WO2013128539A1 - 回転機械 - Google Patents

回転機械 Download PDF

Info

Publication number
WO2013128539A1
WO2013128539A1 PCT/JP2012/054734 JP2012054734W WO2013128539A1 WO 2013128539 A1 WO2013128539 A1 WO 2013128539A1 JP 2012054734 W JP2012054734 W JP 2012054734W WO 2013128539 A1 WO2013128539 A1 WO 2013128539A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
suction
impeller
axial direction
axis
Prior art date
Application number
PCT/JP2012/054734
Other languages
English (en)
French (fr)
Inventor
穣 枡谷
吉田 悟
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49081798&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013128539(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to EP12869730.7A priority Critical patent/EP2821651B2/en
Priority to PCT/JP2012/054734 priority patent/WO2013128539A1/ja
Priority to US14/377,011 priority patent/US9835161B2/en
Priority to CN201280069492.9A priority patent/CN104105886B/zh
Priority to JP2012547348A priority patent/JP5709898B2/ja
Priority to EP15163669.3A priority patent/EP2947327B1/en
Publication of WO2013128539A1 publication Critical patent/WO2013128539A1/ja
Priority to US14/658,627 priority patent/US10119546B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to a rotary machine such as a centrifugal compressor, and particularly relates to pressure loss reduction on the suction side.
  • Patent Document 1 describes a technique for narrowing the flow path area by embedding a member in the range of the volute in order to increase the flow velocity in the range on the opposite side of the nozzle in the volute of the centrifugal compressor.
  • the present invention has been made in view of the above circumstances, and while reducing the size in the radial direction, the increase in the flow velocity in the entire volume of the volute is suppressed to prevent the occurrence of pressure loss and the like, and the deterioration in performance is suppressed.
  • the present invention provides a rotating machine that can be used.
  • a first aspect of the rotating machine according to the present invention is a nozzle into which a fluid is introduced, and is formed in an annular flow path that communicates with the nozzle, and sandwiches a central axis from a connection portion connected to the nozzle.
  • a volute having a partition that separates the space in the circumferential direction on the opposite side, and an annular flow path that communicates with the volute on the inner circumferential side of the volute, and a plurality of vanes are provided in the circumferential direction, from the volute
  • a guide portion that guides the fluid flowing in; and an impeller that is axially connected to the guide portion and into which the fluid guided by the guide portion flows.
  • the volute communicates with the guide portion on an inner peripheral side. And an inner wall surface extending from the opening to the axial impeller side along the axial direction and connected to the partitioning portion on the opposite side to the nozzle And have.
  • volute in the rotating machine of the first aspect may be widened on both sides in the axial direction.
  • the volute in the rotary machine of the first aspect or the second aspect may have a tapered portion having an inclined surface on the opposite side in the axial direction from the impeller. Good.
  • the volute in the rotary machine of the first aspect or the second aspect may have a wall surface along the axial direction on the side opposite to the impeller in the axial direction.
  • the rotating machine according to the present invention it is possible to reduce the size in the radial direction, suppress an increase in the flow velocity in the entire volute, prevent pressure loss and the like, and prevent performance degradation.
  • FIG. 1 is an overall configuration diagram of a centrifugal compressor in an embodiment of the present invention. It is a perspective view of the suction volute of the centrifugal compressor in the embodiment. It is a cross-sectional view of the suction volute in the same embodiment. It is a whole block diagram equivalent to FIG. 1 in the modification of the embodiment. It is a graph of the pressure loss of various conditions in a suction volute.
  • FIG. 1 is an overall view showing a schematic configuration of a centrifugal compressor which is a rotating machine of the present embodiment.
  • the centrifugal compressor 1 of this embodiment mainly includes a rotating shaft 5 that is rotated around an axis O, and a gas G that is attached to the rotating shaft 5 and that is a fluid using centrifugal force.
  • the impeller 10 to compress and the casing 20 which supports the rotating shaft 5 rotatably are comprised.
  • the casing 20 is formed so as to form a substantially cylindrical outline, and the rotary shaft 5 is disposed so as to penetrate the center thereof.
  • the casing 20 is provided with bearings 21 on one side and the other side of the rotation axis 5 in the axis O direction. That is, the rotating shaft 5 is rotatably supported by the casing 20 via the bearing 21.
  • a journal bearing 22 that supports the rotating shaft 5 in the radial direction
  • a thrust bearing 23 that supports the rotating shaft 5 in the axial direction are provided.
  • a plurality of impellers 10 are attached to the rotary shaft 5 in the direction of the axis O.
  • a plurality of storage chambers 24 for storing the impeller 10 are formed inside the casing 20. These storage chambers 24 are formed slightly larger than the impeller 10 along the outer surface of the impeller 10, and form an internal space that is gradually expanded in diameter toward the downstream side (right side of the paper) and then reduced in diameter.
  • FIG. 1 shows an example in which a plurality of impellers 10 are provided, it is sufficient that at least one impeller 10 is provided.
  • the left side of the drawing in the direction of the axis O is the upstream side
  • the right side of the drawing is the downstream side.
  • a discharge passage 25 is formed between the storage chambers 24 to guide the gas G discharged from the upstream impeller 10 in the axis O direction to the downstream impeller 10 in the axis O direction.
  • the discharge passage 25 is formed in an annular shape around the axis O. Further, the discharge passage 25 guides the gas G discharged from the outlet opening 26 of the storage chamber 24 arranged on the upstream side in the axis O direction to the inlet opening 27 of the storage chamber 24 on the downstream side in the axis O direction. Therefore, it is formed in a substantially U shape in a sectional view.
  • a discharge nozzle 29 that allows the gas G to flow outside is attached to the downstream side of the casing 20 in the direction of the axis O.
  • the discharge nozzle 29 is connected to a discharge volute 30 that communicates with the housing chamber 24 on the most downstream side in the axis O direction of the casing 20, and discharges the gas G compressed by the impeller 10 of each stage to the outside of the casing 20.
  • a substantially cylindrical suction nozzle 28 whose diameter is increased toward the outer peripheral side for introducing the gas G from the outer peripheral side in the radial direction of the casing 20 to the inner peripheral side is attached to the upstream side of the casing 20 in the axis O direction. Further, the casing 20 is formed with a suction volute 31 that is disposed on the radially inner peripheral side of the suction nozzle 28 and communicates with the suction nozzle 28. On the inner peripheral side of the suction volute 31, a guide portion 32 that connects the suction volute 31 and the inlet opening 27 of the storage chamber 24 on the most upstream side is formed.
  • the guide part 32 communicates with the inner space 35 of the suction volute 31 on the inner peripheral side of the suction volute 31 and extends from the inner peripheral side of the first flow path 33 to the substantially annular first flow path 33 extending toward the inner peripheral side.
  • a substantially cylindrical second flow path 34 extending downstream along the axis O is formed.
  • the second flow path 34 communicates with the inlet opening 27 of the accommodation chamber 24 on the most upstream side downstream in the direction of the axis O.
  • the guide portion 32 is formed such that the width dimension in the axis O direction of the first flow path 33 is narrower than the width dimension in the axis O direction of the suction volute 31.
  • FIG. 2 is a perspective view around the suction volute 31, and FIG. 3 is a cross-sectional view around the suction volute 31.
  • the internal space 35 of the suction volute 31 is formed in a substantially annular shape (see FIG. 3) surrounding the guide portion 32 in the circumferential direction.
  • the suction volute 31 is provided with a substantially annular opening 37 communicating with the guide portion 32 on the inner peripheral side thereof.
  • the suction volute 31 extends the internal space 35 in the circumferential direction on the opposite side (position shifted about 180 degrees in the circumferential direction around the rotation shaft 5) across the axis O from the connection portion 38 connected to the suction nozzle 28. It has the partition part 36 which separates. And as the suction volute 31 approaches the partition part 36 in the circumferential direction, the radial dimension of the internal space 35 is gradually reduced.
  • a plurality of vanes 39 that guide the gas G flowing in the circumferential direction of the suction volute 31 toward the second flow path 34 are disposed in the first flow path 33 of the guide portion 32.
  • These vanes 39 are erected on the outer peripheral side of the inner peripheral vane 40 and the inner peripheral vane 40 erected in the direction of the axis O so as to go to the second flow path 34 along the radial direction on the inner peripheral side.
  • an outer peripheral vane 41 slightly bent at the suction nozzle 28 side.
  • the outer peripheral vane 41 is also disposed at an intermediate position of the inner peripheral vane 40 in the circumferential direction.
  • the partition 36 described above has a shape in which the end portion on the radially inner peripheral side also serves as the outer peripheral vane of the first flow path 33.
  • the suction nozzle 28 and the suction volute 31 are provided with nozzle partition plates 43 that guide the gas G introduced from the suction nozzle 28 in the radial direction along the circumferential direction.
  • three nozzle inner partition plates 43 are provided, and a central nozzle inner partition plate 43 ⁇ / b> A extends in the radial direction along the central axis L ⁇ b> 28 of the suction nozzle 28.
  • the two nozzle inner partition plates 43 on both sides of the nozzle inner partition plate 43A are extended so that the distance from each other gradually increases toward the guide portion 32 from the suction nozzle 28 side.
  • the form of the nozzle inner partition plate 43 is not limited to that of the present embodiment, and, for example, four or more may be arranged, or may not extend to the inside of the suction nozzle 28.
  • the suction volute 31 has an inner wall surface 44 extending along the axis O on the side of the axis O direction impeller 10 from the opening 37 so as to widen the width dimension in the direction of the axis O (FIGS. 1 and 2). reference).
  • the inner wall surface 44 is formed along the opening 37 and is connected to the partition portion 36 on the opposite side of the axis line O from the connection portion 38.
  • the inner wall surface 44 is formed so that the width dimension in the direction of the axis O is substantially the same over the entire circumference.
  • a tapered portion 45 having an inclined surface inclined toward the radially outer side is formed on the opposite side of the inner wall surface 44 across the opening 37 in the direction of the axis O.
  • Axial wall surfaces 46 and 47 extending radially outward are connected to the edge on the radially outer peripheral side of the tapered portion 45 and the edge on the axially downstream side of the inner wall surface 44 described above. That is, the suction volute 31 is formed to be widened on both sides in the axial direction with respect to the opening 37. Further, since the tapered portion 45 is formed, the width dimension in the direction of the axis O of the suction volute 31 is gradually reduced toward the opening 37.
  • the axial wall surfaces 46 and 47 are gradually reduced as the width dimension approaches the partition portion 36 in the circumferential direction on the partition portion 36 side.
  • the inner wall surface 44 is connected to the partition portion 36 with the dimension in the axis O direction gradually reduced immediately before the partition portion 36.
  • An outer peripheral surface 48 that extends between the axial wall surfaces 46 and 47 and extends in the axial direction is formed outside the axial wall surfaces 46 and 47 in the radial direction.
  • the outer peripheral surface 48 is connected to the partition portion 36 on the opposite side across the axis O from the connection portion 38. Specifically, the outer peripheral surface 48 is curved so as to be directed toward the radially inner periphery side so as to be continuous with the partition portion 36 on the partition portion 36 side in the circumferential direction (see FIG. 3). The outer peripheral surface 48 can more smoothly guide the inflow of the gas G from the suction volute 31 to the guide portion 32 on the partition portion 36 side.
  • the operation of the rotary machine 1 in this embodiment particularly the operation until the gas G flowing from the suction nozzle 28 enters the inlet opening 27 will be described.
  • the gas G flowing from the radially outer side to the inner side by the suction nozzle 28 flows into the suction volute 31 from the connection portion 38.
  • the gas G that has flowed into the suction volute 31 can be guided to both sides in the circumferential direction and can be suitably distributed in the circumferential direction.
  • the gas G flowing in the circumferential direction in the suction volute 31 gradually flows into the guide portion 32 located on the inner peripheral side, and is changed into an axial flow by the guide portion 32, and the inlet opening 27 of the impeller 10. Will be distributed.
  • the suction volute 31 extends along the axis O from the opening 37 to the axis O direction impeller 10 side so as to widen the width dimension in the axis O direction.
  • the width dimension of the suction volute 31 can be enlarged toward the axis O direction impeller 10 side. Therefore, it is possible to suppress an increase in the flow rate of the gas G introduced from the suction nozzle 28 in the entire suction volute 31 from the suction nozzle 28 side to the partition portion 36. Therefore, it is possible to prevent the pressure loss from increasing due to separation or the like in the gas G flowing into the guide portion 32. As a result, performance degradation can be suppressed.
  • the width dimension of the suction volute 31 in the direction of the axis O can be expanded on both sides in the direction of the axis O rather than the opening 37, the flow passage area can be further expanded compared with the case of expansion on one side in the direction of the axis O. it can. As a result, an increase in the flow rate of the gas G introduced into the suction volute 31 can be more reliably prevented.
  • the tapered portion 45 is formed in the suction volute 31, the flow rate of the gas G flowing from the suction volute 31 to the opening 37 on the opposite side of the impeller 10 from the axis O direction can be gradually increased. G can be smoothly guided to the guide portion 32.
  • the taper part 45 it can suppress that the suction volute 31 protrudes the outer side (opposite side to the impeller 10) of the axis line O direction.
  • the centrifugal compressor since it is possible to prevent the centrifugal compressor from becoming large in the direction of the axis O, there is no space in the direction of the axis O, such as when piping is routed outside the direction of the axis O of the suction volute 31. Is advantageous.
  • the present invention is not limited to the configuration of the embodiment described above, and the design can be changed without departing from the gist thereof.
  • the suction volute 31 has the tapered portion 45
  • FIG. 5 an inner wall surface 145 that extends on the opposite side of the impeller 10 along the axis O may be formed instead of the tapered portion 45.
  • the dimension of the suction volute 31 in the direction of the axis O can be increased to the side opposite to the side of the impeller 10 in the direction of the axis O, so that the flow path cross-sectional area can be further increased. .
  • the flow passage area of the suction volute 31 is preferably 90% or more with respect to the flow passage area of the suction nozzle 28. By doing in this way, it can prevent that the flow velocity of the gas G which flowed into the suction volute 31 from the suction nozzle 28 rises rapidly.
  • the flow passage area of the suction volute 31 is smaller than 90%, the flow velocity of the gas G in the suction volute 31 becomes too fast as compared with the case of 90% or more, and pressure loss due to separation or the like in the guide portion 32. Will increase.
  • the radial width L3 of the outer peripheral vane 41 is preferably set in the range of 90% to 110% with respect to the radial dimension L1 of the suction volute 31.
  • the radial width L3 of the outer peripheral vane 41 is conventionally set to about 110 to 180% of the inner diameter of the suction nozzle 28.
  • the width L3 of the vane 41 is preferably set to about 90% with respect to about 110 to 180%.
  • the axial width L5 of the outer peripheral vane 41 is conventionally set to about 15 to 25% of the inner diameter of the suction nozzle 28.
  • the outer peripheral vane 41 The axial width L5 of 41 is preferably set to about 75% with respect to about 15 to 25%.
  • the flow area of the first flow path 33 of the guide portion 32 can be optimized with respect to the flow area of the suction volute 31.
  • the flow velocity when the gas G flows into the guide portion 32 from the opening 37. Can be prevented from rising rapidly, so that pressure loss due to peeling or the like in the guide portion 32 can be further reduced.
  • FIG. 5 is a graph showing pressure loss when the diameter of the casing 20 is about 80% based on a conventional centrifugal compressor.
  • A when only the inner wall surface 44 is provided, “B” indicates that the radial width L3 of the outer peripheral vane 41 is 90 to 110 with respect to the radial dimension L1 of the suction volute 31 in addition to the condition of “A”.
  • %. “C” is the pressure loss in the case of a conventional centrifugal compressor (diameter 100%).
  • the same performance as in the case of a diameter of 100% can be obtained.
  • the shape of the suction volute 31, the shape of the vane 39, and the arrangement of the nozzle inner partition plate 43 are obtained. It is possible to further reduce pressure loss by optimizing such conditions.
  • the centrifugal compressor 1 is described as an example of the rotary machine, but the present invention can also be applied to a rotary machine such as a radial flow turbine.

Abstract

 吸込ボリュートの内周側で吸込ボリュートと連通した環状の流路に形成され、周方向に複数のベーンが設けられ、吸込ボリュートから流入する流体を案内する案内部と、案内部に軸方向で接続されて案内部で案内された流体が流入するインペラとを備え、吸込ボリュートは、内周側に案内部へと連通する環状の開口部と、軸方向の幅寸法を拡げるように、開口部から軸方向インペラ側に軸方向に沿って延出すると共に、吸込ノズルと反対側で仕切部に接続する内壁面とを有することを特徴とする。

Description

回転機械
 本発明は、遠心圧縮機等の回転機械に関し、特にその吸入側の圧力損失低減に係る。
 特許文献1には、遠心圧縮機のボリュートおいて、ノズルの反対側の範囲における流速を高めるために、当該ボリュートの範囲に部材を埋め込んで流路面積を狭くする技術が記載されている。
特開2010-203251号公報
 その一方で、近年、遠心圧縮機等の回転機械においては、径方向寸法の小型化が要望されている。遠心圧縮機等の回転機械の径方向寸法を小型化すると、ノズルからボリュートに流入する部分において、ボリュートの流路面積を十分に確保できず、ボリュート全域で流速が高まる傾向がある。そのため、流体がボリュートからベーンに流入する際に剥離等が生じて圧力損失が増大し、性能が低下してしまうことが懸念されていた。
 本発明は、上記事情に鑑みてなされたものであり、径方向寸法の小型化を図るとともに、ボリュート全域で流速が高まるのを抑制して圧力損失等の発生を防止し、性能低下を抑制することができる回転機械を提供するものである。
 本発明に係る回転機械の第一態様は、流体が導入されるノズルと、該ノズルと連通して環状の流路に形成されるとともに、前記ノズルと接続される接続部から中心軸を挟んで反対側に前記空間を周方向を隔てる仕切部を有するボリュートと、該ボリュートの内周側で該ボリュートと連通した環状の流路に形成され、周方向に複数のベーンが設けられ、前記ボリュートから流入する流体を案内する案内部と、該案内部に軸方向で接続されて該案内部で案内された流体が流入するインペラとを備え、前記ボリュートは、内周側に前記案内部へと連通する環状の開口部と、軸方向の幅寸法を拡げるように、前記開口部から軸方向インペラ側に軸方向に沿って延出すると共に、前記ノズルと反対側で前記仕切部に接続する内壁面とを有する。
 本発明に係る回転機械の第二態様では、上記第一態様の回転機械における前記ボリュートが、軸方向両側に拡幅するようにしてもよい。
 本発明に係る回転機械の第三態様では、上記第一態様又は第二態様の回転機械における前記ボリュートが、前記インペラと軸方向反対側に、傾斜面を備えたテーパ部を有するようにしてもよい。
 本発明に係る回転機械の第四態様では、上記第一態様又は第二態様の回転機械における前記ボリュートが、前記インペラと軸方向の反対側では、軸方向に沿う壁面を有してもよい。
 本発明に係る回転機械によれば、径方向寸法の小型化を図るとともに、ボリュート全域で流速が高まるのを抑制して圧力損失等を防止し、性能低下を防止することができる。
本発明の実施形態における遠心圧縮機の全体構成図である。 同実施形態における遠心圧縮機の吸込ボリュートの斜視図である。 同実施形態における吸込ボリュートの横断面図である。 同実施形態の変形例における図1に相当する全体構成図である。 吸込ボリュートにおける各種条件の圧力損失のグラフである。
 以下、本発明の実施形態に係る回転機械について説明する。
 図1は、本実施形態の回転機械である遠心圧縮機の概略構成を示す全体図である。
 図1に示すように、この実施形態の遠心圧縮機1は、主として、軸線O回りに回転させられる回転軸5と、回転軸5に取り付けられて遠心力を利用して流体であるガスGを圧縮するインペラ10と、回転軸5を回転可能に支持するケーシング20と、によって構成されている。
 ケーシング20は、略円柱状の外郭をなすように形成され、その中心を貫くように回転軸5が配置されている。ケーシング20には、回転軸5の軸線O方向の一側部および他側部に、軸受21が設けられている。即ち、回転軸5は、軸受21を介してケーシング20に回転可能に支持されている。ここで、上記軸受21としては、回転軸5を径方向で支持するジャーナル軸受22および軸方向で支持するスラスト軸受23が設けられている。
 回転軸5には、軸線O方向に複数のインペラ10が取り付けられている。また、ケーシング20の内部には、インペラ10を収容する複数の収容室24が形成されている。これら収容室24は、インペラ10の外面に沿ってインペラ10よりも僅かに大きく形成され、下流側(紙面右側)に向かって漸次拡径された後に縮径される内部空間を形成している。なお、図1において、インペラ10が複数設けられている場合の一例を示しているが、インペラ10は、少なくとも1つ以上設けられていればよい。また、以下の説明においては、軸線O方向で紙面左側を上流側、紙面右側を下流側として説明する。
 収容室24間には、軸線O方向の上流側のインペラ10から吐出されるガスGを、軸線O方向の下流側のインペラ10へ案内する吐出通路25が形成されている。吐出通路25は、軸線O回りに環状に形成されている。また、吐出通路25は、軸線O方向の上流側に配置された収容室24の出口開口部26から吐出されたガスGを、軸線O方向下流側の収容室24の入口開口部27に案内するために断面視略U字状に形成されている。
 ケーシング20の軸線O方向の下流側には、ガスGを外部に流出させる排出ノズル29が取り付けられている。排出ノズル29は、ケーシング20の軸線O方向の最下流側の収容室24に連通する排出ボリュート30に接続され、各段のインペラ10によって圧縮されたガスGをケーシング20の外部に排出する。
 ケーシング20の軸線O方向の上流側には、ガスGをケーシング20の径方向外周側から内周側へと導入させる外周側ほど拡径された略円筒状の吸込ノズル28が取り付けられている。さらに、ケーシング20には、吸込ノズル28の径方向内周側に配置されて吸込ノズル28と連通する吸込ボリュート31が形成されている。この吸込ボリュート31の内周側には、吸込ボリュート31と最上流側の収容室24の入口開口部27とを接続する案内部32が形成されている。
 案内部32は、吸込ボリュート31の内周側で吸込ボリュート31の内部空間35と連通して内周側に向かって延びる略円環状の第一流路33と、第一流路33の内周側から軸線Oに沿って下流側に延びる略筒状の第二流路34とを形成している。第二流路34は、軸線O方向の下流側で最上流側の収容室24の入口開口部27に連通されている。案内部32は、第一流路33の軸線O方向の幅寸法が吸込ボリュート31の軸線O方向の幅寸法よりも狭く形成されている。
 図2は、吸込ボリュート31周辺の斜視図であり、図3は吸込ボリュート31周辺の断面図である。
 図2、図3に示すように、吸込ボリュート31の内部空間35は、案内部32を周方向で囲む略環状(図3参照)に形成されている。そして、吸込ボリュート31は、その内周側に、案内部32へと連通する略環状の開口部37を備えている。
 また、吸込ボリュート31は、吸込ノズル28と接続される接続部38から軸線Oを挟んで反対側(回転軸5を中心として周方向に略180度ずれた位置)に内部空間35を周方向に隔てる仕切部36を有している。そして、吸込ボリュート31は、周方向で仕切部36に近づくほど、内部空間35の径方向寸法が漸減されている。
 案内部32の第一流路33には、吸込ボリュート31の周方向に流通されるガスGを第二流路34に向かって案内する複数のベーン39が配設されている。これらベーン39は、内周側で径方向に沿って第二流路34に向かうように軸線O方向に立設された内周ベーン40と、内周ベーン40よりも外周側に立設されて吸込ノズル28側に僅かに屈曲形成された外周ベーン41とを備えている。外周ベーン41は、周方向で内周ベーン40の中間位置にも配設されている。なお、上述した仕切部36は、その径方向内周側の端部が第一流路33の外周ベーンを兼ねる形状となっている。
 吸込ノズル28と吸込ボリュート31とには、吸込ノズル28から径方向に導入されるガスGを周方向に沿うように案内するノズル内仕切板43が配設されている。ノズル内仕切板43は、本実施形態では三つ設けられており、中央のノズル内仕切板43Aが吸込ノズル28の中心軸L28に沿って径方向に延設されている。また、ノズル内仕切板43A両側の2つのノズル内仕切板43は、それぞれ吸込ノズル28側から案内部32に向かって次第に互いの間隔が拡幅するように延設されている。なお、ノズル内仕切板43の形態としては、本実施形態のものに限られず、例えば、4枚以上配置しても良いし、また、吸込ノズル28の内部まで延出されないようにしても良い。
 吸込ボリュート31は、軸線O方向の幅寸法を拡げるように、開口部37から軸線O方向インペラ10側に、軸線Oに沿って延出する内壁面44を有している(図1、図2参照)。この内壁面44は、開口部37に沿って形成され、接続部38から軸線Oを挟んだ反対側で仕切部36に接続されている。内壁面44は、軸線O方向の幅寸法が、全周に亘って略同寸法に形成されている。
 一方で、軸線O方向における開口部37を挟んだ内壁面44の反対側には、径方向外側に向かって傾斜する傾斜面を備えるテーパ部45が形成されている。テーパ部45の径方向外周側の端縁と、上述した内壁面44の軸方向下流側の端縁とには、径方向外側に延びる軸方向壁面46,47が繋がっている。つまり、吸込ボリュート31は、開口部37に対して軸方向両側に拡幅して形成されている。そして、上記テーパ部45が形成されていることで、吸込ボリュート31の軸線O方向の幅寸法が、開口部37に向かって漸減されている。
 軸方向壁面46,47は、仕切部36側において、その幅寸法が周方向で仕切部36に近づくにつれて漸減されている。同様に、内壁面44も、仕切部36の直前で軸線O方向の寸法が漸減されて仕切部36に接続されている。そして、軸方向壁面46,47の径方向外側には、これら軸方向壁面46,47間を接続し、軸方向に延在する外周面48が形成されている。
 外周面48は、接続部38から軸線Oを挟んで反対側で仕切部36に接続されている。具体的には、外周面48は、周方向の仕切部36側において該仕切部36に連続するように径方向内周側に向かうように湾曲形成されている(図3参照)。この外周面48によって、仕切部36側における吸込ボリュート31から案内部32へのガスGの流入をより滑らかに案内することが可能となっている。
 次に、この実施形態における回転機械1の作用、特に吸込ノズル28から流入したガスGが入口開口部27に入るまでの作用について説明する。
 図1及び図2に示すように、この実施形態のケーシング20では、吸込ノズル28によって径方向外周側から内周側へと流通するガスGは、接続部38から吸込ボリュート31に流入する。ここで、三つのノズル内仕切板43が設けられていることによって、吸込ボリュート31に流入したガスGを周方向両側へと案内して好適に周方向に流通させることができる。そして、吸込ボリュート31において周方向に流通するガスGは、次第に内周側に位置する案内部32に流入し、この案内部32によって軸方向の流れに変化させられ、インペラ10の入口開口部27まで流通されることとなる。
 したがって、上述した実施形態の遠心圧縮機1によれば、吸込ボリュート31が、軸線O方向の幅寸法を拡げるように、開口部37から軸線O方向インペラ10側に、軸線Oに沿って延出する内壁面44を有していることで、例えば、ケーシング20の径方向寸法を小型化した場合に、吸込ボリュート31の幅寸法を軸線O方向インペラ10側に拡大することができる。そのため、吸込ノズル28側から仕切部36に至る吸込ボリュート31全域で吸込ノズル28から導入されたガスGの流速が高まるのを抑制することができる。そのため、案内部32に流入するガスGに剥離等が生じて圧力損失が増大するのを防止することができる。その結果、性能低下を抑制することができる。
 また、吸込ボリュート31の軸線O方向の幅寸法を、開口部37よりも軸線O方向両側に拡大することができるため、軸線O方向片側に拡大する場合よりも流路面積をより拡大することができる。その結果、吸込ボリュート31に導入されたガスGの流速が高まるのをより確実に防止することができる。
 さらに、吸込ボリュート31にテーパ部45が形成されていることで、インペラ10と軸線O方向反対側において吸込ボリュート31から開口部37へ流動するガスGの流速を徐々に上げることができるため、ガスGを案内部32へ円滑に導くことが可能になる。
 また、テーパ部45を有することで、吸込ボリュート31が軸線O方向の外側(インペラ10とは反対側)へ突出するのを抑制することができる。つまり、遠心圧縮機の軸線O方向へ大型化するのを防止することができるため、吸込ボリュート31の軸線O方向外側に配管等が配索されている場合等、軸線O方向にスペースが無い場合に有利となる。
 なお、本発明は上述した実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上述した実施形態では、吸込ボリュート31がテーパ部45を有する場合について説明したが、吸込ボリュート31の軸線O方向外側(インペラ10と反対側)にスペース的に余裕がある場合例えば、図4に示すように、テーパ部45に代えて軸線Oに沿ってインペラ10とは反対側に延びる内壁面145を形成するようにしてもよい。
 このように構成することで、吸込ボリュート31の軸線O方向の寸法を、軸線O方向インペラ10側と反対側にも拡大することができるため、更なる流路断面積の拡大を図ることができる。その結果、吸込ノズル28から流入するガスGの流速が高まるのを更に抑制して圧力損失を低減することが可能となる。
 また、上述した実施形態において、吸込ボリュート31の流路面積は、吸込ノズル28の流路面積に対して90%以上とするのが好ましい。このようにすることで、吸込ノズル28から吸込ボリュート31に流入したガスGの流速が急激に上昇するのを防止できる。一方、吸込ボリュート31の流路面積が90%よりも小さい場合には、90%以上の場合よりも吸込ボリュート31内のガスGの流速が速くなり過ぎて、案内部32において剥離等により圧力損失が増大してしまう。
 さらに、外周ベーン41の径方向幅L3は、吸込ボリュート31の上記径方向寸法L1に対して90%~110%の範囲に設定するのが好ましい。
 ここで、外周ベーン41の径方向幅L3は、従来、吸込ノズル28の内径の110~180%程度に設定されるが、例えば、ケーシング20の直径を従来比で80%に設定した場合、外周ベーン41の幅L3は上記110~180%程度に対して更に90%程度に設定するのが好ましい。
 さらに、外周ベーン41の軸方向幅L5は、従来、吸込ノズル28の内径の15~25%程度に設定されるが、例えば、ケーシング20の直径を従来比で80%に設定した場合、外周ベーン41の軸方向幅L5は上記15~25%程度に対して更に75%程度に設定するのが好ましい。
 このように形成することで、吸込ボリュート31の流路面積に対して、案内部32の第一流路33の流路面積を最適化することができる。その結果、外周ベーン41の径方向幅L3や、ベーン39の軸方向寸法L5を、上記の範囲に設定する場合と比較して、ガスGが開口部37から案内部32に流入する際に流速が急上昇するのを防止することができるため、案内部32における剥離等に起因する圧力損失を更に低減することができる。
 図5は、従来の遠心圧縮機を基準にして、ケーシング20の直径を80%程度にした場合の圧力損失を示すグラフである。「A」は、内壁面44のみを設けた場合、「B」は、「A」の条件に加えて外周ベーン41の径方向幅L3を吸込ボリュート31の径方向寸法L1に対して90~110%した場合である。なお、「C」は従来の遠心圧縮機(直径100%)の場合の圧力損失である。
 つまり、上述した吸込ボリュート31の内壁面44の構成のみでも、直径100%の場合と同等の性能を得られるが、吸込ボリュート31の形状、ベーン39の形状、及び、ノズル内仕切板43の配置等の条件を最適化することで、更なる圧力損失の低減を図ることが可能となる。
 また、上述した実施形態においては、回転機械として遠心圧縮機1を一例に説明したが、半径流タービン等の回転機械にも適用可能である。
 10 インペラ
 28 吸込ノズル(ノズル)
 31 吸込ボリュート(ボリュート)
 32 案内部
 33 第一流路(流路)
 37 開口部
 39 ベーン
 44 内壁面
 45 テーパ部
 145 内壁面(壁面)

Claims (4)

  1.  径方向外周側から内周側へ流体を導入するノズルと、
     該ノズルと外周側で連通する略環状の空間を有するとともに、前記ノズルと接続される接続部から中心軸を挟んで反対側に前記空間を周方向に隔てる仕切部を有するボリュートと、
     該ボリュートの内周側で該ボリュートと連通した流路を有し、周方向に複数のベーンが設けられ、ボリュートから流入する流体を案内する案内部と、
     該案内部に軸方向で接続されて該案内部により案内された流体が流入するインペラとを備え、
     前記ボリュートは、
     該ボリュートの内周側に、前記案内部へと連通する環状の開口部と、
     軸方向の幅寸法を拡げるように、前記開口部から軸方向インペラ側に軸方向に沿って延出するとともに、前記仕切部に接続される内壁面と
    を備える回転機械。
  2.  請求項1に記載の回転機械であって、前記ボリュートは、軸方向両側に拡幅している回転機械。
  3.  請求項1又は2に記載の回転機械であって、
     前記ボリュートは、前記インペラと軸方向反対側に、テーパ形状に形成されるテーパ部を有する回転機械。
  4.  請求項1又は2に記載の回転機械であって、
     前記ボリュートは、前記インペラと軸方向の反対側に、軸方向に沿う壁面を有する回転機械。
PCT/JP2012/054734 2012-02-27 2012-02-27 回転機械 WO2013128539A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12869730.7A EP2821651B2 (en) 2012-02-27 2012-02-27 Rotary machine
PCT/JP2012/054734 WO2013128539A1 (ja) 2012-02-27 2012-02-27 回転機械
US14/377,011 US9835161B2 (en) 2012-02-27 2012-02-27 Rotary machine
CN201280069492.9A CN104105886B (zh) 2012-02-27 2012-02-27 回转机械
JP2012547348A JP5709898B2 (ja) 2012-02-27 2012-02-27 回転機械
EP15163669.3A EP2947327B1 (en) 2012-02-27 2012-02-27 Rotary machine
US14/658,627 US10119546B2 (en) 2012-02-27 2015-03-16 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054734 WO2013128539A1 (ja) 2012-02-27 2012-02-27 回転機械

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/377,011 A-371-Of-International US9835161B2 (en) 2012-02-27 2012-02-27 Rotary machine
US14/658,627 Division US10119546B2 (en) 2012-02-27 2015-03-16 Rotary machine

Publications (1)

Publication Number Publication Date
WO2013128539A1 true WO2013128539A1 (ja) 2013-09-06

Family

ID=49081798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054734 WO2013128539A1 (ja) 2012-02-27 2012-02-27 回転機械

Country Status (5)

Country Link
US (2) US9835161B2 (ja)
EP (2) EP2947327B1 (ja)
JP (1) JP5709898B2 (ja)
CN (1) CN104105886B (ja)
WO (1) WO2013128539A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896807A1 (en) * 2014-01-15 2015-07-22 Honeywell International Inc. Turbocharger with twin parallel compressor impellers and having center housing features for conditioning flow in the rear impeller
WO2015199907A1 (en) * 2014-06-26 2015-12-30 General Electric Company Turbomachine inlet nozzle for asymmetric flow, with vanes of different shapes
CN108138802A (zh) * 2015-10-14 2018-06-08 川崎重工业株式会社 压缩机的进气结构
WO2023190635A1 (ja) * 2022-03-31 2023-10-05 株式会社日立インダストリアルプロダクツ 遠心式流体機械

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172758B2 (ja) * 2014-12-11 2017-08-02 三菱重工業株式会社 回転機械の片吸込み式吸気装置
CN106321517B (zh) * 2015-06-24 2018-10-26 沈阳鼓风机集团股份有限公司 离心压缩机吸气室结构
KR102083168B1 (ko) * 2017-11-07 2020-03-02 주식회사 에어로네트 주 날개 및 보조 날개를 구비한 임펠러
KR102080666B1 (ko) * 2019-04-12 2020-02-24 박행제 수력발전장치용 임펠라 어셈블리
CN111980941A (zh) * 2019-05-23 2020-11-24 青岛海尔滚筒洗衣机有限公司 离心风机和干衣机
US11919654B2 (en) * 2022-08-05 2024-03-05 Pratt & Whitney Canada Corp. Aircraft intake duct with passively movable flow restrictor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893691A (ja) * 1994-09-19 1996-04-09 Nissan Motor Co Ltd 遠心式圧縮機の可変入口案内翼
JP2010203251A (ja) 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd 吸込みケーシング及び流体機械
JP2010236401A (ja) * 2009-03-31 2010-10-21 Hitachi Plant Technologies Ltd 遠心形流体機械
JP2011117402A (ja) * 2009-12-07 2011-06-16 Hitachi Plant Technologies Ltd 遠心流体機械の吸込ケーシング

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144896U (ja) * 1979-04-06 1980-10-17
SU1211419A1 (ru) * 1984-09-24 1986-02-15 Сумский филиал Специального конструкторского бюро по созданию воздушных и газовых турбохолодильных машин Входное устройство турбомашины
JPS6259796A (ja) 1985-09-09 1987-03-16 三井建設株式会社 螺旋掘進形シ−ルド工法
JPS6259796U (ja) * 1985-10-02 1987-04-14
JPS63142728A (ja) 1986-12-04 1988-06-15 Nec Corp 列車無線システム
JPH0573296A (ja) 1991-09-13 1993-03-26 Nec Ic Microcomput Syst Ltd マイクロコンピユータ
JPH0573296U (ja) * 1992-03-11 1993-10-08 株式会社大氣社 送風機の吸込騒音防止装置
JPH08232893A (ja) * 1995-02-22 1996-09-10 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JPH10318191A (ja) 1997-05-16 1998-12-02 Mitsubishi Heavy Ind Ltd 遠心圧縮機の吸込ケーシング
DE59712162D1 (de) 1997-09-04 2005-02-17 Levitronix Llc Waltham Zentrifugalpumpe
JP2000087899A (ja) 1998-09-14 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd インレットガイドベーン装置の異音低減装置
JP4573020B2 (ja) * 2004-05-06 2010-11-04 株式会社日立プラントテクノロジー 吸込ケーシング、吸込流路構造および流体機械
JP4746330B2 (ja) * 2005-02-25 2011-08-10 三菱重工コンプレッサ株式会社 遠心圧縮機
JP4940755B2 (ja) 2006-05-17 2012-05-30 株式会社日立プラントテクノロジー 一軸多段形遠心圧縮機
JP4980699B2 (ja) 2006-12-01 2012-07-18 三菱重工コンプレッサ株式会社 遠心圧縮機
JP5023903B2 (ja) 2007-09-10 2012-09-12 株式会社日立プラントテクノロジー 遠心圧縮機
JP4900261B2 (ja) 2008-01-25 2012-03-21 株式会社日立プラントテクノロジー 遠心圧縮機
JP5405910B2 (ja) 2009-06-11 2014-02-05 株式会社日立製作所 遠心圧縮機
JP5535562B2 (ja) 2009-09-16 2014-07-02 三菱重工業株式会社 排出スクロール及びターボ機械
IT1399881B1 (it) 2010-05-11 2013-05-09 Nuova Pignone S R L Configurazione di tamburo di bilanciamento per rotori di compressore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893691A (ja) * 1994-09-19 1996-04-09 Nissan Motor Co Ltd 遠心式圧縮機の可変入口案内翼
JP2010203251A (ja) 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd 吸込みケーシング及び流体機械
JP2010236401A (ja) * 2009-03-31 2010-10-21 Hitachi Plant Technologies Ltd 遠心形流体機械
JP2011117402A (ja) * 2009-12-07 2011-06-16 Hitachi Plant Technologies Ltd 遠心流体機械の吸込ケーシング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821651A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896807A1 (en) * 2014-01-15 2015-07-22 Honeywell International Inc. Turbocharger with twin parallel compressor impellers and having center housing features for conditioning flow in the rear impeller
EP2982847A1 (en) * 2014-01-15 2016-02-10 Honeywell International Inc. Turbocharger with twin parallel compressor impellers and having center housing features for conditioning flow in the rear impeller
WO2015199907A1 (en) * 2014-06-26 2015-12-30 General Electric Company Turbomachine inlet nozzle for asymmetric flow, with vanes of different shapes
US10024335B2 (en) 2014-06-26 2018-07-17 General Electric Company Apparatus for transferring energy between a rotating element and fluid
RU2700212C2 (ru) * 2014-06-26 2019-09-13 Дженерал Электрик Компани Входной сопловой аппарат турбомашины для асимметричного потока с лопатками различной формы
US10927849B2 (en) 2014-06-26 2021-02-23 Nuovo Pignone Tecnologie Srl Apparatus for transferring energy between a rotating element and fluid
CN108138802A (zh) * 2015-10-14 2018-06-08 川崎重工业株式会社 压缩机的进气结构
US10808721B2 (en) 2015-10-14 2020-10-20 Kawasaki Jukogyo Kabushiki Kaisha Intake structure of compressor
WO2023190635A1 (ja) * 2022-03-31 2023-10-05 株式会社日立インダストリアルプロダクツ 遠心式流体機械

Also Published As

Publication number Publication date
EP2947327A1 (en) 2015-11-25
JP5709898B2 (ja) 2015-04-30
US20150184664A1 (en) 2015-07-02
CN104105886A (zh) 2014-10-15
US20150056069A1 (en) 2015-02-26
CN104105886B (zh) 2016-10-12
EP2821651B2 (en) 2022-06-15
EP2821651A4 (en) 2015-11-25
JPWO2013128539A1 (ja) 2015-07-30
EP2821651A1 (en) 2015-01-07
EP2821651B1 (en) 2018-10-17
US10119546B2 (en) 2018-11-06
EP2947327B1 (en) 2019-06-19
US9835161B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP5709898B2 (ja) 回転機械
WO2011007467A1 (ja) インペラおよび回転機械
JP6140736B2 (ja) 遠心回転機械
US10221854B2 (en) Impeller and rotary machine provided with same
WO2018181343A1 (ja) 遠心圧縮機
JP2016031064A (ja) 多段ポンプ
EP3421814B1 (en) Centrifugal compressor
WO2017170105A1 (ja) 遠心圧縮機
WO2016051835A1 (ja) 遠心圧縮機
WO2014122819A1 (ja) 遠心圧縮機
WO2018155458A1 (ja) 遠心回転機械
WO2018155546A1 (ja) 遠心圧縮機
JP6336134B2 (ja) 遠心圧縮機のケーシング、及び、遠心圧縮機
US11187242B2 (en) Multi-stage centrifugal compressor
JP7013316B2 (ja) 遠心圧縮機
WO2013115361A1 (ja) シール構造及びこれを備えた回転機械
US20190136869A1 (en) Rotary machine and diaphragm
JP2005240713A (ja) 遠心圧縮機
US9151297B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012547348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14377011

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012869730

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE