WO2013115372A1 - 広い温度領域での性能に優れた電気絶縁油組成物 - Google Patents

広い温度領域での性能に優れた電気絶縁油組成物 Download PDF

Info

Publication number
WO2013115372A1
WO2013115372A1 PCT/JP2013/052364 JP2013052364W WO2013115372A1 WO 2013115372 A1 WO2013115372 A1 WO 2013115372A1 JP 2013052364 W JP2013052364 W JP 2013052364W WO 2013115372 A1 WO2013115372 A1 WO 2013115372A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenyl
mass
insulating oil
oil composition
diphenylethane
Prior art date
Application number
PCT/JP2013/052364
Other languages
English (en)
French (fr)
Inventor
信啓 木村
廣行 星野
貴広 川口
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US14/375,320 priority Critical patent/US20150008377A1/en
Priority to BR112014018917A priority patent/BR112014018917A8/pt
Priority to EP13743323.1A priority patent/EP2811488A4/en
Priority to CN201380007362.7A priority patent/CN104081469A/zh
Publication of WO2013115372A1 publication Critical patent/WO2013115372A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/22Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 impregnated
    • H01G4/221Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 impregnated characterised by the composition of the impregnant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to an electrical insulating oil composition having a wide temperature range and comprising a diarylalkane mixture.
  • the performance mainly required as an electrical insulating oil includes a high breakdown voltage, a high hydrogen gas absorbability, a low viscosity, and a low melting point.
  • electric insulating oil having a high dielectric breakdown voltage is being used worldwide.
  • electrical insulating oil that can be used without producing solidified substances.
  • Electrical insulation oil is known to generate electrical discharges when solids are generated in the oil when used.
  • Use electrical insulation oil that causes solidified material to precipitate in the environment of use. Can not.
  • the use temperature of the electrical insulating oil depends on the temperature in the use environment, it is necessary to have not only extremely low temperature performance but also performance in the vicinity of 20 to 30 ° C.
  • Benzyltoluene has a high ratio of aromatic carbon in the molecule, high hydrogen gas absorption, and excellent withstand voltage characteristics, but the melting points of the three positional isomers of benzyltoluene are o-form +6 according to the literature.
  • the melting point of .6 ° C., m-form ⁇ 27.8 ° C. and p-form + 4.6 ° C. is not a low melting point.
  • Patent Document 1 discloses that a benzyltoluene obtained by reacting toluene and benzyl chloride with an iron chloride catalyst is converted into a diproduct, which is a co-product. It has been proposed to mix benzyltoluene.
  • Patent Document 1 As a product having the same technical contents as the proposal of Patent Document 1, there is an electrical insulating oil composition that is commercialized by Arkema under the trade name JARYLEC C-101.
  • patent document 1 is disclosing the oligomer mixture of a triarylmethane, the substance is the mixture of benzyltoluene and dibenzyltoluene.
  • monobenzyltoluene is described as “has a defect of crystallizing at ⁇ 20 ° C. after supercooling”, and dibenzyltoluene is mixed to suppress this crystallization.
  • the composition is made.
  • adding a compound such as dibenzyltoluene is not a good idea for the following three reasons. That is, even if the freezing point depressing phenomenon is expected by adding dibenzyltoluene, the freezing point does not drop as much as the added weight because dibenzyltoluene has a high molecular weight.
  • the freezing point depressing phenomenon is proportional to the molar concentration of the added substance.
  • the decrease in the crystallization temperature is calculated from the molar concentration. It is only about 8 °C.
  • dibenzyltoluene merely increases the viscosity of the insulating oil and decreases the moving speed of the liquid molecules to apparently suppress the precipitation of crystals. Therefore, if it is carefully cooled, crystal precipitation is observed.
  • dibenzyltoluene has a high bioaccumulation potential.
  • international regulations have begun to be imposed on highly toxic substances by the Swiss Convention.
  • dibenzyltoluene itself is not subject to this regulation, it is designated as a first-class monitoring chemical in Japan because of its high bioaccumulation potential.
  • the use of the substance itself has been approved by limiting its intended use in the form of essential use, it is inevitable that regulations on highly toxic substances will be strengthened in the future, and there is a need for alternative substances with low toxicity. It has been.
  • Patent Document 2 describes an electrical insulating oil composed of 1-phenyl-1-methylphenylethane, but the corona discharge starting voltage at ⁇ 40 ° C. is 81 V. / ⁇ , which is not sufficiently satisfactory in terms of performance.
  • Patent Document 3 describes an electrical insulating oil composed of benzyltoluene and ditolylmethane, but the performance varies greatly depending on the substance to be blended and its blending ratio. I understand. In other words, electrical insulating oils rarely bring out performances that would not be considered in theory, depending on the substances to be blended.
  • 1-phenyl-1-xylylethane or 1-phenyl-1-ethylphenylethane is easy to produce, and has excellent characteristics such as relatively high dielectric breakdown voltage and low dielectric loss. Widely used.
  • 1-phenyl-1- (2,4-dimethylphenyl) ethane or 1-phenyl-1 is an electrically insulating oil composition having particularly excellent oxidation stability in addition to excellent dielectric breakdown voltage and dielectric loss.
  • a composition comprising-(2,5-dimethylphenyl) ethane has been proposed (Japanese Patent Laid-Open No. 57-50708: Patent Document 4).
  • an electrical insulating oil composition comprising 1-phenyl-1-xylylethane or 1-phenyl-1-ethylphenylethane has a pour point of ⁇ 47.5 ° C. or lower and a very low melting point, but has a viscosity at 40 ° C. Is as high as about 5.0 mm 2 / s, so that there is a problem that the insulating performance of the capacitor is not sufficient particularly in a low temperature region of 0 ° C. or less.
  • 1,1-diphenylethane has a high dielectric breakdown voltage and a high hydrogen gas absorptivity, has a viscosity of 2.8 mm 2 / s at 40 ° C. and a low freezing point of ⁇ 18 ° C. It is a promising substance. Although 1,1-diphenylethane has a low freezing point, it cannot be used alone in a temperature range of -50 ° C. or lower.
  • benzyltoluene has high hydrogen gas absorption and low viscosity, its melting point is o-form + 6.6 ° C., m-form ⁇ 27.8 ° C. and p-form + 4.6 ° C. as described above, at ⁇ 50 ° C. It is not always sufficient for use.
  • JP 60-87231 A Japanese Patent Laid-Open No. 61-241907 JP-A 63-64217 JP-A-57-50708
  • the present invention provides excellent electrical insulation that maintains both normal temperature and low temperature characteristics while maintaining a high dielectric breakdown voltage in a wide temperature range of ⁇ 50 ° C. to 30 ° C.
  • An object is to provide an oil composition.
  • the present inventors have conducted extensive research to solve the above problems, and as a result, the total amount and composition ratio of 1,1-diphenylethane and 1-phenyl-1-methylphenylethane in the entire insulating oil.
  • the inventors have found that by changing the ratio of isomers of 1-phenyl-1-methylphenylethane, an excellent electrical insulating oil can be obtained in a wide temperature range from ⁇ 50 to 30 ° C., and the present invention has been completed. .
  • an electrical insulating oil composition comprising a C14 (C14) and C15 (C15) diarylalkane, wherein the C14 diarylalkane is 1,1-diphenylethane or 1,1-diphenylethane and benzyltoluene And the C15 diarylalkane is 1-phenyl-1-methylphenylethane.
  • the present invention also provides the electrical insulating oil composition as described above, wherein 1,1-diphenylethane / 1-phenyl-1-methylphenylethane (mass ratio) is 0.5 to 8.0. .
  • the total content of 1-phenyl-1- (3-methylphenyl) ethane and 1-phenyl-1- (2-methylphenyl) ethane in 1-phenyl-1-methylphenylethane is The electrical insulating oil composition as described above, which is 25% by mass or less based on the insulating oil composition.
  • the present invention is an electrical insulating oil composition obtained by adding 0.01 to 1.0% by mass of an epoxy compound after bringing activated clay into contact with the electrical insulating oil composition.
  • the electrical insulating oil composition of the present invention is characterized in that crystals are extremely difficult to precipitate, and an oil immersion capacitor impregnated with the composition can be used even at a practical temperature as low as ⁇ 50 ° C. and has high insulation even at 30 ° C.
  • An electrical insulating oil composition having a breakdown voltage and excellent characteristics in a wide temperature range.
  • each component of the composition of the present invention has no adverse effect on the living body. Therefore, it is an electrically insulating oil composition for impregnating capacitors that is practically extremely excellent.
  • the electrical insulating oil composition according to the present invention comprises a diarylalkane having 14 (C14) carbon atoms and 15 (C15) carbon atoms, wherein the C14 diarylalkane is 1,1-diphenylethane or 1,1-diphenylethane and benzyl.
  • 1-phenyl-1-methylphenylethane has a melting point of + 39.5 ° C. for 1-phenyl-1- (2-methylphenyl) ethane (o form), 1-phenyl-1- (3-methylphenyl) ethane ( m form) is ⁇ 40 ° C. or lower, and 1-phenyl-1- (4-methylphenyl) ethane (p form) is ⁇ 12 ° C.
  • 1-phenyl-1-methylphenylethane is produced from styrene and toluene using, for example, the zeolite catalyst described in Example 1 of Japanese Patent Application No. 2003-119159, the formation of o-form is about 1%. is there. Therefore, the melting point of the isomer mixture is considered to be low. Further, it is an electrical insulating oil that has high hydrogen gas absorbability and dielectric breakdown voltage, and is excellent in low-temperature characteristics.
  • Examples of the C14 diarylalkane include 1,1-diphenylethane, 1,2-diphenylethane, and benzyltoluene.
  • 1,2-diphenylethane has a high melting point of 51.2 ° C. and is preferably solidified at a low temperature. Absent.
  • 1,1-diphenylethane may be used alone, or a mixture of 1,1-diphenylethane and benzyltoluene may be used.
  • 1,1-diphenylethane: benzyltoluene is preferably 60 to 100: 40 to 0, more preferably 70 to 95:30 to 5, in terms of mass ratio. It is preferable to use a mixture of 1,1-diphenylethane and benzyltoluene rather than using 1,1-diphenylethane alone because the dielectric breakdown voltage is higher.
  • C13 diarylalkane includes diphenylmethane, which is not preferable because it has a high melting point of 25 ° C. and is easily solidified at a low temperature.
  • phenylxylylethane is known, but since the ratio of the number of aromatic carbons in the total number of carbon atoms decreases, the withstand voltage important as an insulating oil decreases, which is not preferable.
  • 1,1-diphenylethane / 1-phenyl-1-methylphenylethane is not particularly limited, but is preferably 0.5 to 8.0, more preferably 0.5 to 5.0, 0.5 to 3.5 is more preferable, and 1.0 to 3.0 is most preferable.
  • 1,1-diphenylethane / 1-phenyl-1-methylphenylethane is less than 0.5, crystals tend to precipitate at low temperatures. Further, when 1,1-diphenylethane / 1-phenyl-1-methylphenylethane exceeds 8.0, crystals tend to precipitate.
  • the proportion of 1-phenyl-1-methylphenylethane isomers is not particularly limited, but the total content of 1-phenyl-1- (3-methylphenyl) ethane and 1-phenyl-1- (2-methylphenyl) ethane The amount is preferably 25% by mass or less based on the electrical insulating oil composition. If the total content of 1-phenyl-1- (3-methylphenyl) ethane and 1-phenyl-1- (2-methylphenyl) ethane exceeds 25% by mass, the kinematic viscosity of the insulating oil itself increases, and the insulation Since oil performance falls, it is not preferable.
  • the kinematic viscosity at 40 ° C. is 2.1 mm 2 / s with diphenylmethane having the smallest molecular weight.
  • the kinematic viscosity at 40 ° C. is preferably lower than 5.0 mm 2 / s which is the 40 ° C.
  • kinematic viscosity of 1-phenyl-1-xylylethane and 1-phenyl-1-phenylethylethane mixture and particularly preferably It is 4.5 mm 2 / s or less.
  • the blending ratio of benzyltoluene is preferably 20% by mass or less, and 15% by mass or less based on the electrical insulating oil composition. Is more preferable.
  • 1,1-diphenylethane, 1-phenyl-1-methylphenylethane, and benzyltoluene benzyltoluene has the highest melting point, and if it exceeds 20% by mass, crystals are more likely to precipitate, which is not preferable.
  • the electrical insulating oil composition of the present invention is characterized in that crystals are extremely difficult to precipitate, and an oil immersion capacitor impregnated with the composition can be practically used at a low temperature of ⁇ 50 ° C.
  • the pour point of the electrical insulating oil composition of the present invention is ⁇ 50 ° C. or lower, preferably ⁇ 60 ° C. or lower.
  • the crystal precipitation temperature of the electrical insulating oil composition of the present invention is ⁇ 40 ° C. or lower, preferably ⁇ 50 ° C. or lower.
  • the level of the crystallization precipitation temperature was determined by keeping the sample at a predetermined temperature and visually observing the presence or absence of crystal precipitation at a predetermined time.
  • the test method for the crystallization temperature level and the test results for the presence or absence of crystallization after 1030 hours at ⁇ 40 ° C. and ⁇ 50 ° C. are shown in the Examples. If the crystal precipitation temperature of the electrical insulating oil composition of the present invention is higher than ⁇ 40 ° C., the insulating performance in the low temperature region is lowered, which is not preferable.
  • the chlorine content in the electrical insulating oil is preferably 50 ppm by mass or less. More preferably, it is 10 mass ppm or less, More preferably, it is 5 mass ppm or less.
  • the performance of the electrical insulating oil increases due to the inclusion of water and polar substances. However, if the dielectric tangent is high, the insulating property decreases, so the performance as an electrical insulating oil deteriorates. In order to avoid these problems, contact with activated clay and removal of these will reduce the dielectric loss tangent and improve the performance.
  • the activated clay used is not particularly limited.
  • the shape of the activated clay is not particularly limited, but a molded body is preferable from a practical viewpoint. Since the chlorine content cannot always be removed with activated clay, an epoxy compound is preferably added as a hydrogen chloride trapping agent. Since this epoxy compound is removed to some extent by bringing it into contact with activated clay, it is desirable to add the epoxy compound after the electrical insulating oil has been treated with the clay.
  • Examples of the epoxy compound include alicyclic epoxy compounds such as 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, vinylcyclohexylene epoxide, 3,4-epoxy-6-methylcyclohexylmethyl (3,4 Examples include 4-epoxy-6-methylhexane) carboxylate and the like, phenol novolac type epoxy compounds that are diglycidyl ether type epoxy compounds of bisphenol A, orthocresol novolac type epoxy compounds, and the like.
  • the addition amount is 0.01 to 1.0% by mass, preferably 0.3 to 0.8% by mass, based on the total amount of the electrical insulating oil composition.
  • the electrical insulating oil composition of the present invention is useful as impregnating oil for oil-impregnated electrical equipment, particularly as capacitor oil. Among them, it is suitable for impregnating an oil-immersed electrical device, preferably an oil-impregnated capacitor, using a plastic film as at least a part of an insulating material or a dielectric material.
  • polyester film polyvinylidene fluoride and the like, as well as polyolefin film such as polypropylene and polyethylene, etc. can be used.
  • polyolefin film is preferable.
  • a particularly suitable polyolefin film is a polypropylene film.
  • An oil-impregnated capacitor suitable for the present invention is obtained by winding a metal foil such as aluminum as a conductor and a plastic film as the insulating material or dielectric material together with other materials such as insulating paper as necessary. It is manufactured by impregnating with insulating oil.
  • Example 1 A mixed oil prepared by 60% by mass of 1,1-diphenylethane, 5% by mass of 1-phenyl-1- (3-methylphenyl) ethane, and 35% by mass of 1-phenyl-1- (4-methylphenyl) ethane was used. Experiments A and B described later were conducted. The results are shown in Table 1.
  • 1-Phenyl-1-methylphenylethane was subjected to a follow-up test by changing the raw material cumene of Example 1 of JP-A-2003-119159 to toluene and the reaction temperature to 200 ° C., and an isomer mixture obtained after distillation ( o-isomer 1% by mass, m-isomer 11% by mass, p-isomer 88% by mass).
  • Example 2 A mixed oil prepared by 60% by mass of 1,1-diphenylethane, 21% by mass of 1-phenyl-1- (3-methylphenyl) ethane and 19% by mass of 1-phenyl-1- (4-methylphenyl) ethane was used. Experiments A and B described later were conducted. The results are shown in Table 1.
  • 1-Phenyl-1-methylphenylethane was a mixture of isomers obtained after distillation by changing the cumene of Example 1 of Japanese Patent Application No. 2003-119159 to toluene and changing the reaction temperature to 260 ° C. (O-isomer 1% by mass, m-isomer 52% by mass, p-isomer 47% by mass) was used.
  • Example 3 1,1-diphenylethane 50% by mass, 1-phenyl-1- (2-methylphenyl) ethane 1% by mass, 1-phenyl-1- (3-methylphenyl) ethane 24% by mass, 1-phenyl-1-
  • Example 3 1,1-diphenylethane 50% by mass, 1-phenyl-1- (2-methylphenyl) ethane 1% by mass, 1-phenyl-1- (3-methylphenyl) ethane 24% by mass, 1-phenyl-1-
  • Table 1 1-Phenyl-1-methylphenylethane was a mixture of Examples 1 and 2.
  • Example 4 60% by mass of 1,1-diphenylethane, 4% by mass of 1-phenyl-1- (3-methylphenyl) ethane, 26% by mass of 1-phenyl-1- (4-methylphenyl) ethane, 10% by mass of benzyltoluene
  • Example 4 60% by mass of 1,1-diphenylethane, 4% by mass of 1-phenyl-1- (3-methylphenyl) ethane, 26% by mass of 1-phenyl-1- (4-methylphenyl) ethane, 10% by mass of benzyltoluene
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 1 was used.
  • Example 5 1,1-diphenylethane 60% by mass, 1-phenyl-1- (3-methylphenyl) ethane 2% by mass, 1-phenyl-1- (4-methylphenyl) ethane 18% by mass, benzyltoluene 20% by mass
  • Table 1 The same 1-phenyl-1-methylphenylethane and benzyltoluene as in Example 4 were used.
  • Example 6 1,1-diphenylethane 30% by mass, 1-phenyl-1- (2-methylphenyl) ethane 1% by mass, 1-phenyl-1- (3-methylphenyl) ethane 31% by mass, 1-phenyl-1-
  • Experiments A and B described below were conducted using a mixed oil prepared with 28% by mass of (4-methylphenyl) ethane and 10% by mass of benzyltoluene. The results are shown in Table 1. The same 1-phenyl-1-methylphenylethane as in Example 2 and benzyltoluene as in Example 4 were used.
  • Example 7 1,1-diphenylethane 60 mass%, 1-phenyl-1- (3-methylphenyl) ethane 11 mass%, 1-phenyl-1- (4-methylphenyl) ethane 9 mass%, benzyltoluene 20 mass%
  • Example 7 1,1-diphenylethane 60 mass%, 1-phenyl-1- (3-methylphenyl) ethane 11 mass%, 1-phenyl-1- (4-methylphenyl) ethane 9 mass%, benzyltoluene 20 mass%
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 2 and benzyltoluene as in Example 4 were used.
  • Example 8 1,1-diphenylethane 60% by mass, 1-phenyl-1- (3-methylphenyl) ethane 16% by mass, 1-phenyl-1- (4-methylphenyl) ethane 14% by mass, benzyltoluene 10% by mass
  • Example 8 1,1-diphenylethane 60% by mass, 1-phenyl-1- (3-methylphenyl) ethane 16% by mass, 1-phenyl-1- (4-methylphenyl) ethane 14% by mass, benzyltoluene 10% by mass
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 2 and benzyltoluene as in Example 4 were used.
  • Example 9 1,1-diphenylethane 70% by mass, 1-phenyl-1- (3-methylphenyl) ethane 2% by mass, 1-phenyl-1- (4-methylphenyl) ethane 18% by mass, benzyltoluene 10% by mass
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 1 and benzyltoluene as in Example 4 were used.
  • Example 10 70% by mass of 1,1-diphenylethane, 11% by mass of 1-phenyl-1- (3-methylphenyl) ethane, 9% by mass of 1-phenyl-1- (4-methylphenyl) ethane, 10% by mass of benzyltoluene
  • Example 10 70% by mass of 1,1-diphenylethane, 11% by mass of 1-phenyl-1- (3-methylphenyl) ethane, 9% by mass of 1-phenyl-1- (4-methylphenyl) ethane, 10% by mass of benzyltoluene
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 2 and benzyltoluene as in Example 4 were used.
  • Example 11 1,1-diphenylethane 70% by mass, 1-phenyl-1- (3-methylphenyl) ethane 5% by mass, 1-phenyl-1- (4-methylphenyl) ethane 5% by mass, benzyltoluene 20% by mass
  • Example 11 1,1-diphenylethane 70% by mass, 1-phenyl-1- (3-methylphenyl) ethane 5% by mass, 1-phenyl-1- (4-methylphenyl) ethane 5% by mass, benzyltoluene 20% by mass
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 2 and benzyltoluene as in Example 4 were used.
  • Example 12 80% by mass of 1,1-diphenylethane, 1% by mass of 1-phenyl-1- (3-methylphenyl) ethane, 9% by mass of 1-phenyl-1- (4-methylphenyl) ethane, 10% by mass of benzyltoluene
  • Table 1 The same 1-phenyl-1-methylphenylethane as in Example 1 and benzyltoluene as in Example 4 were used.
  • Example 13 1,1-diphenylethane 20% by mass, 1-phenyl-1- (2-methylphenyl) ethane 1% by mass, 1-phenyl-1- (3-methylphenyl) ethane 9% by mass, 1-phenyl-1- Using a mixed oil prepared to 70 mass% of (4-methylphenyl) ethane, an experiment of Experimental Example A described later was performed. The results are shown in Table 1. The same 1-phenyl-1-methylphenylethane as in Example 1 was used.
  • Example 14 A mixed oil prepared by 80% by mass of 1,1-diphenylethane, 2% by mass of 1-phenyl-1- (3-methylphenyl) ethane and 18% by mass of 1-phenyl-1- (4-methylphenyl) ethane was used. The experiment of Experimental Example A described later was performed. The results are shown in Table 1. The same 1-phenyl-1-methylphenylethane as in Example 1 was used.
  • Example 1 Comparative Example 1
  • Example B measurement at ⁇ 50 ° C. was impossible because the kinematic viscosity was too high.
  • Example B> Evaluation as an electrical insulating oil composition using a model capacitor
  • the capacitors used in the experiment are as follows.
  • As the solid insulator an easy impregnation type of a simultaneous biaxially stretched polypropylene film manufactured by Shin-Etsu Film Co., Ltd. manufactured by a tubular method was used. Two pieces with a thickness of 12.7 ⁇ m (gravimetric method) are used, and this is wound together with an aluminum foil electrode to make an element having a capacitance of 0.2 to 0.3 ⁇ F, and this is made into a tin can. I put it in.
  • the can has a flexible structure so that it can sufficiently cope with the insulation oil contracted at low temperature.
  • the edge part of the electrode was not bent while being slit.
  • a method of connecting from the electrode to the terminal a method of inserting a ribbon-like lead foil into the electrode surface inside the element is generally used. In this method, when crystals are precipitated, the lead foil and the electrode surface are used. In this case, contact failure may occur, and partial discharge from the electrode may occur, and measurement may not be possible. For this reason, after this experiment, like the method used for high frequency, one end of the electrode was wound with a structure protruding from the film, and the protruding part was collectively spot welded to the lead wire.
  • the can-type capacitor thus prepared was vacuum-dried according to a conventional method, then impregnated with insulating oil under the same vacuum, and sealed.
  • each electrically insulating oil composition was used after being treated with activated clay. That is, 10% by mass of activated clay galeonite # 036 manufactured by Mizusawa Chemical Co., Ltd. was added to the electrical insulating oil composition, stirred at a liquid temperature of 25 ° C. for 30 minutes, and then filtered. After filtration, 0.65 mass% of an epoxy compound (alicyclic epoxide; trade name: Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) was added as a chlorine scavenger and used for impregnation.
  • an epoxy compound alicyclic epoxide; trade name: Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.
  • Dielectric breakdown voltage (v / ⁇ m) V + S ⁇ (T / 1440): Formula 1 Where V: Voltage applied at dielectric breakdown (v / ⁇ m) S: Rise voltage every 24 hours (v / ⁇ m) T: Elapsed time (minutes) from when the applied voltage increases until dielectric breakdown occurs
  • 1,1-DPE is 1,1-diphenylethane
  • o-PTE is 1-phenyl-1- (2-methylphenyl) ethane
  • m-PTE is 1-phenyl-1- (3-methylphenyl) Ethane
  • p-PTE is 1-phenyl-1- (4-methylphenyl) ethane
  • BT is benzyltoluene
  • PXE is 1-phenyl1-xylylethane
  • DPM is diphenylmethane.
  • the compositions of the examples did not solidify even when kept at ⁇ 50 ° C. for a long time.
  • the compositions of Comparative Examples 1 to 4 solidified when held at -50 ° C. for a long time, and the performance at low temperature was inferior to that of the Examples.
  • the composition of the example showed a dielectric breakdown voltage of 91 V / ⁇ m or more at ⁇ 50 ° C., 110 V / ⁇ m or more at ⁇ 30 ° C., and 140 V / ⁇ m or more at 30 ° C. It was confirmed to show electrical insulation performance.
  • the composition of Comparative Example 3 had a value of ⁇ 30 ° C.
  • the composition of Comparative Example 2 had a value of ⁇ 50 ° C. and ⁇ 30 ° C. lower than those of the Examples, resulting in poor dielectric breakdown performance. From the above, it can be said that the composition of the present invention is an electrical insulating oil composition exhibiting high performance in a wide temperature range from ⁇ 50 to 30 ° C.
  • the electrical insulating oil composition of the present invention is excellent in characteristics in a wide temperature range of ⁇ 50 ° C. to 30 ° C., and each component of the composition has no adverse effect on the living body, and as an electrical insulating oil composition for impregnating capacitors. It is extremely excellent in practical use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Lubricants (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 -50℃~30℃の広範な温度範囲において、絶縁破壊電圧を高く維持しつつ、特に-50℃で結晶が極めて析出し難い、常温と低温の特性を両立した優れた電気絶縁油組成物として、炭素数14(C14)と炭素数15(C15)のジアリールアルカンからなる電気絶縁油組成物であって、C14のジアリールアルカンが1,1-ジフェニルエタンまたは1,1-ジフェニルエタンとベンジルトルエンの混合物であり、C15のジアリールアルカンが1-フェニル-1-メチルフェニルエタンであることを特徴とする電気絶縁油組成物が提供される。

Description

広い温度領域での性能に優れた電気絶縁油組成物
 本発明は、ジアリールアルカン混合物から成る広い温度領域での性能に優れた電気絶縁油組成物に関する。
 電気絶縁油として主に求められる性能は、絶縁破壊電圧が高いことをはじめ、水素ガス吸収性が高いこと、粘度が低いこと、さらに融点が低いことが挙げられる。近年、世界的に絶縁破壊電圧の高い電気絶縁油が使用されつつある。従来とは異なり、世界経済の発展に伴って、これまで使用されていなかった極低温の地域でも使用できるような低温特性に優れた電気絶縁油が求められており、要求性能は-50℃で凝固物質などが生成せず使用できる電気絶縁油である。電気絶縁油は使用の際に、油中に固形物が発生するとその部分から放電が発生しやすくなることが知られており、その使用環境下で凝固物質が析出するような電気絶縁油は使用できない。一方、電気絶縁油の使用温度は使用環境における気温に左右されるため、極低温の性能だけでなく20~30℃付近での性能も同時に兼ね備える必要がある。
 長きに渡って、高い絶縁破壊電圧を有する電気絶縁油として、ベンジルトルエンとジベンジルトルエンの混合物が使用されている。ベンジルトルエンは分子中の芳香族炭素の比率が高く、水素ガス吸収性が高く、耐電圧特性に優れているが、ベンジルトルエンの3種の位置異性体の融点は、文献によればo体+6.6℃、m体-27.8℃およびp体+4.6℃と、決して低い融点とは言えない。
 このような問題を解決するために、特開昭60-87231号公報(特許文献1)では、トルエンとベンジルクロライドとを塩化鉄触媒で反応させて得られるベンジルトルエンに、共生成物であるジベンジルトルエンを混合することが提案されている。特許文献1の提案と同一技術内容の商品として、アルケマ社からジャリレック(JARYLEC)C-101なる商品名で商品化されている電気絶縁油組成物がある。なお、特許文献1は、トリアリールメタンのオリゴマー混合物を開示しているが、その実質はベンジルトルエンとジベンジルトルエンの混合物である。特許文献1の第3頁には、モノベンジルトルエンは「過冷却後には-20℃で晶出する欠点を有し」と記載され、この晶出の抑制のためにジベンジルトルエンを混合してなる組成物となしている。
 しかしながら、ジベンジルトルエンの如き化合物を添加することは、次の3つの理由から得策ではない。すなわち、ジベンジルトルエンの添加により凝固点降下現象を期待するとしても、ジベンジルトルエンが高分子量であるために、加えた重量ほどには凝固点が降下しない。凝固点降下現象は、添加した物質のモル濃度に比例するが、前記商品JARYLEC C-101に加えられている20重質%程度のジベンジルトルエンではその晶出温度の降下はモル濃度から計算すると6~8℃程度にすぎない。
 2つ目の理由は、ジベンジルトルエンは単に絶縁油の粘度を上昇させ、液分子の移動速度を低下させて見掛け上結晶の析出を抑制しているに過ぎない。それ故、注意深く冷却すれば結晶の析出が見られるのである。
 3つ目の理由は、ジベンジルトルエンが高い生物蓄積性を有することにある。近年、ストックホルム条約等によって、高毒性を有する物質については国際的な規制がかかり始めている。ジベンジルトルエン自体は当該規制にかかっていないものの、日本国内においては、生物蓄積性が高いことから第一種監視化学物質に指定されている。当該物質の使用自体はエッセンシャルユースという形態で使用用途を限定することで使用が認められているものの、今後、高毒性の物質への規制が強まることは必至であり、低毒性な代替物質が求
められている。
 また、特開昭61-241907号公報(特許文献2)には1-フェニル-1-メチルフェニルエタンで構成された電気絶縁油が記載されているものの、-40℃におけるコロナ放電開始電圧が81V/μであり、性能的に十分満足するものではない。
 特開昭63-64217号公報(特許文献3)にはベンジルトルエンとジトリルメタンで構成された電気絶縁油が記載されているが、配合する物質やその配合割合によって、性能が大きく変わっていることが分かる。すなわち、電気絶縁油は配合する物質によって、理屈では考えられないような性能を引き出すことがまれにある。
 他方、1-フェニル-1-キシリルエタン或いは1-フェニル-1-エチルフェニルエタンもその製造が容易であり、絶縁破壊電圧が比較的高く、誘電損失が小さいなどの優れた特性を有していることから広く用いられている。例えば絶縁破壊電圧や誘電損失が優れていることに加え、酸化安定性が特に優れている電気絶縁油組成物として1-フェニル-1-(2,4-ジメチルフェニル)エタンあるいは1-フェニル-1-(2,5-ジメチルフェニル)エタンからなる組成物が提案されている(特開昭57-50708号公報:特許文献4)。
 しかしながら、1-フェニル-1-キシリルエタン或いは1-フェニル-1-エチルフェニルエタンからなる電気絶縁油組成物は、流動点が-47.5℃以下であり融点が非常に低いものの、40℃における粘度が5.0mm/s程度と高いために、特に0℃以下の低温領域においてコンデンサの絶縁性能が十分でないという問題が有った。
 ところで、1,1-ジフェニルエタンは絶縁破壊電圧、水素ガス吸収性が高く、40℃における粘度は2.8mm/s、凝固点も-18℃と低いため、低温特性に優れた電気絶縁油として有望な物質である。1,1-ジフェニルエタンの凝固点は低いものの、それ単独では-50℃以下の温度領域においては使用できない。
 ベンジルトルエンは水素ガス吸収性が高く、粘度も低いものの、その融点は前記のとおりo体+6.6℃、m体-27.8℃およびp体+4.6℃であり、-50℃での使用に関しては必ずしも十分なものではない。
特開昭60-87231号公報 特開昭61-241907号公報 特開昭63-64217号公報 特開昭57-50708号公報
 本発明は、-50℃~30℃の広範な温度範囲において、絶縁破壊電圧を高く維持しつつ、特に-50℃で結晶が極めて析出し難い、常温と低温の特性を両立した優れた電気絶縁油組成物を提供することを目的とする。
 そこで、本発明者らは、上記課題を解決するために、鋭意研究を行った結果、絶縁油全体に占める1,1-ジフェニルエタンと1-フェニル-1-メチルフェニルエタンの合計量、構成比率および1-フェニル-1-メチルフェニルエタンの異性体の割合を変えることで、-50~30℃までの広い温度領域において優れた電気絶縁油となることを見出し、本発明を完成したものである。
 すなわち、炭素数14(C14)と炭素数15(C15)のジアリールアルカンからなる電気絶縁油組成物であって、C14のジアリールアルカンが1,1-ジフェニルエタンまたは1,1-ジフェニルエタンとベンジルトルエンの混合物であり、C15のジアリールアルカンが1-フェニル-1-メチルフェニルエタンであることを特徴とする電気絶縁油組成物である。
 また本発明は、1,1-ジフェニルエタン/1-フェニル-1-メチルフェニルエタン(質量比)が0.5~8.0であることを特徴とする前記記載の電気絶縁油組成物である。
 また本発明は、1-フェニル-1-メチルフェニルエタンのうち、1-フェニル-1-(3-メチルフェニル)エタンと1-フェニル-1-(2-メチルフェニル)エタンの合計含有量が電気絶縁油組成物基準で25質量%以下であることを特徴とする前記記載の電気絶縁油組成物である。
 さらに本発明は、前記の電気絶縁油組成物に活性白土を接触させた後、エポキシ化合物を0.01~1.0質量%添加することにより得られる電気絶縁油組成物である。
 本発明の電気絶縁油組成物は、結晶が極めて析出し難く、それを含浸してなる油浸コンデンサは実用上-50℃という低温でも使用できるという特徴を有し、かつ30℃においても高い絶縁破壊電圧を示す、広い温度領域での特性に優れた電気絶縁油組成物である。また、本発明の組成物の各成分は、生体に対する悪影響などが無いものである。したがって、実用的に極めて優れたコンデンサ含浸用の電気絶縁油組成物である。
 以下に本発明をさらに説明する。
 本発明に係る電気絶縁油組成物は、炭素数14(C14)と炭素数15(C15)のジアリールアルカンからなり、C14のジアリールアルカンが1,1-ジフェニルエタンまたは1,1-ジフェニルエタンとベンジルトルエンの混合物であり、C15のジアリールアルカンが1-フェニル-1-メチルフェニルエタンであるジアリールアルカン混合物である。
 1-フェニル-1-メチルフェニルエタンの融点は、1-フェニル-1-(2-メチルフェニル)エタン(o体)が+39.5℃、1-フェニル-1-(3-メチルフェニル)エタン(m体)が-40℃以下、1-フェニル-1-(4-メチルフェニル)エタン(p体)が-12℃である。1-フェニル-1-メチルフェニルエタンは、例えば、特願2003-119159号公報の実施例1に記載のゼオライト触媒を用いて、スチレンとトルエンから製造した場合、o体の生成は1%前後である。そのため、異性体混合物の融点は低いと考えられる。また、水素ガス吸収性や絶縁破壊電圧も高く、低温特性に優れた電気絶縁油である。
 C14のジアリールアルカンとしては、1,1-ジフェニルエタン、1,2-ジフェニルエタン、ベンジルトルエンがあるが、1,2-ジフェニルエタンは融点が51.2℃と高く、低温において固化し易いため好ましくない。
 本発明において、C14のジアリールアルカンとしては、1,1-ジフェニルエタンを単独で用いても良く、また1,1-ジフェニルエタンとベンジルトルエンの混合物を用いても良い。1,1-ジフェニルエタンとベンジルトルエンの混合割合は、質量比で1,1-ジフェニルエタン:ベンジルトルエンが60~100:40~0が好ましく、より好ましくは70~95:30~5である。1,1-ジフェニルエタンを単独で用いるよりも、1,1-ジフェニルエタンとベンジルトルエンの混合物を用いる方が絶縁破壊電圧がより高くなるため好ましい。
 C13のジアリールアルカンとしては、ジフェニルメタンがあるが、融点が25℃と高く、低温において固化し易い為好ましくない。C16のジアリールアルカンとしては、フェニルキシリルエタンが知られているが、全炭素数に占める芳香族炭素数の割合が低くなるため、絶縁油として重要な耐電圧が低下するため好ましくない。
 1,1-ジフェニルエタン/1-フェニル-1-メチルフェニルエタン(質量比)は特に限定されないが、0.5~8.0であることが好ましく、0.5~5.0がより好ましく、0.5~3.5がさらに好ましく、1.0~3.0が最も好ましい。1,1-ジフェニルエタン/1-フェニル-1-メチルフェニルエタンが0.5未満になると低温において結晶が析出しやすくなる。また、1,1-ジフェニルエタン/1-フェニル-1-メチルフェニルエタンが8.0を超えると結晶が析出しやすくなる傾向がある。
 1-フェニル-1-メチルフェニルエタンの異性体の割合は特に限定されないが、1-フェニル-1-(3-メチルフェニル)エタンと1-フェニル-1-(2-メチルフェニル)エタンの合計含有量が電気絶縁油組成物基準で25質量%以下であることが好ましい。1-フェニル-1-(3-メチルフェニル)エタンと1-フェニル-1-(2-メチルフェニル)エタンの合計含有量が25質量%を超えると、絶縁油自体の動粘度が高くなり、絶縁油性能が低下するため好ましくない。
 電気絶縁油の粘度は高いほど、コンデンサ内で油が循環(対流)しにくくなるため、放電による発熱を除去しにくくなる。そのため、粘度は低いほど好ましいが、絶縁破壊電圧の高いジアリールアルカンの場合、最も分子量の小さいジフェニルメタンで40℃の動粘度は2.1mm/sである。1-フェニル-1-キシリルエタンおよび1-フェニル-1-フェニルエチルエタン混合物の40℃における動粘度は約5.0mm/sであるが、-50℃においては2000mm/sを超える動粘度となり、絶縁破壊電圧の測定が困難となる。すなわち、1-フェニル-1-キシリルエタンおよび1-フェニル-1-フェニルエチルエタン混合物は-50℃で結晶性物質は析出しないものの、その条件下では使用できない。そのため、40℃における動粘度は、1-フェニル-1-キシリルエタンおよび1-フェニル-1-フェニルエチルエタン混合物の40℃動粘度である5.0mm/sよりも低いことが好ましく、特に好ましくは4.5mm/s以下である。
 C14のジアリールアルカンとして、1,1-ジフェニルエタンとベンジルトルエンの混合物を用いる場合、ベンジルトルエンの配合割合は、電気絶縁油組成物基準で、20質量%以下であることが好ましく、15質量%以下がより好ましい。1,1-ジフェニルエタン、1-フェニル-1-メチルフェニルエタン、ベンジルトルエンの中でベンジルトルエンは最も融点が高いため、20質量%を超えると相対的に結晶が析出しやすくなるため好ましくない。
 本発明の電気絶縁油組成物は、結晶が極めて析出し難く、それを含浸してなる油浸コンデンサは実用上-50℃という低温でも使用できるという特徴を有する。本発明の電気絶縁油組成物の流動点は-50℃以下であり、好ましくは-60℃以下である。
 本発明の電気絶縁油組成物の結晶析出温度は-40℃以下であり、好ましくは-50℃以下である。結晶化析出温度のレベルは、試料を所定温度に保ち、定められた時間での結晶の析出の有無を目視で観察することにより求めた。
 結晶化温度レベルの試験法と、-40℃及び-50℃、1030時間後の結晶析出の有無の試験結果を実施例に示した。
 本発明の電気絶縁油組成物の結晶析出温度は-40℃よりも高くなると低温領域での絶縁性能が低くなるためのため好ましくない。
 前記したようにベンジルトルエンは、ベンジルクロライドとトルエンを反応させて製造されるため、ベンジルトルエン中には塩素分が相当量含まれてくる。塩素分は絶縁油の性能を悪化させるためできるだけ少ないことが望まく、電気絶縁油中の塩素の含有量は50質量ppm以下であることが好ましい。より好ましくは10質量ppm以下であり、さらに好ましくは5質量ppm以下である。
 電気絶縁油の性能は、水や極性物質の含有により誘電正接が高くなるが、誘電正接が高いと絶縁性が低くなるため、電気絶縁油としての性能は悪化する。これらを回避するために、活性白土と接触させこれらを除去すると、誘電正接が低減し性能が良化する。使用させる活性白土は、特に限定されない。活性白土の形状としては、特に限定されないが、実用上の観点から成型体の方が好ましい。塩素分については必ずしも活性白土で除去できないため、塩化水素のトラップ剤として好ましくはエポキシ化合物を添加する。このエポキシ化合物は活性白土と接触させることによって、ある程度除去されることからエポキシ化合物は電気絶縁油が白土処理された後に添加するのが望ましい。
 エポキシ化合物としては、たとえば脂環式エポキシ化合物である3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、ビニルシクロヘキセンジエポキサイド、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルヘキサン)カルボキシレートなど、ビスフェノールAのジグリシジルエーテル型エポキシ化合物であるフェノールノボラック型エポキシ化合物、オルソクレゾールノボラック型エポキシ化合物などが例示される。添加量としては電気絶縁油組成物全量を基準として0.01~1.0質量%、好ましくは0.3~0.8質量%である。
 本発明の電気絶縁油組成物は、油含浸電気機器の含浸油、特にコンデンサ油として有用である。その中でも、プラスチックフィルムを絶縁材料または誘電体材料の少なくとも一部に使用した油浸電気機器、好ましくは油含浸コンデンサに含浸させるために好適である。
 プラスチックフィルムとしては、ポリエステル、ポリフッ化ビニリデンなどの他、ポリプロピレン、ポリエチレンなどのポリオレフィンフィルムなどを用いることができるが、その中でもポリオレフィンフィルムが好適である。特に好適なポリオレフィンフィルムはポリプロピレンフィルムである。
 本発明において好適な油含浸コンデンサは、導体としてアルミニウムなどの金属箔と、前記絶縁材料または誘電体材料としてのプラスチックフィルムとを、必要に応じて絶縁紙などの他の材料と共に巻回し、常法により絶縁油を含浸させることにより製造される。あるいは、前記絶縁材料または誘電体材料としてのプラスチックフィルム上に、アルミニウム、亜鉛などの導体としての金属層を蒸着などの方法により形成した金属化プラスチックフィルムを、必要に応じてプラスチックフィルムあるいは絶縁紙と共に巻回し、常法により含浸することによっても製造される油浸コンデンサである。
 以下実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン5質量%、1-フェニル-1-(4-メチルフェニル)エタン35質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは特開平2003-119159号公報の実施例1の原料のクメンをトルエンに、反応温度を200℃に変えて追試を行い、蒸留後に得られた異性体混合物(o-体1質量%、m-体11質量%、p-体88質量%)を用いた。
(実施例2)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン21質量%、1-フェニル-1-(4-メチルフェニル)エタン19質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは特願平2003-119159号公報の実施例1の原料のクメンをトルエンに、反応温度を260℃に変えて追試を行い、蒸留後に得られた異性体混合物(o-体1質量%、m-体52質量%、p-体47質量%)を用いた。
(実施例3)
 1,1-ジフェニルエタン50質量%、1-フェニル-1-(2-メチルフェニル)エタン1質量%、1-フェニル-1-(3-メチルフェニル)エタン24質量%、1-フェニル-1-(4-メチルフェニル)エタン25質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と2のものを混合して用いた。
(実施例4)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン4質量%、1-フェニル-1-(4-メチルフェニル)エタン26質量%、ベンジルトルエン10質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と同じものを用いた。ベンジルトルエンは特公平8-8008号公報の参考製造例の追試において得られた異性体混合物(o-体4質量%、m-体59質量%、p-体37質量%)を用いた。
(実施例5)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン2質量%、1-フェニル-1-(4-メチルフェニル)エタン18質量%、ベンジルトルエン20質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンおよびベンジルトルエンは実施例4と同じものを用いた。
(実施例6)
 1,1-ジフェニルエタン30質量%、1-フェニル-1-(2-メチルフェニル)エタン1質量%、1-フェニル-1-(3-メチルフェニル)エタン31質量%、1-フェニル-1-(4-メチルフェニル)エタン28質量%、ベンジルトルエン10質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例2と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例7)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン11質量%、1-フェニル-1-(4-メチルフェニル)エタン9質量%、ベンジルトルエン20質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例2と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例8)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン16質量%、1-フェニル-1-(4-メチルフェニル)エタン14質量%、ベンジルトルエン10量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例2と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例9)
 1,1-ジフェニルエタン70質量%、1-フェニル-1-(3-メチルフェニル)エタン2質量%、1-フェニル-1-(4-メチルフェニル)エタン18質量%、ベンジルトルエン10質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例10)
 1,1-ジフェニルエタン70質量%、1-フェニル-1-(3-メチルフェニル)エタン11質量%、1-フェニル-1-(4-メチルフェニル)エタン9質量%、ベンジルトルエン10質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例2と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例11)
 1,1-ジフェニルエタン70質量%、1-フェニル-1-(3-メチルフェニル)エタン5質量%、1-フェニル-1-(4-メチルフェニル)エタン5質量%、ベンジルトルエン20質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例2と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例12)
 1,1-ジフェニルエタン80質量%、1-フェニル-1-(3-メチルフェニル)エタン1質量%、1-フェニル-1-(4-メチルフェニル)エタン9質量%、ベンジルトルエン10質量%に調製した混合油を用い、後述の実験例A、Bの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と、ベンジルトルエンは実施例4と同じものを用いた。
(実施例13)
 1,1-ジフェニルエタン20質量%、1-フェニル-1-(2-メチルフェニル)エタン1質量%、1-フェニル-1-(3-メチルフェニル)エタン9質量%、1-フェニル-1-(4-メチルフェニル)エタン70質量%に調製した混合油を用い、後述の実験例Aの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と同じものを用いた。
(実施例14)
 1,1-ジフェニルエタン80質量%、1-フェニル-1-(3-メチルフェニル)エタン2質量%、1-フェニル-1-(4-メチルフェニル)エタン18質量%に調製した混合油を用い、後述の実験例Aの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンは実施例1と同じものを用いた。
(比較例1)
 1-フェニル-1-キシリルエタンのみを用い、後述の実験例A、Bの実験を行った。結果を表1に示す。動粘度が高すぎるため、実験例Bでは-50℃の測定は出来なかった。
(比較例2)
 1,1-ジフェニルエタン55質量%、1-フェニル-1-キシリルエタン45質量%に調製した混合油を用い、後述の実験例Aの実験を行った。結果を表1に示す。
(比較例3)
 1,1-ジフェニルエタンのみを用い、後述の実験例Aの実験を行った。結果を表1に示す。
(比較例4)
 1,1-ジフェニルエタン60質量%、1-フェニル-1-(3-メチルフェニル)エタン2質量%、1-フェニル-1-(4-メチルフェニル)エタン18質量%、ジフェニルメタン20質量%に調製した混合油を用い、後述の実験例Aの実験を行った。結果を表1に示す。1-フェニル-1-メチルフェニルエタンおよびベンジルトルエンは実施例4と同じものを用いた。ジフェニルメタンは東京化成工業製の試薬(純度99重量%以上)を用いた。
<実験例A>(-40℃、-50℃での結晶化実験)
 結晶析出と温度の関係コンデンサの性能を維持するためには、最低許容温度の-50℃まで絶縁油組成物が結晶を析出しないことが望まれる。絶縁油組成物の結晶析出を確認するために、実施例1~5、比較例1~6のそれぞれの油を100mlのサンプル瓶に入れ、低温恒温槽内に静置し、その温度を1030時間保ち結晶の析出を目視によって観察した。結果を表1に示す。表において、「○」とは液に透明性があり結晶の析出が見られない状態、「△」とは透明性がなく一部に結晶析出が見られるが流動している状態、「×」とは結晶が析出し全体が固化した状態をそれぞれ示す。前記結果が「△」である油については、さらに同様の手順で、-40℃で結晶化実験を行った。-50℃以下でも固化しない本発明の絶縁油組成物はコンデンサの性能を最低許容温度まで維持できるものである。-50℃で固化しない場合であっても結晶化実験の結果が「△」である場合は、-40℃の結果が「○」であることが好ましい。
<実験例B>(モデルコンデンサによる電気絶縁油組成物としての評価)
 実験に用いたコンデンサは次の通りである。固体絶縁体としてはチューブラー法で作られた信越フィルム(株)製の同時二軸延伸ポリプロピレンフィルムの易含浸タイプを用いた。厚さ12.7μm(重量法)のものを2枚使用し、これをアルミ箔電極と共に巻回して、静電容量が0.2から0.3μFの素子を作り、これをブリキ製の缶に入れた。缶は絶縁体油が低温で収縮したときに充分に対応できるように柔軟な構造にした。また、電極の端部はスリットしたままで折り曲げてないものとした。
 電極から端子までを結線する方法として、一般には素子内部の電極面にリボン状のリード箔を挿入する方法が用いられているが、この方法では、結晶が析出した場合に、リード箔と電極面で接触不良を起こし、電極からの部分放電が生じて測定できない恐れがある。このため本実験以後では、高周波用に用いられる方法と同じく、電極の一端をそれぞれフィルムよりはみ出した構造で巻き、はみ出した部分をまとめてリード線とスポット溶接する構造にした。
 このようにして準備された缶型のコンデンサを、常法に従って真空乾燥した後、同じ真空下で絶縁油を含浸し、封口した。次に含浸を一定にし安定化するために、最高80℃の温度2昼夜熱処理を施した。これを室温で5日間以上放置した後、AC1270V(50V/μmに相当)にて30℃の恒温槽で16時間課電処理をした後に実験に供した。
 誘電体として厚み12.7μmのポリプロピレンフィルムを2枚重ねたものを使用し、電極として、アルミニウム箔を常法に従って、巻回、積層することにより、油含浸用のモデルコンデンサを作成した。
 このコンデンサに、真空下で各混合油を含浸させて、静電容量0.26μFの油含浸コンデンサを作成した。なお、含浸にあたっては各電気絶縁油組成物を予め活性白土で処理して用いた。すなわち水沢化学工業(株)製の活性白土ガレオナイト#036を電気絶縁油組成物に10質量%添加し、液温25℃で30分間撹拌しその後濾過した。濾過後塩素捕獲剤としてエポキシ化合物(脂環式エポキシド;商品名:セロキサイド2021P、ダイセル化学工業(株)製)を0.65質量%添加して含浸用に用いた。
 次に、これら油含浸コンデンサを所定の温度下で所定の方法で交流電圧を課電して、コンデンサが絶縁破壊を起こした電圧と時間から式1により絶縁破壊電圧を求めた。なお所定の課電方法とは、電位傾度50v/μmから、24時間毎に10v/μmの割合で連続的に課電電圧を上昇させる方法である。
  絶縁破壊電圧(v/μm)=V+S×(T/1440):式1
   ここで V:絶縁破壊時の課電電圧(v/μm)
       S:24時間毎の上昇電圧(v/μm)
       T:課電電圧上昇後、絶縁破壊までの経過時間(分)
Figure JPOXMLDOC01-appb-T000001
 
 表中の1,1-DPEは1,1-ジフェニルエタン、o-PTEは1-フェニル-1-(2-メチルフェニル)エタン、m-PTEは1-フェニル-1-(3-メチルフェニル)エタン、p-PTEは1-フェニル-1-(4-メチルフェニル)エタン、BTはベンジルトルエン、PXEは1-フェニル1-キシリルエタン、DPMはジフェニルメタンをそれぞれ指す。
 結晶化実験では、実施例の組成物は、-50℃で長時間保持しても固化しないことが確認された。これに対して比較例1~4の組成物は-50℃で長時間保持した場合固化し、実施例と比較して低温での性能が劣った。
 モデルコンデンサによる評価では、実施例の組成物は、-50℃で91V/μm以上、-30℃で110V/μm以上、30℃で140V/μm以上の絶縁破壊電圧を示したことから、十分な電気絶縁性能を示すことが確認された。これに対し比較例3の組成物は-30℃の値が、比較例2の組成物は-50℃と-30℃の値が、実施例の組成物より低く、絶縁破壊性能が劣った。
 以上から、本発明の組成物は-50~30℃までの広い温度領域で高い性能を示す電気絶縁油組成物であるといえる。
 本発明の電気絶縁油組成物は、-50℃~30℃の広い温度領域での特性に優れ、また組成物の各成分は生体に対する悪影響などが無く、コンデンサ含浸用の電気絶縁油組成物として実用的に極めて優れたものである。

Claims (4)

  1.  炭素数14(C14)と炭素数15(C15)のジアリールアルカンからなる電気絶縁油組成物であって、C14のジアリールアルカンが1,1-ジフェニルエタンまたは1,1-ジフェニルエタンとベンジルトルエンの混合物であり、C15のジアリールアルカンが1-フェニル-1-メチルフェニルエタンであることを特徴とする電気絶縁油組成物。
  2.  1,1-ジフェニルエタン/1-フェニル-1-メチルフェニルエタン(質量比)が0.5~8.0であることを特徴とする請求項1に記載の電気絶縁油組成物。
  3.  1-フェニル-1-メチルフェニルエタンのうち、1-フェニル-1-(3-メチルフェニル)エタンと1-フェニル-1-(2-メチルフェニル)エタンの合計含有量が電気絶縁油組成物基準で25質量%以下であることを特徴とする請求項1または2に記載の電気絶縁油組成物。
  4.  請求項1~3のいずれかに記載の電気絶縁油組成物に活性白土を接触させた後、エポキシ化合物を0.01~1.0質量%添加することにより得られる電気絶縁油組成物。
PCT/JP2013/052364 2012-02-03 2013-02-01 広い温度領域での性能に優れた電気絶縁油組成物 WO2013115372A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/375,320 US20150008377A1 (en) 2012-02-03 2013-02-01 Electrical insulating oil composition having excellent properties in wide temperature range
BR112014018917A BR112014018917A8 (pt) 2012-02-03 2013-02-01 Composição de óleo isolante elétrico tendo propriedades excelentes em ampla faixa de temperatura
EP13743323.1A EP2811488A4 (en) 2012-02-03 2013-02-01 ELECTRICALLY INSULATING OIL COMPOSITION WITH EXCELLENT PROPERTIES IN A WIDE REGION OF TEMPERATURES
CN201380007362.7A CN104081469A (zh) 2012-02-03 2013-02-01 在广泛温度范围内具有优良性能的电绝缘油组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021882 2012-02-03
JP2012-021882 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115372A1 true WO2013115372A1 (ja) 2013-08-08

Family

ID=48905399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052364 WO2013115372A1 (ja) 2012-02-03 2013-02-01 広い温度領域での性能に優れた電気絶縁油組成物

Country Status (6)

Country Link
US (1) US20150008377A1 (ja)
EP (1) EP2811488A4 (ja)
JP (1) JPWO2013115372A1 (ja)
CN (1) CN104081469A (ja)
BR (1) BR112014018917A8 (ja)
WO (1) WO2013115372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056316A (ja) * 2013-09-12 2015-03-23 Jx日鉱日石エネルギー株式会社 電気絶縁油組成物及び油含浸電気機器
JP2018026362A (ja) * 2017-11-06 2018-02-15 Jxtgエネルギー株式会社 電気絶縁油組成物及び油含浸電気機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2867272C (en) * 2012-03-13 2019-10-29 Jx Nippon Oil & Energy Corporation Capacitor oil having excellent properties in wide temperature range
CN105869882B (zh) * 2016-04-08 2018-03-20 郑州航空工业管理学院 一种电磁炉用金属化聚丙烯膜电容器
CN109439290B (zh) * 2018-12-05 2021-03-16 山东恒利热载体工程技术有限公司 一种环保有机热载体及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750708A (en) 1980-09-10 1982-03-25 Nippon Petrochemicals Co Ltd Electric insulating oil
JPS59217901A (ja) * 1983-05-26 1984-12-08 日新電機株式会社 油入電気機器の製造方法
JPS6087231A (ja) 1983-09-23 1985-05-16 アトーシュム ポリアリールアルカンオリゴマー組成物及びその製造法
JPS61241907A (ja) 1985-04-19 1986-10-28 日本石油化学株式会社 油浸コンデンサ−
JPS6364217A (ja) 1986-09-04 1988-03-22 日本石油化学株式会社 電気絶縁油組成物
JPH01228924A (ja) * 1988-03-09 1989-09-12 Nippon Petrochem Co Ltd 凝固点の低いジアリールアルカン混合物の製造方法
JPH088008A (ja) 1994-06-27 1996-01-12 Sekisui Chem Co Ltd コンセントアセンブリ
JP2003119159A (ja) 2001-10-15 2003-04-23 Nippon Petrochemicals Co Ltd ジアリールアルカンの製造方法
CN102290123A (zh) * 2011-04-26 2011-12-21 常州市武进东方绝缘油有限公司 一种低粘度低氯绝缘油及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062791A (en) * 1975-07-30 1977-12-13 Nippon Oil Co., Ltd. Electrical insulating oil
US4320034A (en) * 1979-10-12 1982-03-16 Mcgraw-Edison Company Electrical capacitor having an improved dielectric system
US4347169A (en) * 1980-06-30 1982-08-31 Nippon Petrochemicals Company, Limited Electrical insulating oil and oil-filled electrical appliances
JPS5750710A (en) * 1980-09-11 1982-03-25 Nippon Petrochemicals Co Ltd Electric insulating coil composition
US4543207A (en) * 1982-12-25 1985-09-24 Nippon Petrochemicals Company, Limited Electrical insulating oil and oil-filled electrical appliances
CA1211761A (en) * 1982-12-25 1986-09-23 Atsushi Sato Electrical insulating substance and oil-filled electrical appliances containing the same
DE3432746A1 (de) * 1984-09-06 1986-03-13 Chemische Fabrik Wibarco GmbH, 4530 Ibbenbüren Isolieroel fuer elektrische mittel- und hochspannungseinrichtungen
CA1277131C (en) * 1985-04-19 1990-12-04 Atsushi Sato Oil-impregnated capacitor
JPH03118337A (ja) * 1989-10-02 1991-05-20 Kureha Chem Ind Co Ltd 1,1―ジアリールエタンの製造方法
JP3338547B2 (ja) * 1994-02-09 2002-10-28 新日本石油化学株式会社 金属化ポリプロピレンフィルムコンデンサ
US5711895A (en) * 1994-12-12 1998-01-27 Nippon Oil Co., Ltd. Fluid composition for use in a refrigerating machine in which the refrigerating machine oil is at least one hydrocarbon compound of a formula consisting of two phenyl groups joined through an alkylene or alkenylene group
US6585917B2 (en) * 2001-04-12 2003-07-01 Cooper Industries, Inc. Dielectric fluid
CN100513538C (zh) * 2005-05-13 2009-07-15 西安电力电容器研究所 一种二芳基烷绝缘油
MX2010003981A (es) * 2007-10-18 2010-07-01 Cooper Technologies Co Fluido dieléctrico para un desempeño mejorado de un capacitor.
CN101643681A (zh) * 2009-06-06 2010-02-10 烟台金正精细化工有限公司 一种新型绝缘液体的制备方法
JP5814637B2 (ja) * 2011-06-07 2015-11-17 Jx日鉱日石エネルギー株式会社 低温特性に優れた電気絶縁油組成物
CA2867272C (en) * 2012-03-13 2019-10-29 Jx Nippon Oil & Energy Corporation Capacitor oil having excellent properties in wide temperature range
JP6240444B2 (ja) * 2013-09-12 2017-11-29 Jxtgエネルギー株式会社 電気絶縁油組成物及び油含浸電気機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750708A (en) 1980-09-10 1982-03-25 Nippon Petrochemicals Co Ltd Electric insulating oil
JPS59217901A (ja) * 1983-05-26 1984-12-08 日新電機株式会社 油入電気機器の製造方法
JPS6087231A (ja) 1983-09-23 1985-05-16 アトーシュム ポリアリールアルカンオリゴマー組成物及びその製造法
JPS61241907A (ja) 1985-04-19 1986-10-28 日本石油化学株式会社 油浸コンデンサ−
JPH0461486B2 (ja) * 1985-04-19 1992-10-01 Nippon Petrochemicals Co Ltd
JPS6364217A (ja) 1986-09-04 1988-03-22 日本石油化学株式会社 電気絶縁油組成物
JPH01228924A (ja) * 1988-03-09 1989-09-12 Nippon Petrochem Co Ltd 凝固点の低いジアリールアルカン混合物の製造方法
JPH088008A (ja) 1994-06-27 1996-01-12 Sekisui Chem Co Ltd コンセントアセンブリ
JP2003119159A (ja) 2001-10-15 2003-04-23 Nippon Petrochemicals Co Ltd ジアリールアルカンの製造方法
CN102290123A (zh) * 2011-04-26 2011-12-21 常州市武进东方绝缘油有限公司 一种低粘度低氯绝缘油及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811488A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056316A (ja) * 2013-09-12 2015-03-23 Jx日鉱日石エネルギー株式会社 電気絶縁油組成物及び油含浸電気機器
CN105531772A (zh) * 2013-09-12 2016-04-27 吉坤日矿日石能源株式会社 电绝缘油组合物和油浸电设备
EP3046114A1 (en) * 2013-09-12 2016-07-20 JX Nippon Oil & Energy Corporation Electrically insulating oil composition, and oil-impregnated electrical equipment
EP3046114A4 (en) * 2013-09-12 2017-05-03 JX Nippon Oil & Energy Corporation Electrically insulating oil composition, and oil-impregnated electrical equipment
CN105531772B (zh) * 2013-09-12 2018-02-27 吉坤日矿日石能源株式会社 电绝缘油组合物和油浸电设备
US10373758B2 (en) 2013-09-12 2019-08-06 Jxtg Nippon Oil & Energy Corporation Electrically insulating oil composition, and oil-impregnated electrical equipment
JP2018026362A (ja) * 2017-11-06 2018-02-15 Jxtgエネルギー株式会社 電気絶縁油組成物及び油含浸電気機器

Also Published As

Publication number Publication date
CN104081469A (zh) 2014-10-01
BR112014018917A8 (pt) 2017-07-11
EP2811488A1 (en) 2014-12-10
US20150008377A1 (en) 2015-01-08
BR112014018917A2 (ja) 2017-06-20
EP2811488A4 (en) 2016-04-06
JPWO2013115372A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5814637B2 (ja) 低温特性に優れた電気絶縁油組成物
JP5993936B2 (ja) 広い温度領域での性能に優れたコンデンサ油
WO2013115372A1 (ja) 広い温度領域での性能に優れた電気絶縁油組成物
JPS6364213A (ja) 電気絶縁油組成物
US3424957A (en) Electrical capacitor and dielectric material therefor
JP7068043B2 (ja) 電気絶縁油組成物
US10373758B2 (en) Electrically insulating oil composition, and oil-impregnated electrical equipment
WO2013141227A1 (ja) 電気絶縁油組成物
JP6454395B2 (ja) 電気絶縁油組成物及び油含浸電気機器
JPH07226332A (ja) 金属化ポリプロピレンフィルムコンデンサ
JP2514004B2 (ja) 新規な電気絶縁油組成物
JP2528290B2 (ja) 電気絶縁油組成物
JP2013105804A (ja) 金属化フィルムコンデンサ
JP2012248716A (ja) 金属化フィルムコンデンサ
JP2013065747A (ja) 金属化フィルムコンデンサ
JPS61171005A (ja) コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556519

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013743323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14375320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018917

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014018917

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140731