WO2013111841A1 - 変位センサ - Google Patents

変位センサ Download PDF

Info

Publication number
WO2013111841A1
WO2013111841A1 PCT/JP2013/051530 JP2013051530W WO2013111841A1 WO 2013111841 A1 WO2013111841 A1 WO 2013111841A1 JP 2013051530 W JP2013051530 W JP 2013051530W WO 2013111841 A1 WO2013111841 A1 WO 2013111841A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
piezoelectric element
voltage
displacement sensor
pressing force
Prior art date
Application number
PCT/JP2013/051530
Other languages
English (en)
French (fr)
Inventor
石井徹
山本靖
米光勉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013555315A priority Critical patent/JP5765442B2/ja
Priority to CN201380006264.1A priority patent/CN104067087B/zh
Publication of WO2013111841A1 publication Critical patent/WO2013111841A1/ja
Priority to US14/339,875 priority patent/US9778765B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type

Definitions

  • the present invention relates to a displacement sensor for detecting a displacement amount when a main body is operated (bending, twisting, pushing, etc.) by an operator.
  • Patent Document 1 describes a touch input device including a flat pressure sensor.
  • a piezoelectric sheet made of a piezoelectric material is generally used.
  • many piezoelectric sensors are used for various current displacement sensors.
  • the piezoelectric sheet Since the piezoelectric sheet generates a charge corresponding to the amount of displacement, an electrode is formed on both opposing surfaces of the piezoelectric sheet to form a piezoelectric sensor, and by detecting the voltage due to the generated charge, the amount of displacement (the amount of bending) , Twisting amount, pushing amount, etc.).
  • the piezoelectric body used in the piezoelectric sheet generates a charge amount corresponding to the amount of displacement, and if the same amount of displacement is maintained, no new charge is generated after a certain amount of charge has occurred. . That is, when the output of the piezoelectric sensor is connected to a load having a constant input impedance and observed as a voltage, this voltage instantaneously changes from the initial reference voltage to a voltage value corresponding to the amount of displacement, and then constant. The voltage returns to the reference voltage without maintaining the voltage.
  • an object of the present invention is to provide a displacement sensor that can detect a displacement amount given by an operator with high accuracy.
  • the displacement sensor of the present invention includes a piezoelectric element that generates a charge corresponding to the amount of displacement, a voltage conversion unit that generates a voltage that changes with a predetermined time constant from the charge generated by the piezoelectric element, and an output from the voltage conversion unit. And a detector that calculates the amount of displacement from the integrated value by integrating the voltage to be detected.
  • the voltage converter of the displacement sensor of the present invention can be realized by the following configuration.
  • the voltage conversion unit includes a first resistor connected to at least one end of the piezoelectric element, and an amplifier circuit that detects, as an input, a voltage generated when a charge generated in the piezoelectric element flows through the first resistor. Is preferred.
  • the voltage converter of the displacement sensor of the present invention can be realized by the following configuration.
  • the first resistor is connected in parallel with the piezoelectric element, one end of the first resistor is connected to the input of the amplifier circuit, and the other end of the first resistor is connected to the reference potential. preferable.
  • the voltage converter of the displacement sensor of the present invention can be realized by the following configuration.
  • the voltage converter includes a piezoelectric element, a first resistor, and a second resistor connected in series, one end of the first resistor is connected to the piezoelectric element, and the other end of the first resistor is one end of the second resistor. And the other end of the second resistor is preferably connected to the output of the amplifier circuit.
  • the impedance of the first resistor of the displacement sensor of the present invention is lower than the impedance of the piezoelectric element.
  • the combined impedance of the first resistor and the second resistor of the displacement sensor of the present invention is preferably lower than the impedance of the piezoelectric element.
  • This configuration shows a specific example of the impedance of the first resistor and the second resistor.
  • the detection unit of the displacement sensor according to the present invention measures the fluctuation of the integrated value, and detects that the integrated value fluctuates in a set of increasing and decreasing behavior, and detects the initial value of the integrated value and the latest integrated value. It is preferable that the difference value is calculated by subtracting and the integrated value is reset to the initial value if the difference value is less than a predetermined threshold value.
  • the piezoelectric element of the displacement sensor according to the present invention includes a piezoelectric film made of polylactic acid that has been stretched at least in one axial direction, a first detection electrode formed on the first surface of the piezoelectric film, and a piezoelectric element. It is preferable to provide the 2nd electrode for a detection formed in the 2nd surface of a conductive film.
  • the displacement sensor can be used as a touch sensor that detects a pressing force when a predetermined surface of the piezoelectric element is pressed.
  • the amount of displacement given by the operator can be measured with high accuracy.
  • 1 is a circuit block diagram of a displacement sensor 100 according to a first embodiment of the present invention.
  • 1 is a diagram illustrating a schematic configuration of a piezoelectric element 10. It is a figure for demonstrating the electric charge generation
  • FIG. 1 is a circuit block diagram of a displacement sensor 100 according to a first embodiment of the present invention. It is a figure which shows an example of the time transition of the output voltage of the operational amplifier U1 which concerns on 2nd Embodiment. It is a figure which shows the time transition of the integrated value Zout obtained by the calculating part 122 which concerns on 2nd Embodiment. It is a circuit block diagram of the calculating part 122A of the displacement sensor which concerns on 3rd Embodiment. It is a figure which shows one transition which arises in the integrated value which can actually measure. It is a flowchart which shows the press amount calculation flow which 202A of press amount calculation parts with a reset function of the displacement sensor which concern on 3rd Embodiment performs.
  • FIG. 1 is a circuit block diagram of a touch sensor 100 according to the first embodiment of the present invention.
  • the touch sensor 100 includes a piezoelectric element 10, a voltage conversion unit 101, and a detection unit 102.
  • the voltage conversion unit 101 includes a resistor R3 (corresponding to the “first resistor” of the present invention), a capacitor C1, and an operational amplifier U1.
  • One end of the piezoelectric element 10 (for example, a first extraction electrode 41 described later) is connected to a connection point between the resistor R1 and the resistor R2.
  • the resistors R1 and R2 are connected in series between the drive voltage application terminal Vdd and the ground.
  • a resistor R3 is connected in parallel to the piezoelectric element 10, and a capacitor C1 is connected in parallel.
  • the other end of the piezoelectric element 10 (for example, a second lead electrode 42 described later) is connected to the non-inverting input terminal of the operational amplifier U1.
  • the output terminal of the operational amplifier U1 is connected to the inverting input terminal of the operational amplifier U1. With this configuration, a buffer circuit is realized. A driving voltage is supplied from the driving voltage application terminal Vdd to the operational amplifier U1. The output terminal of the operational amplifier U1 is connected to the detection unit 102.
  • FIG. 2 is a diagram showing a schematic configuration of the piezoelectric element 10, FIG. 2 (A) is an external perspective view, FIG. 2 (B) is a plan view, and FIG. 2 (C) is a side view.
  • the piezoelectric element 10 includes a piezoelectric film 20, a first detection electrode 31, and a second detection electrode 32.
  • the piezoelectric film 20 is made of a rectangular flat film having a first main surface and a second main surface facing each other.
  • the piezoelectric film 20 is formed of uniaxially stretched L-type polylactic acid (PLLA).
  • PLLA is a chiral polymer, and the main chain has a helical structure.
  • PLLA produces piezoelectricity when molecules are oriented by uniaxial stretching or the like.
  • the piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
  • the draw ratio is preferably about 3 to 8 times.
  • PLLA generates piezoelectricity by molecular orientation processing such as stretching, and there is no need to perform poling processing like other polymers such as PVDF and piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF and PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Further, PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time.
  • the first detection electrode 31 is formed on the first main surface of the piezoelectric film 20 made of PLLA having such characteristics. Further, a second detection electrode 32 is formed on the second main surface of the piezoelectric film 20. As the first detection electrode 31 and the second detection electrode 32, it is preferable to use any one of an organic electrode mainly composed of ITO, ZnO and polythiophene, an organic electrode mainly composed of polyaniline, and a silver nanowire electrode. . By using these materials, an electrode with high translucency can be formed. When transparency is not required, an electrode formed of silver paste, or a metal electrode formed by vapor deposition, sputtering, plating, or the like can be used.
  • a first extraction electrode 41 is connected to the first detection electrode 31.
  • a second extraction electrode 42 is connected to the second detection electrode 32.
  • FIG. 3 is a diagram for explaining a function of generating charges by pushing the piezoelectric element 10 according to the first embodiment of the present invention.
  • FIG. 3A shows a state where the pressing amount (pressing force) is not related
  • FIG. 3B shows a state where the pressing amount (pressing force) by the finger is related.
  • the piezoelectric element 10 is attached to one main surface of the plate-like elastic body 50 so that the flat surfaces are in close contact with each other.
  • the elastic body 50 is made of glass, acrylic, polycarbonate, or the like.
  • the elastic body 50 is not limited to the material described here, and an appropriate material may be selected according to the use conditions. Moreover, what is necessary is just to select an appropriate surface according to use conditions also about the surface which bonds the piezoelectric element 10.
  • FIG. The opposite ends of the elastic body 50 are supported by the support body 501.
  • the potential difference (voltage) generated according to the pressing force is instantaneously generated at the timing when the displacement occurs, and decreases with time.
  • the pressing force (pushing amount) can be accurately and reliably calculated based on the instantaneous change in electric charge and voltage generated from the piezoelectric element 10.
  • the resistor R3 and the capacitor C1 are connected to the piezoelectric element 10 in parallel.
  • the resistance value (impedance) of the resistor R3 and the capacitance of the capacitor C1 are appropriately set so as to satisfy the following conditions.
  • the resistance values of the resistors R1 and R2 for applying the reference voltage of the piezoelectric element 10 are set to satisfy R1 ⁇ R2 / (R1 + R2) ⁇ R3.
  • the output voltage of the operational amplifier U1 is displaced from the timing at which the pressing force is applied to a voltage corresponding to the final pressing force. Thereafter, the voltage drops to the reference voltage according to a resistance value (impedance) of the resistor R3 and a time constant (a value proportional to R3 ⁇ (C1 + Cs)) determined by the capacitance of the capacitor C1 and the capacitance Cs of the piezoelectric element 10.
  • the output voltage of the operational amplifier U1 is displaced from the timing of releasing the pressing force to a voltage corresponding to the pressing force. Thereafter, the voltage drops to the reference voltage according to a resistance value (impedance) of the resistor R3 and a time constant (a value proportional to R3 ⁇ (C1 + Cs)) determined by the capacitance of the capacitor C1 and the capacitance Cs of the piezoelectric element 10.
  • FIG. 4 is a diagram illustrating an example of time transition of the output voltage of the operational amplifier U1 according to the present embodiment.
  • the output voltage that undergoes time transition as described above by the pressing force applied to the piezoelectric element 10 is input to the detection unit 102.
  • the detection unit 102 includes an A / D conversion unit 121 and a calculation unit 122.
  • FIG. 5 is a block diagram illustrating a configuration of the calculation unit 122.
  • the A / D converter 121 samples the output signal of the operational amplifier U1 at a predetermined sampling period and converts it into digital output data.
  • the sampling period may be set as appropriate according to the specification of the touch sensor 100, and is set to a period that can properly detect the voltage change due to the pressing force described above.
  • the calculation unit 122 includes an integration unit 201 and a pressing amount calculation unit 202.
  • the integrating unit 201 integrates a difference value between the reference voltage data obtained by digitally sampling the reference voltage and the output data at each sampling timing, and calculates an integrated value Zout.
  • FIG. 6 is a diagram illustrating a time transition of the integrated value Zout obtained by the calculation unit 122 according to the first embodiment. FIG. 6 shows an example when the output voltage transition shown in FIG. 4 occurs.
  • the integrated value Zout starts from about 0.0, the pressing force starts to be applied, the output voltage increases, and continues to increase until the pressing force becomes constant and the output voltage returns to the reference voltage.
  • the value reached by the integrated value Zout depends on the pressing force, that is, the pressing amount. After that, the pressing force starts to be released and the output voltage is decreased, and continues to decrease until the pressing force is released and the output voltage returns to the reference voltage, and becomes approximately 0.0. Therefore, in the case of FIG. Until then, the integrated value Zout continues to rise from 0.0 to a predetermined value corresponding to the pressing force. 0.45 sec. ⁇ 0.8 sec. Until then, the integrated value Zout becomes constant. 0.8 sec. From the predetermined value, the integrated value Zout continues to decrease from 1.15 sec. Becomes 0.0.
  • the pressing amount calculation unit 202 detects the integrated value Zout, and calculates the pressing amount from the relationship between the preset integrated value Zout and the pressing amount. Here, since the pressing force and the pressing amount similarly depend on the integrated value Zout, the pressing force can also be calculated.
  • FIG. 7 is a circuit block diagram of a touch sensor 100A according to the second embodiment of the present invention.
  • the touch sensor 100A of the present embodiment is different from the voltage conversion unit 101 of the first embodiment in the configuration of the voltage conversion unit 101A and the connection configuration with the piezoelectric element 10.
  • the voltage converter 101A includes an operational amplifier U1, a resistor R3 (corresponding to the “first resistor” of the present invention), a resistor R4 (corresponding to the “second resistor” of the present invention), and a capacitor C1. Prepare.
  • the non-inverting input terminal of the operational amplifier U1 is connected to the connection point between the resistor R1 and the resistor R2.
  • the resistors R1 and R2 are connected in series between the drive voltage application terminal Vdd and the ground.
  • the operational amplifier U1 is supplied with a drive voltage from a drive voltage application terminal Vdd.
  • One end of a resistor R3 is connected to the inverting input terminal of the operational amplifier U1.
  • the other end of the resistor R3 is connected to one end of the piezoelectric element 10 (for example, the first lead electrode 41 described above).
  • the other end of the piezoelectric element 10 (for example, the second extraction electrode 42 described above) is connected to a reference potential.
  • a first capacitor C1 and a resistor R4 are connected between the inverting input terminal and the output terminal of the operational amplifier U1.
  • the voltage conversion unit 101A functions as an integration circuit connected to the piezoelectric element 10.
  • the resistance values (impedance) of the resistors R3 and R4 and the capacitance of the capacitor C1 are appropriately set so as to satisfy the following conditions.
  • the setting of the resistance values of the resistors R1 and R2 is the same as that in the first embodiment.
  • FIG. 8 is a diagram illustrating an example of time transition of the output voltage of the operational amplifier U1 according to the present embodiment.
  • FIG. 8 shows the time 0.1 sec. ⁇ 0.25 sec. Then, a pressing force is applied in the first direction, and then the pressing force is maintained until time 0.8 sec. ⁇ 0.95 sec. Shows the case where the pressing force is released.
  • the output voltage that undergoes time transition as described above by the pressing force applied to the piezoelectric element 10 is input to the detection unit 102.
  • FIG. 9 is a diagram illustrating a time transition of the integrated value Zout obtained by the calculation unit 122 according to the second embodiment.
  • FIG. 9 shows an example when the output voltage transition shown in FIG. 8 occurs.
  • the integrated value Zout starts from about 0.0, the pressing force starts to be applied, the output voltage increases, and continues to increase until the pressing force becomes constant and the output voltage returns to the reference voltage.
  • the value reached by the integrated value Zout depends on the pressing force, that is, the pressing amount. After that, the pressing force starts to be released and the output voltage is decreased, and continues to decrease until the pressing force is released and the output voltage returns to the reference voltage, and becomes approximately 0.0. Therefore, in the case of FIG. Until then, the integrated value Zout continues to rise from 0.0 to a predetermined value corresponding to the pressing force. 0.6 sec. ⁇ 0.8 sec. Until then, the integrated value Zout becomes constant. 0.8 sec. From the predetermined value, the integrated value Zout continues to decrease from 1.3 seconds. 0.0.
  • the transition of the integrated value corresponding to the pressing amount and the pressing force can be obtained as in the first embodiment.
  • the voltage conversion unit 101A since the voltage conversion unit 101A has an integral characteristic, it is possible to realize a touch sensor that shows a milder reaction than the first embodiment.
  • FIG. 10 is a circuit block diagram of the calculation unit 122A of the touch sensor according to the present embodiment.
  • the touch sensor of this embodiment differs from the touch sensor shown in the first embodiment in the configuration of the calculation unit 122A. Therefore, only different parts will be described.
  • the calculation unit 122A includes an integration unit 201 and a pressing amount calculation unit 202A with a reset function.
  • FIG. 11 is a diagram showing one transition occurring in the integrated value that can cause actual measurement.
  • a voltage generated in a region higher than the reference voltage (a voltage on the positive side of the reference voltage) due to variations in the amount of charge generation of the piezoelectric element 10, an input offset voltage of the operational amplifier U1, and the like, and a reference voltage May be asymmetric with respect to the voltage generated in the lower region (voltage on the negative side of the reference voltage).
  • the integrated value Zout may not return to 0.0 as shown in FIG. 11 simply by pressing and releasing.
  • the pressing amount calculation unit 202A with a reset function of the calculation unit 122A calculates the pressing amount using the flow shown in FIG.
  • FIG. 12 is a flowchart illustrating a pressing amount calculation flow executed by the pressing amount calculation unit 202A with a reset function according to the third embodiment.
  • the pressing amount calculation unit 202A with a reset function measures the integrated value Zout output from the integrating unit 201 and sequentially compares them (S101).
  • the calculation unit 202A continues to measure and compare the integrated value Zout until it detects that the integrated value Zout has a vertical movement (S102: NO). That is, as shown in FIG. 6, the measurement and comparison of the integrated value Zout are continued until the integrated value Zout increases to a constant value and then decreases.
  • the calculating unit 202A when detecting the vertical movement of the integrated value Zout (S102: YES), calculates the maximum value Zmax of the integrated value Zout (S103).
  • the threshold value is not limited to the value shown here, and may be set as appropriate depending on variations in characteristics of the piezoelectric element 10 and the operational amplifier U1 of the touch sensor 100, the use environment of the touch sensor 100, and the like.
  • the pressing amount can be detected accurately and reliably each time.
  • the touch sensor that detects the pressing force (push-in amount) is described as an example of the displacement sensor.
  • the displacement sensor that is, the displacement amount when the piezoelectric element itself is bent or twisted is detected.
  • the above-described configuration can be applied to other displacement sensors. Thereby, it is possible to accurately and reliably detect the amount of displacement such as the amount of bending and the amount of twist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

操作者によって与えられた変位量を高精度に検出できる変位センサを提供する。変位センサの一種であるタッチセンサ(100)は、圧電素子(10)、電圧変換部(101)、および検出部(102)を備える。圧電素子(10)からは押圧力(押圧量)に応じた電圧が瞬時的に発生する。電圧変換部(101)は、圧電素子(10)で発生した電圧を、電圧変換部(101)の抵抗器(R3)のインピーダンスとコンデンサ(C1)および圧電素子(10)のキャパシタンスで決定される所定の時定数と押圧力とで決定される遷移に比例する電圧に変換して出力する。検出部(102)は、電圧変換部(101)の出力電圧を積算し、積算値に基づいて押圧力(押圧量)を算出する。

Description

変位センサ
 本発明は、操作者によって本体が操作(曲げ、捻れ、押し込み等)された時の変位量を検出する変位センサに関する。
 従来、操作者が本体を操作することで、変位量を検出する変位センサが各種考案されている。本体に対する操作としては、本体自体を曲げ、捻ることや、本体の所定面(タッチ面)を押し込む等がある。タッチ面を押し込むものとしては、操作者が指等で平面状の操作面をタッチすることで、タッチ時の押し込み量を検出するタッチセンサが各種考案されている。例えば、特許文献1には、平板状の感圧センサを備えたタッチ入力装置が記載されている。このような感圧センサには、一般的に圧電体を材料とする圧電性シートが用いられている。そして、現在の各種変位センサには、この圧電性シートが多く用いられている。
 圧電性シートは変位量に応じた電荷を発生するので、圧電性シートの対向する両面に電極を形成して圧電センサを構成し、当該発生電荷による電圧を検出することで、変位量(曲げ量、捻れ量、押し込み量等)を検出している。
特開平5-61592号公報
 しかしながら、圧電性シートに用いる圧電体は、変位量に応じた電荷量が発生し、同じ変位量を維持し続けた場合、一定の電荷量が生じた後は新たな電荷が発生することはない。すなわち、圧電センサの出力を一定の入力インピーダンスを有する負荷に接続して電圧として観測した場合、この電圧は、初期の基準電圧から、変位量に応じた電圧値に瞬時で変化し、その後、一定の電圧を保つことなく、基準電圧に戻ってしまう。
 このような圧電センサの特性により、従来の構成では、圧電センサの発生する電荷に応じた変位量を高精度に検出(計測)することが容易ではなかった。
 したがって、本発明の目的は、操作者によって与えられた変位量を高精度に検出できる変位センサを提供することにある。
 この発明の変位センサは、変位量に応じた電荷を発生する圧電素子と、圧電素子の発生する電荷から所定の時定数で変化する電圧を発生する電圧変換部と、該電圧変換部から出力される電圧を積算して積算値から変位量を算出する検出部と、を備えている。
 この構成では、変位量に応じて、時間的な変化が安定した電圧値が得られる。
 また、この発明の変位センサの電圧変換部は、次の構成により実現することができる。電圧変換部は、圧電素子の少なくとも一端と接続された第1抵抗器と、圧電素子で発生した電荷が第1抵抗器を流れることで発生する電圧を入力として検知するアンプ回路と、を備えることが好ましい。
 また、この発明の変位センサの電圧変換部は、次の構成により実現することができる。電圧変換部は、第1抵抗器が圧電素子と並列に接続され、第1抵抗器の一端がアンプ回路の入力と接続され、第1抵抗器の他端は基準電位と接続されていることが好ましい。
 さらに、この発明の変位センサの電圧変換部は、次の構成により実現することができる。電圧変換部は、圧電素子と第1抵抗器と第2抵抗器とが直列接続され、第1抵抗器の一端は圧電素子と接続され、第1抵抗器の他端は第2抵抗器の一端及びアンプ回路の入力と接続され、第2抵抗器の他端はアンプ回路の出力と接続されていることが好ましい。
 これらの構成では、電圧変換部の具体的な構成例を示している。
 また、この発明の変位センサの第1抵抗器のインピーダンスは、圧電素子のインピーダンスよりも低いことが好ましい。
 さらに、この発明の変位センサの第1抵抗器と第2抵抗器の合成インピーダンスは、圧電素子のインピーダンスよりも低いことが好ましい。
 この構成では、第1抵抗器や第2抵抗器のインピーダンスの具体例を示している。このようなインピーダンス設定を行うことで、より安定した出力電圧を得ることができる。
 また、この発明の変位センサの検出部は、積算値の変動を測定し、積算値の変動が増加、減少の一組の挙動を示したことを検出すると積算値の初期値と最新の積算値とを差分して差分値を算出し、該差分値が所定閾値未満であれば積算値を初期値にリセットすることが好ましい。
 この構成では、圧電素子の発生電荷のばらつきの影響を抑圧することができる。
 また、この発明の変位センサの圧電素子は、少なくとも一軸方向に延伸処理を行ったポリ乳酸からなる圧電性フィルムと、該圧電性フィルムの第1面に形成された第1検出用電極と、圧電性フィルムの第2面に形成された第2検出用電極と、を備えることが好ましい。
 この構成では、圧電フィルムに好適な材料例を示している。一軸延伸したポリ乳酸は、圧電定数が高く、誘電率が低い。したがって、圧電フィルムにポリ乳酸を用いれば、変位量の検出感度が高くなる。さらに、ポリ乳酸は、アクリル樹脂と同様に、透光性が高いので、透光性の高い変位センサも実現できる。そして、ポリ乳酸は、焦電性がないため、指等が変位センサ表面に触れた際に、体温が伝わっても、押し込み量(押圧力)の検出電圧に影響を与えない。したがって、圧電フィルムとしてポリ乳酸を用いた場合、PVDF等の焦電性を有する圧電フィルムを用いた場合と比較すると、体温が伝達されないような複雑な機構を付与する必要が無い。
 また、この発明では、変位センサは、圧電素子の所定面が押圧された時の押圧力を検出するタッチセンサとして利用することができる。
 この発明によれば、操作者によって与えられた変位量を高精度に測定することができる。
本発明の第1の実施形態に係る変位センサ100の回路ブロック図である。 圧電素子10の概略構成を示す図である。 本発明の第1の実施形態に係る圧電素子10の押し込みによる電荷の発生機能を説明するための図である。 第1の実施形態に係るオペアンプU1の出力電圧の時間遷移の一例を示す図である。 第1の実施形態に係る変位センサ100の演算部122の構成を示すブロック図である。 第1の実施形態に係る演算部122で得られる積算値Zoutの時間遷移を示す図である。 本発明の第1の実施形態に係る変位センサ100の回路ブロック図である。 第2の実施形態に係るオペアンプU1の出力電圧の時間遷移の一例を示す図である。 第2の実施形態に係る演算部122で得られる積算値Zoutの時間遷移を示す図である。 第3の実施形態に係る変位センサの演算部122Aの回路ブロック図である。 実際の測定を起こりえる積算値に生じる一つの遷移を示す図である。 第3の実施形態に係る変位センサのリセット機能付き押圧量算出部202Aが実行する押圧量算出フローを示すフローチャートである。
 本発明の第1の実施形態に係る変位センサについて、図を参照して説明する。なお、以下の実施形態では、変位センサとして押圧力(押し込み量)を検出するタッチセンサを例に説明する。図1は、本発明の第1の実施形態に係るタッチセンサ100の回路ブロック図である。
 タッチセンサ100は、圧電素子10、電圧変換部101、および検出部102を備える。電圧変換部101は、抵抗器R3(本発明の「第1抵抗器」に相当する。)、コンデンサC1、オペアンプU1を備える。
 圧電素子10の一方端(例えば後述の第1引き出し電極41)は、抵抗器R1と抵抗器R2との接続点に接続されている。抵抗器R1と抵抗器R2とは、駆動電圧印加端子Vddとグランドとの間に直列接続されている。圧電素子10には、抵抗器R3が並列接続されるとともに、コンデンサC1が並列接続されている。圧電素子10の他方端(例えば後述の第2引き出し電極42)は、オペアンプU1の非反転入力端子に接続されている。
 オペアンプU1の出力端は、オペアンプU1の反転入力端子に接続されている。この構成により、バッファ回路が実現される。オペアンプU1には、駆動電圧印加端子Vddから駆動電圧が供給されている。オペアンプU1の出力端は、検出部102に接続されている。
 図2は圧電素子10の概略構成を示す図であり、図2(A)は外観斜視図、図2(B)は平面図、図2(C)は側面図である。
 圧電素子10は、圧電性フィルム20、第1検出用電極31、第2検出用電極32を備える。
 圧電性フィルム20は、互いに対向する第1主面と第2主面を備える矩形状の平膜からなる。圧電性フィルム20は、一軸延伸されたL型ポリ乳酸(PLLA)によって形成されている。
 PLLAは、キラル高分子であり、主鎖が螺旋構造を有する。PLLAは、一軸延伸等により分子が配向されると、圧電性を生じる。一軸延伸されたPLLAの圧電定数は、高分子中で非常に高い部類に属する。
 なお延伸倍率は3~8倍程度が好適である。延伸後に熱処理を施すことにより、ポリ乳酸の延びきり鎖結晶の結晶化が促進され圧電定数が向上する。尚、二軸延伸した場合はそれぞれの軸の延伸倍率を異ならせることによって一軸延伸と同様の効果を得ることが出来る。
 また、PLLAは、延伸等による分子の配向処理で圧電性を生じ、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDFやPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。このため、PLLAには、他の強誘電性の圧電体で生じる焦電性が生じない。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。
 また、PLLAは比誘電率が約2.5と非常に低いため、dを圧電定数とし、εを誘電率とすると、圧電出力定数(=圧電g定数、g=d/ε)が大きな値となる。
 ここで、誘電率ε33 =13×ε,圧電定数d31=25pC/NのPVDFの圧電g定数は、上述の式から、g31=0.2172Vm/Nとなる。一方、圧電定数d14=10pC/NであるPLLAの圧電g定数をg31に換算して求めると、d14=2×d31であるので、d31=5pC/Nとなり、圧電g定数は、g31=0.2258Vm/Nとなる。したがって、圧電定数d14=10pC/NのPLLAで、PVDFと同様の押し込み量の検出感度を十分に得ることができる。そして、本願発明の発明者らは、d14=15~20pC/NのPLLAを実験的に得ており、当該PLLAを用いることで、さらに非常に高感度に押し込み量を検出することが可能になる。
 このような特性を有するPLLAからなる圧電性フィルム20の第1主面には、第1検出用電極31が形成されている。さらに、圧電性フィルム20の第2主面には、第2検出用電極32が形成されている。第1検出用電極31および第2検出用電極32は、ITO、ZnO、ポリチオフェンを主成分とする有機電極、ポリアニリンを主成分とする有機電極、銀ナノワイヤ電極のいずれかを用いるのが好適である。これらの材料を用いることで、透光性の高い電極を形成できる。尚、透明性が必要とされない場合には銀ペーストにより形成された電極や、蒸着やスパッタ、あるいはメッキなどにより形成された金属系の電極を用いることもできる。
 第1検出用電極31には第1引き出し電極41が接続されている。第2検出用電極32には第2引き出し電極42が接続されている。
 このような圧電素子10の平板面を押し込むと、電荷が発生し、第1検出用電極31と第2検出用電極32との間に電位差が生じる。図3は、本発明の第1の実施形態に係る圧電素子10の押し込みによる電荷の発生機能を説明するための図である。図3(A)が押し込み量(押圧力)の係っていない状態を示し、図3(B)は指による押し込み量(押圧力)の係っている状態を示す。
 図3(A)に示すように、圧電素子10を平板状の弾性体50の一方主面に、互いの平面が密着するように取り付ける。弾性体50はガラス、アクリル、ポリカーボネート等で形成されている。弾性体50はここに記載した材料に限らず、使用条件に応じて適切な材料を選択すればよい。また、圧電素子10を貼り合わせる面についても使用条件に応じて適切な面を選択すればよい。弾性体50の対向する両端を支持体501で支持する。
 図3(B)に示すように、弾性体50の表面を指510で押すと、太矢印520に示すような押圧力が弾性体50に加わる。この場合、弾性体50は、圧電素子10の配設面側へ膨らむように湾曲する。これにより、圧電素子10の圧電性フィルム20は長手方向に略沿って伸延され、太矢印530に示すような引っ張り応力が発生する。この応力により、圧電性フィルム100は、第1主面と第2主面とに分極する。この分極電荷によって、第1検出用電極31と第2検出用電極32との間に電位差(電圧)が生じる。この際、PLLAでは、分極によって発生する電荷量が押圧力に比例する。すなわち、第1検出用電極31と第2検出用電極32に発生する電位差(電圧)は押圧力に比例する。
 このように、押圧力に応じて発生する電位差(電圧)は、上述のように、変位の生じたタイミングで瞬時的に発生し、経時的に低下してしまう。しかしながら、本願発明の構成を用いれば、このような圧電素子10から発生する瞬時的な電荷の変化、電圧に基づいて、正確且つ確実に押圧力(押し込み量)を算出することができる。
 上述のように、圧電素子10には、抵抗器R3とコンデンサC1とが並列接続されている。抵抗器R3の抵抗値(インピーダンス)と、コンデンサC1のキャパシタンスは、次の条件を満たすように、適宜設定されている。
 (i)抵抗器R3の抵抗値は、圧電素子10のインピーダンスよりも低い。
 (ii)押し込みによるオペアンプU1の出力電圧の変化が検出部102で検出可能である。
 (iii)押し込みによるオペアンプU1の出力電圧の過渡的な電圧の時間変化が、タッチセンサ100として離散的にサンプリングする検知の周期に対して十分に短い。
 なお、圧電素子10の基準電圧を与えるための抵抗器R1,R2の抵抗値は、R1×R2/(R1+R2)≪R3を満たすように設定されている。
 このような構成において、圧電素子10に押圧力を加えていき、一定時間維持した後に、押圧力を開放していくと、オペアンプU1の出力電圧は、次のように変化する。
 押圧力が加わり始めると、オペアンプU1の出力電圧は、押圧力の加わるタイミングから、最終的な押圧力に応じた電圧まで変位する。その後、抵抗器R3の抵抗値(インピーダンス)と、コンデンサC1のキャパシタンスおよび圧電素子10のキャパシタンスCsによって決まる時定数(R3×(C1+Cs)に比例する値)に応じて、基準電圧まで低下する。
 そして、押圧力を開放され始めると、オペアンプU1の出力電圧は、押圧力の開放のタイミングから押圧力に応じた電圧まで変位する。その後、抵抗器R3の抵抗値(インピーダンス)と、コンデンサC1のキャパシタンスおよび圧電素子10のキャパシタンスCsによって決まる時定数(R3×(C1+Cs)に比例する値)に応じて、基準電圧まで低下する。
 この際、押圧力の加わった時の電圧変化と押圧力が開放された時の電圧変化とは、基準電圧に対して逆特性となる。具体的には、電圧変換部101のオペアンプU1の出力電圧は、図4に示すような時間遷移をたどる。図4は、本実施形態に係るオペアンプU1の出力電圧の時間遷移の一例を示す図である。
 図4に示すように、時刻0.0sec.~0.1sec.では圧電素子10に押圧力が加えられていないので、出力電圧は基準電圧となる。
 時刻0.1sec.~0.25sec.で圧電素子10に押圧力が加えられると、加えられた押圧力に応じて、出力電圧は基準電圧よりも上昇する。そして、さらなる押圧力の増加がなくなり、押圧力が一定になると、R3×(C1+Cs)に基づく時定数で、出力電圧は低下し、基準電圧に戻る。例えば、図4の場合、0.45sec.で出力電圧は基準電圧となる。その後、押圧力が一定の期間は、出力電圧は、基準電圧のまま一定となる。
 時刻0.8sec.~0.95sec.で圧電素子10に加えられていた押圧力が開放されると、開放される押圧力に応じて、出力電圧は基準電圧よりも低下する。そして、押圧力が全て開放されると、R3×(C1+Cs)に基づく時定数で、出力電圧は上昇し、基準電圧に戻る。例えば、図4の場合、1.15sec.で出力電圧は基準電圧となる。
 圧電素子10に加えられた押圧力によって、上述のような時間遷移をする出力電圧は、検出部102に入力される。
 検出部102は、A/D変換部121と演算部122とを備える。図5は演算部122の構成を示すブロック図である。
 A/D変換部121は、オペアンプU1の出力信号を、所定のサンプリング周期でサンプリングして、デジタルの出力データに変換する。この際、サンプリング周期は、タッチセンサ100の仕様に応じて適宜設定すればよく、上述の押圧力による電圧変化を適正に検出できるような周期に設定されている。
 演算部122は、積算部201と押圧量算出部202とを備える。積算部201は、基準電圧をデジタルサンプリングした基準電圧データと、出力データとの差分値をサンプリングタイミング毎に積算し、積算値Zoutを算出する。図6は第1の実施形態に係る演算部122で得られる積算値Zoutの時間遷移を示す図である。図6は図4に示す出力電圧遷移が生じた場合の例を示している。
 図6に示すように、積算値Zoutは、略0.0から始まり、押圧力が加わり始めて出力電圧が上昇し、押圧力が一定になって出力電圧が基準電圧に戻るまで上昇し続ける。この際、積算値Zoutの到達する値は、押圧力すなわち押し込み量に依存する。この後、押圧力が開放し始めて出力電圧が低下し、押圧力が開放されて出力電圧が基準電圧に戻るまで低下し続け、略0.0となる。したがって、図6の場合、0.45sec.までは積算値Zoutが0.0から押圧力に応じた所定値まで上昇し続ける。0.45sec.~0.8sec.までは積算値Zoutが一定になる。0.8sec.からは積算値Zoutが所定値から低下し続け、1.15sec.で0.0となる。
 押圧量算出部202は、積算値Zoutを検出し、予め設定した積算値Zoutと押圧量との関係から、押圧量を算出する。なお、ここで、押圧力も押圧量も同じように積算値Zoutに依存するので、押圧力を算出することもできる。
 このような構成にすることで、押圧量および押圧力を正確且つ確実に検出タッチセンサを実現することができる。
 次に、第2の実施形態に係るタッチセンサについて、図を参照して説明する。図7は、本発明の第2の実施形態に係るタッチセンサ100Aの回路ブロック図である。本実施形態のタッチセンサ100Aは、電圧変換部101Aの構成および圧電素子10との接続構成が、第1の実施形態の電圧変換部101と異なるものである。
 電圧変換部101Aは、オペアンプU1、抵抗器R3(本発明の「第1抵抗器」に相当する。)、抵抗器R4(本発明の「第2抵抗器」に相当する。)、コンデンサC1を備える。
 オペアンプU1の非反転入力端子は、抵抗器R1と抵抗器R2との接続点に接続されている。抵抗器R1と抵抗器R2とは、駆動電圧印加端子Vddとグランドとの間に直列接続されている。また、オペアンプU1には駆動電圧印加端子Vddから駆動電圧が供給されている。
 オペアンプU1の反転入力端子には、抵抗器R3の一方端が接続されている。抵抗器R3の他方端は、圧電素子10の一方端(例えば上述の第1引き出し電極41)に接続されている。圧電素子10の他方端(例えば上述の第2引き出し電極42)は基準電位に接続されている。
 オペアンプU1の反転入力端子と出力端子との間には、第1コンデンサC1が接続されるとともに、抵抗器R4が接続されている。
 このような構成により、電圧変換部101Aは、圧電素子10に接続する積分回路として機能する。
 抵抗器R3および抵抗器R4の抵抗値(インピーダンス)と、コンデンサC1のキャパシタンスは、次の条件を満たすように、適宜設定されている。
 (i)抵抗器R3の抵抗値と抵抗器R4との合成抵抗(R3+R4)は、圧電素子10のインピーダンスよりも低い。
 (ii)押し込みによるオペアンプU1の出力電圧の変化が検出部102で検出可能である。
 (iii)押し込みによるオペアンプU1の出力電圧の過渡的な電圧の時間変化が、タッチセンサ100として離散的にサンプリングする検知の周期に対して十分に短い。
 なお、抵抗器R1,R2の抵抗値の設定は、第1の実施形態と同じである。
 このような構成であっても、オペアンプU1の出力電圧は、第1の実施形態と同様の挙動を示す。具体的には、電圧変換部101AのオペアンプU1の出力電圧は、図8に示すような時間遷移をたどる。図8は、本実施形態に係るオペアンプU1の出力電圧の時間遷移の一例を示す図である。なお、図8は、時刻0.1sec.~0.25sec.では第1の方向に押圧力を加え、その後押圧力を維持して、時刻0.8sec.~0.95sec.で押圧力を開放した場合を示している。
 図8に示すように、時刻0.0sec.~0.1sec.では圧電素子10に押圧力が加えられていないので、出力電圧は基準電圧となる。
 時刻0.1sec.~0.25sec.で圧電素子10に押圧力が加えられると、加えられた押圧力に応じて、出力電圧は基準電圧よりも上昇する。そして、さらなる押圧力の増加がなくなり、押圧力が一定になると、R4×C1に基づく時定数で、出力電圧は低下し、基準電圧に戻る。例えば、図8の場合、0.6sec.で出力電圧は基準電圧となる。その後、押圧力が一定の期間は、出力電圧は、基準電圧のまま一定となる。
 時刻0.8sec.~0.95sec.で圧電素子10に加えられていた押圧力が開放されると、開放される押圧力に応じて、出力電圧は基準電圧よりも低下する。そして、押圧力が全て開放されると、R4×C1に基づく時定数で、出力電圧は上昇し、基準電圧に戻る。例えば、図8の場合、1.3sec.で出力電圧は基準電圧となる。
 圧電素子10に加えられた押圧力によって、上述のような時間遷移をする出力電圧は、検出部102に入力される。
 検出部102は、第1の実施形態と同じ構成である。図9は、第2の実施形態に係る演算部122で得られる積算値Zoutの時間遷移を示す図である。図9は図8に示す出力電圧遷移が生じた場合の例を示している。
 図9に示すように、積算値Zoutは、略0.0から始まり、押圧力が加わり始めて出力電圧が上昇し、押圧力が一定になって出力電圧が基準電圧に戻るまで上昇し続ける。この際、積算値Zoutの到達する値は、押圧力すなわち押し込み量に依存する。この後、押圧力が開放し始めて出力電圧が低下し、押圧力が開放されて出力電圧が基準電圧に戻るまで低下し続け、略0.0となる。したがって、図9の場合、0.6sec.までは積算値Zoutが0.0から押圧力に応じた所定値まで上昇し続ける。0.6sec.~0.8sec.までは積算値Zoutが一定になる。0.8sec.からは積算値Zoutが所定値から低下し続け、1.3sec.で0.0となる。
 このように、本実施形態を用いても、第1の実施形態と同様に、押圧量および押圧力に応じた積算値の遷移が得られる。但し本実施例では電圧変換部101Aが積分特性を有しているため、第1の実施例よりもゆるやかな反応を示すタッチセンサを実現することができる。
 次に、第3の実施形態に係るタッチセンサについて、図を参照して説明する。図10は、本実施形態に係るタッチセンサの演算部122Aの回路ブロック図である。本実施形態のタッチセンサは、第1の実施形態に示したタッチセンサに対して、演算部122Aの構成が異なるものである。したがって、異なる箇所のみを説明する。
 演算部122Aは、積算部201、リセット機能付き押圧量算出部202Aを備える。
 図11は実際の測定を起こりえる積算値に生じる一つの遷移を示す図である。実際の測定では、圧電素子10の電荷発生量のばらつきや、オペアンプU1の入力オフセット電圧等により、基準電圧よりも高い領域に発生する電圧(基準電圧よりも正側の電圧)と、基準電圧よりも低い領域に発生する電圧(基準電圧よりも負側の電圧)とが非対称になることがある。この場合、単に押圧して開放するだけでも、図11に示すように、積算値Zoutが0.0に戻らない可能性もある。
 演算部122Aのリセット機能付き押圧量算出部202Aは、図12に示すフローを用いて押圧量を算出する。図12は、第3の実施形態に係るリセット機能付き押圧量算出部202Aが実行する押圧量算出フローを示すフローチャートである。
 リセット機能付き押圧量算出部202A(以下、単に「算出部202A」とする。)は、積算部201から出力される積算値Zoutを測定し、順次比較する(S101)。算出部202Aは、積算値Zoutに上下動があることを検出するまでは(S102:NO)、積算値Zoutの測定、比較を継続する。すなわち、図6に示すように、積算値Zoutが上昇して一定値となり、その後低下するまでは、積算値Zoutの測定、比較を継続する。
 算出部202Aは、積算値Zoutの上下動を検出すると(S102:YES)、積算値Zoutの最大値Zmaxを算出する(S103)。
 次に、算出部202Aは、初期の積算値Zout(=0.0)と、測定している最新の積算値Zoutとの差分値ΔZを算出する(S104)。算出部202Aは、差分値ΔZが最大値Zmaxによって決まる所定の閾値(本実施形態では、0.9Zmax)未満でなければ(S105:NO)、差分値ΔZの算出、および差分値ΔZと閾値との比較を継続する。なお、閾値は、ここで示す値に限るものでなく、タッチセンサ100の圧電素子10およびオペアンプU1の特性のばらつきや、タッチセンサ100の使用環境等によって適宜設定すればよい。
 算出部202Aは、差分値ΔZが閾値未満であることを検出すると(S105:YES)、最大値Maxから押圧量を算出する(S106)。そして、算出部202Aは、積算値Zoutを初期値(=0.0)にリセットする(S107)。
 このような処理を行うことで、積算値の累積誤差を無くすことができる。これにより、継続的に押圧量を検出し続けても、各回で、正確且つ確実に押圧量を検出し続けることができる。
 なお、上述の説明では、変位センサとして押圧力(押し込み量)を検出するタッチセンサを例に説明したが、変位センサすなわち圧電素子自体が曲げられたり、捻られたりした時の変位量を検出する他の変位センサにも、上述の構成を適用することができる。これにより、曲げ量や捻れ量等の変位量を正確に且つ確実に検出することができる。
100,100A:タッチセンサ、
10:圧電素子、
20:圧電性フィルム、
31:第1検出用電極、
32:第2検出用電極、
41:第1引き出し電極、
42:第2引き出し電極、
50:弾性体、
101,101A:電圧変換部、
102:検出部、
121:A/D変換部、
122,122A:演算部、
201:積算部、
202:押圧量算出部、
202A:リセット機能付き押圧量算出部、
501:支持体

Claims (9)

  1.  変位量に応じた電荷を発生する圧電素子と、
     圧電素子の発生する電荷から、所定の時定数で変化する電圧を発生する電圧変換部と、
     該電圧変換部から出力される電圧を積算し、積算値から前記変位量を算出する検出部と、を備える変位センサ。
  2.  前記電圧変換部は、
     前記圧電素子の少なくとも一端と接続された第1抵抗器と、
     前記圧電素子で発生した電荷が前記第1抵抗器を流れることで発生する電圧を入力として検知するアンプ回路と、
     を備える請求項1に記載の変位センサ。
  3.  前記電圧変換部は、
     前記第1抵抗器は前記圧電素子と並列に接続され、前記第1抵抗器の一端が前記アンプ回路の入力と接続され、前記第1抵抗器の他端は基準電位と接続されている、請求項2に記載の変位センサ。
  4.  前記電圧変換部は、
     前記圧電素子と前記第1抵抗器と第2抵抗器とが直列接続され、
     前記第1抵抗器の一端は前記圧電素子と接続され、前記第1抵抗器の他端は前記第2抵抗器の一端及び前記アンプ回路の入力と接続され、前記第2抵抗器の他端は前記アンプ回路の出力と接続されている、請求項2に記載の変位センサ。
  5.  前記第1抵抗器のインピーダンスは、前記圧電素子のインピーダンスよりも低い、請求項1乃至請求項3のいずれか1項に記載の変位センサ。
  6.  前記第1抵抗器と前記第2抵抗器の合成インピーダンスは、前記圧電素子のインピーダンスよりも低い、請求項4に記載の変位センサ。
  7.  前記検出部は、
     前記積算値の変動を測定し、
     前記積算値の変動が増加、減少の一組の挙動を示したことを検出すると、前記積算値の初期値と最新の積算値とを差分して差分値を算出し、
     該差分値が所定閾値未満であれば、前記積算値を初期値にリセットする、請求項1乃至請求項6のいずれか1項に記載の変位センサ。
  8.  前記圧電素子は、
     少なくとも一軸方向に延伸処理を行ったポリ乳酸からなる圧電性フィルムと、
     該圧電性フィルムの第1面に形成された第1検出用電極と、
     前記圧電性フィルムの第2面に形成された第2検出用電極と、
     を備える、請求項1乃至請求項7のいずれか1項に記載の変位センサ。
  9.  前記変位センサは、前記圧電素子の所定面が押圧された時の押圧力を検出するタッチセンサである、請求項1乃至請求項8のいずれかに1項に記載の変位センサ。
PCT/JP2013/051530 2012-01-25 2013-01-25 変位センサ WO2013111841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013555315A JP5765442B2 (ja) 2012-01-25 2013-01-25 変位センサ
CN201380006264.1A CN104067087B (zh) 2012-01-25 2013-01-25 位移传感器
US14/339,875 US9778765B2 (en) 2012-01-25 2014-07-24 Displacement sensor including a voltage converting unit that contains a resistor connected to a piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-012839 2012-01-25
JP2012012839 2012-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/339,875 Continuation US9778765B2 (en) 2012-01-25 2014-07-24 Displacement sensor including a voltage converting unit that contains a resistor connected to a piezoelectric element

Publications (1)

Publication Number Publication Date
WO2013111841A1 true WO2013111841A1 (ja) 2013-08-01

Family

ID=48873553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051530 WO2013111841A1 (ja) 2012-01-25 2013-01-25 変位センサ

Country Status (5)

Country Link
US (1) US9778765B2 (ja)
JP (1) JP5765442B2 (ja)
CN (1) CN104067087B (ja)
TW (1) TWI530670B (ja)
WO (1) WO2013111841A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070110A (ja) * 2013-09-30 2015-04-13 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
WO2015060280A1 (ja) * 2013-10-25 2015-04-30 株式会社村田製作所 電子機器、および、操作入力プログラム
JP2015118032A (ja) * 2013-12-19 2015-06-25 株式会社村田製作所 圧電センサの検査方法
WO2016027615A1 (ja) * 2014-08-19 2016-02-25 株式会社村田製作所 圧電フィルムセンサ
WO2016027614A1 (ja) * 2014-08-18 2016-02-25 株式会社村田製作所 圧電素子及び曲げ検出センサ
WO2016199626A1 (ja) * 2015-06-11 2016-12-15 株式会社村田製作所 押圧センサおよび電子機器
JP2017033505A (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 タッチ式入力装置
JPWO2016027587A1 (ja) * 2014-08-22 2017-04-27 三井化学株式会社 高分子圧電フィルム
WO2017154285A1 (ja) * 2016-03-10 2017-09-14 株式会社村田製作所 押圧検出装置、電子機器
WO2019049375A1 (ja) * 2017-09-11 2019-03-14 富士通株式会社 制御装置、電子機器、及び、電子機器の制御方法
JP2020107933A (ja) * 2018-12-26 2020-07-09 株式会社ユーシン 近接センサ
WO2022009747A1 (ja) * 2020-07-10 2022-01-13 株式会社村田製作所 押圧力検知装置
CN115003998A (zh) * 2020-01-24 2022-09-02 株式会社理光 传感器元件和传感器系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061984A1 (ja) * 2011-10-28 2013-05-02 株式会社村田製作所 変位検出装置、および変位検出方法
WO2015041198A1 (ja) * 2013-09-20 2015-03-26 株式会社村田製作所 押圧検出センサ
JP2017538189A (ja) 2014-10-14 2017-12-21 コーニング インコーポレイテッド 圧電フィルム構造体およびセンサ並びにそれらを用いた表示アセンブリ
CN107615030B (zh) * 2015-05-29 2020-05-01 株式会社村田制作所 压电膜传感器以及保持状态检测装置
CN108534693B (zh) * 2018-06-28 2023-10-27 四川农业大学 一种茶拢纵深高度测量装置
CN110868193B (zh) * 2019-11-13 2022-06-10 宁波大学 一种压电执行器输出位移与输出力的自感知方法
TWI724709B (zh) * 2019-12-25 2021-04-11 財團法人工業技術研究院 壓電感測電路及壓電感測系統
EP4140028A4 (en) 2020-04-22 2024-06-05 Board of Trustees of the University of Arkansas AMBIENT THERMAL AND VIBRATORY ENERGY COLLECTION DEVICE
JP7078199B1 (ja) * 2020-06-17 2022-05-31 株式会社村田製作所 曲げセンサおよび電子機器
CN111692959A (zh) * 2020-08-04 2020-09-22 孟祥莲 一种位移测量装置
CN117906798B (zh) * 2024-03-15 2024-06-04 杭州微纳核芯电子科技有限公司 压电传感器控制方法、电路、压电感应系统及电子烟
CN117889995B (zh) * 2024-03-15 2024-06-04 杭州微纳核芯电子科技有限公司 压电传感器控制方法、电路、压电感应系统和电子烟

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807482A (en) * 1987-05-18 1989-02-28 Temple University Of The Commonwealth System Of Higher Education Method and apparatus for measuring stimuli applied to a piezoelectric transducer
JPH06109560A (ja) * 1992-09-28 1994-04-19 Sanyo Electric Co Ltd 外力測定装置及びこれを用いた部品装着装置
JP2002350106A (ja) * 2001-05-25 2002-12-04 Olympus Optical Co Ltd 圧電素子変位検出装置
JP2011253517A (ja) * 2010-05-06 2011-12-15 Murata Mfg Co Ltd タッチパネル、ならびにタッチ式入力装置およびその制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785113B2 (ja) 1987-04-24 1995-09-13 株式会社日立製作所 プラズマ位置形状検出装置
JPH0561592A (ja) 1991-09-04 1993-03-12 Yamaha Corp タツチ入力装置
US5523642A (en) 1992-09-28 1996-06-04 Sanyo Electric Co., Ltd. External force measuring system and component mounting apparatus equipped with same
US5794080A (en) * 1994-08-31 1998-08-11 Nikon Corporation Piezoelectric vibration angular velocity meter and camera using the same
JP3727133B2 (ja) * 1997-03-14 2005-12-14 日本たばこ産業株式会社 荷重測定方法及び荷重測定装置
KR20010043340A (ko) 1999-03-05 2001-05-25 이와키 덴시 가부시키가이샤 변위 센서 및 이를 이용한 이동 정보 수집 장치
JP2000283869A (ja) * 1999-03-29 2000-10-13 Tokai Rubber Ind Ltd センサ
JP2003004758A (ja) 2001-06-20 2003-01-08 Railway Technical Res Inst 車両速度計測装置および車両速度計測方法
JP3809803B2 (ja) 2002-02-15 2006-08-16 オムロン株式会社 変位センサ
US7277087B2 (en) 2003-12-31 2007-10-02 3M Innovative Properties Company Touch sensing with touch down and lift off sensitivity
JP4358678B2 (ja) * 2004-05-14 2009-11-04 株式会社小松製作所 変位量測定装置
CN2811952Y (zh) * 2005-06-13 2006-08-30 夏惠兴 旋转机械在线监测保护装置
TW201039209A (en) 2009-04-27 2010-11-01 Compal Electronics Inc Method for operating electronic device using touch pad
ATE512358T1 (de) 2009-04-29 2011-06-15 Nest Int Nv Vorrichtung zur messung der flüssigkeitsdichte
JP2012014375A (ja) 2010-06-30 2012-01-19 Kyocera Corp 触感呈示装置および触感呈示装置の制御方法
WO2011041946A1 (zh) 2009-10-09 2011-04-14 禾瑞科技股份有限公司 电容式位置侦测的方法与装置
JP2011234212A (ja) 2010-04-28 2011-11-17 Toyota Motor Corp タスク制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807482A (en) * 1987-05-18 1989-02-28 Temple University Of The Commonwealth System Of Higher Education Method and apparatus for measuring stimuli applied to a piezoelectric transducer
JPH06109560A (ja) * 1992-09-28 1994-04-19 Sanyo Electric Co Ltd 外力測定装置及びこれを用いた部品装着装置
JP2002350106A (ja) * 2001-05-25 2002-12-04 Olympus Optical Co Ltd 圧電素子変位検出装置
JP2011253517A (ja) * 2010-05-06 2011-12-15 Murata Mfg Co Ltd タッチパネル、ならびにタッチ式入力装置およびその制御方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070110A (ja) * 2013-09-30 2015-04-13 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
WO2015060280A1 (ja) * 2013-10-25 2015-04-30 株式会社村田製作所 電子機器、および、操作入力プログラム
JP6020742B2 (ja) * 2013-10-25 2016-11-02 株式会社村田製作所 電子機器、および、操作入力プログラム
US10120485B2 (en) 2013-10-25 2018-11-06 Murata Manufacturing Co., Ltd. Electronic device and operation input program
JP2015118032A (ja) * 2013-12-19 2015-06-25 株式会社村田製作所 圧電センサの検査方法
WO2016027614A1 (ja) * 2014-08-18 2016-02-25 株式会社村田製作所 圧電素子及び曲げ検出センサ
US10512421B2 (en) 2014-08-18 2019-12-24 Murata Manufacturing Co., Ltd. Piezoelectric element and bend detecting sensor
JPWO2016027614A1 (ja) * 2014-08-18 2017-05-25 株式会社村田製作所 圧電素子及び曲げ検出センサ
JPWO2016027615A1 (ja) * 2014-08-19 2017-06-01 株式会社村田製作所 圧電フィルムセンサ
WO2016027615A1 (ja) * 2014-08-19 2016-02-25 株式会社村田製作所 圧電フィルムセンサ
JPWO2016027587A1 (ja) * 2014-08-22 2017-04-27 三井化学株式会社 高分子圧電フィルム
US10352786B2 (en) 2015-06-11 2019-07-16 Murata Manufacturing Co., Ltd. Pressing sensor and electronic device
JP6288374B2 (ja) * 2015-06-11 2018-03-07 株式会社村田製作所 押圧センサおよび電子機器
JPWO2016199626A1 (ja) * 2015-06-11 2018-03-15 株式会社村田製作所 押圧センサおよび電子機器
WO2016199626A1 (ja) * 2015-06-11 2016-12-15 株式会社村田製作所 押圧センサおよび電子機器
JP2017033505A (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 タッチ式入力装置
JP6406473B2 (ja) * 2016-03-10 2018-10-17 株式会社村田製作所 押圧検出装置、電子機器
JPWO2017154285A1 (ja) * 2016-03-10 2018-11-29 株式会社村田製作所 押圧検出装置、電子機器
WO2017154285A1 (ja) * 2016-03-10 2017-09-14 株式会社村田製作所 押圧検出装置、電子機器
US10656729B2 (en) 2016-03-10 2020-05-19 Murata Manufacturing Co., Ltd. Pressing detector and electronic device
US11561653B2 (en) 2017-09-11 2023-01-24 Fujitsu Limited Control circuitry, electronic device, and method for controlling electronic device
JPWO2019049375A1 (ja) * 2017-09-11 2020-11-19 富士通株式会社 制御装置、電子機器、及び、電子機器の制御方法
WO2019049375A1 (ja) * 2017-09-11 2019-03-14 富士通株式会社 制御装置、電子機器、及び、電子機器の制御方法
JP2020107933A (ja) * 2018-12-26 2020-07-09 株式会社ユーシン 近接センサ
JP7299697B2 (ja) 2018-12-26 2023-06-28 株式会社ユーシン 近接センサ
CN115003998A (zh) * 2020-01-24 2022-09-02 株式会社理光 传感器元件和传感器系统
WO2022009747A1 (ja) * 2020-07-10 2022-01-13 株式会社村田製作所 押圧力検知装置
JP7211563B2 (ja) 2020-07-10 2023-01-24 株式会社村田製作所 押圧力検知装置
JPWO2022009747A1 (ja) * 2020-07-10 2022-01-13
US11847289B2 (en) 2020-07-10 2023-12-19 Murata Manufacturing Co., Ltd. Pressing force detection device

Also Published As

Publication number Publication date
JPWO2013111841A1 (ja) 2015-12-10
JP5765442B2 (ja) 2015-08-19
TW201333431A (zh) 2013-08-16
US9778765B2 (en) 2017-10-03
CN104067087B (zh) 2018-01-19
TWI530670B (zh) 2016-04-21
US20140331791A1 (en) 2014-11-13
CN104067087A (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5765442B2 (ja) 変位センサ
JP5765489B2 (ja) 押込量検出センサ、タッチ式入力装置
KR101734796B1 (ko) 압력 검출 장치, 압력 검출 장치의 제어 방법, 및 프로그램
JP5794399B2 (ja) タッチ式入力装置
WO2015046289A1 (ja) タッチ式入力装置
JP6139185B2 (ja) 圧力検出装置
JP2014202618A (ja) 圧力検出装置
US10656729B2 (en) Pressing detector and electronic device
CN107003189B (zh) 传感器模块
WO2016059940A1 (ja) 圧力検出装置、圧力検出装置の制御方法、及びプログラム
CN105378614B (zh) 按压检测传感器
US9772236B2 (en) Displacement detection device and displacement detection method
CN106796466B (zh) 触摸式输入装置以及触摸输入检测方法
WO2019244594A1 (ja) 押圧センサ及び押圧検出装置
JP2015155880A (ja) 圧力センサ
WO2016103887A1 (ja) 圧力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741584

Country of ref document: EP

Kind code of ref document: A1