
JP6612410B2 (ja) イオン交換膜
JP2007077453A (ja) 電解用フッ素系陽イオン交換膜及びその製造方法
JP6954269B2 (ja) 塩化アルカリ電解用イオン交換膜、その製造方法及び塩化アルカリ電解装置
WO2016076325A1 (ja) 塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置
JP5773906B2 (ja) 陽イオン交換膜及びこれを用いた電解槽
JP4573715B2 (ja) 電解用フッ素系陽イオン交換膜
US10865489B2 (en) Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus
US10926253B2 (en) Process for producing ion exchange membrane for electrolysis, and ion exchange membrane for electrolysis
KR101967087B1 (ko) 이온 교환막
WO2017154925A1 (ja) イオン交換膜、その製造方法および塩化アルカリ電解装置
JP6927191B2 (ja) 塩化アルカリ電解用イオン交換膜、塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置
US11434337B2 (en) Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502250

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130011603

Country of ref document: DE

Ref document number: 112013001160

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754372

Country of ref document: EP

Kind code of ref document: A1