CN106591939A - 单晶硅锭及晶圆的形成方法 - Google Patents

单晶硅锭及晶圆的形成方法 Download PDF

Info

Publication number
CN106591939A
CN106591939A CN201510667035.5A CN201510667035A CN106591939A CN 106591939 A CN106591939 A CN 106591939A CN 201510667035 A CN201510667035 A CN 201510667035A CN 106591939 A CN106591939 A CN 106591939A
Authority
CN
China
Prior art keywords
monocrystal silicon
forming method
wafer
gas
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510667035.5A
Other languages
English (en)
Inventor
肖德元
张汝京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201510667035.5A priority Critical patent/CN106591939A/zh
Priority to TW105106935A priority patent/TWI628318B/zh
Priority to US15/165,937 priority patent/US20170107638A1/en
Priority to JP2016115362A priority patent/JP6196353B2/ja
Priority to KR1020160092662A priority patent/KR101865467B1/ko
Priority to DE102016115518.7A priority patent/DE102016115518A1/de
Publication of CN106591939A publication Critical patent/CN106591939A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/54Providing fillings in containers, e.g. gas fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Abstract

本发明提出了一种单晶硅及晶圆的形成方法,在采用直拉法形成单晶硅锭时,对熔融状的硅中通入包含氘原子的气体,使氘原子存储在单晶硅锭的间隙中,降低氧元素及其他杂志的含量,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。

Description

单晶硅锭及晶圆的形成方法
技术领域
本发明涉及直拉法单晶生长领域及半导体制造领域,尤其涉及一种单晶硅锭及晶圆的形成方法。
背景技术
作为制造半导体器件起始材料的单晶硅通过被称之为Czochralski(CZ)技术(直拉技术)的晶体生长技术生长成圆柱形的单晶硅锭。单晶硅锭通过诸如切片、刻蚀、清洗、抛光等一系列晶圆加工工艺而被加工成晶圆。
根据CZ技术,在坩埚中,将硅片在单晶炉中加热融化,再将一根直径只有10mm的棒状晶种(称籽晶)浸入融液中,把晶种微微的旋转向上提升,融液中的硅原子会在前面形成的单晶体上继续结晶,并延续其规则的原子排列结构。若整个结晶环境稳定,就可以周而复始的形成结晶,最后形成一根圆柱形的原子排列整齐的硅单晶晶体,即硅单晶硅锭。
熔融硅装在石英坩埚内,并被多种杂质污染,其中一种是氧。在硅的熔融温度下,氧渗入晶格,直到其达到一预定浓度,该浓度一般由硅熔融温度下硅中氧的溶解度和凝固硅中氧的实际偏析系数确定。晶体生长过程中渗入硅锭中的氧的浓度大于半导体器件制造中所用的典型温度下凝固硅中氧的溶解度。随着晶体从熔融硅中生长并冷却,其中的氧溶解度迅速降低,氧在冷却的硅锭中饱和。
硅锭被切割成晶片。晶片中残留的间隙氧在后续热制程过程中生长成氧淀析。器件有源区中氧淀析的出现可以降低栅极氧化物的完整性,并且导致不必要的衬底漏电流。
发明内容
本发明的目的在于提供一种单晶硅锭及晶圆的形成方法,能够减少氧杂质的形成,提高后续器件的性能。
为了实现上述目的,本发明提出了一种单晶硅锭的形成方法,包括步骤:
提供多晶硅碎块,将所述多晶硅碎块放入坩埚中进行融化并通入气体,所述气体包括氘原子;
采用加磁场直拉法形成单晶硅锭。
进一步的,在所述的单晶硅锭的形成方法中,通入气体为氘气。
进一步的,在所述的单晶硅锭的形成方法中,通入气体为氘气和氩气的混合气体。
进一步的,在所述的单晶硅锭的形成方法中,所述氘气与氩气的比例范围为0.1%~99%。
进一步的,在所述的单晶硅锭的形成方法中,所述加磁场直拉法包括步骤:
将所述掺杂后的所述多晶硅碎块放入坩埚中以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
进一步的,在所述的单晶硅锭的形成方法中,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。
进一步的,在所述的单晶硅锭的形成方法中,加入磁场,其强度为1000~5000高斯。
在本发明中,还提出了一种晶圆的形成方法,采用单晶硅锭作为原始材料形成晶圆,所述单晶硅锭采用如上文所述的单晶硅锭的形成方法形成,所述晶圆含氘掺杂原子。
进一步的,在所述的晶圆的形成方法中,包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
与现有技术相比,本发明的有益效果主要体现在:在采用直拉法形成单晶硅锭时,对熔融状的硅中通入包含氘原子的气体,使氘原子存储在单晶硅锭的间隙中,降低氧元素及其他杂志的含量,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。
附图说明
图1为本发明一实施例中单晶硅锭的形成方法的流程图。
具体实施方式
下面将结合示意图对本发明的单晶硅锭及晶圆的形成方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
在本实施例中,提出了一种单晶硅锭的形成方法,包括步骤:
S100:提供多晶硅碎块,将所述多晶硅碎块放入坩埚中进行融化并通入气体,所述气体包括氘原子;
S200:采用加磁场直拉法形成单晶硅锭。
在步骤S100中,所述硅片可以为多晶硅或者含有杂质的硅片,使用该种硅片进行提炼,首先需要将硅片放入石英坩埚中进行融化,以便后续形成单晶硅锭,去除部分杂质。具体的,融化温度及工艺均与现有技术中的类似,在此不作赘述。
对融化后的多晶硅碎块进行气体的注入,所述气体包括氘原子;具体的,所述气体可以为单纯的氘气,或者为氘气和氩气的混合气体。若为氘气和氩气的混合气体,则氘气与氩气的比例范围为0.1%~99%,例如是50%,具体的,可以根据工艺的要求来决定,在此不作限定。
在进行加磁场直拉法形成单晶硅锭时,对被融化的多晶硅碎块进行氘原子的掺杂,使氘原子存储在单晶硅锭的间隙中,降低氧元素和杂质的含量,有利于提升后续器件的性能。
在步骤S300中,采用加磁场直拉法形成单晶硅锭。
其中,所述加磁场直拉法包括步骤:
将所述掺杂后的所述多晶硅碎块放入坩埚中以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
其中,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。单晶硅锭的直径大小可以根据工艺的需要来决定,在此不作限定。其中,添加的磁场强度为1000~5000高斯,例如是3000高斯。
在本实施例的另一方面,还提出了一种晶圆的形成方法,采用单晶硅锭作为原始材料形成晶圆,所述单晶硅锭采用如上文所述的单晶硅锭的形成方法形成,所述晶圆含氘掺杂原子。
具体的,所述晶圆的形成方法包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
后续可以在晶圆上形成器件,由于氘原子存储在晶圆的间隙中,降低了氧原子和其他杂质的含量,从而可以在后续的热制程过程中避免氧淀析,进而可以保护器件有源区中栅极氧化物的完整性,并且减少不必要的衬底漏电流。
综上,在本发明实施例提供的单晶硅锭及晶圆的形成方法中,在采用直拉法形成单晶硅锭时,对熔融状的硅中通入包含氘原子的气体,使氘原子存储在单晶硅锭的间隙中,降低氧元素及其他杂志的含量,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (9)

1.一种单晶硅锭的形成方法,其特征在于,包括步骤:
提供多晶硅碎块,将所述多晶硅碎块放入坩埚中进行融化并通入气体,所述气体包括氘原子;
采用加磁场直拉法形成单晶硅锭。
2.如权利要求1所述的单晶硅锭的形成方法,其特征在于,通入气体为氘气。
3.如权利要求1所述的单晶硅锭的形成方法,其特征在于,通入气体为氘气和氩气的混合气体。
4.如权利要求3所述的单晶硅锭的形成方法,其特征在于,所述氘气与氩气的比例范围为0.1%~99%。
5.如权利要求1所述的单晶硅锭的形成方法,其特征在于,所述加磁场直拉法包括步骤:
将所述掺杂后的所述多晶硅碎块放入坩埚中以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
6.如权利要求5所述的单晶硅锭的形成方法,其特征在于,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。
7.如权利要求5所述的单晶硅锭的形成方法,其特征在于,所述磁场强度为1000~5000高斯。
8.一种晶圆的形成方法,采用单晶硅锭作为原始材料形成晶圆,其特征在于,所述单晶硅锭采用如权利要求1至6中任一项所述的单晶硅锭的形成方法形成,所述晶圆含氘掺杂原子。
9.如权利要求8所述的晶圆的形成方法,其特征在于,包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
CN201510667035.5A 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法 Pending CN106591939A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510667035.5A CN106591939A (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法
TW105106935A TWI628318B (zh) 2015-10-15 2016-03-07 單晶矽晶錠及晶圓的形成方法
US15/165,937 US20170107638A1 (en) 2015-10-15 2016-05-26 Method for forming monocrystalline silicon ingot and wafer
JP2016115362A JP6196353B2 (ja) 2015-10-15 2016-06-09 単結晶シリコンインゴットおよびウェーハの形成方法
KR1020160092662A KR101865467B1 (ko) 2015-10-15 2016-07-21 단결정성 실리콘 잉곳 및 웨이퍼를 형성하기 위한 방법
DE102016115518.7A DE102016115518A1 (de) 2015-10-15 2016-08-22 Verfahren zur Bildung eines monokristallinen Siliziumingots und Wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510667035.5A CN106591939A (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法

Publications (1)

Publication Number Publication Date
CN106591939A true CN106591939A (zh) 2017-04-26

Family

ID=58456584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510667035.5A Pending CN106591939A (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法

Country Status (6)

Country Link
US (1) US20170107638A1 (zh)
JP (1) JP6196353B2 (zh)
KR (1) KR101865467B1 (zh)
CN (1) CN106591939A (zh)
DE (1) DE102016115518A1 (zh)
TW (1) TWI628318B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445120A (zh) * 2021-06-28 2021-09-28 无锡松瓷机电有限公司 单晶硅生长控制方法、装置、设备及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009011A1 (en) * 2004-07-06 2006-01-12 Gary Barrett Method for recycling/reclaiming a monitor wafer
CN1763265A (zh) * 2005-09-29 2006-04-26 天津市环欧半导体材料技术有限公司 磁场直拉硅单晶的制备方法
CN101006206A (zh) * 2004-08-25 2007-07-25 株式会社上睦可 硅片及其制造方法,以及硅单晶的培育方法
CN101054721A (zh) * 2006-02-21 2007-10-17 株式会社上睦可 Igbt用硅单晶片和igbt用硅单晶片的制造方法
CN101175873A (zh) * 2005-06-20 2008-05-07 株式会社Sumco 半导体单晶制造装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321460B2 (zh) * 1974-06-06 1978-07-03
US4321163A (en) * 1978-11-21 1982-03-23 Max-Planck-Gesellschaft Lithium nitride of increased conductivity, method for its preparation, and its use
JP2695585B2 (ja) * 1992-12-28 1997-12-24 キヤノン株式会社 光起電力素子及びその製造方法、並びにそれを用いた発電装置
JPH10167891A (ja) * 1996-12-04 1998-06-23 Komatsu Electron Metals Co Ltd 単結晶シリコンの製造装置および製造方法
US5961716A (en) * 1997-12-15 1999-10-05 Seh America, Inc. Diameter and melt measurement method used in automatically controlled crystal growth
JP3994602B2 (ja) * 1999-11-12 2007-10-24 信越半導体株式会社 シリコン単結晶ウエーハおよびその製造方法並びにsoiウエーハ
US6780917B2 (en) * 2001-03-02 2004-08-24 Teijin Chemicals, Ltd. Aromatic polycarbonate resin composition
JP4153293B2 (ja) * 2002-12-17 2008-09-24 コバレントマテリアル株式会社 シリコン単結晶引上方法
US20060249074A1 (en) * 2005-05-05 2006-11-09 Sumco Corporation Method for supplying hydrogen gas in silicon single-crystal growth, and method for manufacturing silicon single-crystal
US7300517B2 (en) * 2005-08-02 2007-11-27 Sumco Corporation Manufacturing method of hydrogen-doped silicon single crystal
JP2008112848A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
US20100010148A1 (en) * 2007-02-26 2010-01-14 Mitsubishi Chemical Corporation Aqueous pigment dispersion, method for producing the same, and recording liquid containing the same
WO2009025337A1 (ja) 2007-08-21 2009-02-26 Sumco Corporation Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法、igbt用シリコン単結晶ウェーハの抵抗率保証方法
US8378384B2 (en) * 2007-09-28 2013-02-19 Infineon Technologies Ag Wafer and method for producing a wafer
KR100954291B1 (ko) * 2008-01-21 2010-04-26 주식회사 실트론 고품질의 반도체 단결정 잉곳 제조장치 및 방법
JP2009263142A (ja) * 2008-04-21 2009-11-12 Sumco Corp シリコン単結晶の育成方法
JP2010100474A (ja) * 2008-10-23 2010-05-06 Covalent Materials Corp シリコン単結晶引上げ水平磁場の最適化方法およびシリコン単結晶の製造方法
JP2012029864A (ja) * 2010-07-30 2012-02-16 Fujifilm Corp 内視鏡装着具
KR101281033B1 (ko) * 2011-05-19 2013-07-09 한국에너지기술연구원 온도 조절이 용이한 연속주조법을 이용한 태양전지용 실리콘 기판 제조 장치 및 이를 이용한 실리콘 기판 제조 방법
JP2013163598A (ja) * 2012-01-10 2013-08-22 Globalwafers Japan Co Ltd シリコンウェーハの製造方法
JP5716689B2 (ja) * 2012-02-06 2015-05-13 信越半導体株式会社 シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP5664573B2 (ja) * 2012-02-21 2015-02-04 信越半導体株式会社 シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
US9202959B2 (en) * 2012-09-25 2015-12-01 International Business Machines Corporation Embedded junction in hetero-structured back-surface field for photovoltaic devices
JP2015079791A (ja) * 2013-10-15 2015-04-23 株式会社ディスコ ウェーハの製造方法
JP6206178B2 (ja) * 2013-12-27 2017-10-04 株式会社Sumco 単結晶の引上げ方法
CN104357901A (zh) * 2014-10-30 2015-02-18 内蒙古中环光伏材料有限公司 一种降低直拉单晶氧施主的方法
CN106591944B (zh) * 2015-10-15 2018-08-24 上海新昇半导体科技有限公司 单晶硅锭及晶圆的形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009011A1 (en) * 2004-07-06 2006-01-12 Gary Barrett Method for recycling/reclaiming a monitor wafer
CN101006206A (zh) * 2004-08-25 2007-07-25 株式会社上睦可 硅片及其制造方法,以及硅单晶的培育方法
CN101175873A (zh) * 2005-06-20 2008-05-07 株式会社Sumco 半导体单晶制造装置
CN1763265A (zh) * 2005-09-29 2006-04-26 天津市环欧半导体材料技术有限公司 磁场直拉硅单晶的制备方法
CN101054721A (zh) * 2006-02-21 2007-10-17 株式会社上睦可 Igbt用硅单晶片和igbt用硅单晶片的制造方法

Also Published As

Publication number Publication date
US20170107638A1 (en) 2017-04-20
JP2017075082A (ja) 2017-04-20
TW201713802A (zh) 2017-04-16
KR101865467B1 (ko) 2018-06-07
DE102016115518A1 (de) 2017-04-20
JP6196353B2 (ja) 2017-09-13
TWI628318B (zh) 2018-07-01
KR20170044576A (ko) 2017-04-25

Similar Documents

Publication Publication Date Title
JP6142054B1 (ja) 単結晶シリコンを成長させる方法
KR20100029778A (ko) 고농도로 도핑된 기판에서의 확산 제어
US20110177682A1 (en) Suppression of oxygen precipitation in heavily doped single crystal silicon substrates
CN105900219B (zh) 硅晶片及其制备方法
JP2785585B2 (ja) シリコン単結晶の製造方法
TWI628317B (zh) 柴氏拉晶法生長單晶矽的方法
US10211066B2 (en) Silicon epitaxial wafer and method of producing same
JP2003297839A (ja) シリコンウエーハの熱処理方法
CN106591939A (zh) 单晶硅锭及晶圆的形成方法
CN106591944A (zh) 单晶硅锭及晶圆的形成方法
JP2004111732A (ja) シリコンウェーハの製造方法
CN114182355B (zh) 消除间隙型缺陷B-swirl的方法、硅片及电子器件
CN106884203A (zh) 单晶硅锭及晶圆的形成方法
US10100431B2 (en) Method for growing monocrystalline silicon and monocrystalline silicon ingot prepared thereof
TWI654344B (zh) 製備單晶矽半導體晶圓的方法、製備單晶矽半導體晶圓的裝置以及單晶矽半導體晶圓
JP2000203999A (ja) 半導体シリコンウェ―ハとその製造方法
JP2001053078A (ja) シリコンウェーハのig処理法及びこれにより作られたigウェーハ並びにこれに用いるシリコン単結晶インゴット
JP2004269335A (ja) 単結晶の製造方法
TWI775502B (zh) 製備半導體晶圓的方法
ITMI20011120A1 (it) Wafer di silicio aventi distribuzione controllata di difetti, metodi di preparazione degli stessi, ed estrattori czochralski per la fabbrica
JPS6027678A (ja) 単結晶育成方法
TW200846510A (en) Method for producing semiconductor single crystal
JPWO2022100875A5 (zh)
KR20030059492A (ko) 웨이퍼의 게더링 처리방법
JP2003209115A (ja) シリコンウェーハの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426

RJ01 Rejection of invention patent application after publication