WO2016103354A1 - 非接触給電システム、受電装置、及び送電装置 - Google Patents

非接触給電システム、受電装置、及び送電装置 Download PDF

Info

Publication number
WO2016103354A1
WO2016103354A1 PCT/JP2014/084098 JP2014084098W WO2016103354A1 WO 2016103354 A1 WO2016103354 A1 WO 2016103354A1 JP 2014084098 W JP2014084098 W JP 2014084098W WO 2016103354 A1 WO2016103354 A1 WO 2016103354A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
power transmission
winding axis
angle
Prior art date
Application number
PCT/JP2014/084098
Other languages
English (en)
French (fr)
Inventor
和磨 沖段
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2015530201A priority Critical patent/JP5897777B1/ja
Priority to PCT/JP2014/084098 priority patent/WO2016103354A1/ja
Publication of WO2016103354A1 publication Critical patent/WO2016103354A1/ja

Links

Images

Definitions

  • the present invention relates to a contactless power feeding system, a power receiving device, and a power transmitting device.
  • Patent Document 1 describes a power feeding system configured to cut off or transmit power supplied from a power transmitting device to a power receiving device, and the power transmitting device supplies power to the first coil of the power receiving device. Crossing the winding axis of the second coil so that the power is cut off or supplied, and the power transmission circuit having the second coil for power transmission, the third coil magnetically coupled between the second coil and the second coil It describes that it includes a rotation device that rotates the third coil around the rotation axis to change the impedance of the power transmission circuit.
  • Transmission efficiency in a magnetic resonance type non-contact power supply system varies depending on the inductance and capacitance of the resonance circuit on the power transmission side or power reception side, the distance between the coil on the power transmission side and the coil on the power reception side, etc. To do. Therefore, in a system that performs magnetic resonance type non-contact power feeding, there is a need for a mechanism that stably supplies power from the power transmitting apparatus to the power receiving apparatus while maintaining transmission efficiency.
  • the present invention has been made in view of such a background, and a non-contact power feeding system and a power receiving device capable of stably supplying power while maintaining a target transmission efficiency from the power transmitting device to the power receiving device. And it aims at providing a power transmission apparatus.
  • One aspect of the present invention for achieving the above object is a power transmission device that has a power transmission side resonance circuit configured by using a power transmission coil and a capacitor and performs magnetic resonance type non-contact power feeding, a power reception coil, A non-contact power feeding system including a power receiving-side resonance circuit configured using a capacitor and receiving power from the power transmitting device by the non-contact power feeding, wherein the power receiving device
  • the power receiving side adjustment coil provided in the inner space of the power receiving coil and supported in a manner such that the direction of the winding axis is rotatable with respect to the direction of the winding axis of the power receiving coil;
  • Adjusting the power receiving side angle Includes a section mechanism, the.
  • the direction of the winding axis of the power receiving coil and the coil for adjusting the power receiving side so that the power receiving device is maintained at the target value during power feeding from the power transmitting device to the power receiving device by non-contact power feeding. Since the angle ⁇ 1 formed by the direction of the winding axis is adjusted, it is possible to stably supply power while maintaining the target transmission efficiency from the power transmission device to the power reception device.
  • One aspect of the present invention for achieving the above object is a power transmission device that has a power transmission side resonance circuit configured by using a power transmission coil and a capacitor and performs magnetic resonance type non-contact power feeding, a power reception coil, A non-contact power feeding system including a power receiving side resonance circuit configured using a capacitor and receiving power from the power transmitting device by the non-contact power feeding, wherein the power transmitting device
  • the power transmission side adjustment coil provided in the internal space of the power transmission coil, and the direction of the winding axis is rotatably supported with respect to the direction of the winding axis of the power transmission coil, and the contactless power supply
  • Adjust the power transmission side angle Includes a section mechanism, the.
  • the direction of the winding axis of the power transmission coil and the power transmission side adjustment coil are set so that the transmission efficiency is maintained at the target value during power feeding from the power transmission device to the power receiving device by non-contact power feeding. Since the angle ⁇ 2 formed by the direction of the winding axis is adjusted, it is possible to stably supply power while maintaining the target transmission efficiency from the power transmission device to the power reception device.
  • One aspect of the present invention for achieving the above object is the contactless power supply system, wherein the power transmission device is provided in an internal space of the power transmission coil, and a direction of a winding axis thereof is the winding of the power transmission coil.
  • the power transmission side adjustment coil pivotally supported with respect to the direction of the rotation axis, and so that the transmission efficiency is maintained at the target value during power feeding from the power transmission device to the power reception device by the non-contact power feeding,
  • a power transmission side angle adjustment mechanism that adjusts an angle ⁇ 2 formed by the direction of the winding axis of the power transmission coil and the direction of the winding axis of the power transmission side adjustment coil.
  • the direction of the winding axis of the power receiving coil and the coil for adjusting the power receiving side so that the power receiving device is maintained at the target value during power feeding from the power transmitting device to the power receiving device by non-contact power feeding.
  • the winding angle of the power transmission coil is adjusted so that the transmission efficiency is maintained at the target value during power feeding from the power transmission device to the power reception device by non-contact power feeding. Since the angle ⁇ 2 formed by the direction of the rotation axis and the direction of the winding axis of the power transmission side adjustment coil is adjusted, the target transmission efficiency is maintained from the power transmission device to the power reception device, and power is supplied more stably. can do.
  • the power receiving device includes a power measuring circuit that measures the power received by the power receiving side resonance circuit, and the power receiving side angle.
  • the adjustment mechanism controls an angle ⁇ 1 formed by the direction of the winding axis of the power receiving coil and the direction of the winding axis of the power receiving side adjustment coil so that the received power is maintained at a target value.
  • the power receiving device controls the angle ⁇ 1 formed by the direction of the winding axis of the power receiving coil and the direction of the winding axis of the power receiving side adjustment coil so that the received power is maintained at the target value. Therefore, it is possible to stably supply power while maintaining the target transmission efficiency from the power transmission apparatus to the power reception apparatus.
  • the power transmission device includes a power measurement circuit that measures transmission power of the resonance circuit on the power transmission side, and the power transmission side angle.
  • the adjustment mechanism controls an angle ⁇ 2 formed by the direction of the winding axis of the power transmission coil and the direction of the winding axis of the power transmission side adjustment coil so that the transmitted power is maintained at a target value.
  • the power transmission device controls the angle ⁇ 2 formed by the direction of the winding axis of the power transmission coil and the direction of the winding axis of the power transmission side adjustment coil so that the transmitted power is maintained at the target value. Therefore, it is possible to stably supply power while maintaining the target transmission efficiency from the power transmission apparatus to the power reception apparatus.
  • One aspect of the present invention for achieving the above object is the non-contact power feeding system, wherein the power receiving coil and the power receiving side adjusting coil are each formed by winding conductor wires in an annular shape with different diameters.
  • One coil is configured to be accommodated in the internal space of another coil.
  • the power receiving device can be reduced in size by configuring the power receiving coil and the power receiving side adjustment coil in such a configuration.
  • One aspect of the present invention for achieving the above object is the non-contact power feeding system, wherein the power transmission coil and the power transmission side adjustment coil are each formed by winding conductor wires in a ring shape with different diameters.
  • One coil is configured to be accommodated in the internal space of another coil.
  • the power transmission device can be reduced in size.
  • power can be stably supplied from the power transmission apparatus to the power reception apparatus while maintaining the target transmission efficiency.
  • FIG. 1 is a diagram illustrating a configuration of a power transmission device 10.
  • 2 is a diagram illustrating a configuration of a power receiving device 20.
  • FIG. 3 is a diagram illustrating an arrangement example of a power transmission coil 111 of the power transmission device 10, and a power reception coil 211 and an adjustment coil 212 of the power reception device 20.
  • FIG. 1 is a diagram illustrating a configuration of a power transmission device 10.
  • 2 is a diagram illustrating a configuration of a power receiving device 20.
  • FIG. 1 is a diagram illustrating a configuration of a power transmission device 10.
  • FIG. 3 is a diagram illustrating an arrangement example of a power transmission coil 111 and an adjustment coil 112 of the power transmission device 10 and a power reception coil 211 of the power reception device 20.
  • FIG. It is a figure explaining the schematic structure of the non-contact electric power feeding system 1 of 3rd Example.
  • 1 is a diagram illustrating a configuration of a power transmission device 10.
  • 2 is a diagram illustrating a configuration of a power receiving device 20.
  • FIG. 3 is a diagram illustrating an arrangement example of a power transmission coil 111 and an adjustment coil 112 of the power transmission device 10, and a power reception coil 211 and an adjustment coil 212 of the power reception device 20.
  • FIG. 1 shows a schematic configuration of a magnetic resonance type non-contact power feeding system 1 shown as the first embodiment.
  • the non-contact power feeding system 1 includes a power transmission device 10 and a power reception device 20.
  • the power transmission device 10 transmits power toward the power reception device 20 by magnetic resonance type non-contact power feeding.
  • the power receiving device 20 receives power transmitted from the power transmitting device 10.
  • FIG. 2 shows a main configuration of the power transmission device 10 of the first embodiment.
  • the power transmission device 10 includes a power transmission circuit 11 and a power supply circuit 13.
  • the power transmission circuit 11 includes a power transmission coil 111, a power transmission capacitor 113, and a control circuit 114.
  • the power transmission coil 111 and the power transmission capacitor 113 constitute a resonance circuit.
  • the power transmission coil 111 has a configuration in which a conductor wire such as an insulating coated copper wire is wound around the winding axis in a ring a predetermined number of times.
  • the power transmission coil 111 is fixed to, for example, an insulating frame.
  • the control circuit 114 includes a driver circuit (a gate driver, a half bridge driver, etc.), and generates a drive current having a predetermined frequency to be supplied to the resonance circuit based on the power supplied from the power supply circuit 13.
  • the power supply circuit 13 is, for example, a switching or linear circuit, and supplies driving power to the power transmission circuit 11.
  • FIG. 3 shows the main configuration of the power receiving device 20 of the first embodiment.
  • the power reception device 20 includes a power reception circuit 21, a power measurement circuit 22, a load 23, and an angle adjustment mechanism 24.
  • the power receiving circuit 21 includes a power receiving coil 211, an adjustment coil 212, a power receiving capacitor 213, and a rectifier circuit 214.
  • the power receiving coil 211 and the power receiving capacitor 213 constitute a resonance circuit.
  • the power receiving coil 211 has a configuration in which a conductor wire such as an insulation-coated copper wire is wound around the winding axis in a ring a predetermined number of times.
  • the power receiving coil 211 is fixed to, for example, an insulating frame.
  • the adjustment coil 212 is disposed in the internal space of the power receiving coil 211.
  • the adjustment coil 212 is magnetically coupled to the power receiving coil 211.
  • the rectifier circuit 214 converts AC power received by the resonance circuit into DC power and supplies the DC power to the load 23.
  • the power measuring circuit 22 measures the received power of the power receiving circuit 21.
  • the power measuring circuit 22 includes a voltmeter and an ammeter for measuring the power output from the power receiving circuit 21.
  • the received power of the power receiving circuit 21 is an index representing the transmission efficiency of contactless power feeding.
  • the angle adjusting mechanism 24 adjusts an angle ⁇ 1 formed by the direction of the winding axis of the power receiving coil 211 and the direction of the winding axis of the adjustment coil 212 according to the received power of the power receiving circuit 21 measured by the power measuring circuit 22.
  • the transmission efficiency of contactless power feeding is adjusted.
  • the angle adjustment mechanism 24 is configured using, for example, a microcomputer, an ASIC (Application Specific Integrated Circuit), a motor drive mechanism, a servo motor, a stepping motor, or the like.
  • FIG. 4 illustrates an arrangement example of the power transmission coil 111 of the power transmission device 10 and the power reception coil 211 and the adjustment coil 212 of the power reception device 20.
  • the power transmission coil 111 and the power reception coil 211 are arranged so that their respective winding axes coincide with the same straight line parallel to the x-axis of the three-dimensional orthogonal coordinate system set in FIG. .
  • the power transmission coil 111 and the power reception coil 211 are fixed so that the directions of the respective winding axes are maintained in this state.
  • the outer diameter of the adjustment coil 212 is smaller than the inner diameter of the power reception coil 211, and the adjustment coil 212 is arranged in the internal space of the power reception coil 211 so that the center thereof coincides with the center of the power reception coil 211.
  • the adjustment coil 212 is pivotally supported on a rotating shaft that passes through the center thereof and is parallel to the z axis, for example.
  • the direction of the winding axis of the adjustment coil 212 can be rotated in a plane parallel to the xy plane, whereby the winding axis of the power receiving coil 211 is rotated.
  • the angle ⁇ 1 formed by the direction and the direction of the winding axis of the adjustment coil 212 can be changed.
  • the value of the inductance indicated by the power receiving coil 211 varies depending on the angle ⁇ 1.
  • the resonance frequency (natural resonance frequency) f 0 of the resonance circuit of the power transmission circuit 11 or the power reception circuit 21 constituting the non-contact power feeding system 1 is L for the inductance of the coil constituting the resonance circuit and the static frequency of the capacitor constituting the resonance circuit. If the capacitance is C, it can be expressed by the following formula 1. Therefore, by changing the angle ⁇ 1, the resonance frequency (natural resonance frequency) of the resonance circuit can be changed.
  • the resonance frequency (f1 or f2) of the resonance circuit of the power transmission circuit 11 and the resonance circuit of the power reception circuit 21 is expressed by the following Expression 2 or Expression 3, for example, where k is the coupling coefficient of both.
  • the resonance frequency (f1 or f2) varies depending on the inductance L of the coil constituting the resonance circuit and the capacitance C of the capacitor constituting the resonance circuit. Therefore, the resonance frequency (f1 or f2) can be changed by changing the inductance of the coil of the resonance circuit. Then, the transmission power from the power transmitting device 10 to the power receiving device 20 is changed by changing the resonance frequency (f1 or f2). Therefore, the transmission efficiency of contactless power feeding can be controlled by changing the angle ⁇ 1. .
  • the angle ⁇ 1 is changed to change the contactless power feeding.
  • the transmission efficiency can be controlled, and power can be stably supplied from the power transmission device 10 to the power reception device 20 while maintaining the target transmission efficiency.
  • the coupling coefficient k varies depending on, for example, the distance between the power transmission coil 111 and the power reception coil 211, the arrangement state of both, the environment in which both are disposed, and the resonance frequency ( If the shift of f1 or f2) is corrected by adjusting the angle ⁇ 1, the transmission efficiency can be further stabilized.
  • the transmission efficiency is monitored as needed, and the angle ⁇ 1 is feedback-controlled so that the transmission efficiency is maximized.
  • the angle ⁇ 1 is feedback-controlled so that the target value is maintained.
  • the angle ⁇ 1 is feedback-controlled so as not to exceed the limit value.
  • the transmission efficiency is adjusted by changing the inductance of the resonance circuit on the power receiving device 20 side, for example, one power transmission device 10 has a one-to-many relationship with a plurality of power receiving devices 20.
  • the non-contact power feeding can be performed by adjusting the transmission efficiency to an appropriate value for each power receiving device 20.
  • FIG. 5 shows a schematic configuration of a magnetic resonance type non-contact power feeding system 1 shown as the second embodiment.
  • the non-contact power feeding system 1 includes a power transmission device 10 and a power reception device 20.
  • the power transmission device 10 transmits power toward the power reception device 20 by magnetic resonance type non-contact power feeding.
  • the power receiving device 20 receives power transmitted from the power transmitting device 10.
  • FIG. 6 shows a main configuration of the power transmission device 10.
  • the power transmission device 10 includes a power transmission circuit 11, a power measurement circuit 12, a power supply circuit 13, and an angle adjustment mechanism 14.
  • the power transmission circuit 11 includes a power transmission coil 111, an adjustment coil 112, a power transmission capacitor 113, and a control circuit 114.
  • the power transmission coil 111 and the power transmission capacitor 113 constitute a resonance circuit.
  • the power transmission coil 111 has a configuration in which a conductor wire such as an insulating coated copper wire is wound around the winding axis in a ring a predetermined number of times.
  • the power transmission coil 111 is fixed to, for example, an insulating frame.
  • the adjustment coil 112 is disposed in the internal space of the power transmission coil 111.
  • the adjustment coil 112 is magnetically coupled to the power transmission coil 111.
  • the control circuit 114 includes a driver circuit (a gate driver, a half bridge driver, etc.), and generates a drive current having a predetermined frequency to be supplied to the resonance circuit based on the power supplied from the power supply circuit 13.
  • the power supply circuit 13 is, for example, a switching or linear circuit, and supplies driving power to the power transmission circuit 11.
  • the power measurement circuit 12 measures the power consumption of the power transmission circuit 11.
  • the power measurement circuit 12 includes a voltmeter and an ammeter for measuring the power supplied from the power supply circuit 13 to the power transmission circuit 11.
  • the power consumption of the power transmission circuit 11 is an index representing the transmission efficiency of contactless power feeding.
  • the angle adjustment mechanism 14 adjusts an angle ⁇ 2 formed by the direction of the winding axis of the power transmission coil 111 and the direction of the winding axis of the adjustment coil 112 according to the power consumption of the power transmission circuit 11 measured by the power measurement circuit 12.
  • the transmission efficiency of contactless power feeding is adjusted.
  • the angle adjusting mechanism 14 is configured by using, for example, a microcomputer, an ASIC, a motor driving mechanism, a servo motor, a stepping motor, or the like.
  • FIG. 7 shows a main configuration of the power receiving device 20 of the second embodiment.
  • the power receiving device 20 includes a power receiving circuit 21 and a load 23.
  • the power receiving circuit 21 includes a power receiving coil 211, a power receiving capacitor 213, and a rectifier circuit 214.
  • the power receiving coil 211 and the power receiving capacitor 213 constitute a resonance circuit.
  • the power receiving coil 211 has a configuration in which a conductor wire such as an insulation-coated copper wire is wound around the winding axis in a ring a predetermined number of times.
  • the rectifier circuit 214 converts AC power received by the resonance circuit into DC power and supplies the DC power to the load 23.
  • FIG. 8 shows an arrangement example of the power transmission coil 111 and the adjustment coil 112 of the power transmission device 10 and the power reception coil 211 of the power reception device 20.
  • the power transmission coil 111 and the power reception coil 211 are arranged so that their respective winding axes coincide with the same straight line parallel to the x-axis of the three-dimensional orthogonal coordinate system set in FIG. .
  • the power transmission coil 111 and the power reception coil 211 are fixed so that the directions of the respective winding axes are maintained in this state.
  • the outer diameter of the adjustment coil 112 is smaller than the inner diameter of the power transmission coil 111, and the adjustment coil 112 is arranged in the internal space of the power transmission coil 111 so that the center thereof coincides with the center of the power transmission coil 111.
  • the adjustment coil 112 is pivotally supported by a rotation axis that passes through the center thereof and is parallel to the z axis, for example.
  • a rotation axis that passes through the center thereof and is parallel to the z axis, for example.
  • the direction of the winding axis of the adjustment coil 112 can be rotated in a plane parallel to the xy plane, whereby the winding axis of the power transmission coil 111 is rotated.
  • the angle ⁇ 2 formed by the direction and the direction of the winding axis of the adjustment coil 112 can be changed.
  • the value of the inductance indicated by the power transmission coil 111 varies depending on the angle ⁇ 2.
  • the resonance frequency (natural resonance frequency) of the resonance circuit of the power transmission circuit 11 can be changed, and the resonance frequency (f1 or f2) described above. Can be changed.
  • the transmission power from the power transmission device 10 to the power reception device 20 is changed by changing the resonance frequency (f1 or f2). Therefore, the transmission efficiency of the non-contact power supply can be controlled by changing the angle ⁇ 2.
  • the angle ⁇ 2 is changed to change the contactless power feeding.
  • the transmission efficiency can be controlled, and power can be stably supplied from the power transmission device 10 to the power reception device 20 while maintaining the target transmission efficiency.
  • the coupling coefficient k varies depending on, for example, the distance between the power transmission coil 111 and the power reception coil 211, the arrangement state of both, the environment in which both are disposed, and the resonance frequency ( If the shift of f1 or f2) is corrected by adjusting the angle ⁇ 2, the transmission efficiency can be further stabilized.
  • the transmission efficiency is monitored as needed, and the angle ⁇ 2 is feedback-controlled so that the transmission efficiency is maximized.
  • the angle ⁇ 2 is feedback-controlled so that the target value is maintained.
  • the angle ⁇ 2 is feedback-controlled so as not to exceed the limit value.
  • the transmission efficiency of the non-contact power feeding can be grasped by using the power consumption of the power transmission circuit 11 as an index.
  • the transmission efficiency is, for example, the transmission power from the power transmission device 10 and the power reception of the power reception device 20. You may obtain
  • the power transmission device 10 and the power reception device 20 are communicably connected so that the power reception power of the power reception device 20 can be grasped on the power transmission device 10 side.
  • FIG. 9 shows a schematic configuration of a magnetic resonance type non-contact power feeding system 1 shown as the third embodiment.
  • the non-contact power feeding system 1 includes a power transmission device 10 and a power reception device 20.
  • the power transmission device 10 transmits power toward the power reception device 20 by magnetic resonance type non-contact power feeding.
  • the power receiving device 20 receives power transmitted from the power transmitting device 10.
  • FIG. 10 shows a main configuration of the power transmission device 10 of the third embodiment.
  • the configuration of the power transmission device 10 of the third embodiment is the same as that of the power transmission device 10 of the second embodiment.
  • FIG. 11 shows the main configuration of the power receiving device 20.
  • the configuration of the power receiving device 20 of the third embodiment is the same as that of the power receiving device 20 of the first embodiment.
  • FIG. 12 shows an arrangement example of the power transmission coil 111 and the adjustment coil 112 of the power transmission device 10 and the power reception coil 211 and the adjustment coil 212 of the power reception device 20.
  • the power transmission coil 111 and the power reception coil 211 are arranged so that their respective winding axes coincide with the same straight line parallel to the x-axis of the three-dimensional orthogonal coordinate system set in FIG. .
  • the power transmission device 10 changes the angle ⁇ 2 formed by the direction of the winding axis of the power transmission coil 111 and the direction of the winding axis of the adjustment coil 112, thereby Control the transmission efficiency of contact power supply.
  • the power receiving device 20 controls the transmission efficiency of the non-contact power feeding by changing the angle ⁇ 1 formed by the direction of the winding axis of the power receiving coil 211 and the direction of the winding axis of the adjustment coil 212.
  • the power receiving coil 211 is fixed and the adjustment coil 212 is rotated to change the angle ⁇ 1, but conversely, the power receiving coil 211 may be rotated to change the angle ⁇ 1. .
  • the angle ⁇ 1 may be changed by rotating both the power receiving coil 211 and the adjustment coil 212.
  • the power transmission coil 111 is fixed and the adjustment coil 112 is rotated to change the angle ⁇ 2, but conversely, the power transmission coil 111 is rotated to change the angle ⁇ 2. May be. Further, the angle ⁇ 2 may be changed by rotating both the power transmission coil 111 and the adjustment coil 112.
  • the adjustment coil 112 (or the adjustment coil 212) has a diameter smaller than that of the power transmission coil 111 (or the power reception coil 211), but the adjustment coil 112 (or the adjustment coil 212).
  • the diameter of the power transmission coil 111 (or the power receiving coil 211) may be the same (or substantially the same), or the diameter may be larger than the diameter of the power transmission coil 111 (or the power receiving coil 211). It may be adopted.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 磁界共鳴方式の非接触給電システム1において、送電装置10から受電装置20に対して目標とする伝送効率を維持して安定して電力が供給されるようにする。受電装置20は、受電コイル211の内部空間に設けられ、その巻回軸の方向が受電コイル211の巻回軸の方向に対して回転する調整用コイル212と、給電中に伝送効率が目標値に維持されるように、受電コイル211の巻回軸の方向と調整用コイル212の巻回軸の方向とがなす角度θ1を調節する角度調節機構24とを備える。送電装置10は、送電コイル111の内部空間に設けられ、その巻回軸の方向が送電コイル111の巻回軸の方向に対して回転する調整用コイル112と、給電中に伝送効率が目標値に維持されるように、送電コイル111の巻回軸の方向と調整用コイル112の巻回軸の方向とがなす角度θ2を調節する角度調節機構14とを備える。

Description

非接触給電システム、受電装置、及び送電装置
 この発明は、非接触給電システム、受電装置、及び送電装置に関する。
 特許文献1には、送電装置から受電装置に供給される電力を遮断又は送電することを目的として構成された給電システムについて記載され、送電装置が、受電装置の第1コイルに対して電力を供給するための第2コイルを有する送電回路と、第2コイルとの間で磁気的に結合される第3コイルと、電力が遮断又は供給されるように、第2コイルの巻回軸と交差する回動軸を中心に第3コイルを回動させて、送電回路のインピーダンスを変化させる回動装置とを備えることが記載されている。
特許第05579953号公報
 磁界共鳴方式の非接触給電を行うシステムにおける伝送効率は、送電側又は受電側の共振回路のインダクタンスや静電容量の変化、送電側のコイルと受電側のコイルのとの間の距離等によって変動する。そのため、磁界共鳴方式の非接触給電を行うシステムにおいては、伝送効率を維持して送電装置から受電装置に対して安定して電力を供給する仕組みが求められる。
 本発明はこうした背景に鑑みてなされたものであり、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することが可能な、非接触給電システム、受電装置、及び送電装置を提供することを目的としている。
 上記目的を達成するための本発明の一つは、送電コイルとコンデンサとを用いて構成される送電側の共振回路を有して磁界共鳴方式の非接触給電を行う送電装置と、受電コイルとコンデンサとを用いて構成される受電側の共振回路を有して前記送電装置から前記非接触給電により給電を受ける受電装置とを備えて構成される非接触給電システムであって、前記受電装置は、前記受電コイルの内部空間に設けられ、その巻回軸の方向が前記受電コイルの巻回軸の方向に対して回転可能に軸支された受電側調整用コイルと、前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を調節する受電側角度調節機構と、を備える。
 本発明によれば、受電装置が、非接触給電により送電装置から受電装置への給電中に伝送効率が目標値に維持されるように、受電コイルの巻回軸の方向と受電側調整用コイルの巻回軸の方向とがなす角度θ1を調節するので、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することができる。
 上記目的を達成するための本発明の一つは、送電コイルとコンデンサとを用いて構成される送電側の共振回路を有して磁界共鳴方式の非接触給電を行う送電装置と、受電コイルとコンデンサとを用いて構成される受電側の共振回路を有して前記送電装置から前記非接触給電により給電を受ける受電装置とを備えて構成される非接触給電システムであって、前記送電装置は、前記送電コイルの内部空間に設けられ、その巻回軸の方向が前記送電コイルの巻回軸の方向に対して回転可能に軸支された送電側調整用コイルと、前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節する送電側角度調節機構と、を備える。
 本発明によれば、送電装置が、非接触給電により送電装置から受電装置への給電中に伝送効率が目標値に維持されるように、送電コイルの巻回軸の方向と送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節するので、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することができる。
 上記目的を達成するための本発明の一つは、上記非接触給電システムであって、前記送電装置は、前記送電コイルの内部空間に設けられ、その巻回軸の方向が前記送電コイルの巻回軸の方向に対して回転可能に軸支された送電側調整用コイルと、前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節する送電側角度調節機構と、を備える。
 本発明によれば、受電装置が、非接触給電により送電装置から受電装置への給電中に伝送効率が目標値に維持されるように、受電コイルの巻回軸の方向と受電側調整用コイルの巻回軸の方向とがなす角度θ1を調節するとともに、送電装置が、非接触給電により送電装置から受電装置への給電中に伝送効率が目標値に維持されるように、送電コイルの巻回軸の方向と送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節するので、送電装置から受電装置に対して目標とする伝送効率を維持してより安定して電力を供給することができる。
 上記目的を達成するための本発明の一つは、上記非接触給電システムであって、前記受電装置は、前記受電側の共振回路の受電電力を計測する電力計測回路を備え、前記受電側角度調節機構は、前記受電電力が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を制御する。
 本発明によれば、受電装置は、受電電力が目標値に維持されるように、受電コイルの巻回軸の方向と受電側調整用コイルの巻回軸の方向とがなす角度θ1を制御するので、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することができる。
 上記目的を達成するための本発明の一つは、上記非接触給電システムであって、前記送電装置は、前記送電側の共振回路の送電電力を計測する電力計測回路を備え、前記送電側角度調節機構は、前記送電電力が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を制御する。
 本発明によれば、送電装置は、送電電力が目標値に維持されるように、送電コイルの巻回軸の方向と送電側調整用コイルの巻回軸の方向とがなす角度θ2を制御するので、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することができる。
 上記目的を達成するための本発明の一つは、上記非接触給電システムであって、前記受電コイルと前記受電側調整用コイルは、夫々導体線を互いに異なる径で環状に巻回して構成されており、一のコイルが他のコイルの内部空間に収容されるように構成されている。
 受電コイルと受電側調整用コイルをこのような構成とすることで、受電装置の小型化を図ることができる。
 上記目的を達成するための本発明の一つは、上記非接触給電システムであって、前記送電コイルと前記送電側調整用コイルは、夫々導体線を互いに異なる径で環状に巻回して構成されており、一のコイルが他のコイルの内部空間に収容されるように構成されている。
 送電コイルと送電側調整用コイルをこのような構成とすることで、送電装置の小型化を図ることができる。
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
 本発明によれば、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給することができる。
第1実施例の非接触給電システム1の概略的な構成を説明する図である。 送電装置10の構成を示す図である。 受電装置20の構成を示す図である。 送電装置10の送電コイル111と、受電装置20の受電コイル211及び調整用コイル212の配置例を示す図である。 第2実施例の非接触給電システム1の概略的な構成を説明する図である。 送電装置10の構成を示す図である。 受電装置20の構成を示す図である。 送電装置10の送電コイル111及び調整用コイル112と、受電装置20の受電コイル211の配置例を示す図である。 第3実施例の非接触給電システム1の概略的な構成を説明する図である。 送電装置10の構成を示す図である。 受電装置20の構成を示す図である。 送電装置10の送電コイル111及び調整用コイル112と、受電装置20の受電コイル211及び調整用コイル212の配置例を示す図である。
 以下、本発明の一実施形態について図面とともに説明する。尚、以下の説明において、共通する構成に同一の符号を付すことにより重複する説明を省略することがある。また類似する構成について同一の符号を付してそれらの構成を総称することがある。
=第1実施例=
 図1に第1実施例として示す磁界共鳴方式の非接触給電システム1の概略的な構成を示している。同図に示すように、非接触給電システム1は、送電装置10及び受電装置20を含む。送電装置10は、受電装置20に向けて磁界共鳴方式の非接触給電により送電を行う。受電装置20は、送電装置10から送られてくる電力を受電する。
 図2に第1実施例の送電装置10の主要な構成を示している。同図に示すように、送電装置10は、送電回路11及び電源回路13を備える。
 送電回路11は、送電コイル111、送電コンデンサ113、及び制御回路114を備える。送電コイル111と送電コンデンサ113は共振回路を構成している。送電コイル111は、その巻回軸の周りに絶縁被覆銅線等の導体線を環状に所定回数巻回した構成を有する。送電コイル111は、例えば、絶縁性の枠体に固定されている。制御回路114は、ドライバ回路(ゲートドライバ、ハーフブリッジドライバ等)を含み、電源回路13から供給される電力に基づき、上記共振回路に供給する所定周波数の駆動電流を生成する。
 電源回路13は、例えば、スイッチング方式やリニア方式の回路であり、送電回路11に駆動電力を供給する。
 図3に第1実施例の受電装置20の主要な構成を示している。同図に示すように、受電装置20は、受電回路21、電力計測回路22、負荷23、及び角度調節機構24を備える。
 受電回路21は、受電コイル211、調整用コイル212、受電コンデンサ213、及び整流回路214を備える。受電コイル211と受電コンデンサ213は共振回路を構成している。受電コイル211は、その巻回軸の周りに絶縁被覆銅線等の導体線を環状に所定回数巻回した構成を有する。受電コイル211は、例えば、絶縁性の枠体に固定されている。調整用コイル212は、受電コイル211の内部空間に配置される。調整用コイル212は、受電コイル211と磁気的に結合される。整流回路214は、上記共振回路が受電した交流電力を直流電力に変換して負荷23に供給する。
 電力計測回路22は、受電回路21の受電電力を計測する。電力計測回路22は、受電回路21から出力される電力を計測するための電圧計及び電流計を含む。受電回路21の受電電力は非接触給電の伝送効率を表す指標となる。
 角度調節機構24は、電力計測回路22によって計測された受電回路21の受電電力に応じて受電コイル211の巻回軸の方向と調整用コイル212の巻回軸の方向とがなす角度θ1を調節し、非接触給電の伝送効率を調節する。角度調節機構24は、例えば、マイクロコンピュータやASIC(Application Specific Integrated Circuit)、モータ駆動機構、サーボモータ、ステッピングモータ等を用いて構成される。
 図4に、送電装置10の送電コイル111と、受電装置20の受電コイル211及び調整用コイル212の配置例を示している。この例では、送電コイル111及び受電コイル211を、夫々の巻回軸が、いずれも同図に設定した三次元直交座標系のx軸に平行な同一の直線に一致するように配置している。尚、以下の説明において、送電コイル111及び受電コイル211は夫々の巻回軸の方向がこの状態に維持されるように固定されているものとする。
 調整用コイル212の外径は、受電コイル211の内径よりも小さく、調整用コイル212は、受電コイル211の内部空間に、その中心が受電コイル211の中心と一致するように配置されている。調整用コイル212及び受電コイル211をこのような構成とすることで、受電装置20の小型化を図ることができる。
 調整用コイル212は、例えば、その中心を通りz軸に平行な回転軸に軸支されている。調整用コイル212を回転軸の周りに回転させることにより、調整用コイル212の巻回軸の方向をxy平面に平行な面内で回転させることができ、それにより受電コイル211の巻回軸の方向と調整用コイル212の巻回軸の方向とがなす角度θ1を変化させることができる。
 ここで受電回路21の共振回路において、受電コイル211が示すインダクタンスの値が上記角度θ1によって変化することが知見されている。また非接触給電システム1を構成する送電回路11又は受電回路21の共振回路の共振周波数(固有共振周波数)f0は、共振回路を構成するコイルのインダクタンスをL、共振回路を構成するコンデンサの静電容量をCとすれば、次の式1で表すことができる。
Figure JPOXMLDOC01-appb-I000001
 従って、上記角度θ1を変化させることにより、共振回路の共振周波数(固有共振周波数)を変化させることができる。
 一方、送電回路11の共振回路と受電回路21の共振回路の共鳴周波数(f1又はf2)は、両者の結合係数をkとすれば、例えば、次の式2又は式3で表される。
Figure JPOXMLDOC01-appb-I000002
 式1乃至式3から、共鳴周波数(f1又はf2)は、共振回路を構成するコイルのインダクタンスLや共振回路を構成するコンデンサの静電容量Cによって変化することがわかる。従って、共振回路のコイルのインダクタンスを変化させることにより共鳴周波数(f1又はf2)を変化させることができる。そして共鳴周波数(f1又はf2)を変化させることで送電装置10から受電装置20への送電電力が変化し、従って、上記角度θ1を変化させることにより非接触給電の伝送効率を制御することができる。
 このため、送電回路11又は受電回路21の共振回路を構成するコイルのインダクタンスLや共振回路を構成するコンデンサの静電容量Cが変化した場合でも、上記角度θ1を変化させることにより非接触給電の伝送効率を制御することができ、送電装置10から受電装置20に対して目標とする伝送効率を維持して安定して電力を供給することができる。尚、上記結合係数kは、例えば、送電コイル111と受電コイル211の間の距離、両者の配置状態、両者が置かれている環境等によって変化するが、この変化に起因して生じる共鳴周波数(f1又はf2)のずれについても上記角度θ1を調節して補正するようにすれば、伝送効率をより安定させることができる。
 上記角度θ1の制御に際しては、例えば、伝送効率を随時モニタして伝送効率が最大になるように上記角度θ1をフィードバック制御する。また例えば、予め目標とする伝送効率が定められている場合には、目標値に維持されるように上記角度θ1をフィードバック制御する。また例えば、予め伝送効率が制限されている場合には、制限値を超えないように上記角度θ1をフィードバック制御する。
 ところで、第1実施例では、受電装置20側の共振回路のインダクタンスを変化させて伝送効率を調節しているので、例えば、1つの送電装置10が複数の受電装置20に対して一対多の関係で非接触給電を行う場合には、受電装置20ごとに適切な値に伝送効率を調節して非接触給電を行うことができる。
=第2実施例=
 図5に第2実施例として示す磁界共鳴方式の非接触給電システム1の概略的な構成を示している。同図に示すように、非接触給電システム1は、送電装置10及び受電装置20を含む。送電装置10は、受電装置20に向けて磁界共鳴方式の非接触給電により送電を行う。受電装置20は、送電装置10から送られてくる電力を受電する。
 図6に送電装置10の主要な構成を示している。同図に示すように、送電装置10は、送電回路11、電力計測回路12、電源回路13、及び角度調節機構14を備える。
 送電回路11は、送電コイル111、調整用コイル112、送電コンデンサ113、及び制御回路114を備える。送電コイル111と送電コンデンサ113は共振回路を構成している。送電コイル111は、その巻回軸の周りに絶縁被覆銅線等の導体線を環状に所定回数巻回した構成を有する。送電コイル111は、例えば、絶縁性の枠体に固定されている。調整用コイル112は、送電コイル111の内部空間に配置される。調整用コイル112は、送電コイル111と磁気的に結合される。制御回路114は、ドライバ回路(ゲートドライバ、ハーフブリッジドライバ等)を含み、電源回路13から供給される電力に基づき、上記共振回路に供給する所定周波数の駆動電流を生成する。
 電源回路13は、例えば、スイッチング方式やリニア方式の回路であり、送電回路11に駆動電力を供給する。
 電力計測回路12は、送電回路11の消費電力を計測する。電力計測回路12は、電源回路13から送電回路11に供給される電力を計測するための電圧計及び電流計を含む。送電回路11の消費電力は非接触給電の伝送効率を表す指標となる。
 角度調節機構14は、電力計測回路12によって計測された送電回路11の消費電力に応じて送電コイル111の巻回軸の方向と調整用コイル112の巻回軸の方向とがなす角度θ2を調節し、非接触給電の伝送効率を調節する。角度調節機構14は、例えば、マイクロコンピュータやASIC、モータ駆動機構、サーボモータ、ステッピングモータ等を用いて構成される。
 図7に第2実施例の受電装置20の主要な構成を示している。同図に示すように、受電装置20は、受電回路21、及び負荷23を備える。
 受電回路21は、受電コイル211、受電コンデンサ213、及び整流回路214を備える。受電コイル211及び受電コンデンサ213は共振回路を構成している。受電コイル211は、その巻回軸の周りに絶縁被覆銅線等の導体線を環状に所定回数巻回した構成を有する。整流回路214は、上記共振回路が受電した交流電力を直流電力に変換して負荷23に供給する。
 図8に、送電装置10の送電コイル111及び調整用コイル112と、受電装置20の受電コイル211の配置例を示している。この例では、送電コイル111及び受電コイル211を、夫々の巻回軸が、いずれも同図に設定した三次元直交座標系のx軸に平行な同一の直線に一致するように配置している。尚、以下の説明において、送電コイル111及び受電コイル211は夫々の巻回軸の方向がこの状態に維持されるように固定されているものとする。
 調整用コイル112の外径は、送電コイル111の内径よりも小さく、調整用コイル112は、送電コイル111の内部空間に、その中心が送電コイル111の中心と一致するように配置されている。調整用コイル112及び送電コイル111をこのような構成とすることで、送電装置10の小型化を図ることができる。
 調整用コイル112は、例えば、その中心を通りz軸に平行な回転軸よって軸支されている。調整用コイル112を回転軸の周りに回転させることにより、調整用コイル112の巻回軸の方向をxy平面に平行な面内で回転させることができ、それにより送電コイル111の巻回軸の方向と調整用コイル112の巻回軸の方向とがなす角度θ2を変化させることができる。
 ここで送電回路11の共振回路において、送電コイル111が示すインダクタンスの値が上記角度θ2によって変化することが知見されている。また第1実施例で説明したように、上記角度θ2を変化させることにより、送電回路11の共振回路の共振周波数(固有共振周波数)を変化させることができ、前述した共鳴周波数(f1又はf2)を変化させることができる。そして共鳴周波数(f1又はf2)を変化させることで送電装置10から受電装置20への送電電力が変化し、従って、上記角度θ2を変化させることにより非接触給電の伝送効率を制御することができる。
 このため、送電回路11又は受電回路21の共振回路を構成するコイルのインダクタンスLや共振回路を構成するコンデンサの静電容量Cが変化した場合でも、上記角度θ2を変化させることにより非接触給電の伝送効率を制御することができ、送電装置10から受電装置20に対して目標とする伝送効率を維持して安定して電力を供給することができる。尚、上記結合係数kは、例えば、送電コイル111と受電コイル211の間の距離、両者の配置状態、両者が置かれている環境等によって変化するが、この変化に起因して生じる共鳴周波数(f1又はf2)のずれについても上記角度θ2を調節して補正するようにすれば、伝送効率をより安定させることができる。
 上記角度θ2の制御に際しては、例えば、伝送効率を随時モニタして伝送効率が最大になるように上記角度θ2をフィードバック制御する。また例えば、予め目標とする伝送効率が定められている場合には、目標値に維持されるように上記角度θ2をフィードバック制御する。また例えば、予め伝送効率が制限されている場合には、制限値を超えないように上記角度θ2をフィードバック制御する。
 ところで、前述したように、非接触給電の伝送効率は、送電回路11の消費電力を指標として把握することができるが、伝送効率は、例えば、送電装置10からの送電電力と受電装置20の受電電力との比から求めてもよい。その場合、例えば、送電装置10と受電装置20とを通信可能に接続し、送電装置10側で受電装置20の受電電力を把握できるようにする。
=第3実施例=
 図9に第3実施例として示す磁界共鳴方式の非接触給電システム1の概略的な構成を示している。同図に示すように、非接触給電システム1は、送電装置10及び受電装置20を含む。送電装置10は、受電装置20に向けて磁界共鳴方式の非接触給電により送電を行う。受電装置20は、送電装置10から送られてくる電力を受電する。
 図10に第3実施例の送電装置10の主要な構成を示している。第3実施例の送電装置10の構成は第2実施例の送電装置10と同様である。
 図11に受電装置20の主要な構成を示している。第3実施例の受電装置20の構成は第1実施例の受電装置20と同様である。
 図12に、送電装置10の送電コイル111及び調整用コイル112と、受電装置20の受電コイル211及び調整用コイル212の配置例を示している。この例では、送電コイル111及び受電コイル211を、夫々の巻回軸が、いずれも同図に設定した三次元直交座標系のx軸に平行な同一の直線に一致するように配置している。
 第3実施例の非接触給電システム1においては、送電装置10は、送電コイル111の巻回軸の方向と調整用コイル112の巻回軸の方向とがなす角度θ2を変化させることにより、非接触給電の伝送効率を制御する。また受電装置20は、受電コイル211の巻回軸の方向と調整用コイル212の巻回軸の方向とがなす角度θ1を変化させることにより、非接触給電の伝送効率を制御する。このように、第3実施例の非接触給電システム1においては、送電装置10及び受電装置20の双方が共振回路のインダクタンスを変化させて伝送効率を調節するので、伝送効率をより確実に安定して維持することができる。
 以上、本発明の実施の形態について説明したが、以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
 以上では、受電コイル211を固定し、調整用コイル212を回転させて角度θ1を変化させているが、これとは逆に、受電コイル211を回転させて角度θ1を変化させるようにしてもよい。また受電コイル211と調整用コイル212の双方を回転させて角度θ1を変化させるようにしてもよい。同様に、以上では、送電コイル111を固定し、調整用コイル112を回転させて角度θ2を変化させているが、これとは逆に、送電コイル111を回転させて角度θ2を変化させるようにしてもよい。また送電コイル111と調整用コイル112の双方を回転させて角度θ2を変化させるようにしてもよい。
 以上では、調整用コイル112(又は調整用コイル212)として、その径が送電コイル111(又は受電コイル211)の径よりも小さいものを採用したが、調整用コイル112(又は調整用コイル212)として、その径が送電コイル111(又は受電コイル211)と同一(又はほぼ同一)のものを採用してもよいし、その径が送電コイル111(又は受電コイル211)の径よりも大きいものを採用してもよい。
1 非接触給電システム、10 送電装置、11 送電回路、12 電力計測回路、13 電源回路、14 角度調節機構、111 送電コイル、112 調整用コイル、113 送電コンデンサ、114 制御回路、20 受電装置、21 受電回路、22 電力計測回路、23 負荷、24 角度調節機構、211 受電コイル、212 調整用コイル、213 受電コンデンサ、214 整流回路

Claims (11)

  1.  送電コイルとコンデンサとを用いて構成される送電側の共振回路を有して磁界共鳴方式の非接触給電を行う送電装置と、
     受電コイルとコンデンサとを用いて構成される受電側の共振回路を有して前記送電装置から前記非接触給電により給電を受ける受電装置と
     を備えて構成される非接触給電システムであって、
     前記受電装置は、
     前記受電コイルの内部空間に設けられ、その巻回軸の方向が前記受電コイルの巻回軸の方向に対して回転可能に軸支された受電側調整用コイルと、
     前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を調節する受電側角度調節機構と、
     を備える、非接触給電システム。
  2.  送電コイルとコンデンサとを用いて構成される送電側の共振回路を有して磁界共鳴方式の非接触給電を行う送電装置と、
     受電コイルとコンデンサとを用いて構成される受電側の共振回路を有して前記送電装置から前記非接触給電により給電を受ける受電装置と
     を備えて構成される非接触給電システムであって、
     前記送電装置は、
     前記送電コイルの内部空間に設けられ、その巻回軸の方向が前記送電コイルの巻回軸の方向に対して回転可能に軸支された送電側調整用コイルと、
     前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節する送電側角度調節機構と、
     を備える、非接触給電システム。
  3.  請求項1に記載の非接触給電システムであって、
     前記送電装置は、
     前記送電コイルの内部空間に設けられ、その巻回軸の方向が前記送電コイルの巻回軸の方向に対して回転可能に軸支された送電側調整用コイルと、
     前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節する送電側角度調節機構と、
     を備える、非接触給電システム。
  4.  請求項1に記載の非接触給電システムであって、
     前記受電装置は、前記受電側の共振回路の受電電力を計測する電力計測回路を備え、
     前記受電側角度調節機構は、前記受電電力が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を制御する
     非接触給電システム。
  5.  請求項2又は3に記載の非接触給電システムであって、
     前記送電装置は、前記送電側の共振回路の送電電力を計測する電力計測回路を備え、
     前記送電側角度調節機構は、前記送電電力が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を制御する
     非接触給電システム。
  6.  請求項1に記載の非接触給電システムであって、
     前記受電コイルと前記受電側調整用コイルは、夫々導体線を互いに異なる径で環状に巻回して構成されており、一のコイルが他のコイルの内部空間に収容されるように構成されている
     非接触給電システム。
  7.  請求項2又は3に記載の非接触給電システムであって、
     前記送電コイルと前記送電側調整用コイルは、夫々導体線を互いに異なる径で環状に巻回して構成されており、一のコイルが他のコイルの内部空間に収容されるように構成されている
     非接触給電システム。
  8.  請求項1に記載の非接触給電システムにおける前記受電装置であって、
     前記受電コイルの内部空間に設けられ、その巻回軸の方向が前記受電コイルの巻回軸の方向に対して回転可能に軸支された受電側調整用コイルと、
     前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を調節する受電側角度調節機構と、
     を備える受電装置。
  9.  請求項2又は3に記載の非接触給電システムにおける前記送電装置であって、
     前記送電コイルの内部空間に設けられ、その巻回軸の方向が前記送電コイルの巻回軸の方向に対して回転可能に軸支された送電側調整用コイルと、
     前記非接触給電により前記送電装置から前記受電装置への給電中に伝送効率が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を調節する送電側角度調節機構と、
     を備える送電装置。
  10.  請求項4に記載の非接触給電システムにおける前記受電装置であって、
     前記受電側の共振回路の受電電力を計測する電力計測回路を備え、
     前記受電側角度調節機構は、前記受電電力が目標値に維持されるように、前記受電コイルの巻回軸の方向と前記受電側調整用コイルの巻回軸の方向とがなす角度θ1を制御する
     受電装置。
  11.  請求項5に記載の非接触給電システムにおける前記送電装置であって、
     前記送電側の共振回路の送電電力を計測する電力計測回路を備え、
     前記送電側角度調節機構は、前記送電電力が目標値に維持されるように、前記送電コイルの巻回軸の方向と前記送電側調整用コイルの巻回軸の方向とがなす角度θ2を制御する
     送電装置。
PCT/JP2014/084098 2014-12-24 2014-12-24 非接触給電システム、受電装置、及び送電装置 WO2016103354A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015530201A JP5897777B1 (ja) 2014-12-24 2014-12-24 非接触給電システム、受電装置、及び送電装置
PCT/JP2014/084098 WO2016103354A1 (ja) 2014-12-24 2014-12-24 非接触給電システム、受電装置、及び送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084098 WO2016103354A1 (ja) 2014-12-24 2014-12-24 非接触給電システム、受電装置、及び送電装置

Publications (1)

Publication Number Publication Date
WO2016103354A1 true WO2016103354A1 (ja) 2016-06-30

Family

ID=55628680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084098 WO2016103354A1 (ja) 2014-12-24 2014-12-24 非接触給電システム、受電装置、及び送電装置

Country Status (2)

Country Link
JP (1) JP5897777B1 (ja)
WO (1) WO2016103354A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252497A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法
JP2013106444A (ja) * 2011-11-14 2013-05-30 Fujitsu Ltd 電力中継器
WO2013114576A1 (ja) * 2012-01-31 2013-08-08 富士通株式会社 電力伝送装置、電力伝送システム、及び電力伝送方法
JP2014103751A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 無線電力伝送制御装置、送電装置、受電装置および無線電力伝送システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277858B2 (ja) * 2008-10-20 2013-08-28 トヨタ自動車株式会社 給電システム及び移動体用給電装置
JP5308127B2 (ja) * 2008-11-17 2013-10-09 株式会社豊田中央研究所 給電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252497A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法
JP2013106444A (ja) * 2011-11-14 2013-05-30 Fujitsu Ltd 電力中継器
WO2013114576A1 (ja) * 2012-01-31 2013-08-08 富士通株式会社 電力伝送装置、電力伝送システム、及び電力伝送方法
JP2014103751A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 無線電力伝送制御装置、送電装置、受電装置および無線電力伝送システム

Also Published As

Publication number Publication date
JP5897777B1 (ja) 2016-03-30
JPWO2016103354A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US8432125B2 (en) Non-contact power transmission apparatus
JP5994771B2 (ja) ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システムおよびコイル
US10804029B2 (en) Rotary type magnetic coupling device
JP5915667B2 (ja) 電力伝送装置、電力伝送システム、及び電力伝送方法
US8166844B2 (en) Rotating device and robot arm device
JP5362437B2 (ja) 電力伝送システム
JP2010141976A (ja) 非接触電力伝送装置
JP2018064002A (ja) 回転型磁気結合装置
CN105790445B (zh) 无线传输装置与使用该装置之机械手臂
JP2007036341A (ja) 無接触式伝送装置
US20190097472A1 (en) Powered joint with wireless transfer
WO2016103354A1 (ja) 非接触給電システム、受電装置、及び送電装置
JP2018056215A (ja) 非接触伝送モジュール、撮像装置及びロボットハンド
JP2013120855A (ja) ピッチ可変コイル及び共振回路
CN202422999U (zh) 一种用于绕线机的主动齿轮架
JP2014103147A (ja) 集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システム
WO2014175205A1 (ja) 給電システム
CN103107010B (zh) 用于牵引电机的集成式高频旋转变压器和分解器
WO2015087400A1 (ja) 送電装置、給電システム、電気回路のインピーダンス調整装置
WO2019225209A1 (ja) コイル部材、非接触型電力伝送装置、電磁波照射/受信装置、電力伝送/情報通信装置及び自律可動型ロボットシステム
WO2015015635A1 (ja) 非接触電力伝送装置及び非接触電力伝送システム
JP2013207907A (ja) 集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システム
CN115516738A (zh) 无触点供电及数据通信装置和利用其的旋转驱动激光雷达系统
WO2016103351A1 (ja) 非接触給電システム、送電装置、及び受電装置
JP5390162B2 (ja) 電力伝送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530201

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908961

Country of ref document: EP

Kind code of ref document: A1