WO2013129211A1 - ベータアルミナ質焼結体とその製造方法 - Google Patents

ベータアルミナ質焼結体とその製造方法 Download PDF

Info

Publication number
WO2013129211A1
WO2013129211A1 PCT/JP2013/054225 JP2013054225W WO2013129211A1 WO 2013129211 A1 WO2013129211 A1 WO 2013129211A1 JP 2013054225 W JP2013054225 W JP 2013054225W WO 2013129211 A1 WO2013129211 A1 WO 2013129211A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
sintered body
alumina
powder
mass
Prior art date
Application number
PCT/JP2013/054225
Other languages
English (en)
French (fr)
Inventor
光井 彰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014502155A priority Critical patent/JP6052279B2/ja
Publication of WO2013129211A1 publication Critical patent/WO2013129211A1/ja
Priority to US14/473,363 priority patent/US9735446B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/113Fine ceramics based on beta-aluminium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a beta alumina sintered body that can be used as a solid electrolyte for a storage battery (secondary battery) and a method for producing the same.
  • a beta alumina sintered body exhibiting high sodium ion conductivity (hereinafter simply referred to as ion conductivity) is used.
  • ⁇ alumina is used as a generic term for ⁇ alumina and ⁇ ′′ alumina.
  • ⁇ ′′ alumina has a higher sodium ion content in the crystal structure and relatively higher ionic conductivity, so it is more commonly used for solid electrolyte applications. Since it is a stable substance, it is known that its crystal structure is difficult to maintain.
  • Beta alumina Since beta alumina is hardly sinterable regardless of its crystal form, in order to obtain a dense sintered body having a high density, a firing temperature of 1600 ° C. or higher is required. Beta alumina contains, as an essential component, Na 2 O which is a component that easily volatilizes at a high temperature, and a lower firing temperature is desired.
  • liquid phase sintering has been proposed as a method of lowering the firing temperature.
  • a sintering aid that becomes a liquid phase at a relatively low temperature is added and fired. If the selection of the sintering aid is not appropriate, abnormal grain growth occurs between the particles, and on the contrary, densification of the sintered body is hindered and the mechanical strength may be lowered. Further, after sintering, the sintering aid remains in the sintered body as a crystalline phase and may affect the durability of the sintered body.
  • Li 2 O which is a stabilizer of ⁇ ′′ alumina, is added at a weight ratio of 0.5 to 0.75 wt% with respect to the entire sintered body, whereby the firing temperature is set to 1450 in liquid phase sintering.
  • a method has been proposed in which a dense sintered body can be obtained that can be lowered to 0 ° C.
  • a sintered body using Li 2 O as a stabilizer has insufficient durability when used for a long period of time. It is.
  • Patent Document 2 proposes a method for suppressing the volatilization of Na 2 O by adding Bi 2 O 3 , CuO or PbO as a sintering aid to lower the firing temperature of beta alumina to 1300 to 1400 ° C. Has been. However, with this method, the relative density of the sintered body is 94% at the maximum, and a dense beta alumina sintered body with high mechanical strength cannot be obtained.
  • An object of the present invention is to provide a beta-alumina sintered body that suppresses volatilization of Na 2 O in the firing process, is dense, has high ionic conductivity, and has excellent durability, and a method for manufacturing the same.
  • the inventor added RNbO 3 (R: at least one element selected from the group consisting of Li, Na and K) as a sintering aid to the beta alumina powder, thereby firing the beta alumina sintered body. It has been found that the temperature can be lowered, and that it is possible to obtain a beta alumina sintered body that is suitable as a solid electrolyte and has excellent mechanical strength and high ionic conductivity. Furthermore, it has been found that when an optimal stabilizer is used in combination, the effect of suppressing abnormal grain growth is enhanced.
  • R at least one element selected from the group consisting of Li, Na and K
  • the gist of the present invention is as follows.
  • R of RNbO 3 is Na.
  • the chemical composition of the beta-alumina sintered body is 8 to 15% by mass of Na 2 O, 5 to 30% by mass of Nb 2 O 5 , 1 to 10% by mass of NiO, and the balance is Al based on oxides the consisting 2 O 3 [4] beta-alumina sintered body according.
  • the firing temperature can be made lower than 1450 ° C. Therefore, the volatilization of Na 2 O during the firing process can be suppressed. Moreover, since volatilization of the contained components is suppressed, the temperature rise time and the holding time can be set long to make the temperature in the furnace uniform, and the product is excellent in product quality stability. Furthermore, since abnormal grain growth is suppressed in the sintered body, a dense beta-alumina sintered body having high ion conductivity can be obtained. This is suitable as a solid electrolyte for a storage battery (secondary battery).
  • FIG. 2 is an SEM image of a fracture surface of a sintered body of Example 1.
  • the beta alumina sintered body of the present invention is a sintered body containing a beta alumina crystal phase, and includes an RNbO 3 crystal phase and a beta alumina crystal phase.
  • the RNbO 3 crystal phase contained in the beta alumina sintered body of the present invention functions as a bond strengthener at the grain boundaries of the beta alumina particles, it is possible to realize a solid electrolyte with a long life and high reliability.
  • the underlying RNbO 3 powder RNbO 3 crystal phase is a sintering aid having a low melting point, during firing promotes sintering of the beta-alumina becomes a liquid phase state.
  • the RNbO 3 in the liquid phase state works so as to fill a space between the beta alumina crystal particles and become a dense sintered body.
  • NaNbO 3 (R) alkali metal elements
  • NaNbO 3 (R) alkali metal elements
  • RNbO 3 (R) alkali metal elements
  • NaNbO 3 crystal phase is present in the beta-alumina sintered body, or sintering aid It is preferable to use NaNbO 3 powder.
  • the beta-alumina crystal phase may contain a small amount of a ⁇ -alumina crystal phase, but it is preferable in terms of ionic conductivity that the ⁇ ”-alumina crystal phase occupies the majority. In order to increase the ionic conductivity, it is more preferable that the ionic conductivity is composed only of a ⁇ ′′ alumina crystal phase.
  • the beta-alumina sintered body of the present invention preferably contains a stabilizer that stably maintains the ⁇ ′′ alumina crystal structure.
  • the stabilizer not only maintains the crystal structure but also the firing process, particularly the liquid phase. It is preferable to have an effect of preventing abnormal grain growth in the existing process.
  • NiO is preferable because it not only maintains the ⁇ ′′ alumina crystal structure, but also prevents abnormal grain growth during sintering and makes the sintered body dense. Further, NiO is preferable in the sintered body. More preferably in the beta alumina crystal phase, more preferably in the ⁇ "alumina crystal structure.
  • the presence of the crystal phase can be confirmed by identification using an X-ray diffractometer.
  • the chemical composition of the beta-alumina sintered body of the present invention is such that, based on the oxide, Na 2 O is 8 to 15% by mass, Nb 2 O 5 is 5 to 30% by mass, and the balance is Al 2 O 3. preferable.
  • the beta alumina sintered body of the present invention contains NiO as a stabilizer and has a chemical composition of 8 to 15% by mass of Na 2 O and 5 to 30% by mass of Nb 2 O 5 on the basis of oxides. More preferably, NiO is 1 to 10% by mass and the balance is Al 2 O 3 .
  • Sodium oxide (Na 2 O) is an essential component for forming the beta alumina phase.
  • the content is preferably 8 to 15% by mass. If the amount is less than 8% by mass, the beta alumina phase is not sufficiently formed. If the amount exceeds 15% by mass, excess sodium aluminate remains in the crystal phase and the ionic conductivity decreases.
  • the content is more preferably 9 to 14% by mass, and further preferably 10 to 13% by mass.
  • Niobium oxide (Nb 2 O 5 ) is an RNbO 3 phase raw material.
  • the content is preferably 5 to 30% by mass. If it is less than 5% by mass, a dense sintered body cannot be obtained. Moreover, when it exceeds 30 mass%, ionic conductivity will fall. In order to increase the density and ion conductivity, the content is more preferably 6.5 to 28% by mass, and further preferably 8 to 25% by mass.
  • Nickel oxide (NiO) is a stabilizer of ⁇ ′′ alumina crystal structure.
  • the content is preferably 1 to 10% by mass. If it is less than 1% by mass and more than 10% by mass, ⁇ ′′ alumina crystal structure is not good. Often stable. Moreover, it becomes a cause of abnormal grain growth during sintering, and a dense sintered body with high ionic conductivity cannot be obtained. Therefore, the content is more preferably 3 to 6.5% by mass, and further preferably 4.5 to 5.5% by mass.
  • Aluminum oxide (Al 2 O 3 ) is an essential component that forms a beta alumina phase.
  • the content is adjusted such that the total amount with other components is 100% by mass.
  • the chemical composition can be quantitatively measured by fluorescent X-ray analysis.
  • the beta alumina sintered body of the present invention has a relative density of 97% or more and an open porosity of 0.5% by volume or less in order to achieve densification.
  • the open porosity is more preferably 0.3% by volume or less. The higher the relative density, in particular, the lower the open porosity, the better the ionic conductivity and mechanical strength, and the more preferable as the solid electrolyte.
  • the relative density and open porosity are determined by the Archimedes method.
  • the present invention is not limited thereto.
  • the beta-alumina sintered body of the embodiment is manufactured by mixing beta-alumina powder and NaNbO 3 powder, shaping the mixture, and firing.
  • Beta alumina powder is synthesized as follows.
  • a sodium carbonate (Na 2 CO 3 ) powder, an alumina (Al 2 O 3 ) powder, and a nickel oxide (NiO) powder are prepared. These raw material powders are composed of 15 to 17% by mass of Na 2 CO 3 and Al 2 O 3 with respect to the total mass of Na 2 CO 3 , Al 2 O 3 and NiO (Na 2 CO 3 + Al 2 O 3 + NiO).
  • a mixed powder is obtained by weighing at a predetermined ratio so as to be 78 to 80% by mass and 5 to 7% by mass of NiO and mixing using a ball mill or the like.
  • the raw material powder to be used is not particularly limited as long as the sintered body becomes a beta alumina crystal phase.
  • the mixed powder is put into a heat-resistant container such as an alumina crucible and calcined at 1000 to 1300 ° C. in the atmosphere to synthesize beta alumina powder using NiO as a stabilizer.
  • the holding time at this time is preferably 1 to 10 hours, for example.
  • CO 2 component in the sodium carbonate is scattered in calcination.
  • NaNbO 3 powder is synthesized as follows.
  • a sodium carbonate (Na 2 CO 3 ) powder and a niobium oxide (Nb 2 O 5 ) powder are prepared. These raw material powders are 28 to 29% by mass of Na 2 CO 3 and 71 to 72 of Nb 2 O 5 with respect to the total mass of Na 2 CO 3 and Nb 2 O 5 (Na 2 CO 3 + Nb 2 O 5 ). Weighing at a predetermined ratio so as to be mass% and mixing using a ball mill or the like to obtain a mixed powder.
  • the starting powder used may be any one comprising the chemical composition of NaNbO 3 in the following calcining step is not particularly limited.
  • the obtained mixed powder is put in a heat-resistant container such as an alumina crucible and calcined at 800 to 1000 ° C. in the atmosphere to synthesize NaNbO 3 powder.
  • the holding time at this time is preferably about 1 to 10 hours.
  • CO 2 component in the sodium carbonate is scattered in calcination.
  • the beta alumina powder and NaNbO 3 powder synthesized as described above are 50 to 93 mass% of beta alumina powder and 7 to 50 mass% of NaNbO 3 powder based on the total mass of beta alumina powder and NaNbO 3 powder. Weigh at a predetermined ratio so that At this time, if NaNbO 3 is less than 7% by mass, a dense sintered body cannot be obtained. On the other hand, if NaNbO 3 exceeds 50 mass%, the ionic conductivity of the sintered body is lowered. It is preferable that the content of beta alumina powder is 70 to 88% by mass and the content of NaNbO 3 is 12 to 30% by mass in terms of densification and high ionic conductivity. More preferably, the NaNbO 3 content is 78 to 86% by mass and 14 to 22% by mass.
  • an average particle diameter shall mean the value measured by the laser diffraction method.
  • pulverization there is no restriction
  • mixed powder of beta-alumina powder and NaNbO 3 powder without mixing separately synthesized beta-alumina powder and NaNbO 3 powder, can be simultaneously synthesized as follows.
  • sodium carbonate (Na 2 CO 3 ) powder, alumina (Al 2 O 3 ) powder, nickel oxide (NiO) powder and niobium oxide (Nb 2 O 5 ) powder are prepared.
  • Na 2 CO 3 is 16 to 25 with respect to the total mass of Na 2 CO 3 , Al 2 O 3 , NiO and Nb 2 O 5 (Na 2 CO 3 + Al 2 O 3 + NiO + Nb 2 O 5 ).
  • the mixed powder is put in a heat-resistant container such as an alumina crucible and calcined at 1000 to 1300 ° C. in the atmosphere to synthesize a mixed powder of beta alumina powder and NaNbO 3 powder.
  • the holding time at this time is preferably 1 to 10 hours, for example.
  • the calcining temperature at this time is 1000 degreeC or more, reaction will fully advance and the density of the sintered compact using this powder can be made sufficiently high.
  • it is 1300 degrees C or less, since the hardness of a powder can be made appropriate and the time concerning a grinding
  • the calcining temperature is more preferably in the temperature range of 1000 to 1200 ° C., and a good mixed powder in which the reaction proceeds sufficiently and the pulverization time is relatively short can be obtained.
  • the obtained mixed powder is pulverized in a wet manner until the average particle size becomes 10 ⁇ m or less, preferably 2 ⁇ m or less, and then dried to obtain a mixed powder as described above.
  • the mixed powder of the beta alumina powder and NaNbO 3 powder thus obtained is molded into a predetermined shape to obtain a molded body.
  • the molding method is not particularly limited, and a general molding method can be used. For example, it can be molded by applying a pressure of 100 to 200 MPa by an isostatic press. Further, a mixture obtained by adding an organic binder to the mixed powder can be kneaded and formed into a predetermined shape by press molding, extrusion molding or sheet molding. There is no restriction
  • the molded body is fired in the atmosphere at a temperature of less than 1450 ° C. for 1 to 12 hours. If the firing temperature is too low, the effect of liquid phase sintering due to dissolution of NaNbO 3 is not sufficient, and a dense sintered body cannot be obtained. On the other hand, when it is too high, Na 2 O is volatilized, which is not preferable. Accordingly, the firing temperature is preferably 1350 ° C. or higher and lower than 1450 ° C., more preferably 1375 to 1425 ° C.
  • the holding time at the maximum temperature is not particularly limited, but is, for example, 1 to 12 hours, preferably 2 to 5 hours.
  • the firing atmosphere is not particularly limited, and for example, an inert atmosphere such as an air atmosphere, an oxygen atmosphere, a nitrogen atmosphere or an argon atmosphere, or a reducing atmosphere such as hydrogen or a mixed atmosphere of hydrogen and nitrogen can be selected. Above all, it is preferable because an electric furnace having a relatively simple atmospheric atmosphere can be used.
  • Examples 1 to 4 are examples of the present invention, and examples 5 and 6 are comparative examples.
  • the obtained mixed powder was put in an alumina crucible and calcined at 1250 ° C. for 5 hours in the atmosphere to synthesize beta alumina powder using NiO as a stabilizer.
  • the calcined powder cooled to room temperature was crushed through a mesh having an opening of 850 ⁇ m to adjust the particle size.
  • sodium carbonate (Na 2 CO 3 ) powder and niobium oxide (Nb 2 O 5 ) powder manufactured by Kojundo Chemical Laboratory Co., Ltd., 3N / 1 micrometer product
  • Na 2 CO 3 sodium carbonate
  • Nb 2 O 5 niobium oxide
  • the obtained mixed powder was put into an alumina crucible and calcined at 950 ° C. for 5 hours in the atmosphere to synthesize NaNbO 3 powder.
  • the calcined powder cooled to room temperature was pulverized through a mesh having an opening of 850 ⁇ m to adjust the particle size.
  • the obtained beta-alumina powder and NaNbO 3 powder were weighed so as to have the composition of the mixed powder shown in Table 1, and ethanol was used as a dispersant, and a yttria-stabilized zirconia ball (trade name: YTZ ball, manufactured by Nikkato) Was mixed and ground for 96 hours in a wet ball mill. Thereafter, the slurry was dried to obtain mixed powders of Examples 1 to 4.
  • Example 5 beta alumina powder was synthesized by the same method as in Examples 1 to 4 and crushed to obtain beta alumina powder.
  • the mixed powders of Examples 1 to 4 and the beta alumina powder of Example 5 were each molded by applying a hydrostatic pressure press of 180 MPa at room temperature, and then heated and fired at 1400 ° C. for 2 hours in the atmosphere.
  • Example 6 the raw material powder and its composition are sodium carbonate (Na 2 CO 3 ) powder, ⁇ -alumina (Al 2 O 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder (made by Junsei Chemical Co., Ltd., special grade) Were 14.1% by mass, 84.2% by mass and 1.7% by mass, respectively. This was fired in the same manner as in Example 5. The firing temperature was 1500 ° C.
  • the chemical composition of the obtained sintered body was analyzed using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, apparatus name: RIX3000).
  • Table 1 shows the composition of the sintered body obtained from the mixing ratio of beta alumina and NaNbO 3 powder and the result of chemical composition analysis by fluorescent X-ray analysis of the sintered body.
  • the result of the fluorescent X-ray analysis is the ratio (mass%) of each component when the total mass of Na 2 O, Al 2 O 3 , Nb 2 O 5 and NiO is 100 mass%.
  • the total content of substances other than the four components of Na 2 O, Al 2 O 3 , Nb 2 O 5 and NiO was less than 1% by mass of the entire sintered body. It was.
  • Example 6 3.21 g / cm 3 was used as the theoretical density.
  • C Conductivity The ionic conductivity of the sintered body was measured at 25 ° C. and 110 ° C. by a complex impedance plot method.
  • D Appearance after being left in the atmosphere for 30 days The appearance of the obtained sintered body was observed before and after being left in the atmosphere for 30 days.
  • a dense beta-alumina sintered body having high ion conductivity can be stably produced. And if this beta alumina sintered body is used as a solid electrolyte for a storage battery, a long-life and highly reliable storage battery can be produced. Even if Na + is replaced with another alkali metal ion, for example, Li + as the conductive species, a beta alumina sintered body having a dense and high ionic conductivity can be similarly produced. In this case, for example, it can be used as a solid electrolyte for an all solid lithium ion battery. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-043515 filed on February 29, 2012 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

 低い温度で焼成することでNaOの揮散を抑制し、固体電解質としてイオン導電性が高く、緻密なベータアルミナ質焼結体およびその製造方法を提供する。 低融点物質であるRNbOをベータアルミナ粉末に添加して焼結することで、焼成温度が低く、焼成過程で異常粒成長が生じない緻密なβ"アルミナ結晶を主成分とするベータアルミナ質焼結体が得られる。

Description

ベータアルミナ質焼結体とその製造方法
 本発明は、蓄電池(二次電池)用の固体電解質として利用できるベータアルミナ質焼結体とその製造方法に関する。
 Na-S電池、Na-溶融塩電池などの蓄電池の固体電解質として、高いナトリウムイオン導電性(以下、単にイオン導電性と略す)を示すベータアルミナ質焼結体が用いられている。ベータアルミナには、化学組成がNaO・xAl(x=9~11)で表されるβアルミナと、NaO・xAl(x=5~7)で表されるβ”アルミナの2種類の結晶形がある。以下、本明細書においてベータアルミナは、βアルミナとβ”アルミナとを総称するものとして使用する。これらのうちβ”アルミナの方が、結晶構造内のナトリウムイオン含有量が高く、また、相対的にイオン導電性が高いため、固体電解質用途に多用されている。一方、β”アルミナは、準安定物質であるため、その結晶構造を維持しにくいことが知られている。
 ベータアルミナは、その結晶形に関係なく難焼結性であるため、密度の高い緻密な焼結体を得るためには、焼成温度は1600℃以上の高温が必要である。ベータアルミナには、高温で揮散しやすい成分であるNaOを必須成分として含んでおり、焼成温度の低温化が望まれている。
 従来、ベータアルミナの焼成においては、焼成温度を下げる方法として、液相焼結が提案されていた。液相焼結では、比較的低温で液相となる焼結助剤を添加して焼成する。焼結助剤の選択が適切でないと、粒子間同士で異常粒成長が起こり、かえって焼結体の緻密化が阻害され、機械的強度が低下するおそれがある。また、焼結助剤は焼成後には、結晶相として焼結体内に残存し、焼結体の耐久性等に影響を及ぼす場合がある。
 特許文献1には、β”アルミナの安定化剤であるLiOを、焼結体全体に対する重量比で0.5~0.75wt%添加することにより、液相焼結において焼成温度を1450℃まで低下でき、かつ、緻密な焼結体が得られる方法が提案されている。しかし、安定化剤としてLiOを用いた焼結体は、長期間使用する際の耐久性が不十分である。
 特許文献2には、焼結助剤としてBi、CuO又はPbOを添加することにより、ベータアルミナの焼成温度を1300~1400℃と低下させ、NaOの揮散を抑制する方法が提案されている。しかしこの方法では、焼結体の相対密度が最大で94%であり、緻密で機械的強度が高いベータアルミナ質焼結体が得られない。
日本特開平7-65857号公報 日本特開平2-229755号公報
 本発明は、焼成過程におけるNaOの揮散を抑制し、緻密でイオン導電性が高く、耐久性に優れたベータアルミナ質焼結体およびその製造方法の提供を目的とする。
 発明者は、焼結助剤としてRNbO(R:Li、NaおよびKからなる群から選ばれる少なくとも1種以上の元素)をベータアルミナ粉末に添加することで、ベータアルミナ質焼結体の焼成温度を低下できることを見出し、また、固体電解質として好適な緻密で機械的強度に優れ、イオン導電性の高いベータアルミナ質焼結体が得られることを見出した。さらに、最適な安定化剤を併用すると異常粒成長の抑制効果が高まることを見出した。
 本発明は、以下の構成を要旨とするものである。
[1]NaOとAlとを主成分とするベータアルミナ質焼結体であって、ベータアルミナ結晶相と、RNbO(R:Li、NaおよびKからなる群から選ばれる少なくとも1種以上の元素)結晶相と、を含有することを特徴とするベータアルミナ質焼結体。
[2]前記ベータアルミナ結晶相中にβ”アルミナ結晶相を含む上記[1]記載のベータアルミナ質焼結体。
[3]RNbOのRがNaである上記[1]又は[2]記載のベータアルミナ質焼結体。
[4]酸化ニッケル(NiO)を含有する上記[1]乃至[3]記載のベータアルミナ質焼結体。
[5]ベータアルミナ質焼結体の化学組成が酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、NiOが1~10質量%、残部がAlからなる上記[4]記載のベータアルミナ質焼結体。
[6]ベータアルミナ粉末とRNbO(R:Li、NaおよびKからなる群から選ばれる少なくとも1以上の元素)粉末とを混合し、混合物を成形、焼成することを特徴とする上記[1]記載のベータアルミナ質焼結体の製造方法。
[7]前記焼成において焼成温度が1450℃未満である上記[6]記載のベータアルミナ質焼結体の製造方法。
[8]前記ベータアルミナ粉末中に、β”アルミナを含有する上記[6]又は[7]記載のベータアルミナ質焼結体の製造方法。
[9]RNbOのRがNaである上記[6]~[8]のいずれかに記載のベータアルミナ質焼結体の製造方法。
[10]前記ベータアルミナ粉末中に、NiOを含有する上記[6]~[9]のいずれかに記載のベータアルミナ質焼結体の製造方法。
[11]ベータアルミナ質焼結体の化学組成が酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、NiOが1~10質量%、残部がAlからなる上記[10]記載のベータアルミナ質焼結体の製造方法。
 本発明のベータアルミナ質焼結体の製造方法によると、焼成温度を1450℃未満にできる。そのため、焼成過程中におけるNaOの揮散を抑制できる。また、含有成分の揮散が抑制されるため、昇温時間や保持時間を長く設定して炉内の温度を均一にして焼成でき、製品の品質安定性に優れる。さらに、焼結体中で異常粒成長が抑えられるため、緻密でイオン導電性が高いベータアルミナ質焼結体が得られる。これは蓄電池(二次電池)用の固体電解質として好適である。
実施例1の焼結体破断面のSEM像。
 本発明の実施の形態について詳細に説明する。
 本発明のベータアルミナ質焼結体はベータアルミナ結晶相を含む焼結体であり、その中には、RNbO結晶相とベータアルミナ結晶相が含まれる。
 本発明のベータアルミナ質焼結体中に含まれるRNbO結晶相は、ベータアルミナ粒子の粒界の結合強化材として働くため、高寿命で信頼性の高い固体電解質の製造を実現できる。RNbO結晶相の元となるRNbO粉末は低融点の焼結助剤であり、焼成時は液相状態となりベータアルミナの焼結を促進する。液相状態にあるRNbOは、ベータアルミナ結晶粒子間を埋めて、緻密な焼結体となるように働く。
 前記RNbOのアルカリ金属元素(R)としては、Na元素の場合に上記の作用を最もよく発揮するため、ベータアルミナ質焼結体中にNaNbO結晶相が存在すること、又は焼結助剤としてNaNbO粉末を用いることが好ましい。
 本発明のベータアルミナ質焼結体中において、ベータアルミナ結晶相は、少量のβアルミナ結晶相を含んでいてもよいが、β”アルミナ結晶相が大半を占めることがイオン導電性の点で好ましい。イオン導電性を高めるためには、β”アルミナ結晶相のみからなることがさらに好ましい。
 本発明のベータアルミナ質焼結体中には、β”アルミナ結晶構造を安定に維持する安定化剤を含むことが好ましい。安定化剤は、結晶構造維持だけでなく焼成過程、特に液相が存在する過程において異常粒成長を防ぐ効果を有することが好ましい。
 安定化剤としては、NiOが、β”アルミナ結晶構造を維持するだけでなく、焼結時に異常粒成長を防止し、焼結体を緻密にできるため好ましい。また、NiOは焼結体中のベータアルミナ結晶相中に存在することがより好ましく、β”アルミナ結晶構造内に存在することがさらに好ましい。
 なお、前記結晶相は、X線回折装置を用いた同定により、その存在を確認できる。
 本発明のベータアルミナ質焼結体の化学組成は、酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、残部がAlからなることが好ましい。
 そして、本発明のベータアルミナ質焼結体は、安定化剤としてNiOを含み、化学組成が、酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、NiOが1~10質量%、残部がAlからなることがより好ましい。
 以下に、各化学成分について前記範囲に限定している理由を説明する。
 酸化ナトリウム(NaO)は、ベータアルミナ相を形成するために必須な成分である。その含有量は、8~15質量%が好ましい。8質量%未満では、ベータアルミナ相が十分に生成せず、15質量%を超えると、結晶相中に過剰のアルミン酸ナトリウムが残存し、イオン導電性が低下する。含有量は、9~14質量%がより好ましく、10~13質量%がさらに好ましい。
 酸化ニオブ(Nb)は、RNbO相の原料である。含有量は、5~30質量%が好ましい。5質量%未満では、緻密な焼結体が得られない。また、30質量%を超えると、イオン導電性が低下する。緻密でイオン導電性を高めるため含有量は、6.5~28質量%がより好ましく、8~25質量%がさらに好ましい。
 酸化ニッケル(NiO)は、β”アルミナ結晶構造の安定化剤である。含有量は、1~10質量%が好ましい。1質量%未満および10質量%を超では、β”アルミナ結晶構造が不安定になる。また焼結時に異常粒成長の原因となり、緻密な焼結体でかつイオン導電性が高いものが得られない。そのため含有量は、3~6.5質量%がより好ましく、4.5~5.5質量%がさらに好ましい。
 酸化アルミニウム(Al)は、ベータアルミナ相を形成する必須成分である。その含有量は、他の成分との合計量が100質量%となるように調整される。
  前記化学組成は、蛍光X線分析法により定量的に測定できる。
 また、本発明のベータアルミナ質焼結体は、相対密度を97%以上、開気孔率を0.5体積%以下とすることが、緻密化を達成するため好ましい。開気孔率は0.3体積%以下であることがより好ましい。相対密度が高くなること、特に開気孔率が低くなるほど、イオン導電性および機械的強度が向上し、固体電解質として、より好ましいものとなる。前記相対密度および開気孔率はアルキメデス法により求められる。
 次に、本発明の実施形態のベータアルミナ質焼結体を製造する方法について説明する。なお、ここでは、RNbOとしてNaNbOを、安定化剤としてNiOを用いているが、本発明はこれらに限定されるものではない。
 実施形態のベータアルミナ質焼結体は、ベータアルミナ粉末とNaNbO粉末を混合し、混合物を成形し、焼成して製造される。
 ベータアルミナ粉末は以下のようにして合成する。炭酸ナトリウム(NaCO)粉末、アルミナ(Al)粉末と酸化ニッケル(NiO)粉末を用意する。これらの原料粉末をNaCO、AlおよびNiOの合計質量(NaCO+Al+NiO)に対して、NaCOが15~17質量%、Alが78~80質量%、NiOが5~7質量%となるように、所定の割合で秤量し、ボールミルなどを用いて混合して、混合粉末を得る。なお、使用する原料粉末は、焼結体がベータアルミナ結晶相となるものであれば、特に限定されない。
 前記混合粉末は、アルミナるつぼなどの耐熱容器に入れ、大気中1000~1300℃で仮焼し、NiOを安定化剤としたベータアルミナ粉末を合成する。このときの保持時間は例えば1~10時間がよい。なお、炭酸ナトリウム中のCO成分は仮焼中に飛散する。
 一方、NaNbO粉末は以下のようにして合成する。炭酸ナトリウム(NaCO)粉末と酸化ニオブ(Nb)粉末を用意する。これらの原料粉末をNaCOとNbの合計質量(NaCO+Nb)に対して、NaCOが28~29質量%、Nbが71~72質量%となるように所定の割合で秤量し、ボールミルなどを用いて混合して、混合粉末を得る。なお、使用する原料粉末は、以下の仮焼工程でNaNbOの化学組成になるものであれば、特に限定されない。
 得られた混合粉末は、アルミナるつぼなどの耐熱容器に入れ、大気中800~1000℃で仮焼し、NaNbO粉末を合成する。このときの保持時間は1~10時間程度がよい。なお、炭酸ナトリウム中のCO成分は仮焼中に飛散する。
 上のようにして合成した、ベータアルミナ粉末とNaNbO粉末とを、ベータアルミナ粉末とNaNbO粉末の合計質量に対してベータアルミナ粉末が50~93質量%、NaNbO粉末が7~50質量%となるように所定の割合で秤量する。このとき、NaNbOが7質量%未満では、緻密な焼結体が得られない。また、NaNbOが50質量%超では、焼結体のイオン導電性が低下する。ベータアルミナ粉末の含有量が70~88質量%でNaNbOの含有量が12~30質量%であることが、緻密化と、高イオン導電性を示す点で好ましく、ベータアルミナ粉末の含有量が78~86質量%でNaNbOの含有量が14~22質量%であることがさらに好ましい。
 秤量後、粉末を平均粒径が10μm以下、好ましくは2μm以下になるまで湿式で混合および粉砕し、その後、乾燥することで混合粉末を得る。粉末の平均粒径を小さくすることで、緻密な焼結体を製造できる。本明細書において、平均粒径は、レーザ回折法により測定した値をいうものとする。なお、粉砕の方法には特に制限はなく、例えばボールミル、アトライター、ビーズミル又はジェットミル等を用いて粉砕できる。
 また、ベータアルミナ粉末とNaNbO粉末との混合粉末は、ベータアルミナ粉末とNaNbO粉末を別々に合成して混合することなく、以下のようにして同時に合成できる。まず、炭酸ナトリウム(NaCO)粉末、アルミナ(Al)粉末、酸化ニッケル(NiO)粉末と酸化ニオブ(Nb)粉末を用意する。これらの原料粉末をNaCO、Al、NiOおよびNbの合計質量(NaCO+Al+NiO+Nb)に対して、NaCOが16~25質量%、NiOが3~6質量%、Nbが7~35質量%、残部がAlとなるように、所定の割合で秤量し、ボールミルなどを用いて混合して、混合粉末を得る。
 前記混合粉末を、アルミナるつぼなどの耐熱容器に入れ、大気中1000~1300℃で仮焼し、ベータアルミナ粉末とNaNbO粉末の混合粉末を合成する。このときの保持時間は例えば1~10時間が好ましい。また、このときの仮焼温度は、1000℃以上であれば、反応が十分進行し、この粉末を用いた焼結体の密度を十分高くできる。さらに、1300℃以下であれば粉末の固さを適切にでき、粉砕にかかる時間を短くできるため好ましい。仮焼温度はより好ましくは、1000~1200℃の温度範囲であり、十分に反応が進みかつ粉砕時間が比較的短時間となる良好な混合粉末が得られる。得られた混合粉末を前述と同様に平均粒径が10μm以下、好ましくは2μm以下になるまで湿式で粉砕し、その後、乾燥することで混合粉末を得られる。
 このようにして得られたベータアルミナ粉末とNaNbO粉末との混合粉末を、所定形状に成形して成形体を得る。成形の方法は特に制限されず、一般的な成形法が使用できる。例えば、静水圧プレスにより100~200MPaの加圧力をかけて成形できる。また、混合粉末に有機バインダを加えた混合物を混練し、これをプレス成形、押出成形又はシート成形等により所定形状に成形できる。成形により得られる形状にも特に制限はなく、用途に応じて種々の形状にできる。
 前記成形体を、大気中で1450℃未満の温度で1~12時間加熱して焼成する。焼成温度が低すぎると、NaNbOの溶解による液相焼結の効果が十分でなく、緻密な焼結体が得られない。一方、高すぎると、NaOが揮散するため好ましくない。したがって、焼成温度は1350℃以上1450℃未満が好ましく、1375~1425℃がさらに好ましい。
 最高温度での保持時間は特に制限はないが、例えば1~12時間、好ましくは2~5時間である。焼成雰囲気も特に制限されず、例えば、大気雰囲気、酸素雰囲気、窒素雰囲気又はアルゴン雰囲気等の不活性雰囲気、水素又は水素と窒素の混合雰囲気等の還元性雰囲気を選択できる。中でも大気雰囲気が比較的簡単な電気炉の設備で済むため好ましい。
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されない。例1~4は本発明の実施例であり、例5と6は比較例である。
 <焼結体の作製>
 例1~4においては、炭酸ナトリウム(NaCO)粉末(関東化学社製、特級)とαアルミナ(Al)粉末(住友化学社製、商品名:AKP50)と酸化ニッケル(NiO)粉末(高純度化学研究所社製、3N品)とを、それぞれ15.4質量%、78.9質量%および5.7質量%の割合で秤量した。これを乾式ボールミルにて24時間混合した。
 得られた混合粉末を、アルミナるつぼに入れ、大気中1250℃で5時間仮焼し、NiOを安定化剤としたベータアルミナ粉末を合成した。室温まで冷却した仮焼粉末を850μm目開きのメッシュを通して解砕し粒度を整えた。
 一方、炭酸ナトリウム(NaCO)粉末と酸化ニオブ(Nb)粉末(高純度化学研究所社製、3N/1マイクロメートル品)とを、それぞれ28.5質量%および71.5質量%の割合で秤量し、乾式ボールミルにて24時間混合した。
 得られた混合粉末を、アルミナるつぼに入れ、大気中950℃で5時間仮焼し、NaNbO粉末を合成した。室温まで冷却した仮焼粉末を850μm目開きのメッシュを通して解砕し粒度を整えた。
 得られたベータアルミナ粉末とNaNbO粉末を表1に示す混合粉末の組成になるように秤量し、エタノールを分散剤とし、イットリア安定化ジルコニア製のボール(ニッカトー社製、商品名:YTZボール)を用いて、湿式ボールミルで96時間混合粉砕を行った。その後、スラリーを乾燥し、例1~4の混合粉末を得た。
 例5においては、例1~4の場合と同じ方法でベータアルミナ粉末を合成し、解砕してベータアルミナ粉末を得た。
 そして、例1~4の混合粉末と例5のベータアルミナ粉末とを、それぞれ室温で180MPaの静水圧プレスをかけて成形した後、大気中において1400℃で2時間加熱して焼成した。
 例6においては、原料粉末とその組成は、炭酸ナトリウム(NaCO)粉末、αアルミナ(Al)粉末と炭酸リチウム(LiCO)粉末(純正化学社製、特級)とを、それぞれ14.1質量%、84.2質量%および1.7質量%の割合とした。これを例5と同様の方法で焼成を行った。なお、焼成温度は1500℃とした。
 例1~5について、得られた焼結体の化学組成を、蛍光X線分析装置(リガク社製、装置名:RIX3000)を用いて分析した。表1に、ベータアルミナとNaNbO粉末の混合割合、および焼結体の蛍光X線分析による化学組成分析の結果から得た焼結体の組成を示す。蛍光X線分析の結果は、NaO、Al、NbおよびNiOの合計質量を100質量%としたときの各成分の割合(質量%)である。なお、得られた焼結体においては、NaO、Al、NbおよびNiOの4成分以外の物質の含有量の合計は、焼結体全体の1質量%未満であった。
Figure JPOXMLDOC01-appb-T000001
 例1~6で得られた焼結体について、構成する結晶相と特性(相対密度、開気孔率、導電率および大気中30日間放置後の外観)を、それぞれ以下に示すようにして測定した。これらの結果を表2に示す。
 <物性等の測定・評価方法>
(a)結晶相
 結晶相の確認は、X線回折装置(リガク社製、装置名:RINT2000)により同定した。
(b)相対密度および開気孔率
 焼結体の嵩密度および開気孔率は、JIS R1634で定めるアルキメデス法によって測定した。嵩密度の理論密度に対する比を相対密度とした。例1~5においては、ベータアルミナを3.36g/cm、NaNbOを4.44g/cmとし、例1~5の理論密度を、表1に示すそれぞれの混合粉末の組成の割合を用いて算出した。例6においては、理論密度には3.21g/cmを用いた。
(c)導電率
 焼結体のイオン導電性は、複素インピ-ダンスプロット法で25℃および110℃における導電率を測定した。
(d)大気中30日間放置後の外観
 得られた焼結体について、大気下30日間放置前後の外観を観察した。
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、緻密でイオン導電性が高いベータアルミナ質焼結体を安定して作製できる。そして、このベータアルミナ質焼結体を、蓄電池用固体電解質として使用すると、長寿命で信頼性の高い蓄電池を作製できる。
  導電種としてNaを他のアルカリ金属イオン、例えばLiに置き換えても、同様に緻密で高いイオン導電性を有するベータアルミナ質焼結体を作製できる。この場合、例えば全固体リチウムイオン電池用の固体電解質として利用できる。
 なお、2012年2月29日に出願された日本特許出願2012-043515号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  NaOとAlとを主成分とするベータアルミナ質焼結体であって、ベータアルミナ結晶相と、RNbO(R:Li、NaおよびKからなる群から選ばれる少なくとも1種以上の元素)結晶相と、を含有することを特徴とするベータアルミナ質焼結体。
  2.  前記ベータアルミナ結晶相中にβ”アルミナ結晶相を含む請求項1記載のベータアルミナ質焼結体。
  3.  RNbOのRがNaである請求項1又は2記載のベータアルミナ質焼結体。
  4.  酸化ニッケル(NiO)を含有する請求項1乃至3記載のベータアルミナ質焼結体。
  5.  ベータアルミナ質焼結体の化学組成が酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、NiOが1~10質量%、残部がAlからなる請求項4記載のベータアルミナ質焼結体。
  6.  ベータアルミナ粉末とRNbO(R:Li、NaおよびKからなる群から選ばれる少なくとも1以上の元素)粉末とを混合し、混合物を成形、焼成することを特徴とする請求項1に記載のベータアルミナ質焼結体の製造方法。
  7.  前記焼成において焼成温度が1450℃未満である請求項6記載のベータアルミナ質焼結体の製造方法。
  8.  前記ベータアルミナ粉末中に、β”アルミナを含有する請求項6又は7記載のベータアルミナ質焼結体の製造方法。
  9.  RNbOのRがNaである請求項6~8のいずれかに記載のベータアルミナ質焼結体の製造方法。
  10.  前記ベータアルミナ粉末中に、NiOを含有する請求項6~9のいずれかに記載のベータアルミナ質焼結体の製造方法。
  11.  ベータアルミナ質焼結体の化学組成が酸化物基準で、NaOが8~15質量%、Nbが5~30質量%、NiOが1~10質量%、残部がAlからなる請求項10記載のベータアルミナ質焼結体の製造方法。
PCT/JP2013/054225 2012-02-29 2013-02-20 ベータアルミナ質焼結体とその製造方法 WO2013129211A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014502155A JP6052279B2 (ja) 2012-02-29 2013-02-20 ベータアルミナ質焼結体とその製造方法
US14/473,363 US9735446B2 (en) 2012-02-29 2014-08-29 Beta-alumina-based sintered compact and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012043515 2012-02-29
JP2012-043515 2012-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/473,363 Continuation US9735446B2 (en) 2012-02-29 2014-08-29 Beta-alumina-based sintered compact and its production method

Publications (1)

Publication Number Publication Date
WO2013129211A1 true WO2013129211A1 (ja) 2013-09-06

Family

ID=49082411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054225 WO2013129211A1 (ja) 2012-02-29 2013-02-20 ベータアルミナ質焼結体とその製造方法

Country Status (3)

Country Link
US (1) US9735446B2 (ja)
JP (1) JP6052279B2 (ja)
WO (1) WO2013129211A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068509A (ja) * 2019-10-18 2021-04-30 トヨタ自動車株式会社 ナトリウムイオン伝導体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127869B1 (ja) * 1969-02-13 1976-08-16
JPS5212395B1 (ja) * 1969-06-04 1977-04-06
JPH04285060A (ja) * 1991-03-15 1992-10-09 Ngk Insulators Ltd ベータアルミナ質焼結体およびその製造法
JPH06263526A (ja) * 1993-03-08 1994-09-20 Noboru Yoshimura β−アルミナ磁器組成物及びその製造法
JPH11154414A (ja) * 1997-11-19 1999-06-08 Mitsubishi Heavy Ind Ltd ベータアルミナ電解質及びその製造方法
JPH11246267A (ja) * 1998-03-03 1999-09-14 Mitsubishi Heavy Ind Ltd ベータアルミナ電解質の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792377A (en) * 1987-02-09 1988-12-20 The Regents Of The University Of California Flux growth of sodium beta" alumina
JP2615188B2 (ja) 1989-03-02 1997-05-28 三菱重工業株式会社 緻密なナトリウム・ベータアルミナ低温焼成製造用原料
JPH0696468B2 (ja) 1991-01-18 1994-11-30 日本碍子株式会社 ベータアルミナ質焼結体およびその製造方法
JP3009566B2 (ja) * 1993-08-31 2000-02-14 三菱重工業株式会社 ベータアルミナ電解質

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127869B1 (ja) * 1969-02-13 1976-08-16
JPS5212395B1 (ja) * 1969-06-04 1977-04-06
JPH04285060A (ja) * 1991-03-15 1992-10-09 Ngk Insulators Ltd ベータアルミナ質焼結体およびその製造法
JPH06263526A (ja) * 1993-03-08 1994-09-20 Noboru Yoshimura β−アルミナ磁器組成物及びその製造法
JPH11154414A (ja) * 1997-11-19 1999-06-08 Mitsubishi Heavy Ind Ltd ベータアルミナ電解質及びその製造方法
JPH11246267A (ja) * 1998-03-03 1999-09-14 Mitsubishi Heavy Ind Ltd ベータアルミナ電解質の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068509A (ja) * 2019-10-18 2021-04-30 トヨタ自動車株式会社 ナトリウムイオン伝導体の製造方法
JP7230772B2 (ja) 2019-10-18 2023-03-01 トヨタ自動車株式会社 ナトリウムイオン伝導体の製造方法

Also Published As

Publication number Publication date
JP6052279B2 (ja) 2016-12-27
JPWO2013129211A1 (ja) 2015-07-30
US9735446B2 (en) 2017-08-15
US20140370397A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US20160308244A1 (en) Lithium-oxide garnet batch composition and solid electrolyte membrane thereof
KR101592752B1 (ko) 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP2019006634A (ja) 固体電解質の製造方法、及び固体電解質
Zhang et al. Low-loss and low-temperature firable Li2Mg3SnO6-Ba3 (VO4) 2 microwave dielectric ceramics for LTCC applications
KR20200135517A (ko) 세라믹 분말, 소결체 및 전지
Paulus et al. Sol gel vs solid state synthesis of the fast lithium-ion conducting solid state electrolyte Li7La3Zr2O12 substituted with iron
JP2017088420A (ja) リチウムイオン伝導性セラミックス焼結体、及びリチウム電池
Zhang et al. Phase evolution and microwave dielectric properties of Li4Ti5 (1+ x) O12 ceramics
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
Jie et al. Effect of Sc2O3 addition on densification and microstructure of different spinelized magnesium aluminate spinels
WO2022178259A1 (en) Dense green tape, method of manufacturing, and use thereof
JP6052279B2 (ja) ベータアルミナ質焼結体とその製造方法
JP7300439B2 (ja) 配向性アパタイト型酸化物イオン伝導体及びその製造方法
JPH0696468B2 (ja) ベータアルミナ質焼結体およびその製造方法
JP2016500362A (ja) セラミック材料
CN113620708A (zh) 石榴石-钛酸锂复合电解质
JP2017061390A (ja) イオン伝導性セラミックス及びその製造方法
EP2599761A1 (en) Dielectric ceramic and dielectric filter including same
JP3586556B2 (ja) ベータアルミナ電解質の製造方法
JPH05208863A (ja) 固体電解質用高密度焼結体の製造方法
JP5602820B2 (ja) ZnO焼結体の製造方法
KR102168606B1 (ko) 베타 알루미나를 포함하는 고체전해질 및 이의 제조방법
Li et al. Effects of zinc substitution on the dielectric properties of Ca 5 Nb 4 TiO 17 microwave ceramics
JP3581620B2 (ja) ベータアルミナ電解質及びその製造方法
JP3059503B2 (ja) ベータアルミナ質焼結体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754836

Country of ref document: EP

Kind code of ref document: A1