WO2013114576A1 - 電力伝送装置、電力伝送システム、及び電力伝送方法 - Google Patents

電力伝送装置、電力伝送システム、及び電力伝送方法 Download PDF

Info

Publication number
WO2013114576A1
WO2013114576A1 PCT/JP2012/052185 JP2012052185W WO2013114576A1 WO 2013114576 A1 WO2013114576 A1 WO 2013114576A1 JP 2012052185 W JP2012052185 W JP 2012052185W WO 2013114576 A1 WO2013114576 A1 WO 2013114576A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
resonance
power
coils
power transmission
Prior art date
Application number
PCT/JP2012/052185
Other languages
English (en)
French (fr)
Inventor
清人 松井
聡 下川
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013556130A priority Critical patent/JP5915667B2/ja
Priority to PCT/JP2012/052185 priority patent/WO2013114576A1/ja
Publication of WO2013114576A1 publication Critical patent/WO2013114576A1/ja
Priority to US14/444,816 priority patent/US9672979B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present disclosure generally relates to a power supply system, and more particularly to a wireless power supply system that supplies power wirelessly.
  • One of the wireless power transmission technologies for performing power transmission between two spatially separated points without using a power transmission cable is a magnetic resonance power transmission technology for performing power transmission using a magnetic resonance phenomenon.
  • a coil (LC resonance coil) having a resonance function by a capacitor and an inductor is provided on the power transmission side and the power reception side.
  • the LC resonance coils on the power transmission side and the power reception side have the same resonance frequency, and transmit power from the power transmission side to the power reception side through a high-frequency AC magnetic field having this resonance frequency.
  • the distance between the transmitting and receiving coils (the distance in the direction perpendicular to the coil surface) and the positional deviation margin on the power receiving side (the direction parallel to the coil surface) Large deviation).
  • power can be transmitted with high efficiency even between coils of different sizes.
  • a resonance coil with a small diameter has good power transmission efficiency at a relatively short distance, and power transmission efficiency at a relatively far distance deteriorates.
  • a resonance coil with a large diameter has good power transmission efficiency at a relatively far distance, and the power transmission efficiency at a relatively close distance deteriorates. If the distance between the power transmitting device and the power receiving device is constant, it is possible to design a resonance coil that is optimal at that distance. However, when the distance between transmission and reception is not fixed, there is a problem that power transmission efficiency deteriorates according to the amount of deviation from the optimum distance.
  • a power transmission device, a power transmission system, and a power transmission method that do not deteriorate transmission efficiency even when the distance between transmission and reception varies are desired.
  • the power transmission device includes a power transmission or power reception circuit, one coil connected to the power transmission or power reception circuit by wire, and a plurality of resonance coils having different diameters that are selectively coupled to the one coil by electromagnetic induction.
  • a position control device that controls the positions of the plurality of resonance coils, wherein the position control device selectively selects an axial direction of one of the plurality of resonance coils as an axial direction of the one coil. It is characterized by matching.
  • the power transmission system includes a power transmitter and a power receiver that receives power from the power transmitter by magnetic resonance, and at least one of the power transmitter and the power receiver includes a power transmission or power reception circuit and the power transmission or power reception circuit.
  • One coil connected by wire, a plurality of resonance coils having different diameters selectively coupled to the one coil by electromagnetic induction, and a position control device for controlling the positions of the plurality of resonance coils The position control device is characterized in that the axial direction of one of the plurality of resonant coils is selectively matched with the axial direction of the one coil.
  • one resonance coil of a plurality of resonance coils having different diameters is selected, the axial direction of the one resonance coil is selectively matched with the axial direction of one coil, and the one resonance coil is selected.
  • the axial direction of the resonance coil other than the coil is orthogonal to the axial direction of the one coil, AC power is supplied to the one coil via a wired connection, and electromagnetic resonance is applied from the one coil to the one resonance coil.
  • Each step includes supplying AC power and transmitting the power from the one resonance coil to the reception-side resonance coil by magnetic resonance.
  • a power transmission device it is possible to provide a power transmission device, a power transmission system, or a power transmission method in which power transmission efficiency does not deteriorate even when the distance between transmission and reception varies.
  • FIG. 3 is a plan view of the arrangement of the coil and the resonance coil shown in FIG. It is a perspective view for demonstrating another example of arrangement
  • FIG. 1 It is a figure which shows the coil by the side of power transmission at the time of providing a some resonance coil in the power receiving side, and the coil by the side of power receiving. It is a figure which shows the relationship between power transmission distance and electric power transmission efficiency. It is a block diagram which shows an example of the detailed structure of the power transmission device and power receiving device in the electric power transmission system with which the some resonance coil was provided in the power transmission side. It is a flowchart which shows an example of operation
  • FIG. 1 is a diagram showing an example of the configuration of a magnetic resonance power transmission system.
  • 1 includes an oscillation circuit 11, a coil 12, resonance coils 13-1 and 13-2, capacitors 14-1 and 14-2, a resonance coil 15, a capacitor 16, a coil 17, a rectifier circuit 18, In addition, a battery 19 is included.
  • the oscillation circuit 11, the coil 12, the resonance coils 13-1 and 13-2, and the capacitors 14-1 and 14-2 correspond to a power transmitter.
  • the resonant coil 15, the capacitor 16, the coil 17, the rectifier circuit 18, and the battery 19 correspond to a power receiver.
  • the power receiver receives power from the power transmitter by magnetic resonance
  • at least one of the power transmitter and the power receiver may include a plurality of resonance coils.
  • the power transmission system 10 shown in FIG. 1 as an example, a configuration in which a plurality of resonance coils 13-1 and 13-2 are provided on the power transmitter side is shown.
  • the power transmission system 10 is not limited to this configuration, and a plurality of resonance coils may be provided on the power receiver side, and a plurality of resonance coils are provided on both the power transmitter side and the power receiver side. May be.
  • the number of the plurality of resonance coils provided in this way is not necessarily two, and three or more resonance coils may be provided.
  • the oscillation circuit 11 oscillates at a desired oscillation frequency.
  • the coil 12 is connected to the oscillation circuit 11 which is a power transmission circuit by wire.
  • the oscillation circuit 11 supplies AC power having the above oscillation frequency to the coil 12 via a wired connection.
  • the coil 12 is selectively coupled to one of a plurality of resonance coils 13-1 and 13-2 having different diameters by electromagnetic induction, and supplies power to the coupled resonance coils.
  • the capacitor 14-1 is connected to the resonance coil 13-1, and the resonance coil 13-1 and the capacitor 14-1 function as a resonance circuit.
  • a capacitor 14-2 is connected to the resonance coil 13-2, and the resonance coil 13-2 and the capacitor 14-2 function as a resonance circuit.
  • a capacitor 16 is connected to the resonance coil 15, and the resonance coil 15 and the capacitor 16 function as a resonance circuit.
  • Each resonant circuit may have the same resonant frequency.
  • the oscillation circuit 11 may supply AC power having this resonance frequency to the coil 12.
  • each capacitor connected to the coil is shown as a capacitor (capacitance element), but is not limited to this configuration.
  • Each capacitance may be a stray capacitance included in each corresponding coil.
  • the number of turns of each coil is not limited to a specific number of turns.
  • the number of turns of each coil may be one turn or multiple turns.
  • Each coil may be a helical coil or a spiral coil. However, as will be described later, each coil is preferably substantially flat. That is, in the case of a multi-turn helical coil, it is preferable that the axial length of the coil is sufficiently short with respect to the coil diameter.
  • the resonance coil 15 is coupled to the coil 17 by electromagnetic induction, and supplies AC power to the coil 17.
  • the coil 17 is connected by wire to a rectifier circuit 18 that is a power receiving circuit.
  • the coil 17 supplies AC power to the rectifier circuit 18 via a wired connection.
  • the rectifier circuit 18 rectifies AC power to generate a DC voltage, and charges the battery 19 by applying the DC voltage to the battery 19.
  • FIG. 2 is a perspective view for explaining the position control of the coil 12 and the resonance coils 13-1 and 13-2.
  • the coil 12 and the resonance coils 13-1 and 13-2 are fixed to the position control device 20.
  • the capacitance connected to the resonance coils 13-1 and 13-2 is not shown.
  • the position control device 20 may include a motor (for example, a stepping motor) driven by a control circuit, and the coil 12 or the resonance coils 13-1 and 13-2 are moved around the same rotation axis A by the driving force of the motor. Rotate. In FIG. 2, the direction of the rotation axis A coincides with the direction of the Z axis.
  • the position control device 20 controls the positions of the plurality of resonance coils 13-1 and 13-2, and selects one of the plurality of resonance coils 13-1 and 13-2 (resonance coil in the arrangement example in FIG. 2).
  • the axial direction of 13-2) is selectively matched with the axial direction of the coil 12.
  • the position control device 20 has a resonance coil (in the arrangement example of FIG. 2) other than the one resonance coil (resonance coil 13-2 in the arrangement example of FIG. 2) of the plurality of resonance coils 13-1 and 13-2.
  • the axial direction of the resonance coil 13-1) is positioned so as to be orthogonal to the axial direction of the coil 12.
  • FIG. 3 is a plan view of the arrangement of the coil 12 and the resonance coils 13-1 and 13-2 shown in FIG. 2 as viewed from above (the positive direction of the Z axis). As shown in FIG. 3, in this arrangement example, the axial direction of the coil 12 and the resonant coil 13-2 coincides with the Y-axis direction, and the axial direction of the resonant coil 13-1 is equal to the X-axis direction. I'm doing it.
  • the axial direction of the coil is a direction in which the center axis of a virtual or substantial cylindrical or prismatic shape around which the coil wire is wound extends in the case of a multi-turn helical coil and passes through the coil. It corresponds to the direction of magnetic flux.
  • the axial direction is a direction perpendicular to the plane including the spiral, and coincides with the direction of the magnetic flux passing through the coil central portion in the plane including the coil.
  • the axial direction is a direction perpendicular to the plane including the single-turn coil, and coincides with the direction of the magnetic flux passing through the coil center in the plane including the coil.
  • each coil may be a helical coil, but in the case of a coil having a long axial length, there is a possibility that the coils may physically come into contact with each other when the coils are rotated as shown in FIG. And will interfere with the flow of magnetic flux.
  • each coil is preferably substantially flat. That is, in the case of a multi-turn helical coil, it is preferable that the axial length of the coil is sufficiently short with respect to the coil diameter.
  • the position control device 20 includes one resonance coil (see FIG. 2 and FIG. 2) of the plurality of resonance coils 13-1 and 13-2.
  • 13-2) may be selectively placed on the same plane as the coil 12. Further, the position control device 20 places a resonance coil (13-1 in the examples of FIGS. 2 and 3) other than the one of the plurality of resonance coils 13-1 and 13-2 on a plane orthogonal to the coil 12. May be located.
  • the coils rotate around the same rotation axis, but the rotation axes of the coils may not be the same, but the rotation axis of the resonance coil is parallel to the coil 12 (see FIG. 3 is preferably near the center in the X direction).
  • the direction perpendicular to the coil 12 (the Y direction in FIG. 3) may be anywhere.
  • the magnetic flux passing through the coil 12 passes through the resonance coil 13-2. Coupled by electromagnetic induction. That is, by supplying AC power to the coil 12, power can be transmitted from the coil 12 to the resonance coil 13-2. Further, since the axial directions of the coil 12 and the resonance coil 13-1 are orthogonal, the magnetic flux passing through the coil 12 does not pass through the resonance coil 13-1, and the two coils are not coupled by electromagnetic induction. That is, even if AC power is supplied to the coil 12, power is not transmitted from the coil 12 to the resonance coil 13-1.
  • FIG. 4 is a perspective view for explaining another arrangement example of the coil 12 and the resonance coils 13-1 and 13-2.
  • illustration of the position control device 20 is omitted, and only the positional relationship between the rotation axis A and each coil is shown.
  • the positions of the plurality of resonance coils 13-1 and 13-2 are controlled, and the axial direction of one resonance coil 13-1 among the plurality of resonance coils 13-1 and 13-2 is controlled.
  • the axial directions of the resonance coils 13-2 other than the one resonance coil 13-1 among the plurality of resonance coils 13-1 and 13-2 are positioned so as to be orthogonal to the axial direction of the coil 12.
  • the magnetic flux passing through the coil 12 passes through the resonance coil 13-1, and both coils are subjected to electromagnetic induction. Combined. That is, by supplying AC power to the coil 12, power can be transmitted from the coil 12 to the resonance coil 13-1. Further, since the axial directions of the coil 12 and the resonance coil 13-2 are orthogonal, the magnetic flux passing through the coil 12 does not pass through the resonance coil 13-2, and the two coils are not coupled by electromagnetic induction. That is, even if AC power is supplied to the coil 12, power is not transmitted from the coil 12 to the resonance coil 13-2.
  • the coil 12 is selectively coupled by electromagnetic induction to one of the plurality of resonance coils 13-1 and 13-2 having different diameters, and supplies power to the coupled resonance coils. Electric power is transmitted to the power receiving side resonance coil by magnetic resonance through the selectively coupled resonance coils.
  • FIG. 5 is a diagram showing a coil on the power transmission side and a coil on the power reception side.
  • the coils on the power transmission side are arranged so that the axial direction of the coil 12 coincides with the axial direction of the resonance coil 13-2 and is orthogonal to the axial direction of the resonance coil 13-1.
  • a resonance coil 15 and a coil 17 which are coils on the power receiving side are arranged at a distance from the coils on the power transmission side.
  • the resonance coil 15 and the coil 17 may have the same axial direction as illustrated.
  • both the resonance coil 15 and the coil 17 are plate-shaped, the resonance coil 15 and the coil 17 may be located on the same plane as illustrated.
  • the coil 12 on the power transmission side is selectively coupled to one of the plurality of resonance coils 13-1 and 13-2 by electromagnetic induction, and the selectively coupled power transmission Power is transmitted from the side resonance coil to the power reception side resonance coil 15 by magnetic resonance. Further, power is transmitted from the power receiving side resonance coil 15 to the power receiving side coil 17, and power is supplied from the coil 17 to the power receiving circuit (rectifier circuit 18 in FIG. 1).
  • FIG. 6 is a diagram showing the relationship between the transmission distance and the power transmission efficiency.
  • the power transmission efficiency shown in FIG. 6 is obtained by computer simulation.
  • the conditions for computer simulation are as follows.
  • the coil 12 is one winding of a conducting wire having a wire diameter of 1 mm so as to have a coil diameter of 26 mm.
  • the resonance coil 13-1 is obtained by winding a conducting wire having a wire diameter of 2 mm three times at a pitch of 3 mm so as to have a coil diameter of 20 mm (outermost diameter).
  • the resonance coil 13-2 is a coil in which a conductor having a wire diameter of 1 mm is wound once so as to have a coil diameter of 60 mm.
  • the resonance coil 15 is obtained by winding a conducting wire having a wire diameter of 2 mm three times at a pitch of 3 mm so as to have a coil diameter of 20 mm (outermost diameter).
  • the coil 17 is one winding of a conducting wire having a wire diameter of 1 mm so as to have a coil diameter of 26 mm.
  • the resonance frequency is 2 MHz.
  • the power transmission distance is a distance between the center of the resonance coil 13-1 or 13-2 and the center of the resonance coil 15.
  • FIG. 7 is a diagram illustrating an example of a configuration in which three resonance coils are provided on the power transmission side.
  • a resonance coil 13-3 having a diameter larger than that of the resonance coil 13-2 is provided.
  • the resonance coils 13-1 to 13-3 may be able to rotate independently around the rotation axis A, respectively.
  • FIG. 8 is a diagram showing the relationship between the transmission distance and the power transmission efficiency.
  • the power transmission efficiency shown in FIG. 8 is the power transmission efficiency obtained by the same computer simulation as that shown in FIG.
  • As the conditions for the computer simulation in addition to the same simulation conditions as in FIG. 6, as the resonance coil 13-3, a conductor wire having a wire diameter of 2 mm and having one turn so as to have a coil diameter of 80 mm is used.
  • an appropriate one of the plurality of resonance coils 13-1 to 13-3 may be selected according to the length of the power transmission distance and used for magnetic resonance power transmission. That is, when the transmission distance is relatively short, the resonance coil 13-1 may be selected and used for magnetic resonance power transmission. When the transmission distance is medium, the resonance coil 13-2 may be selected and used for magnetic resonance power transmission. When the transmission distance is relatively long, the resonance coil 13-3 may be selected and used for magnetic resonance power transmission.
  • FIG. 9 is a diagram showing a coil on the power transmission side and a coil on the power reception side when a plurality of resonance coils are provided on the power reception side.
  • a coil 12 and one resonance coil 13 are provided on the power transmission side.
  • a coil 17 and two resonance coils 15-1 and 15-2 are provided on the power receiving side.
  • the coil 12 and the resonance coil 13 may have the same axial direction as illustrated. When the coil 12 and the resonance coil 13 are both flat, the coil 12 and the resonance coil 13 may be located on the same plane as shown in the figure.
  • the coil 17 and the resonance coils 15-1 and 15-2 are fixed to the position control device 40.
  • the position control device 40 may incorporate a motor (for example, a stepping motor) driven by a control circuit, and the coil 17 or the resonance coils 15-1 and 15-2 are moved around the same rotation axis B by the driving force of the motor. Rotate.
  • the position control device 40 controls the positions of the plurality of resonance coils 15-1 and 15-2, and selects one of the plurality of resonance coils 15-1 and 15-2 (resonance coil in the arrangement example of FIG. 9).
  • the axial direction of 15-2) is selectively matched with the axial direction of the coil 17.
  • the position control device 40 has a resonance coil other than the one resonance coil (resonance coil 15-2 in the arrangement example of FIG. 9) among the plurality of resonance coils 15-1 and 15-2 (in the arrangement example of FIG. 9).
  • the axial direction of the resonance coil 15-1) is positioned so as to be orthogonal to the axial direction of the coil 17.
  • the coil 12 on the power transmission side is coupled to the resonance coil 13 by electromagnetic induction, and a plurality of resonance coils 15-on the power reception side are generated from the resonance coil 13 on the power transmission side by magnetic resonance.
  • Power is transmitted to 1 and 15-2.
  • one of the resonance coils 15-1 and 15-2 on the power receiving side is selectively coupled to the coil 17 by electromagnetic induction, and power is transmitted to the coil 17 on the power receiving side. Further, power is supplied from the coil 17 to the power receiving circuit (the rectifier circuit 18 in FIG. 1).
  • FIG. 10 is a diagram showing the relationship between the transmission distance and the power transmission efficiency.
  • the power transmission efficiency shown in FIG. 6 is obtained by computer simulation.
  • the conditions for computer simulation are as follows.
  • the coil 12 is one winding of a conducting wire having a wire diameter of 1 mm so as to have a coil diameter of 26 mm.
  • the resonance coil 13 is one winding of a conducting wire having a wire diameter of 1 mm so that the coil diameter is 60 mm.
  • the resonance coil 15-1 is obtained by winding a conducting wire having a wire diameter of 2 mm three times at a pitch of 3 mm so as to have a coil diameter of 20 mm (outermost diameter).
  • the resonance coil 15-2 is obtained by winding a conducting wire having a wire diameter of 1 mm three times at a pitch of 3 mm so that the coil diameter is 60 mm (outermost diameter).
  • the coil 17 is one winding of a conducting wire having a wire diameter of 1 mm so as to have a coil diameter of 26 mm.
  • the resonance frequency is 2 MHz.
  • the power transmission distance is a distance between the center of the resonance coil 13 and the center of the resonance coil 15-1 or 15-2.
  • the characteristic curve 41 In the relationship between the power transmission distance and the power transmission efficiency shown in FIG. 10, when power is transmitted from the resonance coil 13 having a diameter of 60 mm to the resonance coil 15-1 having a diameter of 20 mm, a comparison is made as shown by the characteristic curve 41. The power transmission efficiency is high at a short distance. When power is transmitted from the resonance coil 13 with a diameter of 60 mm to the resonance coil 15-2 with a diameter of 60 mm, as shown by the characteristic curve 42, the power transmission efficiency is high over a relatively long distance. Therefore, an appropriate one of the plurality of resonance coils 15-1 and 15-2 may be selected according to the length of the power transmission distance and used for magnetic resonance power transmission. That is, when the power transmission distance is relatively short, the resonance coil 15-1 may be selected and used for magnetic resonance power transmission. When the power transmission distance is relatively long, the resonance coil 15-2 may be selected and used for magnetic resonance power transmission.
  • FIG. 11 is a block diagram illustrating an example of a detailed configuration of a power transmitter and a power receiver in a power transmission system in which a plurality of resonance coils are provided on the power transmission side.
  • the power transmission system in FIG. 11 includes a power transmitter 50 and a power receiver 51.
  • the power transmitter 50 includes a coil 12, resonance coils 13-1 and 13-2, a power supply 61, an oscillator 62, an amplifier 63, a wireless communication device 64, a control unit 65, a motor drive unit 66, and a motor 67.
  • the power receiver 51 includes a resonance coil 15, a coil 17, a power reception circuit 71, a battery 72, a wireless communication device 73, and a control unit 74.
  • the coil 12 and the resonance coils 13-1 and 13-2 correspond to the coil 12 and the resonance coils 13-1 and 13-2 shown in FIG.
  • the oscillator 62 and the amplifier 63 correspond to the oscillation circuit 11 shown in FIG.
  • the motor drive part 66 and the motor 67 are equivalent to the position control apparatus 20 of FIG.
  • an oscillator 62 oscillates based on a power supply voltage supplied from a power supply 61, and an oscillation signal is amplified by an amplifier 63.
  • the amplified oscillation signal is supplied as AC power to the coil 12 via wired coupling.
  • the angular position of the coil 12 is adjusted by the motor 67 driven by the motor driving unit 66, and the positions of the resonance coils 13-1 and 13-2 may be fixed.
  • the coil 12 is positioned so that one of the resonance coils 13-1 and 13-2 is in the axial direction and the other one is orthogonal to the axial direction.
  • the angular position of the resonance coils 13-1 and 13-2 may be adjusted by the motor 67, and the position of the coil 12 may be fixed.
  • the motor driving unit 66 is controlled by the control unit 65.
  • the wireless communication device 64 performs wireless communication with the wireless communication device 73 of the power receiver 51 using, for example, Bluetooth (registered trademark).
  • the controller 65 receives data obtained from the power receiver 51 by the wireless communication device 64 by wireless communication, and controls the motor driving unit 66 based on this data.
  • the resonance coil 15 and the coil 17 correspond to the resonance coil 15 and the coil 17 shown in FIG.
  • the power receiving circuit 71 corresponds to the rectifier circuit 18 shown in FIG.
  • the resonance coil 15 receives power from the resonance coil 13-1 or 13-2 on the power transmitter 50 side, and transmits this power to the coil 17 through electromagnetic induction.
  • the power receiving circuit 71 receives AC power from the coil 17 through wired coupling, converts the AC power into a DC voltage, and supplies the DC voltage to the battery 72. Thereby, the battery 72 is charged.
  • the power receiving circuit 71 detects the amount of received power of the received power, and notifies the control unit 74 of the detected value of the received power amount.
  • the control unit 74 controls the wireless communication device 73 and transmits data indicating the detected value of the amount of received power from the wireless communication device 73.
  • the battery 72 monitors the state of charge of the battery, and when the charge is completed, notifies the control unit 74 of a charge completion notification.
  • the control unit 74 controls the wireless communication device 73 and transmits data indicating completion of charging from the wireless communication device 73.
  • the control unit 65 on the power transmitter 50 side controls the motor drive unit 66 according to data indicating the detected value of the amount of received power received from the wireless communication device 73 of the power reception device 51 via the wireless communication device 64.
  • an appropriate resonance coil is selected from the plurality of resonance coils 13-1 and 13-2 in accordance with the detected power reception amount. That is, an appropriate resonance coil is selected according to the distance between the power transmitter 50 and the power receiver 51.
  • the control unit 65 stops the oscillation operation of the oscillator 62 in response to data indicating completion of charging received from the wireless communication device 73 of the power receiver 51 via the wireless communication device 64. With this control, when the charging of the battery is completed, transmission of AC power can be terminated.
  • control unit 65 continues or stops the oscillation operation of the oscillator 62 according to the data indicating the detected value of the amount of received power received from the wireless communication device 73 of the power reception device 51 via the wireless communication device 64.
  • the oscillation operation of the oscillator 62 may be stopped and the transmission of the AC power may be terminated.
  • the control unit 65 may stop the oscillation operation of the oscillator 62 when no data is received from the wireless communication device 73 of the power receiver 51 for a predetermined time or longer.
  • FIG. 12 is a flowchart showing an example of the operation of the power transmission system shown in FIG.
  • step S ⁇ b> 1 it is detected whether or not the power receiver 51 is placed within a range where power can be transmitted from the power transmitter 50.
  • the power transmitter 50 may be notified that the power receiver 51 has been placed in the power transferable range by a manual switch operation on the power transmitter 50 or the like.
  • it may be detected whether or not the power receiver 51 is placed in a power transferable range by wireless communication means such as Bluetooth (registered trademark) between the power receiver 51 and the power transmitter 50.
  • the determination in step S1 is repeated until it is detected that the power receiver 51 is placed within the power transferable range.
  • step S1 If it is detected that the power receiver 51 is placed within the power transferable range (YES in step S1), the process proceeds to step S2.
  • step S2 power is transmitted from the coil B (for example, the resonance coil 13-1 in FIG. 2) to the power receiver 51, the amount of power received is detected by the power receiver 51, and the control unit 65 of the power transmitter 50 performs wireless data communication. Confirm the amount of power received via Further, in step S3, power is transmitted from the coil A (for example, the resonance coil 13-2 in FIG. 2) to the power receiver 51, and the power reception amount is detected by the power receiver 51. Check the amount of power received via.
  • step S4 the received power amount is compared, and it is determined whether the received power amount in the case of the coil A is larger than the received power amount in the case of the coil B. If the decision result in the step S4 is YES, the coil A (for example, the resonance coil 13-2 in FIG. 2) is selected and power is transmitted from the coil A to the power receiver 51. If the determination result in step S4 is NO, the coil B (for example, the resonance coil 13-1 in FIG. 2) is selected, and power is transmitted from the coil B to the power receiver 51.
  • the coil A for example, the resonance coil 13-2 in FIG. 2
  • the coil B for example, the resonance coil 13-1 in FIG. 2
  • step S7 it is detected whether or not the power receiver 51 is within a range where power can be transmitted from the power transmitter 50. If the power receiver 51 is within a range in which power can be transmitted from the power transmitter 50 (YES in step S7), it is determined in step S8 whether or not the battery is fully charged. If the battery is not fully charged (NO in step S8), the process returns to step S7 and the subsequent processing is repeated.
  • step S9 Power transmission from the power transmitter 50 is stopped.
  • FIG. 13 is a block diagram illustrating an example of a detailed configuration of a power transmitter and a power receiver in a power transmission system in which a plurality of resonance coils are provided on the power receiving side.
  • the power transmission system in FIG. 11 includes a power transmitter 50A and a power receiver 51A.
  • the power transmitter 50 ⁇ / b> A includes a coil 12, a resonance coil 13, a power supply 61, an oscillator 62, an amplifier 63, a wireless communication device 64, and a control unit 65.
  • the power receiver 51A includes resonance coils 15-1 and 15-2, a coil 17, a power receiving circuit 71, a battery 72, a wireless communication device 73, a control unit 74, a motor driving unit 75, and a motor 76.
  • FIG. 13 the same or corresponding elements as those of FIG. 11 are referred to by the same or corresponding numerals, and a description thereof will be omitted as appropriate.
  • the power transmission system in FIG. 13 includes a plurality of resonance coils on the power receiving side, and accordingly, a motor drive unit 75 and a motor 76 are provided in the power receiver 51 ⁇ / b> A. ing.
  • the power transmitter 50A is not provided with a motor drive unit and a motor.
  • the angular position of the coil 17 is adjusted by the motor 76 driven by the motor driving unit 75, and the positions of the resonance coils 15-1 and 15-2 may be fixed. By this angle adjustment, the coil 17 is positioned so that one of the resonance coils 15-1 and 15-2 has the same axial direction and the other one is orthogonal to the axial direction.
  • the angular position of the resonance coils 15-1 and 15-2 may be adjusted by the motor 76, and the position of the coil 17 may be fixed.
  • the motor drive unit 75 is controlled by the control unit 74.
  • the motor drive unit 75 and the motor 76 correspond to the position control device 40 of FIG.
  • the resonance coil 15-1 or 15-2 receives power from the resonance coil 13 on the power transmitter 50A side, and transmits this power to the coil 17 via electromagnetic induction.
  • the power receiving circuit 71 receives AC power from the coil 17 through wired coupling, converts the AC power into a DC voltage, and supplies the DC voltage to the battery 72. Thereby, the battery 72 is charged.
  • the power receiving circuit 71 detects the amount of received power of the received power, and notifies the control unit 74 of the detected value of the received power amount.
  • the control unit 74 controls the motor driving unit 75 in accordance with the detected value of the power reception amount. By this control, an appropriate resonance coil is selected from the plurality of resonance coils 15-1 and 15-2 in accordance with the detected power reception amount. That is, an appropriate resonance coil is selected according to the distance between the power transmitter 50A and the power receiver 51A.
  • FIG. 14 is a flowchart showing an example of the operation of the power transmission system shown in FIG.
  • step S1 it is detected whether or not the power receiver 51A is placed in a range where power can be transmitted from the power transmitter 50A.
  • the power transmitter 50A may be informed that the power receiver 51A has been placed in the power transferable range by a manual switch operation on the power transmitter 50A.
  • the determination in step S1 is repeated until it is detected that the power receiver 51A is placed within the power transferable range.
  • step S1 When it is detected that the power receiver 51A is placed within the power transferable range (YES in step S1), the process proceeds to step S2.
  • step S2 the power receiver 51A receives power by the coil AA (for example, the resonance coil 15-2 in FIG. 9), detects the power reception amount, and the control unit 74 of the power receiver 51A confirms the power reception amount.
  • step S3 the power receiver 51A receives power by the coil BB (for example, the resonance coil 15-1 in FIG. 9), detects the power reception amount, and the control unit 74 of the power receiver 51A confirms the power reception amount.
  • step S4 the received power amount is compared, and it is determined whether the received power amount in the case of the coil AA is larger than the received power amount in the case of the coil BB. If the determination result in step S4 is YES, the coil AA (for example, the resonance coil 15-2 in FIG. 9) is selected, and the power receiver 51A receives power by the coil AA. If the determination result in step S4 is NO, the coil BB (for example, the resonance coil 15-1 in FIG. 9) is selected, and the power receiver 51A receives power through the coil BB.
  • the coil AA for example, the resonance coil 15-2 in FIG. 9
  • the power receiver 51A receives power through the coil BB.
  • step S7 it is detected whether or not the power receiver 51A is within a range where power can be transmitted from the power transmitter 50A. If the power receiver 51A exists within a range in which power can be transmitted from the power transmitter 50A (YES in step S7), it is determined in step S8 whether or not the battery is fully charged. If the battery is not fully charged (NO in step S8), the process returns to step S7 and the subsequent processing is repeated.
  • step S9 Power transmission from the power transmitter 50A is stopped.
  • the present invention has been described based on the embodiments.
  • the present invention is not limited to the above embodiments, and claims such as a case where the power receiver side is only a resonance coil or a case where the power transmitter side is only a resonance coil.
  • Various modifications are possible within the range described in the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電力伝送装置は、送電又は受電回路と、送電又は受電回路に有線で接続される一のコイルと、一のコイルと電磁誘導で選択的に結合される互いに径の異なる複数の共振コイルと、複数の共振コイルの位置を制御する位置制御装置とを含み、位置制御装置は、複数の共振コイルのうちの1つの共振コイルの軸方向を選択的に前記一のコイルの軸方向に一致させる。

Description

電力伝送装置、電力伝送システム、及び電力伝送方法
 本願開示は、一般に電力供給システムに関し、詳しくは無線で電力を供給する無線電力供給システムに関する。
 空間的に離れた2点間で送電ケーブルを用いることなく電力伝送を行なうワイヤレス電力伝送技術の1つとして、磁界共鳴現象を用いて電力伝送を行う磁気共鳴電力伝送技術がある。磁気共鳴電力伝送では、キャパシタ及びインダクタによる共振機能をもつコイル(LC共振コイル)を、送電側と受電側とに設ける。送電側及び受電側のLC共振コイルは、互いに共振周波数が一致しており、この共振周波数の高周波交流磁界を媒介として、送電側から受電側に電力を伝送する。
 磁気共鳴電力伝送では、共振を利用しない電磁誘導現象に基づくワイヤレス電力伝送に比べ、送受電コイル間距離(コイル面に直交する方向の距離)や受電側の位置ずれマージン(コイル面に平行な方向のずれ)を大きく設けることができる。またサイズの異なるコイル間でも高効率で電力伝送が可能である。
 一般的に、径の小さな共振コイルでは、比較的近い距離での送電効率がよく、比較的遠い距離での送電効率は劣化する。それに対して径の大きな共振コイルでは、比較的遠い距離での送電効率がよく、比較的近い距離での送電効率は劣化する。送電機器と受電機器との距離が一定であるならば、その距離で最適になる共振コイルの設計が可能である。しかし送受信間の距離が固定でない場合には、最適距離からのずれ量に応じて、送電効率が劣化するという問題がある。
特開2008-283791号公報 特開2010-148174号公報
 以上を鑑みると、送受信間の距離が変動しても送電効率が劣化しない電力伝送装置、電力伝送システム、及び電力伝送方法が望まれる。
 電力伝送装置は、送電又は受電回路と、前記送電又は受電回路に有線で接続される一のコイルと、前記一のコイルと電磁誘導で選択的に結合される互いに径の異なる複数の共振コイルと、前記複数の共振コイルの位置を制御する位置制御装置とを含み、前記位置制御装置は、前記複数の共振コイルのうちの1つの共振コイルの軸方向を選択的に前記一のコイルの軸方向に一致させることを特徴とする。
 電力伝送システムは、送電器と、前記送電器から磁気共鳴により電力を受信する受電器とを含み、前記送電器及び前記受電器の少なくとも一方は、送電又は受電回路と、前記送電又は受電回路に有線で接続される一のコイルと、前記一のコイルと電磁誘導で選択的に結合される互いに径の異なる複数の共振コイルと、前記複数の共振コイルの位置を制御する位置制御装置とを含み、前記位置制御装置は、前記複数の共振コイルのうちの1つの共振コイルの軸方向を選択的に前記一のコイルの軸方向に一致させることを特徴とする。
 電力伝送方法は、互いに径の異なる複数の共振コイルのうちの1つの共振コイルを選択し、前記1つの共振コイルの軸方向を選択的に一のコイルの軸方向に一致させ、前記1つの共振コイル以外の共振コイルの軸方向を前記一のコイルの軸方向と直交させ、前記一のコイルに有線接続を介して交流電力を供給し、前記一のコイルから前記1つの共振コイルに電磁誘電により交流電力を供給し、前記1つの共振コイルから受信側の共振コイルに磁気共鳴により電力を伝送する各段階を含むことを特徴とする。
 本願開示の少なくとも1つの実施例によれば、送受信間の距離が変動しても送電効率が劣化しない電力伝送装置、電力伝送システム、又は電力伝送方法を提供することができる。
磁気共鳴電力伝送システムの構成の一例を示す図である。 コイル並びに共振コイルの位置制御について説明するための斜視図である。 図2に示すコイル並びに共振コイルの配置を上(Z軸の正方向)から見た平面図である。 コイル並びに共振コイルの別の配置例について説明するための斜視図である。 送電側のコイルと受電側のコイルとを示す図である。 送電距離と電力伝送効率との間の関係を示す図である。 送電側に3つの共振コイルが設けられた構成の一例を示す図である。 送電距離と電力伝送効率との間の関係を示す図である。 受電側に複数の共振コイルを設けた場合の送電側のコイルと受電側のコイルとを示す図である。 送電距離と電力伝送効率との間の関係を示す図である。 送電側に複数の共振コイルが設けられた電力伝送システムにおける送電器と受電器との詳細な構成の一例を示すブロック図である。 図11に示す電力伝送システムの動作の一例を示すフローチャートである。 受電側に複数の共振コイルが設けられた電力伝送システムにおける送電器と受電器との詳細な構成の一例を示すブロック図である。 図13に示す電力伝送システムの動作の一例を示すフローチャートである。
 以下に、本発明の実施例を添付の図面を用いて詳細に説明する。なお以下の各図において、同一又は対応する構成要素は同一又は対応する番号で参照し、その説明は適宜省略する。
 図1は、磁気共鳴電力伝送システムの構成の一例を示す図である。図1に示す電力伝送システム10は、発振回路11、コイル12、共振コイル13-1及び13-2、容量14-1及び14-2、共振コイル15、容量16、コイル17、整流回路18、並びにバッテリ19を含む。発振回路11、コイル12、共振コイル13-1及び13-2、並びに容量14-1及び14-2が、送電器に相当する。共振コイル15、容量16、コイル17、整流回路18、並びにバッテリ19が受電器に相当する。受電器が送電器から磁気共鳴により電力を受信する電力伝送システム10において、送電器及び受電器の少なくとも一方は、複数の共振コイルを含んでよい。図1に示す電力伝送システム10では、一例として、送電器側に複数の共振コイル13-1及び13-2を設けた構成が示される。電力伝送システム10はこの構成に限定されるものではなく、受電器側に複数の共振コイルが設けられていてもよく、送電器側と受電器側との両方において複数の共振コイルが設けられていてもよい。またこのようにして設けられる複数の共振コイルの数は、2個である必要はなく、3個又はそれ以上の複数の共振コイルが設けられてよい。
 発振回路11は、所望の発振周波数で発振する。コイル12は、送電回路である発振回路11に有線で接続されている。発振回路11は、上記発振周波数の交流電力を有線接続を介してコイル12に供給する。コイル12は、径の互いに異なる複数の共振コイル13-1及び共振コイル13-2の1つと電磁誘導で選択的に結合され、結合した共振コイルに電力を供給する。
 共振コイル13-1には容量14-1が接続されており、共振コイル13-1と容量14-1とが共振回路として機能する。同様に、共振コイル13-2には容量14-2が接続されており、共振コイル13-2と容量14-2とが共振回路として機能する。更に、共振コイル15には容量16が接続されており、共振コイル15と容量16とが共振回路として機能する。各共振回路は、互いに同一の共振周波数を有してよい。発振回路11は、この共振周波数を有する交流電力をコイル12に供給してよい。なお図1に示す例では、コイルに接続される各容量はコンデンサ(容量素子)として示されるが、この構成に限定されるものではない。各容量は、対応する各コイルが有する浮遊容量でもよい。各コイルの巻数は特定の巻数に限定されない。各コイルの巻数は、一巻きでもよいし、複数回巻きでもよい。また各コイルは、ヘリカルコイルであってもスパイラルコイルであってもよい。但し後述するように、各コイルは実質的に平板状であることが好ましい。即ち、複数回巻きのヘリカルコイルである場合には、コイル径に対してコイルの軸方向の長さが十分に短いことが好ましい。
 共振コイル13-1を流れる電流が共振周波数で振動することにより、磁気結合を介して、同一の共振周波数を有する共振コイル15にも共振周波数で振動する電流が流れる。共振コイル13-1を含む共振回路と共振コイル15を含む共振回路とが双方共に共振することにより、それぞれの共振回路に大きな電流が流れ、電力が送電側から受電側に効率的に伝送される。即ち、共振コイル13-1から共振コイル15へと、磁気共鳴により電力が伝送される。
 共振コイル15は、コイル17と電磁誘導で結合され、コイル17に交流電力を供給する。コイル17は、受電回路である整流回路18に有線で接続されている。コイル17は、交流電力を有線接続を介して整流回路18に供給する。整流回路18は交流電力を整流して直流電圧を生成し、当該直流電圧をバッテリ19に印加することにより、バッテリ19を充電する。
 図2は、コイル12並びに共振コイル13-1及び13-2の位置制御について説明するための斜視図である。コイル12並びに共振コイル13-1及び13-2は、位置制御装置20に固定されている。共振コイル13-1及び13-2に接続される容量は図示を省略してある。位置制御装置20は、制御回路により駆動されるモータ(例えばステッピングモータ)を内蔵してよく、モータの駆動力によりコイル12又は共振コイル13-1及び13-2を同一の回転軸Aの周りに回転させる。図2において、回転軸Aの方向はZ軸の方向に一致している。
 位置制御装置20は、複数の共振コイル13-1及び13-2の位置を制御し、複数の共振コイル13-1及び13-2のうちの1つの共振コイル(図2の配置例では共振コイル13-2)の軸方向を、選択的にコイル12の軸方向に一致させる。また位置制御装置20は、複数の共振コイル13-1及び13-2のうちの前記1つの共振コイル(図2の配置例では共振コイル13-2)以外の共振コイル(図2の配置例では共振コイル13-1)の軸方向をコイル12の軸方向と直交するように位置させる。
 図3は、図2に示すコイル12並びに共振コイル13-1及び13-2の配置を上(Z軸の正方向)から見た平面図である。図3に示すように、この配置例では、コイル12と共振コイル13-2との軸方向が、Y軸方向に一致しており、共振コイル13-1の軸方向が、X軸方向に一致している。
 なお前述のように、各コイルの巻数は、一巻きでもよいし、複数回巻きでもよい。またコイルの軸方向とは、複数回巻きのヘリカルコイルの場合であれば、コイル線が巻き付けられる仮想的或いは実体のある円筒形状又は角柱形状の中心軸の延びる方向であり、コイル中を通過する磁束の方向に一致する。またスパイラルコイルの場合であれば、軸方向とは、スパイラルを含む平面に垂直な方向であり、コイルを含む平面におけるコイル中心部を通過する磁束の方向に一致する。一巻きのコイルである場合には、軸方向とは、一巻きのコイルを含む平面に垂直な方向であり、コイルを含む平面におけるコイル中心部を通過する磁束の方向に一致する。ここで、各コイルはヘリカルコイルであってもよいが、軸方向の長さが長いコイルの場合には、図2のようにコイルを回転させた場合に互いに物理的に接触してしまう可能性があるとともに、磁束の流れに干渉することになる。従って、各コイルは実質的に平板状であることが好ましい。即ち、複数回巻きのヘリカルコイルである場合には、コイル径に対してコイルの軸方向の長さが十分に短いことが好ましい。コイル12と複数の共振コイル13-1及び13-2が平板状コイルである場合、位置制御装置20は、複数の共振コイル13-1及び13-2のうちの1つの共振コイル(図2及び3の例では13-2)を選択的にコイル12と同一平面上に位置させてよい。また位置制御装置20は、複数の共振コイル13-1及び13-2のうちの前記1つの共振コイル以外の共振コイル(図2及び3の例では13-1)をコイル12と直交平面上に位置させてよい。
 また図2及び図3に示す例では、各コイルは同一回転軸周りを回転するが、各コイルの回転軸は同一でなくともよいが、共振コイルの回転軸はコイル12と平行な方向(図3ではX方向)の中心付近が望ましい。コイル12と垂直な方向(図3ではY方向)はどこでもよい。
 図2及び図3に示す配置例のように、コイル12と共振コイル13-2との軸方向が一致することにより、コイル12を通過する磁束が共振コイル13-2を通過し、両コイルが電磁誘導により結合される。即ち、コイル12に交流電力を供給することにより、コイル12から共振コイル13-2に電力を伝送することができる。またコイル12と共振コイル13-1との軸方向が直交することにより、コイル12を通過する磁束が共振コイル13-1を通過せず、両コイルが電磁誘導により結合されない。即ち、コイル12に交流電力を供給しても、コイル12から共振コイル13-1には電力が伝送されない。
 図4は、コイル12並びに共振コイル13-1及び13-2の別の配置例について説明するための斜視図である。図4では、位置制御装置20の図示を省略し、回転軸A及び各コイルの位置関係のみを示してある。図4に示す配置例では、複数の共振コイル13-1及び13-2の位置を制御し、複数の共振コイル13-1及び13-2のうちの1つの共振コイル13-1の軸方向を、選択的にコイル12の軸方向に一致させている。また複数の共振コイル13-1及び13-2のうちの前記1つの共振コイル13-1以外の共振コイル13-2の軸方向をコイル12の軸方向と直交するように位置させている。
 図4に示す配置例のように、コイル12と共振コイル13-1との軸方向が一致することにより、コイル12を通過する磁束が共振コイル13-1を通過し、両コイルが電磁誘導により結合される。即ち、コイル12に交流電力を供給することにより、コイル12から共振コイル13-1に電力を伝送することができる。またコイル12と共振コイル13-2との軸方向が直交することにより、コイル12を通過する磁束が共振コイル13-2を通過せず、両コイルが電磁誘導により結合されない。即ち、コイル12に交流電力を供給しても、コイル12から共振コイル13-2には電力が伝送されない。
 このようにして、コイル12は、径の互いに異なる複数の共振コイル13-1及び共振コイル13-2のうちの1つと電磁誘導で選択的に結合され、結合した共振コイルに電力を供給する。この選択的に結合された共振コイルを介して、磁気共鳴により、受電側の共振コイルに電力が伝送される。
 図5は、送電側のコイルと受電側のコイルとを示す図である。図5に示す例では、コイル12の軸方向が共振コイル13-2の軸方向と一致し、且つ、共振コイル13-1の軸方向と直交するように、送電側の各コイルが配置されている。これらの送電側のコイルから距離をおいて、受電側のコイルである共振コイル15とコイル17とが配置される。共振コイル15とコイル17とは、図示されるように、互いの軸方向が一致してよい。共振コイル15とコイル17とが共に平板状である場合、共振コイル15とコイル17とは、図示されるように、同一平面上に位置されてよい。このような送電側及び受電側のコイル配置により、送電側のコイル12は、複数の共振コイル13-1及び13-2のうちの1つと電磁誘導で選択的に結合され、選択結合された送電側の共振コイルから磁気共鳴により受電側の共振コイル15に電力が伝送される。更に受電側の共振コイル15から受電側のコイル17に電力が伝送され、コイル17から受電回路(図1の整流回路18)に電力が供給される。
 このように、径の異なる複数の共振コイルのうちの1つを選択的に用いて磁気共鳴電力伝送を行うことで、送電器と受電器との距離に応じて適切な径の共振コイルを選択して効率の良い電力伝送を実現することができる。即ち、送電器と受電器との距離に応じて伝送効率の良いコイル径が異なるところ、適切な径の共振コイルを選択することにより、送電器と受電器との距離に関わらず良好な電力伝送効率を実現することができる。
 図6は、送電距離と電力伝送効率との間の関係を示す図である。図6に示す電力伝送効率は、計算機シミュレーションにより得られたものである。計算機シミュレーションの条件は以下の通りである。コイル12は、線径1mmの導線をコイル径26mmになるように1巻きしたものである。共振コイル13-1は、線径2mmの導線をコイル径20mm(最外径)になるようにピッチ3mmの間隔で3巻きしたものである。共振コイル13-2は、線径1mmの導線をコイル径60mmになるように1巻きしたものである。共振コイル15は、線径2mmの導線をコイル径20mm(最外径)になるようにピッチ3mmの間隔で3巻きしたものである。コイル17は、線径1mmの導線をコイル径26mmになるように1巻きしたものである。また共振周波数は2MHzであるとした。なお送電距離は、共振コイル13-1又は13-2の中心と共振コイル15の中心との間の距離である。
 図6に示す送電距離と電力伝送効率との間の関係において、径20mmの共振コイル13-1から径20mmの共振コイル15に電力伝送する場合には、特性曲線31に示されるように、比較的短い距離において電力伝送効率が高くなっている。また径60mmの共振コイル13-2から径20mmの共振コイル15に電力伝送する場合には、特性曲線32に示されるように、比較的長い距離において電力伝送効率が高くなっている。従って、送電距離の長さに応じて、複数の共振コイル13-1及び13-2のうちの適切な方を選択し、磁気共鳴電力伝送に用いればよい。即ち、送電距離が比較的短いときには、共振コイル13-1を選択し、磁気共鳴電力伝送に用いればよい。また送電距離が比較的長いときには、共振コイル13-2を選択し、磁気共鳴電力伝送に用いればよい。
 図7は、送電側に3つの共振コイルが設けられた構成の一例を示す図である。図7の例では、コイル12並びに共振コイル13-1及び13-2に加え、共振コイル13-2よりも径の大きな共振コイル13-3が設けられている。共振コイル13-1乃至13-3は、回転軸Aの周りにそれぞれ独立に回転可能でよい。
 このように、径の異なる複数の共振コイルとして3つの共振コイルを設けた場合であっても、送電器と受電器との距離に応じて1つの共振コイルを選択して磁気共鳴電力伝送を行うことで、効率の良い電力伝送を実現することができる。即ち、送電器と受電器との距離に応じて伝送効率の良いコイル径が異なるところ、適切な径の共振コイルを選択することにより、送電器と受電器との距離に関わらず良好な電力伝送効率を実現することができる。
 図8は、送電距離と電力伝送効率との間の関係を示す図である。図8に示す電力伝送効率は、図6に示す場合と同様の計算機シミュレーションにより得られた電力伝送効率である。計算機シミュレーションの条件としては、図6の場合と同一のシミュレーション条件に加え、共振コイル13-3として、線径2mmの導線をコイル径80mmになるように1巻きしたものを用いている。
 図8に示す送電距離と電力伝送効率との間の関係において、径20mmの共振コイル13-1から径20mmの共振コイル15に電力伝送する場合には、特性曲線31に示されるように、比較的短い距離において電力伝送効率が高くなっている。また径60mmの共振コイル13-2から径20mmの共振コイル15に電力伝送する場合には、特性曲線32に示されるように、中程度の距離において電力伝送効率が高くなっている。また径80mmの共振コイル13-3から径20mmの共振コイル15に電力伝送する場合には、特性曲線33に示されるように、比較的長い距離において電力伝送効率が高くなっている。従って、送電距離の長さに応じて、複数の共振コイル13-1乃至13-3のうちの適切な1つを選択し、磁気共鳴電力伝送に用いればよい。即ち、送電距離が比較的短いときには、共振コイル13-1を選択し、磁気共鳴電力伝送に用いればよい。また送電距離が中程度のときには、共振コイル13-2を選択し、磁気共鳴電力伝送に用いればよい。また送電距離が比較的長いときには、共振コイル13-3を選択し、磁気共鳴電力伝送に用いればよい。
 図9は、受電側に複数の共振コイルを設けた場合の送電側のコイルと受電側のコイルとを示す図である。この構成例において、送電側には、コイル12及び1つの共振コイル13が設けられる。また受電側には、コイル17及び2つの共振コイル15-1及び15-2が設けられる。コイル12と共振コイル13とは、図示されるように、互いの軸方向が一致してよい。コイル12と共振コイル13とが共に平板状である場合、コイル12と共振コイル13とは、図示されるように、同一平面上に位置されてよい。
 コイル17並びに共振コイル15-1及び15-2は、位置制御装置40に固定されている。位置制御装置40は、制御回路により駆動されるモータ(例えばステッピングモータ)を内蔵してよく、モータの駆動力によりコイル17又は共振コイル15-1及び15-2を同一の回転軸Bの周りに回転させる。位置制御装置40は、複数の共振コイル15-1及び15-2の位置を制御し、複数の共振コイル15-1及び15-2のうちの1つの共振コイル(図9の配置例では共振コイル15-2)の軸方向を、選択的にコイル17の軸方向に一致させる。また位置制御装置40は、複数の共振コイル15-1及び15-2のうちの前記1つの共振コイル(図9の配置例では共振コイル15-2)以外の共振コイル(図9の配置例では共振コイル15-1)の軸方向をコイル17の軸方向と直交するように位置させる。
 上記のような送電側及び受電側のコイル配置により、送電側のコイル12は、共振コイル13と電磁誘導で結合され、送電側の共振コイル13から磁気共鳴により受電側の複数の共振コイル15-1及び15-2に電力が伝送される。更に受電側の複数の共振コイル15-1及び15-2の一方が選択的にコイル17と電磁誘導で結合され、受電側のコイル17に電力が伝送される。更に、コイル17から受電回路(図1の整流回路18)に電力が供給される。
 このように、径の異なる複数の共振コイルのうちの1つを選択的に用いて磁気共鳴電力伝送を行うことで、送電器と受電器との距離に応じて適切な径の共振コイルを選択して効率の良い電力伝送を実現することができる。即ち、送電器と受電器との距離に応じて伝送効率の良いコイル径が異なるところ、適切な径の共振コイルを選択することにより、送電器と受電器との距離に関わらず良好な電力伝送効率を実現することができる。
 図10は、送電距離と電力伝送効率との間の関係を示す図である。図6に示す電力伝送効率は、計算機シミュレーションにより得られたものである。計算機シミュレーションの条件は以下の通りである。コイル12は、線径1mmの導線をコイル径26mmになるように1巻きしたものである。共振コイル13は、線径1mmの導線をコイル径60mmになるように1巻きしたものである。共振コイル15-1は、線径2mmの導線をコイル径20mm(最外径)になるようにピッチ3mmの間隔で3巻きしたものである。共振コイル15-2は、線径1mmの導線をコイル径60mm(最外径)になるようにピッチ3mmの間隔で3巻きしたものである。コイル17は、線径1mmの導線をコイル径26mmになるように1巻きしたものである。また共振周波数は2MHzであるとした。なお送電距離は、共振コイル13の中心と共振コイル15-1又は15-2の中心との間の距離である。
 図10に示す送電距離と電力伝送効率との間の関係において、径60mmの共振コイル13から径20mmの共振コイル15-1に電力伝送する場合には、特性曲線41に示されるように、比較的短い距離において電力伝送効率が高くなっている。また径60mmの共振コイル13から径60mmの共振コイル15-2に電力伝送する場合には、特性曲線42に示されるように、比較的長い距離において電力伝送効率が高くなっている。従って、送電距離の長さに応じて、複数の共振コイル15-1及び15-2のうちの適切な方を選択し、磁気共鳴電力伝送に用いればよい。即ち、送電距離が比較的短いときには、共振コイル15-1を選択し、磁気共鳴電力伝送に用いればよい。また送電距離が比較的長いときには、共振コイル15-2を選択し、磁気共鳴電力伝送に用いればよい。
 図11は、送電側に複数の共振コイルが設けられた電力伝送システムにおける送電器と受電器との詳細な構成の一例を示すブロック図である。図11の電力伝送システムは、送電器50と受電器51とを含む。送電器50は、コイル12、共振コイル13-1及び13-2、電源61、発振器62、増幅器63、無線通信器64、制御部65、モータ駆動部66、及びモータ67を含む。受電器51は、共振コイル15、コイル17、受電回路71、バッテリー72、無線通信器73、及び制御部74を含む。
 コイル12並びに共振コイル13-1及び13-2は、図1に示されるコイル12並びに共振コイル13-1及び13-2に相当する。また発振器62及び増幅器63は、図1に示される発振回路11に相当する。またモータ駆動部66及びモータ67は、図2の位置制御装置20に相当する。図11において、電源61から供給される電源電圧に基づいて発振器62が発振し、発振信号を増幅器63により増幅する。増幅された発振信号が、交流電力として、有線結合を介してコイル12に供給される。図11の例では、モータ駆動部66により駆動されるモータ67によりコイル12の角度位置が調整され、共振コイル13-1及び13-2の位置は固定であってよい。この角度調整により、コイル12は、共振コイル13-1及び13-2の一方と軸方向が一致し、且つ、残りの一方と軸方向が直交するように位置される。なお、モータ67により共振コイル13-1及び13-2の角度位置が調整され、コイル12の位置は固定である構成であってもよい。モータ駆動部66は制御部65により制御される。無線通信器64は、受電器51の無線通信器73との間で、例えばBluetooth(登録商標)等による無線通信を行う。制御部65は、無線通信器64が無線通信により受電器51から得たデータを受け取り、このデータに基づいてモータ駆動部66を制御する。
 受電器51において、共振コイル15及びコイル17は、図1に示される共振コイル15及びコイル17に相当する。また受電回路71は、図1に示される整流回路18に相当する。共振コイル15が、送電器50側の共振コイル13-1又は13-2から電力を受信し、電磁誘導を介してこの電力をコイル17に伝送する。受電回路71は、有線結合を介してコイル17から交流電力を受け取り、交流電力を直流電圧に変換してバッテリー72に供給する。これによりバッテリー72が充電される。また受電回路71は、受信した電力の電力受電量を検出し、電力受電量の検出値を制御部74に通知する。制御部74は、無線通信器73を制御し、電力受電量の検出値を示すデータを無線通信器73から送信する。またバッテリー72は、電池の充電状態を監視しており、充電が完了すると、充電完了通知を制御部74に通知する。制御部74は、無線通信器73を制御し、充電完了を示すデータを無線通信器73から送信する。
 送電器50側の制御部65は、受電器51の無線通信器73から無線通信器64を介して受け取った電力受電量の検出値を示すデータに応じて、モータ駆動部66を制御する。この制御により、検出された電力受電量に応じて、適切な共振コイルが複数の共振コイル13-1及び13-2から選択される。即ち、送電器50及び受電器51間の距離に応じて、適切な共振コイルが選択される。また制御部65は、受電器51の無線通信器73から無線通信器64を介して受け取った充電完了を示すデータに応答して、発振器62の発振動作を停止させる。この制御により、バッテリの充電が完了すると、交流電力の送信を終了させることができる。
 また制御部65は、受電器51の無線通信器73から無線通信器64を介して受け取った電力受電量の検出値を示すデータに応じて、発振器62の発振動作を継続又は停止させる。電力受電量の検出値を示すデータが所定時間以上継続してゼロの電力受電量を示す場合、発振器62の発振動作を停止させ、交流電力の送信を終了させてよい。また制御部65は、受電器51の無線通信器73から所定時間以上継続して何らのデータも受信しない場合、発振器62の発振動作を停止させてよい。これらの制御により、受電器51が電力伝送範囲の外に置かれた場合に、発振器62の発振動作を停止させ、無駄な交流電力の送信を終了させることができる。
 図12は、図11に示す電力伝送システムの動作の一例を示すフローチャートである。ステップS1で、受電器51が送電器50から電力伝送可能な範囲内に置かれたか否かを検出する。例えば、人手による送電器50に対するスイッチ操作等により、受電器51が電力伝送可能範囲に置かれたことを送電器50に知らせてよい。また或いは、受電器51と送電器50との間のBluetooth(登録商標)等の無線通信手段により、受電器51が電力伝送可能範囲に置かれたか否かを検出してよい。受電器51が電力伝送可能範囲内に置かれたことを検出するまではステップS1の判定を繰り返す。受電器51が電力伝送可能範囲内に置かれたことを検出した場合(ステップS1でYES)、ステップS2に進む。ステップS2で、コイルB(例えば図2の共振コイル13-1)から受電器51に電力伝送し、受電器51により電力受電量を検出し、送電器50の制御部65が無線によるデータ通信を介して電力受電量を確認する。更にステップS3で、コイルA(例えば図2の共振コイル13-2)から受電器51に電力伝送し、受電器51により電力受電量を検出し、送電器50の制御部65が無線によるデータ通信を介して電力受電量を確認する。
 ステップS4で、電力受電量を比較し、コイルAの場合の電力受電量がコイルBの場合の電力受電量よりも大きいか否かを判定する。ステップS4での判定結果がYESの場合には、コイルA(例えば図2の共振コイル13-2)を選択して、コイルAから受電器51に電力伝送する。またステップS4での判定結果がNOの場合には、コイルB(例えば図2の共振コイル13-1)を選択し、コイルBから受電器51に電力伝送する。
 ステップS7で、受電器51が送電器50から電力伝送可能な範囲内に存在するか否かを検出する。受電器51が送電器50から電力伝送可能な範囲内に存在する場合(ステップS7でYES)、ステップS8でバッテリが満充電されたか否かを判定する。満充電されていない場合(ステップS8でNO)、ステップS7に戻り以降の処理を繰り返す。
 受電器51が送電器50から電力伝送可能な範囲内に存在しない場合(ステップS7でNO)、又は、ステップS8でバッテリが満充電されたと判定された場合(ステップS8でYES)、ステップS9で送電器50からの電力伝送を停止する。
 図13は、受電側に複数の共振コイルが設けられた電力伝送システムにおける送電器と受電器との詳細な構成の一例を示すブロック図である。図11の電力伝送システムは、送電器50Aと受電器51Aとを含む。送電器50Aは、コイル12、共振コイル13、電源61、発振器62、増幅器63、無線通信器64、及び制御部65を含む。受電器51Aは、共振コイル15-1及び15-2、コイル17、受電回路71、バッテリー72、無線通信器73、制御部74、モータ駆動部75、及びモータ76を含む。図13において、図11と同一又は対応する構成要素は同一又は対応する番号で参照し、その説明は適宜省略する。
 図11の電力伝送システムの構成と異なり、図13の電力伝送システムでは、受電側に複数の共振コイルが設けられており、これに伴い、モータ駆動部75及びモータ76が受電器51Aに設けられている。送電器50Aにモータ駆動部及びモータは設けられていない。図13の例では、モータ駆動部75により駆動されるモータ76によりコイル17の角度位置が調整され、共振コイル15-1及び15-2の位置は固定であってよい。この角度調整により、コイル17は、共振コイル15-1及び15-2の一方と軸方向が一致し、且つ、残りの一方と軸方向が直交するように位置される。なお、モータ76により共振コイル15-1及び15-2の角度位置が調整され、コイル17の位置は固定である構成であってもよい。モータ駆動部75は制御部74により制御される。モータ駆動部75及びモータ76は、図9の位置制御装置40に相当する。
 共振コイル15-1又は15-2が、送電器50A側の共振コイル13から電力を受信し、電磁誘導を介してこの電力をコイル17に伝送する。受電回路71は、有線結合を介してコイル17から交流電力を受け取り、交流電力を直流電圧に変換してバッテリー72に供給する。これによりバッテリー72が充電される。また受電回路71は、受信した電力の電力受電量を検出し、電力受電量の検出値を制御部74に通知する。制御部74は、電力受電量の検出値に応じて、モータ駆動部75を制御する。この制御により、検出された電力受電量に応じて、適切な共振コイルが複数の共振コイル15-1及び15-2から選択される。即ち、送電器50A及び受電器51A間の距離に応じて、適切な共振コイルが選択される。
 図14は、図13に示す電力伝送システムの動作の一例を示すフローチャートである。ステップS1で、受電器51Aが送電器50Aから電力伝送可能な範囲内に置かれたか否かを検出する。例えば、人手による送電器50Aに対するスイッチ操作等により、受電器51Aが電力伝送可能範囲に置かれたことを送電器50Aに知らせてよい。また或いは、受電器51Aと送電器50Aとの間のBluetooth(登録商標)等の無線通信手段により、受電器51Aが電力伝送可能範囲に置かれたか否かを検出してよい。受電器51Aが電力伝送可能範囲内に置かれたことを検出するまではステップS1の判定を繰り返す。受電器51Aが電力伝送可能範囲内に置かれたことを検出した場合(ステップS1でYES)、ステップS2に進む。ステップS2で、コイルAA(例えば図9の共振コイル15-2)により受電器51Aが電力を受電し、電力受電量を検出し、受電器51Aの制御部74が電力受電量を確認する。更にステップS3で、コイルBB(例えば図9の共振コイル15-1)により受電器51Aが電力を受電し、電力受電量を検出し、受電器51Aの制御部74が電力受電量を確認する。
 ステップS4で、電力受電量を比較し、コイルAAの場合の電力受電量がコイルBBの場合の電力受電量よりも大きいか否かを判定する。ステップS4での判定結果がYESの場合には、コイルAA(例えば図9の共振コイル15-2)を選択し、コイルAAにより受電器51Aが電力を受け取る。またステップS4での判定結果がNOの場合には、コイルBB(例えば図9の共振コイル15-1)を選択し、コイルBBにより受電器51Aが電力を受け取る。
 ステップS7で、受電器51Aが送電器50Aから電力伝送可能な範囲内に存在するか否かを検出する。受電器51Aが送電器50Aから電力伝送可能な範囲内に存在する場合(ステップS7でYES)、ステップS8でバッテリが満充電されたか否かを判定する。満充電されていない場合(ステップS8でNO)、ステップS7に戻り以降の処理を繰り返す。
 受電器51Aが送電器50Aから電力伝送可能な範囲内に存在しない場合(ステップS7でNO)、又は、ステップS8でバッテリが満充電されたと判定された場合(ステップS8でYES)、ステップS9で送電器50Aからの電力伝送を停止する。
 以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、受電器側が共振コイルのみの場合や、送電器側が共振コイルのみの場合など、特許請求の範囲に記載の範囲内で様々な変形が可能である。
10 電力伝送システム
11 発振回路
12 コイル
13-1及び13-2 共振コイル
14-1及び14-2 容量
15 共振コイル
16 容量
17 コイル
18 整流回路
19 バッテリ
20,40 位置制御装置

Claims (11)

  1.  送電又は受電回路と、
     前記送電又は受電回路に有線で接続される一のコイルと、
     前記一のコイルと電磁誘導で選択的に結合される互いに径の異なる複数の共振コイルと、
     前記複数の共振コイルの位置を制御する位置制御装置と、
    を含み、前記位置制御装置は、前記複数の共振コイルのうちの1つの共振コイルの軸方向を選択的に前記一のコイルの軸方向に一致させることを特徴とする電力伝送装置。
  2.  前記位置制御装置は、前記複数の共振コイルのうちの前記1つの共振コイル以外の共振コイルの軸方向を前記一のコイルの軸方向と直交するように位置させることを特徴とする請求項1記載の電力伝送装置。
  3.  前記一のコイルと前記複数の共振コイルは平板状コイルであり、前記位置制御装置は、前記複数の共振コイルのうちの前記1つの共振コイルを選択的に前記一のコイルと同一平面上に位置させ、前記複数の共振コイルのうちの前記1つの共振コイル以外の共振コイルを前記一のコイルと直交平面上に位置させることを特徴とする請求項1又は2記載の電力伝送装置。
  4.  前記一のコイルと前記複数の共振コイルは平板状コイルであり、前記位置制御装置により、同一の回転軸周りに回転するように位置が制御されることを特徴とする請求項1乃至3何れか1項記載の電力伝送装置。
  5.  送電器と、
     前記送電器から磁気共鳴により電力を受信する受電器と、
    を含み、前記送電器及び前記受電器の少なくとも一方は、
     送電又は受電回路と、
     前記送電又は受電回路に有線で接続される一のコイルと、
     前記一のコイルと電磁誘導で選択的に結合される互いに径の異なる複数の共振コイルと、
     前記複数の共振コイルの位置を制御する位置制御装置と、
    を含み、前記位置制御装置は、前記複数の共振コイルのうちの1つの共振コイルの軸方向を選択的に前記一のコイルの軸方向に一致させることを特徴とする電力伝送システム。
  6.  前記受電回路は電力受電量を検出し、前記1つの共振コイルは前記検出された電力受電量に応じて前記複数の共振コイルのうちから選択されることを特徴とする請求項5記載の電力伝送システム。
  7.  前記送電器及び前記受電器の各々は互いに通信する無線通信装置を更に含み、前記無線通信装置を介して前記検出された電力受電量を示すデータを前記受電器から前記送電器に送信することを特徴とする請求項5又は6記載の電力伝送システム。
  8.  前記位置制御装置は、前記複数の共振コイルのうちの前記1つの共振コイル以外の共振コイルの軸方向を前記一のコイルの軸方向と直交するように位置させることを特徴とする請求項5乃至7何れか一項記載の電力伝送システム。
  9.  前記一のコイルと前記複数の共振コイルは平板状コイルであり、前記位置制御装置は、前記複数の共振コイルのうちの前記1つの共振コイルを選択的に前記一のコイルと同一平面上に位置させ、前記複数の共振コイルのうちの前記1つの共振コイル以外の共振コイルを前記一のコイルと直交平面上に位置させることを特徴とする請求項5乃至8何れか一項記載の電力伝送システム。
  10.  互いに径の異なる複数の共振コイルのうちの1つの共振コイルを選択し、
     前記1つの共振コイルの軸方向を選択的に一のコイルの軸方向に一致させ、
     前記1つの共振コイル以外の共振コイルの軸方向を前記一のコイルの軸方向と直交させ、
     前記一のコイルに有線接続を介して交流電力を供給し、
     前記一のコイルから前記1つの共振コイルに電磁誘電により交流電力を供給し、
     前記1つの共振コイルから受信側の共振コイルに磁気共鳴により電力を伝送する
    各段階を含むことを特徴とする電力伝送方法。
  11.  互いに径の異なる複数の共振コイルのうちの1つの共振コイルを選択し、
     前記1つの共振コイルの軸方向を選択的に二のコイルの軸方向に一致させ、
     前記1つの共振コイル以外の共振コイルの軸方向を前記二のコイルの軸方向と直交させ、
     前記1つの共振コイルから前記二のコイルに電磁誘電により交流電力を供給し、
     送信側の共振コイルから受信側の共振コイルに磁気共鳴により電力を伝送する
    各段階を含むことを特徴とする電力伝送方法。
PCT/JP2012/052185 2012-01-31 2012-01-31 電力伝送装置、電力伝送システム、及び電力伝送方法 WO2013114576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013556130A JP5915667B2 (ja) 2012-01-31 2012-01-31 電力伝送装置、電力伝送システム、及び電力伝送方法
PCT/JP2012/052185 WO2013114576A1 (ja) 2012-01-31 2012-01-31 電力伝送装置、電力伝送システム、及び電力伝送方法
US14/444,816 US9672979B2 (en) 2012-01-31 2014-07-28 Power transmitting apparatus, power transmission system, and power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052185 WO2013114576A1 (ja) 2012-01-31 2012-01-31 電力伝送装置、電力伝送システム、及び電力伝送方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/444,816 Continuation US9672979B2 (en) 2012-01-31 2014-07-28 Power transmitting apparatus, power transmission system, and power transmission method

Publications (1)

Publication Number Publication Date
WO2013114576A1 true WO2013114576A1 (ja) 2013-08-08

Family

ID=48904654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052185 WO2013114576A1 (ja) 2012-01-31 2012-01-31 電力伝送装置、電力伝送システム、及び電力伝送方法

Country Status (3)

Country Link
US (1) US9672979B2 (ja)
JP (1) JP5915667B2 (ja)
WO (1) WO2013114576A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579953B1 (ja) * 2013-12-10 2014-08-27 中国電力株式会社 送電装置、給電システム
WO2015153293A1 (en) * 2014-03-31 2015-10-08 Qualcomm Incorporated Systems, apparatus, and methods for wireless power receiver coil configuration
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
JP5826975B1 (ja) * 2014-11-19 2015-12-02 中国電力株式会社 非接触給電システム、中継装置、及び非接触給電方法
JP5897777B1 (ja) * 2014-12-24 2016-03-30 中国電力株式会社 非接触給電システム、受電装置、及び送電装置
WO2016103351A1 (ja) * 2014-12-24 2016-06-30 中国電力株式会社 非接触給電システム、送電装置、及び受電装置
JP2019004691A (ja) * 2017-06-13 2019-01-10 ローム株式会社 送電装置及び非接触給電システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197494A1 (en) 2012-09-05 2016-07-07 Samsung Electronics Co., Ltd. Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same
KR20140031780A (ko) 2012-09-05 2014-03-13 삼성전자주식회사 교차 연결된 무선 전력 수신기를 배제하기 위한 무선 전력 송신기 및 그 제어 방법
JP6167395B2 (ja) 2013-03-22 2017-07-26 パナソニックIpマネジメント株式会社 給電装置
KR102086345B1 (ko) * 2013-07-01 2020-03-09 엘지전자 주식회사 무선 전력 전송장치
KR20160037652A (ko) * 2014-09-29 2016-04-06 엘지이노텍 주식회사 무선 전력 송신 장치 및 무선 전력 수신 장치
KR20160078186A (ko) * 2014-12-24 2016-07-04 삼성전기주식회사 코일 구조체 및 그를 이용한 무선 전력 송신 장치
US9948131B2 (en) * 2015-04-16 2018-04-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple-orientation wireless charging
US20170345547A1 (en) * 2016-05-27 2017-11-30 Qualcomm Incorporated Stacked inductors
JP6729919B1 (ja) * 2019-08-08 2020-07-29 株式会社レーザーシステム 共振装置、電力伝送装置、及び電力伝送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283791A (ja) * 2007-05-10 2008-11-20 Olympus Corp 無線給電システム
US20100148939A1 (en) * 2008-12-16 2010-06-17 Masaaki Yamada Electric power transmitting and receiving device, electric power transmitting device and electric power receiving device
WO2011074082A1 (ja) * 2009-12-16 2011-06-23 富士通株式会社 磁界共鳴送電装置、及び、磁界共鳴受電装置
WO2011135722A1 (ja) * 2010-04-30 2011-11-03 富士通株式会社 受電装置及び受電方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283790A (ja) * 2007-05-10 2008-11-20 Olympus Corp 無線給電システム
US8766482B2 (en) * 2007-09-17 2014-07-01 Qualcomm Incorporated High efficiency and power transfer in wireless power magnetic resonators
US8299652B2 (en) * 2008-08-20 2012-10-30 Intel Corporation Wireless power transfer apparatus and method thereof
KR101248453B1 (ko) * 2008-12-09 2013-04-01 도요타지도샤가부시키가이샤 비접촉 전력 전송 장치 및 비접촉 전력 전송 장치에 있어서의 전력 전송 방법
WO2011001524A1 (ja) * 2009-07-02 2011-01-06 トヨタ自動車株式会社 コイルユニット、非接触受電装置、非接触送電装置、非接触給電システムおよび車両
JP2011147271A (ja) * 2010-01-14 2011-07-28 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
JP5573190B2 (ja) * 2010-01-21 2014-08-20 ソニー株式会社 ワイヤレス給電システム
JP5691458B2 (ja) * 2010-03-31 2015-04-01 日産自動車株式会社 非接触給電装置及び非接触給電方法
JP5139469B2 (ja) * 2010-04-27 2013-02-06 株式会社日本自動車部品総合研究所 コイルユニットおよび非接触給電システム
JP2012034468A (ja) * 2010-07-29 2012-02-16 Toyota Industries Corp 車両用共鳴型非接触給電システム
US8941268B2 (en) * 2011-03-04 2015-01-27 Sony Corporation Non-contact power transmission apparatus
CN103858316A (zh) * 2011-10-12 2014-06-11 丰田自动车株式会社 送电装置、受电装置以及电力传输系统
RU2014115342A (ru) * 2011-10-18 2015-11-27 Тойота Дзидося Кабусики Кайся Устройство подачи электрической мощности и способ подачи электрической мощности
KR101332224B1 (ko) * 2011-12-28 2013-11-25 주식회사 스파콘 무선 전력전송장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283791A (ja) * 2007-05-10 2008-11-20 Olympus Corp 無線給電システム
US20100148939A1 (en) * 2008-12-16 2010-06-17 Masaaki Yamada Electric power transmitting and receiving device, electric power transmitting device and electric power receiving device
WO2011074082A1 (ja) * 2009-12-16 2011-06-23 富士通株式会社 磁界共鳴送電装置、及び、磁界共鳴受電装置
WO2011135722A1 (ja) * 2010-04-30 2011-11-03 富士通株式会社 受電装置及び受電方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087400A1 (ja) * 2013-12-10 2015-06-18 中国電力株式会社 送電装置、給電システム、電気回路のインピーダンス調整装置
JP5579953B1 (ja) * 2013-12-10 2014-08-27 中国電力株式会社 送電装置、給電システム
CN105594088A (zh) * 2013-12-10 2016-05-18 中国电力株式会社 送电装置、供电系统、电力回路的电阻调整装置
EP3089321A4 (en) * 2013-12-10 2016-12-28 Chugoku Electric Power CURRENT TRANSMISSION DEVICE, POWER SUPPLY SYSTEM, AND DEVICE FOR ADJUSTING THE IMPEDANCE OF AN ELECTRIC CIRCUIT
WO2015153293A1 (en) * 2014-03-31 2015-10-08 Qualcomm Incorporated Systems, apparatus, and methods for wireless power receiver coil configuration
US10461582B2 (en) 2014-03-31 2019-10-29 Qualcomm Incorporated Systems, apparatus, and methods for wireless power receiver coil configuration
JPWO2015173890A1 (ja) * 2014-05-13 2017-04-20 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
US10432027B2 (en) 2014-05-13 2019-10-01 Mitsubishi Electric Engineering Company, Limited Movable portion transmission system using wireless power transmission
JP2018007566A (ja) * 2014-05-13 2018-01-11 三菱電機エンジニアリング株式会社 電力伝送機構
EP3145048A4 (en) * 2014-05-13 2017-12-13 Mitsubishi Electric Engineering Company, Limited Movable portion transmission system using wireless power transmission
JP5826975B1 (ja) * 2014-11-19 2015-12-02 中国電力株式会社 非接触給電システム、中継装置、及び非接触給電方法
WO2016079830A1 (ja) * 2014-11-19 2016-05-26 中国電力株式会社 非接触給電システム、中継装置、及び非接触給電方法
WO2016103351A1 (ja) * 2014-12-24 2016-06-30 中国電力株式会社 非接触給電システム、送電装置、及び受電装置
WO2016103354A1 (ja) * 2014-12-24 2016-06-30 中国電力株式会社 非接触給電システム、受電装置、及び送電装置
JP5897777B1 (ja) * 2014-12-24 2016-03-30 中国電力株式会社 非接触給電システム、受電装置、及び送電装置
JP2019004691A (ja) * 2017-06-13 2019-01-10 ローム株式会社 送電装置及び非接触給電システム

Also Published As

Publication number Publication date
US20140333151A1 (en) 2014-11-13
JPWO2013114576A1 (ja) 2015-05-11
US9672979B2 (en) 2017-06-06
JP5915667B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5915667B2 (ja) 電力伝送装置、電力伝送システム、及び電力伝送方法
JP6001355B2 (ja) 非接触給電装置
EP3157125B1 (en) A wirelessly rechargeable battery
US10005368B2 (en) System, apparatus and method for optimizing wireless charging alignment
JP5752506B2 (ja) 無線給電方法
JP5836287B2 (ja) 電力伝送装置
JP5920363B2 (ja) 受電装置、電力伝送システム、及び電力伝送方法
JP5510460B2 (ja) 磁界共鳴送電装置、及び、磁界共鳴受電装置
US20150130409A1 (en) Wireless power transfer method, apparatus and system
JP2017526323A (ja) 無線電力伝送システムにおける共振器の均衡化
WO2012071268A2 (en) Wireless power utilization in a local computing environment
JP2010183811A (ja) 非接触電力伝送装置
JP2011087433A (ja) ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
KR102128017B1 (ko) 자기 공명 방식 무선 전력 신호 및 유도 방식 무선 전력신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치에서의 신호 처리 방법 및 이를 이용하는 하이브리드 무선 전력 전송 장치
WO2012157115A1 (ja) 受電装置およびそれを備える車両、給電設備、ならびに給電システム
KR101490732B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
JP5962408B2 (ja) 受電機器及び非接触電力伝送装置
US8760009B2 (en) Wireless power source
JP6535003B2 (ja) 無線電力受信装置
KR20210009402A (ko) 자기 공명 방식 무선 전력 신호 및 유도 방식 무선 전력신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치에서의 신호 처리 방법 및 이를 이용하는 하이브리드 무선 전력 전송 장치
WO2015015635A1 (ja) 非接触電力伝送装置及び非接触電力伝送システム
WO2014175205A1 (ja) 給電システム
KR102205606B1 (ko) 자기 공명 방식 무선 전력 신호 및 유도 방식 무선 전력신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치에서의 신호 처리 방법 및 이를 이용하는 하이브리드 무선 전력 전송 장치
KR101601909B1 (ko) 무선전력 수신장치, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
KR101981721B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867036

Country of ref document: EP

Kind code of ref document: A1