WO2013125157A1 - シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置 - Google Patents

シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置 Download PDF

Info

Publication number
WO2013125157A1
WO2013125157A1 PCT/JP2013/000276 JP2013000276W WO2013125157A1 WO 2013125157 A1 WO2013125157 A1 WO 2013125157A1 JP 2013000276 W JP2013000276 W JP 2013000276W WO 2013125157 A1 WO2013125157 A1 WO 2013125157A1
Authority
WO
WIPO (PCT)
Prior art keywords
height position
single crystal
crystal
silicon
silicon single
Prior art date
Application number
PCT/JP2013/000276
Other languages
English (en)
French (fr)
Inventor
直樹 増田
柳町 隆弘
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020147023071A priority Critical patent/KR101901308B1/ko
Priority to US14/375,080 priority patent/US9587325B2/en
Priority to DE112013001066.6T priority patent/DE112013001066B4/de
Publication of WO2013125157A1 publication Critical patent/WO2013125157A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1012Apparatus with means for measuring, testing, or sensing with a window or port for visual observation or examination

Definitions

  • the present invention relates to a method for calculating the height position of a silicon melt surface when pulling a silicon single crystal from a silicon melt by the Czochralski method (CZ method), a method for pulling a silicon single crystal, and a silicon single crystal pulling apparatus. .
  • CZ method Czochralski method
  • the lifting device 101 includes a chamber 102, a crucible 103, a crucible adjusting means 105 for rotating and raising / lowering the crucible 103, and a heater 106.
  • the crucible 103 contains a silicon melt 108 melted by the heater 106, and the seed crystal 112 held at the lower end of the wire 111 suspended from above the chamber 102 is immersed in the silicon melt 108.
  • the silicon single crystal 113 is grown.
  • an inert gas is caused to flow in the chamber 102, and a rectifying cylinder 110 is also provided for this purpose.
  • the tip of a prismatic column for single crystal production is detected by a laser sensor, stopped at a predetermined position, lowered from that point, and measured for the distance to contact the silicon melt surface to accurately measure the silicon melt.
  • the position of the liquid level was calculated (Patent Document 1).
  • the height position of the silicon melt surface is measured only before the crystal is produced, and during the crystal production, the height position of the measured silicon melt surface is used as a reference. Since the silicon melt surface was controlled to be constant, due to errors such as the deformation of the quartz crucible and the diameter of the grown single crystal, the silicon melt surface was not actually constant, and the quality of the crystal could vary. It was a factor.
  • the present invention has been made in view of the above problems, and provides a method capable of more accurately calculating the height position of the silicon melt surface when pulling up a silicon single crystal. Objective. It is another object of the present invention to provide a method and a silicon single crystal pulling apparatus capable of pulling a silicon single crystal while more accurately controlling the height position of the silicon melt surface.
  • the present invention is a method for calculating the height position of a silicon melt surface when pulling up a silicon single crystal from a silicon melt contained in a crucible by the Czochralski method.
  • the first crystal diameter measured from the fusion ring at the boundary between the silicon melt and the silicon single crystal using a CCD camera installed at an arbitrary angle with respect to the silicon single crystal, and the crystal of the silicon single crystal
  • the second crystal diameter measured using two CCD cameras installed in parallel toward both ends of the diameter was obtained, and the silicon single crystal was being pulled from the difference between the first crystal diameter and the second crystal diameter.
  • the height position of the silicon melt surface in the crucible is calculated, and a method for calculating the height position of the silicon melt surface is provided.
  • the method for calculating the height position of the silicon melt surface of the present invention Since the height position of the silicon melt surface is calculated from the data (first diameter and second diameter) regarding the silicon single crystal being pulled, the silicon melt surface being pulled is more accurately measured. It is possible to grasp the height position. Measurement of the diameter itself using a CCD camera is simple, and the height position of the silicon melt surface can be obtained by using a combination of different measurement methods using the CCD camera.
  • the silicon melt surface can be more accurately controlled to the desired height position, thereby causing a temperature gradient near the solid-liquid interface. Further, the control of the defect region in the silicon single crystal and the like can be performed with higher accuracy.
  • the present invention calculates the height position of the silicon melt surface using the above-described method for calculating the height position of the silicon melt surface, and controls the height position of the silicon melt surface based on the calculation result.
  • a method for pulling a silicon single crystal characterized by pulling the silicon single crystal.
  • the height position of the silicon melt surface during pulling of the silicon single crystal can be grasped more accurately, and the silicon melt can be determined based on the accurate data. Since the height position of the surface can be controlled to a desired height position, it is possible to control the defect region in the silicon single crystal with higher accuracy. Therefore, a silicon single crystal having a desired quality can be produced stably.
  • the present invention is also a silicon single crystal pulling apparatus for pulling a silicon single crystal from a silicon melt accommodated in a crucible by the Czochralski method, which is installed at an arbitrary angle with respect to the silicon single crystal.
  • First crystal diameter measuring means having a CCD camera for measuring a crystal diameter from a fusion ring at the boundary between the silicon melt and the silicon single crystal, respectively, toward both ends of the crystal diameter of the silicon single crystal.
  • a second crystal diameter measuring means having two CCD cameras installed in parallel; and a crucible adjusting means for controlling the height position of the crucible, and measured by the first crystal diameter measuring means. From the difference between the first crystal diameter and the second crystal diameter measured by the second crystal diameter measuring means, the crucible during the pulling of the silicon single crystal is obtained. The height position of the silicon melt surface is calculated, and based on the calculated height position, the silicon single crystal is pulled up while controlling the height position of the crucible by the crucible adjusting means.
  • a silicon single crystal pulling apparatus is provided.
  • the height position of the silicon melt surface during pulling of the silicon single crystal can be calculated more accurately and simply, and the calculated silicon melt Since the silicon single crystal is pulled up while controlling the height position of the crucible based on the height position of the surface, the silicon melt surface can be controlled to the desired height position, with higher accuracy near the solid-liquid interface It is possible to control the temperature gradient of the semiconductor layer, and further control the defect region in the silicon single crystal. Thereby, the silicon single crystal of desired quality can be stably produced.
  • the height position of the silicon melt surface can be accurately calculated more easily.
  • the height position of the liquid level can be obtained more accurately, so that it can be controlled with high accuracy by the desired height position. This makes it possible to stably produce a silicon single crystal having a desired quality.
  • FIG. 1 shows an example of a silicon single crystal pulling apparatus according to the CZ method of the present invention.
  • This silicon single crystal pulling apparatus (hereinafter also simply referred to as a pulling apparatus) 1 includes a hollow cylindrical chamber 2, and a crucible 3 is disposed at the center thereof.
  • This crucible has a double structure, and is composed of a quartz crucible 3a having a bottomed cylindrical shape, and a graphite crucible 3b having a similar bottomed cylindrical shape adapted to hold the outside of the quartz crucible 3a. ing.
  • the crucible 3 is fixed to the upper end of the support shaft 4 so as to be able to rotate and move up and down, and the crucible adjusting means 5 adjusts the rotational speed and height position of the crucible 3 using a motor or the like. Is possible.
  • the resistance heating type heater 6 is arranged substantially concentrically outside the crucible. Further, a heat insulating material 7 is arranged concentrically around the outside of the heater 6. And the silicon melt 8 which was heated by the heater 6 and melted the silicon raw material is accommodated in the crucible 3.
  • a rectifying cylinder 10 for an inert gas that flows into the chamber 2 during pulling is disposed on the surface of the silicon melt (silicon melt surface 9).
  • a cylindrical cooling device or the like that cools the silicon single crystal by blowing cooling gas or blocking radiant heat.
  • a central axis of the crucible 3 filled with the silicon melt 8 is provided with a wire 11 that rotates on the same axis as the support shaft 4 in the reverse direction or in the same direction at a predetermined speed. 12 is held.
  • a silicon single crystal 13 is formed on the lower end surface of the seed crystal 12.
  • the pulling apparatus 1 includes means for measuring the diameter of the silicon single crystal 13.
  • the first crystal diameter measuring means 14 includes a CCD camera 14 a that can observe the silicon single crystal 13 from a window provided in the chamber 2.
  • the second crystal diameter measuring means 15 includes two CCD cameras 15a and 15b. Further, these measuring means 14 and 15 are connected to a control unit 16 comprising a computer or the like, and data from the CCD cameras 14a, 15a and 15b are transmitted and processed to process the first crystal diameter and the second crystal diameter. The crystal diameter, the difference between them, the height position of the silicon melt surface 9, and the like can be calculated.
  • control unit 16 is connected to a mechanism for controlling the crucible adjusting means 5 and the winding of the wire 11, and the height position of the crucible 3 and the wire 11 are based on the height position of the obtained silicon melt surface 9. It is possible to automatically control by feeding back the pulling speed of the silicon single crystal 13 by the above.
  • An appropriate program can be set in advance so that the silicon melt surface 9 can be automatically controlled to a predetermined height position and the pulling speed can be automatically controlled to a predetermined value.
  • FIG. 2 shows the relationship between the CCD camera 14 a and the diameter of the silicon single crystal 13.
  • One CCD camera 14 a is installed at an arbitrary predetermined angle ⁇ with respect to the silicon single crystal 13.
  • the CCD camera 14a detects a fusion ring 17 (high brightness band) existing at the boundary between the silicon melt 8 and the silicon single crystal 13, and obtains the first crystal diameter by the first crystal diameter measuring means 14. Can do.
  • the crystal diameter Da (crystal radius Ra ⁇ 2) is measured.
  • the measurement by the first crystal diameter measuring means 14 is influenced by the height position of the silicon melt surface 9 and causes an error.
  • FIG. 3 shows the relationship between the CCD camera 14a and the diameter of the silicon single crystal 13 when the height position of the silicon melt surface 9 changes.
  • the silicon melt surface 9 rises from a predetermined height position Ha set in advance to the height position Hb, even if the actual crystal diameter is Da (ie, Ra ⁇ 2), Since the measurement is performed assuming that the height of the liquid surface 9 is constant (Ha), the measurement is as short as Db (that is, Rb ⁇ 2).
  • the silicon melt surface 9 descends from the predetermined height position Ha to the height position Hc, the measurement is performed on the assumption that the height of the silicon melt surface is constant (Ha). (That is, Rc ⁇ 2) is measured for a long time.
  • FIG. 4 shows the relationship between the CCD cameras 15 a and 15 b and the diameter of the silicon single crystal 13.
  • the second crystal diameter is measured using these CCD cameras 15a and 15b (Da 'in the case of FIG. 4).
  • the CCD cameras 15a and 15b are installed in parallel to both ends of the diameter of the silicon single crystal 13, respectively.
  • the installation distance between the CCD cameras 15a and 15b can be set to the target crystal diameter length, but the present invention is not limited to this.
  • a mechanism capable of parallel movement or the like can be provided as necessary.
  • FIG. 5 shows the relationship between the CCD cameras 15a and 15b and the diameter of the silicon single crystal 13 when the height position of the silicon melt surface 9 changes. For example, when the silicon melt surface 9 rises from a predetermined height position Ha ′ set in advance to a height position Hb ′, or descends to a height position Hc ′, The measured crystal diameter is Da ′. The crystal diameter measured does not change just by moving the field of view up and down.
  • the control unit 16 uses the first crystal diameter measured using the CCD camera 14 a of the first crystal diameter measuring unit 14 and the CCD cameras 15 a and 15 b of the second crystal diameter measuring unit 15. Then, the difference from the measured second crystal diameter is calculated, and the height position of the silicon melt surface is calculated.
  • the calculation program in the control part 16 is not specifically limited, For example, it can be set as follows.
  • FIG. 6 shows the relationship between the difference between the first crystal diameter and the second crystal diameter and the height position of the silicon melt surface (or the amount of movement from the predetermined height position).
  • ⁇ H is the amount of movement of the silicon melt surface from the predetermined height position Ha to Hc.
  • ⁇ D is the difference between the first crystal diameter and the second crystal diameter (Dc ⁇ Da).
  • is the installation angle of the CCD camera 14a with respect to the silicon single crystal 13. That is, the angle formed by the direction from the fusion ring to the CCD camera 14a when the height position of the silicon melt surface is Ha and the side surface of the silicon single crystal 13 is formed.
  • ⁇ ′ is an angle formed by the direction from the fusion ring to the CCD camera 14 a when the height position of the silicon melt surface is Hc and the side surface of the silicon single crystal 13.
  • ⁇ ′ is approximated to ⁇
  • ⁇ H ⁇ D / (2 tan ⁇ ) (Equation 1) from the relationship shown in FIG. Can be obtained as Then, the actual height position Hc can be calculated from the predetermined height position Ha and the movement amount ⁇ H. In this way, by using an equation that approximates ⁇ and ⁇ ′, it is possible to obtain the amount of movement of the silicon melt surface 9 more easily and obtain the height position thereof.
  • the height position Hc may be calculated by obtaining ⁇ ′ without approximation.
  • the silicon single crystal 13 is pulled up using a pulling apparatus 1 as shown in FIG.
  • the high-purity polycrystalline silicon raw material is melted by being heated by the heater 6 to a melting point (about 1420 ° C.) or higher.
  • the tip of the seed crystal 12 is brought into contact with or immersed in the substantially central portion of the surface of the silicon melt 8 by unwinding the wire 11.
  • the support shaft 4 is rotated in an appropriate direction, the wire 11 is wound while being wound, and the seed crystal 12 is pulled up to start growing the silicon single crystal 13.
  • the silicon single crystal 13 having a desired quality such as a defect-free region is pulled up.
  • the defect region in the silicon single crystal 13 is raised.
  • the temperature gradient G in the vicinity of the solid-liquid interface Gc at the crystal central part of the silicon single crystal and Ge at the crystal peripheral part.
  • the silicon single crystal 13 is being pulled up. It is important to accurately grasp the height position of the silicon melt surface 9.
  • the height position of the silicon melt surface 9 is calculated using the first crystal diameter measuring means 14 and the second crystal diameter measuring means 15.
  • the height position of the silicon melt surface 9 measured in advance before pulling can be used as a reference.
  • the present invention is not limited to this, and a position that is a predetermined distance away from the rectifying cylinder 10 or the like can be used as a reference, and the reference can be determined each time.
  • the first crystal diameter is measured using the CCD camera 14 a of the first crystal diameter measuring means 14.
  • the second crystal diameter is measured using the CCD cameras 15 a and 15 b of the second crystal diameter measuring means 15. The difference between them is calculated by the control unit 16, the amount of movement of the silicon melt surface 9 is appropriately obtained from the above (Equation 1), and the height position of the silicon melt surface 9 at that time is calculated.
  • the height of the crucible 3 is adjusted by, for example, the crucible adjusting means 5 according to a program preset by the control unit 16 based on the height position of the silicon melt surface 9 thus calculated. Control the position appropriately. While controlling the temperature gradient G in the vicinity of the solid-liquid interface by maintaining the height position of the silicon melt surface 9 at the above-mentioned reference height position, the silicon single crystal 13 is simultaneously pulled up by the controller 16 at the same time. Pull up with control to speed V.
  • Example 2 By using the silicon single crystal pulling apparatus 1 of the present invention shown in FIG. 1 by the CZ method, the method for calculating the height position of the silicon melt surface and the pulling method of the silicon single crystal of the present invention is carried out to pull the silicon single crystal. It was. A quartz crucible 3 having a diameter of 812 mm installed in the chamber 2 of the silicon single crystal pulling apparatus 1 was filled with 360 kg of polycrystalline silicon, and the graphite heater 6 was energized to melt the polycrystalline silicon. Thereafter, the seed crystal 12 was brought into contact with the melt surface, and the silicon single crystal 13 was grown by being raised by the winding mechanism of the wire 11 while being rotated at 8 rpm contrary to the rotation direction of the crucible 3.
  • the position at a predetermined distance from the tip of the rectifying cylinder 10 is used as a reference so that a temperature gradient G in the vicinity of a predetermined solid-liquid interface is obtained so that a desired defect region distribution is obtained in the crystal axis direction.
  • the height position of the crucible 3 was controlled so that the silicon melt surface 9 was maintained at the height position.
  • the first crystal diameter measuring means 14 and the second crystal diameter measuring means 15 are used to measure the first crystal diameter and the second crystal diameter, and from the above (formula 1), the silicon melt surface is measured.
  • the silicon single crystal was pulled up while the height position of the crucible 3 was feedback controlled by the crucible adjusting means 5 through the control unit 16.
  • the CCD camera 14a was installed at an angle of 45 degrees with respect to the silicon single crystal for measurement.
  • FIG. 7 shows the relationship between the amount of movement of the silicon melt surface estimated from the difference between the first crystal diameter and the second crystal diameter and the pulled crystal length. It can be seen that the amount of movement of the height position of the silicon melt surface is approximately 0 mm over the entire length in the crystal axis direction, and that the distance from the reference height position can be maintained during the pulling without being greatly separated. Moreover, when the pulled silicon single crystal was investigated, a desired defect region was obtained over the entire length in the crystal axis direction.
  • a silicon single crystal was pulled by the CZ method with the same crystal quality as that of the example.
  • the position at a predetermined distance from the tip of the rectifying cylinder is used as a reference so that a temperature gradient G in the vicinity of a predetermined solid-liquid interface is obtained so that a desired defect region distribution is obtained in the crystal axis direction.
  • the height position of the crucible was controlled so that the silicon melt surface was maintained at the height position.
  • the data such as the diameter of the silicon single crystal being pulled is not used, and the change in the height position of the silicon melt surface is calculated only from the data on the height position of the silicon melt surface before the pulling. Etc., and the height position of the crucible was controlled. The other conditions were the same as in the example.
  • FIG. 8 shows the relationship between the amount of movement of the silicon melt surface estimated from the difference between the first crystal diameter and the second crystal diameter and the pulled crystal length.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、CZシリコン単結晶を引上げる際に、シリコン融液面の高さ位置を算出する方法であって、シリコン単結晶に対して任意の角度に設置したCCDカメラを用い、シリコン融液とシリコン単結晶との境界のフュージョンリングから計測した第一の結晶直径と、シリコン単結晶の結晶直径の両端に向かって各々平行に設置した2台のCCDカメラを用いて計測した第二の結晶直径を求め、該第一の結晶直径と第二の結晶直径の差から、シリコン単結晶引上げ中におけるルツボ内のシリコン融液面の高さ位置を算出するシリコン融液面の高さ位置の算出方法を提供する。これにより、シリコン単結晶を引上げているときのシリコン融液面の高さ位置をより正確に算出することができる方法が提供される。

Description

シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
 本発明は、チョクラルスキー法(CZ法)によりシリコン融液からシリコン単結晶を引上げる際のシリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置に関する。
 従来、CZ法によりシリコン単結晶を育成するにあたっては、図9のようなシリコン単結晶引上げ装置が用いられてきた。
 図9に示すように、この引き上げ装置101は、チャンバー102、ルツボ103、ルツボ103を回転・昇降させるためのルツボ調整手段105、ヒーター106を有している。また、ルツボ103内には、ヒーター106により溶融したシリコン融液108が収容されており、チャンバー102の上方から吊されたワイヤー111の下端に保持された種結晶112をシリコン融液108に浸漬して引上げることにより、シリコン単結晶113が育成される。引上げ中、チャンバー102内には不活性ガスが流されており、そのための整流筒110も設けられている。
 上記のように、チャンバー内に不活性ガスの整流筒を具備したシリコン単結晶の製造においては、例えば整流筒の先端からシリコン融液面までの距離等を正確に設定することが必要である。無欠陥結晶等の製造方法では欠陥を精度良く制御する為に結晶成長時の固液界面近傍の温度勾配(G)をコントロールする必要があり、そのコントロールにあたってはシリコン融液面の位置を正確に測定することが必須である。
 従来では単結晶製造用の角柱種の先端をレーザーセンサーにて検出し所定の位置で停止させ、その点から下降させ、シリコン融液面に接触するまでの距離を測定することにより正確なシリコン融液面の位置を算出していた(特許文献1)。
特開平01-24089号公報
 ところが、上記の方法ではシリコン融液面の高さ位置を計測するのは結晶を製造する前の段階のみであり、結晶製造中は測定したシリコン融液面の高さ位置を基準として、計算上シリコン融液面が一定となるように制御していたため、石英ルツボの変形や成長単結晶の直径などの誤差により、実際にはシリコン融液面が一定とならず、結晶の品質のばらつきの一要因となっていた。
 そこで本発明は、上記問題点に鑑みてなされたものであって、シリコン単結晶を引上げているときのシリコン融液面の高さ位置をより正確に算出することができる方法を提供することを目的とする。また、シリコン融液面の高さ位置をより正確に制御しつつシリコン単結晶を引上げることができる方法およびシリコン単結晶引上げ装置を提供することを目的とする。
 上記目的を達成するために、本発明は、チョクラルスキー法により、ルツボ内に収容したシリコン融液からシリコン単結晶を引上げる際に、シリコン融液面の高さ位置を算出する方法であって、前記シリコン単結晶に対して任意の角度に設置したCCDカメラを用い、前記シリコン融液とシリコン単結晶との境界のフュージョンリングから計測した第一の結晶直径と、前記シリコン単結晶の結晶直径の両端に向かって各々平行に設置した2台のCCDカメラを用いて計測した第二の結晶直径を求め、該第一の結晶直径と第二の結晶直径の差から、シリコン単結晶引上げ中におけるルツボ内のシリコン融液面の高さ位置を算出することを特徴とするシリコン融液面の高さ位置の算出方法を提供する。
 このような本発明のシリコン融液面の高さ位置の算出方法であれば、実際にシリコン融液面の高さ位置に関して計測するのがシリコン単結晶の引上げ前である従来法とは異なり、引上げ中のシリコン単結晶に関するデータ(第一の直径および第二の直径)からシリコン融液面の高さ位置を算出しているので、より正確に、シリコン単結晶引上げ中のシリコン融液面の高さ位置を把握することが可能である。
 CCDカメラを用いた直径の計測自体は簡便である上に、そのCCDカメラによる異なる計測方法の組み合わせを利用することでシリコン融液面の高さ位置も求めることが可能になった。
 さらには、シリコン単結晶引上げ中のシリコン融液面の高さ位置を正確に把握できることで、シリコン融液面をより正確に所望の高さ位置に制御でき、それによって固液界面近傍の温度勾配の制御、さらにはシリコン単結晶中の欠陥領域の制御等もより高精度で行うことができる。
 このとき、前記シリコン融液面の高さ位置を算出するとき、所定の高さ位置からの移動量ΔHを、
 ΔH=ΔD/(2tanθ) (前記第一の結晶直径を計測するためのCCDカメラのシリコン単結晶に対する前記任意の設置角度をθ、前記第一の結晶直径と第二の結晶直径の差をΔDとする)
 により求めることで算出することができる。
 このようにすれば、より簡便にシリコン融液面の高さ位置を算出することができる。
 また、本発明は、上記シリコン融液面の高さ位置の算出方法を用いてシリコン融液面の高さ位置を算出し、該算出結果に基づき、シリコン融液面の高さ位置を制御しつつシリコン単結晶を引上げることを特徴とするシリコン単結晶の引上げ方法を提供する。
 このような本発明のシリコン単結晶の引上げ方法であれば、シリコン単結晶引上げ中のシリコン融液面の高さ位置をより正確に把握することができ、該正確なデータに基づいてシリコン融液面の高さ位置を所望の高さ位置に制御することができるので、シリコン単結晶中の欠陥領域の制御等をより高精度で行うことが可能である。したがって所望の品質のシリコン単結晶を安定して生産することができる。
 また、本発明は、チョクラルスキー法により、ルツボ内に収容したシリコン融液からシリコン単結晶を引上げるためのシリコン単結晶引上げ装置であって、前記シリコン単結晶に対して任意の角度に設置され、前記シリコン融液とシリコン単結晶との境界のフュージョンリングから結晶直径を計測するためのCCDカメラを有する第一の結晶直径計測手段と、前記シリコン単結晶の結晶直径の両端に向かって各々平行に設置した2台のCCDカメラを有する第二の結晶直径計測手段と、前記ルツボの高さ位置を制御するルツボ調整手段とを備えており、前記第一の結晶直径計測手段により計測された第一の結晶直径と、前記第二の結晶直径計測手段により計測された第二の結晶直径との差から、前記シリコン単結晶引上げ中におけるルツボ内のシリコン融液面の高さ位置を算出し、該算出された高さ位置に基づき、前記ルツボ調整手段によりルツボの高さ位置を制御しつつシリコン単結晶を引上げるものであることを特徴とするシリコン単結晶引上げ装置を提供する。
 このような本発明のシリコン単結晶引上げ装置であれば、シリコン単結晶引上げ中のシリコン融液面の高さ位置をより正確に簡便に算出することができ、しかも、該算出されたシリコン融液面の高さ位置に基づいてルツボの高さ位置を制御しつつシリコン単結晶を引上げるので、シリコン融液面を所望の高さ位置に制御することができ、より高精度で固液界面近傍の温度勾配の制御、さらにはシリコン単結晶中の欠陥領域の制御等が可能になる。これにより、所望の品質のシリコン単結晶を安定して生産することができる。
 このとき、前記シリコン融液面の高さ位置は、所定の高さ位置からの移動量ΔHが、
 ΔH=ΔD/(2tanθ) (前記第一の結晶直径計測手段のCCDカメラのシリコン単結晶に対する前記任意の設置角度をθ、前記第一の結晶直径と第二の結晶直径の差をΔDとする)
 により求められることで算出されるものとすることができる。
 このようなものであれば、より簡便にシリコン融液面の高さ位置を正確に算出することができる。
 以上のような本発明のシリコン融液面の高さ位置の算出方法や、それを用いたシリコン単結晶の引上げ方法、また、シリコン単結晶引上げ装置であれば、シリコン単結晶引上げ中のシリコン融液面の高さ位置をより正確に得ることができ、そのため所望の高さ位置により高精度で制御することができる。これにより所望の品質を有するシリコン単結晶の安定生産が可能となる。
本発明のシリコン単結晶引上げ装置の一例を示す概略図である。 第一の結晶直径計測手段のCCDカメラとシリコン単結晶の直径との関係を示す説明図である。 シリコン融液面の高さ位置が変化したときの第一の結晶直径計測手段のCCDカメラとシリコン単結晶の直径との関係を示す説明図である。 第二の結晶直径計測手段のCCDカメラとシリコン単結晶の直径との関係を示す説明図である。 シリコン融液面の高さ位置が変化したときの第二の結晶直径計測手段のCCDカメラとシリコン単結晶の直径との関係を示す説明図である。 第一の結晶直径と第二の結晶直径との差とシリコン融液面の高さ位置との関係を示す説明図である。 実施例におけるシリコン融液面の移動量と結晶長さとの関係を示すグラフである。 比較例におけるシリコン融液面の移動量と結晶長さとの関係を示すグラフである。 従来のシリコン単結晶引上げ装置の一例を示す概略図である。
 以下、本発明のシリコン単結晶引上げ装置について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 図1に本発明のCZ法によるシリコン単結晶引上げ装置の一例を示す。
 このシリコン単結晶引上げ装置(以下、単に引上げ装置ともいう)1は、中空円筒状のチャンバー2を具備し、その中心部にルツボ3が配設されている。このルツボは二重構造であり、有底円筒状をなす石英製のルツボ3aと、その石英ルツボ3aの外側を保持すべく適合された同じく有底円筒状の黒鉛製のルツボ3bとから構成されている。
 また、このルツボ3は、回転および昇降が可能になるように支持軸4の上端部に固定されていて、ルツボ調整手段5により、モーター等を用いてルツボ3の回転速度や高さ位置が調整可能である。
 ルツボの外側には抵抗加熱式のヒーター6が概ね同心円状に配設されている。さらに、ヒーター6の外側周辺には断熱材7が同心円状に配設されている。そして、ヒーター6により加熱され、シリコン原料を溶融したシリコン融液8がルツボ3内に収容されている。
 シリコン融液の表面(シリコン融液面9)上には、引上げ中にチャンバー2内に流す不活性ガスのための整流筒10が配設されている。なお、この他、冷却ガスを吹き付けたり、輻射熱を遮ってシリコン単結晶を冷却する筒状の冷却装置等も設けることも可能である。
 シリコン融液8を充填したルツボ3の中心軸には、支持軸4と同一軸上で逆方向または同方向に所定の速度で回転するワイヤー11が配設され、ワイヤー11の下端には種結晶12が保持されている。そして、種結晶12の下端面にはシリコン単結晶13が形成される。
 さらに、引上げ装置1は、シリコン単結晶13の直径を計測する手段を備えている。第一の結晶直径計測手段14と、第二の結晶直径計測手段15である。第一の結晶直径計測手段14はチャンバー2に設けられた窓からシリコン単結晶13を観測可能なCCDカメラ14aを備えている。また、第二の結晶直径計測手段15は2台のCCDカメラ15a、15bを備えている。また、これらの計測手段14、15はコンピュータ等からなる制御部16と接続されており、CCDカメラ14a、15a、15bからのデータが送信され、データ処理して第一の結晶直径、第二の結晶直径や、それらの差、また、シリコン融液面9の高さ位置等を算出することができるようになっている。
 また、制御部16はルツボ調整手段5やワイヤー11の巻き取りを制御する機構に接続されており、得られたシリコン融液面9の高さ位置に基づいてルツボ3の高さ位置やワイヤー11によるシリコン単結晶13の引上げ速度等にフィードバックして自動的に制御することができる。シリコン融液面9を所定の高さ位置に自動制御したり、引上げ速度を所定の値に自動制御できるように、予め適切なプログラムを組んでおくことができる。
 以下では、第一の結晶直径計測手段14、第二の結晶直径計測手段15について詳述する。
 まず、第一の結晶直径計測手段14について説明する。図2にCCDカメラ14aとシリコン単結晶13の直径との関係を示す。
 シリコン単結晶13に対して任意の所定の角度θで1台のCCDカメラ14aは設置されている。CCDカメラ14aはシリコン融液8とシリコン単結晶13との境界に存在するフュージョンリング17(高輝度帯)を検出しており、第一の結晶直径計測手段14によって第一の結晶直径を求めることができる。図2の場合、結晶直径Da(結晶半径Ra×2)を計測している。
 なお、この第一の結晶直径計測手段14での計測はシリコン融液面9の高さ位置の影響を受け誤差を生じる。図3に、シリコン融液面9の高さ位置が変化したときのCCDカメラ14aとシリコン単結晶13の直径との関係を示す。
 例えば、シリコン融液面9が、予め設定した所定の高さ位置Haから上昇して高さ位置Hbになった場合、実際の結晶直径がDa(すなわちRa×2)であっても、シリコン融液面9の高さを一定(Ha)と仮定して計測しているので、Db(すなわちRb×2)と短く計測されてしまう。シリコン融液面9が所定の高さ位置Haから下降して高さ位置Hcになった場合、同様にシリコン融液面の高さを一定(Ha)と仮定して計測しているので、Dc(すなわちRc×2)と長く計測されてしまう。
 一方、第二の結晶直径計測手段15では、2台のCCDカメラ15a、15bが設置されている。図4にCCDカメラ15a、15bとシリコン単結晶13の直径との関係を示す。これらのCCDカメラ15a、15bを用いて第二の結晶直径が計測される(図4の場合、Da’)。
 CCDカメラ15a、15bは、各々、シリコン単結晶13の直径の両端に対して平行に設置されている。例えば、これらのCCDカメラ15a、15b同士の設置距離を目標とする結晶直径の長さにすることができるが、当然、これに限定されるものではない。必要に応じて平行移動等が可能な機構等を設けることができる。
 この第二の結晶直径計測手段15での計測はシリコン融液面9の高さ位置の影響を受けない。図5に、シリコン融液面9の高さ位置が変化したときのCCDカメラ15a、15bとシリコン単結晶13の直径との関係を示す。
 例えば、シリコン融液面9が、予め設定した所定の高さ位置Ha’から上昇して高さ位置Hb’になった場合、あるいは下降して高さ位置Hc’になった場合、いずれにおいても計測される結晶直径はDa’である。視野が上下するだけで計測される結晶直径は変化しない。
 そして、制御部16では、これらの第一の結晶直径計測手段14のCCDカメラ14aを用いて計測された第一の結晶直径と、第二の結晶直径計測手段15のCCDカメラ15a、15bを用いて計測された第二の結晶直径との差が算出され、さらにシリコン融液面の高さ位置が算出される。
 制御部16での算出プログラムは特には限定されないが、例えば以下のようなものとすることができる。図6に、第一の結晶直径と第二の結晶直径との差と、シリコン融液面の高さ位置(あるいは所定の高さ位置からの移動量)との関係を示す。
 ここでは、シリコン単結晶13を引上げ中に、所定の高さ位置HaからHcへとシリコン融液面9が下降した場合、すなわち第一の結晶直径がDa(すなわちRa×2)からDc(すなわちRc×2)へ変化し、第二の結晶直径はDaのままの場合を例に挙げて説明する。
 ここで、ΔHを所定の高さ位置HaからHcへのシリコン融液面の移動量とする。
 また、ΔDを第一の結晶直径と第二の結晶直径の差(Dc-Da)とする。
 また、θをCCDカメラ14aのシリコン単結晶13に対する設置角度とする。すなわち、シリコン融液面の高さ位置がHaのときのフュージョンリングからCCDカメラ14aへの方向とシリコン単結晶13の側面とがなす角度である。
 また、θ’はシリコン融液面の高さ位置がHcのときのフュージョンリングからCCDカメラ14aへの方向とシリコン単結晶13の側面とがなす角度である。
 例えばθ’をθに近似して、図6に示す関係から
 ΔH=ΔD/(2tanθ) ……(式1)
として求めることができる。そして所定の高さ位置Haと移動量ΔHから、実際の高さ位置Hcを算出することができる。このように、θとθ’を近似した式を用いることで、より簡単にシリコン融液面9の移動量を求め、その高さ位置を得ることが可能である。もちろん、近似せずにθ’を求めて高さ位置Hcを算出しても良い。
 次に、本発明のシリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法について説明する。
 図1に示すような引上げ装置1を用いてシリコン単結晶13を引上げる。
 まず、ルツボ3内でシリコンの高純度多結晶原料を融点(約1420℃)以上にヒータ6により加熱して融解する。次に、ワイヤー11を巻き出すことにより、シリコン融液8の表面略中心部に種結晶12の先端を接触または浸漬させる。その後、支持軸4を適宜の方向に回転させるとともに、ワイヤー11を回転させながら巻き取り、種結晶12を引き上げることにより、シリコン単結晶13の育成を開始する。
 以後、引き上げ速度等を適切に調整することにより、例えば無欠陥領域等、所望の品質を有するシリコン単結晶13を引上げるのだが、ここで、上述したように、例えばシリコン単結晶13における欠陥領域を制御するにあたっては、引上げ速度のみならず、固液界面近傍の温度勾配G(シリコン単結晶の結晶中心部ではGc、結晶周辺部ではGe)を最適に制御する必要がある。
 そして、この固液界面近傍の温度勾配を制御するには、シリコン融液面9から整流筒10の先端への距離等を正確に制御する必要があり、それにはシリコン単結晶13を引上げ中のシリコン融液面9の高さ位置を正確に把握することが重要である。
 そこで、本発明の算出方法では、第一の結晶直径計測手段14および第二の結晶直径計測手段15を用いてシリコン融液面9の高さ位置を算出する。
 なお、例えば、引上げ前に予め測定しておいたシリコン融液面9の高さ位置を基準とすることができる。当然、これに限定されず、整流筒10等から所定の距離だけ離れた位置を基準とすることもでき、その都度基準を決定することが可能である。
 シリコン融液面9の高さ位置の算出にあたっては、まず、引上げ中のシリコン単結晶13に関して、第一の結晶直径計測手段14のCCDカメラ14aを用いて第一の結晶直径を計測するとともに、第二の結晶直径計測手段15のCCDカメラ15a、15bを用いて第二の結晶直径を計測する。制御部16によりそれらの差を算出し、上記(式1)によりシリコン融液面9の移動量を適宜求めて、その時々のシリコン融液面9の高さ位置を算出する。
 そして、本発明の引上げ方法では、このようにして算出したシリコン融液面9の高さ位置に基づき、制御部16で予め設定しておいたプログラムにより、例えばルツボ調整手段5によってルツボ3の高さ位置を適切に制御する。上述の基準の高さ位置にシリコン融液面9の高さ位置を保つなどして固液界面近傍の温度勾配Gを制御しつつ、また、同時に制御部16によりシリコン単結晶13を所定の引上げ速度Vに制御して引上げる。
 これにより、所望の欠陥領域をつくるために必要なV/G(引上げ速度と温度勾配の比)を高精度に制御することが可能になる。そして、直径が一定に保たれた、無欠陥領域を含む高品質なシリコン単結晶などを、安定して収率よく得ることが可能になる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 CZ法により、図1に示す本発明のシリコン単結晶引上げ装置1を用い、本発明のシリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法を実施してシリコン単結晶を引上げた。
 シリコン単結晶引上げ装置1のチャンバー2内に設置された、口径が812mmの石英ルツボ3に多結晶シリコン360kgを充填し、黒鉛ヒーター6に通電して多結晶シリコンを溶融した。
 その後、種結晶12を融液面に接触させ、ルツボ3の回転方向とは逆に8rpmで回転させつつ、ワイヤー11の巻き上げ機構で上昇することでシリコン単結晶13を育成した。
 このとき、結晶軸方向に所望の欠陥領域の分布となるように、所定の固液界面近傍の温度勾配Gが得られるように、整流筒10の先端から所定距離の位置を基準とし、該基準となる高さ位置にシリコン融液面9が維持されるようにルツボ3の高さ位置を制御した。具体的には、第一の結晶直径計測手段14および第二の結晶直径計測手段15を用い、第一の結晶直径および第二の結晶直径を計測し、上記(式1)からシリコン融液面9の高さ位置を算出しつつ、制御部16を介してルツボ調整手段5によりルツボ3の高さ位置をフィードバック制御しながらシリコン単結晶を引上げた。
 なお、CCDカメラ14aはシリコン単結晶に対して45度の角度で設置して計測を行った。
 図7に第一の結晶直径と第二の結晶直径との差から推定されたシリコン融液面の移動量と引上げた結晶長さとの関係を示す。
 結晶軸方向の長さ全般にわたってシリコン融液面の高さ位置の移動量が0mm付近であり、引上げ中に基準の高さ位置から大きく離れることもなく維持できたことが分かる。
 また、引上げたシリコン単結晶について調査したところ、結晶軸方向の長さの全体にわたって所望の欠陥領域が得られていた。
(比較例)
 CZ法により実施例と同様の結晶品質を目標としてシリコン単結晶を引上げた。
 この際、結晶軸方向に所望の欠陥領域の分布となるように、所定の固液界面近傍の温度勾配Gが得られるように、整流筒の先端から所定距離の位置を基準とし、該基準となる高さ位置にシリコン融液面が維持されるようにルツボの高さ位置を制御した。なお、引上げ中のシリコン単結晶の直径等のデータは利用せず、単に、引上げ前のシリコン融液面の高さ位置のデータ等から、計算によってのみ、シリコン融液面の高さ位置の変化等を予測し、ルツボの高さ位置の制御を行った。それ以外は実施例と同様の条件とした。
 図8に第一の結晶直径と第二の結晶直径との差から推定されたシリコン融液面の移動量と引上げた結晶長さとの関係を示す。
 結晶が成長するにしたがってシリコン融液面の移動量は徐々に増加していき、最終的には基準から1mmずれてしまった。
 このため、引上げたシリコン単結晶について調査したところ、引上げ後半部において、所望の欠陥領域が得られていない部分が広い範囲で存在した。シリコン単結晶の引上げ中に石英ルツボの変形等が生じ、それによってシリコン融液面の高さ位置についての当初の計算による予想からズレが生じたものと考えられる。
 このように、比較例では種々の要因により、シリコン単結晶の引上げ中のシリコン融液面の高さ位置の変化に対応できておらず、その結果、シリコン融液面の高さ位置の制御、ひいてはV/G等の制御を適切に行うことができず、目標とする品質のシリコン単結晶を得ることができなかった。
 一方、本発明を実施した実施例では、実際に引上げ中のシリコン単結晶の直径に関するデータを利用して簡便にルツボの高さ位置等のフィードバック制御をすることができた。これにより、より高精度で、シリコン融液面の高さ位置の算出・制御を行い、その目標とする品質のシリコン単結晶を得ることができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  チョクラルスキー法により、ルツボ内に収容したシリコン融液からシリコン単結晶を引上げる際に、シリコン融液面の高さ位置を算出する方法であって、
     前記シリコン単結晶に対して任意の角度に設置したCCDカメラを用い、前記シリコン融液とシリコン単結晶との境界のフュージョンリングから計測した第一の結晶直径と、
     前記シリコン単結晶の結晶直径の両端に向かって各々平行に設置した2台のCCDカメラを用いて計測した第二の結晶直径を求め、
     該第一の結晶直径と第二の結晶直径の差から、シリコン単結晶引上げ中におけるルツボ内のシリコン融液面の高さ位置を算出することを特徴とするシリコン融液面の高さ位置の算出方法。
  2.  前記シリコン融液面の高さ位置を算出するとき、所定の高さ位置からの移動量ΔHを、
     ΔH=ΔD/(2tanθ) (前記第一の結晶直径を計測するためのCCDカメラのシリコン単結晶に対する前記任意の設置角度をθ、前記第一の結晶直径と第二の結晶直径の差をΔDとする)
     により求めることで算出することを特徴とする請求項1に記載のシリコン融液面の高さ位置の算出方法。
  3.  請求項1または請求項2に記載のシリコン融液面の高さ位置の算出方法を用いてシリコン融液面の高さ位置を算出し、該算出結果に基づき、シリコン融液面の高さ位置を制御しつつシリコン単結晶を引上げることを特徴とするシリコン単結晶の引上げ方法。
  4.  チョクラルスキー法により、ルツボ内に収容したシリコン融液からシリコン単結晶を引上げるためのシリコン単結晶引上げ装置であって、
     前記シリコン単結晶に対して任意の角度に設置され、前記シリコン融液とシリコン単結晶との境界のフュージョンリングから結晶直径を計測するためのCCDカメラを有する第一の結晶直径計測手段と、
     前記シリコン単結晶の結晶直径の両端に向かって各々平行に設置した2台のCCDカメラを有する第二の結晶直径計測手段と、
     前記ルツボの高さ位置を制御するルツボ調整手段とを備えており、
     前記第一の結晶直径計測手段により計測された第一の結晶直径と、前記第二の結晶直径計測手段により計測された第二の結晶直径との差から、前記シリコン単結晶引上げ中におけるルツボ内のシリコン融液面の高さ位置を算出し、該算出された高さ位置に基づき、前記ルツボ調整手段によりルツボの高さ位置を制御しつつシリコン単結晶を引上げるものであることを特徴とするシリコン単結晶引上げ装置。
  5.  前記シリコン融液面の高さ位置は、所定の高さ位置からの移動量ΔHが、
     ΔH=ΔD/(2tanθ) (前記第一の結晶直径計測手段のCCDカメラのシリコン単結晶に対する前記任意の設置角度をθ、前記第一の結晶直径と第二の結晶直径の差をΔDとする)
     により求められることで算出されるものであることを特徴とする請求項4に記載のシリコン単結晶引上げ装置。
PCT/JP2013/000276 2012-02-21 2013-01-22 シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置 WO2013125157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147023071A KR101901308B1 (ko) 2012-02-21 2013-01-22 실리콘 융액면의 높이위치의 산출방법 및 실리콘 단결정의 인상방법 그리고 실리콘 단결정 인상장치
US14/375,080 US9587325B2 (en) 2012-02-21 2013-01-22 Method for calculating a height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
DE112013001066.6T DE112013001066B4 (de) 2012-02-21 2013-01-22 Verfahren zum Berechnen einer Höhenposition einer Oberfläche einer Siliziumschmelze, Verfahren zum Ziehen eines Silizium-Einkristalls, und Silizium-Einkristall-Ziehvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012034694A JP5664573B2 (ja) 2012-02-21 2012-02-21 シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
JP2012-034694 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013125157A1 true WO2013125157A1 (ja) 2013-08-29

Family

ID=49005357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000276 WO2013125157A1 (ja) 2012-02-21 2013-01-22 シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置

Country Status (5)

Country Link
US (1) US9587325B2 (ja)
JP (1) JP5664573B2 (ja)
KR (1) KR101901308B1 (ja)
DE (1) DE112013001066B4 (ja)
WO (1) WO2013125157A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075066A (ja) * 2015-10-14 2017-04-20 信越半導体株式会社 単結晶製造装置及び融液面位置の制御方法
CN110009094A (zh) * 2019-01-11 2019-07-12 西安理工大学 一种直拉硅单晶提拉速度-晶体直径辨识模型建模方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591939A (zh) * 2015-10-15 2017-04-26 上海新昇半导体科技有限公司 单晶硅锭及晶圆的形成方法
JP6447537B2 (ja) * 2016-02-29 2019-01-09 株式会社Sumco 単結晶の製造方法および製造装置
JP6885301B2 (ja) * 2017-11-07 2021-06-09 株式会社Sumco 単結晶の製造方法及び装置
JP7006573B2 (ja) * 2018-11-30 2022-01-24 株式会社Sumco 単結晶引き上げ装置、および、シリコン単結晶の製造方法
CN113355741A (zh) * 2020-03-06 2021-09-07 内蒙古中环光伏材料有限公司 一种直拉单晶引晶工艺及用于该引晶工艺的单晶炉
TWI770661B (zh) * 2020-04-20 2022-07-11 日商Sumco股份有限公司 單結晶製造裝置及單結晶的製造方法
JP7342822B2 (ja) * 2020-09-03 2023-09-12 株式会社Sumco 単結晶製造装置及び単結晶の製造方法
CN112725884A (zh) * 2020-12-21 2021-04-30 江苏集芯半导体硅材料研究院有限公司 一种用于检测直拉单晶生长过程中熔硅液面距离的装置及方法
CN112857297B (zh) * 2021-01-07 2023-01-24 西安奕斯伟材料科技有限公司 单晶棒直径测量装置、单晶棒生长系统及方法
TWI758058B (zh) * 2021-01-08 2022-03-11 環球晶圓股份有限公司 矽晶棒的製造方法
JP2023038005A (ja) 2021-09-06 2023-03-16 株式会社Sumco 単結晶の製造方法及び単結晶製造装置
CN115094518A (zh) * 2022-06-20 2022-09-23 陶莹 一种控制大直径单晶硅棒直径的加热器、拉晶炉和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153418A (ja) * 1997-09-03 1999-06-08 Leybold Syst Gmbh 結晶の直径を測定する装置及び方法
JP2004035352A (ja) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ装置
JP2004149368A (ja) * 2002-10-31 2004-05-27 Sumitomo Mitsubishi Silicon Corp 単結晶の直径測定方法及び直径測定装置
JP2006347775A (ja) * 2005-05-19 2006-12-28 Furukawa Co Ltd 単結晶直径計測装置
JP2010100452A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 単結晶直径の検出方法、及びこれを用いた単結晶の製造方法、並びに単結晶製造装置
JP2010100451A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 融液面と炉内構造物の下端部との距離の測定方法、及びこれを用いた融液面位置の制御方法、並びに単結晶の製造方法及び単結晶製造装置
JP2010100453A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 単結晶直径の検出方法、及びこれを用いた単結晶の製造方法、並びに単結晶製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424089A (en) 1987-07-21 1989-01-26 Shinetsu Handotai Kk Device for adjusting initial position of melt surface
JPH0780717B2 (ja) * 1988-12-16 1995-08-30 コマツ電子金属株式会社 単結晶直径自動制御装置
JPH0726817B2 (ja) * 1990-07-28 1995-03-29 信越半導体株式会社 結晶径測定装置
US5961716A (en) * 1997-12-15 1999-10-05 Seh America, Inc. Diameter and melt measurement method used in automatically controlled crystal growth
US6030451A (en) * 1998-01-12 2000-02-29 Seh America, Inc. Two camera diameter control system with diameter tracking for silicon ingot growth

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153418A (ja) * 1997-09-03 1999-06-08 Leybold Syst Gmbh 結晶の直径を測定する装置及び方法
JP2004035352A (ja) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ装置
JP2004149368A (ja) * 2002-10-31 2004-05-27 Sumitomo Mitsubishi Silicon Corp 単結晶の直径測定方法及び直径測定装置
JP2006347775A (ja) * 2005-05-19 2006-12-28 Furukawa Co Ltd 単結晶直径計測装置
JP2010100452A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 単結晶直径の検出方法、及びこれを用いた単結晶の製造方法、並びに単結晶製造装置
JP2010100451A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 融液面と炉内構造物の下端部との距離の測定方法、及びこれを用いた融液面位置の制御方法、並びに単結晶の製造方法及び単結晶製造装置
JP2010100453A (ja) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd 単結晶直径の検出方法、及びこれを用いた単結晶の製造方法、並びに単結晶製造装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075066A (ja) * 2015-10-14 2017-04-20 信越半導体株式会社 単結晶製造装置及び融液面位置の制御方法
CN108138355A (zh) * 2015-10-14 2018-06-08 信越半导体株式会社 单晶制造装置以及熔液面位置的控制方法
CN108138355B (zh) * 2015-10-14 2020-07-24 信越半导体株式会社 单晶制造装置以及熔液面位置的控制方法
CN110009094A (zh) * 2019-01-11 2019-07-12 西安理工大学 一种直拉硅单晶提拉速度-晶体直径辨识模型建模方法
CN110009094B (zh) * 2019-01-11 2022-09-16 西安理工大学 一种直拉硅单晶提拉速度-晶体直径辨识模型建模方法

Also Published As

Publication number Publication date
KR101901308B1 (ko) 2018-09-21
DE112013001066B4 (de) 2021-09-30
US9587325B2 (en) 2017-03-07
KR20140129033A (ko) 2014-11-06
JP2013170097A (ja) 2013-09-02
JP5664573B2 (ja) 2015-02-04
DE112013001066T5 (de) 2014-11-13
US20140373774A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP5664573B2 (ja) シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
JP6885301B2 (ja) 単結晶の製造方法及び装置
EP1734157B1 (en) Production process of silicon single crystal
JP4862826B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶製造装置
KR102422843B1 (ko) 실리콘 단결정의 산소 농도 추정 방법 및 실리콘 단결정의 제조 방법
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
JP6729470B2 (ja) 単結晶の製造方法及び装置
JP5088338B2 (ja) シリコン単結晶の引き上げ方法
JP4725752B2 (ja) 単結晶の製造方法
JP5482547B2 (ja) シリコン単結晶の製造方法
US7368011B2 (en) Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
KR101679071B1 (ko) 멜트갭 제어 시스템, 이를 포함하는 단결정 성장방법
JP2018043904A (ja) シリコン単結晶の製造方法
JP5929825B2 (ja) シリコン単結晶の製造方法
KR101758983B1 (ko) 잉곳 성장장치 및 그 성장방법
WO2010064356A1 (ja) 単結晶の製造方法および単結晶の製造装置
WO2011142076A1 (ja) 単結晶製造装置および単結晶の製造方法
JPS61122187A (ja) 単結晶引上機
JP5053426B2 (ja) シリコン単結晶製造方法
JP2023081004A (ja) 単結晶引上装置及び単結晶の製造方法
JP2022186036A (ja) シリコン単結晶の製造方法
JP2010076947A (ja) シリコン単結晶の製造方法及びこの方法により製造されたシリコン単結晶
KR20110109601A (ko) 잉곳 성장 장치 및 멜트갭 제어 방법
JP2014227323A (ja) 単結晶シリコンの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375080

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147023071

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013001066

Country of ref document: DE

Ref document number: 1120130010666

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752311

Country of ref document: EP

Kind code of ref document: A1