WO2017170105A1 - 遠心圧縮機 - Google Patents
遠心圧縮機 Download PDFInfo
- Publication number
- WO2017170105A1 WO2017170105A1 PCT/JP2017/011661 JP2017011661W WO2017170105A1 WO 2017170105 A1 WO2017170105 A1 WO 2017170105A1 JP 2017011661 W JP2017011661 W JP 2017011661W WO 2017170105 A1 WO2017170105 A1 WO 2017170105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- impeller
- introduction
- gas
- centrifugal compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
- F04D29/444—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
- F04D29/684—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4213—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/31—Arrangement of components according to the direction of their main axis or their axis of rotation
- F05D2250/314—Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/51—Inlet
Definitions
- the present invention relates to a centrifugal compressor.
- a multistage centrifugal compressor that compresses gas using a plurality of impellers provided on a rotating shaft extending in an axial direction is known (see, for example, Patent Document 1).
- the impeller constituting each compression stage is connected to an introduction flow path extending from the radial outer side toward the radial inner side, and an end portion on the radial inner side of the introduction flow path. Gas flows in through a curved flow path that bends and extends downstream.
- intermediate suction is performed due to the operating condition of the refrigerator.
- the intermediate suction is a method in which the gas taken in from the outside of the refrigerator is caused to flow into the gas inflow port with the second and subsequent compression stage impellers.
- the width (the distance between the upstream side surface and the downstream side surface of the introduction flow path, the blade height of the return vane provided in the introduction flow path) in the axial direction of the introduction flow path (axial direction of the rotation shaft) is: It is determined so as to match the suction shape of the impeller connected to the downstream side.
- the impeller on the downstream side is an impeller having a large flow coefficient, it is necessary to increase the width in the axial direction.
- the introduction channel has a shape in which the channel cross-sectional area is greatly enlarged toward the inside in the radial direction.
- the gas flow rate is reduced in the introduction channel and separation is likely to occur.
- An object of the present invention is to provide a centrifugal compressor having an intermediate suction flow path that can suppress gas separation in an introduction flow path that guides the gas radially inward.
- the centrifugal compressor includes a rotating shaft extending in the axial direction, an impeller provided on the rotating shaft, and provided on the rotating shaft, on the downstream side of the first impeller.
- the second impeller arranged, a return flow path for guiding the first fluid flowing radially outward from the first impeller radially inward, and guided radially inward by the return flow path
- An introduction flow path for introducing the fluid into the second impeller, an intermediate suction flow path that is adjacent to the introduction flow path and additionally supplies a second fluid to the second impeller, and the introduction flow path;
- a curved flow path that is connected to the downstream side of the intermediate suction flow path and extends to bend to the downstream side in the axial direction, and guides the first fluid and the second fluid to the second impeller;
- a centrifugal compressor is disposed downstream of the turn-back position of the return flow path.
- the upstream side surface of the introduction flow path is 0 ° ⁇ ⁇ ⁇ 15 °. It may be formed as follows.
- the return passage on the downstream side of the first impeller passes through the return passage. Separation of the guided first fluid can be suppressed. Thereby, the efficiency of the hyperopic compressor can be improved.
- the centrifugal compressor of this embodiment is configured as a so-called barrel-type single-shaft multistage centrifugal compressor.
- the centrifugal compressor of this embodiment compresses this gas by applying centrifugal force to the gas supplied to the impeller by rotationally driving the impeller via a rotating shaft by a driving device (not shown).
- the centrifugal compressor 1 of the present embodiment includes a rotating shaft 2 that rotates around an axis O, a plurality of impellers 3 (impellers) provided on the rotating shaft 2, and the centrifugal compressor 1.
- a cylindrical casing 4 (cabinet) that forms an outer shell, and a diaphragm 5 that is housed in the casing 4 and covers the periphery of the rotary shaft 2 to form a flow path 6 that connects the impellers 3 to each other.
- the centrifugal compressor 1 includes five compression stages 21, 22, 23, 24, and 25.
- the centrifugal compressor 1 includes a suction nozzle 15 for introducing the first gas G1 into the centrifugal compressor 1, an intermediate suction nozzle 16 for introducing the second gas G2 into the intermediate suction flow path 10, and a compressed gas.
- the casing 4 of the present embodiment is a horizontally divided type that is divided into two so as to include the axis O.
- the direction in which the axis O of the rotating shaft 2 extends is referred to as an axial direction D.
- the direction orthogonal to the axis O is the radial direction, the side away from the axis O in the radial direction is called the radially outer side, and the side closer to the axis O in the radial direction is called the radially inner side.
- the left side of FIG. 1 is called the upstream side D1
- the right side of FIG. 1 is called the downstream side D2.
- the diaphragm 5 is divided into a plurality of parts corresponding to the compression stages 21, 22, 23, 24, 25 of the centrifugal compressor 1.
- a suction flow path 9 for taking the first gas G ⁇ b> 1 into the flow path 6 through the suction nozzle 15 is formed.
- a discharge channel 11 communicating with the discharge nozzle 17 is formed in the vicinity of the end portion on the downstream side D2 of the diaphragm 5.
- the rotary shaft 2 extends through the inside of the casing 4 along the axis O.
- Journal bearings 12 and thrust bearings 13 are provided at both ends of the casing 4 in the axial direction D, respectively.
- the rotary shaft 2 is supported by a journal bearing 12 and a thrust bearing 13 so as to be rotatable around an axis O.
- the centrifugal compressor 1 of the present embodiment has a first compression stage 21, a second compression stage 22, a third compression stage 23, a fourth compression stage 24, and a fifth in order from the upstream D1 to the downstream D2.
- a compression stage 25 is provided.
- each compression stage includes an introduction channel 26, a curved channel 27, a compression channel 28 (impeller 3), a diffuser channel 29, and a return channel 30 (return bend).
- the introduction channel 26 is a channel for guiding the gas G from the radially outer side of the axis O toward the radially inner side.
- the curved flow path 27 is connected to the radially inner side, which is the downstream side of the introduction flow path 26, and extends so as to bend toward the downstream side D ⁇ b> 2 from a position where it is connected to the introduction flow path 26. It is a flow path to guide.
- the compression flow path 28 is a flow path for compressing the gas G.
- the diffuser channel 29 is a channel that guides the compressed gas G from the radially inner side to the radially outer side.
- the return flow path 30 is a flow path that guides the gas G flowing toward the radially outer side to the radially inner side.
- the impeller 3 includes a disk 31 having a substantially circular cross section when viewed from the axial direction D, a plurality of blades 32 provided on the surface of the upstream side D1 of the disk 31, and a shroud that covers the plurality of blades 32 from the upstream side D1. 33.
- Each impeller 3 may be an open impeller that does not have a shroud.
- the radially outer side that is the upstream side of the introduction channel 26 is connected to the suction channel 9.
- the introduction flow path 26 in the second and subsequent compression stages 22, 23, 24, and 25 communicates with the downstream end of the previous return flow path 30. That is, after the gas G that has passed through the return flow path 30 is guided radially inward, the flow direction thereof is changed so as to face the downstream side D2 along the axis O.
- the introduction flow path 26 is a flow path that guides the gas G traveling radially inward through the return flow path 30 to the impeller 3.
- the radially outer end of the introduction channel 26 communicates with the return channel 30.
- the radially inner end of the introduction flow channel 26 communicates with the impeller 3 (compression flow channel 28) via a curved flow channel 27.
- a plurality of return vanes 35 are provided in the introduction flow path 26.
- the plurality of return vanes 35 are arranged radially around the axis O in the introduction channel 26.
- the return vane 35 rectifies the gas G into a radially inward flow.
- An inlet guide vane 34 (see FIG. 1) capable of changing the inclination of the vane by a mechanism (not shown) is provided on the upstream side of the first compression stage 21.
- the curved flow path 27 is a flow path that is connected to the radially inner side that is the downstream side of the introduction flow path 26 and that bends from the position connected to the introduction flow path 26 toward the downstream side D2. Thereby, the flow which goes to the radial inside of gas G changes into the flow which goes to the downstream D2.
- the gas G that has flowed to the downstream side D2 is guided to the impeller 3 and compressed.
- the compression flow path 28 is a flow path surrounded by a surface on the upstream side D1 of the disk 31 of the impeller 3, a surface on the downstream side D2 of the shroud 33, and a pair of blades 32 adjacent in the circumferential direction.
- the compression channel 28 gradually decreases in cross-sectional area from the radially inner side toward the radially outer side. Thereby, the gas G which distribute
- the diffuser channel 29 is a channel that extends from the inside in the radial direction toward the outside.
- the radially inner end of the diffuser channel 29 communicates with the radially outer end of the compression channel 28.
- the return flow path 30 reverses the flow direction of the gas G flowing from the radially inner side to the radially outer side via the diffuser flow path 29.
- One end side (upstream side D ⁇ b> 1) of the return channel 30 is communicated with the diffuser channel 29, and the other end side (downstream side D ⁇ b> 2) is communicated with the introduction channel 26.
- the radially outer end of the diffuser passage 29 of the fifth compression stage 25 is connected to the discharge nozzle 17.
- an intermediate suction flow path 10 Connected to the flow path 6 between the first compression stage 21 and the second compression stage 22 is an intermediate suction flow path 10 for additionally supplying the second gas G2 to the second impeller 3b of the second compression stage 22. ing.
- the intermediate suction flow channel 10 is connected to the radially inner side (upstream of the second impeller 3 b of the second compression stage 22), which is the downstream side of the introduction flow channel 26 of the second compression stage 22.
- a plurality of rectifying vanes 36 that rectify the second gas G ⁇ b> 2 flowing through the intermediate suction channel 10 are provided on the radially inner side of the intermediate suction channel 10.
- the intermediate suction flow path 10 is connected to the intermediate suction nozzle 16 (see FIG. 1) on the upstream side in the radial direction and to the curved flow path 27 of the second compression stage 22 on the downstream side in the radial direction. It is formed as follows.
- the intermediate suction channel 10 is formed adjacent to the introduction channel 26.
- the intermediate suction channel 10 and the introduction channel 26 are partitioned by a partition wall 37.
- the partition wall 37 divides the introduction flow path 26 and the intermediate suction flow path 10 in the axial direction D, thereby matching the flow directions of the gas G flowing into the two flow paths.
- the plurality of rectifying vanes 36 are provided in the intermediate suction flow path 10 to rectify the second gas G2 sucked from the intermediate suction nozzle 16 so that the second gas G2 flows inward in the radial direction.
- the position in the radial direction of the radially inner end 36 a that is the downstream side of the rectifying vane 36 is the same as the position in the radial direction of the radially inner end 35 a that is the downstream side of the return vane 35.
- the upstream side surface 26 a of the introduction flow path 26 of the second compression stage 22 of the present embodiment is connected to the radially outer side of the introduction flow path 26 in the axial direction D, and the return flow path 30 of the first compression stage 21. Is formed on the downstream side D2 from the folding position R.
- the side surface 26 a on the upstream side of the introduction flow path 26 of the second compression stage 22 has a top portion P (most radial direction) in the radial direction of the peripheral surface 30 a on the inner peripheral side of the return flow path 30 of the first compression stage 21. It is formed on the downstream side D2 from the outer top).
- the side surface 26a on the upstream side of the introduction channel 26 is a surface facing the downstream side D2 in the diaphragm 5 forming the introduction channel 26.
- the upstream side surface 26a of the introduction flow path 26 of the present embodiment is ⁇
- the upstream side surface 26a of the introduction flow path 26 is 0 ° ⁇ ⁇ ⁇ 15. It is formed to be °.
- the gas G exhibits the following behavior.
- the first gas G1 taken into the flow path 6 from the suction nozzle 15 flows into the compression flow path 28 in the first impeller 3a through the introduction flow path 26 of the first compression stage 21. Since the impeller 3 rotates around the axis O along with the rotation of the rotating shaft 2, a centrifugal force directed radially outward from the axis O is applied to the first gas G 1 in the compression flow path 28. .
- the cross-sectional area of the compression flow path 28 gradually decreases from the radially outer side to the inner side, the first gas G1 is gradually compressed. As a result, the high-pressure gas G is sent from the compression flow path 28 to the subsequent diffuser flow path 29.
- the high-pressure gas G flowing out from the compression flow path 28 then passes through the diffuser flow path 29, the return flow path 30, the introduction flow path 26, and the curved flow path 27 in this order. Thereafter, similar compression is also applied to the impeller 3 of the second compression stage 22. Further, the second gas G ⁇ b> 2 is added to the second impeller 3 b of the second compression stage 22 through the intermediate suction nozzle 16 and the intermediate suction flow path 10. Eventually, the gas G reaches a desired pressure state and is supplied from the discharge nozzle 17 to an external device (not shown).
- the centrifugal compressor 1 in which the second gas G2 is introduced to the radially inner side that is the downstream side of the introduction flow path 26 of the second compression stage 22 via the intermediate suction flow path 10,
- the separation of the first gas G1 that has passed through the return flow path 30 of the first compression stage 21 and is guided to the introduction flow path 26 of the second compression stage 22 is suppressed. That is, the side surface 26 a on the upstream side of the introduction flow path 26 of the second compression stage 22 is folded back in the axial direction D of the return flow path 30 of the first compression stage 21 connected to the radially outer side of the introduction flow path 26.
- the inclination of the side surface 26a toward the upstream side D1 is reduced, and the first gas G1 is prevented from peeling from the side surface 26a on the upstream side of the introduction channel 26. Is done. Thereby, the efficiency of the hyperopic compressor can be improved.
- the second gas G2 is introduced into the bent flow path 27 of the second compression stage 22 via the intermediate suction flow path 10, the flow disturbance occurs due to the second gas G2. It is important to suppress delamination upstream of 27.
- the intermediate suction flow path 10 of the above embodiment is formed between the first compression stage 21 and the second compression stage 22, but is not limited thereto.
- the intermediate suction flow path 10 is It may be formed between the second compression stage 22 and the third compression stage 23.
- the return passage on the downstream side of the first impeller passes through the return passage. Separation of the guided first fluid can be suppressed. Thereby, the efficiency of the hyperopic compressor can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
軸線方向(D)に延びる回転軸(2)と、第一のインペラ(3a)と、第一のインペラ(3a)の下流側(D2)に配置された第二のインペラ(3b)と、第一のインペラ(3a)から径方向外側に向けて流れる第一の流体(G1)を径方向内側へ案内するリターン流路(30)と、径方向内側へ案内された流体を第二のインペラ(3b)に導入する導入流路(26)と、第二のインペラ(3b)に第二の流体(G2)を追加供給する中間吸込み流路(10)と、導入流路(26)及び中間吸込み流路(10)の下流側に接続されるとともに、下流側(D2)に曲がるように延びて、第二のインペラ(3b)に第一の流体及び第二の流体を案内する曲り流路(27)と、を備え、導入流路(26)の上流側の側面(26a)は、リターン流路(30)の折り返し位置(R)よりも下流側(D2)に配置されている遠心圧縮機(1)を提供する。
Description
本発明は、遠心圧縮機に関する。
本願は、2016年3月29日に日本に出願された特願2016-64875号について優先権を主張し、その内容をここに援用する。
本願は、2016年3月29日に日本に出願された特願2016-64875号について優先権を主張し、その内容をここに援用する。
遠心回転機械の一種として、軸線方向に延びる回転軸に設けられた複数のインペラを用いてガスを圧縮する多段遠心圧縮機が知られている(例えば、特許文献1参照。)。この多段遠心圧縮機において、各々の圧縮段を構成するインペラには、径方向外側から径方向内側に向かって延在する導入流路、及び導入流路の径方向内側の端部に接続されて、下流側に曲がって延びる曲り流路を介して、ガスが流入する。
また、多段遠心圧縮機が冷凍機に用いられた場合、冷凍機における運転条件の制約から、中間吸込みが行なわれている。中間吸込みとは、二段目以降の圧縮段のインペラで、ガスの流入口に冷凍機の系外から取り込んだガスを流入させる方法である。
また、多段遠心圧縮機が冷凍機に用いられた場合、冷凍機における運転条件の制約から、中間吸込みが行なわれている。中間吸込みとは、二段目以降の圧縮段のインペラで、ガスの流入口に冷凍機の系外から取り込んだガスを流入させる方法である。
ところで、導入流路の軸線方向(回転軸の軸線方向)の幅(導入流路の上流側の側面と下流側の側面との距離、導入流路に設けられるリターンベーンの翼高さ)は、下流側に接続されるインペラの吸込み形状に合致するように決定される。下流側のインペラが大きな流量係数のインペラである場合、軸線方向における幅を大きくする必要が生じる。
この場合、導入流路は、その流路断面積が径方向内側に向かうに従って大きく拡大する形状となるが、導入流路においてガスの流速が低下し、剥離が生じやすくなるという課題がある。
この場合、導入流路は、その流路断面積が径方向内側に向かうに従って大きく拡大する形状となるが、導入流路においてガスの流速が低下し、剥離が生じやすくなるという課題がある。
また、遠心圧縮機の軸線方向の長さを短くするために、導入流路の軸線方向の上流側の側面を径方向内側に向かうに従って、上流側に傾斜させる場合は、剥離がより生じやすくなる。特に、中間吸込みを行う場合、遠心圧縮機の軸線方向の長さが長くなるため、傾斜をより大きくする必要があり、導入流路の下流側におけるガスの剥離が助長される傾向にある。
この発明は、中間吸込み流路を有する遠心圧縮機において、ガスを径方向内側に向けて案内する導入流路におけるガスの剥離を抑制することができる遠心圧縮機を提供することを目的とする。
本発明の第一の態様によれば、遠心圧縮機は、軸線方向に延びる回転軸と、前記回転軸に設けられたインペラと、前記回転軸に設けられ、前記第一のインペラの下流側に配置された第二のインペラと、前記第一のインペラから径方向外側に向けて流れる第一の流体を径方向内側へ案内するリターン流路と、前記リターン流路によって径方向内側へ案内された前記流体を前記第二のインペラに導入する導入流路と、前記導入流路に隣接するとともに、前記第二のインペラに第二の流体を追加供給する中間吸込み流路と、前記導入流路及び前記中間吸込み流路の下流側に接続されるとともに、軸線方向の下流側に曲がるように延びて、前記第二のインペラに前記第一の流体及び前記第二の流体を案内する曲り流路と、を備え、前記導入流路の上流側の側面は、前記軸線方向において、前記リターン流路の折り返し位置よりも下流側に配置されている遠心圧縮機。
このような構成によれば、中間吸込み流路を介して第二のインペラに第二の流体が導入される遠心圧縮機において、第一のインペラの下流側のリターン流路を通過して導入流路に案内された第一の流体の剥離を抑制することができる。これにより、遠視圧縮機の効率の向上を図ることができる。
上記遠心圧縮機において、前記導入流路の上流側の側面と、前記軸線と直交する面とのなす角をθとすると、前記導入流路の上流側の側面は0°≦θ≦15°となるように形成されてよい。
このような構成によれば、導入流路の上流側の側面の傾斜角を規定して、剥離を確実に抑制することができる。
本発明によれば、中間吸込み流路を介して第二のインペラに第二の流体が導入される遠心圧縮機において、第一のインペラの下流側のリターン流路を通過して導入流路に案内された第一の流体の剥離を抑制することができる。これにより、遠視圧縮機の効率の向上を図ることができる。
以下、本発明の実施形態の遠心圧縮機について図面を参照して詳細に説明する。
本実施形態の遠心圧縮機は、所謂バレル形の一軸多段遠心圧縮機として構成されている。本実施形態の遠心圧縮機は、図示しない駆動装置によって回転軸を介してインペラを回転駆動することで、インペラに供給されたガスに遠心力を与えてこのガスを圧縮するものである。
本実施形態の遠心圧縮機は、所謂バレル形の一軸多段遠心圧縮機として構成されている。本実施形態の遠心圧縮機は、図示しない駆動装置によって回転軸を介してインペラを回転駆動することで、インペラに供給されたガスに遠心力を与えてこのガスを圧縮するものである。
図1に示すように、本実施形態の遠心圧縮機1は、軸線O回りに回転する回転軸2と、回転軸2に設けられた複数のインペラ3(羽根車)と、遠心圧縮機1の外郭をなす筒状のケーシング4(車室)と、ケーシング4内に格納されて回転軸2の周囲を覆うことで各々のインペラ3の間を結ぶ流路6を形成するダイアフラム5と、を備えている。遠心圧縮機1は、五段の圧縮段21,22,23,24,25を備えている。
また、遠心圧縮機1は、遠心圧縮機1に第一のガスG1を導入する吸込みノズル15と、中間吸込み流路10に第二のガスG2を導入する中間吸込みノズル16と、圧縮されたガスG3を吐出する吐出ノズル17と、を備えている。
本実施形態のケーシング4は、軸線Oを含むように二つに分割された水平分割型である。
また、遠心圧縮機1は、遠心圧縮機1に第一のガスG1を導入する吸込みノズル15と、中間吸込み流路10に第二のガスG2を導入する中間吸込みノズル16と、圧縮されたガスG3を吐出する吐出ノズル17と、を備えている。
本実施形態のケーシング4は、軸線Oを含むように二つに分割された水平分割型である。
以下の説明において、回転軸2の軸線Oが延びている方向を軸線方向Dとする。また、軸線Oに直交する方向を径方向とし、径方向で軸線Oから遠ざかる側を径方向外側と呼び、径方向で軸線Oに近づく側を径方向内側と呼ぶ。軸線方向Dであって、図1の左側を上流側D1、図1の右側を下流側D2と呼ぶ。
ダイアフラム5は、遠心圧縮機1の各々の圧縮段21,22,23,24,25に対応して複数に分割されている。
ダイアフラム5の上流側D1の端部近傍には、吸込みノズル15を介して第一のガスG1を流路6に取り込む吸込み流路9が形成されている。
ダイアフラム5の下流側D2の端部近傍には、吐出ノズル17に連通する吐出流路11が形成されている。
ダイアフラム5の上流側D1の端部近傍には、吸込みノズル15を介して第一のガスG1を流路6に取り込む吸込み流路9が形成されている。
ダイアフラム5の下流側D2の端部近傍には、吐出ノズル17に連通する吐出流路11が形成されている。
回転軸2は、ケーシング4の内部を軸線Oに沿って貫通するように延びている。軸線方向Dにおけるケーシング4の両端部には、それぞれジャーナル軸受12及びスラスト軸受13が設けられている。回転軸2は、ジャーナル軸受12とスラスト軸受13とによって軸線O回りに回転可能に支持されている。
本実施形態の遠心圧縮機1は、上流側D1から下流側D2に向けて、順に、第一圧縮段21、第二圧縮段22、第三圧縮段23、第四圧縮段24、及び第五圧縮段25を有している。図2に示すように、それぞれの圧縮段は、導入流路26と、曲がり流路27と、圧縮流路28(インペラ3)と、ディフューザ流路29と、リターン流路30(リターンベンド)と、を有している。導入流路26は、ガスGを軸線Oの径方向外側から径方向内側に向けて案内する流路である。曲がり流路27は、導入流路26の下流側である径方向内側に接続されるとともに導入流路26と接続する位置から下流側D2に向かって曲がるように延びて、インペラ3にガスGを案内する流路である。圧縮流路28は、ガスGを圧縮する流路である。ディフューザ流路29は、圧縮されたガスGを径方向内側から径方向外側に案内する流路である。リターン流路30は、径方向外側に向けて流れるガスGを径方向内側へ案内する流路である。
インペラ3は、軸線方向Dから見て略円形の断面を有するディスク31と、ディスク31の上流側D1の面に設けられた複数の羽根32と、これら複数の羽根32を上流側D1から覆うシュラウド33と、を有している。
なお、各々のインペラ3は、シュラウドを有していないオープンインペラであってもよい。
なお、各々のインペラ3は、シュラウドを有していないオープンインペラであってもよい。
第一圧縮段21では、導入流路26の上流側である径方向外側は吸込み流路9と接続されている。
二段目以降の圧縮段22,23,24,25における導入流路26は、前段のリターン流路30の下流端と連通されている。即ち、リターン流路30を通過したガスGは、径方向内側へ案内された後、軸線Oに沿って下流側D2を向くように、その流れ方向が変更される。
二段目以降の圧縮段22,23,24,25における導入流路26は、前段のリターン流路30の下流端と連通されている。即ち、リターン流路30を通過したガスGは、径方向内側へ案内された後、軸線Oに沿って下流側D2を向くように、その流れ方向が変更される。
導入流路26は、リターン流路30を経て、径方向内側に向かうガスGをインペラ3に案内する流路である。導入流路26の径方向外側の端部は、リターン流路30と連通されている。導入流路26の径方向内側の端部は、曲がり流路27を介してインペラ3(圧縮流路28)に連通されている。
導入流路26中には、複数のリターンベーン35が設けられている。複数のリターンベーン35は、導入流路26中で、軸線Oを中心として放射状に配列されている。リターンベーン35は、ガスGを径方向内側向きの流れに整流する。
第一圧縮段21の上流側には、図示しない機構によってベーンの傾きを変えることが可能なインレットガイドベーン34(図1参照)が設けられている。
導入流路26中には、複数のリターンベーン35が設けられている。複数のリターンベーン35は、導入流路26中で、軸線Oを中心として放射状に配列されている。リターンベーン35は、ガスGを径方向内側向きの流れに整流する。
第一圧縮段21の上流側には、図示しない機構によってベーンの傾きを変えることが可能なインレットガイドベーン34(図1参照)が設けられている。
曲がり流路27は、導入流路26における下流側である径方向内側に接続されるとともに導入流路26と接続する位置から下流側D2に向かって曲がるように延びる流路である。これにより、ガスGの径方向内側に向かう流れが下流側D2に向かう流れに変わる。下流側D2への流れとなったガスGはインペラ3に導かれ、圧縮される。
圧縮流路28は、インペラ3のディスク31の上流側D1の面、シュラウド33の下流側D2の面、及び周方向に隣り合う一対の羽根32によって囲まれた流路である。圧縮流路28は、径方向内側から径方向外側に向かうに従って、その断面積が次第に減少している。これにより、インペラ3が回転している状態で圧縮流路28中を流通するガスGは、徐々に圧縮されて高圧となる。
ディフューザ流路29は、径方向内側から外側に向かって延びる流路である。ディフューザ流路29における径方向内側の端部は、圧縮流路28の径方向外側の端部に連通されている。
リターン流路30は、ディフューザ流路29を経て、径方向内側から径方向外側に向かって流通したガスGの流れ方向を反転させる。リターン流路30の一端側(上流側D1)は、ディフューザ流路29に連通され、他端側(下流側D2)は、導入流路26に連通されている。
第五圧縮段25のディフューザ流路29の径方向外側の端部は、吐出ノズル17に接続されている。
リターン流路30は、ディフューザ流路29を経て、径方向内側から径方向外側に向かって流通したガスGの流れ方向を反転させる。リターン流路30の一端側(上流側D1)は、ディフューザ流路29に連通され、他端側(下流側D2)は、導入流路26に連通されている。
第五圧縮段25のディフューザ流路29の径方向外側の端部は、吐出ノズル17に接続されている。
第一圧縮段21と第二圧縮段22との間の流路6には、第二圧縮段22の第二のインペラ3bに第二のガスG2を追加供給する中間吸込み流路10が接続されている。中間吸込み流路10は、第二圧縮段22の導入流路26の下流側である径方向内側(第二圧縮段22の第二のインペラ3bの上流側)に接続されている。中間吸込み流路10における径方向内側には、中間吸込み流路10を流れる第二のガスG2を整流する複数の整流ベーン36が設けられている。
中間吸込み流路10は、上流側である径方向外側が中間吸込みノズル16(図1参照)に接続されるとともに下流側である径方向内側が第二圧縮段22の曲がり流路27に接続するように形成されている。中間吸込み流路10は導入流路26に隣接して形成されている。中間吸込み流路10と導入流路26とは隔壁37によって区画されている。
隔壁37は、軸線方向Dにおいて導入流路26と中間吸込み流路10を区画することで、2つの流路に流れ込むガスGの流れの向きを一致させる。
複数の整流ベーン36は、中間吸込み流路10に設けられることによって、中間吸込みノズル16から吸込まれた第二のガスG2を径方向内側向きの流れとなるように整流する。整流ベーン36の下流側である径方向内側の端部36aの径方向における位置はリターンベーン35の下流側である径方向内側の端部35aの径方向における位置と同じである。
複数の整流ベーン36は、中間吸込み流路10に設けられることによって、中間吸込みノズル16から吸込まれた第二のガスG2を径方向内側向きの流れとなるように整流する。整流ベーン36の下流側である径方向内側の端部36aの径方向における位置はリターンベーン35の下流側である径方向内側の端部35aの径方向における位置と同じである。
本実施形態の第二圧縮段22の導入流路26の上流側の側面26aは、軸線方向Dにおいて、導入流路26の径方向外側に接続されている第一圧縮段21のリターン流路30の折り返し位置Rよりも下流側D2に形成されている。換言すれば、第二圧縮段22の導入流路26の上流側の側面26aは、第一圧縮段21のリターン流路30の内周側の周面30aの径方向における頂部P(最も径方向外側の頂部)よりも下流側D2に形成されている。
これにより、第一圧縮段21の第一のインペラ3aと第二圧縮段22の第二のインペラ3bとを接続する流路6の軸線方向Dの屈曲が小さくなる。
導入流路26の上流側の側面26aとは、導入流路26を形成するダイアフラム5において、下流側D2を向く面である。
これにより、第一圧縮段21の第一のインペラ3aと第二圧縮段22の第二のインペラ3bとを接続する流路6の軸線方向Dの屈曲が小さくなる。
導入流路26の上流側の側面26aとは、導入流路26を形成するダイアフラム5において、下流側D2を向く面である。
また、本実施形態の導入流路26の上流側の側面26aと、軸線Oに直交する面とのなす角をθとすると、導入流路26の上流側の側面26aは0°≦θ≦15°となるように形成されている。
続いて、本実施形態の遠心圧縮機1の動作について説明する。
通常の運転状態にある遠心圧縮機1では、ガスGは以下のような挙動を示す。
まず、吸込みノズル15から流路6内に取り込まれた第一のガスG1は、第一圧縮段21の導入流路26を経て、第一のインペラ3a中の圧縮流路28に流入する。インペラ3は回転軸2の回転に伴って軸線O回りに回転していることから、圧縮流路28中の第一のガスG1には、軸線Oから径方向外側に向かう遠心力が付加される。加えて、圧縮流路28の断面積は径方向外側から内側にかけて次第に減少していることから、第一のガスG1は徐々に圧縮される。これにより、高圧のガスGが、圧縮流路28から後続のディフューザ流路29に送り出される。
通常の運転状態にある遠心圧縮機1では、ガスGは以下のような挙動を示す。
まず、吸込みノズル15から流路6内に取り込まれた第一のガスG1は、第一圧縮段21の導入流路26を経て、第一のインペラ3a中の圧縮流路28に流入する。インペラ3は回転軸2の回転に伴って軸線O回りに回転していることから、圧縮流路28中の第一のガスG1には、軸線Oから径方向外側に向かう遠心力が付加される。加えて、圧縮流路28の断面積は径方向外側から内側にかけて次第に減少していることから、第一のガスG1は徐々に圧縮される。これにより、高圧のガスGが、圧縮流路28から後続のディフューザ流路29に送り出される。
圧縮流路28から流れ出た高圧のガスGは、その後、ディフューザ流路29、リターン流路30、導入流路26、曲がり流路27を順に通過する。以後、第二圧縮段22のインペラ3においても同様の圧縮が加えられる。また、中間吸込みノズル16、中間吸込み流路10を介して第二圧縮段22の第二のインペラ3bに第二のガスG2が追加される。最終的には、ガスGは、所望の圧力状態となって吐出ノズル17から不図示の外部機器に供給される。
上記実施形態によれば、中間吸込み流路10を介して第二圧縮段22の導入流路26の下流側である径方向内側に第二のガスG2が導入される遠心圧縮機1において、第一圧縮段21のリターン流路30を通過して、第二圧縮段22の導入流路26に案内された第一のガスG1の剥離が抑制される。
即ち、第二圧縮段22の導入流路26の上流側の側面26aが、軸線方向Dにおいて、導入流路26の径方向外側に接続されている第一圧縮段21のリターン流路30の折り返し位置Rよりも下流側D2に形成されていることによって、側面26aの上流側D1に向かう傾斜が小さくなり、第一のガスG1が導入流路26の上流側の側面26aから剥離することが抑制される。
これにより、遠視圧縮機の効率の向上を図ることができる。特に、第二圧縮段22の曲がり流路27に中間吸込み流路10を介して第二のガスG2が導入される場合は、第二のガスG2によって流れの乱れが発生するため、曲がり流路27の上流における剥離の抑制が重要である。
即ち、第二圧縮段22の導入流路26の上流側の側面26aが、軸線方向Dにおいて、導入流路26の径方向外側に接続されている第一圧縮段21のリターン流路30の折り返し位置Rよりも下流側D2に形成されていることによって、側面26aの上流側D1に向かう傾斜が小さくなり、第一のガスG1が導入流路26の上流側の側面26aから剥離することが抑制される。
これにより、遠視圧縮機の効率の向上を図ることができる。特に、第二圧縮段22の曲がり流路27に中間吸込み流路10を介して第二のガスG2が導入される場合は、第二のガスG2によって流れの乱れが発生するため、曲がり流路27の上流における剥離の抑制が重要である。
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、種々の変更を加えることが可能である。
例えば、上記実施形態の中間吸込み流路10は、第一圧縮段21と第二圧縮段22との間に形成されているが、これに限ることはなく、例えば、中間吸込み流路10を、第二圧縮段22と第三圧縮段23との間に形成してもよい。
例えば、上記実施形態の中間吸込み流路10は、第一圧縮段21と第二圧縮段22との間に形成されているが、これに限ることはなく、例えば、中間吸込み流路10を、第二圧縮段22と第三圧縮段23との間に形成してもよい。
本発明によれば、中間吸込み流路を介して第二のインペラに第二の流体が導入される遠心圧縮機において、第一のインペラの下流側のリターン流路を通過して導入流路に案内された第一の流体の剥離を抑制することができる。これにより、遠視圧縮機の効率の向上を図ることができる。
1 遠心圧縮機
2 回転軸
3 インペラ
4 ケーシング
5 ダイアフラム
6 流路
9 吸込み流路
10 中間吸込み流路
11 吐出流路
15 吸込みノズル
16 中間吸込みノズル
17 吐出ノズル
21 第一圧縮段
22 第二圧縮段
23 第三圧縮段
24 第四圧縮段
25 第五圧縮段
26 導入流路
26a 側面
27 曲がり流路
28 圧縮流路
29 ディフューザ流路
30 リターン流路
34 インレットガイドベーン
35 リターンベーン
36 整流ベーン
37 隔壁
D 軸線方向
D1 上流側
D2 下流側
G ガス
G1 第一のガス(第一の流体)
G2 第二のガス(第二の流体)
O 軸線
R 折り返し位置
2 回転軸
3 インペラ
4 ケーシング
5 ダイアフラム
6 流路
9 吸込み流路
10 中間吸込み流路
11 吐出流路
15 吸込みノズル
16 中間吸込みノズル
17 吐出ノズル
21 第一圧縮段
22 第二圧縮段
23 第三圧縮段
24 第四圧縮段
25 第五圧縮段
26 導入流路
26a 側面
27 曲がり流路
28 圧縮流路
29 ディフューザ流路
30 リターン流路
34 インレットガイドベーン
35 リターンベーン
36 整流ベーン
37 隔壁
D 軸線方向
D1 上流側
D2 下流側
G ガス
G1 第一のガス(第一の流体)
G2 第二のガス(第二の流体)
O 軸線
R 折り返し位置
Claims (2)
- 軸線方向に延びる回転軸と、
前記回転軸に設けられた第一のインペラと、
前記回転軸に設けられ、前記第一のインペラの下流側に配置された第二のインペラと、
前記第一のインペラから径方向外側に向けて流れる第一の流体を径方向内側へ案内するリターン流路と、
前記リターン流路によって径方向内側へ案内された前記第一の流体を前記第二のインペラに導入する導入流路と、
前記導入流路に隣接するとともに、前記第二のインペラに第二の流体を追加供給する中間吸込み流路と、
前記導入流路及び前記中間吸込み流路の下流側に接続されるとともに、軸線方向の下流側に曲がるように延びて、前記第二のインペラに前記第一の流体及び前記第二の流体を案内する曲り流路と、を備え、
前記導入流路の上流側の側面は、前記軸線方向において、前記リターン流路の折り返し位置よりも下流側に配置されている遠心圧縮機。 - 前記導入流路の上流側の側面と、前記軸線と直交する面とのなす角をθとすると、
前記導入流路の上流側の側面は0°≦θ≦15°となるように形成されている請求項1に記載の遠心圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17774646.8A EP3421815B1 (en) | 2016-03-29 | 2017-03-23 | Centrifugal compressor |
US16/088,352 US10989201B2 (en) | 2016-03-29 | 2017-03-23 | Centrifugal compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-064875 | 2016-03-29 | ||
JP2016064875A JP6642189B2 (ja) | 2016-03-29 | 2016-03-29 | 遠心圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017170105A1 true WO2017170105A1 (ja) | 2017-10-05 |
Family
ID=59964490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011661 WO2017170105A1 (ja) | 2016-03-29 | 2017-03-23 | 遠心圧縮機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10989201B2 (ja) |
EP (1) | EP3421815B1 (ja) |
JP (1) | JP6642189B2 (ja) |
WO (1) | WO2017170105A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017180237A (ja) * | 2016-03-30 | 2017-10-05 | 三菱重工業株式会社 | 遠心圧縮機 |
CN106762841B (zh) * | 2016-12-05 | 2020-06-30 | 珠海格力电器股份有限公司 | 一种回流器与扩压器一体化结构及离心压缩机 |
JP7085306B2 (ja) * | 2017-02-20 | 2022-06-16 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
JP2021134677A (ja) * | 2020-02-25 | 2021-09-13 | 三菱重工業株式会社 | 遠心圧縮機 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04134700U (ja) * | 1991-06-04 | 1992-12-15 | 三菱重工業株式会社 | 多段式遠心圧縮機 |
JPH0979192A (ja) * | 1995-09-14 | 1997-03-25 | Hitachi Ltd | 多段遠心圧縮機とその段間注入流路構造 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4695224A (en) * | 1982-01-04 | 1987-09-22 | General Electric Company | Centrifugal compressor with injection of a vaporizable liquid |
US4725196A (en) * | 1986-09-19 | 1988-02-16 | Hitachi, Ltd. | Single-shaft multi-stage centrifugal compressor |
JPH09144698A (ja) * | 1995-11-22 | 1997-06-03 | Hitachi Ltd | 中間吸込付き多段遠心圧縮機 |
US7407364B2 (en) * | 2005-03-01 | 2008-08-05 | Honeywell International, Inc. | Turbocharger compressor having ported second-stage shroud, and associated method |
TWI266831B (en) | 2005-12-15 | 2006-11-21 | Ind Tech Res Inst | Jet channel structure of refrigerant compressor |
US20100232984A1 (en) * | 2006-03-24 | 2010-09-16 | Maria Bade | Compressor Unit and Use of a Cooling Medium |
JP2010203251A (ja) * | 2009-02-27 | 2010-09-16 | Mitsubishi Heavy Ind Ltd | 吸込みケーシング及び流体機械 |
JP5613006B2 (ja) * | 2010-10-18 | 2014-10-22 | 株式会社日立製作所 | 多段遠心圧縮機およびそのリターンチャネル |
ITCO20110027A1 (it) | 2011-07-21 | 2013-01-22 | Nuovo Pignone Spa | Turbomacchina centrifuga multistadio |
JP5984665B2 (ja) | 2012-12-28 | 2016-09-06 | 三菱重工業株式会社 | 圧縮機及びターボ冷凍機 |
JP2014152637A (ja) * | 2013-02-05 | 2014-08-25 | Mitsubishi Heavy Ind Ltd | 遠心圧縮機 |
JP6184018B2 (ja) | 2014-02-06 | 2017-08-23 | 三菱重工業株式会社 | 中間吸込型ダイアフラムおよび遠心回転機械 |
-
2016
- 2016-03-29 JP JP2016064875A patent/JP6642189B2/ja active Active
-
2017
- 2017-03-23 EP EP17774646.8A patent/EP3421815B1/en active Active
- 2017-03-23 US US16/088,352 patent/US10989201B2/en active Active
- 2017-03-23 WO PCT/JP2017/011661 patent/WO2017170105A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04134700U (ja) * | 1991-06-04 | 1992-12-15 | 三菱重工業株式会社 | 多段式遠心圧縮機 |
JPH0979192A (ja) * | 1995-09-14 | 1997-03-25 | Hitachi Ltd | 多段遠心圧縮機とその段間注入流路構造 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3421815A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3421815A4 (en) | 2019-03-13 |
US20200300251A1 (en) | 2020-09-24 |
EP3421815B1 (en) | 2020-08-19 |
JP6642189B2 (ja) | 2020-02-05 |
EP3421815A1 (en) | 2019-01-02 |
US10989201B2 (en) | 2021-04-27 |
JP2017180155A (ja) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3730799B1 (en) | Intermediate intake-type diaphragm and centrifugal rotating machine | |
JP6140736B2 (ja) | 遠心回転機械 | |
JP5709898B2 (ja) | 回転機械 | |
WO2017170105A1 (ja) | 遠心圧縮機 | |
WO2011007467A1 (ja) | インペラおよび回転機械 | |
WO2018181343A1 (ja) | 遠心圧縮機 | |
WO2017170083A1 (ja) | 遠心圧縮機 | |
JP2016031064A (ja) | 多段ポンプ | |
WO2014122819A1 (ja) | 遠心圧縮機 | |
EP3567260B1 (en) | Centrifugal rotary machine | |
US11215195B2 (en) | Centrifugal compressor and turbo refrigerator | |
JP6336134B2 (ja) | 遠心圧縮機のケーシング、及び、遠心圧縮機 | |
WO2017150554A1 (ja) | 遠心回転機械 | |
US11401944B2 (en) | Impeller and centrifugal compressor | |
JP6168705B2 (ja) | 遠心式圧縮機のインペラ | |
JP2020133502A (ja) | 多段遠心流体機械 | |
JP7235595B2 (ja) | 回転機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017774646 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017774646 Country of ref document: EP Effective date: 20180925 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17774646 Country of ref document: EP Kind code of ref document: A1 |