CN106591944A - 单晶硅锭及晶圆的形成方法 - Google Patents

单晶硅锭及晶圆的形成方法 Download PDF

Info

Publication number
CN106591944A
CN106591944A CN201510672144.6A CN201510672144A CN106591944A CN 106591944 A CN106591944 A CN 106591944A CN 201510672144 A CN201510672144 A CN 201510672144A CN 106591944 A CN106591944 A CN 106591944A
Authority
CN
China
Prior art keywords
silicon
monocrystal silicon
forming method
monocrystal
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510672144.6A
Other languages
English (en)
Other versions
CN106591944B (zh
Inventor
肖德元
张汝京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201510672144.6A priority Critical patent/CN106591944B/zh
Priority to TW105107811A priority patent/TWI589737B/zh
Priority to US15/178,080 priority patent/US20170107640A1/en
Priority to JP2016123431A priority patent/JP2017075084A/ja
Priority to KR1020160122925A priority patent/KR101902629B1/ko
Priority to DE102016118224.9A priority patent/DE102016118224A1/de
Publication of CN106591944A publication Critical patent/CN106591944A/zh
Application granted granted Critical
Publication of CN106591944B publication Critical patent/CN106591944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本发明提出了一种单晶硅及晶圆的形成方法,先对硅片进行氘原子的注入,使氘原子保留在硅片间隙内,接着,在采用直拉法形成单晶硅锭时,使用被注入氘原子的硅片,使形成的单晶硅锭中氧含量和其它杂质降低,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。

Description

单晶硅锭及晶圆的形成方法
技术领域
本发明涉及直拉法单晶生长领域及半导体制造领域,尤其涉及一种单晶硅锭及晶圆的形成方法。
背景技术
作为制造半导体器件起始材料的单晶硅通过被称之为Czochralski(CZ)技术(直拉技术)的晶体生长技术生长成圆柱形的单晶硅锭。单晶硅锭通过诸如切片、刻蚀、清洗、抛光等一系列晶圆加工工艺而被加工成晶圆。
根据CZ技术,在坩埚中,将硅片在单晶炉中加热融化,再将一根直径只有10mm的棒状晶种(称籽晶)浸入融液中,把晶种微微的旋转向上提升,融液中的硅原子会在前面形成的单晶体上继续结晶,并延续其规则的原子排列结构。若整个结晶环境稳定,就可以周而复始的形成结晶,最后形成一根圆柱形的原子排列整齐的硅单晶晶体,即硅单晶硅锭。
熔融硅装在石英坩埚内,并被多种杂质污染,其中一种是氧。在硅的熔融温度下,氧渗入晶格,直到其达到一预定浓度,该浓度一般由硅熔融温度下硅中氧的溶解度和凝固硅中氧的实际偏析系数确定。晶体生长过程中渗入硅锭中的氧的浓度大于半导体器件制造中所用的典型温度下凝固硅中氧的溶解度。随着晶体从熔融硅中生长并冷却,其中的氧溶解度迅速降低,氧在冷却的硅锭中饱和。
硅锭被切割成晶片。晶片中残留的间隙氧在后续热制程过程中生长成氧淀析。器件有源区中氧淀析的出现可以降低栅极氧化物的完整性,并且导致不必要的衬底漏电流。
发明内容
本发明的目的在于提供一种单晶硅锭及晶圆的形成方法,能够减少氧杂质的形成,提高后续器件的性能。
为了实现上述目的,本发明提出了一种单晶硅锭的形成方法,包括步骤:
提供硅片,对所述硅片进行氘原子掺杂;
使用掺杂后的所述硅片作为原始掺杂材料与多晶硅材料熔合,采用直拉法形成单晶硅锭。
进一步的,在所述的单晶硅锭的形成方法中,对所述硅片进行氘原子掺杂时,氘原子的剂量范围是1E12~1E18离子/平方厘米。
进一步的,在所述的单晶硅锭的形成方法中,对所述硅片进行氘原子掺杂时,氘原子的能量范围是1keV~100keV。
进一步的,在所述的单晶硅锭的形成方法中,所述直拉法包括步骤:
将所述掺杂后的所述硅片放入坩埚中与多晶硅材料熔合以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
进一步的,在所述的单晶硅锭的形成方法中,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。
进一步的,在所述的单晶硅锭的形成方法中,所述硅片为多晶硅。
在本发明中,还提出了一种晶圆的形成方法,采用单晶硅锭作为原始材料形成晶圆,所述单晶硅锭采用如上文所述的单晶硅锭的形成方法形成。
进一步的,在所述的晶圆的形成方法中,包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
与现有技术相比,本发明的有益效果主要体现在:先对硅片进行氘原子的注入,使氘原子保留在硅片间隙内,接着,在采用直拉法形成单晶硅锭时,使用被注入氘原子的硅片,使形成的单晶硅锭中氧含量和其它杂质降低,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。
附图说明
图1为本发明一实施例中单晶硅锭的形成方法的流程图。
具体实施方式
下面将结合示意图对本发明的单晶硅锭及晶圆的形成方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
在本实施例中,提出了一种单晶硅锭的形成方法,包括步骤:
S100:提供硅片,对所述硅片进行氘原子掺杂;
S200:使用掺杂后的所述硅片作为原始掺杂材料与多晶硅材料熔合,采用直拉法形成单晶硅锭。
在步骤S100中,所述硅片可以为单晶硅或者含有杂质的硅片,使用该种硅片进行提炼,在进行直拉法形成单晶硅锭之前,需要对所述硅片进行氘原子掺杂,使氘原子存储在硅片的间隙中,降低氧元素和其它杂质的含量,有利于提升后续器件的性能与可靠性。
其中,对所述硅片进行氘原子掺杂时,氘原子的剂量范围是1E12~1E18离子/平方厘米,例如是1E15离子/平方厘米。
对所述硅片进行氘原子掺杂时,氘原子的能量范围是1keV~100keV,例如是50keV。具体的掺杂能量和剂量可以根据硅片的大小来决定。
在步骤S200中,使用掺杂后的所述硅片作为原始掺杂材料,采用直拉法形成单晶硅锭。
其中,所述直拉法包括步骤:
将所述掺杂后的所述硅片放入坩埚中与多晶硅材料以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
其中,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。单晶硅锭的直径大小可以根据工艺的需要来决定,在此不作限定。
在本实施例的另一方面,还提出了一种晶圆的形成方法,采用单晶硅锭作为原始材料形成晶圆,所述单晶硅锭采用如上文所述的单晶硅锭的形成方法形成。
具体的,所述晶圆的形成方法包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
后续可以在晶圆上形成器件,由于氘原子存储在晶圆的间隙中,降低了氧原子和其它杂质的含量,从而可以在后续的热制程过程中避免氧淀析,进而可以保护器件有源区中栅极氧化物的完整性,并且减少不必要的衬底漏电流。
综上,在本发明实施例提供的单晶硅锭及晶圆的形成方法中,先对硅片进行氘原子的注入,使氘原子保留在硅片间隙内,接着,在采用直拉法形成单晶硅锭时,使用被注入氘原子的硅片,使形成的单晶硅锭中氧含量和其它杂质降低,采用单晶硅锭形成晶圆后,在晶圆上形成的器件时,氘能够扩散出,并与界面处等悬空键进行结合,形成较为稳定的结构,从而避免热载流子的穿透,降低漏电流,提高器件的性能与可靠性。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (9)

1.一种单晶硅锭的形成方法,其特征在于,包括步骤:
提供硅片,对所述硅片进行氘原子掺杂;
使用掺杂后的所述硅片作为原始掺杂材料与多晶硅材料熔合,采用直拉法形成单晶硅锭。
2.如权利要求1所述的单晶硅锭的形成方法,其特征在于,对所述硅片进行氘原子掺杂时,氘原子的剂量范围是1E12~1E18离子/平方厘米。
3.如权利要求2所述的单晶硅锭的形成方法,其特征在于,对所述硅片进行氘原子掺杂时,氘原子的能量范围是1keV~100keV。
4.如权利要求1所述的单晶硅锭的形成方法,其特征在于,所述直拉法包括步骤:
将所述掺杂后的所述硅片放入坩埚中与多晶硅材料以预定温度进行融化;
采用籽晶以预定拉晶速率向上拉晶,待细晶长度达到预定长度时,降低拉晶速率进入放肩步骤;
在所述放肩步骤中降低拉速,维持一个线性降温速率,形成预定直径的单晶硅锭后,进入转肩等径步骤;
待单晶硅锭直径生长至预定要求后,迅速向上提升,及时降温,同时停止线性降温,给予坩埚上升速率,根据直径变化率速度,缓慢调节拉速控制,待单晶硅锭直径相对稳定后,打开自动等径控制程序,进入自动等径控制阶段。
5.如权利要求4所述的单晶硅锭的形成方法,其特征在于,所述单晶硅锭的直径大小由所述拉晶速率和预定温度控制。
6.如权利要求1所述的单晶硅锭的形成方法,其特征在于,所述硅片为单晶硅。
7.如权利要求1所述的单晶硅锭的形成方法,其特征在于,所述硅片为多晶硅。
8.一种晶圆的形成方法,采用单晶硅锭作为原始掺杂材料形成晶圆,其特征在于,所述单晶硅锭采用如权利要求1至7中任一项所述的单晶硅锭的形成方法形成。
9.如权利要求8所述的晶圆的形成方法,其特征在于,包括步骤:
对所述单晶硅锭依次进行切薄、表面磨削、抛光、边缘处理及清洗处理,形成晶圆。
CN201510672144.6A 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法 Active CN106591944B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510672144.6A CN106591944B (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法
TW105107811A TWI589737B (zh) 2015-10-15 2016-03-14 單晶矽晶錠及晶圓的形成方法
US15/178,080 US20170107640A1 (en) 2015-10-15 2016-06-09 Method for forming monocrystalline silicon ingot and wafers
JP2016123431A JP2017075084A (ja) 2015-10-15 2016-06-22 単結晶シリコンインゴット及びウエハ形成方法
KR1020160122925A KR101902629B1 (ko) 2015-10-15 2016-09-26 단결정성 실리콘 잉곳 및 웨이퍼를 형성하기 위한 방법
DE102016118224.9A DE102016118224A1 (de) 2015-10-15 2016-09-27 Verfahren zur Bildung eines monokristallinen Siliziumblocks und von Wafern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510672144.6A CN106591944B (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法

Publications (2)

Publication Number Publication Date
CN106591944A true CN106591944A (zh) 2017-04-26
CN106591944B CN106591944B (zh) 2018-08-24

Family

ID=58456649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510672144.6A Active CN106591944B (zh) 2015-10-15 2015-10-15 单晶硅锭及晶圆的形成方法

Country Status (6)

Country Link
US (1) US20170107640A1 (zh)
JP (1) JP2017075084A (zh)
KR (1) KR101902629B1 (zh)
CN (1) CN106591944B (zh)
DE (1) DE102016118224A1 (zh)
TW (1) TWI589737B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591939A (zh) * 2015-10-15 2017-04-26 上海新昇半导体科技有限公司 单晶硅锭及晶圆的形成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294789A (ja) * 1992-04-20 1993-11-09 Toshiba Corp シリコン結晶の引上げ方法
CN101006206A (zh) * 2004-08-25 2007-07-25 株式会社上睦可 硅片及其制造方法,以及硅单晶的培育方法
CN101054721A (zh) * 2006-02-21 2007-10-17 株式会社上睦可 Igbt用硅单晶片和igbt用硅单晶片的制造方法
CN101175873A (zh) * 2005-06-20 2008-05-07 株式会社Sumco 半导体单晶制造装置
CN101175872A (zh) * 2005-06-20 2008-05-07 胜高股份有限公司 硅单晶的培育方法和采用该方法培育的硅单晶
CN101203634A (zh) * 2005-06-20 2008-06-18 胜高股份有限公司 单晶硅的生长方法
CN101435105A (zh) * 2008-12-01 2009-05-20 浙江碧晶科技有限公司 低含氧量硅晶体的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092405A (en) * 1976-06-01 1978-05-30 Avco Everett Research Laboratory, Inc. Separation of deuterium from hydrogen
JP2000323443A (ja) * 1999-05-14 2000-11-24 Mitsubishi Materials Silicon Corp 半導体ウェーハの製造方法
US6285011B1 (en) * 1999-10-12 2001-09-04 Memc Electronic Materials, Inc. Electrical resistance heater for crystal growing apparatus
JP2004035353A (ja) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の製造方法
US7148124B1 (en) * 2004-11-18 2006-12-12 Alexander Yuri Usenko Method for forming a fragile layer inside of a single crystalline substrate preferably for making silicon-on-insulator wafers
WO2007074552A1 (ja) * 2005-12-27 2007-07-05 Shin-Etsu Chemical Co., Ltd. Soiウェーハの製造方法及びsoiウェーハ
US20080050879A1 (en) * 2006-08-23 2008-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of forming metal-containing gate structures
US8262797B1 (en) * 2007-03-13 2012-09-11 Solaicx, Inc. Weir design providing optimal purge gas flow, melt control, and temperature stabilization for improved single crystal growth in a continuous Czochralski process
US20090162970A1 (en) * 2007-12-20 2009-06-25 Yang Michael X Material modification in solar cell fabrication with ion doping
JP2010141272A (ja) * 2008-12-15 2010-06-24 Sumco Corp エピタキシャルウェーハとその製造方法
US8545623B2 (en) * 2009-06-18 2013-10-01 Sumco Phoenix Corporation Method and apparatus for controlling the growth process of a monocrystalline silicon ingot
JP2012140285A (ja) * 2010-12-28 2012-07-26 Siltronic Japan Corp シリコン単結晶インゴットの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294789A (ja) * 1992-04-20 1993-11-09 Toshiba Corp シリコン結晶の引上げ方法
CN101006206A (zh) * 2004-08-25 2007-07-25 株式会社上睦可 硅片及其制造方法,以及硅单晶的培育方法
CN101175873A (zh) * 2005-06-20 2008-05-07 株式会社Sumco 半导体单晶制造装置
CN101175872A (zh) * 2005-06-20 2008-05-07 胜高股份有限公司 硅单晶的培育方法和采用该方法培育的硅单晶
CN101203634A (zh) * 2005-06-20 2008-06-18 胜高股份有限公司 单晶硅的生长方法
CN101054721A (zh) * 2006-02-21 2007-10-17 株式会社上睦可 Igbt用硅单晶片和igbt用硅单晶片的制造方法
CN101435105A (zh) * 2008-12-01 2009-05-20 浙江碧晶科技有限公司 低含氧量硅晶体的制备方法

Also Published As

Publication number Publication date
DE102016118224A1 (de) 2017-04-20
JP2017075084A (ja) 2017-04-20
TWI589737B (zh) 2017-07-01
TW201713801A (zh) 2017-04-16
CN106591944B (zh) 2018-08-24
KR20170044583A (ko) 2017-04-25
US20170107640A1 (en) 2017-04-20
KR101902629B1 (ko) 2018-09-28

Similar Documents

Publication Publication Date Title
CN100472001C (zh) 硅晶片、soi衬底、硅单晶生长方法,硅晶片制造方法及soi衬底制造方法
JP6142054B1 (ja) 単結晶シリコンを成長させる方法
CN105900219B (zh) 硅晶片及其制备方法
KR20100029778A (ko) 고농도로 도핑된 기판에서의 확산 제어
JPH03122097A (ja) 単結晶の2‐6族または3‐5族化合物の製造法及びそれより作られる製品
TWI628317B (zh) 柴氏拉晶法生長單晶矽的方法
US6776841B2 (en) Method for fabricating a semiconductor epitaxial wafer having doped carbon and a semiconductor epitaxial wafer
CN106591944A (zh) 单晶硅锭及晶圆的形成方法
CN106591939A (zh) 单晶硅锭及晶圆的形成方法
CN106884203A (zh) 单晶硅锭及晶圆的形成方法
CN100430531C (zh) 丘克拉斯基提拉器
US10100431B2 (en) Method for growing monocrystalline silicon and monocrystalline silicon ingot prepared thereof
JP2004269335A (ja) 単結晶の製造方法
Liu et al. Growth of heavily phosphorus-doped (111) silicon crystals
Armour et al. Diffusion Limited Silicon Dissolution into Germanium Melt
KR20130079948A (ko) 고용량 수도도핑 실리콘의 제조방법 및 그 제조방법으로 제조된 고용량 수소도핑 실리콘, 및 실리콘 잉곳 성장방법
KR20220046137A (ko) 고저항 웨이퍼 제조 방법
KR20030059492A (ko) 웨이퍼의 게더링 처리방법
CN107604437A (zh) 在石英坩埚中制备硅熔融体的方法
JP2004356456A (ja) 酸素注入シリコンウェーハ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant